Please use this identifier to cite or link to this item: http://repositorio.lnec.pt:8080/jspui/handle/123456789/1017037
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCerqueira, S.pt_BR
dc.contributor.authorArsénio, E.pt_BR
dc.contributor.authorHenriques, R.pt_BR
dc.date.accessioned2024-01-03T16:31:34Zpt_BR
dc.date.accessioned2024-03-05T15:30:37Z-
dc.date.available2024-01-03T16:31:34Zpt_BR
dc.date.available2024-03-05T15:30:37Z-
dc.date.issued2023-12-13pt_BR
dc.identifier.citationhttps://doi.org/10.1016/j.trpro.2023.11.780pt_BR
dc.identifier.urihttps://repositorio.lnec.pt/jspui/handle/123456789/1017037-
dc.description.abstractPromoting the accuracy and coverage of the alighting of passengers in public transport is essential to support route planning and policy decisions aiming to sustainable mobility. Although previous studies place several principles for alighting estimation from incomplete smart card data, most remain dispersed and address one single mode. These gaps hinder a comprehensive comparison of the success rates of existing alighting algorithms. To address the above challenges, this work assesses side-by-side state-of-the-art principles for alight stop inference using smart card data from multimodal transport networks. To our best knowledge, this research is the first incrementally measuring the impact of each principle present in the literature. It further discusses uncertainty factors and proposes a confidence metric on the estimated alighted stops.pt_BR
dc.language.isoengpt_BR
dc.publisherElsevierpt_BR
dc.relationiLU: Aprendizagem Avançada em Dados Urbanos com Contexto Situacional para Optimização da Mobilidade nas Cidadespt_BR
dc.rightsrestrictedAccesspt_BR
dc.subjectSustainable urban mobilitypt_BR
dc.subjectData sciencept_BR
dc.subjectAlighting stop inferencept_BR
dc.subjectSmart card data analysispt_BR
dc.subjectPublic transportpt_BR
dc.subjectMultimodal transportpt_BR
dc.titleIs there any best practice principles to estimate bus alighting passengers from incomplete smart card transactions?pt_BR
dc.typeworkingPaperpt_BR
dc.description.pages8p.pt_BR
dc.description.commentsEstudo financiado pela Fundação para a Ciência e a Technologia, com a colaboração da Câmara Municipal e Lisboa e empresas CARRIS e Metropolitano de Lisboa (Projeto FCT iLU: Aprendizagem Avançada em Dados Urbanos com Contexto Situacional para Optimização da Mobilidade nas Cidades).pt_BR
dc.description.sectorDT/CHEFIApt_BR
dc.identifier.proc0701/1101/2160201pt_BR
dc.description.magazineTransportation Research Procediapt_BR
dc.contributor.peer-reviewedSIMpt_BR
dc.contributor.academicresearchersSIMpt_BR
dc.contributor.arquivoSIMpt_BR
Appears in Collections:DT/Chefia - Comunicações a congressos e artigos de revista

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.