
Universidade de Évora

Mestrado em Engenharia Informática

Workflow modeling using UML,
Declarative Tools and WEB2.0

Rui Alexandre Rodrigues Gamito
<rgamito@lnec.pt>

Supervisor: Salvador Pinto Abreu

Co-Supervisor: Lúıs Arriaga da Cunha

Évora, June 12, 2008

This thesis does not include appreciation nor suggestions made by the jury.

Esta dissertação não inclui as cŕıticas e sugestões feitas pelo júri.

Abstract

Manual translation of UML diagrams to programmatic code is tedious and

error prone. Many CASE tools allow computer code to be generated from

Class Diagrams, but fewer, if any, allow the transformation of Activity Dia-

grams (ADs) in executable and workflow defining computer code.

Our project aims at:

• Translating UML ADs into the ISCO programming language;

• Building a workflow execution system that runs the translations;

• Building a graphical tool to create and edit workflows, and visualize

the executions.

Defending that UML ADs can specify executable workflows, we present

an ISCO based workflow engine, acting over the information extracted from

Activity Diagrams and integrated into a platform that allows a user to graph-

ically model and manage workflows within a web environment. The server,

built with ISCO, assures the data persistence and the execution of the work-

flows. Communication with the server is performed through AJAJ.

i

ii

Resumo

Modelação de Workflows usando UML, Ferramentas Decla-

rativas e WEB2.0

A tradução manual de diagramas UML para código computacional é tediosa

e dada a erros. Muitas ferramentas CASE permitem gerar código computa-

cional a partir de Diagramas de Classe, mas menos, se algumas, permitem a

transformação de Diagramas de Actividade (DAs) em definições executáveis

de workflows.

Este projecto pretende:

• Traduzir DAs UML para a linguagem de programação ISCO;

• Construir um sistema de execução que corra as traduções;

• Construir uma ferramenta gráfica para criação, edição e visualização

de workflows e instâncias.

Defendendo que os DAs UML são capazes de especificar workflows ex-

ecutáveis, apresentamos um motor de execução de workflows baseado em

ISCO, agindo sobre a informação recolhida de DAs e integrado numa plataforma

que permite a modelação gráfica e gestão de workflows dentro de um ambi-

ente web. O servidor, constrúıdo em ISCO, assegura a persistência dos dados

e execução dos workflows. A comunicação entre cliente e servidor é feita com

AJAJ.

iii

iv

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Thesis Organization . 2

2 Technology Overview 5

2.1 Workflows . 5

2.1.1 Workflow components 6

2.2 Control patterns in ADs . 9

2.2.1 Basic Control patterns 10

2.2.2 Advanced Branching and Synchronization patterns . . 17

2.2.3 Structural Patterns . 23

2.2.4 Patterns Involving Multiple Instances 25

2.2.5 State-based patterns 29

2.2.6 Cancellation Patterns 33

2.3 ISCO Prolog . 35

2.4 Apache HTTP Server and PHP 37

2.5 AJAJ and the Dojo Toolkit 37

2.6 SOAP . 38

2.7 Graphviz . 39

2.8 Summary . 39

3 Methods and procedures 41

3.1 Regarding workflow specification using UML ADs 42

3.2 UML based editor . 42

v

3.2.1 XMI to ISCO translation 43

3.3 ISCO based data structure . 43

3.4 Execution engine . 44

3.5 Interfacing with the engine . 45

3.5.1 First interaction-model 45

3.5.2 ArgoUML (and other external editors) 45

3.5.3 ISCO and Web2.0 . 47

3.6 External events and web-services 48

3.6.1 Web-services: How actions take place 49

3.6.2 Web-Service APIs . 50

3.7 Transition Guards . 51

3.8 Summary . 52

4 Data model and representation 55

4.1 Class model . 55

4.1.1 Modeling data (description) 55

4.1.2 Modeling data (ISCO) 57

4.1.3 Execution data (description) 62

4.1.4 Execution data (ISCO) 64

4.2 Organization in Units . 66

4.3 Summary . 67

5 The web client application 69

5.1 About the Web Client . 69

5.2 Graphical structure . 70

5.3 Files and organization . 72

5.4 Asynchronous requests and callbacks 74

5.4.1 Simple Requests . 74

5.4.2 Complex Requests . 74

5.5 Web Client API . 75

5.5.1 Creation functions . 76

5.5.2 Write functions . 77

5.5.3 Read functions . 80

vi

5.6 Graphical Support . 83

5.6.1 Activity Diagram Components 83

5.6.2 Patterns . 83

5.7 Summary . 85

6 Case Study 87

6.1 Test Workflow . 87

6.2 Creating workflows, activities and transitions 88

6.2.1 Workflows . 89

6.2.2 Activities . 89

6.2.3 Transitions . 90

6.3 Event programming . 92

6.3.1 Programming Internal Events 92

6.3.2 Programming External Events 92

6.3.3 Assigning events . 93

6.4 Instantiation . 94

6.5 Checking execution states . 95

6.6 Comparison with other software 96

6.7 Summary . 96

7 Conclusions and future work 97

7.1 Assessment . 97

7.2 Future Work . 100

7.2.1 Model Shortcuts . 100

7.2.2 Patterns . 100

7.2.3 Execution Component 101

7.2.4 Authentication . 101

7.2.5 Logical Model Benefits 101

7.2.6 Transition guard grammar extension 102

Appendix 103

vii

viii

List of Figures

2.1 Sequence (AD) . 10

2.2 Sequence (BPMN) . 10

2.3 Sequence (YAWL) . 11

2.4 Versions of parallel split (BPMN) 11

2.5 Parallel Split (YAWL) . 12

2.6 Parallel Split (AD) . 12

2.7 Synchronization (BPMN) . 12

2.8 Synchronization (YAWL) . 13

2.9 Synchronization (AD) . 13

2.10 Exclusive Choice (BPMN) . 14

2.11 Exclusive Choice (AD) . 14

2.12 Exclusive Choice (YAWL) . 15

2.13 Simple merge options (BPMN) 16

2.14 Simple/Multiple Merge (YAWL) 16

2.15 Simple Merge (AD) . 16

2.16 Multiple Choice (BPMN) . 17

2.17 Multiple Choice (YAWL) . 18

2.18 Multiple Choice (AD) . 18

2.19 Multiple Merge (BPMN) . 18

2.20 Multiple Merge (AD) . 19

2.21 Synchronizing Merge (BPMN) 19

2.22 Synchronizing Merge, a) simple scenario and b) complex sce-

nario (YAWL) . 20

2.23 Synchronizing Merge (AD) . 20

2.24 Discriminator (BPMN) . 21

ix

2.25 Discriminator (YAWL) . 21

2.26 Discriminator (AD) . 21

2.27 N-out-of-M Join (BPMN) . 22

2.28 N-out-of-M Join (YAWL) . 22

2.29 N-Out-Of-M Join (AD) . 22

2.30 Arbitrary Cycle (BPMN) . 23

2.31 Arbitrary Cycle (YAWL) . 23

2.32 Arbitrary Cycle (AD) . 24

2.33 Implicit Termination (BPMN) 24

2.34 Implicit Termination (AD) . 24

2.35 MI with A Priori Design Time Knowledge (BPMN) 25

2.36 MI with A Priori Design Time Knowledge (YAWL) 26

2.37 MI with A Priori Design Time Knowledge (AD) 26

2.38 MI with a priori runtime knowledge (BPMN) 27

2.39 MI with a priori runtime knowledge (AD) 27

2.40 MI with no A Priori Knowledge (BPMN) 27

2.41 MI with no A Priori Knowledge 28

2.42 Mi requiring Synchronization 28

2.43 Deferred Choice (BPMN) . 29

2.44 Deferred Choice (YAWL) . 30

2.45 Deferred Choice (AD) . 30

2.47 Interleaved Parallel Routing (YAWL) 31

2.46 Interleaved Parallel Routing (BPMN) 31

2.48 Interleaved Parallel Routing (AD) 32

2.49 Cancel Activity (BPMN) . 33

2.50 Cancel Activity (YAWL) . 34

2.51 Cancel Activity (AD) . 34

2.52 Cancel Case (BPMN versions) 35

2.53 Cancel Case (AD versions) . 36

2.54 ISCO class example. 37

3.1 Application Schematics (1) . 46

3.2 Application Schematics (2) . 48

x

3.3 Application Schematics (3). 50

3.4 SOAP server pseudo code. 51

3.5 Simple grammar for Condition building. 52

4.1 Activities and transitions hierarchical diagram. 57

4.2 Modeling data (ISCO classes) 62

4.3 Execution Data (ISCO classes) 66

4.4 Units schema. 68

5.1 Workflow Sketcher Screenshot 70

5.2 Status Viewer Screenshot . 71

5.3 Simple Request Code Snippet 74

5.4 Complex Request Code Snippet 75

5.5 Callback Array Return Object 75

5.6 SMD method signature for creating a new workfow. 76

5.7 Graphical component used to trigger the creation of a new

workflow. 76

5.8 SMD signature (left) and return object (right), for creating an

activity. 76

5.9 Part of the Component panel, showing some activity creation

buttons. 77

5.10 SMD signature for creating a condition. 77

5.11 Graphical component for creating a condition. 77

5.12 SMD signature for setting a workflow’s name. 77

5.13 Graphical component showing the definition of a workflow’s

name. 77

5.14 SMD signature for setting an activity’s attributes 78

5.15 Graphical component for setting a shape’s attributes. 78

5.16 SMD signature for updating a shape position. 78

5.17 SMD signature for assigning an event to an activity. 78

5.18 View of the graphical component for event assigning. 79

5.19 Method API: SMD signature (top) and return object (bot-

tom), from assigning a transition between activities 79

xi

5.20 SMD signature (top) and return object (bottom), from assign-

ing a conditional transition between activities 79

5.21 SMD signature for a workflow rearranging call. 80

5.22 SMD signature (up) and return object (bottom) for loading

the list of workflows in the system. 80

5.23 Dialog box showing the loaded workflows. 80

5.24 SMD signature (left) and return object (right) for loading all

activities of a workflow. 80

5.25 Screenshot after loading the activities of a workflow instance . 81

5.26 List all open activities of an instance. 81

5.27 Visualization of an execution with open activities, signaled in

red. 81

5.28 SMD signature for returning an activity’s result. 81

5.29 SMD signature (top) and return object (bottom) for returning

a list of events. 82

5.30 Graphical component showing the loaded events. 82

5.31 SMD signature (top) and return object (bottom) for loading

an instance’s transitions . 82

5.32 SMD signature (top) and return object (bottom) of the reload

trace method. 82

5.33 SMD signature (left) and return object (right) resulting of

loading a workflow’s instances 83

5.34 Dialog box showing a list of loaded workflow instances. 83

6.1 Case study workflow . 88

6.2 Case study activities . 90

6.3 Case study activities and transitions 91

6.4 Internal Event Example . 93

6.5 External Event Example (pseudocode) 93

6.6 Running the binary . 94

6.7 Workflow list . 94

6.8 Workflow Instantiation . 95

6.9 Workflow Execution . 95

xii

6.10 Case study activities and transitions 95

1 Entity-Relation Model . 103

xiii

xiv

List of Tables

2.1 Graphical notation of nodes 8

2.2 Graphical notations of Flow Shapes 9

2.3 Graphical notation of regions 9

3.1 Remote Web Service API . 51

3.2 Local SOAP server API . 52

5.1 UML AD Component Support 84

5.2 Degree of graphical support for control patterns 84

5.2 Degree of graphical support for control patterns 85

6.1 Activity-Name Correspondence 89

6.2 Software properties’ comparison table 96

xv

xvi

Chapter 1

Introduction

1.1 Motivation

The use of an UML [1] modeling tool as a means of producing programming

code is a pursued objective, but still afar, due to UML not being a graphical

programing language but rather a graphical modeling language [2]. The gap

between modeling diagrams and producing self-sufficient functional code is

clear when attending to the fact that many of the UML modeling tools only

have XML (or XMI [3]) outputs, whilst those which can actually generate real

programming code, like Java or C++ (ex: Rational Rose [4]), can only do so

for a restricted subset of diagrams, such as class and component diagrams.

As such, the initial motivation of our work was to produce ready-to-

execute ISCO [5] code, originating from UML diagrams, namely, Activity

Diagrams (AD) and Class Diagrams. For the first, the code would be loaded

to an execution system which would execute the given model, allowing state

changes and action executions. For the second case, the output would be

capable of generating a database, resulting from the created ISCO classes.

The investigation to pursue these goals led to a rather large evolution of

the project’s scope, where a part of the afore mentioned goal is a feature of

the purposed application prototype, while the second part was put aside, as

discussed in section 3.2.

This way, our purpose is to establish a tool for modeling, managing and

1

executing workflows, derived from UML Activity Diagram models, on a web

based environment and with an ISCO back-end, while still allowing the source

of the UML to be modeled with an external UML modeling tool.

1.2 Objectives

The goal of our project is to present a general purpose workflow engine,

fully implemented in the ISCO language, that solely runs on UML Activity

Diagrams. Another goal of the project is to present the common workflow

modeler/user with a tool for on-line graphical workflow modeling, execution

and management, using, willingly, no more than the regular browser.

As a direct result of the initial motivations described in section 1.1 (the

production of ISCO code), the use of the ISCO language to build the appli-

cation’s back-end, allows for deeper exploration on information treatment as

well as performing all sorts of tests, due to ISCO’s declarative paradigm.

These tests include not only tests on the data resulting from workflow

executions, but also over the workflow structure itself, where, for instance,

the user might be given feedback from the application upon a structural

modeling error.

The work described in this thesis was partially described in a conference

article [6], in which the aspects of the graphical user interface and underlying

support structures were mostly discussed.

1.3 Thesis Organization

The remainder of this thesis is organized as follows: in chapter 2 we span

over the several technological areas we use in the project and try to give

the reader the necessary background, so that the rest of this document and

project can be better understood. Chapter 3 describes the phased evolution

of the project, in a chronological fashion, presenting the choices and decisions

that caused the project to move away from the initial purpose to its final and

2

wider concept.

In chapter 4 we present and describe the system’s data model, as well as

some relevant aspects of internal information representation.

Chapter 5 focuses on the details of the graphical component and user

interaction, that is, the web-client. We describe the overall structure of

the client, listing each file and respective objectives. We then move on to

cover how communications take place between the web-client the server, and

present a few screenshots of the actual web-client, as well as a brief descrip-

tion of how to move inside the client.

Chapter 6 presents a case study, where a workflow is created, including

activities, transitions and events, and then executed, all using our applica-

tion. We also present a tabular view of our application’s characteristics,

compared to three other applications.

In chapter 7 we draw some conclusions about how and what objectives

where completed, and outline possible future work.

3

4

Chapter 2

Technology Overview

In this chapter we go through the main technologies used in our work.

We start with a brief overview on workflows in section 2.1 and proceed

to workflow patterns and some of their relations with and representation in

UML AD in section 2.2, where we roughly compare the BPMN [7], YAWL [8]

and UML AD representation of each flow pattern. We then go over a few

basic aspects of ISCO Prolog, in section 2.3, followed by Apache and PHP

in section 2.4. We also discuss some aspects of Ajax [9] and the toolkit with

which the web application was developed - the Dojo Toolkit [10]- in sec-

tion 2.5. Finally we go through some technical aspects of the SOAP [11] [12]

web service protocol in section 2.6.

2.1 Workflows

A workflow is a process schematic that represents how to get get something

done, through a set of steps or actions. The objective of the process can

be related with ”... any form of physical transformation, service provision or

information processing” [13]. Despite all these options, we are only concerned

about Business Process’ related workflows, that is, management processes 1,

1Management processes are the processes that govern the operation of a system

5

operational processes 2 and supporting processes 3.

