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1 INTRODUCTION 
 
 
The Odelouca dam is located in the South of Portugal. It will be part the 

Odelouca-Funcho water supply system for the Algarve windward. At the present 
time in construction phase, Odelouca dam will be the second higher embankment 
dam in Portugal, with a maximum height of 76 m and net reservoir volume of 157 
hm3. The dam implantation cross section is located near elevation 35 of 
Odelouca River and dominates a 393 km2 hydrological basin with an average 
annual affluent volume of 122.2 hm3. 

 
The first dam construction contract was signed in October 2001 and 

suspended at the end of 2003, with several work components partially built. The 
river diversion system works were, naturally, the first ones to be initiated and 
constituted, at the suspension date of the contract job, the ones that were at an 

                                                
* Analyse des risques du batardeau d’Odelouca. Résultats d’une analyse d’arbre d’évents 
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advanced phase of construction or were already concluded. The diversion tunnel 
and the entrance structure were concluded. The stilling basin was partially 
executed, as well as the cofferdam, 29 m high, 7.5 m below the crest elevation. 
The cofferdam embankments would be concluded in 2004, after a contract 
specifically launched for the purpose. The dam construction was retaken with a 
new contract in 2007. 

 
Between 2004 and 2007, the Odelouca cofferdam functioned as an isolated 

work, being a large dam, with a maximum high of 36 m and 19 hm3 storage 
capacity referred to the crest elevation. The built hydraulic structures allowed the 
routing of a flood with 50 years return period and a 0.8 m freeboard. It was a 
particular case of a temporary structure to be incorporated in the definitive work 
that, due to the interruption of first contract of dam construction, saw prolonged 
his life period, including a set of new no anticipated risks. 

 
This paper presents, initially, a general characterization of Odelouca 

cofferdam and some constructive aspects relevant. The synopsis of dam break 
results is included, identifying it main consequences. In the following, a risk 
analysis, using event tree method, is described and the principal obtained results 
are presented. 
 
 
 

2. ASPECTS OF COFFERDAM DESIGN AND CONSTRUCTION 
 

 
2.1 COFFERDAM LAYOUT AND MAIN CHARACTERISTICS 
 
 

The Odelouca dam is an embankment zoned dam, with 76 m of maximum 
height and 2 000 000 m³ of embankments volume. The exterior slopes have 
upstream and downstream inclinations of 1:2 (V:H) e 1:2.25 (V:H), respectively 
above and below 66.5 elevation (cofferdam crest elevation), and, at downstream, 
of 1:2,25 (V:H) e 1:1,5 (V:H), above and below 46 elevation (downstream rockfill 
toe elevation). The cross section type integrates a symmetrical central core, of 
residual schist soils and colluviums materials, and shoulders, essential 
constituted of schist materials of extensive grain size. Between the core and the 
downstream shoulder, a chimney filter is inserted. This filter is prolonged in 
foundation contact, under the shoulder, and has, in the central valley zone, a mix 
cross section filter-drain-filter. The upstream shoulder incorporates, in second 
phase, the Odelouca cofferdam embankments, whose total volume ascends to 
270 000 m³. 

 
The cofferdam cross section type is zoned, similar to the dam, but without 

internal filter/drainage system, as it was not previewed its operation as an 
isolated work. The cofferdam crest has 8 m of wide and the slopes are inclined at 
1:2.25 (V:H), upstream, and 1:1.9 (V:H), downstream. The core crest, with 4 m 
wide, is located at 65.5 elevation and its slopes have inclinations of 1:0.3 (V:H). 
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The core construction materials (of the dam and cofferdam) characterized 
in the design phase, exhibited fines percentages between 40 and 80%, clay 
percentages between 6 and 15% and plasticity indexes (IP) between 6 and 18%. 
The normal Proctor tests furnished values of the optimum water content between 
14 and 19.5% and maximum dry unit weight between 17.5 and 19 kN/m3. For the 
shoulder materials, the obtained results in the design phase corresponded to 
fines percentages between 15 and 25%, coarse percentages between 40 and 
70% and IP between 10 and 15%. 

