Please use this identifier to cite or link to this item: http://repositorio.lnec.pt:8080/jspui/handle/123456789/1016705
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMartins, R.pt_BR
dc.contributor.authorAzevedo, A.pt_BR
dc.contributor.authorJesus, G.pt_BR
dc.contributor.authorOliveira, A.pt_BR
dc.contributor.authorFortunato, A. B.pt_BR
dc.contributor.authorOliveira , F.pt_BR
dc.contributor.authorNahon, A.pt_BR
dc.contributor.authorFreire, P.pt_BR
dc.date.accessioned2023-11-14T17:22:14Zpt_BR
dc.date.accessioned2023-11-21T11:03:10Z-
dc.date.available2023-11-14T17:22:14Zpt_BR
dc.date.available2023-11-21T11:03:10Z-
dc.date.issued2022-06pt_BR
dc.identifier.citationhttp://mec2022.lnec.pt/pdf/proceedings_mec2022.pdfpt_BR
dc.identifier.isbn978-972-49-2322-2pt_BR
dc.identifier.urihttps://repositorio.lnec.pt/jspui/handle/123456789/1016705-
dc.description.abstractWe propose a novel methodology for an automated coastline runup detection from high-resolution remote camera images. As part of a multi-source integrated flood risk assessment platform, this methodology will further improve the characterization of the beach hydrodynamics and define automated procedures for the surveillance of coastal overtopping and overwash.pt_BR
dc.language.isoengpt_BR
dc.publisherLNECpt_BR
dc.rightsopenAccesspt_BR
dc.subjectcamerapt_BR
dc.subjectcoastlinept_BR
dc.subjecthigh-resolutionpt_BR
dc.subjectrunup detectionpt_BR
dc.subjectMOSAIC.ptpt_BR
dc.titleAutomatic identification of the wave runup line from camera imagespt_BR
dc.typeconferenceObjectpt_BR
dc.description.pages45-46pppt_BR
dc.identifier.localLNECpt_BR
dc.description.sectorDHA/GTIpt_BR
dc.description.magazineLivro de Resumos da 6ª Conferência Morfodinâmica Estuarina e Costeirapt_BR
dc.identifier.conftitleMEC 2022 - 6ª Conferência Morfodinâmica Estuarina e Costeirapt_BR
dc.contributor.peer-reviewedSIMpt_BR
dc.contributor.academicresearchersNAOpt_BR
dc.contributor.arquivoSIMpt_BR
Appears in Collections:DHA/GTI - Comunicações a congressos e artigos de revista

Files in This Item:
File Description SizeFormat 
Martins_etal_proceedings_mec2022.pdf171.27 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.