2.1.1 Workflow components

Workflows are usually graphically represented using formal or informal flow

diagramming techniques, depicting directed flows (transitions) between nodes.

Transitions and nodes are thus the main elements of workflows, though there

are several types of nodes - its number depending on the chosen represen-

tation - and typically two types of transitions, depending on whether it is

conditioned. Other components can be used which can help the visual un-

derstanding of the workflow, such as swimlanes, notes, signals, boxes, etc.

Tables 2.1 2.2 2.3 show the most usual graphical components found in

UML Activity Diagrams 4.

Node Name Notation Description

Initial An initial node is a control node at

which the flow starts when the activ-

ity is invoked.

Activity Final An activity final node is a final node

that stops all flows in an activity.

Flow Final A flow final node is a final node that

terminates a flow.

Continued on next page

Table 2.1: Graphical notation of nodes

2Operational Processes create the primary value stream and are part of the core busi-
ness. Typical operational processes are manufacturing, purchasing, sales, etc

3Supporting Processes support the core processes. Examples are Accounting, IT- sup-
port, etc

4Tables, figures and descriptions adapted from [14]

6

Node Name Notation Description

Action An action represents a single step

within an activity, that is, one that is

not further decomposed within the ac-

tivity. An activity represents a behav-

ior that is composed of individual ele-

ments that are actions. Note, however,

that a call behavior action may ref-

erence an activity definition, in which

case the execution of the call action in-

volves the execution of the referenced

activity and its actions (similarly for all

the invocation actions). An action is

therefore simple from the point of view

of the activity containing it, but may be

complex in its effect and not be atomic.

Join A join node is a control node that syn-

chronizes multiple flows.

Fork A fork node is a control node that splits

a flow into multiple concurrent flows.

Merge A merge node is a control node

that brings together multiple alternate

flows. It is not used to synchronize con-

current flows but to accept one among

several alternate flows.

Continued on next page

Table 2.1: Graphical notation of nodes

7

Node Name Notation Description

Decision A merge node is a control node

that brings together multiple alternate

flows. It is not used to synchronize con-

current flows but to accept one among

several alternate flows.

Object An object node is an abstract activity

node that is part of defining object flow

in an activity.

Send Signal SendSignalAction is an action that cre-

ates a signal instance from its inputs,

and transmits it to the target object,

where it may cause the firing of a state

machine transition or the execution of

an activity. The argument values are

available to the execution of associated

behaviors.

Receive Signal ReceiveSignalAction is an accept event

action representing the receipt of a syn-

chronous call request.

Table 2.1: Graphical notation of nodes

Flow Name Notation Description

Control Flow A control flow is an edge that starts an

activity node after the previous one is

finished.

8

Object Flow An object flow is an activity edge that

can have objects or data passing along

it.

Table 2.2: Graphical notations of Flow Shapes

Region Notation Description

Expansion An expansion region is a structured

activity region that executes multiple

times corresponding to elements of an

input collection.

Interruptible An interruptible activity region is an

activity group that supports termina-

tion of tokens flowing in the portions

of an activity.

Table 2.3: Graphical notation of regions

2.2 Control patterns in ADs

Workflows consist of a number of components which set a course (flow) for

information from a point to another, performing a set of actions along the

way. These components can be arranged in groups, each with a generic func-

tion, called flow control patterns (or simply control patterns). Workflows

and their flow control patterns, have a loose way of being designed when

compared with UML modeling. For instance, an action state might have any

number of outgoing transitions, while in formal UML it will have exactly

one.

There are roughly 21 different workflow patterns [15], which can be or-

9

ganized in 6 categories: basic control patterns; advanced branching and syn-

chronization patterns; structural patterns; multiple instance patterns; state

based patterns and; cancellation patterns.

2.2.1 Basic Control patterns

The first 5 patterns define the basic aspects of process control. These patterns

are:

Sequence

The Sequence pattern is defined by an ordered series of activities, belonging

to the same process, where each activity is executed after the completion of

the previous. This pattern may also be called sequential routing or serial

routing.

As shown in figures 2.1 and 2.2, UML AD and BPMN respectively, there

are no major differences.

Fig. 2.1: Sequence (AD)

Fig. 2.2: Sequence (BPMN)

In YAWL, however, the action states (called tasks), are not represented by

the usual rounded rectangles, but rather by squares.

The Sequence pattern can be represented in two ways, as depicted in figure

2.3, where two activities are connected by an arrow, having, or not, a circle

between them - the circle represents a condition.

10

Fig. 2.3: Sequence (YAWL)

Parallel Split

A Parallel Split pattern is the mechanism through which a control thread

splits in two other threads, which will execute concurrently and in an un-

ordered fashion or even in simultaneous. This pattern is also called AND-

split, parallel routing, parallel split or simply fork.

Although there are three different variants for creating a Parallel Split

mechanism in BPMN, as depicted on the figure 2.4, the first option represents

the usual way, with two (or more) outgoing connections directly from one

action state, each to another action.

Fig. 2.4: Versions of parallel split (BPMN)

In YAWL, there’s also an extra shape involved for this pattern. As seen

in figure 2.5, the activity leading to the split incorporates itself the split

representation.

As for the activity diagrams, the representation is a little less simple,

as there is the need to add an extra graphic shape, the fork, a vertical or

horizontal bar, as seen in figure 2.6. This shape has one single incoming

transition and how many as desired outgoing transitions, each representing

one parallel control path.

Synchronization does not concern this pattern, and it may or not be

11

Fig. 2.5: Parallel Split (YAWL)

Fig. 2.6: Parallel Split (AD)

present in a workflow using this pattern.

Synchronization

A Synchronization pattern is used to converge two or mode parallel paths,

typically ending a parallel execution. This pattern assumes that each of the

execution paths are executed only once.

Just as the previous pattern, the BPMN representation of a Synchroniza-

tion can be done in more than one way, as shown in figure 2.7.

Fig. 2.7: Synchronization (BPMN)

Thus, in BPMN, we can have either no explicit shape for this pattern, given

12

we are working with a “parallel box”, 2.7b, or can use the exactly same

diamond shape with a plus sign, as in the Parallel Split, but with different

semantics, as shown on 2.7a. In fact, this particular shape can represent both

node types simultaneously, with multiple incoming and outgoing transitions.

In YAWL, similarly to what happens in the Parallel Split pattern, the

shape indicating the synchronization of two or more flows is also appended

to one activity, as it can be seen in the figure 2.8.

Fig. 2.8: Synchronization (YAWL)

The AD counterpart is stricter than BPMN, having a designated node type

for this function, namely, the join node. This node looks just as a fork node,

with the difference that we now have multiple incoming and exactly one out-

going transitions, as illustrated in figure 2.9.

Fig. 2.9: Synchronization (AD)

The UML2.0 revision states that one horizontal or vertical bar can behave like

the mentioned BPMN plus signed diamond, having multiple incoming and

outgoing transitions. Despite this fact, we, in our application, use the two

13

different types (split and fork), due mainly to engine implementation reasons

and also because the use of both functions simultaneously (incoming and

outgoing flows) is not very common. We do allow more than one incoming

transition into a fork.

Exclusive Choice

An Exclusive Choice is defined as being the place in the process where the

flow path is dependent of a choice, where only one of the possible paths is

followed.

The typical representation is by means of a diamond shaped node, called

split, as for both BPMN (which adds an X inside as seen in figure 2.10) and

UML (figure 2.11).

Fig. 2.10: Exclusive Choice (BPMN)

Fig. 2.11: Exclusive Choice (AD)

In YAWL, the representation is very similar to that of a Parallel Split, with

the difference of the arrow of the box appended to the activity being directed

in the opposite direction, as shown in figure 2.12.

14

Fig. 2.12: Exclusive Choice (YAWL)

As with some other workflow engines (MQSeries Workflow [16], Verve [17])

the exclusiveness of the Split node is left for the user to simulate in the

outgoing conditions. In YAWL, when multiple conditions evaluate to true,

there is a preference, set at design time, in each transition.

Simple Merge

A Simple Merge pattern is defined by a point in the process where two or

more flow paths are merged together, without any kind synchronization.

The BPMN has, once more, two different ways of representing this pat-

tern, with different behaviors (figure 2.13). One way is done by uncontrolled

flow, where no control node is present between the two simple activity nodes.

The other uses a diamond with an X sign to represent an exclusive gateway.

Since for this last scenario only one token is expected, as the multiple flows

are usually modeled originating in an exclusive choice pattern, the behavior

of the merging is straight forward. If, on the other hand, there are more than

one active flows that lead to the exclusive gateway, only one (the first) will

be allowed to proceed. In this scenario this pattern acts like a discriminator,

seen in section 2.2.2

15

Fig. 2.13: Simple merge options (BPMN)

In YAWL, the representation is very similar to that of a Synchronization.

The difference is, as with the previous pattern, in a reversed arrow, as shown

in figure 2.14. The Simple Merge and Multiple Merge are both represented

equally.

Fig. 2.14: Simple/Multiple Merge (YAWL)

The UML AD representation uses a diamond shape similar to the split node,

called a merge node. Technically, the merge node can be omitted from the

control flow, as a simple activity accepts multiple incoming transitions, but

this is not considered the best practice. Figure 2.15 illustrates the Simple

Merge pattern in UML AD notation.

Fig. 2.15: Simple Merge (AD)

16

We would like to point out that in [15] the exclusive gateway is represented

as a simple gateway, that is, with no X inside.

It’s also worth to mention that [15] states that for the scenario depicted

in figure 2.13a, that is, when an exclusive gateway is used, the representation

will be equivalent to that of UML DA’s. Though this is visually true, the

behavior is different since, as stated in [14], all tokens that reach a merge

node will be carried forward.

2.2.2 Advanced Branching and Synchronization pat-

terns

The next five patterns describe more complex ways of branching and merging

the process flows.

Multiple Choice

The Multiple Choice pattern differs from the Exclusive Choice pattern by

allowing the choice of more than one flow paths, depending on how many

conditions are validated as true.

Once again, the BPMN allows more than one representations, either by

adding small diamonds to each outgoing transition or by adding a circular

marker to a single diamond, seen in figure 2.16.

Fig. 2.16: Multiple Choice (BPMN)

In YAWL, the representation of this pattern is again very similar to a Parallel

Split or Exclusive Choice, but this time, with a diamond shape instead of the

directed arrows, as shown in figure 2.17.

17

Fig. 2.17: Multiple Choice (YAWL)

The UML AD representation uses fork nodes, combined with condition guards

on the outgoing transitions 5, as shown in figure 2.18.

Fig. 2.18: Multiple Choice (AD)

Multiple Merge

The Multiple Merge is defined as a place in the process where two or more

flow paths are merged together as one.

For the BPMN, no special shape is used, being that this pattern is simply

represented by multiple transitions entering an activity node. This pattern

also involves an uncontrolled flow situation, which is the same as depicted in

figure 2.4a. Therefore, for each token that reaches activity D in figure 2.19

an instance is created.

Fig. 2.19: Multiple Merge (BPMN)

5For the time-being, conditional transitions are only supported as output from decision
nodes (split nodes), in our application.

18

Regarding UML AD and YAWL representations, there are no differences

between this and the Simple Merge pattern, as supported in [18], except

that there will be multiple parallel flows entering the merge node.

Fig. 2.20: Multiple Merge (AD)

Synchronizing Merge

A Synchronizing Merge pattern is defined as the place where two or more

active flow paths are merged together. This means that the Synchronizing

Merge pattern must know how many tokens were generated earlier, then

synchronize those tokens, but not wait for any other tokens. If there is only

one active path that leads to the merge node, no synchronization will happen.

Although in [15] it is mentioned that the BPMN uses a multi choice node

and an inclusive merge to achieve this pattern, as shown in figure 2.21, it

is not clear how the knowledge of how many active paths actually reach the

inclusive merge.

Fig. 2.21: Synchronizing Merge (BPMN)

As for YAWL, we see in [18] that it uses a special symbol, or-join (diamond

shape on the side-box), which “is enabled if and only if an incoming branch

has signaled completion and from the current state it is not possible to reach

a state where another incoming branch signals completion”. A simple sce-

nario is shown in figure 2.22a and a more complicated one in 2.22b, where

the or-join, appended to task D, is only activated depending on the exclusive

19

choice between tasks E and F. If task E is chosen, D is activated as there are

no more possible transitions to task D.

Fig. 2.22: Synchronizing Merge, a) simple scenario and b) complex scenario

(YAWL)

[15] presents the UML AD approach for this pattern to be a combination of

a join node and a condition expliciting how many needed flows must there

be for the join. Although these flows are originated by a fork node, this node

obeys to the definition of the Multiple Choice pattern (section 2.2.2), where

its various outgoing transitions are guarded with conditions. This is shown

in figure 2.23.

Fig. 2.23: Synchronizing Merge (AD)

[18] identifies several problems in the previous representation and further

states that “no direct support is provided for this pattern” in UML ADs.

One of the problems pointed out concerns the condition in the Join node

and how it’s “not specified and it is not clear how it could be determined

how many tokens to expect”. Regarding this aspect, our opinion is that the

question of how many tokens to expect should be an issue to resolve on the

engine rather than on the representation.

A theoretic implementation proposal for this pattern is presented in chap-

ter 7.2.2.

Discriminator

The Discriminator pattern can be defined as the place where several flow

paths are merged together without synchronization, and only one token (the

20

first to reach the Exclusive Gateway or Join node) is carried forward, with-

out waiting for any other token. All other eventual tokens are ignored.

The BPMN uses a simple Exclusive Gateway (diamond shape with an X

inside), with multiple incoming transitions, to represent this pattern.

Fig. 2.24: Discriminator (BPMN)

YAWL makes use of a cancellation region (a dotted area) along with a multi-

ple merge pattern. The concept in YAWL is a bit different, as the cancellation

region actually cancels any other executing incoming branches following the

first to complete. This representation can be seen in figure 2.25.

Fig. 2.25: Discriminator (YAWL)

According to [15] the UML AD notation uses a join node with a condition

set to block all but the first token to reach the join, as shown on figure 2.26.

Fig. 2.26: Discriminator (AD)

21

[18] also presents this pattern as a specialization of the N-out-of-M Join

pattern (in section 2.2.2) with the corresponding condition set to allow only

one flow.

N out of M Join

The N out of M Join pattern can be defined exactly as the previous pattern,

with the difference that the join node will wait for N tokens before allowing

the flow to go on and block/ignore any posterior eventual tokens.

BPMN uses a complex gateway (diamond with an asterisk), included in

the notation for this particular situation, as seen in figure 2.27.

Fig. 2.27: N-out-of-M Join (BPMN)

YAWL has as particular and explicit way for representing this pattern, as

shown in figure 2.28, where the N and M values are visible in the design.

Fig. 2.28: N-out-of-M Join (YAWL)

[18] presents an UML AD representation, shown in figure 2.29 which makes

use of the InterruptibleActivityRegion ([14] on p.377, and table 2.3) together

with weights ([14]on p.327).

22

Fig. 2.29: N-Out-Of-M Join (AD)

While [2] presents a complex representation of this pattern, we take full

advantage of our implementation properties of the Join activity, which was

developed with an internal counter stating how many incoming flows must

have been completed for the join to be activated. This counter is technically

equivalent to the condition referred to in [15].

2.2.3 Structural Patterns

The next two patterns describe the way of achieving loops and multiple flow

termination points.

Arbitrary Cycles

An Arbitrary Cycle is defined as the section in the workflow process where

one or more activities can be done repeatedly.