 
Besides the cofferdam, the provisory diversion works integrate a tunnel with 

5 m diameter and 430 m length (for placing, in second phase, the intake and 
bottom outlet conduits), and a stilling basin by hydraulic jump, downstream. The 
river diversion works were designed for a flood with a maximum affluent flow of 
715 m³/s (T= 50 years). The correspondent maximum affluent flow is 280 m³/s 
and the freeboard (in relation to cofferdam crest elevation) is 0.8 m. 

 
In Figure 1 the general works layout is presented and, in Figure 2, the cross 

section types of the dam and of the cofferdam. 
 
 

2.2 SOME CONSTRUCTION ASPECTS 
 
 
The tender design [1] was adjudicated by INAG to the Necso/Construtora 

do Tâmega Consortium, in October 2001, start date of the contract job. This 
would be suspended at the 2003 end, with several work components partially 
built. The cofferdam embankments would be afterwards concluded, in 2004. The 
execution phase of the trial embankments and the evaluation of excavation, 
placement and control procedures were a very long-lasting ones (namely, some 
of the trial embankments were repeated) and some difficulties were evidenced by 
the contractor in these questions field.  

 
Observation carried out during the cofferdam embankment execution, some time 
before the contract Job suspension, at 2003 end, raised some doubts about the 
quality of the core embankments. During the sheet foot cylinder passages, a 
distinct “cushion” effect was verified, together with an apparent excess of water 
and a significant irregularity of layer surface after compaction (Photos 1 and 2). 
After these observations, the core embankments were object of the investigation 
works carried out by the Centro de Estudos de Geologia e Geotecnia de Santo 
André (CEGSA). The prospecting campaign carried out by CEGSA in the core 
embankment materials allowed to characterize locally a 10 m thickness of 
embankment. SPT test results, namely, between 8 and 11 blows, were obtained. 
From the consulted control data analysis, one can verified that the used 
cofferdam core materials are situated, in a general way, in the finer zone of the 
specified grain size distribution and the used shoulder materials in the coarse 
zone of respective grain size distribution, accenting the contrast between the 
core (more deformable and less resistant) and the shoulder (less deformable and 
more resistant) mechanical behaviour. 
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Fig. 1  
Odelouca dam layout 

Layout du barrage d’ODelouca 
 
 
 
 
 
 
 

 
 
 

Fig. 2 
Odelouca Dam and Cofferdam cross sections 

Sections transversaux du barrage e du batardeau d’Odelouca 
 
 
 

 
 
 
 
 
 
 

 

 

Photo 2 
View of a core layer surface after 

compaction [2] 
Vue de la surface da la couche après 

compactage 

Photo 1 
General view of the cofferdam body [2] 

Vue général du corps du batardeau 
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2.3 COFFERDAM EXPECTED QUALITATIVE STRUCTURAL BEHAVIOUR 
 
 
The available elements of the design and construction phases, 

complemented with the modelling studies, based some qualitative reflexions 
about the expect performance of the cofferdam embankments, in comparison 
with the design estimations, which are discriminated as follows [3]: (i) finer and 
more plastic core materials; (ii) more compressible and less resistant core 
embankments; (iii) heterogeneity of the core fills behaviour, induced by a 
deficient compaction of some layers; (iv) coarser shoulder materials; (v) less 
deformable and more resistant shoulder embankments; (vi) higher core 
susceptibility to hydraulic fracturing; (vii) higher core susceptibility to internal 
erosion; (viii) in reference to the global stability, the higher shear strength of the 
shoulder materials should compensate the inferior expected strength of the core 
materials, unless the occurrence of deficient compaction of the shoulder 
embankments and/or deficient connection to the foundation. 

 
The materialization of hydraulic fracturing and internal erosion of core 

embankments will depend, naturally, of the water inflows and of the floods 
periods sustained by the cofferdam. In the other side, due to reduced outflow 
capacity of the built hydraulic structures, whose objectives were the river 
deviation and the yard flood routing, the overtopping probability of cofferdam 
body seemed as potentially important, increasing with the service life period 
increase (as an isolated work). 

