Please use this identifier to cite or link to this item: http://repositorio.lnec.pt:8080/jspui/handle/123456789/1014332
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLemonde, C.pt_BR
dc.contributor.authorArsénio, E.pt_BR
dc.contributor.authorHenriques, R.pt_BR
dc.date.accessioned2021-12-27T17:17:16Zpt_BR
dc.date.accessioned2022-03-09T15:03:22Z-
dc.date.available2021-12-27T17:17:16Zpt_BR
dc.date.available2022-03-09T15:03:22Z-
dc.date.issued2021-12-21pt_BR
dc.identifier.citationhttps://doi.org/10.1186/s12544-021-00520-3pt_BR
dc.identifier.urihttps://repositorio.lnec.pt/jspui/handle/123456789/1014332-
dc.description.abstractWorldwide cities are establishing efforts to collect urban traffic data from various modes and sources. Integrating traffic data, together with their situational context, offers more comprehensive views on the ongoing mobility changes and supports enhanced management decisions accordingly. Hence, cities are becoming sensorized and heterogeneous sources of urban data are being consolidated with the aim of monitoring multimodal traffic patterns, encompassing all major transport modes—road, railway, inland waterway—, and active transport modes such as walking and cycling. The research reported in this paper aims at bridging the existing literature gap on the integrative analysis of multimodal traffic data and its situational urban context. The reported work is anchored on the major findings and contributions from the research and innovation project Integrative Learning from Urban Data and Situational Context for City Mobility Optimization (ILU), a multi-disciplinary project on the field of artificial intelligence applied to urban mobility, joining the Lisbon city Council, public carriers, and national research institutes. The manuscript is focused on the context-aware analysis of multimodal traffic data with a focus on public transportation, offering four major contributions. First, it provides a structured view on the scientific and technical challenges and opportunities for data-centric multimodal mobility decisions. Second, rooted on existing literature and empirical evidence, we outline principles for the context-aware discovery of multimodal patterns from heterogeneous sources of urban data. Third, Lisbon is introduced as a case study to show how these principles can be enacted in practice, together with some essential findings. Finally, we instantiate some principles by conducting a spatiotemporal analysis of multimodality indices in the city against available context. Concluding, this work offers a structured view on the opportunities offered by cross-modal and context-enriched analysis of traffic data, motivating the role of Big Data to support more transparent and inclusive mobility planning decisions, promote coordination among public transport operators, and dynamically align transport supply with the emerging urban traffic dynamics.pt_BR
dc.language.isoengpt_BR
dc.publisherSpringerpt_BR
dc.relationFCT ILUpt_BR
dc.rightsrestrictedAccesspt_BR
dc.subjectMultimodalidadept_BR
dc.subjectMobilidade sustentávelpt_BR
dc.subjectCiência dos dadospt_BR
dc.subjectCidades inteligentespt_BR
dc.subjectTransporte públicopt_BR
dc.subjectMobilidade inclusivapt_BR
dc.titleIntegrative analysis of multimodal traffic data: addressing open challenges using big data analytics in the city of Lisbonpt_BR
dc.typeworkingPaperpt_BR
dc.description.pages13-64pppt_BR
dc.description.commentsEstudo financiado pelo projeto FCT ILU – Integrative Learning from Urban Data and Situational Context for City Mobility Optimization (DSAIPA/DS/0111/2018), com o apoio a Câmara Municipal de Lisboa, CARRIS e Metropolitano de Lisboa.pt_BR
dc.description.sectorDT/CHEFIApt_BR
dc.identifier.proc0701/1101/2160201pt_BR
dc.description.magazineEuropean Transport Research Review Journalpt_BR
dc.contributor.peer-reviewedSIMpt_BR
dc.contributor.academicresearchersSIMpt_BR
dc.contributor.arquivoNAOpt_BR
Appears in Collections:DT/Chefia - Comunicações a congressos e artigos de revista

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.