In BPMN, UML AD and YAWL this can be achieved by connecting down-

stream activities with upstream activities, although the UML AD and YAWL

notations will use a few more shapes than BPMN to achieve the same results,

as shown in figures 2.30, 2.31 and 2.32.

Fig. 2.30: Arbitrary Cycle (BPMN)

23

Fig. 2.31: Arbitrary Cycle (YAWL)

Fig. 2.32: Arbitrary Cycle (AD)

Implicit Termination

An Implicit Termination allows that only a particular flow path be concluded

without having any interference with any other possible parallel flow paths.

In BPMN, an End Event (an empty circle with thick border) signals the

end of the flow path, as shown in figure 2.33. The several (7) variations of

the End Event node allows the indication of a particular result when ending

the flow. The implicit termination pattern is valid for all of them, except the

Termination End Event.

Fig. 2.33: Implicit Termination (BPMN)

UML AD notation uses a Flow Final node (a crossed circle) to represent the

flow termination.

Fig. 2.34: Implicit Termination (AD)

As for YAWL, it “deliberately does not support implicit termination in order

to force workflow designers to think carefully about workflow termination”

([18]).

24

2.2.4 Patterns Involving Multiple Instances

The next four patterns describe the situations where there can be multiple

instances (MI) of an activity active simultaneously, in the same workflow

process. YAWL directly supports Multiple Instance patterns through the

construct seen earlier in figure 2.28.

MI with A Priory Design Time Knowledge

This pattern describes how an activity can be instantiated a known number

of times, and in parallel. At design time, the modeler knows how many

instances of the activity are desired and hardcodes it in the representation.

The definition of the pattern being vague, two variations may arise: a)

where the instances and tokens are to be synchronized before continuing and;

b) where the process can continue independently for each token. For a), the

MI requiring Synchronization pattern is advised, and a variation of the MI

with no A Priori Knowledge pattern is advised for b) [15].

The BPMN representation of this patterns is achieved by setting an at-

tribute, which will result in the two vertical parallel lines appearing on the

activity to have multiple instances.

Fig. 2.35: MI with A Priori Design Time Knowledge (BPMN)

For YAWL, [18] states that this pattern is supported by “replicating the

activity involved as many times as required”.

YAWL provides direct support for the MI patterns by means of “four

attributes: the minimum number of instances to be created; the maximum

number; a threshold for continuation (where the semantics is that if all cre-

ated instances have completed or the threshold has been reached the multiple

instance task can complete); and an attribute with the possible values static

and dynamic indicating whether or not it is possible to create new instances

25

when a multiple instance task has been started”.

Fig. 2.36: MI with A Priori Design Time Knowledge (YAWL)

According to [15], the representation of this pattern in UML ADs is through

the use of Expansion Regions ([14] p.365, and in table 2.3), as shown in

figure 2.37.

Although in [18] it is said that this pattern is possible in UML AD by

“replicating the activity involved as many times as necessary”, a graphical

representation is not presented.

Fig. 2.37: MI with A Priori Design Time Knowledge (AD)

MI with A Priory Runtime Knowledge

This pattern is similar with the MI with a priory design time knowledge, the

difference being that “the number of copies is not known until the process

is being performed and cannot be set ahead of time” [15]. Additionally, this

pattern allows that the instances are in parallel as well as in sequence.

The BPMN enables this pattern by setting attributes such as LoopType,

MI InstanceGeneration and LoopCondition to a specific combination of set-

tings. Graphically, there will be a loop icon on the repeated activity, as seen

in figure 2.38. [15] mentions yet another representation for this pattern “by

using an exclusive Gateway Decision after the activity and looping back to

merge with the same activity (...) for each copy of the activity.”

26

Fig. 2.38: MI with a priori runtime knowledge (BPMN)

Similarly to BPMN, in UML ADs notation this pattern can be represented

“by using a decision node after the activity and looping back to merge with

the same activity (...) for each copy of the activity” [15].

UML ADs can also use the Expansion Region, similarly to the previous

pattern, taking advantage of its attributes to achieve the desired behavior.

In this case the Mode attribute is set to Iterative rather than Parallel, as

shown in figure 2.39.

Fig. 2.39: MI with a priori runtime knowledge (AD)

MI with no a priory knowledge

The MI with no a priory knowledge pattern differs from the previous patterns

in that the number of instances to be created is influenced by the instances

themselves. This adds more complexity to the representations, though both

BPMN and UML ADs notation supports this pattern, and do so with no

major differences.

For BPMN, a combination of components such as seen in figure 2.40 is

used.

27

Fig. 2.40: MI with no A Priori Knowledge (BPMN)

UML AD notation uses a “combination of a decision node, merge node, fork

node and activities” [15], as seen in figure 2.41. Activities B and C are

started in parallel by the fork node, but a decision node immediately follows

activity C. If any another copy of B is needed, the control flow will then

connect upstream to a merge node. The merge node is required to avoid the

synchronization behavior of the fork node (which can also be a join node).

Fig. 2.41: MI with no A Priori Knowledge

MI requiring Synchronization

This pattern is similar to the MI with A Priori Runtime Knowledge pattern,

with the difference that all the instances of the repeated activity be complete

before the process continues. The instances must also be performed in par-

allel.

Fig. 2.42: Mi requiring Synchronization

For BPMN, the representation of this pattern is equivalent to a MI with A

Priori Design Time Knowledge, the differences being in the internal vari-

able that are set to specify the desired behavior. Visually, the pattern is as

depicted in figure 2.35.

28

2.2.5 State-based patterns

The next three patterns cover the way a business process is sometimes af-

fected by factors outside the direct control of the process engine [15] which

may be caused by, among other things, the unavailability of human or ma-

terial resources [2]. There is consequently an interval between the moment

when an activity is enabled and when its execution starts.

Deferred Choice

A Deferred Choice pattern is used when there is the need to choose among

several control flows, though the choice “is not based on data that is avail-

able at the moment the execution reaches the deferred choice, but is rather

determined by an event (e.g. an application user selecting a task from the

work list, or a message being received by the process execution engine)”.

In BPMN this pattern is represented as shown in figure 2.43, using a

Gateway (diamond with a star inside), where the control flow will wait until

the specific event occurs (usually a message - represented by the circles with

an envelope inside). Other events can be used. Only one control flow will

be chosen, as the first event to occur will trigger the correspondent control

flow, ignoring the other flows.

Fig. 2.43: Deferred Choice (BPMN)

[18] states that, since YAWL is based on Petri nets, it directly supports the

deferred choice pattern, which is shown in figure 2.44. A place (condition rep-

resented by the circle) performs the decision and, at runtime, the alternative

29

that is chosen consumes the token thus disabling the other alternatives [18].

Fig. 2.44: Deferred Choice (YAWL)

In UML AD notation, the pattern can be represented as shown in figure

2.45a, which makes use of Signal Events following a Fork. The Signal Events

are also encircled by an Interruptible Region line, which will disable all the

other signal events after the first is activated, thus achieving the desired

deferring choice behavior.

[2] presents another representation of this pattern, expressing it as “a nor-

mal state which waits for an event from the environment, and chooses one of

its outgoing branches accordingly”. Figure 2.45b depicts this representation.

Fig. 2.45: Deferred Choice (AD)

Interleaved Parallel Routing

Though using the word “parallel”, this pattern is defined by a set of activi-

ties that must be executed sequentially, exactly once and with no particular

30

Fig. 2.47: Interleaved Parallel Routing (YAWL)

order. The sequential performance of the activities is often due to the re-

quirement that the activities share or update the same resources [15].

In BPMN, the Ad-Hoc Process (a Sub-Process box with a tilde on the

bottom) is used, semantically meaning a collection of activities that can be

performed in any order. It also requires one attribute to be configured so that

the sequential order is accomplished, as well as a modeler-defined condition

that must be satisfied for the sub process to complete. This representation

is shown in figure 2.46.

Fig. 2.46: Interleaved Parallel Routing (BPMN)

As for YAWL, the solution is based in a mutex place (mutual exclusion), also

represented by a circle. This is shown in figure 2.47. None of the tasks A,

B, C, or D are executed in parallel. In addition, the execution of task B has

to await completion of the execution of task A, and the execution of task D

has to await completion of the execution of task C (from [8]).

31

Fig. 2.48: Interleaved Parallel Routing (AD)

In UML AD notation there is no direct support for this pattern, as there

is no concept of an Ad-Hoc process, but workarounds can be used, and [15]

proposes two.

The first and simplest solution is to place the activities (B and D) between

a Fork and Join pair. As is, this would allow the activities to be executed in

parallel, so constraints must be added (one to each activity) so the use of the

same resource is forced upon them, semantically meaning that they cannot

execute at the same time. This is shown in figure 2.48a.

The second representation, more explicit, involves the use of the Deferred

Choice pattern as well as duplicates of some activities (again B and D), as

shown in figure 2.48b.

In regard to the first solution, the management of the resources is not

intended to be controlled lest touched by the workflow engine in our applica-

tion. This means that this pattern can be represented as expressed, leaving

the resource management to be handled by the “system” that actually exe-

cutes the actions.

For the second solution, and since it’s represented at the expense of the

Deferred Choice pattern, it is not supported by our application.

Milestone

A given activity can only be enabled if a certain milestone has been reached

which has not yet expired. A milestone is defined as a point in the process

32

where a given activity has finished and an activity following it has not yet

started [18].

Since the representation of this pattern is not directly available for UML

DA notation, the mimicking of Petri Net’s places with signal exchanges can

add complexity to the models. Adding to this is the fact that many of the

workarounds assume specific semantics for UML AD [18], which may lead to

interpretation errors. Also in [18], a suggestion is expressed that there is no

consensus on the semantics of the more advanced representations.

Based on this, we decided not to go into any level of detail for this pattern.

2.2.6 Cancellation Patterns

The purpose of the next two patterns is to define a way that the completion of

an activity causes the cancellation of another activity or group of activities.

Cancel Activity

In this pattern, there is the need to signal the cancellation of an activity and

the need act (cancel an activity) based on that signal, as the completion of

one of the two (or more) competing activities means the cancellation of the

others.

BPMN uses intermediate events attached to the boundary of the activ-

ities, as shown in figure 2.49. If that event is triggered, the activity will

immediately be canceled, allowing the control flow to follow its path.

Fig. 2.49: Cancel Activity (BPMN)

33

YAWL uses Cancel Regions connected to activities, as shown in figure 2.50.

When activity B is completed, the activity within its Cancel Region, A, is

canceled.

Fig. 2.50: Cancel Activity (YAWL)

In UML AD, this pattern also makes use of an Interruptible Region). When

a signal inside the region is triggered, it will result in the cancellation of the

other activities inside the region. The origin of the signal can be as shown in

figure 2.51, where upon the completion of activity B the Cancel C trigger is

fired. The signal will then cross the border of the region and cancel activity C.

Fig. 2.51: Cancel Activity (AD)

Cancel Case

Cancel Case is actually an extended Cancel Activity, as its definition is the

same except that the goal is to cancel a process rather than just one activity.

34

BPMN represents this pattern by reallocating the intermediate event from

the border of the activity to the border of a Sub-Process containing the de-

sired activities, as shown in figure 2.52a. Another scenario (in [15], though

the distinction is not made clear) is when a modeler wants the cancellation

of the entire process. In this case the Terminate End Event should be used,

as shown in figure 2.52b.

Fig. 2.52: Cancel Case (BPMN versions)

In YAWL, the representation is equivalent to the Cancel Activity, as the

Cancel Region may encircle “... a single task, a whole case, and anything in

between” [18].

UML AD notation for this pattern is also very similar to that of a Can-

cel Activity, but where, in the last pattern, we had a region surrounding an

activity, we now have that same region surrounding a complex activity, as

shown in figure 2.53a. Again, if the modeler wants to cancel the whole pro-

cess, an End node should be used, as shown in figure 2.53b.

2.3 ISCO Prolog

ISCO (I nformation Systems COnstruction) is a mediator language in that

an ISCO program may transparently access data from several distinct sources

35

Fig. 2.53: Cancel Case (AD versions)

in a uniform way, that is, as regular Prolog predicates. Some relevant advan-

tages ISCO holds over competing approaches are its ability to concurrently

interface to several legacy systems, its high performance by virtue of being

derived from GNU-Prolog and its simplicity [19].

ISCO also benefits from the integration with Contextual (Constraint)

Logic Programming [20] (CxLP), a language that extends logical program-

ming with mechanisms for modularity.

An ISCO class, consisting in a data structure definition equivalent to that

of a database table, when compiled, triggers a set of changes in the back-

end database. In practice, the database tables are created as well as the

mechanism to access those tables. This mechanism consists, of course, in

predicates.

An example of these class definitions is illustrated in figure 2.54.

36

class teacher.

name: text.

department: text.

degree: text.

Fig. 2.54: ISCO class example.

2.4 Apache HTTP Server and PHP

Apache HTTP Server [21] is the most popular web server on the Internet

since 1996. PHP [22] is a widely-used general-purpose scripting language

that is especially suited for Web development and can be embedded into

HTML.

Together, the Apache HTTP Server and PHP make a widespread and

solidly installed base on which it is simple and safe to host web applications.

2.5 AJAJ and the Dojo Toolkit

From the point of view where one of the means to reach our goals involves

having an accentuated interaction with the server, the use of asynchronous

communication was immediately appealing.

To perform these asynchronous communications there are two disputing

technologies: Ajax ([9] [23]) and the relatively new AJAJ (Asynchronous

Javascript and JSON), where the XML text is replaced by JSON’s [24] seri-

alized objects.

Our choice went to AJAJ based on not so much the opinions scattered

throughout the web, which can be contradictory ([25], [26], [27]), but on

our already established use of Javascript code on the client side, which takes

great advantage on the use of the JSON notation, that is, Java objects.

From between many 6 asynchronous Javascript frameworks and toolkits,

only one presents all the graphical capabilities needed to draw a set of SVG

geometric shapes on the browser, together with the manipulation tools, like

drag-and-drop, for those same shapes. Its name: DOJO Toolkit [10]. Al-

6A list can be seen in http://chandlerproject.org/Projects/AjaxLibraries

37

though in heavy development, and not having, at the present time, one of

the components to draw ADs (arrowheads), we believe that the wide accep-

tance of the DOJO Toolkit will have it escalate into having that missing

piece. Aside from the arrowheads, all the geometric shapes can be manipu-

lated to fulfill the requirements to draw ADs.

As a side note, although working with Dojo Toolkit is quite motivating

and it still being the only right-tool-for-the-job, the lack of documentation

can be troublesome, decreasing development productivity in great extent.

2.6 SOAP

SOAP [11] is a lightweight protocol for exchange of information in a decen-

tralized, distributed environment. It is an XML based protocol that consists

of three parts: an envelope that defines a framework for describing what is

in a message and how to process it, a set of encoding rules for expressing

instances of application-defined data types, and a convention [12] for repre-

senting remote procedure calls and responses. SOAP stood for Simple Object

Access Protocol, though as of Version 1.2 [11] the acronym was dropped.

The reason why we use SOAP is actually very straightforward: because

it is simple. Simple to read, as it’s human readable; simple to use for both

clients and servers.

The security context that SOAP lacks can be, if necessary, dealt with by

some extensions to SOAP, like analyzed in [28].

Although the use of XML can make SOAP messages quite verbose, we

are at ease with this situation for two reasons: a) most of the messages

are expected to be extremely short, as they will mainly be remote procedure

invocations and small responses, and b) even if the responses increase in size,

corresponding to some more elaborate data structure, the natural response

time of the typical people involving workflow is far slower than any SOAP

performance issues.

