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Abstract

Dam or full-mixed concrete is produced with large aggregates which implies the use

of large specimens, heavy laboratory equipment and non-standard embedding monitoring

devices. The wet-screened concrete, obtained from the full-mixed concrete by sieving the

larger aggregates while the concrete is still fresh, is used to cast smaller specimens and

embed standard monitoring devices.

This thesis focuses on the prediction of the structural properties of dam concrete based

on wet-screened concrete experimental results, analytical models and detailed particle

models in which the mesostructure is represented.

In order to study the effect of wet-screening, an in situ experimental setup and a

series of laboratory tests were carried out for both dam and wet-screened concretes. Three

sets of creep cells were installed in a dam which allowed for the improvement of the

experimental setup and the testing procedures, aiming to reduce costs, to facilitate the

installation in situ and to increase the reliability of the results. The test results revealed

the differences between the two types of concrete and the influence of the coarse aggregate

on the deformability and strength properties.

Different analytical models based on composite models, on the equivalent age method,

on size effect and on the Abrams law were developed to describe the instantaneous and

delayed behaviour of concrete using the composition data and to establish a practical

relationship between dam and wet-screened concrete behaviour. Similarly, a numerical

solution based on the discrete element method applied to particle models was developed

to predict the behaviour of dam concrete. A new fast numerical procedure for long-term

analysis taking into account the aging viscoelastic behaviour of cementitious material

is proposed. Particle models are especially suited for modelling dam concrete since the

coarse aggregate structure can be explicitly represented, allowing the study of stress
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distribution inside the specimen and the study of complex failure patterns both in tension

and compression. For the two types of approaches, the obtained experimental results

were used to calibrate the main parameters and to validate the analytical and numerical

prediction models.

The experimental results and the development of physically-based models highlighted

the particular properties of dam concrete, allowed for a significant contribution to the

analysis of concrete instantaneous and delayed behaviour and presented new approaches

for the prediction of dam concrete behaviour based on the wet-screened properties.

Keywords: Dam concrete, Wet-screened concrete, Structural properties, Experimental

work, Analytical models, Numerical models
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Resumo

O betão de barragens ou betão integral é produzido com agregados de grandes di-

mensões que implicam a utilização de grandes provetes, equipamentos de laboratório de

grande capacidade e dispositivos de medição embebidos especiais. O betão crivado, obtido

do betão integral através da crivagem dos agregados maiores enquanto o betão ainda está

fresco, é utilizado para betonar provetes de menores dimensões e embeber dispositivos de

medição de tamanho standard.

Esta tese centra-se na previsão das propriedades estruturais do betão integral de bar-

ragens com base nos resultados experimentais do betão crivado, considerando modelos

analíticos e modelos detalhados de partículas em que a mesoestrutura do betão é repre-

sentada.

No sentido de estudar o efeito da crivagem, um programa experimental in situ e

uma série de ensaios de laboratório envolvendo o betão de barragens e o betão crivado

foram utilizados neste estudo. Foram instalados três conjuntos de células de fluência

numa barragem onde foram introduzidos melhoramentos da instalação experimental e dos

procedimentos de ensaio com o objetivo de reduzir custos, facilitar a instalação in situ e

melhorar a qualidade dos resultados. Os resultados obtidos apresentam as diferenças entre

os dois tipos de betão e a influência do agregado grosso nas propriedades de deformabilidade

e de resistência.

Diferentes modelos analíticos baseados em modelos compósitos, no método da idade

equivalente, na lei de escala e na lei de Abrams foram desenvolvidos para representar o

comportamento instantâneo e diferido do betão considerando a sua composição e para

encontrar expressões de correlação entre o comportamento do betão de barragens e o betão

crivado. Da mesma forma, a solução numérica adoptada nesta tese consiste na utilização

de modelos de partículas para a previsão do comportamento do betão de barragens. Um
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procedimento numérico foi desenvolvido para análises a longo prazo em que o comporta-

mento viscoelástico com endurecimento é tido em consideração. Os modelos de partículas

são particularmente adequados para a modelação do betão de barragens uma vez que a

estrutura dos agregados pode ser explicitamente representada, permitindo o estudo da

distribuição de tensões no interior do provete e o estudo de modelos de fratura complexos,

em tração e em compressão. Nos dois tipos de abordagem, os resultados experimentais

foram utilizados para a calibração dos parâmetros e para a validação dos modelos analíticos

e numéricos.

Os resultados experimentais e o desenvolvimento de metodologias de previsão com

base em fenómenos físicos evidenciou as principais propriedades de deformabilidade e de

resistência do betão de barragens ao longo do tempo, contribuiu significativamente para a

análise do comportamento instantâneo e diferido do betão e apresentou novas abordagens

para a previsão do comportamento do betão de barragens a partir das propriedades do

betão crivado.

Palavras-chave: Betão de barragens, Betão crivado, Propriedades estruturais, Trabalho

experimental, Modelos analíticos, Modelos numéricos
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Introduction

1.1 Research problem

The infrastructures related to water storage and supply, flood control and sustainable

energy production are of great importance. Due to climate change, the role of dams is

becoming more relevant, especially in Mediterranean countries which are being affected

by more intense periods of drought (López-Moreno et al. 2009; Ho et al. 2017).

The safety and durability of structures are the basis of structural design and the control

of these two factors is specially relevant in dam engineering due to the potential damage

related to the failure of a dam. Additionally, maintenance and rehabilitation issues related

to existing dams and the demanding challenges of new construction require technological

advances for more efficient, sustainable and safe structures.

Concrete dam design aims the definition of shapes that guarantee moderate compressive

stresses and, approximately, zero tensile stresses, during service life. Conventional concrete

dams are built in individual blocks of about 15-m length and, usually, with 2-m lift. During

the construction period the main safety concern is the cracking risk during hardening and

heat dissipation of each lift. During service life, the behaviour of dams is usually monitored

and analysed in order to evaluate the structural response and assess if the global safety

is maintained. Numerical structural models are often used to aid the behaviour analysis

and concrete structural properties are important input parameters. Uncertainty in the

determination of dam concrete properties is one of the reasons for the use of higher safety
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factors, when compared with other structures.

A classification of structural creep sensitivity places dams as a level 4, in a range of

1 to 5, being 5 the most sensitive (Bažant 2000). Extreme examples of the importance

of this matter are several examples of excessive bridge deflections (Bažant et al. 2011)

and the colapse of Koror-Babeldaob bridge in the Republic of Palau (Bažant and Li 2008;

Bažant et al. 2009) which are known to be related to poor estimates of concrete behaviour.

According to ICOLD (2008) and USBR (2005), aging of concrete, including creep and

shrinkage phenomena and also deterioration processes of concrete, such as swelling or poor

resistance to freezing and thawing, are known to be the cause of dam deterioration, which

can lead to failure or to a partial or full dam replacement.

Further understanding and prediction of dam or full-mixed concrete behaviour requires

a comprehensive testing programme, however, dam concrete experimental characterization

has particular challenges. The use of large size aggregates implies larger specimens, and,

therefore, it is common to remove the aggregates after mixing and, with the remaining wet-

screened concrete, cast smaller specimens and embed monitoring devices. Several studies

show that the structural properties of dam concrete differs from the wet-screened concrete,

both for instantaneous and delayed behaviour (Soares de Pinho et al. 1988; Vilardell et al.

1998; ICOLD 2008; Zhou et al. 2010).

Additionally, the further understanding of material behaviour and the development

of adequate semi-empirical and numerical models can lead to the improvement of the

design guidelines, to a better behaviour interpretation during the structure lifetime and,

therefore, a more accurate safety control and rehabilitation procedures, as well as more

sustainable and economic solutions. Moreover, reliable relationships between dam concrete

and wet-screened concrete should be used during design phase, for concrete quality control

during construction and for safety control and monitoring data analysis throughout service

life.

In this particular case, additionally to the experimental characterization and to em-

pirical knowledge, numerical modelling of concrete behaviour can be of great use. When

validated with experimental tests, numerical models are suitable to estimate mechanical

properties of concrete based on the behaviour of its components (Jennings et al. 2008).

This advantage would, for example, reduce the number of specimens necessary to charac-

terize the concrete properties and improve the interpretation of in situ monitored data

over time, for different loading scenarios and environmental conditions, which is especially
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relevant for the analysis of dam concrete behaviour.

The former experience is key to achieve a durable, structurally capable and sustainable

design. Correlations between the main early-age and long-term properties, determined

whether from test results from other dams, whether from trial mix programmes, can

be of great aid. These correlations are important to the designer when specifying the

required safety factors and to the contractor improving quality control, to insure early

error detection and to verify property conformity throughout the work’s construction. It

is also relevant to the owner and the regulator to evaluate the dam’s response during the

first filling and to interpret the dam structural behaviour for several decades, insuring the

overall safety of the structure (Batista 1998; ICOLD 2008).

Due to geometric conditions and structural and economical requirements, dam concrete

is considered to be a mass concrete (ACI Committee 207 2005) with a poor cement content,

of about 100 to 200 kg/m3 and large additions content, up to 50% of the cement content.

It has also a large aggregate content and the aggregate’s maximum size can reach 150 mm

or 200 mm. Due to its large placement volume, the heat production and dissipation, the

temperature gradients during the hardening process and, consequently, the cracking risk

at early ages are the main concerns of mass concrete. The strength properties are often

taken as a secondary requirement for the composition design (ACI Committee 207 2005).

However, the strength properties are important for the evaluation of the cracking risk at

early ages and for long-term deterioration assessment scenario, which can occur due to

seismic loads and potentially alkali-reactive aggregates (Nixon and Sims 2016).

For cracking risk assessment it is necessary to accurately determine the mechanical

properties development, as well as the stress development during the heat dissipation. In

dam concrete the cement is often replaced by fly ash to cope with the temperature rise

effect and to control future swelling effects related with alkali-aggregate reactions (ACI

Committee 207 2005). Results show that dam concrete’s elastic and strength properties

have a slower development, lower maximum strengths and slightly higher modulus of

elasticity (ICOLD 2008), when compared with conventional concretes.

As mentioned, dam concrete is usually made with large size coarse aggregates, for

which common mould dimension and laboratory equipment are not suitable. As a result

of these difficulties, concrete quality control and concrete characterization are sometimes

based on results from wet-screened concrete obtained from the full-mixed mass concrete.

In addition, several embedded monitoring devices are cast with wet-screened concrete due
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to its small size when compared to the maximum size of aggregate (MSA) of full-mixed

concrete. Wet-screened concrete is traditionally obtained by removing the larger aggregates,

usually greater than 38 mm (#38 wet-screened concrete), from the original concrete mix

while it is still fresh (Blanks and McNamara 1935). The wet-screening procedure implies a

significant change in the composition of dam concrete but, due to dam concrete specific use

and despite the extensive experimental work and research developed worldwide concerning

concrete behaviour, correlations between the behaviour of full-mixed and wet-screened

concretes are still to be determined (USBR 1988; Soares de Pinho et al. 1988; Vilardell

et al. 1998; ICOLD 2008; Elices and Rocco 2008; Serra et al. 2012).

Experimental testing of the produced concrete carried out for quality control and for

properties characterization is a key element for this type of structures. The complexity of

concrete response, from viscoelastic to fracture behaviour, implies different tests to deter-

mine the instantaneous behaviour, both in tension and compression, and time-dependent

behaviour of wet-screened and full-mixed concrete. Usually, the instantaneous behaviour is

characterized by modulus of elasticity determination tests, tensile and compressive strength

determination tests carried out at several ages. The time-dependent behaviour is evaluated

from in situ and laboratory compressive creep tests using different loading ages (RILEM

TC 107-CSP 1998).

1.2 Objectives and methodology

Dam structural design practice often considers material properties based on estimates

provided by experimental data available in the literature or from other works and on

preliminary test results obtained from trial compositions (ICOLD 2008). Since it is difficult

to test dam concrete, scientific methods to material property prediction are a useful aid to

the design phase and for construction and maintenance procedures. This thesis contributes

to technological developments of concrete engineering and to aid maintenance, safety

control and lifetime prediction issues, with focus on the material properties characterization.

The first main goal of this work is to better understand the behaviour of dam concrete

over time through experimental results and to develop both analytical and numerical

prediction models. The second main goal is to obtain accurate estimates of dam concrete’s

main structural properties considering the wet-screened concrete test results and the

composition data. A secondary goal is the development of generic analytical and numerical
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models suited for the study of any type of concrete and that could be used for the prediction

of complex structural behaviours.

A reliable concrete structural property prediction model based on the wet-screened

results and physically-based prediction models at the mesoscale can give additional infor-

mation on the structural behaviour of concrete, further understanding of the differences

between the two types of concrete and reveal the main effects of wet-screening on de-

formability and strength properties. The combination of physically-based expressions and

numerical models, based on test results, can help to:

• Reduce the number of tests of full-mixed concrete using large specimens, which are

known to be costly;

• Guarantee, during the construction phase, that the concrete strength, evaluated from

wet-screened concrete samples meets the design requirements of the dam concrete;

• Calculate stresses in dam concrete using the strains measured in strainmeter groups

placed in the dam’s body but embedded in wet-screened concrete;

• Improve structural property estimates, lowering uncertainty levels and safety factors.

This, ultimately, will lead to more efficient structures and less unnecessary material

consumption;

• Obtain better estimates of strength and deformability development at early ages

allowing for more reliable decisions about cracking risk management, such as tem-

perature control, volume changes, curing and lift scheduling;

• Improve long-term behaviour interpretation of concrete dams, accurately identifying

differences between "normal" behaviour and unusual behaviour (a tool for health

monitoring) and, therefore, achieve a more reliable safety control (USBR 2005; Nixon

and Sims 2016).

The approach used for this work is to study and combine the features of three main

scientific areas: experimental characterization and definition of statistical relationships;

semi-empirical expressions and simple rheological models for the concrete behaviour based

on general expressions; and, numerical analysis prediction of concrete behaviour. As

described in Figure 1.1, each approach is not self-contained since it can either supply

information or be influenced by the results obtained in other approach. For example, test

results can be used to calibrate the prediction models. Additionally, a good model can be

also used to test hypothesis, to interpret and validate test results. Models can also help to
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better define experimental procedures or to study and test new experimental techniques

without additional costs.

PREDICTION OF 
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Figure 1.1: Schematic view of the approach used in this work combining the three main
scientific areas: experimental work; analytical modelling; and, numerical modelling

The experimental work sets the base for this research in which different structural

properties of dam and wet-screened concretes, mortar and aggregates, were determined

for laboratory and on site conditions. This allowed for the definition and identification

of the overall behaviour of the materials and establish statistical correlations between the

composition and the development of the main structural properties.

The experimental results, obtained for limited conditions, were used to fit different

types of analytical prediction models which can be then used for several testing conditions,

for example different loading ages and different curing temperatures. These type of models

were built on physically-based concepts which are of great aid for understanding the

behaviour of concrete and, especially, of dam concrete. This advantage was key to model
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the effect of the wet-screening procedure on dam concrete properties and to establish new

analytical models based on semi-empirical expressions for the behaviour prediction.

The final part of the work focuses on the development of a numerical solution based

on a structural system of rigid particles to study the behaviour of concrete taking into

account its internal mesostructure. The main heterogeneity in concrete is due to the

different behaviours of coarse aggregate and mortar and the effect of their interactions.

The mesoscale modelling can give an important insight on how each component interact

inside the concrete and how they can affect the mechanical properties over time, considering

the concrete composition and the external environmental conditions.

The analytical models, calibrated with experimental results, are used to define the

behaviour of each numerical model component, i.e. the behaviour of each type of contact

between particles. The concrete particle models require thorough validation using simple

examples in which the input conditions can be controlled. The expected behaviour of

concrete can be checked using established examples considering more complex problems,

available in the literature. This validation sets the basis for the goal of this work and for

the application to the case study: the prediction of Baixo Sabor dam concrete behaviour

and the simulation of the wet-screening procedure, for both instantaneous and delayed

structural properties.

The work developed in this thesis aims to contribute to technological developments

of concrete dam engineering providing improved experimental procedures, relevant test

results and new analytical and numerical prediction tools to support safety control issues

related to the structural properties determination.

This work was done within the framework of P2I/LNEC DamConcrete research project,

entitled "Caraterização experimental e modelação numérica das propriedades reológicas

do betão de barragens".

1.3 Numerical and graphical tools used for the development of

the thesis

The work presented in this thesis has been developed using different platforms and tools.

Firstly, the experimental results have been handled using both MATLAB (The Mathworks

Inc. 2010) and R (R Development Core Team 2017) languages for analytical manipulation

and as a graphical tool. The statistical analyses of the test results, which included the use
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of linear and nonlinear regressions, multiple linear regressions and parameter-fitting using

optimization methods, such as genetic algorithms, relied on the opensource R language

(R Development Core Team 2017) which is a powerful statistical computing and graphical

software environment.

The numerical modelling using Discrete Element Method (DEM) applied to particle

models was implemented in C++ language, using the Visual Studio C++ 2010 Express

platform (Microsoft Corporation 2010b). This type of language enables easy and fast

computational processing based on object-oriented programming. The particle assembly

generator was developed by Monteiro Azevedo during his Ph.D. work (Monteiro Azevedo

2003) and it was developed in C language. The visualisation of the particle assemblies

geometry and of the graphical results of the numerical models relies on opensource Paraview

(Ayachit 2015)

The design and detailing of creep cells experimental setup and some schematic figures

throughout the thesis were done using the graphical platform AutoCAD (Autodesk 2016).

1.4 Thesis outline

This thesis has seven chapters, including this Introduction, in which the work’s framework

and research problem are presented, and the Conclusions chapter.

The second chapter presents a literature review on the structural behaviour of concrete

with particular focus on dam concrete, on its composition, types, production and testing

issues and in situ conditions. A review on the different types of analytical and discrete

models is presented. Special attention is given to semi-empirical or analytical models

which try to explain concrete behaviour based on its composition, for example on the

properties of the aggregates. Similarly, the review focuses on discrete models considering

the mesostructure of concrete. Several basic structural concepts are introduced in this

chapter in order to complement the methodologies and models used throughout the thesis.

The third chapter presents the developed experimental characterization of dam concrete

based on laboratory and in situ tests. The case study is the Baixo Sabor dam concrete

due to its structural importance and, therefore, to the extensive concrete characterization

performed during construction of both dam and wet-screened concretes. Three sets of

creep cells were installed in Baixo Sabor dam which allowed for the improvement of the

experimental setup and the testing procedures, aiming to reduce costs, to facilitate the
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installation and to increase the accuracy of the results. The test results revealed the main

differences between the two types of concrete and the influence of the coarse aggregate on

the main structural properties. The test results of the main structural properties of the

aggregates and the mortar are also presented.

The fourth chapter presents three different methodologies for the prediction of dam

concrete properties based on the wet-screened test results using simple analytical models

based on semi-empirical laws. The chapter is divided into three main parts: the first

relates to the use of two-phase composite models and the equivalent age method to explain

the relationship between the modulus of elasticity of dam concrete and the modulus of

elasticity of wet-screened concrete; the second part, similarly to the first, establishes

a procedure for the prediction of creep strain development of dam concrete based on

a two-phase composite model, on the age-adjusted effective modulus (AAEM) method,

on the equivalent age method and on the in situ test results of wet-screened concrete;

and the third part proposes a semi-empirical expression for the prediction of concrete

compressive and splitting tensile strength based on the water to cementitious materials

ratio and on the maximum size of aggregate (MSA). Combining this expression with

the size effect law, a relationship between strength results of dam concrete obtained in

large specimens and strength results of wet-screened concrete obtained in standard size

specimens is proposed. This chapter proposes also a framework for the quality control

procedures concerning the conformity check of dam and wet-screened concrete test results

obtained during construction.

The fifth chapter describes the application of the discrete element method (DEM) to

2D rigid particle models (PM) including the developed contact models, the Hooke model,

the aging viscoelastic model based on the solidification theory and the Mohr-Coulomb

model with cut-off and with linear softening. A new fast numerical procedure for the

long-term analysis of cementitious materials is proposed and validated. Due to the time

step constraints of DEM, long-term analysis can be very time consuming, therefore the

proposed fast numerical procedure separates the calculation time and the real time in

order to increase computational efficiency. The fast numerical procedure is validated using

simple particle assemblies for different loading scenarios and used in a practical application

for the prediction of concrete’s aging viscoelastic behaviour based on the properties of

its components, the aggregate, the mortar and the interfacial transition zone (ITZ). A

specific parametric study combined with an optimization process is used to estimate the
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aging viscoelastic properties of the ITZ. The second part of the fifth chapter relates to

the implementation of the Mohr-Coulomb model considering brittle failure and linear

softening. Similarly to the first part, simple particle assemblies are used to validate the

contact behaviour both in tensile and compressive loadings. A practical application to

literature results of concrete are also used to further validate the models and perform a

parametric study for the main input variables.

The sixth chapter presents the methodology and application of DEM for the prediction

of dam concrete structural properties based on the results of wet-screened concrete. This

chapter highlights the combination of some of the analytical models used in the third

chapter with the particle modelling, namely for the definition of the long-term aging

viscoelastic behaviour of mortar. The chapter is divided into the prediction of the long-

term behaviour and the prediction of the strength properties of dam concrete. For both

parts, the prediction methodology relies on the calibration of the contact micro properties

in order to describe the behaviour of the main components of concrete, i.e. aggregates,

mortar and ITZ, based on the available test results and analytical model predictions. The

contact micro properties are then used for the prediction of the wet-screened concrete

behaviour, in which the concrete model is further validated, and for the prediction of dam

concrete behaviour. The concrete particle models are composed by the coarse aggregates

which follow the size distribution of each type of concrete and by the mortar. To take

into account the contribution of each component to the overall macroscopic behaviour, the

smallest particle in the assembly is restraint to the smallest coarse aggregate. The effect of

temperature variations on the development of deformability properties is also considered

using the equivalent time method in order to predict the in situ behaviour of concrete.

10
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2.1 Introduction

For an accurate safety control related to cracking risk assessment, it is necessary to deter-

mine the development of concrete structural properties, as well as the stress and strain

histories during construction and the first years (Cervera et al. 2000b; Noorzaei et al. 2006).

Moreover, to interpret the structural behaviour for several decades, both instantaneous

and time-dependent properties are key to assess the overall safety of the structure and

make reliable lifetime predictions (Naus and Johnston 2001; Charlwood 2009; Schrefler

et al. 2010; Jia 2010). The main structural properties are the ones related to the deforma-

bility, the strength and the thermal expansion coefficient. The deformability properties

concern the creep compliance, which includes the instantaneous modulus of elasticity or

Young’s modulus and the Poisson’s ratio. The strength properties are related to the fail-

ure mode and the compressive and tensile strengths are the most commonly used for the

characterization of concrete.

The large number of variables involved in the production, placing and curing of concrete

makes it difficult to have an accurate prediction of its mechanical properties without any

previous experimental results. The most common approach to predict the development

of the mechanical properties is to use empirical or semi-empirical expressions (Granger

11
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and Bažant 1995; Bažant and Baweja 2000; Hwang et al. 2004) but several studies also

rely on numerical models to simulate the complex behaviour of concrete considering its

mesostructure (Roelfstra et al. 1985; Qiu and Zhang 2017). new approaches rely on

multiscale analysis in order to explain the influence of each component at different scale

lengths (Jennings and Bullard 2011; Honorio et al. 2016).

This chapter presents a literature review concerning the dam concrete behaviour, the

models used to predict concrete structural properties and it is divided into three main parts.

The first part concerns the concrete material properties, focusing on its composition and

on the specific material properties of dam concrete. The second part presents a review on

the structural properties of hardened dam concrete, mainly the deformability and strength

properties. Special focus is given to several experimental results concerning the effect of the

coarse aggregate on concrete behaviour and to the research on the effect of wet-screening.

The third part of this review relates to the modelling of concrete behaviour and presents

several types of approaches for the prediction of the main mechanical properties using

both analytical models and more complex numerical models. The analytical models, which

include both empirical and semi-empirical models, are based on the observed behaviour of

concrete and have the advantage of being very simple to use and give an important reference

for the interpretation of new test results. The use of the name "analytical model" for this

type of prediction tool relates to the fact that they are based on analytical expressions

which are known to describe the behaviour of the material.

For the prediction of long-term behaviour, several types of semi-empirical models have

been developed throughout the last decades to obtain the creep behaviour of concrete

based on the components contents and on its compressive strength (Neville et al. 1983).

These type of models can be calibrated using a large creep test database (Bažant and Li

2008) and, more recently, relying also on the long-term structural effects (Wendner et al.

2013; RILEM TC-242-MDC 2015).

Other semi-empirical models describe the global effect of the decrease of strength as

the water to cement ratio increases (Abrams 1918; Bolomey 1936). For example, the

physical explanation of the Abrams law is related with the observation that the amount of

water is related with the cement paste quality and with its pore structure. As the quality

of the cement paste decreases the strength of the concrete also decreases. The Abram’s

model parameters depend on the type of strength, the type of cement and aggregates, the

admixtures, the curing and testing conditions and the age of concrete.

12
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The numerical models are used for the analysis of complex structural systems for

which there is no theoretical solution. Usually, they combine a large variety of material

properties and can be used for different geometric shapes and different boundary and

loading conditions in order to obtain the structural response. Numerical models imply the

discretization of space and time. Each discretized element have a predefined behaviour

and, for a given boundary and loading conditions and insuring the compatibility between

elements, an approximate solution can be obtained. This literature review concerns only

the numerical models based on the discrete element method, which will be used throughout

the thesis.

Additionally, a special focus will be given to the use of numerical models for the study

of concrete considering its mesostructure. The mesoscale is defined as the intermediate

scale between the study of cementitious materials (microscale) and the study of large

scale structural systems (macroscale) (Jennings and Bullard 2011). It is usual to consider

mesoscale analysis as the study of mortar or concrete in which the fine or coarse aggregates

are explicitly taken into account, which in this case defines the scale length between 1 mm

to 1 m, i.e. at the specimen level.

2.2 Concrete material properties

2.2.1 General aspects

Concrete is an hydraulic composite material made from aggregates with different sizes and

a cement-based matrix. It is a manufactured material with significant structural strength

and reduced production and placement cost. The cement grains, when in contact with

water, react and form a load bearing structure, generally called the cement paste, capable

of agglutinating the aggregates together. The composite nature is one of the main features

of concrete and determines its behaviour. The heterogeneity of concrete is due to the

composition, i.e. cement, aggregates, water, air, additions or supplementary cementing

materials (SCM) and admixtures.