 
 
 

3. ASPECTS OF DOWNSTREAM VALLEY AND DAMBREAK 
CONSEQUENCES 

 
 
The downstream valley of Odelouca cofferdam has, in the first 5 km, a 

much reduced occupation. The zone is characterized by disperse habitations, the 
most of them non residential, and by subsistence agriculture. The valley 
occupation increases towards downstream. A higher permanent occupation, 
some artisanal industry and significant important road infrastructures were 
recognized. About 23.5 km downstream of the dam implantation local there are 
the confluence of Odelouca River with Arade River, which upstream valley, up to 
Silves city, exhibits an important and growing occupation. The Arade River 
segment downstream the confluence that ends in Portimão enlarges 
substantially, contributing to the routing of flood wave resulting from the dam 
rupture. Photos 3 and 4 present two views of Odelouca River valley. 

 
Following the works suspension, dam break studies of the Odelouca 

cofferdam were performed [4]. An external erosion failure mode was adopted in 
the sequence of overtopping. The trapezoidal breach shape was considered, 
having the average wide (103 m) and the formation time (0.8 h) being established 
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by Froëhlick [5] equations. The flood wave propagation was calculated by the 
BOSSDAMBRK numerical model along about 33.7 km, distance between the 
cofferdam implantation local and the mouth (Portimão). 

 

  

 

 

 

 

 

 
 

According the performed studies, the maximum discharged flow near the 
dam is 10 303 m3/s and the wave propagates downstream at an average velocity 
of 1.8 m/s, reaching the 33.7 km after 5.3 h, with a maximum flow of 1065 m3/s. 
Table 1 presents a summary of the results. Based on the flood propagation 
results, the downstream valley consequences were estimates, which are 
summarized in Table 2. 

 
 
 

4. RISK ANALYSIS 
 
 
4.1  EVENT TREE ANALYSIS 

 
 

4.1.1  General Considerations 
 
The event tree analysis is a logic method, of the inductive type, which uses 

the graphic representation of the event sequences.  
 
In the dam’s domain, the more current event trees are of the physical 

system models type. The event tree construction is, in this case, sequential, 
sketched from the left to the right, parting from an initialising event and 
describing, successively, the event sequences that can occur to the final results, 
according with cause-effects relations. 

 
First of all, the initialising events to be analysed shell be identified. For each 

initialising event, different failure modes can be materialized, each one having 
several success or unsuccessful paths. In some cases, it can be advantageous 
to perform more than one event tree.  

Photo 4 
View of downstream valley between 5 and 

10 km (09/09/2005). 
Vue de la vallée en aval entre 5 and 10 

km (09/09/2005) 

Photo 3 
View of downstream near valley (< 5 km) 

(09/09/2005) 
Vue de la vallée en aval prochain (< 5 km) 

(09/09/2005) 
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Table 1 
Results of dam break studies [4] 

 
Wave 

Km 
River level 

(m) 

Maximum 
water level 

(m) 

Maximum 
water 

height (m) 

Maximum 
flow (m3/s) 

Arrival time 
(h) 

Maximum 
velocity 
(m/s) 

0.27 34.0 53.08 19.08 10303 0.76 6.83 
2.00 30.5 47.70 17.20 9480 0.80 3.70 
4.50 27.0 39.18 12.18 7937 0.92 5.52 
5.90 25.0 34.31 9.31 7596 1.04 4.17 
9.50 17.0 25.54 8.54 6256 1.36 3.59 

12.50 13.0 21.97 8.97 4553 1.56 2.70 
16.10 10.0 15.34 5.34 3920 1.88 2.19 
20.20 7.0 11.34 4.34 2447 2.88 0.99 
24.70 3.0 6.01 3.01 1235 3.72 0.97 
30.20 -1.0 1.55 2.55 1072 5.17 0.46 
33.70 -2.0 1.00 3.00 1065 5.30 0.35 

 
Table 2  

Identification of the consequences of Odelouca Cofferdam break 
 

Human Loss Valley 
PAR PLL 

Economical and financial losses  Environmental 
losses 

Near 
(< 5 km) 

14 7 • 3 habited one family houses 
• 12 ruin one family houses 
• macadamized roads 
• subsistence agriculture 