38

2.7 Graphviz

Graphviz [29] (Graph Visualization Software) is a set of tools and algorithms

to work, transform and visualize graphs. It uses The DOT Language [30]

to draw direct or indirect graphs. The graph’s information is loaded from

attributed graph text files and the output is either in graph files of in graphic

format, such as GIF, PNG, SVG or PostScript.

Regarding the use Graphviz in our application, and with the sole purpose

of making the life of the modeler easier, a bit of work was put into having

the capability of rearranging the organization of the modeled workflows in

an automated but on-demand fashion.

2.8 Summary

In this chapter we have spanned through the main technologies that were put

to use in our project. We have covered the basics about workflows, workflow

components and their graphical notations. We have given some emphasis

to the differences between the several kinds of control patterns, as well as

to the differences between the representations of those same patterns using

YAWL, UML AD and BPM notations. The basics of the ISCO programming

language were also covered in this chapter, as was the justification of using the

Apache HTTP Server, PHP, AJAJ, the Dojo Toolkit and, finally, Graphviz.

39

40

Chapter 3

Methods and procedures

In this section we describe the methods and procedures used for both decision

and accomplishment of the intermediate objectives that were dealt with in

this project. This section presents the chronological evolution of the project,

discussing how some ideas where put aside and how many others came to life.

We start by covering some ground on the general opinions about the

adequacy of UML Activity Diagrams to specify workflows, in section 3.1,

which is followed by section 3.2, where we focus on the UML origins and

purpose regarding the project, as well as discuss how to get the model in-

formation (workflows designs) into out application. In section 3.3 we briefly

introduce the major concepts about the ISCO based data structure. Sec-

tion 3.4 presents the workflow execution engine and its console interface 1.

The evolution of the core interfaces is explained in section 3.5, and special

attention is given to how and why the use of Web2.0 came to mind. In sec-

tion 3.6, the concept of “external event” and its use and API are presented,

and in section 3.7 we discuss and exemplify the grammar used in specifying

transition guards.

1By “console interface” we mean the way the user can initiate new workflow instances
or advance through existing ones.

41

3.1 Regarding workflow specification using UML

ADs

Though UML fails to capture some aspects of workflow specifications, as

pointed out by [2], and as seen in section 2.2, UML is still a natural choice

for representing business processes, as indicated by [31]. What the UML rep-

resentation lacks can be compensated by extending it (in our application) in

order to be capable of representing all the control patterns without hindering

the use of this so well known notation. [31] reminds us that UML has been

conceived for the communication among people and that, as a consequence,

it does not have well defined operational semantics and it’s not executable.

Being that this execution property is what we pursue, some minor extensions

are (or will be in future work) in order.

3.2 UML based editor

As already discussed, the initial goal of the project was the generation of

ready-to-use ISCO code from UML diagrams. We have also already men-

tioned that we started with two UML diagrams - class and activity diagrams.

Although this is correct, it soon came to our attention that the task of dealing

with activity diagrams and transforming them into workflows, could be far

more interesting and worthwhile than creating database managing systems

from class diagrams. At this moment, all efforts where dedicated to the ADs

and workflows.

ArgoUML [32] was the chosen UML editor in which to perform the mod-

eling. Being open source as well as having XMI [3] output capabilities and

supporting OCL (Object Constraint Language)2. The interface is also user-

friendly, and the fact that it is implemented with Java makes it an easy-to-

deploy application.

The choice of an editor that could easily output a XMI representation of

the models did not happen by chance. Having the model in a XML based

2At this stage, OCL was thought of as to enable easier communication between the
modeled specifications and the final ISCO code

42

representation allows the information harvest to happen comfortably, using

pretty much any programming language that can deal with strings. This

way, setting off from the XMI, the prime focus is to “translate” the activity

diagram information into ISCO code.

3.2.1 XMI to ISCO translation

XSL is the only language whose sole purpose is to analyze and transform

XML, as mentioned in [33], which means that XSL Templates [34] (XSLTs)

should have no trouble dealing with the XMI output. Being that XSL is

mainly used to transform XML in other XML, or other markup language

(like HTML) we have to evaluate the chance of having to use an intermediate

representation (IR) for our transformations, as advised in [35]. Early tests

revealed that our developed XSLTs can output ISCO code without the need

of the IR. We do bear in mind, though, that the UML components used in

the tests where basic, and that complex representations, emerging from the

use of other UML components, might lead to the need of an IR.

3.3 ISCO based data structure

ISCO’s Object-Relational basis is the adopted mechanism in which we build

all our data structure. This allows us to create the system data model

(database) from an ISCO class description, as well as allowing the database to

be seen as part of an object oriented declarative/deductive database, where

each table is mapped to a class which, in turn, can be used as Prolog goals.

This means that, by generating ISCO code from XMI, we automatically have

in this code all the means to introduce the information in the system.

The data model is built contemplating two different, though connected,

types of information. These types are static information and dynamic infor-

mation, explained next.

Static information Also called “modeling information”, which deals with

the model related data such as activity and workflow names, screen co-

ordinates and relations of activities, transitions, events and conditions.

43

Dynamic information Also called “execution information”, which deals

with all the relevant data related to workflow, activity and event in-

stances. This information is usually the result of the execution of in-

stances.

Several changes where made to the initial data model, as new necessities

came along, resulting from the changes of scope of the application. Although

no more changes in the scope of the application are expected, we believe that

with the incorporation of more capabilities new or different representations

of data may be necessary.

For a detailed insight of the complete data structure of the project, the

reader is referred to chapter 4, and to the appendix (page 103) for the entity-

relation model and data properties.

3.4 Execution engine

One of the most important components of this project is the workflow en-

gine. This engine is entirely implemented using the ISCO language, taking

full advantage of the knowledge available in the data structure, previously

mentioned. This engine aims for the instantiation of the workflow models

and the respective activities, allowing the flow path to be followed and issuing

activity events where due, that is, when such was modeled on the respective

AD.

Console API

It is possible to control the workflow engine manually from a text console,

by calling the ISCO executable file, and using the available set of predicates.

Those predicates are:

44

start/2

start(+Workflow, ?Id)

This predicate will create a new in-
stance of workflow Workflow and re-
turn the new instance’s Id. The new
instance will be an object of the form:

execution(Workflow, Id, 0, _, stub(X)-X)

step/2

step(+Workflow, +Instance)

This predicate causes an instance to

step forward, that is, it will check for

any completed activities and, if possi-

ble, advance to the next activity.

3.5 Interfacing with the engine

This section describes the main problems, resolutions and consequences of

deciding what would be the best interface with the application’s core.

3.5.1 First interaction-model

The general idea of interacting with the execution engine was by means of a

web browser, using PHP. Using the already mentioned ease of communication

between ISCO and PHP, a user could choose an activity instance, check its

status (result value, number of executions, etc) and control the progress of

the workflow. Figure 3.1 shows the schematics of the application at this

point.

At this stage, a prototype was available that allowed for the translation

of simple UML activity diagrams to ISCO, their inclusion in the system

and posterior instantiation and control through a web-browser and PHP.

However, this presents a lack of integration between the modeling process

and the application itself and, consequently, the execution of the models.

3.5.2 ArgoUML (and other external editors)

Although initially thought as an option, the coupling of the process in which

we generate ISCO code with ArgoUML by means of some sort of plugin

45

Fig. 3.1: Application Schematics (1)

for ArgoUML, presented an important usability issue: the obligatory use of

ArgoUML to perform the modelling.

It is clear that this sort of commitment with ArgoUML is not the right

path to follow, as ArgoUML would still be again immediately isolated from

this step forward, that is, its collaboration with the application would always

be limited to modeling and code generation, and there would not be any kind

of communication from the application to ArgoUML, so that any necessary

changes to the model would necessarily mean a new model being inserted in

the system.

A decision was thus made that the modeling process should not be lim-

ited or better adapted to only one external editor, but rather to any that

supported XMI output, although still not eliminating the apparent problem

of communicating with the editor from the application.

To sum up this section, it should be clear that the motivation to work

with an external editor, when it could involve the development of particular

modules, was being questioned. The lack of integration was considerable, and

any attempt to reduce it towards any application would mean getting further

away from any other. It became clear that integration was an important

factor to ponder.

46

3.5.3 ISCO and Web2.0

From the previous section comes the thesis that all the modeling and editing

should be done in closer contact with the application, allowing, for example,

that the need for any adjustment could be solved with the knowledge of

what models are present in the system, and that those adjustments could be

directly reflected back into the system, if not done directly over a determined

model.

The best way to do this is to extend the initial purpose - controlling the

engine from a browser - and build an environment where workflow modeling

can also happen from within the browser. This approach, although impli-

cating a considerable amount of development, enables us to build a totally

integrated web platform where, upon development of several modules, one

can model, edit, manage and execute workflow instances, using always the

same environment.

However, enabling workflow modeling outside an UML environment raises

a relevant question: should we or should we not continue to model using UML

DA notation? The adequacy of UML DA to express workflows not being the

issue, as we have seen in section 3.1, we believe that the use of UML to

model Business Processes benefits from the language’s generalized use, as it

is a familiar ground.

Web2.0 Technology

The technology we use is AJAX and JSON (Javascript Serialized Object

Notation), which together comprise AJAJ. Instead of using isolated libraries

or packages we also make use of the Dojo Toolkit [10].

AJAJ allows us to maintain the much needed communication with ISCO

through PHP, adding that it can be done asynchronously, meaning, for ex-

ample, that information can be fetched from or sent to a server without any

need of page reloads. The Dojo Toolkit implements a set of graphical capa-

bilities with much interest to the objectives at hand, for example, generation

of SVG (Scalable Vector Graphics) shapes on the browser, with drag&drop

and matrix manipulation functions.

47

Figure 3.2 illustrates the schematics of the application in this phase.

Fig. 3.2: Application Schematics (2)

3.6 External events and web-services

In this section we describe in detail the measures taken to make available the

mechanism for calling and returning results from external events, as well as

the inner workings of the system when such an event is triggered.

An external event is an action that takes place outside our system. All

we need to know about these events is how to call them. How or what it

will execute is another different matter, irrelevant to our system, as long as

a result is effectively returned.

Another important thing about external events is how to catch their re-

sults. We to do this by means of a web-service [36]. An easy API is defined

that enables simple communication between the system and the (any) ex-

ternal platform, at the expense of having the remote host create the simple

necessary web-service capabilities.

48

The technology in use is SOAP (section 2.6). The client was implemented

both in Perl and PHP, to test platform independence, while the server was

implemented in PHP alone, due to the need of interaction with ISCO.

3.6.1 Web-services: How actions take place

When an action state is initiated by the flow control, its event is triggered.

To “trigger the event” means to access the unit 3 where the actual action

of the event is coded. This is true if the event is an internal event, whereas

the action is executed and the result is put back in the right place, where it

can be accessed by the flow control. If the event is an external event, the

mentioned unit will not contain the actual code of the event, but will instead

have the needed parameters to issue a call. This call is done from within the

core system, by means of a popen/3, directed to the wanted call script (Perl,

PHP, etc). That call script is our client code4.

On the remote location, a compatible server will be expecting the call,

which will trigger the process, whatever it may be. Despite the fact that an

instant answer to this call is actually sent back from the remote server, it will

not be the result of the event execution, but merely a signal that the order

of execution has been given. The reason why this is is due to uncertainty:

we simply do not know what will take place remotely nor how long it will

take, and thus cannot “wait still” for an answer to be returned. What we do

know is that, at some point, an answer or result of whatever took place will

be ready to be sent back. That is why we break this process in two ordered

but independent stages.

When ready, a compatible client located on the remote machine will access

our web-services server, sending the result of the event. Our server then takes

the answer and inserts it into the core system.

3Consult section 4.2
4The call script will change for each different remote call so, for the time being, we

have a client for each remote event.

49

Fig. 3.3: Application Schematics (3).

3.6.2 Web-Service APIs

The remote SOAP server

To make a remote call we use a SOAP client. For this to work, the remote

computer must be able to acknowledge and execute our request, by also mak-

ing available a simple web-service.This web-service should obey the format

shown in table 3.1.

The local SOAP server

As mentioned, we make available a SOAP server, for receiving the results of

the external events. For accessing the server, the remote host must be able

to perform a web-service call with the format show on table 3.2.

Figure 3.4 illustrates the pseudo-code for the server.

50

event_call(f_name, workflow, event)

f_name

f name means function name, although this is just an
identifier for the action to be executed remotely, be it a
function or something else.

workflow

This is simply the identifier (key id) of the workflow in-
stance from where the call is originated. The knowledge
of this identifier is important to the remote host as it
will need to know where to put the final result of the
action.

event

This is once again an identifier, this time referring the
event instance. This reference is important for the same
reasons as described on the previous argument.

Table 3.1: Remote Web Service API

Load soap library;

Create server;

Configure the WSDL service;

Register the function submit_result;

// Submits the received Result onto ISCO

function submit_result(Instace_id, Event_instance_id, Result)

{...}

Fig. 3.4: SOAP server pseudo code.

3.7 Transition Guards

Since we can set up transitions on the fly, we also need to be able to de-

fine conditions (or guards) to use with Conditional Transitions, directly and

immediately when we create these transitions.

For this purpose we’ve created a simple grammar that allows the user to

specify what rule guards the transition. At the moment, this grammar is

very simple, but with further refinements it will be extended to allow more

complex conditions (see section 7.2.6). Figure 3.5 shows this simple grammar.

As we can see, this is quite a basic grammar which only allows binary

comparison between the result of the previous activity ([RESULT]) and a

value (value) of type Integer or String. Also, and for now, the Result operand

51

submit_result(workflow, event, result)

workflow

The workflow instance ID.

event

The ID of the event instance.

result

The result value of the remote event.

Table 3.2: Local SOAP server API

s --> [RESULT], binop, value

binop --> [==]

binop --> [=>]

binop --> [<=]

binop --> [>]

binop --> [<]

binop --> [!=]

value --> [INT]

value --> [STRING]

Fig. 3.5: Simple grammar for Condition building.

must be the first (leftmost) faciend.

Examples of valid transitions are:

Result == ’approved’

Result <= 65

Result != ’2007-10-01’

At the system level, the condition gets decomposed and the Result operand

is replaced by a variable, which will receive a value at execution time.

3.8 Summary

In this chapter we have been through the methods and procedures used for

both the decision and accomplishment of the intermediate objectives dealt

52

with in the project. We have discussed the use of UML, an UML editor

(ArgoUML), and how its XMI code output posed a suitable bridge from

UML to ISCO. We presented the reasons as to why and how we drifted

away from the initial goal of the project. The application’s ISCO based data

structure was shown, as well as its types of persistent information. The API

with which the user can start the execution of new workflow instances, or

move forward on any existent execution, was covered, as were the stages

of the project as the approach shifted from an external UML editor to an

integrated editor. We saw how AJAJ and the Dojo Toolkit found their place

in the project, and explained Internal and External events, as well as the

role of web-services, through SOAP, in handling the later. Also, we have

depicted the simple grammar on top of which transition guards are built.

53

54

Chapter 4

Data model and representation

In this section we present the adopted data model, as well as several aspects

of the internal representation of information.

4.1 Class model

The description of the data model is divided in two parts: one concerning

the part of the data model that deals with the modeling information (activ-

ities, transitions, positions, etc) and one concerning to the part that deals

with the dynamic or execution information. Various ISCO code snippets are

also presented. A complete relational model is also available in appendix

(page 103.

4.1.1 Modeling data (description)

Next we describe each of the modeling data components and their purpose.

Activities We call activities to all nodes, be they control nodes (join, fork,

start, end, split or decision and merge)or action nodes (action state or

simple activity and compound activity). Support for the “flow final”

activity is not supported at the moment.