Due to its profound dissemination and good mechanical characteristics when mixed

with water, the most used type of cement is the artificial Portland cement, known just

as Portland cement. The Portland cement results from the grinding and calcination of a

mixture of about 80% limestone (calcium carbonate) and 20% clay (iron and aluminium

silicates). During calcination, the elementary components react and originate the main
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crystalline structures of cement, being the tricalcium silicate (3CaO.SiO2 or C3S), the

dicalcium silicate (2CaO.SiO2 or C2S), the tricalcium aluminate (3CaO Al2O3 or C3A)

and tetracalcium aluminoferrite (4CaO Al2O3Fe2O3 or C4AF) the most commons products.

The product is called the clinker which is grinded into a fine powder made of small cement

particles. The chemical components, mainly C3S and C2S, when in contact with water,

react to form new hydrated amorphous structures, the calcium silicate hydrate gel (CSH

gel) and the calcium hydroxide (Ca(OH)2). These exothermic reactions are generally

known as the cement hydration. The reaction rate, the type of structures obtained and

the interaction between products are still not fully understood (Taylor 1997).

The cement paste agglutinates the aggregates and develops its bearing capacity over

time. The aggregates, considered in the past as "inert filling", are recognized today as an

important element to the mechanical properties of concrete (Alexander and Mindess 2010).

Besides their contribution to the behaviour as a part of a composite material, nowadays it

is known that some types of aggregates develop alkali-aggregate reactions in the interface

between the paste and the aggregate (AAR). The product of these reactions is a hydrated

gel with higher volume than the reactants, which leads to an overall expansion effect in

the concrete (Rajabipour et al. 2015). The purpose of aggregates in concrete is to be a

good filler, with good mechanical properties and well graded, in order to reduce the cement

content, keeping acceptable levels of workability and reducing costs (ACI Committee 207

2005). Besides the mechanical properties and grading of the aggregates, the porosity, the

water absorption, the size, the shape and the roughness have an important role in the

behaviour of the composite material (Alexander and Mindess 2010).

Additions are compounds that replace, within some extent, the Portland cement as

the main binder, in order to enhance a particular property or to reduce the heat generated

during hydration reactions of the cement. These products, natural or artificial, are divided

into two main groups: the pozzolans and the blast-furnace slag (Coutinho and Gonçalves

1994). Within the Portuguese context, and particularly for dam concrete production,

pozzolans and fly-ash have been widely used, replacing up to 50% of the Portland cement

(Serra et al. 2014a). As pointed out by Coutinho and Gonçalves (1994), one advantage

of the pozzolan replacement is a reduction of the hydration heat, without the strength

decreasing in the same proportion. Another advantage is the control of the AAR potential

(ACI Committee 207 2005).
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It is generally accepted that the mechanical properties of the hardened concrete, es-

pecially the strength properties, are determined by shape and curing conditions of the

specimen, the type of loading and the properties of each concrete component: i) the prop-

erties, content and distribution of the aggregate in the concrete matrix; ii) the properties

and content of the cement paste matrix of binder and water; and, iii) the properties of the

interface between cement paste and aggregate surface, the interfacial transition zone, ITZ

(Mitsui et al. 1994; Ollivier et al. 1995; Scrivener et al. 2004; Dolado and Breugel 2011).

Figure 2.1 shows the different factors that influence the concrete strength, divided into

the three main groups (Mehta and Monteiro 2006).

Figure 2.1: Influencing factors of concrete strength (Mehta and Monteiro 2006)
.

The diversity of concretes available, from self-compacting concrete to high-strength and

mass concrete, results in different mechanical property values and development over time.

Each type of concrete has its particular applications, according to the required strength,

plastic specifications, geometric conditions and practical applications.

2.2.2 Dam concrete

The design of a prescribed composition for a given concrete was, until the end of the

nineteenth century, empirical and based on former experience (Coutinho 1988; Flatt et al.

2012). Since then, several developments were done, namely related to: a larger variety

of products; more information about the effect of each component on the behaviour;
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better procedures for optimum proportioning. When prescribing a concrete, specially dam

concrete, the experience and the experimental results obtained from former structures are,

still, an important aid for the concrete design.

Due to its specific requirements, it is usual, in Europe, to design dam concrete as a

prescribed concrete according to the European standard EN 206-1 (NP EN 206 2005). The

strength and durability requirements as well as the composition of concrete are specified

in order to obtain the desired behaviour over time and trial tests are often carried out in

order to define the final concrete composition.

Mass concrete implies the placement of large concrete volumes that requires the adop-

tion of special measures to reduce the generation of heat during hydration reactions, to

control volume changes and to minimize the cracking risk at early ages (ACI Committee

207 1997; ACI Committee 207 2005).

Dam concrete is usually produced with large size aggregates in order to reduce the

production costs. The grading and cement content are obtained to achieve maximum

compaction, complete coating of aggregates and maximum strength. The maximum size of

aggregates (MSA) can be 150 mm and the total aggregate percentage can be up to 60% of

the total volume (ICOLD 2008). The cement and other cementititious materials content

(binder content) in this type of concrete is, therefore, low (100 to 300 kg/m3). Contrary

to other concretes, due to the thermal cracking risk, the composition of dam concrete is

customized in order to decrease the heat generation, taking the strength properties as a

secondary requirement (ACI Committee 207 1997; ACI Committee 207 2005).

Added difficulties are the constraints associated with the production of large volumes

of concrete at remote locations and the high rate of construction which implies also a

high rate of materials supply. It is very common to use rock quarries placed next to the

dam, preferably placed in the reservoir, for the aggregate supply. The rock provided by

these quarries has to be tested in order to comply with the necessary requirements for

the concrete production. The compromise between the quality of the aggregate and the

transportation costs has a great impact on the dam concrete design since the effect of

the aggregate properties on most of the mechanical properties is very important. The

use of local rock quarries and local aggregates is usually associated with larger property

variations over the construction period.

Recent developments of concrete technology are mainly related with the use of new

materials and construction procedures. For example, in Portugal, technological advances
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lead to an increase of fly ash content added during the mix and a decrease of cement

content (from 300 kg/m3 in 1980 to 100 kg/m3 in 2012). It should be noted that the type

of cement used in the past, type IV according to ASTM C150 (ASTM 2017) and type II

and IV according to EN 197-1:2012 (CEN 2012), had also a percentage of suplementary

cementitious materials, such as pozzolanic materials, but in smaller amounts. The use of

powerful superplasticizers, water-reducing and air-entraining admixtures also influence the

properties of fresh and hardened concrete, increasing the workability for the same water

to cementitious materials ratio and producing a more compact product.

In modern concrete dams, the dam concrete is made, in general, with low cement

content (between 150 to 200 kg/m3), with fly ash addition and a maximum size of the

aggregates (MSA) of 150 mm.

Concrete dam design must respect safety factors based on a specified minimum com-

pressive and tensile strengths, taking into account a maximum heat generation. The

reference age for the evaluation of compressive strength can be 90, 180 or 365 days since

casting (the International Committee on Large Dams (ICOLD) recommends the age of

180 days or later (ICOLD 2008)). The use of late testing ages refers to the development

of significant stress only months or years after casting. Besides, with the use of additions,

such as pozzolans, the strength development after 90 days is still substantial (in average,

strength can increase 40% from 90 to 365 days, (ICOLD 2008)).

2.3 Concrete structural behaviour

2.3.1 General aspects

Due to its particular application and despite the extensive experimental work and research

developed worldwide, general correlations between wet-screened and dam or full-mixed

concrete properties are still to be determined (Soares de Pinho et al. 1988; Vilardell et al.

1998; ICOLD 2008; Serra et al. 2012).

ICOLD published a bulletin with a comprehensive review on the physical properties of

hardened conventional concrete in dams (ICOLD 2008). This report presents an extensive

literature review concerning the development of most relevant mechanical properties, the

main factors that influence those properties and also the mathematical models used for

the behaviour analysis.

As mentioned before, dam concrete has its particular properties which are greatly
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dependent of local materials supply and of environmental conditions and can have large

variations from work to work. ICOLD (2008) presents a wide range of test results obtained

from several decades of experience in dam construction around the world. Despite the

importance of this type of test data, estimates obtained from the other case studies have to

be used carefully. The report focuses also on the compressive, tensile and shear strengths,

the static and dynamic modulus of elasticity, the creep response, the drying shrinkage, the

thermal properties, the water permeability, the frost resistance and the fracture energy.

The in situ behaviour of dam concrete is also addressed throughout the report. Due to

the difficulties associated to dam concrete testing, it is very usual to have a large number

of wet-screened concrete test results and very few of full-mixed concrete.

Despite the cast volumes, the placement rates and specific composition, it is necessary

to guarantee the design requirements of in situ dam concrete. An efficient quality control

based on available information of properties of concrete constituents, on simple tests

for determining properties of fresh concrete, on placement procedures and on hardened

concrete testing, is key to meet the expected structural properties (ICOLD 2009).

Experimental testing of the produced concrete carried out for quality control and for

properties characterization, are key elements for this type of structures. The complex-

ity of concrete response, from viscoelastic to fracture behaviour, implies different tests

to determine the instantaneous, both in tension and compression, and time-dependent

behaviour of wet-screened and full-mixed concrete. Usually, the instantaneous behaviour

is characterized by modulus of elasticity determination tests, tensile and compression

strength determination tests, carried out at several ages. The time-dependent behaviour

is evaluated from in situ and laboratory compression creep tests using different loading

ages (RILEM TC 107-CSP 1998).

Other key reference is the United States Bureau of Reclamation (USBR) report that

includes the main features concerning the production and testing of concrete, with special

focus on dam concrete (USBR 2005).

As described, dam concrete can be produced using large size coarse aggregates with

maximum size aggregate (MSA) up to 150 mm. As a result, ordinary specimen sizes and

laboratory equipment are not suitable to characterize dam concrete with large MSA. The

characterization of this large aggregate concretes implies the cast of very large specimens

and the use of heavy testing equipment with an added cost to the work. Since the access to

these types of equipments is limited, only a few tests are done using this type of concrete
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during the dam construction, compromising the concrete characterization and the quality

control assessment.

In order to overcome these difficulties, concrete quality control and concrete charac-

terization rely, in a great extend, on wet-screened concrete laboratory results obtained

from the full-mixed mass concrete (dam concrete), placed in situ. Wet-screened concrete is

obtained by removing the larger aggregates, usually greater than 38 mm (#38 wet-screened

concrete or SCR38), from the original dam concrete mix while it is still fresh. Several

monitoring devices, such as strainmeters, are embedded in wet-screened concrete due to

its small dimensions when compared with the MSA.

For a preliminary design, the USBR (1977) recommends the use of average values for the

main concrete properties: values between 20.7 and 34.5 MPa for the compressive strength;

5% to 6% of the compressive strength for the tensile strength (1.0 MPa to 2.1 MPa); 0.2

for the Poisson’s ratio; 34.5 GPa for the instantaneous modulus of elasticity; 20.7 GPa

for the sustained modulus of elasticity, Esust (Esust = Einst
1+χφ , in which Einst = E(t′) is

the instantaneous modulus of elasticity, φ= φ(t, t′) is the creep coefficient and χ= χ(t, t′)

is the age-adjusted coefficient (Bažant 1988)); 9.0 × 10−6/℃ for the thermal expansion

coefficient; and, 2402.8 kg/m3 for the unit mass.

2.3.2 Development of strains and stresses in concrete

Considering plain concrete under a sustained stress, σ(t′), and temperature, T (t), the total

strains, ε(t, t′), can be represented by the addition of several terms (Equation 2.1).

ε(t, t′) = εi(t′) + εc(t, t′) + εcr(t′) + εsh(t) + εT (t) (2.1)

where t is a given time after cast, t′ is the age at loading, ε(t, t′) is the total strain, composed

by the sum of instantaneous strain, εi(t′), creep strain, εc(t, t′), strain due to cracking,

εcr(t, t′), shrinkage, εsh(t) and strain due to thermal variations, εT (t). Stress-dependent

strains in undamaged concrete are usually divided into instantaneous and creep or delayed,

whether the duration of the load is "fast" or sustained over time. The separation between

instantaneous and creep strains is not unique since it depends on the load duration and

often leads to misinterpretations of the concrete behaviour (Bažant and Baweja 2000).

Despite that, this division is of great use for structural analysis and for the interpretation

of experimental test results and monitored structural data. When loading is considered to
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be instantaneous and temperature is assumed constant, creep strains are small, thermal

strain is zero and shrinkage during that period is negligible. The total strains are only age

dependent, although it is known that both instantaneous and cracking strains depend also

on the loading duration, t− t′,

ε(t′) = εi(t′) + εcr(t′) (2.2)

Concrete can be considered as a time-dependent linear viscoelastic material provided

that stress is less than 40% of the compressive strength and that large sign inversion,

large cyclic strains or even significant changes in water content and temperature do not

occur (Bažant 1988). As a consequence of this hypothesis, we can use the principle of

superposition given by the Stieltjes integral,

ε(t, t′)− ε0(t) =
∫ t

0
J(t, t′)dσ(t′)

dt′
dt′ =

∫ t

0
J(t, t′)dσ(t′) (2.3)

where ε0(t) is the sum of the shrinkage and thermal strains.

The instantaneous strains of undamaged concrete are related to the modulus of elasticity

or Young’s modulus which can be obtained from standard laboratory tests. It is known that

different values of modulus of elasticity can be obtained from different testing conditions,

mainly due to the loading rate, load duration and magnitude of loading. Figure 2.2 shows

the different possible values of modulus of elasticity, from tangent to secant modulus at

a given stress-strain curve point, for instantaneous loading (Figure 2.2 a)). For viscous

materials and for sustained loading, higher the load duration, lower the modulus of elasticity

values (Figure 2.2 b)).

Figure 2.2: Representation of stress-strain curve of concrete in compression for a given t′:
a) instantaneous loading; b) sustained loading. Adapted from (ICOLD 2008))
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Strains can also be divided into two main types: stress-dependent strains and stress-

independent strains. Regarding Equation 2.1, εi(t′), εc(t, t′) and εcr(t, t′) are stress-

dependent and εsh(t) and εT (t) are stress-independent strains. As the instantaneous

load increases, local areas in concrete start to crack yielding the global nonlinear be-

haviour. Small microcracks can increase in size and length and start to merge into large

cracks. From this point on, the cracking strains increase significantly until the specimen

cannot withstand more load. Figure 2.3 shows the instantaneous and delayed behaviour of

concrete for the complete compressive strain range. The stress-strain-time representation

allows for the correspondence between each type of deformation (black lines represents the

instantaneous behaviour and the grey lines represent the delayed behaviour).

The black continuous line in Figure 2.3 a) describes the instantaneous behaviour,

considering that no creep strains develop: points 1 and 2 refer to elastic behaviour (until

30% to 40% of the maximum strength, 1≈ 1i and 2≈ 2i); point 3 already exhibits some

inelastic behaviour, shown by the development of cracking strains (difference between

point 3 and point 3i, in which the superscript “i” refers to the instantaneous part of the

deformation); point 4 refers to the maximum compressive strength (fc,max); and point

5 defines the concrete failure. The post-peak behaviour, in which the stress capacity

decreases as the strain increases, after point 4 is known as softening and refers to the

nonuniform distribution of internal stresses due to the heterogeneity of concrete and to

the nonuniform initial internal stresses that can be found at the mesoscale (Vonk 1992).

The grey dashed line in Figure 2.3 a) corresponds to the equivalent stress-strain for

sustained loading (points 1*, 2* and 3*), in which instantaneous, creep and cracking strains

occur simultaneously. Considering the strain-time behaviour (Figure 2.3 b)) it is possible

to obtain the strains development over time. The grey continuous lines refer to the total

strains (ε(t, t′)) and the grey dashed lines refer to the instantaneous strains over time, for

different loading intensities at time, t′. Primary, secondary and tertiary creep develop

according to the level of applied stress. Primary creep occurs for low stress levels and is

defined by the decreasing creep rate with time. Secondary creep occurs when creep strains

develop at a constant rate. Tertiary creep occurs when the creep rate increases with time

due to high levels of stress. Tertiary creep only occurs for high stresses above 40% to 50%

of the maximum compressive strength, fc,max. At high stresses, close to the maximum

strength, the progression of microcraking seem to induce the apparent increase of creep

(tertiary creep) and lead ultimately to failure.
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By its turn, creep strains can be classified also as basic creep and drying creep, according

to the curing conditions of concrete. Basic creep refers to the increase of deformation

of concrete under hygrometric equilibrium (sealed specimen or moisture cured), due to

constant stress. Drying creep is the increase of deformation of concrete induced by the

moisture exchange, due to constant stress.

Figure 2.4 shows the different strain development over time for a sustained loading since

t′, under constant temperature and subjected to drying. Due to the hardening process of

concrete, the modulus of elasticity values increase with time and, therefore, the real elastic

strain decreases. It is usual to consider the nominal elastic strain as the obtained at time

of loading, t′.

Figure 2.3: Representation of stress-strain-time behaviour of concrete for instantaneous
and sustained compressive loading: a) stress-strain behaviour; b) strain-time behaviour;
c) stress-time behaviour
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After the loading is removed the real elastic strain is immediately recovered and the

strain slowly decrease following the creep recovery which can be smaller or, for very long-

term loadings, equal to the creep compliance. Usually, an irreversible strain remains

after the loading is removed which relates to the irreversible deformations that occur over

time (Neville et al. 1983). Shrinkage strains develop over time due to cement hydration

(autogenous shrinkage), water movement due to drying (drying shrinkage) and hydrated

cement carbonation (carbonation shrinkage) (Oliveira Santos 2006).

Figures 2.4 and 2.5 show a schematic view of the different types of deformations and

stresses associated with the different types of loadings (constant stress or constant strain),

restraints and curing conditions (with and without moisture movement between concrete

and the environment).

Figure 2.4: Definition of strain components in the strain-time representation
.

Strength properties are related to the maximum stress obtained when the load is applied

without any creep development (instantaneous or short-term loading). Deformability

properties relate both to the elastic part of the stress-strain curve for instantaneous loading

and to the delayed deformations due to sustained or long-term loading.
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Figure 2.5: Strain and stress behaviour over time with respect to loading, restraining and
curing conditions (Mehta and Monteiro 2006)
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2.3.3 Deformation properties

Concrete deformability properties can also be divided into instantaneous and delayed

properties, i.e., modulus of elasticity or Young’s modulus, creep and relaxation. The

complete deformability behaviour can be described by a creep compliance or creep function,

J(t, t′), from which the elastic modulus, E(t′), and the relaxation function, R(t, t′), can be

obtained (Bažant 1972; Bažant et al. 1979; Bažant et al. 2013).

The modulus of elasticity at the age t′, E(t′), can be defined as the uniform stress, σ(t′),

needed to obtain a unit strain, ε(t′),
(
E(t′) = σ(t′)

ε(t′)

)
which can be defined as the slope of

the stress-strain curve. For characterizing the approximate linear behaviour of concrete,

the experimental value of modulus of elasticity is usually obtained from the secant between

a predefined lower and upper stress. For example, as specified in (LNEC 1993a), the lower

stress is taken as 0.6 MPa and the upper stress is taken as a third of the maximum stress,

obtained in cylinders.

The viscoelastic and viscous properties of concrete also influence the value of the modu-

lus of elasticity. The instantaneous properties are defined with an arbitrary criteria which

is related to the time under loading. Very short loading times, yield higher instantaneous

modulus and larger loading times allow for the development of the creep strains and yield

lower instantaneous modulus. Dynamic modulus of elasticity is obtained for a very high

loading rate and it is usually used for dynamic analysis. The criteria for the definition

of the time under loading can be very different from standard to standard. The Por-

tuguese standard E397 (LNEC 1993a) specifies a sustained load during 30 seconds after

the upper stress is achieved. The time-dependence makes the comparison between several

experimental sources of modulus of elasticity very difficult.

The Poisson’s ratio, defined as the ratio between the lateral strains, εlateral(t, t′), and

the axial strains, ε(t, t′), for a uniform axial stress, σ(t′), is usually considered to vary

between 0.15 and 0.20 and invariant in time (ICOLD 2008). Most of structural analysis

considers the value of 0.20 although some studies report the existence of a creep and

relaxation Poisson’s ratio which are specially relevant for tridimensional stress states

(Gopalakrishnan et al. 1969).

Creep strain is defined as the increase of strain under constant stress and the stress

relaxation is the decrease of stress under constant strain. Although several studies con-

cerning concrete creep were carried out throughout the last decades in a structural and
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material level, the physical and chemical phenomena are yet to be fully understood (Acker

2001; Vandamme and Ulm 2009).

Creep and relaxation effects relate to the same material phenomena, which is thought

to be due to displacement diffusion mechanism, adsorbed water movements on the surface

of the hydrated cement, viscous deformation of the hardened cement, solubility increase

with the applied stress and atomic rearrangement at the nanoscale (Coutinho 1977; Neville

et al. 1983; Vandamme and Ulm 2009). The systematic and comprehensive work of Neville

(Neville and Meyers 1964; Neville et al. 1983; Neville 1983; Neville and Brooks 2010) and

Coutinho (Coutinho 1977; Coutinho and Gonçalves 1994) are key for the study of concrete

creep. The complexity of the phenomena and the variety of components of concrete makes

it impracticable a comprehensive study about the origin of creep (Neville et al. 1983).

Concrete creep is influenced by intrinsic factors such as, the properties of each component,

the mix proportions and the concreting conditions, as well as by external factors, such as

for example, the loading age, the temperature and humidity levels, the intensity and type

of loading (Neville and Meyers 1964; Soares de Pinho 1989).

The viscoelastic properties of concrete are mainly due to the time-dependent behaviour

of the cement paste but the composite nature of concrete has a large influence on the

development of creep strains over time. The aggregates, which, for this type of deformation

and stress range, are considered elastic, restraint the development of creep strains of the

cement paste and introduces a nonuniform stress state at the mesoscale.

It is usual to associate the strength of concrete with creep since as the quality of

the cement paste increases, i.e. as the water to cement ratio decreases, the creep strains

also decrease. As a general rule, Neville stated that "for constant mix proportions and

the same type of aggregate, creep is proportional to the applied stress and inversely

proportional to the strength at the time of application of load" (Neville 1959). As concrete

ages the instantaneous and creep strains are bound to decrease due to the progression of

cement hydration and water consumption. For usual cement contents between 300 kg/m3

and 400 kg/m3, creep strains decrease as the cement and the aggregate content increase

(Coutinho and Gonçalves 1994). Similarly, higher modulus of elasticity of the aggregates

reduces significantly the creep strain development due to the restraint of the creep potential

of the cement paste. The larger absorption and porosity of the aggregates eases the water

movements around the aggregates leading to an increase of creep (Neville et al. 1983). It

is also believed that the microcracking and slip, especially near the interface between the
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aggregates and the cement paste, the interfacial transition zone (ITZ), can be an important

factor for the development of creep (Neville et al. 1983). Ramos (1985) refers to the effect

of moisture and temperature as the two most important external factors. Concrete drying

leads to a significant increase of creep (drying creep) and to differential creep development

inside the specimen or structural element. Temperature variations have opposite effects

on creep strains.

Although its experimental difficulties, the study of creep in tension has particular inter-

est for assessment of cracking. The main difficulties are associated with the measurement

of very small strains, the correct measurement of shrinkage and the application of a pure

tension stress state. Although some contradictory results, it is generally believed that

creep in tension has similar development of creep in compression, except for the early ages

where the creep rate are higher for tensile loadings (Coutinho and Gonçalves 1994).

Concrete shrinkage is defined as the decrease in size of unloaded specimens and is mainly

due to the desaturation of the cement paste pores which introduces internal contraction

forces and the subsequent size reduction (Coutinho and Gonçalves 1994). Other types

of shrinkage, such as the chemical, plastic and carbonation shrinkages, also occur. The

desaturation can occur from the loss of evaporable pore water due to its consumption during

the hydration of cement (autogenous shrinkage or self-dessication) and from the exchange of

moisture content between the internal structure of concrete into the environment. Similarly

to creep, the cement type and content, the aggregate properties and the water to cement

ratio are the main factors influencing shrinkage strains (Coutinho and Gonçalves 1994).

The curing conditions, particularly the moisture differential between the specimen and the

external environment, and the thickness of concrete specimen or structural element have a

significant effect on the development of drying shrinkage (Coutinho and Gonçalves 1994).

Deformation properties are important parameters for the study of short and long-term

behaviour of concrete dams. The stress relaxation is specially relevant for the construction

period in which the temperature variations are most significant and when the stress relief

is especially important. Over time, the development of the creep strains translate into

the increase of the global structural displacements over time. An accurate estimate of the

concrete creep compliance is key for interpretation of the normal behaviour and for the

identification of possible deterioration scenarios.

Dam concrete should be designed in order to have a moderate creep strain development

and avoid an excessively rigid material. Concretes with a small creep strain development
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and with a limited capacity of stress relaxation are more likely to develop cracks (ICOLD

2008). The specific composition of dam concrete, with large fly ash content and large

aggregates, requires further research regarding the hydration and aging processes based

on dam concrete experimental results.

For dam concrete, the service stresses are, most of the time, below 30% to 40% of the

maximum compressive strength and, therefore, only primary creep develops. Additionally,

since water diffusion in concrete is very slow, it is usually considered that the dam body

remains in autogenous conditions, without drying or with no moisture exchanges (sealed

conditions). This assumption implies that the main dam’s body only develops basic creep

strains and autogenous shrinkage over time.

Experimental studies concerning deformability properties of dam concrete are limited

and creep test results are even more scarce due to the testing difficulties. Since dam

concrete is largely constraint to the geographic and logistic conditions and the creep strain

development depends on a large number of variables, it is difficult to find a standard

behaviour. Generally, dam concrete has lower creep strain development when compared

with standard concrete used for conventional structures, such as buildings and bridges. The

lower values are due to the large aggregate content and the use of small cement content.

Creep test results of dam concrete, placed on site, are available (USBR 1955; Pukhov

1978; Pukhov and Kuleshov 1981; Ramos and Soares de Pinho 1981; Ramos 1985; Soares

de Pinho et al. 1988; Soares de Pinho 1989; Smith and Hammons 1993; ICOLD 2008;

Serra et al. 2012; Serra et al. 2016a). The work of Portuguese researchers in this subject,

from LNEC (1968) and Silveira and Florentino (1971) to Coutinho (1977) and Soares

Pinho (Silveira et al. 1981; ICOLD 2008) in the eighties and nineties, is noteworthy and

recognized internationally.

2.3.4 Strength properties

The ultimate concrete properties are related to the fracture modes involved which depend

on specimen geometry, internal aggregate structure, boundary and loading conditions

(Van Mier and Nooru-Mohamed 1990; Vonk 1992). Taking also into account the different

properties of the concrete components, it is possible to understand the difficulties of

predicting the strength of concrete and of comparing test results from different origins.