• Protected 
habitats  
 

Faraway  
(5 a 33.7 km) 

130 31 • 30 inhabited one family houses 
(Odelouca River) 
• 20 ruined one family houses (Odelouca 
River) 
• 20 inhabited one family houses (Arade 
River) 
• NR, MR, macadamized roads 
• viaducts and disperse infrastructures 
• subsistence agriculture 

• Protected 
habitats  
 

PAR – People at Risk; PLL – Potential Loss of Life 

 
For quantitative analysis, the probability of occurrence of the initialising 

event and the probability of occurrence of each event shell be evaluated. The 
probability of each branch is calculated by the product of the probabilities of the 
constituent events. The success probability corresponds to the sum of the branch 
probabilities that culminates in success and the unsuccessful probability to the 
sum of the branch probabilities that culminates in unsuccessful. 

 
 
 

4.1.2 Studied Situations 
 
Viewing the situation identification to be analysed, an influence system 
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diagram was sketched. The influence diagram is a graphic representation that 
helps to visualize, for a particular system, the relations between the initialising 
events, the nature states, system conditions and effects with interest for the 
analysis. The explicitness of event relations (without the ramification that 
characterizes the event trees) is, perhaps, the principal advantage of this type of 
representation. An influence diagram shell allows representing the system 
logical, the influences over the system and the uncertainties that affect its 
performance. Figure 3 represents the influence diagram of Odelouca cofferdam. 

 
The Odelouca cofferdam is only charged during the flood occurrence. For 

these reason, the initialising events were considered the flood occurrence with 
different return periods. The here present example corresponds to a 10 years 
return period flood. Supposing a 1 year functioning period (in reality, its period 
would be higher) for the isolated work, the event probability will be 0.1. 

 
The affluent flood will produce a rising of the reservoir water level, which 

will depend of the flow out the diversion tunnel and of reservoir storage volumes 
curve. In what concerns the tunnel performance, the possibility of obstruction of 
its section was admitted, due to dragging of deforestation products that were 
deposited upstream along the water line, at the contract job interruption. 

 
The tunnel obstruction percentage will influence the pair of values 

(discharged flow, reservoir water level) and will determine the occurrence, or not, 
of the cofferdam overtopping. This overtopping will provoke external erosion, with 
or without breach formation, as a function, namely, of the water high above of 
crest, the overtopping duration and the external erosion resistance of the 
embankment materials. 

 
For the total tunnel obstruction it will be almost certain, although some 

uncertainties may subsist related to the flood hydro gram and to the reservoir 
storage volumes curve. In the other side, if there are no tunnel obstruction, it will 
practically certain that there will not be overtopping, due to the fact that the 
system was designed for a 50 years flood. The uncertainties report to the flood 
hydro gram estimates, to the reservoir storage volumes curve, to the tunnel 
outflow curve and to the performed flood routing studies. To this set of 
possibilities, conditioned essentially by the hydraulic performance of the 
discharge structures, was named as Situation 1.  

 
The absence of chimney filter and the grain size distribution differences 

between the core (residual schist and colluviums soils with a high fines 
percentage) and the shoulder materials (altered schist of extensive granulometria 
with a reduce fines percentage) led to the consideration of possibility of internal 
erosion materialization (by establishing erosion path with reservoir connection) 
or, alternatively, to a set of effects conducting to the freeboard  loss and 
overtopping, followed by external erosion, with or without breach formation.  



Q.91 
R 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 3 
Influence Diagram for Odelouca cofferdam 

Diagramme d’influence du batardeau d’Odelouca 
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The initiation of the internal erosion phenomenon by mechanical dragging 
(and diffuse transport, through the downstream shoulder, or the concentrated 
transported, for instance, in the embankment-abutment contacts) will depend of 
the achieved reservoir water level, of the stay time of this level and of the internal 
erosion resistance of the core materials. The occurrence of wetting collapse of 
the embankments will potentiate the internal erosion occurrence. 

 
To this possibilities set, essentially conditioned by internal erosion of the 

fills (with or without wetting collapse), which may lead to internal erosion failure of 
the fills or to a failure produced by the effects set of internal erosion followed by 
overtopping and external erosion, herein was named Situation 2.  