Conditions Theoretically, each “split” activity has an attached condition,

responsible for the choice of the path to be followed. For this to hap-

55

pen, the several outcomes of the condition evaluation would have to be

kept in a dynamic structure1. Since each of the choices are graphically

represented with a transition from the split node to the desired target

node, we decided to have the decision capability on the transition itself.

This way, when the execution flow reaches a split node, we know that

all the transitions starting in this node have a condition which needs to

be evaluated against the result of the previous action. The evaluation

will either be “true” or “false” where, typically, the first “true” to be

found indicates the path to follow.

Transitions Used to provide a means for activity transitions, establishing

a connection between two activities, transitions store their references.

The pair of activities bound to a transition are nicknamed as “source

activity” (where the transition begins) and “target activity” (where the

transition ends).

There are also two types of transition available: a) a conditional transi-

tion, which has a guard condition, explained in the previous item, and;

b) an unconditional transition.

Actions or events Each action state (or simple activity) has an associated

event which is triggered when the execution flow reaches this activity.
2.

Workflows All activities are related to one or more workflows. Also, every

execution, or workflow instance, has a parent workflow. Both these

cases are supported by the stored workflow information, which will

reference all the available workflow models in the system.

Workflow-activity relations As mentioned in the previous item, activities

can be used in more than one workflow. Since a workflow is obviously

related with several activities, we have a many-to-many relation, which

1Being variable in number, the multiple outcomes would have to be stored outside of
the split itself.

2From the possible types of events we are only using the “call event”, which is respon-
sible for a function call, and which will always have a “result”

56

implies that an extra class should be used (meaning an associative

database table) to establish this relationship.

4.1.2 Modeling data (ISCO)

Figure 4.1 depicts the hierarchical schema for both activities and transitions,

and table 4.2 presents the details of the classes and attributes.

Fig. 4.1: Activities and transitions hierarchical diagram.

ISCO code Description

abstract class activity.

key_id: serial. key.

name: text.

This is the super-class of all the activities. It

contains the following attributes: key id, an au-

tomatic sequential key; name, the given activity

name. This is also an abstract class, as it does

not represent any of the activities by itself, which

are all specializations of this super class.

Continued on next page

57

ISCO code Description

mutable class activity_simple:

activity.

event: int.

This class represents an “action state”, or “simple

activity”. This class is a specialization of activity,

and inherits both attributes of this class, further

adding a new one, event, which connects the ac-

tivity with the event to be performed. Despite

being used to reference an object of class event,

the event attribute is of type int - rather than

of type event.key id - due to a temporary imple-

mentation detail, where it is allowed to create an

action state without having an event immediately

bound to it.

mutable class activity_join:

activity.

needed: int.

This class is also a specialization of the activity

class, and represents the synchronization activ-

ity join. Besides inheriting both its super-class

attributes, the activity join adds one extra at-

tribute, needed, which states how many incom-

ing transitions will have to be available for the join

to be activated, that is, for it to allow the control

flux to proceed.

mutable class activity_fork:

activity.

This class is another specialization of the activity

class, and represents the parallel split node, also

known as fork. Just like the previous two, this

class inherits both its super class attributes, and

adds none other.

Continued on next page

58

ISCO code Description

mutable class activity_decision:

activity.

Also a specialization of the activity class, this class

represents the exclusive decision split node. This

class adds no further attributes.

mutable class activity_merge:

activity.

The activity merge class is another specialization

of activity and represents the simple merge node.

No attribute is added.

mutable class activity_start:

activity.

Also a specialization of activity, this class repre-

sents the beginning of the control flow. No at-

tribute is added.

mutable class activity_end:

activity.

Once more, a specialization of activity, this class

represents the end of the control flow. No at-

tributes are added.

mutable class activity_compound:

activity.

act_workflow: workflow.key_id.

This class represents the compound or non-atomic

nodes, and is once more a specialization of activ-

ity. The act workflow attribute points directly

to another workflow, to which the flow control

is temporarily assigned upon execution of an in-

stance of this class.

Continued on next page

59

ISCO code Description

abstract class transition.

key_id: serial. key.

target: activity.key_id.

The transition class is the super class of the

two possible transition object types, namely

the transition conditional and the transi-

tion unconditional. Being abstract, this class

makes available two attributes to be inherited by

their sub classes. These attributes are: key id,

the sequence key identified attribute and; target,

which points directly to the key identifier of

another activity as its target node. Despite the

fact that every transition has both source and

target nodes, only the later is defined here. This

is explained in the following rows.

mutable class

transition_unconditional:

transition.

source: activity.key_id.

As the name indicates, the transi-

tion unconditional class represents an un-

conditional state change, that is, no condition

is tested after the source node is finished. The

added attribute, source, can bind any kind of

activity as the source node of an unconditional

transition.

Continued on next page

60

ISCO code Description

mutable class

transition_conditional:

transition.

source: activity_decision.key_id.

cond: condition.key_id.

Just like the previous class, transition conditional

is also a sub class of the transition abstract class

and also adds the attribute source. Regarding

this attribute, the difference is in its type. As

we can see, rather than referencing any activity

object, it only binds exclusive split nodes (activ-

ity decision), that is, a conditional transition can

only start on a decision node. Since a conditional

transition needs a condition to be evaluated, this

class adds another attribute, cond, which directly

references a condition object.

mutable class condition.

key_id: serial. key.

guard: term.

A condition object represents the atom that must

be evaluated in any conditional transition. A

condition has its own sequential key identifier,

key id, and an extra attribute of type “term”,

guard which contains the guard expression of the

condition, in the shape of a Prolog term. A guard

term is formed has follows:

(A==20)-A

The variable A is instantiated in execution time

so that the guard can be directly “called”, using

a Prolog call/1.

Continued on next page

61

ISCO code Description

mutable class event.

key_id: serial. key.

name: text.

The event class represents the action to be per-

formed upon the execution of an activity simple

object. An event object contains no more than

the name of the event. The remaining data will

be dynamic, as it will be contained in a dynamic

data class.

mutable class workflow.

key_id: serial. key.

name: text.

A workflow object represents a workflow model

present in the system. This allows every ac-

tivity to be linked with one or more workflows.

Apart from having its sequential identifier at-

tribute, key id, a workflow only needs to store its

name.

mutable class workflow_activity.

workflow: workflow.key_id.

activity: activity.key_id.

As mentioned in the previous class, every activity

is connected to one or more workflows, or vice-

verse. The class responsible for storing this infor-

mation is the workflow activity class. As it can

be seen in the attributes (workflow and activity),

this class binds a workflow object to an activity

object.

Fig. 4.2: Modeling data (ISCO classes)

4.1.3 Execution data (description)

Next we describe each of the execution data components and their purpose.

Workflow instances For each instance of any workflow that is spawned in

the system, an execution is created. Each execution has a reference

to its workflow, an execution status flag (signaling for a terminated or

running instance), a list of activities for execution (useful for parallel

62

executions) and the linear execution trace, which contains the mention

to all activities the flow control stepped through.

Activity instances Every time an activity is reached by the flow control,

an activity instance is created. This instance serves the purpose of

storing the references of its originating activity and workflow instance,

as well as how many and which other activity instances led to the

present instance. An activity instance also has a flag indicating its

state of completion, which helps the execution engine.

All this information not only extends the trace capability, with new

kinds of information, but also allows for a better way of graphically

seeing the current state of any workflow instance. It is worth to mention

that, although we have quite a few different activity types, all their

instances are kept inside a single table because, up to this point, this

approach has been simple and efficient.

Event instances An event is triggered when an action state is started. To

trigger an event is to create an event instance containing all the ref-

erences to its originating activity instance and its execution. Once

finished, the event instance will also store the result of the event exe-

cution.

Event execution times For each triggered event, be it local or external,

both its “start” and “end” timestamps are safely kept. The fact that

these pairs are kept apart from the event instance they relate to, even

though we can see it is a one-to-one relation, is due to an implementa-

tion detail. Since these timestamps are dealt with by database rules,

once an event instance is created, the corresponding database row can

not be changed since when the rule is fired the row has not yet been

written. This way, the rule rather writes the timestamp in a parallel

table, along with the reference to the related event instance.

Result input of external results When an external event result enters

the system, it is written to this temporary table. This action triggers

63

several events: the end timestamp is written to the relating event in-

stance’s execution times table; the result value of the external event is

copied to its event instance reference.

4.1.4 Execution data (ISCO)

ISCO code Description

mutable class execution.

key_id: serial. key.

workflow: workflow.key_id.

complete: int.

act_list: term.

trace: term.

Each execution object has five attributes, namely:

the key, key id, a sequential identifier; a reference

to the workflow model, workflow ; a flag, complete,

stating if the instance has reached its end or is still

in execution; an activity list, act list, containing

the activities due for execution on the next en-

gine step and; the trace, trace, a compound Prolog

term containing the sequence of activities visited

so far in the present execution.

mutable class activity_instance.

key_id: serial. key.

activity_id: activity.key_id.

execution_id: execution.key_id.

valid: int.

came_from: term.

status: text.

The activity instance class represents any activity

instance of any sub class of activity. Each object

contains a sequential identifier (key id), a refer-

ence to the activity it instantiates (activity id), a

reference to the workflow instance (execution id),

the number already taken incoming transitions

(info), the list of activity instances that led to

this instance (came from) and the status of com-

pletion of the instance.

Continued on next page

64

ISCO code Description

mutable class event_instance.

key_id: serial. key.

act_ins_id: act_inst.key_id.

exec: exec.key_id.

event: event.key_id.

result_value: term.

An event instance object (event instance) rep-

resents the instance of an event, be it exter-

nal or internal. Every event instance has at-

tributes regarding its originating activity instance

(act inst id), as well as its execution instance

(exec) and its event (event). The result of the

event instance is kept in a Prolog term (re-

sult value), which is set by a triggered rule, over-

riding the initial temporary value. As one can

see, at the moment there is no difference between

an internal or an external event instance, though

further developments, as the internal event pro-

gramming module, will likely force the integration

of separate classes.

mutable class event_times.

occurrence: int.

start_time: date.

end_time: date.

The class event times represents the pair of time

flags associated with every event instance. This

association is present by the occurrence attribute,

although there is no direct bound to the event

instance’s key. This is due to the same reason as

described earlier on the previous section. Both the

other attributes, start time and end time, are of

type date, and store the start and end timestamps

of the event instance execution.

Continued on next page

65

ISCO code Description

mutable class fifo_event_buffer.

key_id: serial. key.

event: event_oc_stream.key_id.

workflow_inst: exec.key_id.

result: text.

This class represents the results of the event in-

stances that are submitted to the system, each

of which having the correspondent event instance

(event) and workflow instance (workflow inst) as

attributes. The result of the executed action that

was initially set to 0, will shortly be replaced by

result.

mutable class component_position.

component: activity.key_id.

x: int.

y: int.

This class represents the coordinate pair which

signals the position of an activity object. The at-

tributes are component, a direct reference to the

activity object it relates to, and x and y, the hori-

zontal and vertical coordinates of the component.

Fig. 4.3: Execution Data (ISCO classes)

4.2 Organization in Units

In this section we present the different files of the data model and engine, and

how they are organized. We can easily identify the need for several different

components in the project, like the workflow engine, the data structure def-

inition, etc, each with specific goals. The fact that by using Prolog we can

adhere to the “unit” representation, where each individual module is repre-

sented by a different file, called “unit”, seems to perfectly fit our purpose.

This way, the units used in the project and their description are:

main This unit is the entry point of every interaction with the system. From

this unit, all the requests are channeled to the correct unit. The main

unit also contains and triggers the Prolog goals to create an execution,

as well as to step through the different activities of the execution.

process Inside this unit we code the actions that are triggered by the events

inside the workflow execution. For “internal” events, all the actions are

66

programmed inside this unit. For an “external” event, the call is simply

a call to a script which will in turn make the call to the implicit service.

model(s) Any number of model units may be used, as each is intended to

represent a workflow model. These units are typically the final result

of the XMI processing, and they are ready to be loaded and used by

the system.

interfacePHP This unit contains all the predicates that are responsible for

any interaction with the GUI. When a request is sent from the graphical

web client, it first enters the main unit, which redirects the request to

the interfacePHP unit. According to the request, the relevant action

is executed, and the respective answer is returned. This process is also

valid to all of the asynchronous requests that are generated from the

GUI.

engine This is the responsible unit for executing of the workflow, that is,

the intelligence of the execution.

read write data This is responsible for handling any request to the database,

be it a write or read request.

graph Though still in a very embryonic stage, this unit will be responsible

for rearranging any model components’ positions. This will happen

upon request and will automatically rearrange the screen coordinates

of all the components with the help of Graphviz procedures.

Figure 4.4 depicts what units are reachable from each of the input/output

channels.

4.3 Summary

In this chapter we have seen the aspects of the data model adopted for our

application, explaining the difference between model data and execution data,

describing each component and it’s purpose, and also examining each class

67

Fig. 4.4: Units schema.

found in the data model. An enumeration of all the Units is given, and the

organization between them is explained.

68

Chapter 5

The web client application

In this chapter we describe the application with focus on the graphical com-

ponent and user interaction, that is, the web browser functionality. In sec-

tion 5.1 we briefly span through what the web client’s intentions are, and

how it is organized. Section 5.2 depicts the Workflow Sketcher and the Sta-

tus Viewer screens of the application, and briefly explains the purpose of

each panel and menu. In section 5.3 we go through the several files and

organization of the web client, as well as the purpose and function of each

of those files. Asynchronous communication with the server is explained in

section 5.4 , where both simple and complex requests are covered. Section 5.5

details the web client’s API, by explaining the function of each method. Fi-

nally, section 5.6 presents two tables where the actual degree of support of

AD components and patterns, in the web client, can be seen.

5.1 About the Web Client

The web client is intended to be the main interface between the user and

the platform. The client is currently divided in two components: a) the

“Workflow Sketcher” page, and b) the “Workflow Status Viewer” page.

The user can define new workflows from scratch, edit a previously created

workflow, load instances of any completed workflow, and check the trace

and execution status of any ongoing or terminated execution, as well as its

69

activities.

5.2 Graphical structure

Figures 5.1 and 5.2 depict the main workflow sketcher view and the status

viewer, respectively.

Fig. 5.1: Workflow Sketcher Screenshot

The Workflow Sketcher consists of four main sections:

The top menu Where one can create new workflow models, load existent

models, configure some options and switch to the Status Viewer.

The left menu The left menu currently comprises three panels: the com-

ponents panel where the user can access the graphical components that

constitute the workflow model; the events panel where events can be as-

signed to action activities, and; the users panel, which currently allows

no actions.

70

The right menu The right menu (also called the context menu) will present

information about the selected item on the drawing pane.

The main area Also called the drawing pane, this is the area where the

graphical components are created, connected and dragged around as a

workflow model is built.

Fig. 5.2: Status Viewer Screenshot

The Status Viewer consists of three areas:

The top menu Allows the user to open a view on an existent workflow

execution, as well as configuring some options (currently disabled) and

switch to the Workflow Sketcher.

The main pane This is where the loaded workflow execution will appear,

with the respective code color for current activated actions. In the

status viewer it is not possible to drag&drop the components.

The information panel This panel is formed by two panes: the activity

info pane shows the execution data of the selected activity on the main

pane, and; the instance trace which will show the trace of the current

execution.

71

5.3 Files and organization

Our Web Client makes use of a set of functionalities that are interlaced in

different files.

First we have html files, that serve as normal web pages, and where the

information is dynamically display as a reaction to the user’s actions and

requests. For structural reasons, none of the html files have any Javascript

scripts or PHP functions, being thus very clean and understandable. We

then have php files

This section lists the files according to type (html, php, js and smd) and

explains their purpose and contents.

