Please use this identifier to cite or link to this item:
http://repositorio.lnec.pt:8080/jspui/handle/123456789/1017037
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Cerqueira, S. | pt_BR |
dc.contributor.author | Arsénio, E. | pt_BR |
dc.contributor.author | Henriques, R. | pt_BR |
dc.date.accessioned | 2024-01-03T16:31:34Z | pt_BR |
dc.date.accessioned | 2024-03-05T15:30:37Z | - |
dc.date.available | 2024-01-03T16:31:34Z | pt_BR |
dc.date.available | 2024-03-05T15:30:37Z | - |
dc.date.issued | 2023-12-13 | pt_BR |
dc.identifier.citation | https://doi.org/10.1016/j.trpro.2023.11.780 | pt_BR |
dc.identifier.uri | https://repositorio.lnec.pt/jspui/handle/123456789/1017037 | - |
dc.description.abstract | Promoting the accuracy and coverage of the alighting of passengers in public transport is essential to support route planning and policy decisions aiming to sustainable mobility. Although previous studies place several principles for alighting estimation from incomplete smart card data, most remain dispersed and address one single mode. These gaps hinder a comprehensive comparison of the success rates of existing alighting algorithms. To address the above challenges, this work assesses side-by-side state-of-the-art principles for alight stop inference using smart card data from multimodal transport networks. To our best knowledge, this research is the first incrementally measuring the impact of each principle present in the literature. It further discusses uncertainty factors and proposes a confidence metric on the estimated alighted stops. | pt_BR |
dc.language.iso | eng | pt_BR |
dc.publisher | Elsevier | pt_BR |
dc.relation | iLU: Aprendizagem Avançada em Dados Urbanos com Contexto Situacional para Optimização da Mobilidade nas Cidades | pt_BR |
dc.rights | restrictedAccess | pt_BR |
dc.subject | Sustainable urban mobility | pt_BR |
dc.subject | Data science | pt_BR |
dc.subject | Alighting stop inference | pt_BR |
dc.subject | Smart card data analysis | pt_BR |
dc.subject | Public transport | pt_BR |
dc.subject | Multimodal transport | pt_BR |
dc.title | Is there any best practice principles to estimate bus alighting passengers from incomplete smart card transactions? | pt_BR |
dc.type | workingPaper | pt_BR |
dc.description.pages | 8p. | pt_BR |
dc.description.comments | Estudo financiado pela Fundação para a Ciência e a Technologia, com a colaboração da Câmara Municipal e Lisboa e empresas CARRIS e Metropolitano de Lisboa (Projeto FCT iLU: Aprendizagem Avançada em Dados Urbanos com Contexto Situacional para Optimização da Mobilidade nas Cidades). | pt_BR |
dc.description.sector | DT/CHEFIA | pt_BR |
dc.identifier.proc | 0701/1101/2160201 | pt_BR |
dc.description.magazine | Transportation Research Procedia | pt_BR |
dc.contributor.peer-reviewed | SIM | pt_BR |
dc.contributor.academicresearchers | SIM | pt_BR |
dc.contributor.arquivo | SIM | pt_BR |
Appears in Collections: | DT/Chefia - Comunicações a congressos e artigos de revista |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.