 
Associated to this situation, Situation 3 was considered, that includes the 

possibility of occurrence of fill wetting collapse, freeboard loss and overtopping 
followed by external erosion, with or without failure. 

 
A last hypothesis was still considered, the Situation 4, related to the fill 

global stability loss of the downstream shoulder and of the core, inducing directly 
the embankment failure by freeboard loss or to the freeboard reduction and 
subsequent overtopping due to the reservoir water level raise, followed by 
external erosion. 

 
 
4.1.3 Construction of the Event Trees 
 

The event tree construction is always subjective and depends, not only of 
the skills and knowledge of who makes it (in the related technical-scientific fields 
to the system and to the risk analysis), but also of the initialising event and of the 
select study situation.   

 
Figures 4, 5 and 6 present the event trees for the analysed situations. In 

the example, here presented, the probabilities were estimated based on 
statistical analysis of historical record (floods), engineering judgment (the 
generality of events) and reliability analysis by Monte Carlo method (loss of 
global stability of the downstream shoulder and core). 

 
In following, the quantification of the failure probability, by loss of global 

stability involving the downstream shoulder and core, of Odelouca cofferdam is 
presented. This is the ultimate limit state includes in situation 4 for reservoir water 
levels between elevation 60 and elevation 66.5 m (event tree of Figure 6). 

 
In what refers to the failure probability quantification by loss of global 

stability of the downstream shoulder, the parameters uncertainty was considered 
by the Monte Carlo method (Figure 7). 
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Fig. 4  
Odelouca Cofferdam event tree for situation 1 

Arbre d’évents du batardeau d’Odelouca pour la situation 1 
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Fig. 5 

Odelouca Cofferdam event tree for situations 2 and 3 
Arbre d’évents du batardeau d’Odelouca pour les situations 2 et 3 
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Fig. 5 (cont.) 

Odelouca Cofferdam event tree for situations 2 and 3 
Arbre d’évents du batardeau d’Odelouca pour les situations 2 et 3 
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Fig. 6 

Odelouca Cofferdam event tree for situation 4 
Arbre d’évents du batardeau d’Odelouca pour la situation 4 
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Fig. 7  

Schematic representation of the Monte Carlo analysis 
Représentation schématique de l’analyse de Monte Carlo 

 
In the analysis presented the reservoir water level is above level 60 and 

below crest level and normal distributions for the parameters were admitted, 
which are characterized by its mean and standard deviation values. 

   
For the obtained critical surface, from the considered calculus model and 

for the mean values of the adopted parameters, the Monte Carlo method was 
applied, using the automatic calculus program SLOPEW.  

 
The variation of the material properties is done through a generation 

random function, being calculated, for each property set, the corresponding 
safety coefficient. The safety coefficients, obtained in this way, follow, 
presumably, a normal distribution, allowing the mean value and standard 
deviation determination.   

 
The number of calculations to be performed by Monte Carlo method, for the 

desirable confidence level, depends of the number of parameters considered as 
random variables and of the expected failure probability for the limit state in 
analysis. In the performed analysis, 10000 simulations were carried out, for each 
assessed situation. 

 
In the probabilistic analysis, the slope stability is assessed by the reliability 

index and the failure probability (i.e., the probability of a safety coefficient less 
than 1). The reliability index describes the slope stability by the number of 
standard deviations that apart the mean value of the value 1, being considered, 
by some authors, as a way of normalizing the safety coefficient in relation to the 
uncertainty. Being known the probability distribution, the reliability index is related 
directly to the failure probability. In Table 3, the material properties and the 
respective coefficients of variation (COV) adopted in the calculus are presented. 
The taken mean values are the design values considered in the stability studies 
of the Odelouca cofferdam body [6]. 
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Table 3 
Material properties and coefficients of variation 

 

Unit weight ( γγγγ) 
Effective cohesion 

(c’) 
Effective friction 

angle ( φφφφ’) 

Materials Mean 
value 

(kN/m3) 

COV 

(%) 

Mean value 

(kN/m2) 

COV 

(%) 

Mean 
value 

(º) 

COV 

(%) 