HTML files As we have only two concepts available in the Web Client -

designing workflows and checking their executions’ statuses - to each

we correspond a different html file.

The first, sketcher.html allows for all the activities regarding the

creation and edition of workflows, that is, positioning shapes, assigning

transitions with or without conditions and linking events to activities.

The second html file, status.html, allows the user to access the trace

of the chosen execution, be it running or already concluded.

Both the html pages are built based on various Dojo special constructs

(called widgets), like the drawing pane, menu bars, layout containers,

etc. All the dialogs that appear on various occasions are also coded in

these files, waiting to be triggered.

JS files These are the files containing the Javascript functions and variables

that enable the dynamics of the pages. The files and their respective

functions are:

sketcher funcs.js This file contains all the global variables used in

the edition and construction environment, as well as all the func-

tions responsible for: initializing the dynamic Dojo components;

drawing draggable shapes (activities) into the drawing pane; con-

necting the shapes (transitions); creating conditions (transition

72

guards); assign events to the activities. This file is imported by

sketcher.html.

sketcher callbacks.js This file contains all the callback functions that

are invoked when data is returned from the server to the web

client, like when loading stored workflows, loading events or upon

the first stage of creating new activities and conditions. Com-

monly these functions will issue calls to the sketcher funcs.js

file. This file is imported by sketcher.html.

moves.js This file contains all the handles for the mouse events that

are triggered when placing, selecting and moving a shape. This

file is imported by sketcher.html.

status funcs.js This file contains all the global variables used in the

status checking environment, as well as the functions responsible

for: initializing the dynamic Dojo components; drawing shapes

and connections on the panel; handling some mouse events. This

file is imported by status.html.

status callbacks.js As with sketcher callbacks.js, this file con-

tains all the callback functions that are triggered when data is re-

turned from the server. This file is also imported by status.html.

general funcs.js This file contains the functions responsible for get-

ting information to and from the server, like a list of activities,

transitions, events, etc. This file is imported by both sketcher.html

and status.html.

SMD files These files represent JSON remote procedure methods’ classes,

and allow the developer to easily define the remote procedure call

(RPC) type, methods and parameters for remote objects, so that a

remote client can easily communicate with that object. Signatures for

the procedures are created, which allow for the communication with the

functions themselves, in our case, specified in a PHP file. We use two

distinct SMD files: one to take care of the errors, erroringClass.smd,

and one other where we explicit all the methods used to get or set data

73

in the server, myClass.smd.

PHP files As mentioned on the previous item, PHP files contain the classes

whose method signatures we defined on the SMD files. We have two

PHP files for this purpose: erroringClass.php that deals with errors,

and; testClass.php that defines all the functions that communicate

directly with the server.

5.4 Asynchronous requests and callbacks

In this section we explain how the asynchronous contacts with the server are

processed and how answers, when expected, are treated.

5.4.1 Simple Requests

Some contacts with the server happen without the need to obtain an answer.

These are typically updates on information (like the position of the shapes,

names). For example, when an activity is moved on the drawing pane, an

asynchronous contact is triggered, to reflect that same change into the server.

Figure 5.3 shows a code snippet used to update the coordinates of an activity.

...

var myClass = new dojo.rpc.JsonService("myClass.smd");

myClass.update_shape_position(id, x, y);

...

Fig. 5.3: Simple Request Code Snippet

Since the file myClass.smd correctly defines the update shape position

function with three arguments, the method will be invoked on the respective

PHP file, which will update the X and Y coordinates of shape id in the server.

5.4.2 Complex Requests

The most usual kind of contact between the web client and the server will

require some data to be sent back to the web client, like, for example, the

74

request for a list of all the workflow models available in the system (like de-

picted in the code snippet in figure 5.4).

...

var myClass = new dojo.rpc.JsonService("myClass.smd");

myClass.get_all_workflows().addCallbacks(contentCallBack, contentErrBack);

...

Fig. 5.4: Complex Request Code Snippet

As it is shown, the difference between the simple and complex requests is

only the addition of the addCallbacks function.

From the PHP class an array will be returned which will contain the ID of

the callback, so that it can be dealt with accordingly, and another array

containing all the workflows1.

From here on, the contentCallBack function will do what needs to be

done depending on the callback ID.

5.5 Web Client API

This section exposes each the methods used to communicate from the web

client to the server. For each of these methods, its signature is presented,

as well as the object returned. One should note that only the structure of

the object itself is shown. The full callback object is formed as shown in

figure 5.5.

array(

"id" => callback_identification,

"resultObject" => $RETURN_ARRAY_or_RESULT,

"message" => message_or_comment);

Fig. 5.5: Callback Array Return Object

1The objects of this array are, in fact, smaller arrays of two positions, containing the
workflow ID and name.

75

As it is shown, the structure is formed by a callback identification field, the

result field - usually also an associative array, but a single value occasionally

- and a message field, which we use for comments and alike.

Following are the descriptions of each method, its signature and return

object, organized by its objective (retrieving information, commiting infor-

mation or creating elements).

5.5.1 Creation functions

create workflow This method requests the creation of an unnamed work-

flow, whose identifier is then returned. Figure 5.6 shows the signature

of this method, while figure 5.7 shows the graphical component that

triggers the method.

"name":"create_workflow"

Fig. 5.6: SMD method sig-
nature for creating a new
workfow.

Fig. 5.7: Graphical compo-
nent used to trigger the cre-
ation of a new workflow.

create activity This method requests the creation of an empty activity,

that is, an activity with no attributes, of a determined type. Fig-

ure 5.8 shows both the method’s signature and the return object, while

figure 5.9 depicts the menu that triggers the creations.

"name":"create_activity",

"parameters":[

{ "name":"act_type", "type":"STRING" }]

array(

"act_type" => "\$type",

"act_id" => "\$Act_id");

Fig. 5.8: SMD signature
(left) and return object
(right), for creating an ac-
tivity.

create condition This method sends the request for the creation of a new

condition, named name. The ID of the newly created condition is then

76

Fig. 5.9: Part of the Com-
ponent panel, showing some
activity creation buttons.

returned to the web client. Figures 5.10 and 5.11 depict respectively the

function’s signature and graphical dialog box for creating a condition.

"name":"create_condition",

"parameters":[

{ "name":"condition",

"type":"STRING" }]

Fig. 5.10: SMD signature
for creating a condition.

Fig. 5.11: Graphical com-
ponent for creating a condi-
tion.

5.5.2 Write functions

set workflow This method sets the name of a workflow. No object is re-

turned. Figure 5.12 shows the method’s signature and figure 5.13 shows

the graphical component which triggers this method.

"name":"set_workflow",

"parameters":[

{ "name":"workflow_id",

"type":"STRING" },

{ "name":"name",

"type":"STRING" }]

Fig. 5.12: SMD signa-
ture for setting a workflow’s
name.

Fig. 5.13: Graphical compo-
nent showing the definition
of a workflow’s name.

set activity This method sends a request which will set up an empty ac-

tivity with new attributes. Figure 5.14 shows the method’s signature

77

and in figure 5.15 the dialog which triggers this method is shown.

"name":"set_activity",

"parameters":[

{ "name":"type", "type":"STRING" },

{ "name":"wfl", "type":"STRING" },

{ "name":"name", "type":"STRING" },

{ "name":"id", "type":"STRING" },

{ "name":"x", "type":"STRING" },

{ "name":"y", "type":"STRING" }]

Fig. 5.14: SMD signature
for setting an activity’s at-
tributes

Fig. 5.15: Graphical compo-
nent for setting a shape’s at-
tributes.

update shape position This method requests an update on the coordi-

nate attributes of an activity, and is triggered every time an activity is

moved. Function signature is shown in figure 5.16.

"name":"update_shape_position",

"parameters":[

{ "name":"id",

"type":"STRING" },

{ "name":"x",

"type":"STRING" },

{ "name":"y",

"type":"STRING" }]

Fig. 5.16: SMD signature
for updating a shape posi-
tion.

assign event This method assigns an event to a simple activity. The method’s

signature and its graphical use are shown in figures 5.17 and 5.18 re-

spectivelly.

"name":"assign_event",

"parameters":[

{ "name":"activity_id",

"type":"STRING" },

{ "name":"event_id",

"type":"STRING"}]

Fig. 5.17: SMD signature
for assigning an event to an
activity.

78

Fig. 5.18: View of the
graphical component for
event assigning.

assign transition This method requests the creation of a transition be-

tween two activities, graphically connecting them with a line. Only

after the callback with the identifier of the created transition is per-

formed will the shapes be connected on-screen. Figure 5.19 shows both

the method’s signature and return object resulting from its call.

"name":"assign_transition",

"parameters":[

{ "name":"shape_1",

"type":"STRING" },

{ "name":"shape_2",

"type":"STRING" }]

array(

"t_id" => "\$Id",

"source" => "\$shape_1",

"target" => "\$shape_2");

Fig. 5.19: Method API:
SMD signature (top) and
return object (bottom),
from assigning a transition
between activities

assign cond transition This method performs the same request as the pre-

vious, with the difference that the created transition will be a Condi-

tional Transition. The corresponding signature and return object can

be seen in figure 5.20.

"name":"assign_cond_transition",

"parameters":[

{ "name":"condition",

"type":"STRING" },

{ "name":"shape_1",

"type":"STRING" },

{ "name":"shape_2",

"type":"STRING" }]

array(

"t_id" => "\$Id",

"source" => "\$shape_1",

"target" => "\$shape_2");

Fig. 5.20: SMD signa-
ture (top) and return ob-
ject (bottom), from assign-
ing a conditional transition
between activities

rearrange This method requests an automatic rearrange of the positions of

the activities of a workflow. This method is currently disabled.

79

"name":"rearrange",

"parameters":[

{ "name":"workflow_id",

"type":"STRING" }]

Fig. 5.21: SMD signature
for a workflow rearranging
call.

5.5.3 Read functions

get all workflows This method requests a list with all the workflows in

the system. Figure 5.22 shows the method’s signature and return ob-

ject, while figure 5.23 shows the graphical component that triggers this

function.

"name":"get_all_workflows"

array(

"wfl_id" => "\$Wfl_id",

"wfl_name" => "\$Wfl_name");

Fig. 5.22: SMD signature (up)
and return object (bottom) for
loading the list of workflows in
the system.

Fig. 5.23: Dialog box show-
ing the loaded workflows.

load activities This method requests all the activities belonging to a deter-

mined workflow. Signature and return object can be seen in figure 5.24

while a screenshot of loaded activities is shown in figure 5.25

"name":"load_activities",

"parameters":[

{ "name":"workflow_id",

"type":"STRING" }]

array(

"type" => "\$Type",

"key" => "\$Key",

"name" => "\$Name",

"x" => "\$X",

"y" => "\$Y");

Fig. 5.24: SMD signa-
ture (left) and return object
(right) for loading all activ-
ities of a workflow.

get open activities This method requests the list of open activities (ac-

tivities waiting for their results) of a workflow instance. The result

80

Fig. 5.25: Screenshot after
loading the activities of a
workflow instance

object of this method is an array of activity identifiers. The method’s

signature is shown on figure 5.26 and its practical result is shown in

figure 5.27.

"name":"get_open_activities",

"parameters":[

{ "name":"instance_id",

"type":"STRING"

}]

Fig. 5.26: List all open ac-
tivities of an instance.

Fig. 5.27: Visualization of
an execution with open ac-
tivities, signaled in red.

get activity result This method requests the result value of an activity in

a particular execution. In case the activity is yet to terminate, the null

value is returned. Figure 5.28 presents the signature for this method.

"name":"get_activity_result",

"parameters":[

{ "name":"act_id",

"type":"STRING" },

{ "name":"workflow_id",

"type":"STRING" },

{ "name":"instance_id",

"type":"STRING" }]

Fig. 5.28: SMD signature
for returning an activity’s
result.

get events This method requests a list with all the events in the system.

Figure 5.29 shows the SMD signature and return object of this method

and in figure 5.30 shows a graphical component exibiting the loaded

events.
81

"name":"get_events"

array(

"event_id" => "\$Event_id",

"event_name" => "\$Event_name",

"event_term" => "\$Event_term");

Fig. 5.29: SMD signa-
ture (top) and return object
(bottom) for returning a list
of events.

Fig. 5.30: Graphical com-
ponent showing the loaded
events.

load transitions This method requests all the transitions a workflow. The

returned objects contain three identifiers: transition, source activity

and target activity. Figure 5.31 shows both the method’s signature

and return object.

"name":"load_transitions",

"parameters":[

{ "name":"workflow_id",

"type":"STRING" }]

array(

"t_id" => "\$Id",

"source" => "\$From",

"target" => "\$To");

Fig. 5.31: SMD signa-
ture (top) and return object
(bottom) for loading an in-
stance’s transitions

reload trace This method requests a trace reload from a workflow instance.

Figure 5.32 shows both the signature and the return object of this

method. A table containing a trace can be seen in figure 5.2.

"name":"reload_trace",

"parameters":[

{ "name":"workflow_id",

"type":"STRING" },

{ "name":"instance_id",

"type":"STRING" }]

array(

"act_id" => "$Act_id",

"act_name" => "$Act_name",

"act_result" => "$Act_res",

"act_start_time" => "$Ev_start_time",

"act_end_time" => "$Ev_end_time");

Fig. 5.32: SMD signa-
ture (top) and return object
(bottom) of the reload trace
method.

load executions This method requests a list of all the instances of a deter-

82

mined workflow. Figure 5.33 shows the signature and return object of

this method. In figure 5.34 a dialog box is shown, dynamically gener-

ated using the information of this method.

"name":"load_executions",

"parameters":[

{ "name":"workflow_id",

"type":"STRING" }]

array(

"execution_id" => "$Exec",

"status" => "$Status");

Fig. 5.33: SMD signa-
ture (left) and return object
(right) resulting of loading a
workflow’s instances

Fig. 5.34: Dialog box show-
ing a list of loaded workflow
instances.

5.6 Graphical Support

In this section we will briefly show the state of graphical support for the

workflow components and patterns.

5.6.1 Activity Diagram Components

Table 5.1 shows all the graphical components that are present in a UML

Activity Diagram and indicates whether or not they are supported in our

web-client.

5.6.2 Patterns

As control flow patterns sometimes have graphical requisites to be repre-

sented, this section presents the support state of all the patterns regarding

our web-client. Table 5.2 shows whether a pattern is or not visually sup-

ported.

83

Component Supported
Initial Yes
Activity Final Yes
Flow Final No
Action Yes
Join/Fork Yes
Merge/Split Yes
Object No
Send/Receive Signal No
Flow Arrow Yes (Though no arrowheads

are available at the mo-
ment)

Regions No
Labels No

Table 5.1: UML AD Component Support

Pattern Name Supported

Sequence Yes

Parallel Split Yes

Synchronization Yes

Exclusive Choice Yes

Simple Merge Yes

Multiple Choice No

Multiple Merge Yes

Synchronizing Merge No

Discriminator Yes

N out of M Join Yes

Arbitrary Cycles Yes

Implicit Termination No

MI with A Priory Design Time Knowledge No

MI with A Priory Runtime Knowledge No

MI with no a priory knowledge No

MI requiring Synchronization No

Table 5.2: Degree of graphical support for control pat-

terns

84

Pattern Name Supported

Deferred Choice No

Interleaved Parallel Routing No

Milestone No

Cancel Activity No

Cancel Case No

Table 5.2: Degree of graphical support for control pat-

terns

As we can see in table 5.2, a few AD components are currently left out of

the web client’s scope which, in turn, makes it impossible for some of the

patterns to be implemented.