One of the most important factor influencing the compressive and tensile strength is

the porosity of the cement paste, especially of the interfacial transition zone (ITZ). A
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more porous material is likely to have a lower ultimate strength due to more and larger

voids (that can be seen as defects). Directly related to the porosity is the water-cement

ratio or, when other cementitious materials are used, water-binder ratio (considering the

binder as the sum of cement and additions).

Since the set of concrete, the strength properties increase continuously to a maximum

value as the cementitious materials react with the available water. The strength develop-

ment over time can be fast or slow. The strength gain depends on the type and fineness

of cement, the presence of additions and admixtures and the curing conditions. For exam-

ple, the use of pozzolanic materials is known to slow the global hydration process since

this type of materials remains inactive during the early ages and start to react at latter

ages providing significant strength increases over the first year (Ganesh Babu and Siva

Nageswara Rao 1996).

The main strength properties for the analysis of concrete structures are the tensile and

compressive strengths. There are several experimental methods for the determination of

these properties which should be taken into account. Tensile strength can be obtained

directly by pure tension tests or indirectly using flexural beam tests and splitting tensile

tests (or Brazilian tests). The pure tension test, although more expensive and technically

demanding, gives the real tensile strength associated with fracture mode type I (Coutinho

and Gonçalves 1994). Other indirect tensile strength tests depend on the testing conditions,

such as the specimen size and shape, the boundary and loading conditions.

Similarly to indirect tensile strength tests, compressive strength tests depend also on

the testing conditions. It is known that the failure of quasi-brittle materials, such as

concrete, is size-dependent due to the development of a finite volume of a fracture process

zone (FPZ) (Bažant 1994). The relationship between the volume of the FPZ and the size

of the specimen determines the amount of damaged area and the cracking progression in

the specimen. For this type of material with post-peak softening, larger specimens yield

lower strength properties (Kim et al. 1999).

The characteristics of the testing machine are also important for obtaining different

types of failure modes in compression (Coutinho and Gonçalves 1994). For example, the

friction between the steel loading platens on the concrete specimen introduces local lateral

restraint and a confined volume at both ends of the specimen which is known to greatly

influence the maximum compressive strength and the post-peak response (Mier et al. 1997).

The existence of these confined zones due to frictional restraint implies also the height of
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the specimen as an important factor for the compressive strength.

For both types of strength, the softening response is linked to the measurement length

and location of the strain gauges. This factor is especially relevant for tensile strength due

to the localization of damage in a narrow crack (Vonk 1992).

Figure 2.6 presents the generic stress-strain behaviour of concrete under compressive

and tensile uniaxial stresses and describes the cracking development around the aggregates.

For instantaneous compressive loads, until 30% to 40% of the maximum stress, one can

consider a linear behaviour ( 1 ), from this stress to 70% of the maximum stress, micro-

cracking starts to develop, specially in the weakest areas, the ITZ, and the curve yields

some curvature ( 2 and 3 ), from 90% to the maximum stress, microcracking propagates

to visible cracking and the Poisson’s ratio varies significantly ( 4 ). Under constant strain

velocity loading and special testing conditions (Hudson et al. 1972; Vonk 1992; Mier et

al. 1997), the specimen still bears load and the strain increase rapidly after maximum

stress ( 5 ). The development of a stable descendent curve, known as softening, is due to

the remaining plastic bond and to the shear strength between crack surfaces, in which

aggregate interlocking can have an important contribution (Walraven 1980; Vonk 1992).

Softening occurs both for compressive and tensile loadings and is especially sensitive to

the loading conditions. For compressive loadings, platens with low frictional restraint and

tall specimens yield more brittle responses (steeper softening curve, 51 and 52 ). For

tensile loadings, due to the damage localization in a very small volume, large measurement

lengths yield more brittle global responses ( 61 and 62 ).

The composite nature of concrete is present in the compressive stress-strain curves,

where it is possible to study the material behaviour in all of its strain capacity. As inves-

tigated by Gilkey and Murphy (Coutinho and Gonçalves 1994), the nonlinear behaviour

of concrete is mostly due to the presence of aggregates. Both bulk behaviour of rock

and cement paste have a longer linear behaviour. Although several other factors affect

the behaviour, their work showed that compressive stress-strain curves of concretes with

different coarse aggregate contents yield different nonlinear degrees (Figure 2.7).

This behaviour is due to small sliding and microcracking development in the cement

paste around the aggregate, which turns into craking and failure. As referred by Vonk

(1992), "stiff aggregates act as stress concentrators" and that the load capacity is transferred

mainly from coarse aggregate to coarse aggregate, from the top loading platen to the bottom

loading platen. The internal forces are not straight due to the random distribution of
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Figure 2.6: Stress-strain behaviour of concrete under compressive and tensile uniaxial
stresses and illustration of the cracking development around the coarse aggregates

Figure 2.7: Comparison between compressive stress-strain curves of rock, cement paste
and concrete with several coarse aggregate contents (Coutinho and Gonçalves 1994)

.
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aggregates which introduces balanced lateral tensile forces inside the specimen between

aggregates (Figure 2.6). Since the interfacial transition zone has weaker properties, the

lateral bond between the cement paste and the aggregates is firstly damaged.

2.3.5 Effect of in situ conditions on hardened dam concrete rheological

properties

Concrete properties depend on local conditions which can vary widely from work to work

and during the hardening process and often differ from the ones obtained from laboratory

standard procedures. Therefore, it is important to obtain and understand the relation-

ship between in situ and laboratory test results. In situ conditions refer mainly to the

temperature and moisture content variations.

The casting, compaction and curing procedures on site can introduce significant varia-

tions on the main structural properties. The effect of temperature and moisture content

histories should be considered since it affects the development of the hydration processes

and of the cement’s internal structure (Coutinho and Gonçalves 1994).

One of the most important factors is the effect of temperature variations on creep strain

and strength development over time. As previously described, higher curing temperature

increases the rate of hydration, the load bearing cementitious structure grows faster and

stiffer over time.

Elevated temperatures before the load application imply smaller short-term creep

strains since temperature accelerates the chemical reactions of the cement hydration. On

the other hand, higher temperatures also produce higher creep rates due to the viscosity

reduction, the acceleration of the water movements and water pressure inside the cement

paste pores (Nasser and Neville 1967; Silveira and Florentino 1971; Neville 1983). The

global effect of these opposite mechanisms is an increase of creep strains over time. A

comprehensive study on the effect of elevated temperature on the creep development is

the work of Kommendant et al. in 1976 presented in (Bažant and Kim 1992). The results

show the increase of creep rate since the early ages for the curing temperatures of 43℃ and

71℃ and for several loading ages (Figure 2.8).

Since higher curing temperatures accelerate the hydration reactions it leads to higher

strength rates over time but reduces the ultimate maximum values for both compressive

and tensile strengths (Coutinho and Gonçalves 1994; Kim et al. 2002a). Figure 2.9 shows

the results of USBR experimental work on the development of strength considering different
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Figure 2.8: Comparison of creep strain development for standard curing temperature and
constant elevated temperatures. Adapted from (Bažant and Kim 1992)

testing conditions with a wide temperature range (between -9℃ and 46℃). It is shown

that higher temperatures at early ages are bound to compromise the potential maximum

strength due the fast and more nonuniform hydration in the beginning of the hardening

process (Figure 2.9 b)). Low temperatures reduce hydration rates as long as the water

does not freeze in which case the reactions can not occur and the concrete will not develop

its strength properties (Figure 2.9 c)).

Concrete’s moisture content is known to have two opposite effects on strength. It is

generally accepted that, for normal concretes with usual water-cement ratio, moist-cured

concrete yields higher strength since there is an unlimited access to water for hydration re-

actions (Mehta and Monteiro 2006). Figure 2.10 shows the results of the work of the USBR

considering different curing conditions, including the two extreme situations, specimens
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Figure 2.9: Influence of casting and curing temperature on concrete strength (Mehta and
Monteiro 2006)

stored continuously in laboratory air and specimens continuously moist cured, and some

intermediate conditions with initial moist cured followed by drying (USBR 1988). The re-

sults show that initial moist cured conditions increase the maximum compressive strength

when compared with a continuously drying specimen. Drying shrinkage at the early ages

can introduce microcracking to concrete reducing the ultimate maximum strength, hence

the importance of water curing in the first days (Popovics 1986). Popovics (1986) concludes

that the moisture distribution inside concrete can have a stronger effect on compressive

strength than the global moisture content. Popovics also hypothesises about the benefi-

cial confinement effect of a drying outside layer of concrete to explain large compressive

strengths for drying concrete which was previously kept in a wet environment. More recent

research also shows the effect of drying on the increase of the capillary suction and the an

increase of concrete strength (Yurtdas et al. 2004; Burlion et al. 2005).

Figure 2.11 shows the results from wet-screened laboratory specimens and dam cores
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Figure 2.10: Influence of curing conditions on strength (USBR 1988)

for compressive strength and modulus of elasticity (ICOLD 2008). It seems that the

development rate of the in situ properties is smaller for older ages. The curing conditions

of dam concrete depends on the type of dam (for example, its thickness), the mix of

concrete (with higher or lower heat generation) and the placement rates (influencing heat

dissipation rate). Generally, one can consider that the main dam body does not have

moisture exchanges with the environment and, during the first years of age, the core

temperatures can vary from 50℃ to 10℃. The large thickness of concrete dams allows

for the hypothesis of hygrometric equilibrium within the dams body. It is considered that

drying only occurs in a small thickness of the downstream face, which can be negligible

for the study of long-term behaviour. The dam body is considered, therefore, to have

no water exchange with the environment. In order to simulate those conditions is usual

to seal the specimens with rolled lead sheet or, if that is not possible, the specimens are

maintained at 100% relative humidity.
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Figure 2.11: Effect of in situ conditions on dam concrete properties: a) Compressive
strength; b) Modulus of elasticity (ICOLD 2008)

.

2.3.6 Construction method, casting schedule and concrete types

Conventional concrete dams are built using the block construction method (Jansen 2012).

The usual block dimensions are 15-m width and are cast in 2.0-m height lift until the crest

is reached. In each of the lifts, different types of concretes are cast in different areas of the

block. For example, since the exposed upstream and downstream faces are subjected to

higher temperature variations and higher stresses than the dam’s core, these areas have

higher quality concrete.

Dam concrete can be classified as Core concrete, Face concrete and Reinforcement

concrete, depending on the placement location in the dam. Core is the concrete placed in

the interior of the dam (MSA of 152 mm), Face is the concrete placed in the upstream and

downstream faces of the dam (1.0 to 1.5 m in thickness and has a MSA of 76 mm) and

Reinforcement is the concrete placed in the reinforced areas (MSA of 38 mm). Singularities

inside the dam’s body, such as galleries and large holes, introduce local tensile stresses

thus the use of reinforcement bars next to these elements.

Dam concrete types can be further divided into dam concrete and wet-screened concrete,

from now on also referred to as DAM and SCR concretes. DAM concrete is produced

and placed on site and the SCR concrete is obtained by sieving the aggregates with a

diameter larger than 38 mm, after mixing. The wet-screened concrete is used for embedding
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monitoring devices, such as strainmeters. The concrete quality control includes both the

dam and the wet-screened concretes but, due to testing constraints, the latter has a much

higher testing frequency of sampling.

The combination of these two types of classes defines the type of concrete and its

characteristics, as well as the location in the dam’s body (Figure 2.12), for example Core-

SCR is the the wet-screened concrete obtained from the dam concrete placed on the dam’s

core.

Figure 2.12: Representation of the types of concrete placed in a cross section of an arch
dam

Figure 2.13 shows the construction sequence of a block with the installation of three

strainmeter sets (two at the up and downstream faces and one in the mid section, rep-

resented as black trapezia). At a given level, after the strainmeter spiders are installed

and previously to the cast of the lift, the produced dam concrete is wet-screened and

the volumes surrounding the strainmeters spiders are cast with the aid of a removable

pyramidal formwork. Then, the bedding mortar is placed in a thin layer across the area of

the block. This bedding mortar is a high cement content grout that increases the strength

capacity of the lift joints. The cast of the block begins by the placement and compaction

of consecutive placements of 0.5-m heigth, firstly of the core concrete (dark grey) and

secondly of the up and downstream concrete (light grey), until the 2.0-m height lift is

completed. The core concrete is placed 1 to 1.5 meters away from the formwork. The

remaining volumes next to the formwork are cast with the up and downstream concretes.

The connection between the two concrete is done with the concrete still fresh and it is

represented by a zigzag line in Figure 2.12 and 2.13.

The compaction of the large volume of concrete, specially with large aggregates and

dry consistency, uses a set of 4 to 6 large internal vibrators in a backhoe for the open areas
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of the block. In special areas, such as the reinforcement areas, the up and downstream

faces and around the strainmeter spiders, a single internal vibrator is often used. Usually

12 hours after the last placement, a surface treatment of the horizontal construction joint

is done in order to remove the thin and weak layer of segregated cement paste and to

disclosure the surface of the aggregates. After 72 hours the formwork is ready to be

removed and elevated to the next lift.

Figure 2.13: Construction phases and placement of each type of concrete. Example with
strainmeter instalation.
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Figure 2.14 shows a generic sequence of the construction of other lifts considering the

inclusion of a gallery and the use of reinforcement in the up and downstream faces. In this

case, after the treatment of the horizontal construction lift joint and the rise of formwork,

the up and downstream face reinforcement and the formwork and the reinforcement of

the gallery can be placed, extended to the next lift. Then, the bedding mortar, the dam

and reinforcement concretes are placed in the block considering the construction of the

formwork and the specific reinforcement surrounding the gallery.

The construction sequences of these two particular cases show the use of each type of

concrete in the structure. Due to the large placement volumes in the core of the dam, a

larger MSA can be used. In particular areas, such as the up and downstream faces, a more

durable, higher strength and easier to compact concrete is recommended. This can be

obtained increasing the cement content and reducing the aggregate’s maximum size. The

reinforcement areas implies the use of smaller aggregates and, since they are subjected to

higher stresses, a higher cement content concrete is used. The strainmeters spiders, with

small measurement length (standard Carlson strainmeters have 25.4 cm), are embedded

with wet-screened concrete, obtained from the core or up and downstream concrete by

sieving the aggregates higher than 38 mm.

Further details on mixing, handling and compaction procedures of dam concrete are

described in (ICOLD 2008; ICOLD 2009).
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Figure 2.14: Construction phases and placement of each type of concrete. Example with
gallery
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2.3.7 Effect of wet-screening on hardened dam concrete structural properties

Dam concrete is usually made with large size coarse aggregates for which common specimen

dimension and laboratory equipment are not suitable. As previously described, wet-

screened concrete is obtained by removing the larger aggregates, usually greater than 38 mm

(#38 wet-screened concrete), from the produced dam concrete mix, while it is still fresh.

The wet-screened concrete is widely used for concrete characterization, quality control

procedures and for embedding the monitoring devices, such as strain and stress meters

(USBR 1988; ACI Committee 207 2005). Although both concrete types are made from

the same materials, the mix proportions are significantly different (Blanks and McNamara

1935) and it is expected that the main mechanical properties of full-mixed and wet-screened

concrete also differ over time.

The wet-screening issues date to the beginning of the twentieth century with the

construction of Hoover dam (known at the time as Boulder dam) in the United States

of America and to the intensive research of the USBR on the construction methods and

dam concrete properties (Blanks and McNamara 1935; Dolen 2010; Bartojay and Joy

2010). Blanks and McNamara (1935) experimental work focused not only on the effect of

wet-screening but also on the effect of composition on the main structural properties, of the

specimen size, of the maximum size of aggregate and of the curing conditions. The study

concluded that the wet-screened concrete obtained from sieving the larger aggregates or a

pseuso-wet-screened concrete mixed with the smaller aggregates had similar strengths but

very different slump values (being the slump of wet-screened concrete larger). Test results

show that the modulus of elasticity of full-mixed concrete is larger than the obtained

wet-screened since the aggregate content is largely reduced. It was concluded that, for

the Boulder or Hoover dam concrete, the isolated effect of wet-screening is negligible

(dashed line in Figure 2.15). The compressive strength of both full-mixed and wet-screened

concretes obtained using the same specimen sizes are very close. The strength reduction

due to the use of different specimen sizes, which are usually proportional to the size of the

largest aggregate, is the main effect to take into account (Blanks and McNamara 1935).

In Portugal several researchers discussed the advantages and difficulties of wet-screening

dam concrete in the Symposium of Concretes Placed in Large Masses ("Simposium de

Betões em Grandes Massas") from 1952 (Novais Ferreira 1952). Some researchers argued
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Figure 2.15: Effect of wet-screening and size of specimen on the compressive strength of
concrete (Blanks and McNamara 1935)

that it is not possible to establish correlations between full-mixed and wet-screening con-

crete due to the significant changes in the composition, namely the distribution and content

of the aggregates. It was also concluded that the addition of other cementitious materials

and the use of admixtures influence the relationship between the two types of concrete.

Experimental studies at LNEC showed differences up to 50% between the compressive

strength of full-mixed and the wet-screened concrete (Novais Ferreira 1952).

Significant work was done at the National Laboratory for Civil Engineering in the

1980’s concerning the investigation of the influence of wet-screening on the properties of

dam concrete. The work of Soares de Pinho, summarized in (Soares de Pinho et al. 1988),

gives a general insight about the relationship between wet-screened concrete and dam

concrete properties, for the experimental point of view.

Figure 2.16 shows compressive strength and modulus of elasticity test results obtained

for full-mixed and the for the corresponding wet-screened concrete. These results validate

the overall behaviour of lower compressive strength and higher modulus of elasticity of the

full-mixed concrete compared with the wet-screened concrete, for different ages.

Figure 2.17 shows the fit of a creep function, J(t, t′), to the total creep test results for

wet-screened concrete maintained in laboratory, for wet-screened and full-mixed concrete

placed in situ. Creep function is age-dependent and time-dependent, i.e., total creep strain

42



2.3. CONCRETE STRUCTURAL BEHAVIOUR

vary with the age of the concrete when the loading is applied and with the duration of the

loading. It is observed that wet-screened concrete has lower delayed deformability than

the original full-mixed concrete and that in situ conditions seem to increase the modulus

of elasticity for a given age.
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Figure 2.16: Test results of wet-screened and full-mixed concrete: a) compressive strength;
b) modulus of elasticity (Soares de Pinho et al. 1988)

.

Focused on the long-term behaviour of dam concrete Serra et al. (2012) present several

in situ creep test results of full-mixed and wet-screened concrete. Despite the large scatter,

the results show the general trend measured by Soares de Pinho (1989).

Based on the work of Dreux and Gorisse in 1981, Ramos (1985) shows the effect of

wet-screening for the Portuguese practices and predicts that the relationship between the

full-mixed and the wet-screened concrete strength obtained from a 76 mm and a 38 mm

screen is 0.84 and 0.78, respectively. The justification for the increase of strength as the

sieve aperture decreases is the increase of cement content as a consequence of wet-screening.

The practical conversion between full-mixed and wet-screened compressive strength

often relies on the work of the United States Bureau of Reclamation (USBR) from 1988

(USBR 1988) and/or on specific experimental programme. Figure 2.18 shows the compres-

sive strength test results for different ages and reveals that the ratio between full-mixed

and wet-screened concrete compressive strengths, fc,dam and fc,wet−screened, respectively,

decreases with the age of the wet-screened concrete. It is possible to acknowledge that,

except for the early ages of wet-screened concrete, the ratio is below unit, meaning that

43



CHAPTER 2. STRUCTURAL PROPERTIES OF HARDENED DAM
CONCRETE

Time under loading, t−t' (days)
Loading age, t' (days)

J(t,t') (1/M
P

a)

Wet−screened concrete in laboratory

●●●●●
●●●
●●●●
●●●
●●●●●●

●●●
●●●●●●●

●●●●●●●●
●●●●●●

●●●
●●●●

●●

●●●●●●●
●●●●

●●● Time under loading, t−t' (days)
Loading age, t' (days)

J(t,t') (1/M
P

a)

Wet−screened concrete in situ

●●●●●●●●●●
●●●●●

●●●●
●●●●●●●●

●

●●●●●●●●●
●●●●●

●●●●
●●●●●

●●●●●●●●●●●●
●●●●●

●●

Time under loading, t−t' (days)
Loading age, t' (days)

J(t,t') (1/M
P

a)

Full−mixed concrete in situ

●●●●●●●●●
●●●●●
●●●●

●●●●
●●●●●●●

●

●●●●●●●●●
●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●
●●●●

●●●

Figure 2.17: Total specific strains of full-mixed and wet-screened concrete measured in
situ and in laboratory (points) and fit to B3 model (grey surface). Adapted from (Soares
de Pinho et al. 1988)

compressive strength of full-mixed concrete is lower than compressive strength of wet-

screened concrete. This work also mentions the importance of the effect of the specimen

size on the prediction of full-mixed concrete based on the results of wet-screened test

results, which are often obtained from smaller specimens.

Vilardell et al. (1998) presents stress-strain curves of mortar, wet-screened concrete

and full-mixed concrete (dam concrete) obtained for different loading ages. The results

show the different development over time of each material and the relationship between

the modulus of elasticity of mortar, of wet-screened concrete and of dam concrete. The

modulus of elasticity increases as the maximum size of aggregate increases, which is usually

is associated with the increase of the aggregate content. This work focused also on the

prediction of the modulus of elasticity using different composite models.
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Sajna and Linsbauer (1998) present an experimental work related specifically to the

wet-screening and size effect on fracture energy of concrete using the Horizontal Wedge

Splitting Test method (HWST) and different specimen sizes. It was concluded that the

size effect has a much larger influence on the fracture mechanics characteristics (fracture

toughness and fracture energy associated to the mode I fracture in pure tension (Mehta

and Monteiro 2006)) than the maximum size of the aggregates. Similar work has been

developed by Ghaemmaghami and Ghaemian (2006) concerning the fracture properties

of dam concrete and ranging the maximum size of aggregate between 20 mm and 65 mm.

The main finding is the effect of the aggregate size on the fracture energy and that this

property depends on the nature, size and properties of the aggregates (Ghaemmaghami

and Ghaemian 2006).

The comprehensive experimental work of Li et al. (2004) and Deng et al. (2008) is

noteworthy not only for the comparison of the effect of two types of aggregates (oval-shaped

aggregates and crushed aggregates) on different concrete properties at several concrete

ages but also to the specific study of dam and wet-screened concrete, using large and small

specimens, respectively. Using specific uniaxial tensile and compressive tests procedures

it was possible to obtain the complete stress-strain response for each type of concrete

and specimen and, therefore, extract a large number of variables, such as the tensile and

compressive strengths, the secant modulus of elasticity in tension and in compression, the
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strain at peak tensile and compressive stress and the fracture energy. The dam or full-

mixed concretes yield higher modulus of elasticity, higher fracture energy but lower tensile

and compressive strengths (obtained from different specimens). The authors propose

empirical expressions for the prediction of dam and wet-screened tensile strength based on

the compressive strengths.

The experimental results of Zhou et al. (2010) contradict the general tendency for

the compressive strength at younger ages. Althouth it was concluded that the average

compressive strength of full-mixed concrete was higher than the wet-screened concrete,

this conclusion could be due to the very larger result scatter. The work of Zhao et al.

(2015) also differs from the general tendency with respect to the fracture energy under

direct tensile test.

More recent work confirms the general relationship between dam and wet-screened

concrete compressive and tensile strengths (Kumar et al. 2015; Guan et al. 2016; Yang

et al. 2016) but it also indicates lower modulus of elasticity for the full-mixed concrete

(Guan et al. 2016). Shen et al. (2017) show that dynamic strength of full-mixed concrete

is also lower than its wet-screened concrete under the same loading conditions.

Yang et al. (2016) give some insight on the physical mechanisms of the effect of the

aggregate size on the strength of concrete. It is argued that the maximum size of aggregate

has a positive and a negative effect on the strength properties. The positive effect relates

to the reduction of the interfacial transition zone, the weaker material inside the concrete

specimen, as the size of the aggregate increases. The negative effect is due to the quality

reduction of the cement paste, especially of the interfacial transition zone, due to the

decrease of workability and compaction difficulties.

Table 2.1 presents a summary of the ratios between dam and wet-screened (SCR)

concretes for compressive and splitting tensile strengths, fc and ft,spl, obtained from the

experimental results available in the literature. The dam or full-mixed concrete results

were obtained with large specimens and the wet-screened concrete results were obtained

with small specimens.
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Due to its particular application, its prescribed composition (NP EN 206 2005) and

despite the extensive experimental work and research developed worldwide concerning

conventional concrete, correlations between the behaviour of wet-screened and full-mixed

concrete are limited and concern only specific concrete ages. ACI Committee 207, for

example, refers briefly that the compressive strength of large specimens of full mass concrete

is 80 to 90% of the compressive strength of wet-screened concrete, evaluated in smaller

specimens (ACI Committee 207 2005).

The relationship between full-mixed and wet-screened concrete mechanical properties

has been studied in the past mainly through experimental testing. However, a general

physically-based correlation between wet-screened and full-mixed dam concrete properties

has not yet been proposed. The need of reliable relationships between full-mixed concrete

and wet-screened concrete is required for design, concrete quality control during construc-

tion, monitoring and data analysis and for safety control throughout service life (USBR

1988; ACI Committee 207 2005; ICOLD 2008).

In order to understand the effect of wet-screening, research studies focused on the

influence of the properties, gradation and content of aggregates on the structural properties

of concrete are also relevant.

Several experimental studies investigated the influence of aggregate content, size and

type on the fracture behaviour of concrete, including the modulus of elasticity (Walker

and Bloem 1960; Hirsch 1962; Counto 1964; Alexander and Mindess 2010), the maximum

strength (Walker and Bloem 1960; Tsiskreli and Dzhavakhidze 1970; Scholer and Baker

1973; Zhou et al. 1995; Kozul and Darwin 1997; Sizov 1997; Özturan and Çeçen 1997;

Akçaoğlu et al. 2004; Vu et al. 2011) and the fracture energy (Kozul and Darwin 1997;

Sajna and Linsbauer 1998; Khaloo et al. 2009; Rocco and Elices 2009; Beygi et al. 2014;

Nikbin et al. 2014).

Strength of concrete is strongly related to damage in the interface between cement

paste and aggregates, where a weaker material is formed, the ITZ. The shape, dimension,

content, surface roughness, strength and deformability of the aggregate are important

factors for the properties and development of the ITZ (Scholer 1967; Mitsui et al. 1994;

Ollivier et al. 1995; Scrivener et al. 2004; Akçaoğlu et al. 2004).