Upstream and downstream 
shoulders (above level 47) 

21.0 5 - - 36 6 

Upstream and downstream 
shoulders (below level 47) 

21.0 5 - - 36 12 

Core (above level 47) 20.5 5 10 30 29 10 

Core (below level 47) 20.5 5 10 60 29 20 

Foundation (superficial 
levels) 

21.0 - 50 - 36 - 

 
Figure 8 presents the slip surface with the minimum safety coefficient, 

between the studied surfaces, taking into account the centre meshes and the 
radius tangents considered. Figure 9 contains the results of the Monte Carlo 
method application. A failure probability of approximately equal to 0.01 and a 
reliability index of 2.33 were obtained. 

 
 

 
 
 

 
 

 

 

 

 

 

 
 

Fig. 8 
Instability surface studied by Monte Carlo reliability analysis 

Surface d’instabilité étudiée avec l’analyse de fiabilité de Monte Carlo  
 
The obtain failure probability was adopted in the event tree represented in 

Figure 6 and corresponds to event 5.1 probability (there is a loss of global 
stability of the downstream shoulder materialized by a surface that intersects the 
crest and the upstream shoulder upper elevations).  
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Fig. 9 

Results of Monte Carlo reliability analysis: (a) probability density function and (b) failure 
probability and reliability distribution functions for the safety coefficient  

Résultats de l’analyse de fiabilité de Monte Carlo: (a) fonction densité de probabilité et (b) 
fonctions de distributions de probabilité de rupture et de fiabilité pour le coefficient de 

sécurité 
Concerning the consequences estimate, the following losses were 

considered. 
 
i. In the failure induced by the overtopping and fill external erosion 

sequence, for reasons essentially associated to the hydraulic structures 
functioning or to the fill collapse inducing immediately to freeboard loss 
(modes assumed of fast development), 38 fatalities. For the others 
failures, induced by internal erosion or by loss of global stability, or by 
combination of structural modes, 27 fatalities were considered.  

 
For the risk estimation, a five hundred thousand euros value per fatality 
was attributed. 

ii. Concerning the financial losses, the cofferdam body collapse, the 
destruction of 33 one family edifications, of estimated low economic 
value, a segment of a national road, several viaducts and macadamized 
roads and a significant dimension leisure and sport infrastructure were 
considered. 

 
 For the risk estimation, a five million euros value for the structures and 
infrastructures, above referred, reconstruction was considered. 

 
iii. The possibility of affecting natural habitats and some protected 

piscicultural species was also assumed, at which a two and a half 
millions value was attributed.  
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iv. For the situations without reservoir storage volume water release, with 

the damages are restricted to the cofferdam body, the quantities for the 
embankment rehabilitation were estimated as a function of the predicted 
deterioration extension. 

 
 

4.1.4 Interpretation of the events trees 
 
The failure probability with a downstream flood wave release (considering 

all the relevant failure modes) is 4.86x10-2 and of the probability of non 
occurrence of a flood wave release (with or without cofferdam body damages) is 
5.14x10-2. 

 
Table 4 presents a summary of the probabilities, consequence and risks of 

the studied failure modes with a downstream flood wave release.  
 

Table 4  
Calculated risk for different collapse modes with water release downstream 

 
Failure modes with downstream 

water release  

Probability of 
failure 

Consequences 

(€) 

Risk 

(€) 

Reservoir water level rise, overtopping, 
external erosion and breach formation. 

4.84x10-2 26 500 000 € 924 681 € 

Internal erosion and breach formation. 2.01x10-4 21 000 000 € 4 305 € 

Reservoir water level rise, internal erosion, 
crest settlement, overtopping, external 

erosion and breach formation. 
7.86x10-06 21 000 000 € 222 € 

Reservoir water level rise, wetting 
collapse, overtopping, external erosion and 

breach formation. 
2.52x10-5 26 500 000 € 736 € 

Reservoir water level rise, loss of global 
stability, overtopping, external erosion, 

breach formation. 
1.02x10-8 24 000 000 € 0 € 

 
The conditioning failure mode of the total probability of failure (with the 

storage volume release) elapses from the deficient functioning of the hydraulic 
organs, due to obstruction of the diversion tunnel cross section with deforestation 
products, without anomalous structural performance contribution. 