In the particular case of the Label component, although being downright

important in UML AD notation as it provides important visual cues as to

what each action or transition represents, its use was intentionally put aside.

The reason is that, at the system level, the existence of this component

is irrelevant, as it does not add any information relevant for the execution.

Nonetheless, we do make note that due to its visual importance, from the user

point of view, its implementation will not be overlooked in future versions.

As for the remaining components, the choice of leaving them aside of

implementation was simply based on the fact that the more common com-

ponents were enough as a proof of concept. This way, further introductions

of these components are programmed for the next iterations of development.

5.7 Summary

In this chapter we have shown the web application component of the project,

as well as all of its internal components. We briefly span through what the

web client’s intention is, and how it is organized. The Workflow Sketcher

and the Status Viewer screens of the application are depicted and explained

and we also go through the several files and organization of the web client,

their purpose and function. Asynchronous communication with the server is

85

explained, and both simple and complex requests are covered. We present

the details of the web client’s API, as well as the degree of support, by the

web client, of AD components and patterns.

86

Chapter 6

Case Study

This chapter presents a case study of an (overly simplified) item acquisition

process.

In section 6.1 a sketch of the desired UML AD is depicted, and in sec-

tion 6.2 the workflow is created and its activities and transitions are put

together using the Workflow Sketcher component. Section 6.3 exemplifies

how to code internal and external events and, when created, it explains how

they can be assigned to activities, using once again the Workflow Sketcher

component. In section 6.4 we exemplify the instantiation of the model, and

follow by executing some steps (activities) of the workflow. Section 6.5 il-

lustrates how to use the Status Viewer component to visualize the execution

state. Finally, in section 6.6 we briefly compare some aspects of our applica-

tion with three other applications.

6.1 Test Workflow

In this section we can see the sketch of the workflow we want to model, which

was made using the most typical and simple workflow notation.

The workflow begins with an activity which instantiates a request. The

request is then sent to obtain approval of the the department head. If the re-

quest is denied, then a fork splits the control flow so that the user is informed

and the request gets archived. The control flow is then “joined” and termi-

87

nated. If the request is approved, a list of suppliers is built and the suppliers

are then contacted for a budget request. From between the received budgets,

the best offer is then selected or, if no offer is good enough, new suppliers are

added to the system, from where the list is built again. When a budget is

selected, it will be again subjected to approval. If approved, an order will be

placed, if not, the fork section of the workflow is reused, informing the user

and archiving the request. Both the options lead to the final state.

Fig. 6.1: Case study workflow

6.2 Creating workflows, activities and tran-

sitions

This sections demonstrates all the steps needed to create new workflows,

create new activities and connect them with transitions.

88

6.2.1 Workflows

The process of creating a new workflow starts by accessing the web client,

through a web browser, and selecting the option [New...] under the menu

bar item Workflow.

A dialog appears showing the ID number of the workflow and request-

ing its name. After entering the workflow name we are ready to begin the

modelling.

6.2.2 Activities

Each shape can be added by clicking on the respective button placed on

the left side panel. For every activity button pressed a dialog will appear

showing a few activity details and requesting the activity name. Note that

the activity will only appear on the modeling pane after the name is provided

in the dialog box.

By default, all shapes will appear in the upper left corner, and can be

dragged around the pane to the desired location.

For our acquisition process we will add all the activities first, following

the procedure described earlier, and add the transitions later.

Figure 6.2 shows a portion of the “Workflow Sketcher” with all the activ-

ities placed where desired. Although there are letters inside of each action

activity, they were manually added to allow better understanding of the

model. These letters are related with the activity names in table 6.1.

A - Make Request G - Select Best Budget
B - Ask Dep. Head Approval H - Add New Suppliers
C - Inform User I - Send Request For Head Approval
D - Archive J - Place Order
E - List Suppliers F - Request Supplier’s Budget

Table 6.1: Activity-Name Correspondence

As we can see, there are more than one action states called Request Head

Dept. Approval. Although we still have no way of copying&pasting an ac-

tivity, we forced the scenario so that the reader understands that it can be

89

Fig. 6.2: Case study activities

useful to have duplicates of some activities. On this particular case, the du-

plicate is fake, as it is just another activity with the same name, to which

the same event assigned to.

6.2.3 Transitions

With all the activities in place we are now going to add transitions to connect

them.

To connect two shapes, we use one of the two transition buttons also

available in the left side panel. The choice of which to use depends on which

type of transition we want to use (conditional of unconditional).

We will first connect the Start node to the first Action node, namely the

A node (Make Request). Clicking on the Unconditional button on the side

bar, we can see that some of the shapes change their color from the usual

blue to green. These are the shapes from where we can have an outgoing

unconditional transition1. All that needs to be done now is to click on both

the source and target activities. When clicking on an activity, its border

1Split and Merge nodes do not change their colors, at the moment.

90

will turn red, indicating that it’s selected. When both activities are selected

all the colors of the shapes will return to normal, and there will now be a

line connecting the two selected shapes. We repeat this process for all the

unconditional transitions we wish to add.

As for the creation of conditional transitions, the process is identical to

the described above, but with the difference that the user will now need

to specify a condition which will regulate the control flow on the transition.

Once we click on the Conditional transition button, on the left panel, a dialog

box appears for the guard rule to be entered. This kind of transition also

has different types of starting activities, which will “signal” different shapes

as possible starting points for the transition.

Fig. 6.3: Case study activities and transitions

For now, there are no direction indicators on the transitions. Between activ-

ities E, F, G and H there is a cycle, which is visually ambiguous without the

directed transitions. The reader should interpret the control flow regarding

the alphabetic order of the labels, that is, from activity E there is only one

transition (to activity F) and from activity H the control flow goes to activity

E.

At this moment, all the changes made in the web-client have been com-

municated to the server and made persistent, so no saving is needed.

91

6.3 Event programming

This section describes how Internal and External Events can be programmed2.

It is worth to note that, while some events are clearly to be implemented

as internal events and others are to be left to be external events, this does

depend on the planned execution architecture and which services are avail-

able.

For this case study we assume we have contact with the suppliers, that

is, that we can use our web-service capabilities, which will allow us to send

requests and wait for the answer.

It is also worth to note that, since we do not have either user or role

management capacity, just as no graphical execution module, interaction

with the user is very limited, and not role or user identity based. This way,

these interactions only occur inside the text console where we are “executing”

the workflow instance.

6.3.1 Programming Internal Events

An internal event can be, for example, a text form validation, an arithmetic

operation, the sending of an e-mail, etc. In our use case, almost all the ac-

tivities will trigger internal events except for two of them: “Request Supplier

Budget” and “Place Order”.

We will now code the internal event of activity “Make Request”. To

make a request is to create a record with the user data and the request text.

Figure 6.4 shows the code of the “Make Request” event.

6.3.2 Programming External Events

As described in section 3.6, the actual event of an external event is not

programmed locally, that is, we do not have the responsibility of the execution

of the event as it is located somewhere unknown. All we do, from the server

2For the time being, programming events requires editing one of the units of the pro-
gram. This implies that the binary be re-compiled, after all editing is complete.

92

process(make_request) :-

print(’Enter the following data:’),nl,

print(’Name: ’), read(Name), nl,

print(’E-mail: ’), read(Email), nl,

print(’Request: ’), read(Request),nl,nl,

fifo_event_buffer(Event_occurrence_id, Exec_id,

request(Name, Email, Request)) :+ ,

print(’Request processed.’), nl.

Fig. 6.4: Internal Event Example

side, is to trigger the local script that will in turn trigger the remote event

through a SOAP call.

Figure 6.5 depicts the “Request Supplier Budget” event, which will con-

tact a supplier with an item, or list of items, for which we want a budget.

process(request_suplier_budget, Stream) :-

popen(’perl perl_request_sbudget.pl ARGS’, read, Stream).

Fig. 6.5: External Event Example (pseudocode)

As we can see, we only popen/3 the SOAP client responsible for this request

and it will send the data over to designated supplier.

6.3.3 Assigning events

Now that the events have been created, we can assign them to the correspon-

dent activities. Since there is no difference in assigning external or internal

events, we will exemplify by assigning the Make Request event to the activity

with the same name.

To assign an event, we start by clicking on the Events pane, on the left

menu. All the events should be automatically loaded and available from the

dropdown box, where we will select the Make Request event and then click

[Assign to...] button. Now we just need to click on the Make Request

activity (the activity labelled A in figure 6.2) and all is set.

93

6.4 Instantiation

For the moment, instantiation of workflows, that is, creating new instances

for execution, needs to be done from a text console running on same server.

This section describes this process.

We start by running the binary file in a text console, with the command

shown in figure 6.6.

~$./wfl_bin

GNU Prolog/CX 1.2.18

By Daniel Diaz

Copyright (C) 1999-2006 Daniel Diaz

| ?-

Fig. 6.6: Running the binary

One will notice that we are now inside the GNU Prolog top level shell. To

create an instance of a workflow, we need to have that workflow’s identi-

fier, which we will get by consulting the available workflows in the system

(exemplified in figure 6.7).

| ?- workflow(Id, Name).

Id = 1

Name = ’Test Workflow 1’

Id = 2

Name = ’Case Study’

Fig. 6.7: Workflow list

We can see that there are two workflows in the system. We want to instantiate

the workflow ’Case Study’ we’ll use the simple predicate described in 3.4, as

shown in figure 6.8, which also depicts the output of the instantiation.

From the output we see that an instance of the start activity was created, and

consequently executed, as a result of the instantiation. This indicates that

the current workflow instance has been started and is ready for execution,

which is exactly the next step.

To continue with the execution we use another simple predicate, as shown

in figure 6.9.

94

| ?- start(2, Instance_id).

Workflow ID correct: ’Case Study’

Workflow instance created (ID: 1)

Start activity instance created and executed (ID: 42)

Instance_id = 1

Fig. 6.8: Workflow Instantiation

| ?- step(2, 1).

Workflow ID correct: ’Case Study’.

Found 0 waiting activities.

Found 1 completed activity instance:

- [instance 42] found 1 transition(s) [to activity ID=4];

Fig. 6.9: Workflow Execution

6.5 Checking execution states

Having instantiated and executed a couple of activities on our workflow, we

now want to check how it is going. For this, we will access the “Workflow

Status Viewer”, the other component of our web client.

Fig. 6.10: Case study activities and transitions

95

6.6 Comparison with other software

Figure 6.2 presents a comparison between some aspects of our application

and other three, namely, OpenWFE, OSWorkflow and OpenFlow.

S
ta

n
d

a
lo

n
e

W
o
rk

fl
o
w

E
d

it
io

n
G

U
I

O
n

li
n

e
G

ra
p

h
ic

a
l

W
o
rk

fl
o
w

E
d

it
io

n
C

li
en

t

U
se

r
M

a
n

a
g
em

en
t

R
o
le

M
a
n

a
g
em

en
t

E
v
en

t
P

ro
g
ra

m
m

in
g

L
a
n

g
u

a
g
e

G
ra

p
h

ic
a
l

E
x
ec

u
ti

o
n

S
ta

tu
s

V
is

u
a
li

za
ti

o
n

G
ra

p
h

ic
a
l

o
r

O
n

li
n

e
E

x
ec

u
ti

o
n

S
u

p
p

o
rt

Im
p

le
m

en
ta

ti
o
n

L
a
n

g
u

a
g
e

E
x
ec

u
ti

o
n

en
g
in

e

Our App No Yes No No GProlog-cx, Isco Yes No GProlog-cx, Isco Yes
OpenWFE No Yes (Droflo) Yes Yes Python,Perl,Ruby... Yes Yes Java, Ruby Yes

OSWorkflow Yes No Yes Yes Any No Yes JSP YES
OpenFlow No No Yes Yes Python Yes Yes Python Yes

Table 6.2: Software properties’ comparison table

6.7 Summary

On this chapter we have presented a use case for our application, where an

acquisition process is modeled. The sketch of the workflow is presented and

then modeled in phases, using one of the components of our web-client. We

start by defining all the activities that comprise the workflow and then create

all the needed transitions. We then exemplify how to program both internal

and external events, and then how to assign them to the activities. We also

instantiate the workflow and execute a few steps using the console, and then

check the execution status using the other component of the web-client. We

also present a comparison of some aspects between our application and 3

other applications.

96

Chapter 7

Conclusions and future work

In this section we review the project’s main objectives and conclude upon

our work so far, as to the accomplishment of the initial objectives.

Also in this section, we present what we consider to be the relevant future

work that could be done having our project as its basis.

7.1 Assessment

The first main objective of this project was to translate UML Activity Dia-

grams into ISCO code. To do so, we would model the diagrams on a UML

editor, export it do XMI and then parse this notation to extract the necessary

information to have an ISCO representation.

Although we did manage to digest the XMI representation of the Activity

Diagrams and produce valid ISCO code, we realized that the dependency on

an external editor raised some usability and integration issues. Regarding

usability, every time a correction needed to applied to a workflow, the whole

process of exporting, translating and inserting in the workflow engine had to

be repeated, assuming the user had saved the UML diagram in the editor

in the first place. Concerning integration, suffice it to say that we had two

isolated platforms.

Of the set of considered solutions for this problem, we chose to implement

97

our own web-based editor and we are still convinced that it was the wise

decision to make, as having an integrated editor allows a better and closer

action&reaction from the server.

In regard of the first objective we can say that we have not only accom-

plished the translation of UML Activity Diagrams into the ISCO language,

but also evolved the scope of the project to a wider and more pertinent an-

gle. Nevertheless, we also find it important to mention that the early work

with the external UML editor was not put to waste, as it pointed us in the

right direction in terms of what to expect from a UML editor, regarding, of

course, Activity Diagrams. Further, we do maintain, as an option, the XMI

translation tools.

The second main objective of this work was to build a workflow execution

system that would downright execute the previously mentioned translations.

Taking advantage of the UML Activity Diagram’s translation to ISCO, we

chose to build this “engine” entirely in the ISCO language. This allows us

to work directly with the workflow data and to express complex relations

with that data. Although the number of supported workflow patterns is still

small, we think that the current prototype sets a firm basis upon which the

other workflow patterns can be implemented.

As far as the event module goes, we can conclude that, being the engine

a generic workflow execution system, the correct path to follow is to treat

every event as an External Event. This way, total independence is attained

from process or business particular issues.

Still on the subject of events, we are aware that the current process of

adding events to the system offers no commodity, and can in fact be trouble-

some. A better way introduce Internal Events and to link External Events

is thus needed.

The third main objective of this project was to build a tool that would

allow the user to monitor the execution of the many instances running in the

system at a given time.

We can conclude that the early tests and developments, which involved

98

a dynamic PHP web-page with information from the system, were perfectly

suited for the necessities at hand at the time.

But with the mentioned change of scope in the project, those necessities

rapidly became obsolete. The choice of having a web-based editor dramati-

cally changed what was expected of the “little” web-client thought at first.

Aside from the creation and edition of workflows (as activity diagrams) the

current prototype tool also allows that initial monitoring capability, though

now benefiting from a different technology, which greatly improves the us-

ability and responsiveness of the interface.

To summarize:

1. we have successfully established the necessary semantics to support

activity diagrams as workflows in an ISCO back-end;

2. we have prototyped a mechanism that translates XMI representations

of UML Activity Diagrams into the ISCO language;

3. we have successfully implemented a prototype workflow executing sys-

tem, also in the ISCO language, which executes simple workflows;

4. we have implemented a mechanism that allows an action to be triggered

and executed remotely, using the web-service technology;

5. we have implemented a prototype web-client that allows the user to

create and edit workflows (using a UML Activity Diagram representa-

tion) and also to monitor the state of a determined workflow instance,

all done in an asynchronous fashion.