Based on experimental tests, Walker and Bloem (1960) showed the influence of grading

and MSA on compressive and tensile strengths with an extensive and comprehensive

experimental study using several cement contents and considering non air-entrained and
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air-entrained concretes. The aggregate maximum size ranged from 9.5 to 63.5 mm (3/8 to

2 1/2 inches) and cement content ranged from 223.8 to 447.5 kg/m3 (4 to 8 sacks per cubic

yard; 1 sack/yd3 = 94.3 pounds/yd3 = 55.9 kg/m3). The results indicated, as previously

stated by other authors, that strength decreases when larger aggregates are used, for the

most specimens, and that this effect is more pronounced for higher cement contents.

The study of Tsiskreli and Dzhavakhidze (1970) concerned the concrete compressive

and tensile strengths and the effect of size and fraction volume of coarse aggregate for the

concrete of the arch dam at the Ingur hydroelectric station. The approach was to obtain an

empirical expression for strength values based on a sensitive criterion of aggregate size, the

"coarseness characteristic", η =
∑
V dav, where dav is the average diameter between sieves

and V is their volume per unit volume of concrete. This parameter has the advantage of

considering both the size and the fraction volume of each coarse aggregate component and

of being more sensitive to study strength. Results showed that for small cement contents,

the compressive strength increased with the MSA and that this effect diminishes as cement

content increases. The opposite effect was obtained for tensile strength, from splitting and

flexural tests. Tensile strength decreases with the "coarseness characteristic".

Another important study concerning the effect of MSA on the strength properties of

concrete is the experimental work of Higginson et al. (1962). This investigation compared a

series of test results varying the maximum size of the aggregate and the cement content. Due

to its comprehensiveness, as recommend by the authors, the obtained results constitute, still

nowadays, a "general guide in designing concrete mixes for average conditions" (Higginson

et al. 1962; ACI Committee 207 1997; ACI Committee 207 2005; ICOLD 2008).

This study refers to the use of the aggregate size and the cement content to obtain

high, medium and low strength concretes. For dam concrete, low stresses imply the use of

low strength values and, therefore, large MSA are recommended in order to optimize the

cement content. Figure 2.19 presents the strength contour lines of a set of experimental

tests of concrete made from aggregates with dimensions ranging from 9.5 to 152.4 mm (3/8

to 6 inches) and with several cement contents, ranging from 167.8 to 391.6 kg/m3 (282.9 to

660.0 pounds/yd3). The conclusions are significant and show a nonlinear behaviour when

increasing MSA for a given cement content. For low cement contents, strength increases

with MSA but with a decreasing rate. For higher cement contents, it seems to be an

optimum line for which strength does not increase with the MSA. The study explains also

that the aggregate surface area has a positive and negative effect in compressive strength.
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Small MSA implies a greater surface area and larger space between aggregates, therefore,

requires more mortar paste to coat the surface and to fill the spaces (positive effect to

strength). Small MSA implies also the use of higher water-cement ratios which increases

porosity and reduces strength. It was also mentioned in this work that the failure of low

cement content mass concrete were due to lack of bond between aggregates and mortar.

Figure 2.19: Effect of aggregate maximum size on cement content. Adapted from (Higgin-
son et al. 1962; ICOLD 2008)

.

Cordon and Gillespie (1963) also focused on the effect of the MSA on the compressive

strength of concrete for different water cement ratios. Figure 2.21 shows that compressive

strength decreases as the MSA increases. This comprehensive experimental work has

significant results and it had great importance for understanding the influence of each

component on the strength of concrete but the conclusions should be carefully analysed.

Since the small aggregate concretes have larger water and cement requirements, the effect

of the MSA is not entirely clear from this type of representation (Figure 2.21) and the

slump results. Additionally, although at the time the size effect was not fully studied,

the decrease in strength in some results could be due to the increase of the specimen size

for the concretes with larger aggregates (152.4 mm × 300.8 mm cylinders were used for

concrete with aggregates up to 38 mm and 203.2 mm × 406.4 mm were used for concrete
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Figure 2.20: Effect of aggregate maximum size on compressive strength. Adapted from
(Higginson et al. 1962; ICOLD 2008)

.

with aggregates with MSA=76 mm).

Figure 2.21: Effect of maximum size aggregate on concrete strength. Adapted from
(Cordon and Gillespie 1963)

The experimental work of Scholer and Baker (1973) was based on a series of gradations

which were produced based on the variations measured in highways. The fineness index

was taken as the independent variable explaining the effect of the gradation.

Despite the complex behaviour of concrete, Neville et al. (1983) show that there is a
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strong age-independent correlation between concrete and mortar’s compressive strength

for different loading ages and that, compared to mortar, concrete has higher compressive

strength (Figure 2.22). The coarse aggregates introduce strong strength and stiffness

heterogeneities into concrete but, according to these results, it seems to increase the

bearing capacity of the material due to interlocking of the aggregates (Kaplan 1959). On

the other hand, regarding the tensile strength, Kaplan (1959) and Neville et al. (1983)

refer that mortar strength results are bound to be higher than the concrete, due to the

strong influence of ITZ.

Figure 2.22: Correlation between compressive strength of mortar and concrete. Adapted
from (Neville 1983)

Larrard and Belloc (1997) and Larrard (1999) present a different approach on the

prediction of concrete strength using a unique physical parameter, the maximum paste

thickness (MPT), which comprises topological and mechanical aspects. This parameter

is capable of describing the two contraditory effects of the MSA on concrete strength,

already described by other authors (Walker and Bloem 1960; Higginson et al. 1962; Stock

et al. 1979): "for a given amount of cement, increasing the MSA tends to reduce the water

demand, while the strength obtained for a given w/c is lower" (Larrard and Belloc 1997).

Larrard and Belloc (1997) also present several experimental results of paste, mortar and

concrete and conclude that there is a relationship between compressive strength of mortar

and concrete for different types of aggregate, but the strength values of concrete are always

lower than the mortar, due to the weaker ITZ (Figure 2.23). The results show the different
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interactions between normal and high-strength cement paste and normal and very good

quality aggregates and its effect on the ultimate properties.
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Figure 2.23: Correlation between compressive strength of mortar and concrete. Adapted
from (Larrard and Belloc 1997)

Although some contradictory results require further study, these type of correlation

are especially useful for the characterization of dam concrete strength properties since

mortar specimens are easier to test and can be used to add some insight on the behaviour

of concrete.

Other works focused on the influence of coarse aggregate on strength properties, each

one focused on a particular factor and mechanical property: the effect of aggregate size on

the use of the cylinder splitting test as a measure of tensile strength (Hannant et al. 1973);

the effect of the coarse aggregate size on the ITZ (Akçaoğlu et al. 2004); experimental
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work with large specimens for studying the influence on fracture energy (Kozul and Darwin

1997; Khaloo et al. 2009); and, the triaxial behaviour (Vu et al. 2011).

2.4 Modelling concrete behaviour

2.4.1 Analytical models for the prediction of concrete structural properties

2.4.1.1 General aspects

According to Neville et al. (1983) the study of materials can be divided into three levels:

the empirical, the phenomenological (semi-empirical or engineering level) and the molecu-

lar (theoretical or structural). Each one is focused on different perspectives of the same

behaviour. The empirical level is based on experimental results for which empirical expres-

sions are used to characterize the behaviour. The phenomenological level considers simple

physical models in order to understand the material behaviour which can be adapted or

influenced by experimental evidences. The molecular level aims to include the processes at

the molecular or atomic level and leads to an explanation of the physical problem. In civil

engineering it is usual to rely on semi-empirical expressions to predict the macroscopic

behaviour of concrete and use them in the structural analysis (Fib 2010).

As pointed out by USBR (1988), this type of analytical models can be used to "trou-

bleshoot, evaluate, predict, or estimate concrete strengths", bearing in mind that "strengths

calculated by any method must always be considered subject to revision on the basis of

experience with field or trial batches".

2.4.1.2 Prediction of deformability properties

Prediction of concrete creep and shrinkage goes back to the beginning of the twentieth

century, when Woolson and Hatt registered what it seemed to be a "flow" of concrete

(Neville et al. 1983). Since then, several mathematical laws were developed to establish

the relationship between strain and stress over time (Bažant 1975; Fib 2010; Briffaut et al.

2012).

Several studies have been focused on the prediction of the creep strain development

based on other structural properties, such as the compressive strength, or on composition

data, such as the cement and water contents. The different prediction models for the

delayed behaviour have been developed by Bažant throughout the years: BaP model
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(Bažant and Osman 1976); BP-KX model (Bažant and Kim 1991); and the most recents,

B3 model (Bažant and Baweja 1995a) and B4 model (Bažant et al. 2013). The Fédération

Internationale du Béton (FIB) also proposes simple prediction models in the fib Model

Code 90 (CEB-FIP 1990) and in the fib Model Code 2010 (Fib 2010). Similarly, the

American Concrete Institute (ACI) proposes other expressions in their standards, ACI

209R-92 (ACI Committee 209 1992). Gardner and Lockman (2001) propose the GL2000

model for the prediction of shrinkage and creep of concrete. The logarithmic expression

has been also proposed in past studies for the dam concrete creep function considering

only basic creep strains (Ramos 1985; Soares de Pinho 1989).

The heterogeneity of concrete can be studied using models in which the mesostructure

is taken into account. Composite models allow for the prediction of the deformability

properties taking into account the concrete composition and considering concrete as coarse

aggregate inclusions embedded in a matrix of mortar. The first composite models applied

to concrete concerned the elastic behaviour using approaches based on uniaxial rheological

models (Hirsch 1962; Hansen 1965; Counto 1964). Other type of models are based on

homogenization techniques, such as the variational approach considering spherical inclu-

sions (Hashin-Shtrickman bounds) (Hashin 1963), the self-consistent model considering

ellipsoidal inclusions (Hill 1965) and the Mori-Tanaka method (Benveniste 1987).

The two-phase composite models applied to concrete are usually used for determining

the elastic properties, considering the bond between binder paste or mortar and the coarse

aggregates. The hypothesis of these types of models are the assumption of elastic linear

behaviour, the assumption of isotropy of each component. Further, the Poisson’s ratio

effect and the interface behaviour between inclusions and matrix are neglected (Counto

1964).

Several authors proposed two-phase composite models for the determination of the

instantaneous deformability properties (Hashin 1962; Hirsch 1962; Counto 1964; Hansen

1965) with specific applications (Vilardell et al. 1998; Topçu 2005). The prediction of the

aging viscoelastic behaviour of the materials using composite model was developed with

the work of Counto and Popovics (Counto 1964; Popovics 1987) and later with Granger,

Bažant and Baweja (Granger and Bažant 1995; Baweja et al. 1998), based on the uniaxial

rheological models, and, more recently, Sanahuja and Lavergne, using homogenization

concepts (Sanahuja 2013; Lavergne et al. 2015). Recent studies relate to the development

of three-, four- and n-phase (Li et al. 1999; Zheng et al. 2012) composite models in order
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to take into account the different types of material properties inside the concrete matrix,

particularly the properties and behaviour of the interfacial transition zone (Hashin and

Monteiro 2002; Grondin and Matallah 2014).

2.4.1.3 Prediction of strength properties

Over the years several authors and institutions proposed different analytical models for

the development of compressive strength over time in order to describe the behaviour from

setting to complete hardening. These expressions have parameters which can be fitted to

experimental results at a given concrete age and used for the compressive prediction for

later ages.

International institutions, such as the American Concrete Institute (ACI) and the

International Federation for Structural Concrete (FIB), recommend general development

laws composed by a time dependent expression and the compressive strength at reference

age, usually 28 days. The expressions proposed by Carino and Lew (2001) are frequently

used since it links the cement hydration to the development of mechanical properties

(Schutter and Taerwe 1996; Cervera et al. 1999). The hydration of cement has an upper

limit related to cement and water content and due to diffusion of water through C-S-H new

products of hydration around the unhydrated cement particles. These studies, similarly to

the hydration of cement, consider a limit for the strength of concrete and, therefore, the use

of hyperbolic functions with an ultimate strength to simulate the development of strength

over time. Yeh (2006) describes four methodologies for determining the compressive

strength as a function of the water-other cementitious materials ratio and time, using

Abrams and Power’s formula. A set of generalized formulas is proposed.

Based on the experimental studies, different authors developed empirical expressions

which represent the relationship between two different structural properties, for example,

the concrete’s modulus of elasticity and the compressive strength (Teychenne et al. 1978;

ACI Committee 363 1992; ACI Committee 318 1995; Noguchi et al. 2009; Fib 2010) and

different types of tensile strengths and the compressive strength of concrete (Carino and

Lew 1982; Oluokun et al. 1991; ACI Committee 318 1995; Larrard 1999; Arιoglu et al.

2006; Fib 2010). This type of expressions can be used to reduce the number of specimens

in a given experimental programme and are particularly relevant for the prediction of

tensile strength.

Concerning ultimate structural properties, there are different expressions that relate
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the strength of concrete with other properties of concrete based on the composition data.

These expressions generally describe the behaviour of concrete and its parameters can be

found by fitting to experimental results.

One of the first expressions to be developed was the formula of Feret from 1892 (Bolomey

1936),

fc =K

(
cv

cv +wv + vv

)2
(2.4)

where cv, wv and vv are the volume of cement, water and voids, respectively, per unit

volume of concrete and K is a constant coefficient that includes other factors affecting the

strength of concrete 1.

Due to the difficulties in obtaining the exact volumes of cement, water, aggregates and

voids, these prediction expressions are not used in practice. The most used are the Abrams

law (Equation 2.5), the Graf law (Equation 2.6) and the Bolomey law (Equation 2.7).

fc = K

Ax
(2.5)

where x is the ratio between the volume of mixing water and the apparent volume of cement

(considering the apparent density of cement equal to 1.5) and K and A are coefficients

dependent on the quality of the cement, the curing duration and conditions 2.

Later in 1923, Graf adapted the Abrams law to take into account the european testing

conditions and proposed the expression:

fc = fc,28
400

(
A

72w/c +α

)
(2.6)

where fc,28 is the compressive strength at the age of 28 days, A is a coefficient dependent on

the quality of the cement, the curing duration and conditions 3, w/c is the ratio, in weight,

between water content and cement content and α is a coefficient that varies between 20

and 40.

Based on the Feret formula and for compact concretes, Bolomey (1936) proposed the

following expression:
1For compressive strength at the age of 28 days, the value of K may vary from 3000 lbf/in2 (206.8

MPa) and 4500 lbf/in2 (310.3 MPa).
2For the compressive strength at the age of 28 days of cylinders with 15 cm in diameter and 30 cm of

height, Abrams refers K=985 and A=7.
3For the compressive strength at the age of 28 days, A can vary from 1300 and 2600, with an average

of 1640.
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fc =K

(
c

w
− 0.50

)
(2.7)

which is a particular case of the general expression:

fc =
[(

γ

2.35

)2( c
w

)]B
K

2 (2.8)

where fc is the compressive strength in kg/cm2, γ is the density of the concrete in kg/m3,

c/w is the ratio, in weight, between cement and water contents, B is a coefficient dependent

of the type of cement and can vary between 1.2 and 2.0 4 and K is a coefficient dependent

on the quality of the cement, the curing duration and conditions 5.

The concrete strength predictions are often related to the water-cementitious materials

ratio which is the base of the most common empirical law, the Abrams law (Abrams

1918). Although this empirical relationship is widely used, it is not valid for all range

water to cement ratio (Gilkey 1961). For very low water to cement ratios the quality of

the cement paste inside the concrete is compromised by the compaction difficulties (Mehta

and Monteiro 2006).

The recommendation of USBR (1988), based on the formula of Feret, includes also the

influence of secondary cementitious materials and chemical admixtures:

fc =K

1 +
(
Empc(1− pc)n

1− pc

)( cv
cv +wv + vv

)2
(2.9)

p= cw
cw + fw

(2.10)

where Em is the maximum efficiency of the secondary material, n is the lime fixation factor,

pc is the ratio between the weight of cement and the sum of the weight of cement and

the secondary cementitious materials, cw and fw are the weight of cement and secondary

cementitious material, respectively, per unit volume of concrete. USBR (1988) proposes

values for Em and n as a function of the type of cementitious material and recommends the

evaluation of the two values based on test results considering two percentages of secondary

material. It also considers that n = 1 can be an appropriate value for the fly ash and,
4In general, for Portland cements, B=1.5.
5Considering B=1.5 and normal cements, the values of K can vary from 140 to 180 for the age of 7

days and between 180 and 250 for the age of 28 days.
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therefore, the value of Em can be obtained from one type of concrete. If there is not any

information available, USBR recommends the value of 1.25 for Em.

Some studies focused on the importance of the cement content, the water content and

the maximum aggregate size (Higginson et al. 1962; Stock et al. 1979; Akçaoğlu et al. 2004;

Popovics and Ujhelyi 2008). For example, in order to predict concrete strength based on

composition, Popovics and Ujhelyi (2008) proposed an adaptation of the Abrams law by

including the cement content, the water content and the concrete consistency (measured

as slump flow or Vebê time) as additional variables of the model. Although recognizing

the importance of the maximum particle size in concrete strength, this variable was not

taken into account (Popovics and Ujhelyi 2008). Similarly to Popovics work, other studies

developed new models considering specific approaches (Rao 2001; Çolak 2006) or variables,

such as age (Yeh 2006; Abd elaty 2014) and the fly ash content (Rajamane et al. 2007).

As previously described, one important model which relies on a more comprehensive

parameter is the prediction model proposed by Larrard (1999). The parameter is the

maximum paste thickness (MPT), i.e. the mean distance between two adjacent coarse

aggregates includes the effect of aggregate volume and the effect of MSA and, according to

the author, determines the magnitude of concrete strength since this is where the higher

stresses will occur. Other effects are also taken into consideration in his study in order

to have a general model for the prediction of compressive strength of concrete (effect of

the properties of the aggregates, the effect of time, the effect of additions and the effect of

fillers).

2.4.2 Discrete models for the study of concrete behaviour considering its

mesostructure

Mesoscale analyses focus on the study of the behaviour of concrete, on the interactions

between coarse or fine aggregates and on the maturing mortar or cement paste in order to

evaluate the main mechanical properties and their deterioration over time (Alnaggar et al.

2013; Giorla et al. 2015; Pan et al. 2017). Several types of models and approaches have been

used for the prediction of concrete behaviour and to study the influence of coarse aggregate

mainly on the fracture properties (Monteiro Azevedo and Vieira de Lemos 2006; Grassl

et al. 2012). The approaches can be divided into continuum and discrete frameworks.

Fracture of concrete have been modelled using several types of approaches based on

the finite element method, which are known as classical strain localization methods. One

59



CHAPTER 2. STRUCTURAL PROPERTIES OF HARDENED DAM
CONCRETE

type of models, based on the strong discontinuity approach (SDA) uses discontinuous

displacements into the elements (Simo et al. 1993; Costa et al. 2010; Dias et al. 2017)

(embedded-discontinuities) or into the nodes (extended finite element method, X-FEM)

(Moës and Belytschko 2002) in order to simulate the crack opening. Other type of fracture

models are often referred to as "smeared" crack models or weak discontinuous models since

it distributes strain softening and reduces the material strength and stiffness of the finite

elements in which the tensile strength is exceeded (Cervera and Chiumenti 2006).

The work of Roelfstra et al. (1985) from 1985 shows the advantages of using finite

element models to describe the different phenomena occurring inside the concrete during

hardening, focusing on the deformation properties, such as elasticity and shrinkage. Prac-

tical mesoscopic applications for the prediction of concrete behaviour or for the study of

a specific effect or property using continuum models are presented by Carol et al. (2001)

and Wang et al. (2016), in which interface elements in a finite element mesh define the

fracture behaviour at the ITZ. The work of Benboudjema et al. (2004), Xotta et al. (2013),

and Havlásek and Jirásek (2015), consider the creep properties, the behaviour of ITZ,

the effect of drying and a damage model coupled with softening plasticity (Benboudjema

et al. 2004). Both examples show the importance of the ITZ behaviour on the properties

of concrete and the effect of local damage on the development of the cracking patterns

and, ultimately on the failure mode. The work of Wriggers and Moftah (2006) focuses

on the effective properties of concrete and shows the agreement between experimental

results, composite and numerical model results considering the aggregate size distribution.

The representation of the mesostructure of concrete allows for a more detailed research

of specific studies, such as the coupling between creep and damage in which the physical

explanation takes place at the mesoscale (Saliba et al. 2012), the development of internal

self-balanced stresses that occur during hydration and hardening of concrete (Briffaut et al.

2013; Xu et al. 2017) and the study of stress development on concrete with alkali-silica

reactions (Giorla et al. 2015). It is known that stiff aggregates restrain the deformations,

introduces a non-uniform stress field inside concrete in which there are highly stressed

areas and that creep has a significant role in the relaxation of these stresses (Briffaut et al.

2013; Giorla et al. 2015).

Other type of model based on a continuum domain is the microplane model in which

the relationships between strains and stresses are not defined by tensors but by vectors

acting on an arbitrary plane. At a given point, strains and stresses are defined as the
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summation of strain and stress vectors calculated on several microplanes with different

orientations, in order to describe the material microstructure (Bažant et al. 1996).

However, the quasi-brittle behaviour of some heterogeneous materials, such as concrete,

is considered to be poorly simulated by traditional continuous approaches that disregard

the material microstruture and the randomness of material heterogeneity (Cusatis 2001;

Monteiro Azevedo 2003). The damage and fracture processes of this type of materials

are complex and sensitive to the volume where the energy is dissipating and, therefore,

numerical models should consider this effect (Bažant 2002).

Discrete models are able to introduce some type of microstructure and randomness into

the material representation and the cracking zone is explicitly taken into consideration.

This feature is known to be better suited to simulate fracture in quasi-brittle materials

(Monteiro Azevedo 2003). By considering the material as a randomly produced assembly

of discrete rigid particles in contact with each other and, for those contacts, consider a

simple interaction model, it is possible to study the behaviour of concrete taking into

account its mesostructure.

The discrete or distinct element method (DEM), initially developed for modelling gran-

ular materials (Cundall 1971), is an important tool for modelling heterogeneous materials

undergoing generalized micro-cracking through the material and large macro-cracking pat-

terns. Rigid particle models (PM) are being used to reproduce the overall behaviour of

quasi-brittle materials, such as rock and concrete, and have been shown to reproduce

several macroscopic phenomena, such as elasticity, viscoelasticity, post-peak behaviour,

crack propagation and strength increase with confinement (Monteiro Azevedo 2003).

The use of DEM was first applied to the study of geotechnical materials of granular

nature. Cundall described the basis for the DEM simulation by considering the movement

and interaction of rock blocks (Cundall 1971) and of 2D circular elements (Cundall and

Strack 1979). Later on, cracking was taken into account for geomaterials, such as rock,

with very simple contact models between rigid elements (Zubelewicz and Mróz 1983; Plesha

1983). Plesha (1983) focused on the importance of the rock microstruture and proposed a

model explicitly considering the microstruture into the interaction of discrete rigid polygons

or polyhedra. Meguro and Hakuno (1989) proposed an extended version of DEM, the

modified discrete element method, MDEM, with the intent of simulating the behaviour of

concrete under extreme dynamic events adopting a nonlinear interaction model between

the rigid particles for the normal and shear directions, called the "pore-strings". At a larger
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scale problem, Vieira de Lemos (1987) applied the method to the dynamic analysis of

rock mass of dam foundations using polyhedra and Cundall is still now actively working

in modelling the behaviour of rock mass (Mas Ivars et al. 2011).

Bažant et al. (1990) proposed a lattice model where pin-jointed frames are connected to

the centres of the coarse aggregates and, therefore, the dimension of the frames is directly

linked to the mesostructure of the concrete. Cusatis (2001) presented a tridimensional

particle model in which each coarse aggregate is explicitly modelled as a rigid particle and

the interaction between the particles simulates the cement paste or mortar behaviour.

The lattice models considering bending frames (Schlangen and Mier 1992) differ from

the lattice discrete particle model proposed by Cusatis (2001) and Smith et al. (2015) since

the first uses the finite element method (FEM) and the second uses DEM for obtaining the

structural response. The first type of models solves the structural system by assembling

the stiffness matrix, at each time step. The DEM is based on a numerical time integration

scheme for solving the equations of motion and for the definition of contact interaction

between elements.

In lattice models the fracture behaviour is obtained by removing the frames that reach a

maximum strength stress as load increases (Schlangen and Mier 1992). The dimension and

properties of the frames are constraint to the heterogeneity of the material (Figure 2.24).

Figure 2.24: Representation of the lattice mesh: a) computer generated aggregate structure;
b) detailed properties of each frame (Lilliu and Mier 2003a)

Some applications of the lattice models relate to the study the influence of the beam

length, the effect of the aggregate structure, content and properties (Mier et al. 2002;

Lilliu and Mier 2003b) and the fracture process zone (FPZ) (Grassl and Jirásek 2010),

the size effect (Grassl et al. 2012), the influence of irregular shaped aggregates (Qian and
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Schlangen 2013) and, more recently, to study the drying shrinkage damage and the early

age behaviour which includes a lattice moisture model with the usual lattice fracture model

(Luković et al. 2016; Šavija and Schlangen 2016; Pan et al. 2017). This type of models are

mesh dependent for regular trusses, introduce local instabilities when a frame is removed

and the global behaviour is affected by the mesh spacing the same way as for continuous

models (Schlangen and Garboczi 1997).

Rigid body spring models have been also used to model the overall behaviour of

structures (Kawai 1978) and the behaviour of concrete (Bolander and Saito 1998). These

models require the definition of the interaction springs between rigid bodies at their

interface. Advances have been done regarding the study of concrete fracture using the

rigid body spring model in which the component’s properties, such as the water to cement

ratio, are taken into account to predict the behaviour of the mortar binding the aggregates

and empirical correlations between the main structural properties are analysed (Nagai

et al. 2004). A 3D extension and other applications have been also proposed: simulation

of impact loads (Yamamoto et al. 2016) and effect of expansions inside the concrete (Eddy

et al. 2017).

DEM particle modelling is especially suited for detailed simulations due to its compu-

tational simplicity, when compared with finite element method formulations (Giorla et al.

2015). A detailed DEM particle model including the particles representing the mortar

allows for the contact constitutive models to be less complex when compared with other

particle models that do not have the same degree of discretization (Alnaggar et al. 2013;

Pan et al. 2017).