 
The consequences monetary value is conditioned by the estimated number 

of fatalities, even having been used a low monetary value per fatality (500 000 €), 
less than some values mentioned in several bibliography (1 000 000 to 
1 800 000 €). 

 
The risk quantity is not an intuitive one and it will very difficult to define 

acceptability and tolerability limits that do not have in consideration de pair of 
values (probability, consequences).  

Figure 10 presents the obtain results superimposed to the FN plot with the 
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proposed acceptability and tolerability limits for the Portuguese embankment 
dams [7]. 

 

 

 

 

 

 

 

 
 

 

 

Fig. 10 
 FN plot representation of the Odelouca Cofferdam risks  

Représentation graphique FN des risques du batardeau d’Odelouca 
 
These failure probabilities are very high. In particular, those corresponding 

to external erosion in sequence of overtopping (originates by hydraulic causes) 
and to the sum of all the failure modes. The calculated failure probabilities will 
increase for cofferdam service life time (as an isolated work) greater than 
considered (one year). The flood occurrence with higher return periods will also 
lead to superior failure probabilities. In reality, the presented case study 
corresponds to an exceptional exploration situation, since it is an embankment 
work with an appreciable dimension and significant storage volume, which was 
not conceived, from the structural point of view, to work an independent work. It 
should be add that the contract job interruption generated other risks, namely 
those associated to the reservoir deforestation products, which were not 
removed. 

 
 
 

5.  FINAL CONSIDERATIONS 
 
 
The risk analysis success, namely by event tree analysis, depends on the 

system knowledge and on the skills and experience of those performing the 
analysis. The tree construction detail assumes particular importance in this type 
of analysis optimization. It should be defined as a function of system in question 
and of the purposes that ones intend to achieve.  

In event tree analyses, the initialising event identification of greater 
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potential impact on the system/subsystem will allow to reduce significantly 
respective analysis time and costs, aspects that constitute the main obstacles to 
its application, at least, in the quantitative form. If the event tree implementation 
and interpretation slowness can be contoured by the application of automatic 
calculus programmes, which helps its construction and interpretation. The 
probabilities estimation will always face great practical difficulties.  

 
In embankment dam’s field, the probabilities estimation of many events 

only can be done by engineering judgement. The occurrence probabilities of 
some events can be evaluated through reliability analyses theory based on 
historical data. 
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SUMMARY 

 
 

In this paper we present the risk analysis of Odelouca Cofferdam, using an 
event tree analysis. 

 
The initializing events, failure modes and analysed limit states are 

discussed based on an influence diagram. The constructed event trees and their 
interpretation are presented. The obtained risk values are represented in an FN 
plot superimposed to the acceptability and tolerability risk limits proposed for 
Portuguese dams. 

 
Initially, particular emphasis is placed on the main characteristics of the 

cofferdam and deviation hydraulic structures, as well as on some important 
construction aspects conditioning the expected structural behaviour and the 
analysed limit states. Downstream valley characteristics and the results of dam 
break studies, which based the consequences identification and evaluation, are 
also present. 

 
 
 

RESUMÉ 
 
 

On fait la présentation de l’analyse de risques du batardeau d’Odelouca par 
la méthode des arbres d’évents.  

 
À travers d’un diagramme d’influence on fait la discussion des événements 

primaires et des modes de défaillance considérés dans l’analyse de risques. On 
présente les arbres d’évents élaborés et leur interprétation. Les risques calculés 
sont présentés dans un graphique du type FN sur posés aux limites acceptable 
et tolérable proposés pour les barrages portugais. 

 
Initialement, on souligne les principales caractéristiques du batardeau et 

des ouvrages hydrauliques de dérivation de l’oued, aussi bien que les aspects 
constructives plus significatives, tenant compte de leur importance sur le 
comportement structurel envisagé et les états limite étudiés. En outre, on 
présente les caractéristiques de la vallée en aval et les résultats des études de 
rupture du batardeau qui ont basé l’identification et évaluation des 
conséquences. 
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