In general, we have put together the basis for an integrated platform for work-

flow creation, management and execution without leaving the web-browser.

99

7.2 Future Work

7.2.1 Model Shortcuts

Although we have maintained ourselves on the path of near-strict UML, we

consider that the use of “model shortcuts” (like implicit forks and joins)

might be appealing, but we also know that the necessary changes at the

engine level are quite broad.

So, rather than having these changes implemented at the model level,

with downright consequences in the execution and, therefore, the engine, we

might consider to have it as a mask. This means that the user will be able

to draw with “shortcuts”, but they will be interpreted as strict UML by an

analysis ran a posteriori.

7.2.2 Patterns

Besides the early stage of development of the major components of this

project, we believe that we have proven the point that UML Activity Di-

agrams can be treated as capable of representing complex workflows and

most of their patterns. We further believe that the analysis of these Activity

Diagrams can produce capable “system code”, that is, they can lead to the

specification of all the information needed to have an engine running and

executing instances of the models.

Synchronizing merge proposal

As discussed in section 2.2.2, UML ADs offer no solution for the synchronizing

merge pattern. Using little more than the usual UML AD representation we

believe a solution can be achieved.

By allowing the Merge node to have a special condition, which can be

affected/modified on execution time, we can pass it the information of how

many transitions (outgoing from the Fork) were activated. At this point, the

Merge node is capable of waiting only by the desired number of incoming

nodes, even if not exactly which. This implies a few changes in the sys-

tem, namely, allowing the creation of condition instances, as this proposal

100

causes the conditions to be workflow instance dependent, rather than work-

flow model dependent.

Additionally, and to complete the total capability of the Synchronizing

Merge pattern, a graph analysis 1 (or similar process) might be performed

that will inform the engine if a determined control flow might or might not

reach a certain activity. This would almost directly enable the pattern not to

wait for a particular control flow that would never reach the merging node.

7.2.3 Execution Component

Although, for the moment, workflow instances can only be executed from a

text console, a module is being considered that will allow the execution to be

performed in a web environment similar to the modeling’s and the viewing’s.

This environment will include a user and role based system, allowing, for

example, that certain activities be directed to a specific user or role group.

This module will further approximate this platform to a WfMS (Workflow

Management System).

7.2.4 Authentication

Resulting of the specification of the previous section, an authentication mod-

ule is also in the making which will set the permissions throughout not only

the execution system, but all the platform, thus enforcing an overall role

based policy for all the users of the system.

7.2.5 Logical Model Benefits

By using ISCO, logical data analysis becomes inexpensive. Based on this

premiss, modules are being considered that can perform various types of

analysis over the data stored 2.

One of these modules is the Execution Statistics Module, which will enable

a view over a determined workflow, where statistical information is displayed

1Operations concerning graphs tend to be particularly straightforward to implement in
Prolog.

2The validity of these modules is still to be decided.

101

so that design pitfalls can be detected, like places where execution hangs

most of the times, control flow paths that are never taken, etc.

Another one of these modules is the Workflow Analogy Module, which

will allow for workflow similarities to be detected, thus possibly encoun-

tering equivalent/identical workflows in the system (whether graphically or

functionally).

7.2.6 Transition guard grammar extension

As seen in 3.7, the current grammar allowed for defining transition guards is

very limited. The extension of this grammar, combined with other modules

would represent a better way to define more capable and complex processes.

Combined, for example, with the capability to address to a pool of event

results, would enable a choice to be made further down the control flow

based on any of the results previously obtained on the execution.

102

Appendix

Database Structure Description

Figure 1 depicts the entity-relation model of the database, followed by

the database structure and respective details.

Fig. 1: Entity-Relation Model

103

Table: activity

activity Structure

F-Key Name Type Description

key_id integer PRIMARY KEY DEFAULT nextval('is__activity_key_id'::text)

name text

Table: activity_compound

activity_compound Structure

F-Key Name Type Description

key_id integer PRIMARY KEY DEFAULT nextval('is__activity_key_id'::text)

name text

workflow.key_id act_workflow integer

Table: activity_decision

activity_decision Structure

F-Key Name Type Description

key_id integer PRIMARY KEY DEFAULT nextval('is__activity_key_id'::text)

name text

Tables referencing this one via Foreign Key Constraints:

• transition_conditional

Table: activity_end

activity_end Structure

F-Key Name Type Description

key_id integer PRIMARY KEY DEFAULT nextval('is__activity_key_id'::text)

name text

Table: activity_fork

activity_fork Structure

F-Key Name Type Description

key_id integer PRIMARY KEY DEFAULT nextval('is__activity_key_id'::text)

name text

Table: activity_instance

activity_instance Structure

F-Key Name Type Description

key_id integer PRIMARY KEY DEFAULT nextval('is__activity_instance_key_id'::text)

activity_id integer

execution.key_id execution_id integer

info text

came_from text

status text

activity_instance Constraints

Name Constraint

activity_instance_activity_id CHECK (ok_activity_key_id(activity_id))

Tables referencing this one via Foreign Key Constraints:

• event_occurence_stream

• waiting_join

Table: activity_join

activity_join Structure

F-Key Name Type Description

key_id integer PRIMARY KEY DEFAULT nextval('is__activity_key_id'::text)

name text

needed integer

sources_number integer

Table: activity_merge

activity_merge Structure

F-Key Name Type Description

key_id integer PRIMARY KEY DEFAULT nextval('is__activity_key_id'::text)

name text

Table: activity_simple

activity_simple Structure

F-Key Name Type Description

key_id integer PRIMARY KEY DEFAULT nextval('is__activity_key_id'::text)

name text

event integer

Table: activity_start

activity_start Structure

F-Key Name Type Description

key_id integer PRIMARY KEY DEFAULT nextval('is__activity_key_id'::text)

name text

Table: component_position

component_position Structure

F-Key Name Type Description

component integer

x integer

y integer

component_position Constraints

Name Constraint

component_position_component CHECK (ok_activity_key_id(component))

Table: condition

condition Structure

F-Key Name Type Description

key_id integer PRIMARY KEY DEFAULT nextval('is__condition_key_id'::text)

guard text

variable text

Tables referencing this one via Foreign Key Constraints:

• transition_conditional

Table: event

event Structure

F-Key Name Type Description

key_id integer PRIMARY KEY DEFAULT nextval('is__event_key_id'::text)

name text

Table: event_instance

event_instance Structure

F-Key Name Type Description

key_id integer
PRIMARY KEY DEFAULT

nextval('is__event_occurence_stream_key_id'::text)

activity_instance.key_id
activity_instance_i

d
integer

execution.key_id execution integer

event integer

start_at
timestamp without time

zone

end_at
timestamp without time

zone

result_value text

event_instance Constraints

Name Constraint

event_instance_event CHECK (ok_event_key_id(event))

Tables referencing this one via Foreign Key Constraints:

• fifo_event_buffer

Table: event_times

event_times Structure

F-Key Name Type Description

occurence integer

start_time timestamp without time zone

end_time timestamp without time zone

Table: execution

execution Structure

F-Key Name Type Description

key_id integer PRIMARY KEY DEFAULT nextval('is__execution_key_id'::text)

workflow.key_id workflow integer

complete integer

act_list text

state text

Tables referencing this one via Foreign Key Constraints:

• activity_instance

• event_occurence_stream

• fifo_event_buffer

Table: fifo_event_buffer

fifo_event_buffer Structure

F-Key Name Type Description

key_id integer
PRIMARY KEY DEFAULT

nextval('is__fifo_event_buffer_key_id'::text)

event_occurence_stream.key_id event integer

execution.key_id workflow_instance integer

result text

Table: transition

transition Structure

F-Key Name Type Description

key_id integer PRIMARY KEY DEFAULT nextval('is__transition_key_id'::text)

target integer

transition Constraints

Name Constraint

transition_target CHECK (ok_activity_key_id(target))

Table: transition_conditional

transition_conditional Structure

F-Key Name Type Description

key_id integer PRIMARY KEY DEFAULT nextval('is__transition_key_id'::text)

target integer

activity_decision.key_id source integer

condition.key_id cond integer

transition_conditional Constraints

Name Constraint

transition_conditional_target CHECK (ok_activity_key_id(target))

transition_target CHECK (ok_activity_key_id(target))

Table: transition_unconditional

transition_unconditional Structure

F-Key Name Type Description

key_id integer PRIMARY KEY DEFAULT nextval('is__transition_key_id'::text)

target integer

source integer

transition_unconditional Constraints

Name Constraint

transition_target CHECK (ok_activity_key_id(target))

transition_unconditional_source CHECK (ok_activity_key_id(source))

transition_unconditional_target CHECK (ok_activity_key_id(target))

Table: workflow

workflow Structure

F-Key Name Type Description

key_id integer PRIMARY KEY DEFAULT nextval('is__workflow_key_id'::text)

name text

Tables referencing this one via Foreign Key Constraints:

• activity_compound

• execution

• group_workflow

• user_workflow

• workflow_activity

Table: workflow_activity

workflow_activity Structure

F-Key Name Type Description

workflow.key_id workflow integer

activity integer

workflow_activity Constraints

Name Constraint

workflow_activity_activity CHECK (ok_activity_key_id(activity))

Function: ni_activity_key_id(integer)

Returns: bigint

Language: SQL

select count(*) from "activity" where "key_id" = $1

Function: ni_event_key_id(integer)

Returns: bigint

Language: SQL

select count(*) from "event" where "key_id" = $1

Function: ni_transition_key_id(integer)

Returns: bigint

Language: SQL

select count(*) from "transition" where "key_id" = $1

Function: ok_activity_key_id(integer)

Returns: boolean

Language: SQL

select ni_activity_key_id($1) = 1

Function: ok_event_key_id(integer)

Returns: boolean

Language: SQL

select ni_event_key_id($1) = 1

Function: ok_transition_key_id(integer)

Returns: boolean

Language: SQL

select ni_transition_key_id($1) = 1

Generated by PostgreSQL Autodoc

W3C HTML 4.01 Strict

Bibliography

[1] OMG, “Unified modeling language specification.”

http://www.omg.org/, 2006. version 2.1.

[2] M. Dumas and A. H. M. ter Hofstede, “Uml activity diagrams as a

workflow specification language,” in UML ’01: Proceedings of the 4th

International Conference on The Unified Modeling Language, Modeling

Languages, Concepts, and Tools, (London, UK), pp. 76–90, Springer-

Verlag, 2001.

[3] OMG, “Xml metadata interchange (xmi).” http://www.omg.org/, 2005.

Mapping Specification, version 2.1.

[4] M. Boggs and W. Boggs, Mastering UML with Rational Rose 2002.

Alameda, CA, USA: SYBEX Inc., 2002.

[5] S. Abreu, “Isco: A Practical Language for Heterogeneous Information

System Construction,” in Proceedings of INAP’01, 2001.

[6] R. Gamito, “Modelação de workflows com uml e ferramentas declar-

ativas,” in Proceeding of XATA2007, XML: Aplicações e Tecnologias

Associadas (FCUL, Lisboa, 15 e 16 de Fevereiro de 2007), February

2007.

[7] C.-H. Tsai, H.-J. Luo, and F.-J. Wang, “Constructing a bpm environ-

ment with bpmn,” in FTDCS ’07: Proceedings of the 11th IEEE Inter-

national Workshop on Future Trends of Distributed Computing Systems,

(Washington, DC, USA), pp. 164–172, IEEE Computer Society, 2007.

113

[8] Y. Foundation, “Yawl - yeat another workflow language.”

http://yawlfoundation.org. Project Homepage.

[9] J. J. Garrett, “Ajax: A new approach to web applications,” February

2005. Seminal.

[10] “DOJO: the javascript toolkit.” http://dojotoolkit.org/.

[11] “SOAP Version 1.2 Part 1: Messaging Framework (Second Edition).”

W3C Recommendation 27 April, 2007, http://www.w3.org/TR/soap12-

part1/.

[12] “Simple Object Access Protocol (SOAP) 1.1.” W3C Note 08 May, 2000,

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/.

[13] “Wikipedia - workflow page.” http://en.wikipedia.org/wiki/workflow.

[14] OMG, “Unified modeling language: Superstructure,” February 2007.

version 2.1.1, (non-change bar).

[15] S. White, “Process modeling notations and workflow patterns,” L.

Fisher, vol. ed. ’Workflow Handbook 2004’, Future Strategies Inc., Light-

house Point, FL, USA., pp. 265–294.

[16] IBM, IBM MQSeries Workflow Programming Guide: Version 3.3. Ar-

monk, USA: IBM Corporation, 2001.

[17] Verve, “Verve component workflow engine concepts.” Verve, Inc.: San

Francisco, CA, USA, 2000.

[18] P. Wohed, W. M. P. van der Aalst, M. Dumas, A. H. M. ter Hofstede,

and N. Russell, “Pattern-based analysis of the control-flow perspective

of uml activity diagrams.,” in ER (L. M. L. Delcambre, C. Kop, H. C.

Mayr, J. Mylopoulos, and O. Pastor, eds.), vol. 3716 of Lecture Notes

in Computer Science, pp. 63–78, Springer, 2005.

[19] S. Abreu and V. Nogueira, “Using a Logic Programming Language

with Persistence and Contexts,” in Proceedings of the 16th International

114

Conference on Applications of Declarative Programming and Knowledge

Management (INAP 2005) (M. Umeda and A. Wolf, eds.), (Fukuoka,

Japan), Waseda University, October 2005.

[20] L. Monteiro and A. Porto, “Contextual logic programming,” in Logic

Programming: Proc. of the Sixth International Conference (G. Levi and

M. Martelli, eds.), pp. 284–299, Cambridge, MA: MIT Press, 1989.

[21] “Apache http server homepage.” http://httpd.apache.org/.

[22] “Php homepage.” http://www.php.net/.

[23] “Wikipedia - ajax.” http://en.wikipedia.org/wiki/Ajax (programming).

[24] “JSON Project Homepage.” http://json.org/.

[25] “JSON: The Fat-Free Alternative to XML.”

http://www.json.org/xml.html/.

[26] “The AJAX response: XML, HTML, or JSON?.”

http://www.quirksmode.org/.

[27] “JSON Message.” http://ajaxpatterns.org/wiki/index.php?title=JSON

Message.

[28] S. Hada and H. Maruyama, “SOAP Security Extensions.”

http://www.trl.ibm.com/projects/xml/soap/wp/wp.html, Novem-

ber 2000.

[29] “Graphviz - Graph Visualization Software.” http://www.graphviz.org/.

[30] “The DOT Language.” http://www.graphviz.org/doc/info/lang.html.

[31] A. D. Lucia, R. Francese, and G. Tortora, “Deriving workflow enact-

ment rules from uml activity diagrams: a case study,” in HCC ’03: Pro-

ceedings of the 2003 IEEE Symposium on Human Centric Computing

Languages and Environments, (Washington, DC, USA), pp. 211–218,

IEEE Computer Society, 2003.

115

[32] Tigris.org, “Argouml project home.” http://argouml.tigris.org. Project

Homepage.

[33] P. Prescod, “Xslt and scripting languages.”

http://www.idealliance.org/papers-xml2001/papers/05-03-06.html.

[34] “Xsl transformations.” http://www.w3.org/TR/2007/REC-xslt20-

20070123/. Version 2.0.

[35] E. R. Harold, XML Bible, p. 486. New York, NY, USA: John Wiley &

Sons, Inc., 2001.

[36] “Web Services Activity Statement.” W3C,

http://www.w3.org/2002/ws/Activity.html.

116