Several particle models were developed throughout the years, mainly based on the

original Cundall’s DEM (Cundall 1971; Cundall and Strack 1979) as the solving method,

but using different interaction models for different types of problems. Hassani (1998)

compared the results of an assembly of circular particles with a visco-elastic model (Voigt-

Kelvin model) and particular failure criteria with the results of a one-shear test. In the

rigid particle model, the constitutive models used at contact involved only interaction at

one point of contact and only forces were developed at each contact. However, materials

such as rock present some kind of cemented granular nature which can be considered by

introducing a bending stiffness at the contact. Failure occurs when maximum tensile and

shear stresses at the contact, due to both force and moment developed at the contact, are

exceeded (Potyondy and Cundall 2004). This enhancement is known to improve the main
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physical behaviour of rock, such as elasticity, micro-cracking and peak strength, for several

test configurations: Brazilian test, uniaxial and triaxial compressive test. Other approaches

to simulate this type of materials is to increase the number of contacts of a given particle

(coordination number) establishing an additional bond between close particles that are not

physically in contact (Oñate et al. 2015).

Monteiro Azevedo (2003) proposed a rigid particle model based on DEM for the analysis

of plain and reinforced concrete, in which both aggregates and reinforcement are explicitly

considered and a multiple contact point model is implemented. The post-peak tensile and

shear behaviour at contact can be considered using brittle, linear or bi-linear constitutive

models. Monteiro Azevedo and Vieira de Lemos (2006) and Monteiro Azevedo et al. (2008)

present DEM particle model applications to evaluate the influence of the properties of

coarse aggregates (aggregate shape and modulus of elasticity) on the development of stress-

strain behaviour. These studies show that the heterogeneity of the assemblies and/or

contact properties and the contact fiction behaviour are key factors for representing the

failure patterns and to increase post-peak ductility both in tension and in compression

(Figure 2.25).

Figure 2.25: Failure patterns of concrete DEM particle models under compression us-
ing uniform and heterogeneous contact properties and circular and polygonal aggregates
(Monteiro Azevedo and Vieira de Lemos 2006)

Although roughness is known to have a role in the cracking pattern and force-displacement

curve, polygonal particles are difficult to deal with and the contact detection during cal-

culations is computationally expensive, and, therefore, circular or spherical particles have

64



2.4. MODELLING CONCRETE BEHAVIOUR

been widely used (Monteiro Azevedo 2003).

To simulate the specific microstructure in granular material, Jensen et al. (1999) used

cluster particles, which are a group of circular particles in which the translations between

them are constraint. Additionally, focused on improving the relationship between compres-

sive and tensile strength and post-peak behaviour, Cho et al. (2007) propose a clumped

particle model for the simulation of rock in combination with bonded contact model. A

clump is similar to a cluster particle, but the rotation between particles intra-clump is

also restrained, as rigid bodies. In order to simulate the granular nature of rock, Potyondy

(2010) proposed a model in which the nonlinear behaviour is implemented in a fictitious

interface, a smooth-joint contact, in order to reproduce the specific microstruture of Äspö

diorite. The overall response of the material is a combination of a network of interfaces

defining the microstructure and the behaviour of a grain like assembly surrounded by

interface joints and considering a bond contact in the intra-grain particles. The goal of

this type of adaptations is to include a more realistic representation of the microstructure

of rock in order to improve geometry-based properties, such as dilation and interlocking

friction (Cho et al. 2007).

One of the main disadvantages of DEM is the need for the calibration of the micro

properties at contact level in order to obtain the macroscopic properties of the particle

assembly that represent the mechanical behaviour of the material. As described by Oñate

et al. (2015) and Rojek et al. (2012) two main approaches have been used. The first is a

global approach in which the micro parameters are set equal to every contact, regardless of

the particle size or packing, in order to establish analytical expressions for the relationship

between micro and macro properties (Labra and Oñate 2009). The second approach uses

a physical concept to introduce the influence of the particle radius (Potyondy and Cundall

2004). Combining the two approaches, some authors have developed general analytical

expressions that are calibrated to describe the relationship between the micro and the

macro properties (Wang and Tonon 2009; Kazerani and Zhao 2010).

More recently, different mesoscale studies have been developed focusing on the use of

DEM applied to particle models for the prediction of concrete behaviour, for example, the

study of the dynamic behaviour, namely the effect of rate strain (Qin and Zhang 2011)

and the prediction of hard impact (Tavarez and Plesha 2007; Antoniou et al. 2017), the

study of local failure mechanics, size effect (Nitka and Tejchman 2015), the effect of aspect

ratio and of friction between the specimen and the platens (Sinaie 2017) and the decrease
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of the main mechanical properties due to high temperature damage (Sinaie et al. 2016).

These studies highlight the need for more detailed and realistic models in order to better

represent the fracture behaviour of concrete, such as, the fracture toughness, the pre-peak

and pos-peak ductility, the debonding between aggregate and cement past or the fracture of

aggregate particles, the identification and study of the fracture process zone. DEM particle

model applications, in which the detailed mesostructure is explicitly taken into account,

can be found in (Piotrowska 2013; Nitka and Tejchman 2017; Suchorzewski et al. 2017).

Piotrowska (2013) studied the influence of aggregate and ITZ properties on the fracture

of concrete using a detailed particle model and presents a schematic graph illustrating

the possible failure patterns (Figure 2.26). A weak aggregate concrete yields continuous

and straight cracks throughout the specimen, whereas a strong aggregate concrete forces

the crack path through weak ITZ around the aggregate particles or through the mortar

between the aggregate particles.

Figure 2.26: Schematic illustration of the different failure patterns considering different
aggregate strength properties (F0a) and ITZ strength properties (F0am) (Piotrowska 2013)

The studies using DEM are usually confined to the prediction of the short-term prop-

erties of concrete and the aging viscoelasticity is often disregarded (Donzé and Magnier

1995; Cusatis 2001; Potyondy and Cundall 2004; Monteiro Azevedo et al. 2008). The

development of stiffness in the early ages, the high increase of deformation due to stress

and the drop of stress due to an imposed strain related to the rate of loading are main

features of the behaviour of concrete and should be included into a constitutive model.
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Rate-type effects, such as creep, have been considered for dynamic analysis in a simplified

manner for short-term analysis (Cusatis et al. 2001) and, more recently, were taken into

account in lattice models (Abdellatef et al. 2015; Pan et al. 2017). Other example of a

short time-dependent analysis using discrete models are the studies of asphalt mixtures

with DEM using non-aging viscoelastic contact models (Liu et al. 2009; Ma et al. 2016).

Given that detailed particle DEM based models are computationally intensive due to the

restrictions of the time step, long-term analysis is usually prohibitive.
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Experimental characterization of the

structural properties of dam concrete

3.1 Introduction

This chapter describes the experimental characterization procedures of the main structural

properties of dam concrete and presents the results of deformability and strength tests of

the concrete used in the case study, the Baixo Sabor dam.

Firstly, a general overview of the properties of dam concrete placed on Portuguese

large dams is presented. Composition data, deformability and strength test results of

several concretes are showcased, allowing the comparison with the test results obtained

in the case study. The importance and difficulties of dam concrete characterization are

also highlighted. A preliminary relationship between wet-screened and dam concrete

deformability properties can be drawn based on the analysis of these results.

The case study is the concrete placed in the Baixo Sabor dam. This chapter presents

the main features of the arch dam, describes the materials used for the production of

concrete, the construction method, the casting schedule and the types of concrete cast in

the dam’s body. The composition data of dam and wet-screened concretes is also presented.

Based on these results, a procedure for obtaining the wet-screened composition data is

proposed.

The first set of tests relate to the main experimental work developed in this thesis.
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The experimental programme included the planning, installation and maintenance of

specific equipments placed on site, the creep cells, for the determination of the in situ

creep strains and of standard laboratory creep tests. The experimental procedures for

the characterization of dam concrete properties are described in detail. The in situ

experimental programme using creep cells focused on the correlation between dam and

wet-screened concrete properties.

In order to complement the results obtained from creep cells, the test results obtained

in quality control during construction, provided by the dam’s owner, were also analysed.

The concrete results concern standard laboratory tests of the main mechanical properties

of dam and wet-screened concretes at several loading ages.

The test results include the mechanical properties of the rock used for the aggregates,

the dam and wet-screened concretes and the mortar binding the aggregates. The studied

mechanical properties are the modulus of elasticity at different ages, the creep compli-

ance in compression, the uniaxial compressive strength and the splitting tensile strength,

determined at different ages.

The detailed description of each individual result obtained in the creep cells is available

in two technical reports (LNEC 2013; LNEC 2014b). The raw data and a statistical

analysis of the test results concerning the quality control laboratory testing is presented

in other technical report (LNEC 2017).

3.2 Properties of dam concrete placed on Portuguese large dams

3.2.1 Introductory note

The content of this section was published in a scientific paper in the national journal

"Revista Portuguesa de Engenharia de Estruturas"with the title "Análise integrada dos re-

sultados dos ensaios de deformabilidade do betão de grandes barragens portuguesas" (Serra

et al. 2015a) (Appendix B).

3.2.2 Composition and properties

In this section an overview of the properties of the concrete placed in several Portuguese

large dams is presented. The available data was obtained from different sources, such as

technical reports and specific studies (Ramos and Soares de Pinho 1983; Soares de Pinho
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et al. 1988; Batista 1998; Serra et al. 2010; Vieira 2012; Serra et al. 2014b). Unfortu-

nately, some properties and results are often incomplete, especially for older dams. The

deformability results are more frequent than the strength results due to LNEC’s effort on

experimental studies using creep cells.

The collected data of composition and deformability test results of the concrete of

several Portuguese dams, built since 1951, allowed the establishment of correlations between

the deformability properties of the full-mixed and the wet-screened concrete used in dam

construction. Taking into account the laboratory and in situ testing, correlations between

creep coefficients of wet-screened and full-mixed concrete were obtained.

The type of aggregates vary according to the dam’s geographic areas. Most of the large

concrete dams are located in the Northern part of Portugal where good quality granitic

rock is available. The maximum size of aggregate is usually 150 mm. The cement content

has been decreasing with time mainly due to the addition of supplementary materials

(mainly fly ash) when mixing. The water-binder ratio varied from 0.70 on Picote dam

(built in 1958) to 0.34 on Torrão dam (built in 1988). Table 3.1 presents the available

composition properties from each studied dam concrete of a total of nineteen dams.

Figure 3.1 shows the modulus of elasticity test results of 15 dams (Castelo do Bode,

Venda Nova, Picote, Cabril, Régua, Vilarinho das Furnas, Cahora Bassa, Aguieira, Pracana,

Torrão, Fronhas, Crestuma, Alqueva, Baixo Sabor and Alto Ceira II) over a large period

of time. The presented results were obtained from laboratory tests of the wet-screened

concrete. Generally, the modulus of elasticity varies, approximately, between 23 GPa to

35 GPa at the age of 90 days, and between 27 GPa to 40 GPa at the age of 365 days,

except for the results from Alqueva and Cabril dam, which have extreme values. The major

variability of this mechanical property is due to the modulus of elasticity of the coarse

aggregates and to its content. The majority of the analysed dams used granitic aggregates

(70%), but the modulus of elasticity of granitic rocks can vary widely also (Alexander and

Mindess 2010). An important feature of this type of concrete is the significant development

rate at latter ages (between 90 and 365 days of age).

The available creep tests results are organized by dam, type of concrete (wet-screened

and full-mixed), maturating conditions (laboratory and in situ) and loading age. Figure 3.3

presents the obtained experimental creep compliance, Jexp(t, t′), for a selection of tests and

the fit to the logarithmic creep function (solid lines). The results show the large scatter

in magnitude and development of creep strains over time.
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Figure 3.2 presents compressive strength test results of wet-screened concrete obtained

from the dam concrete placed in some Portuguese dams. Similarly to the modulus of

elasticity results, the compressive strength show large variations, varying between 27.8 MPa

in Aguieira dam (built in 1981) and 55.3 MPa in Foz Tua dam (built in 2015), for the age

of 365 days.
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Figure 3.1: Wet-screened concrete modulus of elasticity results of several dams obtained
from laboratory tests
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Figure 3.2: Wet-screened concrete compressive strength results of several dams obtained
from laboratory tests
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Figure 3.3: Creep test results: a) full-mixed concrete of Baixo Sabor in situ; b) full-mixed
concrete of Torrão dam in situ; c) concrete of Crestuma dam, loading at age of 35 days;
d) concrete of Fronhas dam, loading at age of 28 days

3.2.3 Fit of creep test results to the logarithmic creep function

The specific conditions to which dam concrete is subjected, close to hygrometrical isolation

and with low stresses (usually below 30% to 40% of the maximum strength), imply the

development of only primary and basic creep strains, for service loads (Neville et al. 1983).

The logarithmic expression for the dam concrete creep function or creep compliance, J(t, t′),

has been proposed in past studies (Ramos 1985; Soares de Pinho 1989) (Equation 3.1).

J(t, t′) =K(t′) +F (t′)× log(t) (3.1)
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where t and t′ are the age of concrete and loading age and K(t′) and F (t′) are time-

dependent coefficients. The advantages of this expression are the low number of parameters

that need to be determined, the fact that those parameters can be obtained through

simple experimental tests and that it predicts a good fit to primary and basic creep. The

disadvantages are the poor fit in all the range of loading time (difficulties to fit for early ages)

and that requires the parameters definition on each loading age, t′. The fit of the available

experimental results to the logarithmic creep function allowed for a direct comparison of

the delayed deformability properties of several dam concretes and the study of the influence

of maturation conditions, in laboratory and in situ, on the strain development over time.

Figure 3.4 presents the creep functions and the correspondent creep strains fitted to

experimental results obtained in laboratory tests of wet-screened concrete at the age of

28 days, for several dams (the dashed lines are the extrapolation values to 3000 days under

loading). The creep function values are scattered mainly due to the variation of the modulus

of elasticity, which influences the instantaneous part of the deformation (1/E(t′)). For

the majority of the creep test results, the values of delayed strains, εcreep, after 1500 days

under loading (about 4 years) range between 5× 10−6/MPa to 25× 10−6/MPa (excluding

the exceptional cases of Cabril, Régua and Cahora Bassa dam concretes).

Figure 3.4: Representation of the creep strains fitted to laboratory creep test results of
wet-screened concrete at the age of 28 days

A summary of the fitted parameters of the logarithmic function to the experimental

results of the total strains (sum of instantaneous strains and the creep strains) is available

in (Serra et al. 2015b). The parameter values of K(t′) and F (t′) and, therefore, of creep
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compliance, J(1000, t′), and creep coefficient, φ(1000, t′), after 1000 days under loading

have a large variation due mainly to the different compositions and components used over

the years. For example, for the full-mixed concrete in situ, the creep coefficient for a

loading age of 365 days and 1000 days under loading, varied from 0.16 to 0.67.

3.2.4 Correlation between full-mixed and wet-screened concrete deformability

The available data, obtained from the tests performed in creep cells installed in Torrão,

Fronhas, Alto Lindoso and Baixo Sabor dams, enabled the establishment of a correlation

between wet-screened (SCR) concrete deformability properties, obtained in laboratory

tests, and wet-screened (SCR) and dam concrete deformability properties, obtained from

in situ tests (Figure 3.5). For this comparison only concretes with granitic aggregates were

considered.

Figure 3.5: Correlation between deformability properties of dam and wet-screened concrete
with granitic aggregates obtained in laboratory and in situ: a) modulus of elasticity; b)
creep coefficient for 1000 days under loading for several loading ages

It is shown that, despite the variability of the concrete compositions, of the properties

of each component and, especially, of the water-binder ratio and the fly ash content,

there is a good correlation between the deformability of wet-screened concrete and the

dam concrete from which it was obtained. The correlations present a large coefficient of

determination, R2, except for the in situ modulus of elasticity of the full-mixed concrete,

where the coefficient of determination is 0.64. Based on the these results, it is possible

to conclude that the in situ modulus of elasticity of the full-mixed concrete is always
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greater than those obtained for the laboratory wet-screened concrete, due, mainly, to the

larger aggregate content. The dam concrete creep coefficients are, in general, smaller

than the creep coefficients of laboratory wet-screened concrete, especially for older ages.

Equations 3.2 to 3.5 present the statistical correlation between the studies properties of

dam and wet-screened concretes.

ESCR,IN SITU (t′) = 0.79 ESCR,LAB(t′) + 16.93 (3.2)

EDAM,IN SITU (t′) = 0.80 EDAM,LAB(t′) + 10.35 (3.3)

φSCR,IN SITU (t′+ 1000, t′) = 1.14 φSCR,LAB(t′+ 1000, t′)− 0.13 (3.4)

φDAM,IN SITU (t′+ 1000, t′) = 0.57 φDAM,LAB(t′+ 1000, t′) + 0.40 (3.5)

where ESCR,IN SITU (t′), ESCR,LAB(t′) and EDAM,IN SITU (t′) are the modulus of elas-

ticity of wet-screened concrete obtained in situ, the modulus of elasticity of wet-screened

concrete obtained in laboratory and the modulus of elasticity of dam concrete obtained

in situ, respectively, and φSCR,IN SITU (t, t′), φSCR,LAB(t, t′) and φDAM,IN SITU (t, t′) are

the creep coefficient of wet-screened concrete obtained in situ, the creep coefficient of

wet-screened concrete obtained in laboratory and the creep coefficient of dam concrete

obtained in situ.

A similar correlation can be obtained between the laboratory compressive strength

of wet-screened, fc,SCR(t′), and dam concrete, fc,DAM (t′), based on the available results

of Portuguese dams (Figure 3.6). Note that this correlation is based on the average

experimental results of small specimens of wet-screened concrete and large specimens of

dam concrete. The results show that dam concrete has a smaller compressive strength

when compared with the wet-screened concrete.

fc,DAM (t′) = 0.42 fc,SCR(t′) + 9.94 (3.6)

The linear fits presented in Figure 3.5 can be used for a preliminary prediction of the

dam concrete deformability based on wet-screened test results, which are easier and often
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fc,DAM (t') = 0.42 fc,SCR (t') + 9.94

R² = 0.60
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Figure 3.6: Correlation between compressive strength properties of dam and wet-screened
concrete obtained in laboratory

used for concrete design studies.
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3.3 Case study: Baixo Sabor dam

3.3.1 General description of the dam

Baixo Sabor dam, on Sabor river, located in the north eastern Portugal, is a double

curvature thick arch dam with a height of 123.0 m and a crest development and thickness

of 505 m and 6.00 m, respectively. Baixo Sabor dam has a total concrete volume of,

approximately, 670,000 m3. Due to the large volume placement of concrete, arch dams are

usually built using the block construction method (Jansen 2012). The structure is divided

into 32 blocks with approximately a 15-m width near the right and the left banks and

with 17.00 m width in the central blocks. The blocks are separated by vertical contraction

joints and cast in 2.0-m height lifts. During construction, the contraction joints were

grouted to obtain a monolithic structure, after forced cooling of the concrete blocks. The

dam construction began in 2012 and ended in 2014 and the first filling of the reservoir

was completed in April 2016. Figure 3.7 shows the downstream face of Baixo Sabor dam

during the construction, in May 2013.

Figure 3.7: Baixo Sabor dam during construction in May 2013

3.3.2 Characterization of the concretes placed in Baixo Sabor dam

3.3.2.1 Properties of the materials

Cementitious materials

The cementitious materials are a portland cement CEM I 42.5R (IPQ 2012a), type

I according to ASTM C150/C150M (ASTM 2009), and a class F fly ash, according to

ASTM C618 (ASTM 2012), provided by the Compostilla thermoelectric powerplant, in
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Spain. Both materials meet or exceed the chemical and physical requirements set in the

applicable standards. Furthermore, the fly ash has low lime and alkali contents (<8 %

CaO and <4 % Na2Oeq.), as recommended in (ASTM 2014) and (Nixon and Sims 2016).

The cement and fly ash average density are 3120 kg/m3 and 2480 kg/m3, respectively,

using the test method described in NP EN 196-6:2010 (IPQ 2014).

A chemical analysis was performed to both the cement and fly ash used in the dam

concrete. The chemical analysis of the cement was carried out according to NP EN 196-

2:2014 (IPQ 2014); the characterization of the fly ash followed the methods recommended

in NP EN 450-1:2012 (IPQ 2012b). The determination of the fly ash alkali content, not

covered by NP EN 450-1, was done using a LNEC Internal Method. The fly ash iron oxide

content was determined following LNEC Specification E 406:1993 (LNEC 1993d). The

replacement ratio of the cement by fly ash for the Baixo Sabor dam is 50%.

The results obtained and the specific test methods used for each property are presented

in Appendix A.

Aggregates

The fine and the coarse aggregates are granitic, with an average bulk density of

2644 kg/m3. Both the fine and coarse aggregate characteristics were checked against

LNEC Specification E 373:1993 (LNEC 1993b) and their use followed the recommenda-

tions of ACI 221.R (ACI Committee 221 2001).

Water and admixtures

The water used in the production of the concrete was obtained from the Sabor river

which meets the requirements of (LNEC 1993c).

Two different admixtures, Pozzolith 398N and TechniFlow 91, were used as water

reducers and superplasticizers (Table 3.3). These types of water reducer increases the flow

of concrete for a given w/cm and eases the workability for large placements. The use of

superplasticizers, since it has a higher power of water reduction, was used in the reinforced

areas were the stresses are higher. Both admixtures followed the required specifications of

NP EN 934 (IPQ 2001).

3.3.3 Composition of each type of prescribed concrete

The composition of dam concrete was customized to the available conditions and materials.

The cementitious materials content and water-cementitious material ratio were designed,
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firstly, to control the temperature rise and, secondly, to obtain the required strength and

durability properties (ACI Committee 207 2005; CEN 2005).

This section presents the prescribed composition of each type of concrete and the

estimated proportions for the wet-screened concretes placed in Baixo Sabor dam. From

now on the full-mixed or dam concrete will also be referred as DAM and the wet-screened

concrete will also be referred as SCR (SCR76 using the sieve with an aperture of 76 mm,

#76 mm, and SCR38 using the sieve with an aperture of 38 mm, #38 mm). Also to

define the placement, the names Core, Face and Reinforcement, will be used to identify

the concretes placed in the dam’s core, near the dam’s surfaces and in the reinforced zones

of the dam, respectively. Table 3.2 presents the maximum size of aggregates used for each

type of concrete used in the different dam structural elements (EDP 2005).

Table 3.2: Maximum aggregate sizes (MSA) used in the DAM concretes

MSA MSA Placement Acronym(in.) (mm)
6 150 Dam’s core Core

3 76 Upstream and downstream faces FaceCore and surface of the spillway
1 ½ 38 Reinforced concrete in the dam’s body Reinforcement
¾ 19 Reinforced walls, columns and beams -

The wet-screened concrete is used when the dimensions of the aggregates are incom-

patible with the specimens dimensions or with the monitoring device dimensions. The

wet-screened concrete is obtained from the produced dam concrete by removing the aggre-

gates larger than a given sieve aperture. The 38 mm aperture sieve is usually adopted for

wet-screening the full-mixed concrete. The wet-screening procedure is done after mixing,

while the concrete is still fresh. The wet-screening procedure changes the composition of

the original concrete, mainly the coarse aggregate content. Since the volume of the re-

moved aggregate is replaced with less coarse aggregate, the remaining components content

increase, but the water to cementitious materials ratio remains approximately constant

(Blanks and McNamara 1935).

The estimated wet-screened concrete contents were calculated by removing the volume

of the sieved aggregates and considering a simplified spherical geometry for the aggregates

(model 1 - dashed lines in Figure 3.8). Since the wet-screening is done after mixing using

the fresh dam concrete, a small amount of mortar is also lost with the larger aggregates.

Therefore, the estimated contents were improved by considering the removal of a thin layer
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3.3. CASE STUDY: BAIXO SABOR DAM

of mortar coating the screened aggregates (model 2 - thick continuous lines in Figure 3.8).

Taking into account the estimate of the coarse aggregate volume removed when wet-

screening the dam concrete and the estimate of the volume of mortar that is lost with

the sieved aggregates, it was possible to define the contents of the wet-screened concretes

(model 2), obtaining a better agreement with the experimental results (points in Figure 3.8).

Figure 3.8: Wet-screened concrete contents using different maximum size of aggregate
(MSA) ("a" represents the total aggregate, "g" the coarse aggregate, "s" the fine aggregate,
"c" the cement, "f" the fly-ash, "b" the binder and "w" the water contents)

Tables 3.3 and 3.4 show the composition of the concrete types placed in situ. The

main differences between each type of concrete are the MSA, the coarse and fine aggregate

contents, the cementitious materials content and the water content. The Face and Rein-

forcement concretes have a lower water-cementitious material ratio and higher strength

properties to cope with higher tensile stresses in the upstream and downstream faces and

around the galleries. The water content provided by the aggregate’s moisture was obtained

considering the moisture percentage of the aggregates (9.1% for fine aggregates and 1.4%

for coarse aggregates, average values) and the average water absorption for fine and coarse

aggregates (0.44% for fine aggregates and 0.6% for coarse aggregates).

Figure 3.9 shows the particle size distribution of the coarse aggregates of each concrete.

The cumulative weight percentages retained in each sieve of the wet-screened concretes

are estimated values. The estimated wet-screened concrete components contents were

calculated removing the volume of the sieved aggregates, considering a simplified spherical

geometry for the aggregates and the removal of a thin layer of mortar coating the screened
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aggregates, as described in previous work (Serra et al. 2016a). One can perceive that,

although the SCR38 concretes have the same MSA and similar gradation as the Reinforce-

ment concrete (Figure 3.9), the properties of the mortar are different and their mechanical

properties cannot be directly compared.

Besides the concrete tests, a specific experimental study was carried out including the

characterization of the mortar, produced in laboratory using the same material components

as the ones used in Baixo Sabor dam concretes (Tables 3.3 and 3.4). The amount of water

used in the production of the mortar was calculated in order to take into account the

humidity of the coarse aggregates of the concrete.

Table 3.3: Average composition data of DAM concretes and mortar and the estimated
composition data for SCR concretes

Type Content (kg/m3)

of Cement Fly Fine Coarse Total Water- Admixtures
concrete I 42.5 R ash aggregate aggregate water cementitious Pozzolith TechniFlow

0/4.75 4.75/150 water material ratio 398 N 91
Core-DAM 110.0 110.0 527.0 1425.0 124.0 0.56 0.88 -
Core-SC38R 141.5 141.5 674.9 988.3 158.8 0.56 1.26 -
Face-DAM 130.0 130.0 637.0 1293.0 143.0 0.55 1.04 -
Face-SCR38 149.7 149.7 730.9 1049.4 164.1 0.55 1.29 -

Reinforcement-DAM 175.0 175.0 798.0 781.0 174.0 0.50 - 3.5
MORTAR 220.6 220.1 1147.4 - 229.1 0.52 1.7 -

Note: Total water is the water added to the mix and the water from the aggregate’s moisture.
The water content provided by the aggregate’s moisture was obtained considering the moisture percentage
of the aggregates (9.1% for fine aggregates and 1.4% for coarse aggregates, average values) and the average
water absorption for fine and coarse aggregates (0.44% for fine aggregates
and 0.6% for coarse aggregates).

