Please use this identifier to cite or link to this item: http://repositorio.lnec.pt:8080/jspui/handle/123456789/1002863
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSimões, N. E.pt_BR
dc.contributor.authorWang, L.pt_BR
dc.contributor.authorOchoa, S.pt_BR
dc.contributor.authorLeitão, J. P.pt_BR
dc.contributor.authorPina, R.pt_BR
dc.contributor.authorOnof, C.pt_BR
dc.contributor.authorSá Marques, A.pt_BR
dc.contributor.authorMaksimovic, C.pt_BR
dc.contributor.authorCarvalho, R.pt_BR
dc.contributor.authorDavid, L. M.pt_BR
dc.date.accessioned2011-12-21T18:30:24Zpt_BR
dc.date.accessioned2014-10-20T12:57:33Zpt_BR
dc.date.accessioned2017-04-12T16:10:22Z-
dc.date.available2011-12-21T18:30:24Zpt_BR
dc.date.available2014-10-20T12:57:33Zpt_BR
dc.date.available2017-04-12T16:10:22Z-
dc.date.issued2011-09pt_BR
dc.identifier.urihttps://repositorio.lnec.pt/jspui/handle/123456789/1002863-
dc.description.abstractShort-term surface flood modelling requires reliable estimation of the distribution of floods over urban catchments with sufficient lead time in order to provide timely warnings. In this paper new improvements to the traditional Support Vector Machine (SVM) prediction technique for rainfall prediction are presented. The results obtained using the new improvements, such as enhancement of SVM prediction using Singular Spectrum Analysis (SSA) for pre-processing the data and combined SSA and SVM with a statistical analysis that give stochastic results to AI-based prediction, are compared with the results obtained using the SVM technique only. When applying the SVM technique to the rainfall data used in this study, the results showed an underestimation of the rainfall peaks. When using SSA for preprocessing the rainfall data the results are significantly better. The new stochastic approach proved to be useful for estimating the level of confidence of the forecast.pt_BR
dc.language.isoengpt_BR
dc.publisherIWApt_BR
dc.rightsopenAccesspt_BR
dc.subjectPluvial floodingpt_BR
dc.subjectSupport vector machinept_BR
dc.subjectSingular spectrum analysispt_BR
dc.subjectRainfall forecastingpt_BR
dc.titleA coupled SSA-SVM technique for stochastic short-term rainfall forecastingpt_BR
dc.typeconferenceObjectpt_BR
dc.description.figures16pt_BR
dc.description.pages8ppt_BR
dc.description.commentsEm CDpt_BR
dc.identifier.seminario12th International Conference on Urban Drainagept_BR
dc.identifier.localPorto Alegre, Brasilpt_BR
dc.description.sectorDHA/NESpt_BR
dc.description.year2011pt_BR
dc.description.data11 a 16 de Setembropt_BR
Appears in Collections:DHA/NES - Comunicações a congressos e artigos de revista

Files in This Item:
File Description SizeFormat 
Publ_David_Set2011-4_A coupled.pdf7.83 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.