Table 3.4: Sieve analysis of DAM concretes and mortar and the estimated sieve analysis
for SCR concretes

Type Content (kg/m3)

of Fine aggregate Coarse aggregate
concrete 0/4.75 4.75/9.5 9.5/19.0 19.0/37.5 37.5/76 76/150

Core-DAM 527.0 186.0 234.0 273.0 351.0 381.0
Core-SCR38 674.9 265.4 333.8 389.5 - -
Face-DAM 637.0 212.0 271.0 366.0 444.0 -
Face-SCR38 730.9 262.0 335.0 452.4 - -

Reinforcement-DAM 798.0 233.0 301.0 518.0 - -
MORTAR 1147.4 - - - - -

Note: The cumulative weight percentages retained in each sieve of the wet-screened
concretes were calculated based on removal of the aggregate volume retained in the
38 mm sieve and considering that a portion of the mortar was also lost in the
wet-screening.
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Figure 3.9: Sieve analysis of the Baixo Sabor dam concretes

3.3.4 Composition of the concrete placed in the creep cells

It is also relevant to highlight the composition data of the concrete placed in the experi-

mental setup of the creep cells on Baixo Sabor dam. The specific studies concerning the

results of creep tests are based on the proportions of its cast concrete and not the average

prescribed composition, presented in the previous section.

Table 3.5 presents the composition of the dam concrete, with MSA of 150 mm, and

an estimate of the compositions of the wet-screened concretes, #76 (SCR76) and #38

(SCR38), placed in the creep cells. The cumulative weight percentages retained in each

sieve of the wet-screened concretes are measured values of a sieve analysis after mixing

In Figure 3.10 the solid dark lines represent the prescribed coarse aggregate proportions

defined by the designer for the overall structure and the dashed grey lines are the sieve

analysis, obtained experimentally for the creep cell CC1. The weight percentages of the

wet-screened concretes (SCR76 and SCR38) were obtained by weighting the remaining

aggregates in these concretes after wet-screening, respectively, by the 76 mm and 38 mm

apperture sieve. Only the cumulative weight related to the coarse aggregates are presented

due to its importance to the analysis at the mesoscale considering the mortar as an

homogeneous material.
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Table 3.5: Average composition of dam concrete and estimated compositions of SCR76
(#76 mm) and SCR38 (#38 mm) wet-screened concretes used in the creep cells

Content (kg/m3)

Type of
c f b wadd wagg w g s aconcrete

DAM 110.3 110.2 220.4 62.2 57.9 120.1 1441.9 556.4 1998.3
SCR76 125.6 125.3 250.8 71.3 66.3 137.6 1225.5 644.0 1869.5
SCR38 143.0 142.6 285.6 83.9 78.1 162.0 988.7 710.7 1699.4

c=cement content; f=fly ash content; b=binder content; wadd=added water
content; wagg=content of water in aggregate (moisture); w=total water content;
g=coarse aggregate content; s=fine aggregate content; a=total aggregate content
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Figure 3.10: Sieve analysis of DAM concrete, SCR76 wet-screened concrete and SCR38 wet-
screened concrete placed in creep cell CC1 and comparison with the prescribed concretes
(Core-DAM, Core-SCR76 and Core-SCR38)

3.3.5 Maturing conditions of concrete placed in situ

In concrete dams the heat of hydration dissipation during the set and hardening process

and the early age cracking risk are a main concern. For the cracking risk assessment, it is

necessary to know the development of the mechanical properties of the concrete placed in

situ.

Laboratory tests allow the characterization of the behaviour of concrete in controlled

conditions of temperature and humidity. In situ, concrete temperatures vary over time

and can range from up to 50℃, at the early ages, to low temperatures, in the winter time.

The large thickness of concrete dams allows for the hypothesis of hygrometric equilibrium

within the dam’s body (Bentur 2002; Schrefler et al. 2010). It is considered that drying
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only occurs in a small part near the upstream and downstream surfaces, which can be

negligible. Most of the dam’s body is considered, therefore, to have no water exchange

with the environment. In order to simulate those conditions the specimens are usually

sealed with rolled lead sheet or, if that is not possible, the specimens are maintained at

100% relative humidity.

Temperature variations influence the development of the mechanical properties (higher

temperatures increase the hardening rate) (Carino and Tank 1992; Han et al. 2003; Kim

et al. 2002a) and is specially important at younger ages, when most of the cement hydration

reactions take place.

In the particular case of dams, due to the large placements of concrete and to the low

thermal conductivity of concrete, the hydration heat does not dissipate sufficiently fast

and the temperatures inside the dam’s core increase significantly and can maintain high

temperatures for several months. Also, for arch dams, in order to obtain a monolithic

structure it is possible to grout the vertical contraction joints with the aid of a forced

cooling system which drops the temperature in the core to low values. The forced cooling is

achieved by circulating cooled water through cooling pipes, installed during construction.

The combination of elevated temperatures and forced cooling can result in high tem-

perature gradients and, therefore, stresses that can exceed the strength capacity at a given

age. With the later development of the mechanical properties due to the addition of fly

ash, this issue can be specially relevant in the early ages.

Figure 3.11 shows the measured temperatures in several devices embedded in the

concreteof Baixo Sabor dam, placed at different levels during the construction of the

central block. As pointed out before, the temperatures can reach very high temperatures

(40-50℃) and in the period of one year can drop to very low values (8-10℃). This effect is

especially relevant for the thicker parts of the dam, where the heat of hydration has more

difficulty to dissipate.
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Figure 3.11: Measured temperatures inside Baixo Sabor dam at several levels of the central
block (G39 is a embedded straimeter, MJ12, MJ88 and MJ129 are embedded jointmeters
and CFI2 is a strainmeter embedded in a creep cell).

3.4 Procedures for the laboratory testing of structural properties

of mortar and concrete

The strength properties of concrete were obtained from an experimental programme carried

out during the construction period. A set of tests and periodicity were defined by the

dam’s owner in order to fully characterize the mechanical behaviour of the concretes placed

on site and to guarantee the quality control criteria.

In the concrete production, the main parameter to control was the water to cementitious

materials (binder) ratio. After mixing, the visual inspection of the quality of the concrete,

including inspection for signs of segregation, exudation and lack of cohesion, the specific

unit weight, the consistency and the placement temperature were also criteria to be met

when the concrete was still fresh. This type of control was done for every mix on site.

After hardening, the specific unit weight, the permeability, the modulus of elasticity,

the compressive and tensile strengths were evaluated. The frequency of tests are different

for each type of test and for each type of concrete. For example, the specific unit weight

was evaluated for every specimen, the compressive strength of wet-screened is obtained

in a daily basis and the compressive strength of dam concrete (full-mixed concrete) was

only obtained twice a week. The specimens were cast on site after mixing and stored in

controlled conditions until the test date. The temperature should be kept at 20℃ and the
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relative humidity should be 100%. The saturated state was required in order to meet the

in situ condition of the dam’s core.

The large volume of dam concrete specimens associated with the high testing frequency

required the use of large storage installation. The storage in controlled conditions was key

for a good property evaluation and comparison between several mixes. Large temperature

variations and drying of the concrete can produce microcracks inside the specimen and

influence the ultimate strength values. The designed minimum compressive strength was

checked, usually at the age of 90 days, and, in case of an non-conformity, corrective

measures were introduced to the composition.

The testing procedures, concerning mixing, handling, compaction, casting, the shape

and requirements of the moulds and curing and testing conditions followed a prescribed

standard, according with the type of test and the type of concrete (DIN 1991; NP EN 206

2005).

The experimental laboratory results presented in this thesis are divided into two groups.

The first groups relates to the test results concerning the characterization and quality

control procedures prescribed by the dam’s owner and executed by the contractor. This

group includes strength, modulus of elasticity tests of wet-screened and dam concretes

placed during construction and it has a large sampling. The second group includes specific

tests, within the framework of this thesis, such as the test for the full characterization of

the mortar and of the dam and wet-screened concretes related to the installation of the

creep cells. The characterization of the creep cell’s concrete included in situ and laboratory

modulus of elasticity and compressive creep tests.

Table 3.6 presents the overall experimental setup under the scope of the quality control

procedures and the specific studies for the development of this thesis. The presented

information relates to the type of concrete, the age of testing, the type of specimen, the

testing conditions, the responsible entity for the execution of the tests and the standard

or recommendation used. Although large amount of tests, the tests related to the quality

control during construction had a limited testing age range, being the age of reference

90 days. In the scope of the specific tests, done for this thesis, more testing ages were

included.

89



CHAPTER 3. EXPERIMENTAL CHARACTERIZATION OF THE
STRUCTURAL PROPERTIES OF DAM CONCRETE

Ta
bl
e
3.
6:

Ex
pe

rim
en
ta
ls

et
up

da
ta

fo
r
qu

al
ity

co
nt
ro
lp

ro
ce
du

re
s
an

d
fo
r
th
e
sp
ec
ifi
c
te
st
s

Sc
op

e
T
yp

e
of

Pr
op

er
ty

A
ge

of
te
st
in
g

T
yp

e
of

Te
st
in
g
co
nd

iti
on

s
R
es
po

ns
ib
le

St
an

da
rd

co
nc
re
te

(d
ay
s)

sp
ec
im

en
Q
ua

lit
y

C
or
e-
D
A
M

E
c

28
,9

0
C
yl
in
dr
ic
al

La
bo

ra
to
ry
,

C
on

tr
ac
to
r

D
IN

10
48
-5

co
nt
ro
l

f c
90
,3

65
C
yl
in
dr
ic
al

m
oi
st
ur
e
cu
re
d

f t
,s
p
l

90
,3

65
C
yl
in
dr
ic
al

N
P

EN
12
39
0-
6

Q
ua

lit
y

Fa
ce

-D
A
M

E
c

28
,9

0
C
yl
in
dr
ic
al

La
bo

ra
to
ry
,

C
on

tr
ac
to
r

D
IN

10
48
-5

co
nt
ro
l

f c
90
,3

65
C
yl
in
dr
ic
al

m
oi
st
ur
e
cu
re
d

f t
,s
p
l

90
,3

65
C
yl
in
dr
ic
al

N
P

EN
12
39
0-
6

Q
ua

lit
y

C
or
e-
SC

R
38

E
c

90
,3

65
C
yl
in
dr
ic
al

La
bo

ra
to
ry
,

C
on

tr
ac
to
r

D
IN

10
48
-5

co
nt
ro
l

f c
28
,9

0,
36
5

C
yl
in
dr
ic
al

m
oi
st
ur
e
cu
re
d

f c
1-
36
5

C
ub

ic
N
P

EN
12
39
0-
3

f t
,s
p
l

90
C
yl
in
dr
ic
al

N
P

EN
12
39
0-
6

Q
ua

lit
y

Fa
ce
-S
C
R
38

E
c

90
,3

65
C
yl
in
dr
ic
al

La
bo

ra
to
ry
,

C
on

tr
ac
to
r

D
IN

10
48
-5

co
nt
ro
l

f c
28
,9

0,
36
5

C
yl
in
dr
ic
al

m
oi
st
ur
e
cu
re
d

f c
1-
36
5

C
ub

ic
N
P

EN
12
39
0-
3

f t
,s
p
l

90
C
yl
in
dr
ic
al

N
P

EN
12
39
0-
6

Q
ua

lit
y

R
ei
nf
or
ce
m
en
t-
D
A
M

E
c

90
C
yl
in
dr
ic
al

La
bo

ra
to
ry
,

C
on

tr
ac
to
r

D
IN

10
48
-5

co
nt
ro
l

f c
28
,9

0
C
yl
in
dr
ic
al

m
oi
st
ur
e
cu
re
d

f c
1-
36
5

C
ub

ic
N
P

EN
12
39
0-
3

f t
,s
p
l

90
C
yl
in
dr
ic
al

N
P

EN
12
39
0-
6

T
hi
s

C
or
e-
D
A
M

E
c

1-
36
5

C
yl
in
dr
ic
al

In
si
tu

LN
EC

LN
EC

’s
in
te
rn
al

w
or
k

J
c

28
,9

0,
36
5

C
yl
in
dr
ic
al

re
co
m
m
en
da

tio
ns

T
hi
s

C
or
e-
SC

R
76

E
c

1-
36
5

C
yl
in
dr
ic
al

In
si
tu

LN
EC

LN
EC

’s
in
te
rn
al

w
or
k

J
c

28
,9

0,
36
5

C
yl
in
dr
ic
al

re
co
m
m
en
da

tio
ns

T
hi
s

C
or
e-
SC

R
38

E
c

1-
36
5

C
yl
in
dr
ic
al

In
si
tu

LN
EC

LN
EC

’s
in
te
rn
al

w
or
k

J
c

28
,9

0,
36
5

C
yl
in
dr
ic
al

re
co
m
m
en
da

tio
ns

T
hi
s

C
or
e-
SC

R
38

E
c

1-
36
5

Pr
ism

at
ic

La
bo

ra
to
ry
,

LN
EC

LN
EC

’s
in
te
rn
al

w
or
k

m
oi
st
ur
e
cu
re
d

re
co
m
m
en
da

tio
ns

E
c

28
,9

0,
36
5

Pr
ism

at
ic

La
bo

ra
to
ry
,

J
c

28
,9

0,
36
5

Pr
ism

at
ic

se
al
ed

T
hi
s

M
O
RT

A
R

E
c

7,
28
,9

0
C
yl
in
dr
ic
al

La
bo

ra
to
ry
,

LN
EC

LN
EC

E3
97

w
or
k

f c
7,

28
,9

0
C
yl
in
dr
ic
al

m
oi
st
ur
e
cu
re
d

N
P

EN
12
39
0-
3

90
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Figure 3.12 shows the specimen shapes and sizes used in the compressive and tensile

strength tests and their relationship with the maximum size of aggregate. The diameter

of the cylinders for the strength tests are constraint to the MSA of each type of concrete.

For determining the wet-screened concrete compressive strength, a 15 cm in diameter and

30 cm-height cylinders (15×30 cm) were used. For determining the compressive strength of

dam concrete, with MSA larger than 38 mm, larger specimens, with 45 cm in diameter and

90 cm-height cylinders (45×90 cm) were used. As for the tensile strength determination,

due to the difficulties and cost of direct tension tests, the tensile strength was obtained

from splitting strength test (or Brazilian test). The ratio between the smaller specimen

dimension (φ) and the MSA is recommended to be larger then 4 (ASTM 2006). However,

for the Core-DAM concrete with MSA of 152 mm, this ratio is only 3.0 due to the limited

capacity of the testing equipment. The other types of concrete had higher φ-MSA ratio

due to the lower values of MSA: the Face-DAM concrete had a ratio of 6; the Core-SCR

had a ratio of 4; and, MORTAR had a ratio of 22. The slenderness ratio (H/φ) was 2,

except for the mortar specimens and for the splitting tensile tests of dam concrete.

Figure 3.12: Specimens used for the determination of the compressive and splitting tensile
strength and deformability of each type of concrete and of the mortar
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3.5 Procedures for the in situ testing of deformability properties

of concrete

3.5.1 Proposed improvements for creep cell installation

Creep cells are a specific technique for the in situ characterization of instantaneous and

delayed behaviour of concrete. Creep cells are concrete cylinders embedded in the dam

body, subjected to the same thermohygrometric conditions as the dam body, since the

top of the cell is in contact with the structural concrete, but isolated from the stress field.

With the aid of a flat-jack, it is possible to apply a given normal stress to the cell and

the strains are recorded with embedded strain meters. The loading system allows for

instantaneous deformability tests (used to determine the modulus the elasticity) and for

creep tests, maintaining constant stress over time. The use of creep cells had its first

developments in the Portuguese Carrapatelo dam, in 1967, and it is still usual nowadays

to install these type of devices on important dams, since it allows for testing under the

same thermohygrometric conditions of the structural concrete.

Generally, there are two types of creep cells, the full-mixed concrete cells (structural

concrete) and the wet-screened concrete cells. Besides characterizing the deformability of

full-mixed concrete, it is possible to study its relation with the wet-screened concrete and,

also, the influence of the in situ conditions.

For the investigation of the in situ instantaneous and delayed deformability properties

of the full-mixed concrete and for the evaluation of the influence of wet-screening an

improved experimental setup was developed.

The cylindrical specimens were moulded by expanded polystyrene (EPS) hollow cylin-

ders that create a gap between the cell and the dam’s concrete. In the past, the gap has

been obtained by a double face copper mould (Soares de Pinho et al. 1988). This new

type of mould allows for a reduction of stiffness and cost. The change was also motivated

by the re-design of the flat-jacks and the introduction of two rigid platen interfaces, above

and below each flat-jack. This rigid element guaranteed a more uniform transfer of oil

pressure from the flat-jack to the bottom of the concrete specimen (Figure 3.13).

The experimental apparatus is composed by a creep cell subjected to a controlled stress,

known as "active cell", and by another that allows free deformation, known as "non-stress

cell" (Figure 3.15). The active cell registers the total strain variations over time, including

the stress-dependent strains, and the "non-stress cell" measures the stress-independent
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Figure 3.13: Components of an active creep cell (CC-A) by the traditional creep cell design
(a) ) and by the proposed creep cell design (b) )

strains, known as the autogeneous and thermal strains. Both cells are instrumented with

embedded Carlson strain meters. Since both cells are casted with the same material, at

the same time and are placed next to each other, it is assumed that they are subjected to

the same environmental conditions and, therefore, that their behaviour can be compared.

The loading system of the active cells is composed by a closed hydraulic circuit which

controls the applied pressure on a flat jack on the basis of the concrete specimen. The

pressure can be kept constant with the aid of a mixture of oil and nitrogen stored close

to the creep cells. This loading system allows fast stress variations in order to determine

the modulus of elasticity at a given age and ensures constant load for long periods of time.

Similar experimental work was used for the study of the influence of in situ conditions on

the delayed deformability properties of concrete placed in a nuclear containment structure

(Trivedi and Singh 2014) and in an arch dam (Serra et al. 2012).

This type of experimental setup was developed in the past by the National Laboratory

for Civil Engineering (LNEC) (Soares de Pinho et al. 1988; Serra et al. 2012) and adapted

for this Ph.D. experimental work. The traditional creep cells have a double-sided metallic

mould in order to guaranteed the separation between the concrete inside the specimen and

the concrete of the lift and the flat-jack is placed directly below the concrete specimen

(Figure 3.13 a)). The use of metallic moulds in situ, in addition to its high cost and

stiffness, it is very difficult to transport. Besides, creep test results of other dams suggest
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that the oil pressure was not full applied to the specimen due to lack of rigidity of the

flat-jack (Serra et al. 2012).

The re-design of the proposed creep cells included several technical improvements

which were implemented in Baixo Sabor dam: i) the use of a standard flat-jack (with

rigid interface platens), larger in diameter (φ) and increasing the φ-MSA ratio of dam

concrete specimen (Figure 3.16); ii) the use of three measurement devices in the dam

concrete specimen for a more reliable strain measurements; and, iii) the use of expanded

polystyrene (EPS) hollow cylinder as the mould to separate the concrete specimen from

the dam’s body (instead of metallic moulds use in the past, with higher rigidity). The

procedure for the experimental installation was: i) placement of the loading system (the

storage device in the visiting gallery and the flat-jack of each creep cells) and purge the

hydraulic circuit; ii) placement of the measuring devices inside the active and non-active

cells and the electric cables; iii) wet-screening of the dam concrete; iv) cast of each creep

cell with dam concrete and wet-screened concrete; v) setting the initial reading values in

each creep cell; and, vi) cast the surrounding lift.

Figure 3.14 illustrates the procedure for the installation of creep cells, with the place-

ment of the flat-jack in the base of each active creep cell (a), the instrumentation embedded

inside the creep cells (b), the overall experimental set prior to casting (c) and the casting

of the creep cells and of a concrete lift (d).

The advantage of creep cells is the possibility to characterize the deformability prop-

erties over time in the environmental conditions of the dam’s core. They also allow the

testing of large specimens, suited for the dam concrete and its large aggregates, since the

surrounding mass concrete is used as the reaction frame.

The curing conditions of moisture cured specimens followed the usual standard se-

quence procedures: casting; transportation with moist geotextile; storage in a controlled

temperature (20 ℃) and moist cured conditions (RH ≈ 100%) until testing. The curing

conditions of sealed specimens included the sealing of the specimen immediately after

casting, using a lead sheet, and the storage in a controlled temperature room (20 ℃).

These recent developments in the creep cell setup were successfully installed in Baixo

Sabor dam (three sets of creep cells) and in Ribeiradio dam (two sets of creep cells). A

further development, designed to enable the access to the flat-jack, was installed in Foz

Tua dam (two sets of creep cells). The first type of creep cells, described in §3.5.2, are the

main focus of this work and a more detailed description is available in (Serra et al. 2014a).
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a Flat-jack placement b Instrumentation

c Creep cell set d Creep cell casting

Figure 3.14: Creep cell installation

3.5.2 Creep cell setup used in the case study

The experimental in situ installation used for Baixo Sabor dam follows the setup discussed

previously in §3.5. The dam has three sets of creep cells, CC1, CC2 and CC3, in three

different blocks, several meters apart. Each set has one full-mixed creep cell (CC 150-A,

where the "150" stands for MSA and "A" for active cell) and one full-mixed non-stress cell

(CC 150-N, "N" referring to non-stress cell), one wet-screened #76 mm creep cell (CC

#76-A) and one wet-screened #76 mm non-stress cell (CC #76-N) and one wet-screened

#38 mm creep cell (CC #38-A) and one wet-screened #38 mm non-stress cell (CC #38-N).

Due to geometrical and testing equipment limitations, only #38 wet-screened concrete

prismatic specimens were used for laboratory testing (P #38). These prismatic specimens

were sealed with a lead sheet covering lateral and top faces of the prisms (in order to have

no water exchanges with the environment) and maintained with controlled temperature of

20 ± 1℃. The laboratory specimens were sealed with wrapped sheet, previously lining the

mould, and soldered immediately after casting. Figure 3.15 illustrate the different types of

creep cells in Baixo Sabor dam. The casting of the three sets were made within a month
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Figure 3.15: Representation of the active and non-stress creep cells for both full-mixed
and wet-screened concrete and placement of creep cells on the dam’s body.

with close concrete compositions. Figure 3.16 shows the dimensions of the creep cells in

correspondence with the MSA used for each type of concrete. The diameter of the EPS

cylinders (φ) was constrained by the maximum size aggregate of the concrete to be casted

and by the maximum diameter of the flat-jack used in the loading system. The ratios

φ/MSA are 3.2 for the full-mixed concrete, 3.9 for the #76 concrete and 5.9 for the #38

concrete.

Figure 3.16: Creep cells (CC) dimensions and maximum size aggregate (MSA)

Standard A10 Carlson strainmeters, with a measurement length of 25.4 cm (10”), are

not suited for the Core-DAM concrete, due to the size of the aggregates. In this particular
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case, special A20 Carlson strainmeters were used, which have a measurement length of

50.8 cm (20”). In order to investigate the distribution of strain inside the larger specimens,

three A20 Carlson strainmeters were installed in the Core-DAM concrete specimens. In

the remaining specimens only one A10 Carlson strainmeter was installed (Figure 3.17).

Figure 3.17: Placement of the strainmeters inside the creep cells

Further details about this type of experimental installation are published in LNEC’s

technical reports (LNEC 2013; LNEC 2014a).

3.6 Structural properties of the rock used for the aggregates

The average and standard deviations of the modulus of elasticity, compressive strength

and splitting tensile strength of the intact rock used for the aggregate were obtained from

a specific study (EDP 2005). The results are presented in Table 3.7. The results were

provided by the dam’s owner and were obtained from the material characterization of the

rock quarries. Only the materials classified as W1 and W2, regarding their weathering,

were considered for the production of concrete.

Table 3.7: Mechanical properties of the rock used for the aggregates

Density Ec fc ft,spl
(mean(st.dev.)) (mean(st.dev.)) (mean(st.dev.)) (mean(st.dev.))

(kg/m3) (GPa) (MPa) (MPa)
Granite 2640 (100) 46.3 (5.2) 99.5 (4.0) 7.3 (0.8)

The strength results are compatible with the type of rock used for concrete aggregates,

with high values. The modulus of elasticity average value is considered adequate for a

good quality granite (Alexander and Mindess 2010). The scatter is considered high for

this type of test indicating some heterogeneity in the quarries.
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3.7 Structural properties of the mortar and concrete placed in

the dam

3.7.1 General aspects

The results related to the quality control were obtained during the construction of the

dam. The results related to LNEC were obtained from a specific testing program for the

characterization of the mortar taken place at the National Laboratory for Civil Engineering

(LNEC) after the dam construction. The mortar was produced with the same materials

of the studied dam concretes.

A statistical analysis was done for each structural property, type of concrete and loading

age in order to find the distribution parameters that best fit the test results (LNEC 2017).

The goal was to describe the raw data, to interpret the behaviour of each set of data and

to evaluate its fitness to the Normal, log-Normal and Weibul distributions. This analysis

was motivated by the large standard deviations obtained for each property and was found

to improve the characterization of the test results, particularly the characterization of the

scatter for younger ages (LNEC 2017).

3.7.2 Laboratory deformability test results

3.7.2.1 Modulus of elasticity test results

The curing conditions related to the "Quality control" are the ones defined by the standard

DIN 1048–5 (DIN 1991), which is moisture cured until testing. For the study developed

in this thesis, "LNEC", prismatic specimens where sealed immediately after casting and

stored at a controlled room until testing. The use of sealed specimens, although more

expensive, ensures a more similar curing conditions to the dam’s core, several meters from

a drying surface. Moisture cured conditions imply a continuous supply of water to the

hydration reaction and the sealed conditions imply that there is no exchange of moisture

between the specimen and the environment.

Table 3.8 and Figure 3.18 present the modulus of elasticity test results for each type

of concrete and for the mortar at several ages and for different curing conditions. As

expected, the standard deviations for the modulus of elasticity are lower that for the

strength properties, but even so, considered high when compared with conventional concrete

(ICOLD 2008). The overall obtained results show very similar behaviour between concretes,

98



3.7. STRUCTURAL PROPERTIES OF THE MORTAR AND CONCRETE
PLACED IN THE DAM

with values ranging between 25.4 GPa for the wet-screened concrete and 27.9 GPa for

the Face-DAM concrete, at the age of 90 days. Dam concrete’s modulus of elasticity are

expected to be higher than their wet-screened concretes (27.9 GPa for Core-SCR and 27.6

for Core-DAM). These results do not show the established relationship between aggregate

content and the values of modulus of elasticity. In Figure 3.18 the grey areas and error

bars represent the confidence interval of each sample for a given testing age, i.e. the upper

and lower 95% confidence values (X95% = µ(X)± 1.96×σ (X), in which µ(X) and σ (X)

are the mean and standard deviation of the variable X, respectively). This representation

of the confidence values show a measure of the dispersion of the results and highlights

the need for a good quality control of dam concrete to ensure that the minimum designed

strength values is achieved.

Table 3.8: Modulus of elasticity results of dam and wet-screened concretes and for the core
and the face concretes obtained in laboratory

Type of Type of Testing Age N Ec (mean(st.dev.))
concrete specimen conditions (days) (GPa)

Core - DAM φ= 450 mm, Quality control 90 134 27.6 (3.5)
H = 900 mm 365 57 28.7 (3.2)

Core - SCR φ= 150 mm, Quality control 28 77 23.3 (3.0)
H = 300 mm 90 62 27.9 (3.1)

Face - DAM φ= 450 mm, Quality control 90 108 27.9 (3.5)
H = 900 mm 365 28 31.5 (2.5)

Face - SCR φ= 150 mm, Quality control 28 63 23.1 (3.6)
H = 300 mm 90 63 27.9 (3.0)

Reinf - DAM φ= 150 mm, Quality control 28 36 24.8 (3.9)
H = 300 mm 90 84 29.5 (2.9)

Core - SCR 200× 200× 600 mm LNEC - sealed

14 9 20.4 (2.7)
28 9 22.1 (3.2)
90 6 25.4 (1.0)
365 7 34.1 (3.7)

Core - SCR 200× 200× 600 mm LNEC - moisture cured

14 8 19.5 (1.6)
28 8 20.4 (1.8)
90 7 25.4 (1.3)
365 4 30.0 (1.1)

MORTAR
φ= 103 mm,

LNEC - moisture cured

7 3 12.7 (0.5)
H = 186 mm 28 3 14.9 (0.2)

90 3 22.7 (0.8)

Note: N is the number of tested specimens
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Figure 3.18: Modulus of elasticity results of dam and wet-screened concretes and for the
core and the face concretes obtained in laboratory
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3.7.2.2 Compressive creep strains development over time

For the specific study concerning the determination of the creep function, a standard labo-

ratory setup (Neville 1983) was used to obtain experimental results of delayed deformations

under approximately constant environmental conditions (20± 2 ℃) for the same concrete

batch used for the cast of the creep cells. The wet-screened concrete obtained from creep

cells was cast using 200×200×600 (mm) prisms for specific creep tests (Figure 3.12). The

specimens were sealed with a lead sheet in order to maintain the moisture content similar

to the dam’s core.

Table 3.9 and Figures 3.19 and 3.20 present the experimental results obtained in

laboratory for both loading age of 28 and 90 days and for approximately one year under

loading (P #38), including the experimental creep compliance, Jexp(t, t′), or specific strain,

εspec(t, t′).

The experimental creep compliance, Jexp(t, t′), at time t for a loading age of t′, consid-

ered to be a measurement of creep if the stress is kept constant, are obtained by subtracting

the free strains, εnon−stress(t, t′), measured in the non-stress cell, from the total strains,

εactive(t, t′), measured in the active cell, and dividing by the applied stress (Equation 3.7).

εspec(t, t′) = Jexp(t, t′) = εactive(t, t′)− εnon−stress(t, t′)
σ(t′) (3.7)

If stress is maintained constant since the first load and the temperature is kept con-

stant, one can compare experimental creep compliance, Jexp(t, t′), with theoretical creep

compliance, J(t, t′).

Figures 3.19 a) and b) present the temperature and stress inside the specimen over

time, and Figures 3.19 c) and d) show the strain development on the active and non-stress

specimens and the increase of the creep strains over time.

The modulus of elasticity results obtained in these specimens, LNEC-sealed, show a

good agreement with the results obtained for the quality control purposes (Core-SCR),

despite the different curing conditions (Table 3.8).
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Table 3.9: Creep test results obtained from prisms in laboratory (average of two specimens
P #38-CC1 and P #38-CC2)

Type of Creep cell Specimen t′ t− t′ T (t′) σ(t′) Eexp(t′) Jexp(t, t′)
concrete batch name (days) (days) (℃) (MPa) (GPa) (10−6/MPa)

SCR38 CC1 P#38-CC1 27.5 362 20.3 5.7 22.1 64.2
CC2 P#38-CC2 73.5 320 20.5 5.7 25.4 56.3

Figure 3.19: Compressive creep test results for the prismatic specimen cast with #38
(SCR38) concrete at the age of 28 days (P #38-CC1)

Figure 3.20: Experimental compressive creep compliances for the prismatic specimens in
laboratory at different loading ages
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3.7.3 In situ deformability test results

3.7.3.1 Modulus of elasticity test results

Creep cells allow for modulus of elasticity determination tests and for creep tests at a given

age after casting. The modulus of elasticity was determined at the ages of 7, 14, 28, 90

and 365 days for every creep cell set. Due to the particularities of the experimental in situ

installation, the tests followed an adjusted procedure based on the usual standards (DIN

1991). The in situ experimental test procedures for the determination of the modulus of

elasticity of concrete were similar to the procedures used for rock mass foundation where

loading and unloading cycles are used to determine its elastic properties (Hudson 1993).

The maximum testing load, defined as one third of the maximum strength, was divided

into small loading steps and, for each one, the strain variation was measured. The loading

rate was kept constant and similar to the one used in standard laboratory procedures

(approximately 20 kN/s). A stress-strain diagram allows the analysis of the quality of

the results (Figure 3.21). For small loads it was observed that the readings were not

reliable since the flat-jack was adjusting to the creep cell. For higher loads the behaviour

is considered linear and represents the elastic behaviour of the concrete (since the flat-jack

total area is considered to be in contact with the specimen). To minimize measurement

errors it is usual to use a regression analysis for the linear portion of the unloading stage

and subsequent loads (ignoring the lower stress values). The modulus of elasticity at a

given age was obtained from the average of three loading cycles. The modulus of elasticity,

Ec, is obtained from the harmonic average of the loading and unloading slopes from the

stress-strain diagram. Table 3.10 presents the test results obtained for the defined testing

ages for each type of creep cell.

Table 3.10: Average values and standard deviations of modulus of elasticity obtained from
creep cells in situ

Age
Ec (mean(st.dev.))

(days)
(GPa)

Aggregate DAM SCR76 SCR38
7

46.3 (5.2)

31.3 (3.4) 26.2 (2.1) 25.1 (1.3)
14 31.9 (3.0) 27.2 (0.7) 25.4 (0.2)
28 31.5 (1.7) 27.8 (0.5) 26.0 (0.5)
90 33.5 (1.9) 29.7 (1.2) 27.9 (0.1)
365 36.3 (2.5) 31.8 (0.8) 29.9 (-)

From a preliminary qualitative analysis it is possible to conclude that the moduli
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Figure 3.21: Stress-strain diagram and modulus of elasticity determination for in situ tests

of elasticity have high values, especially for the full-mixed concrete at the younger ages,

which can be explained by the higher coarse aggregate content, when compared with

wet-screened concrete, and by the maturing conditions (with temperature higher than

the temperature of 20℃, currently used in laboratory testing). The large fly ash content

has an important role in the properties development (Ghosh and Timusk 1981; Popovics

1982; Smith and Hammons 1993; Hwang et al. 2004; Kar et al. 2013), since it "delays" the

hardening process (high development rate between the age of 90 and 365 days). The large

standard deviations are consistent with the difficulties of characterizing dam concrete and

wet-screened concrete, mainly because: i) the maximum aggregate size is considered large

for the specimen diameter, even for the wet-screened concrete; ii) the casting conditions

are difficult to control due to the rheology of the fresh concrete, with low workability; and,

iii) the in situ determination procedure involves more unknowns than standard testing in

laboratory.

3.7.3.2 Compressive creep strains development over time

Three compressive creep tests were performed at the ages of 28, 90 and 365 days, for

the creep cells sets CC1, CC2 and CC3, respectively. As mentioned, the pressure was

maintained constant with the aid of a closed hydraulic system of oil and nitrogen. The

applied oil pressure was limited to 60 bar in order to ensure linear and primary creep
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strains, similar to the dam service conditions, and constraint by the loading capacity of

the hydraulic system. The applied stress is related to the flat-jack contact area with the

creep cell.

Figure 3.22 shows an example of the creep test results obtained for the creep cell

casted with full-mixed concrete at the age of 28 days. The full set of results is published

in a LNEC’s technical report (LNEC 2014a). The measured temperature shows a quick

rise until the 3 days of age, followed by a decrease to about 30℃ at the age of 25 days

(Figure 3.22 a)). Due to the subsequent concrete lifts of the block, the temperature in the

creep cell was almost constant during a period of 4 months and then it dropped from about

30 ℃ to approximately 10 ℃ in February 2013 and was kept cool during a long period of

time (3 months) for the grout filling of the vertical contraction joint. The applied stress

(Figure 3.22 b)) was kept approximately constant for the creep test at the age of 28 days,

except for the execution of the modulus of elasticity tests, with loading and unloading

cycles at predefined ages. Figure 3.22 c) presents the development of the total strains,

measured both in the active creep cell and the non-stress creep cell. The main variations

are due to temperature and, after 28 days, due to the applied stress at the active cell.

Figure 3.22 d) shows the specific strains calculated for the loading time, since 28 days of

age. The specific strains increased rapidly in the first days, followed by a decrease in the

rate of development until the beginning of the forced cooling, where a small decrease was

measured.

Table 3.11: Compressive creep test results obtained from creep cells in situ

Type of Creep t′ t− t′ T (t′) σ(t− t′) Eexp(t′) Jexp(t, t′)
concrete cell (days) (days) (℃) (MPa) (GPa) (10−6/MPa)

DAM
CC1 27.5 362 32.3 5.3 32.5 37.2
CC2 89.0 320 32.0 5.3 35.2 39.3
CC3 364.4 33 9.4 5.3 37.8 32.3

SCR76
CC1 27.8 362 31.6 5.2 28.4 48.2
CC2 89.1 320 30.5 5.2 31.0 39.8
CC3 364.6 33 9.2 5.2 32.7 38.5

SCR38
CC1 27.8 362 31.2 5.0 25.6 62.1
CC2 90.0 320 - - - -
CC3 365.0 33 - - - -

Table 3.11 presents the main results obtained in the creep cells installed in Baixo Sabor

dam, for the dam, the #76 and the #38 concretes. For each loading age, t′, and for each

type of concrete, the measured temperature at that age, T (t′), the applied stress, σ(t′),

the experimental modulus of elasticity, Eexp(t′) and the experimental creep compliance,
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Figure 3.22: Compressive creep test results for the creep cell cast with full-mixed concrete
at the age of 28 days (DAM-CC1)

Jexp(t,t′) or specific strain, εspec(t, t′) for the time under loading, t−t′, are presented. Since

the temperature on site varies over time, at each loading age the measured temperature

was different (approximately 30 ℃ for the loading ages of 28 and 90 days and 9.4 ℃ for

the loading age of 365 days). For the #38 concrete only the test results for the loading

age of 28 days are available, due to leak on the embedded loading system of both CC2

and CC3 that was detected after installation during testing.

Results show that concretes wet-screened with lower aperture of the screening sieve

give higher specific strains, for every loading ages. This conclusion follows the known

behaviour since the wet-screened concrete has a lower content of coarse aggregate and a

higher content of cement paste compared with the full-mixed concrete from which it was

obtained.

The creep test results reveal also the small values of specific strains obtained in situ,

especially for the full-mixed concrete in which the creep strains after one year are only

about 20% of the instantaneous strains at the beginning of the creep test. The behaviour

of wet-screened #38 mm concrete in situ is similar to the the behaviour of wet-screened

#38 mm concrete tested in laboratory, which despite a lower modulus of elasticity at the

loading ages, gives approximately the same specific strains development over time.
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Figure 3.23: Experimental compressive creep compliances for the creep cells at several
loading ages

3.7.4 Laboratory compressive strength test results

The testing ages of the laboratory compressive strength tests were defined by the dam’s

owner and only the compressive strength obtained from cubic specimens have a significant

number of results at several ages. These results are useful to define the full range of

development from 1 day to 1 year. Despite the limited data, the results show the develop-

ment of strength over time of the different types of concrete and the strong rate for later

ages (after 28 days). Conventional concrete without the addition of other cementitious

materials, does not has a significant increase of strength after the age of 28 days. This

rate can be explained by the large content of fly ash which has slower hydration process

(Santos Silva 2006). The increase of strength from 28 days to 365 days of age can reach

70% for the Face-SCR concrete. The results obtained using cubic specimens have larger

strength values, which is due to the larger confinement in this type of specimen, when
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compared with cylindrical specimens. The strength values are higher for the Reinforce-

ment placements and smaller for the Core placements, which has lower cement content.

Generally, the wet-screened concrete have slightly higher strength values. The strength

values of the mortar are smaller than the concretes but its development over time is higher.

Table 3.12 and Figure 3.24 present the compressive strength test results for each type of

concrete and for the mortar at several ages, considering 95% confidence intervals).

The concrete results are related to the quality control procedures during the 4-year

construction period, hence the high number of tested specimens (N). The results related to

LNEC tests were obtained from a additional experimental program for the characterization

of the mortar, taken place at the LNEC. The large standard deviations are considered to

be usual values for this type of concrete and taking into account the construction duration

(Zhou et al. 2010). The standard deviations can reach as much as 20% of the mean values,

even for wet-screened concrete with smaller aggregates, except for the younger ages (less

than 7 days), in which this percentage can be higher.

Although the composition remained the same over time, there can be a variation of

the material properties during construction, especially the properties of the aggregates.

The significant scatter can also be due to the use of large aggregates (Khaloo et al. 2009)

which are significantly larger than in conventional concrete. Furthermore, for dam concrete

results, the ratio between the size of aggregates and the size of the specimen can introduce

significant deviations during testing.

For the development of this work and for the sake of uniformity, it is considered that

the strength values obtained for over 3 days of age follow a Normal distribution (LNEC

2017).
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Table 3.12: Compressive strength results of DAM and SCR concretes for Core, Face and
Reinforcement placements and of mortar

Type of Type of Testing Age N fc (mean(st.dev.))
concrete specimen conditions (days) (MPa)

Core-DAM φ = 450 mm, Quality control 90 134 24.7 (4.2)
H = 900 mm 365 57 32.1 (4.5)

Core-SCR
φ = 150 mm,

Quality control
28 77 22.0 (4.5)

H = 300 mm 90 256 25.3 (5.2)
365 53 33.1 (5.1)

Core-SCR A = 150 mm Quality control

1 43 4.1 (3.6)
2 71 11.0 (3.6)
3 75 13.4 (3.0)
4 47 15.4 (3.7)
5 28 16.9 (3.5)
6 16 15.4 (2.1)
7 451 18.0 (3.2)
28 482 25.5 (4.3)
90 813 31.7 (5.3)
180 34 37.6 (5.2)
365 122 41.1 (6.5)

Face-DAM φ = 450 mm, Quality control 90 108 26.3 (4.0)
H = 900 mm 365 28 36.9 (5.1)

Face-SCR
φ = 150 mm,

Quality control
28 63 21.9 (4.6)

H = 300 mm 90 260 26.9 (5.5)
365 45 37.2 (6.2)

Face-SCR A = 150 mm Quality control

1 194 4.1 (3.3)
2 352 10.4 (3.0)
3 1 11.5 (-)
4 152 15.5 (3.5)
5 108 16.9 (3.2)
6 60 17.9 (3.1)
7 874 18.3 (3.7)
28 863 25.9 (4.8)
90 1238 32.0 (5.6)
365 137 41.7 (7.4)

Reinforcement-DAM φ = 150 mm, Quality control 28 36 27.0 (5.2)
H = 300 mm 90 84 36.7 (5.9)

Reinforcement-DAM A = 150 mm Quality control

1.0 10 8.2 (3.5)
1.5 8 12.1 (6.6)
2.0 19 13.5 (2.8)
2.5 31 15.3 (2.5)
3.0 385 16.6 (2.9)
3.5 2 17.8 (1.5)
6.0 3 23.6 (4.5)
7.0 876 22.7 (3.3)
28.0 873 31.7 (4.7)
90.0 865 42.9 (5.5)

MORTAR
φ = 103 mm,

LNEC
7 3 14.6 (0.7)

H = 186 mm 28 3 20.1 (1.0)
90 3 32.9 (0.6)

Note: N is the number of tested specimens
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Figure 3.24: Compressive strength results of DAM and SCR concretes for Core, Face and
Reinforcement placements and of mortar
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3.7.5 Laboratory splitting tensile strength test results

Table 3.13 and Figure 3.25 present the splitting tensile strength test results for each type

of concrete and for the mortar at several ages. The experimental programme focused

essentially on the reference age of 90 days. The standard deviations are as high as the

ones obtained for the compressive strength. Similarly to the compressive strength results,

the 95% confidence intervals are also plotted.

The splitting strength results are higher for the Reinforcement dam concrete when

compared with the Core concrete. The wet-screened concrete results obtained using small

specimens are higher than their original dam concrete, tested using larger specimens. The

mortar splitting strength results are also higher then the Core-DAM concrete, at the age

of 90 days.

Table 3.13: Splitting tensile strength results of DAM and SCR concretes for Core, Face
and Reinforcement placements and of mortar

Type of Type of Testing Age N ft,spl (mean(st.dev.))
concrete specimen conditions (days) (MPa)

Core-DAM φ = 450 mm, Quality control 90 94 2.2 (0.3)
H = 450 mm 365 22 2.8 (0.3)

Core-SCR φ = 150 mm, Quality control 90 66 2.7 (0.4)
H = 300 mm

Face-DAM φ = 450 mm, Quality control 90 43 2.2 (0.4)
H = 450 mm

Face-SCR φ = 150 mm, Quality control 90 65 2.8 (0.4)
H = 300 mm

Reinforcement-DAM φ = 150 mm, Quality control 90 80 3.5 (0.4)
H = 300 mm

MORTAR
φ = 103 mm,

LNEC
7 3 1.9 (0.1)

H = 186 mm 28 3 2.4 (0.1)
90 3 2.9 (0.5)

Note: N is the number of tested specimens
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Figure 3.25: Splitting tensile strength results of DAM and SCR concretes for Core, Face
and Reinforcement placements and of mortar
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3.7.6 Correlation between concrete properties

In this section a preliminary correlation between the test results for each type of concrete is

presented. This type of correlation can be useful for the statistical prediction of a property

given another property, based on prior experimental results and to cross-check and validate

a given test result.

The first analysis concerns the correlation between concrete properties, namely the

compressive strength obtained using cubes and using cylinders, the compressive strength

and the modulus of elasticity, and the compressive strength and the splitting tensile

strength. Several standards define empirical expressions for this type of correlation which

can be fitted to experimental results (ACI Committee 318 1995; Fib 2010). This type

of empirical expressions can be used when there are limited results of one type of tests.

For example, non-destructive tests, such as the modulus of elasticity tests can be used to

estimate the strength properties based on a fitted empirical expression.

Figure 3.26 shows the correlation between compressive strength obtained using cubes

and using cylinders. As pointed out before, the cylinder test results yield lower values of

compressive strength when compared with results obtained using cubical specimens. This

type of behaviour is documented in the literature and is due to the higher confinement

effect on the top and bottom of the cubical specimens, increasing the peak strength (Mier

1998). The right plot in Figure 3.26 shows two outlier values that highlight some type of

error associated with the curing, the testing conditions or the analysis. This type of result

should be removed from the database since their correlation do not follow the established

behaviour.

The plot of the compressive strength and the modulus of elasticity results (Figure 3.27)

shows a strong correlation between the two properties. Although some scatter, the compres-

sive strength has higher rate of development over time than the modulus of elasticity. This

is more pronounced for the Reinforcement-DAM concrete. The behaviour of wet-screened

concretes is similar to the one obtained for the respective dam concrete.

Figure 3.28 shows the correlation between the compressive strength obtained in cylin-

ders and the splitting tensile strength from the same concrete batch. The general idea

is that the direct tensile strength is, approximately, one tenth of the the compressive

strength (Coutinho and Gonçalves 1994) and 90% of the splitting tensile strength (Fib

2010). Therefore, the splitting tensile strength is 10% of the compressive strength. The
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results of Baixo Sabor dam are coherent with this estimate, despite the usual large scatter.
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Figure 3.26: Correlation between the compressive strength obtained in cubes and the
compressive strength obtained in cylinders
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Figure 3.27: Correlation between the compressive strength and the modulus of elasticity

The second analysis concerns the correlation of the dam and the wet-screened concrete

properties, separated by testing age. It is important to emphasize that dam and wet-

screened results were obtained from the same concrete batch but cast in different specimen

sizes. Figure 3.29 shows the relationships between each mechanical property for wet-

screened concrete using small specimens and for dam concrete using large specimens. Test

results show that, for both Core and Face concretes, the modulus of elasticity and the
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Figure 3.28: Correlation between the compressive strength and the splitting tensile strength

compressive strength of wet-screened and dam concrete are very close to each other. The

splitting tensile strength shows a different behaviour, with lower strength values for the

dam concrete.
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Figure 3.29: Correlation between wet-screened and dam concrete properties
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3.8 Concluding remarks

The developed experimental work focused on the characterization of the main structural

properties of dam and wet-screened concretes placed on Baixo Sabor dam. For this dam,

three sets of results were presented: one related to the laboratory test results obtained

during construction and provided by the dam’s owner; another set of specific tests for the

characterization of laboratory and in situ delayed deformability using creep cells; and, a

set of laboratory tests of the aggregates and mortar binding the coarse aggregates. The

studied structural properties were the modulus of elasticity and the development of creep

strain over time, the compressive and the splitting tensile strengths.

One of the main difficulties of dam concrete testing is the use of large specimens,

particularly for a dry consistency concrete. The cast, compaction, transport, curing and

testing of large specimens with hundreds of kilograms require expertise and good quality

control procedures. Wet-screened concrete testing using smaller specimens gives some

insight of the quality of the placed concrete and is much easier to deal with. However,

the properties of the dam concrete placed on site are different from those of wet-screened

concrete and should be also assessed.

Firstly, a general overview of the development of the main structural properties in

Portuguese dam concrete is presented in the beginning of the chapter. Dam concrete

composition and, therefore, its mechanical properties varied significantly over the years

and from dam to dam. Modulus of elasticity of dam concrete varied between 20 GPa and

40 GPa at the age of one year and the delayed strains ranged mainly between 5×10−6/MPa

and 25× 10−6/MPa. The compressive strength showed also a significant scatter, with

values ranging from 28 MPa to 55 MPa. It should be noticed that the material supply

is constrained to the dam’s location, especially for the aggregates. The rock used for the

production of aggregates is often obtained from quarries near the dam. It is known that the

stiffness and the overall quality of the aggregates determine the deformability and strength

properties and are one of the main reasons for the concrete variability. The analysis of

this comprehensive data allowed the establishment of statistical correlations between the

properties of dam and wet-screened concretes. Despite the different materials used on each

Portuguese dams, it was found that there is a relationship between the properties of the

two types of concrete.

Concerning the case study, the Baixo Sabor dam, this chapter presents the properties
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of each concrete component, the composition data, the testing conditions and the obtained

test results.

A significant part of this chapter concerns the installation, testing and analysis of in

situ experimental results regarding compressive creep tests. A detailed description of the

creep cells set up and the improvements developed during this thesis are presented. The

main improvements are the increase of the specimen sizes, especially for dam concrete

testing, the use of low-stiffness moulds using EPS and the use of stiff platens adjacent to

the flat-jack to guarantee an uniform stress in the specimen. These features allowed for a

cost reduction, an easier installation procedure and consistent test results, when compared

to the traditional creep cell solution used in the past.

The analysis of the delayed deformability results, obtained from laboratory testing and

from creep cells, show a stiff concrete with low creep strain development. The results of

in situ dam concrete modulus of elasticity at early ages (< 28 days) are considered very

high, motivated by the elevated temperature inside the dam’s core. The development of

creep strain over time is fast at early ages and slows down for later ages (long-term low

rate of creep strain). The creep cell setup included two types of wet-screened concrete,

the traditional concrete sieved by the 38 mm opening sieve and an intermediate concrete

sieved by the 76 mm opening sieve. It was concluded that wet-screened concretes have

lower modulus of elasticity and the rate of development of the creep strains increases since

the coarse aggregate content is smaller.

The results obtained from the quality control procedures during construction show

large deviations for each mechanical property. This deviations are fairly common for

this type of concrete and can be motivated by the large aggregates and the construction

duration. The replacement of cement by fly ash in large volumes had a strong influence

on the property development. Although most cement hydration takes place in the first

28 days, the strength development extends greatly beyond 90 days.

The test results presented in this chapter are the basis for the development of the

remaining work. The analytical and numerical model parameters are calibrated considering

the characteristics of Baixo Sabor dam concrete and its wet-screened concrete.
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4.1 Introduction

The use of analytical or semi-empirical models can be of great aid for the interpretation of

the experimental results and for the identification of large deviations and possible outliers.

Well established and calibrated models can be also used for the prediction of dam concrete

properties reducing the sampling frequency of this type of concrete. The prediction of dam

concrete properties is especially relevant due to the cast, transport and test difficulties

of very large specimens. The main purpose of the work presented in this chapter is to

predict the behaviour of dam concrete using the test results of its wet-screened concrete,

considering an analytical approach.

This chapter presents two types of prediction models based on analytical expressions,

one related to the deformability properties and another related to the strength properties.

For the deformability properties, two-phase composite models are adapted to take wet-

screening into account. The strength properties were predicted using an extension of the

Abrams law. The analytical models were calibrated using the presented test results of

Baixo Sabor dam (§ 3).

The proposed two-phase composite models is based on the hypothesis that dam concrete

is a composite of wet-screened concrete and the aggregates removed during wet-screening.
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Given the deformability properties of the wet-screened concrete and the sieve analysis of

dam concrete it is possible to obtain a prediction of the modulus of elasticity and creep

strain development of the dam concrete. The analysis of the in situ test results require the

use of the maturity method for obtaining an equivalent property at constant temperature.

It is known that higher temperatures increase the cement hydration rate and yield higher

mechanical property values. In order to compare different conditions, the modulus of

elasticity and the creep strain development measured in each creep cell were converted to a

reference constant temperature, taking into account the thermal history of each specimen.

The prediction of dam concrete compressive and splitting tensile strength properties

used the combination of two semi-empirical laws, the size effect law and an extension of

the Abrams law. Since the different types of concrete placed in the dam (Core-DAM, Core-

SCR, Face-DAM, Face-SCR and Reinforcement), were produced with the same materials,

a relationship between the strength properties and the composition data was obtained,

using the established Abrams law. The size effect law was applied to convert the strength

properties using small specimen into strength properties using large specimens (comparable

with the ones used for the characterization of dam concrete).

The proposed extended Abrams laws includes not only the water to cementitious

materials ratio but also the maximum size of aggregate as an input parameter due to its

significance in the behaviour of this type of concrete. Taking this parameter into account, a

semi-empirical expression is proposed for the prediction of dam concrete strength properties

based on the wet-screened test results.

Finally, in the end of this chapter, a framework for dam concrete quality assessment is

proposed. The proposed framework includes the described analytical models in order to

predict the deformability and strength properties of the dam concrete and to reduce the

number of tested samples once the prediction models have been properly calibrated.

4.2 Prediction of dam concrete modulus of elasticity

4.2.1 Introductory note

The content of this sub-section was published in a scientific paper in the international

Journal of Materials for Civil Engineering of ASCE with the title "Effect of wet-screening

in the elastic properties of dam concrete. Experimental in situ test results and fit to

composite models" (Serra et al. 2016b) (Appendix B).
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4.2.2 Proposed methodology

This study refers to the prediction of dam concrete modulus of elasticity over time using a

two-phase composite models and the wet-screened concrete results. The obtained results,

with two screening apertures (76 mm and 38 mm), were used to investigate the development

of the modulus of elasticity of dam concrete (full-mixed), for in situ conditions.

The methodology considers the binder as the wet-screened concrete and the removed

aggregates larger than the sieved used for wet-screening as the inclusions. The hypothesis

supporting the methodology is that, for elastic properties, the binder properties over time

determine the development of the mechanical properties of the concrete and that the

relationship between binder and the concrete elastic properties can be predicted using

simple composite models (Granger and Bažant 1995; Baweja et al. 1998).

Figure 4.1 illustrates the relations between in situ conditions, types of concrete and

the global approach used to relate the elastic behaviour, using the maturity method and

composite models. The analysis relies on three main parts: calculation of the equivalent

time, te, for the in situ test results considering the measured temperature on each creep cell

in order to have a reference temperature state for the comparison of different conditions

(applying the maturity method) 1 ; fit of the modulus of elasticity results to a logarithmic

development law over time for the reference temperature state 2 ; and, use of two-phase

composite models to estimate the modulus of elasticity of the dam concrete from the

wet-screened concretes results 3 .
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Figure 4.1: Global approach used for the prediction of dam concrete modulus of elasticity
in compression

4.2.3 Maturity method application and fit to in situ test results

It is known from experimental studies that the properties of concrete are temperature

dependent (Brooks et al. 2007). The development of a property at variable temperature

is related to the rate of chemical reaction as a function of temperature and of reactant

concentration, from which the Arrhenius law was derived. From the theoretical background

for a single reaction, the Nurse-Saul maturity function to the Arrhenius temperature

function (Carino and Lew 2001), the maturity method led to useful applications for the

prediction of concrete behaviour under variable temperature.

Nowadays, the equivalent age method (or Arhenious maturity) is the most commonly

used function, which can be written as an equivalent age, te,

te =
∫ t

0
e

[
−Ea

R

(
1

273+Tref
− 1

273+Tτ

)]
dτ (4.1)

where Tref is the reference temperature, Tτ is the measured temperature at time t, R is

the gas constant (8.31JK−1mol−1) and Ea is called the apparent activation energy. When

using this concept for the complex reactions of cementitious materials is important to

point out that Ea reflects the minimum amount of kinetic energy needed to form products,
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relates to an homogeneous reaction and its use implies an Arrhenius behaviour. Atkins

and Paula (2006) calls Ea as "purely empirical quantity that enable us to discuss the

variation of rate constants with temperature" and other authors reinforce this statement

highlighting the complex behaviour involved in the hydration of calcium silicates (Zhang

et al. 2008). The influence of maturing conditions on mechanical properties have been

studied by several authors (Kim et al. 2002a; Kim et al. 2002b; Brooks et al. 2007).

For the cracking risk assessment it is necessary to define the real development of the

mechanical properties of the concrete placed in situ coupled with the measured temperature

variations (higher temperatures increases the hardening rate). In situ dam concrete

temperatures can reach up to 50◦C (Cervera et al. 2000a; Noorzaei et al. 2006), while

in standard laboratory tests the concrete property characterization is done in constant

conditions (usually at 20◦C) (DIN 1991).

In Figure 4.2 the temperature history of the active dam concrete creep cell, CC1-150A,

and the correspondent equivalent age are presented. This temperature profile illustrates

the usual temperatures inside each lift, with higher temperatures in the first three days,

followed by a decrease until, approximately, 30◦C. The temperatures remain almost

constant within a large period because the temperature exchanges to the environment are

very slow. Due to the artificial cooling of the dam, this lift was submitted to a drastic

temperature decrease to approximately 8◦C. The influence of the temperature on the

equivalent age can be perceived as an acceleration of time when temperatures are higher

than the reference temperature, taken to be 20◦C (Figure 4.2). Table 4.1 presents the

calculated equivalent time of CC1 150-A, considering Ea/R=5000◦K (Bažant and Baweja

2000).

For each creep cell and considering its equivalent age, te, calculated from the measured

temperature, a logarithmic fit to the modulus of elasticity results was obtained, using

linear regression analysis (Equation 4.2). The fit minimizes the square root of the sum

of the deviations, ej , between experimental results (Eexpc,i (te,j)) and the estimated values

(E∗c,i(te,j)), using a weighted least square method (index i represents the type of concrete

and index j refers to the age of concrete),

E∗c,i(te,j) = ai + bilog(te,j) (4.2)

Table 4.1 presents the obtained modulus of elasticity results, the coefficients of the
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Figure 4.2: Measured temperature in CC1-150-A and the equivalent age calculated with
the maturity method

logarithmic fit for each type of concrete, the estimated modulus of elasticity and the

deviations to the experimental results, for the CC1 creep cell set. Table 4.1 shows that

Equation 4.2 gives a good fit to experimental results in the first year of age, with a

maximum absolute deviation of 4.4%. In situ results have larger modulus of elasticity

than reference conditions, when the measured temperature is higher than the reference

temperature.

Figure 4.3 shows the results and the logarithmic fit curves for the CC1 creep cell set,

using the equivalent age (solid line in Figure 4.3). Considering the fitted parameters, ai
and bi, the composite model was applied to the fit results at the reference temperature of

20◦C (dashed lines in Figure 4.3).
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Figure 4.3: Logarithmic fit to modulus of elasticity test results obtained in situ and the
estimate for reference conditions using maturity method (CC1)
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Table 4.1: Logarithmic fit to CC1-A creep cell results

MSA t′ te Eexpc ai bi E∗c (te) Deviation
(mm) (days) (days) (GPa) (GPa) (GPa/days) (GPa) (%)

150

7.0 21.6 33.8

28.2 3.2

32.5 -4.0
14.0 38.8 33.6 33.3 -0.9
27.8 66.2 32.5 34.0 4.4
89.9 191.2 35.2 35.5 0.8
356.1 509.8 37.8 36.9 -2.4

76

7.0 22.7 28.1

21.9 1.7

27.3 -2.9
14.0 39.3 27.9 28.2 1.1
27.8 65.8 28.4 29.1 2.4
89.8 186.4 31.0 30.9 -0.3
357.0 496.3 32.7 32.6 -0.3

38

7.0 21.5 24.0

18.3 1.9

24.0 0.0
14.0 37.6 25.5 25.0 -2.0
28.0 63.3 25.6 26.0 1.5
89.9 181.3 27.8 27.9 0.4
357.0 485.6 29.9 29.7 -0.7

4.2.4 Composite models for the characterization of the elastic properties

Two-phase composite models are usually used to estimate the dam concrete properties when

few information is available (Vilardell et al. 1998; Topçu 2005; ICOLD 2008). Concrete

can be seen as coarse and fine aggregate particles embedded in a matrix of paste or as

coarse aggregates embedded in a matrix of mortar. The models used in this study are the

Counto model (Counto 1964), the spherical model (Hansen 1965), the Granger’s model

(Granger and Bažant 1995) and the Reuss model (Counto 1964).

Counto proposed a model considering the aggregate as a cylinder or prism embedded

on mortar (Counto 1964), for which the composite modulus of elasticity is given by,

1
Ec

=
1−

√
Vagg

Em
+ 1(

1−
√
Vagg√
Vagg

)
Em +Eagg

(4.3)

where Ec, Em and Eagg are the modulus of elasticity of concrete, matrix and aggregate,

respectively. Vm and Vagg are the fraction volume of matrix and aggregate, respectively.

Hashin derived the bulk modulus of elasticity, Ec, with a two-phase material, considered

as spherical particles surrounded by matrix (Hansen 1965), taking the same Poisson’s ratio

for aggregate and matrix (ν = 0.2),

Ec =
[(

1−Vagg
)
Em +

(
1 +Vagg

)
Eagg(

1 +Vagg
)
Em +

(
1−Vagg

)
Eagg

]
Em (4.4)
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Granger and Bažant (Granger and Bažant 1995) considered a simple model taking the

mortar phase both series and parallel,

1
Ec

= 1−β
Em

+ β

αEagg + (1−α)Em
(4.5)

The physical meaning of the free parameter β is related to the amount of paste coupled

in series. The product αβ is taken as the volume of aggregate per unit volume of concrete,

Ag.

When β is equal to 1.0, the Granger’s model turns into the Voigt model (Ec = VmEm+

+VaggEagg) which can be related to the maximum amount of aggregate, Ag,max and gives

the upper bound of the modulus of elasticity value. When β is between zero and one, there

is no perfect compaction of the coarse aggregates and the binding paste fills the remaining

areas between aggregates (mortar portion in series with aggregates). On the other hand,

when β is equal to 0.0, the Granger’s model turns into the Reuss model (Ec = 1
Vm
Em

+ Vagg
Eagg

)

which gives the lower bound of the composite modulus of elasticity.

4.2.5 Prediction of the dam concrete modulus of elasticity based on

experimental tests of wet-screened concrete

Following the proposed methodology, the maturity method and the two-phase composite

models can be used to predict the modulus of elasticity of the dam concrete based on

the wet-screened concrete test results. For that, one can consider the dam concrete as a

composite of wet-screened concrete and the sieved coarse aggregate, instead of considering

the binding mortar (as usually considered in composite models). Provided that the volume,

Vequiv.binder, and modulus of elasticity, Eequiv.binder, of the wet-screened concrete (taken

as the "equivalent binder") and the volume, Vagg, and modulus of elasticity, Eagg, of the

sieved coarse aggregate (taken as the "inclusion") are known, a prediction of the modulus

of elasticity, Ec,dam, of the dam concrete (full-mixed concrete) can be obtained, using the

adequate composite model. In Tables 4.2 and 4.3 results for each type of composite model

and for the two types of wet-screened concretes are presented.

Figure 4.4 shows the use of the two types of wet-screened concrete and the correspon-

dence between the dam concrete and the composite model in each case (composite 1 and

composite 2). Composite 1 is considered to be composed by elastic inclusions of aggregates

with MSA larger than 76 mm and an equivalent binder of wet-screened concrete with MSA
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smaller than 76 mm. Composite 2 is considered to be composed by elastic inclusions of

aggregates with MSA larger than 38 mm and an equivalent binder of wet-screened concrete

with MSA smaller than 38 mm. The composite models presented previously were used to

evaluate its applicability to the proposed methodology.

Table 4.2: Composite data for the estimation of the modulus of elasticity of dam concrete
(part 1)

MSA
Veq.binder Vaggeq. binder (mm)

76 0.86 0.14
38 0.72 0.28

Table 4.3: Composite data for the estimation of the modulus of elasticity of dam concrete
(part 2)

MSA eq.
t′ E∗c,eq.bin. E

∗,exp
c,dam E

∗,R.
c,dam ωR.

E
∗,C.
c,dam ωC.

E
∗,sph.
c,dam ωsph.

E
∗,G.
c,dam ωG.binder

(mm) (days) (GPa) (GPa) (GPa) (GPa) (GPa) (GPa)

76

7 24.5 28.8 25.5

0.48

26.4

0.36

26.0

0.42

27.0

0.30
14 25.8 29.9 26.8 27.6 27.2 28.1
28 27.0 31.0 28.0 28.7 28.4 29.2
90 29.1 32.9 30.1 30.7 30.4 31.0
365 31.6 35.1 32.6 33.0 32.8 33.2

38

7 23.3 28.8 26.9

0.35

28.3

0.17

27.9

0.22

29.6

0.10
14 24.2 29.9 27.9 29.2 28.8 30.3
28 25.1 31.0 28.9 30.1 29.7 31.1
90 26.6 32.9 30.5 31.5 31.2 32.3
365 28.5 35.1 32.5 33.3 33.0 33.9

Figure 4.4: Adapted composite model for wet-screening procedure

The adopted composite models were the Reuss model (R.), the Counto model (C.), the

spherical model (sph.) and the model proposed by Granger and Bažant (G.). The modulus
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of elasticity of the granitic rock used for the production of the coarse aggregates was

considered to be 46.3 GPa (Table 3.10). This average mechanical property was obtained

from experimental tests for the characterization of the quarry from which the aggregates

were extracted.

The best fit was considered the one with the lowest standardized deviation, ω, obtained

from the difference between the fit to experimental results, E∗c , and the prediction of the

composite model, E∗,compositec , at a given age, tj ,

emodelj = E∗c (tj)−E∗,compositec (tj) (4.6)

ωmodel =
N∑
j=1

∣∣∣emodelj

∣∣∣
E∗c (tj)

(4.7)

Figures 4.5 and 4.6 show the fit of composite model prediction using the average test

results from SCR38 (#76 mm) and SCR76 (#38 mm) wet-screened concretes, respectively.

Table 4.4 present the coefficients of the logarithmic fit for each type of composite model.

The parameter β of Granger’s model was determined to insure an adequate prediction

by minimizing the difference between predicted values and dam concrete test results. This

optimization led to a parameter β=1.0 and to a parallel composite model (Voigt model),

which represents the upper bound for the predicted values (Hansen 1965). This can be

physically interpreted as the optimum coarse aggregate packing according to Caquot’s

law and maximum aggregate compactness (for the aggregates larger than the sieved used)

(Granger and Bažant 1995). This conclusion is compatible with the high values of the

modulus of elasticity of the dam concrete.

The large amount of aggregate of the dam concrete associated with a good compaction

leads to high values of modulus of elasticity in which several aggregates are assumed to

be touching each other and creating an aggregate network surrounded by mortar where

the forces are transmitted.

The use of a composite model considering the matrix as the SCR38 wet-screened

concrete gave a better agreement with the experimental results of dam concrete with lower

values of standard deviation, ω (Table 4.3 and Figure 4.6). This can be due to a better

estimate of the volume fractions for the SCR38 wet-screened concrete (for the SCR76

concrete the volume fraction of aggregate considered in the analysis is relatively low which

can lead to large deviations in the estimates).
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It is shown that the Granger and Bažant’s model, by considering the parameter β

gives the best agreement to the experimental results. The inherent flexibility of this model

makes it more suitable for different types of wet-screening (using different sieves), as the

parameter β can be adjusted to give the best fit for each sieve aperture.

Table 4.4: Fitted parameters for the dam concrete modulus of elasticity prediction using
the two types of adopted composite models

Composite
MSA equiv.

Model
a∗,compdam b∗,compdam

binder (mm) (GPa) (GPa/days)

1 76

Reuss (R.) 22.1 4.08
Counto (C.) 23.2 3.83

Spherical (sph.) 22.7 3.94
Granger(G.) (β = 1.0) 23.9 3.63

2 38

Reuss (R.) 24.2 3.22
Counto (C.) 25.9 2.87

Spherical (sph.) 25.4 2.98
Granger (G.) (β = 1.0) 27.5 2.48
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Figure 4.5: Prediction of dam concrete modulus of elasticity development using experi-
mental results of SCR76 wet-screened concrete (composite 1)
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Figure 4.6: Prediction of dam concrete modulus of elasticity development using experi-
mental results of SCR38 wet-screened concrete (composite 2)

4.3 Prediction of dam concrete creep in compression

4.3.1 Introductory note

The content of this sub-section was published in a scientific paper in the international

journal Materials and Structures with the title "Dam and wet-screened concrete creep in

compression: in situ experimental results and creep strains prediction using model B3 and

composite models" (Serra et al. 2016a) (Appendix B). This paper was awarded with the

Materials and Structures: Outstanding Paper 2016 Award (Appendix B).

4.3.2 Proposed methodology

The proposed methodology for the prediction of in situ dam concrete creep strains in

compression is similar to the one described previously for the modulus of elasticity which

used an adaptation of the usual two-phase composite model to represent the dam and

the wet-screened concrete. The prediction of dam concrete creep strains is divided into

three main stages: i) an experimental study for the evaluation of the compressive creep

strains obtained in situ of the dam concrete and the two wet-screened concretes, SCR76
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(#76) and SCR38 (#38) concretes); ii) the fit of the experimental results to model B3

considering the measured temperature for each type of concrete to obtain a reference

temperature state; and, iii) the prediction of the dam concrete compressive creep strains

based on the compressive creep strains of the wet-screened concrete using an equivalent

two-phase composite model (Composite #76-Dam and Composite #38-Dam). Figure 4.7

presents the schematic view of the proposed procedure for the validation of the equivalent

composite model for the prediction of dam concrete compressive creep strains.

Figure 4.7: Procedure for the validation of the equivalent composite model for dam concrete
compressive creep strains

The experimental programme was defined in order to measure the development of the

in situ compressive creep strains of dam concrete and of two wet-screened concretes, the

concrete with MSA=76 mm (SCR76 concrete) and the concrete with MSA=38 mm (SCR38

concrete). The SCR76 and SCR38 concretes or #76 and #38 concretes were obtained by

removing the aggregates larger than 76 mm and 38 mm, respectively. The compressive

creep strains were measured in creep cells (§ 3.7.3), concrete specimens embedded in the

dam’s core (§ 3.5).
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The comparison between the different test conditions (such as the temperature vari-

ations) was achieved by fitting the test results to the model B3 at constant elevated

temperatures considering the equivalent age method (§ 4.3.3). An optimization procedure

considering the equivalent age method allowed for evaluation of the model parameters at

reference temperature state, since the temperature variations are taken into account.

Following the work of Granger and Bažant (1995), a simple parallel and series two-

phase composite model (§ 4.3.5) and its adaptation to aging materials considering the

age-adjusted effective modulus method was used (§ 4.3.4).

The prediction of dam concrete delayed behaviour was obtained using an equivalent

two-phase composite model which considers the wet-screened concrete, obtained from the

dam concrete, as an equivalent aging viscoelastic matrix and the removed aggregates as

the elastic inclusions. The input parameters are the volume fractions of equivalent matrix

(wet-screened concrete) and the inclusions (removed aggregates) and the creep compliance

of each wet-screened concrete. Since two type of wet-screened concretes were tested, two

composite models were developed: Composite #76-Dam, using the test results of the

concrete obtained from sieving the aggregates larger than 76 mm, and Composite #38-

Dam, using the #38 mm wet-screened concrete test results. Each composite prediction

was compared with the model B3 fit of the experimental results of dam concrete.

4.3.3 Prediction model for the concrete creep strains

Model B3, proposed by Bažant and Baweja (Bažant and Baweja 1995a; Bažant and Baweja

2000), describes the creep compliance as the sum of the asymptotic elastic strains due

to unit stress, q1, the basic creep compliance, C0(t, t′), and the drying creep compliance,

Cd(t, t0, t′) (Equation 4.8). Its strong points are related to the fact that the creep com-

pliance rate, Ċ0(t, t′), is derived according to the guidelines of RILEM TC 107 (1995),

has been fitted from multi-decade laboratory tests (Bažant and Li 2008), is based on the

micromechanics of aging considered in the solidification theory (Bažant and Prasannan

1989a; Bažant and Prasannan 1989b) and has been shown to have lower coefficients of

variation of errors for dam concrete (Bažant and Baweja 2000).

J(t, t′) = q1 +C0(t, t′) +Cd(t, t′, t0) (4.8)

For the dam body, due to the large thickness of the dam and the slow water diffusion
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in concrete, only a small layer of the upstream and downstream (during construction)

is subjected to cyclic drying and wetting (Bažant and Baweja 1995b) and the moisture

exchange with the environment is small. For this reason, in this study, drying creep

strains can be considered negligible (Bentur 2002; Schrefler et al. 2010). The basic creep

compliance, C0(t, t′), can be expressed as a linear combination of material parameters and

time-dependent variables.

C0(t, t′) = q2Q(t, t′) + q3 ln
[
1 + (t− t′)n

]
+ q4 ln

(
t

t′

)
(4.9)

where Q(t, t′) is a binomial integral with no analytical expression but can be approximated

by Equations 4.10 to 4.13, with an error less than 1% for n = 0.1 and m = 0.5 for a

large range of loading age and time under loading (Bažant and Baweja 1995a; Bažant and

Baweja 2000).

Q(t, t′) =Qf (t′)

1 +
(
Qf
(
t′
)

Z (t, t′)

)r(t′)−1/r(t′)
(4.10)

r
(
t′
)

= 1.7
(
t′
)0.12

+ 8 (4.11)

Z
(
t, t′
)

=
(
t′
)−m

ln
[
1 +

(
t− t′

)n]
(4.12)

Qf
(
t′
)

=
[
0.086

(
t′
)2/9

+ 1.21
(
t′
)4/9

]−1
(4.13)

Considering a load duration, ∆t, usually taken to be 0.01 days, the static modulus of

elasticity yields from the creep compliance (Equation 6.27),

E(t′) = 1
A0 + A1√

t′

(4.14)

where A0 = q1 + q3ln(1 +∆tn) and A1 = q2ln(1 +∆tn).

Each term of the sum has a physical meaning: q1 is the asymptotic elastic part, q2

refers to aging viscoelasticity, q3 refers to non-aging viscoelasticity and q4 refers to aging

flow. Since it is a linear combination of time-dependent variables, the fit to experimental

data is easier than other creep models. The replacement of cement by fly ash is known to
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decrease the rate of property development (Popovics 1993; Kim et al. 2002a; Brooks et al.

2007) due to the late chemical reactions with the calcium silicates.

The temperature and moisture conditions have an important role in the development

of the mechanical properties, especially on creep strains. The influence of temperature

on the properties development is mainly ruled by the composition of the binder due to

changes of cement hydration rate.

To model the effect of temperature variations in the hardening of concrete, several

authors use the equivalent age method (or Arhenius maturity) (Carino and Lew 2001) with

equivalent or apparent activation energies, calibrated for tests at different temperatures,

for different mechanical properties and different types of concrete (Carino and Tank 1992;

Kim et al. 2002b; Han et al. 2003; Zhang et al. 2008). Particularly for the investigation

of temperature effect on the creep of concrete, some experimental studies have been done

(Browne and Blundell 1969; Bažant and Osman 1976; McDonald 1978; Vandewalle 2000).

According to this method the original compliance (Equation 4.9) yields a new expression

(Equation 4.15) to take into account constant elevated temperatures, T (t), in degrees

Celsius (Bažant and Baweja 2000).

C0
(
t, t′,T

)
=RT

q2Q
(
tT , t

′
e

)
+ q3 ln

[
1 +

(
tT − t′e

)n]
+ q4 ln

(
tT
t′e

) (4.15)

where t′e and tT − t′e are the equivalent age and the equivalent loading time both with

the respective apparent activation energy, Uh, for the cement hydration reactions and Uc,

for describing the acceleration of creep rate. U ′c refers to magnification of creep due to

temperature increase, defined by the Equations 4.21 to 4.23.

t′e =
∫ t′

0
βT (τ) dτ (4.16)

tT − t′e =
∫ t

t′
β′T
(
τ ′
)
dτ ′ (4.17)

βT = exp

Uh
R

(
1

Tref + 273 −
1

T + 273

) (4.18)
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β′T = exp

Uc
R

(
1

Tref + 273 −
1

T + 273

) (4.19)

RT = exp

U ′c
R

(
1

Tref + 273 −
1

T + 273

) (4.20)

where Tref is the reference temperature in degrees Celsius, T is the measured temperature

in degrees Celsius and R is the gas constant (8.31JK−1mol−1) and, according to experi-

mental fit to laboratory tests (Bažant and Baweja 2000), the apparent activation energies,

Uh, U ′c and Uc, can be predicted by the following expressions:

Uh
R

= 5000 ◦K (4.21)

Uc
R

= 3418
[(
w/c

)
(c)
]−0.27 (

fc,28
)0.54 (4.22)

U ′c
R

= 0.18Uc
R

(4.23)

where the w, c and fc,28 are the water content, the cement content and the compressive

strength at the age of 28 days. In order to take into account the temperature effect of a

specific concrete composition on the creep development, the apparent activation energies

can be adjusted to the obtained experimental results (Carino and Lew 2001; Zhang et al.

2008).

4.3.4 Age-adjusted effective modulus method

Generally, the delayed behaviour of concrete is described as a total strain, ε(t, t′), resultant

of a stress, σ(t′), applied at the age of t′ and kept constant until t, and an hygrothermal

strain, ε0(t), such as drying shrinkage, thermal or chemical strains.

ε(t, t′) = εi(t′) + εc(t, t′) + ε0(t) (4.24)

Considering that no cracking occurs, the stress-dependent strain can be expressed as

the sum of an instantaneous strain, εi(t′) and of a creep strain, εc(t, t′). The instantaneous

and creep strains can be expressed as a function of stress, obtaining the creep compliance,

J(t, t′).
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ε(t, t′) = J(t, t′)σ(t′) = εi(t′) + εc(t, t′) (4.25)

J(t, t′) = 1
E(t′) + εc(t, t′)

σ(t′) (4.26)

The stress, σ(t, t′), obtained from a given strain, ε(t′) is related to the relaxation

function.

σ(t, t′) =R(t, t′)ε(t′) (4.27)

which can be approximated, as proposed by Bažant et al. (1979), by,

R(t, t′) = 0.992
J(t, t′) −

0.15
J(t, t− 1)

[
J(t−∆t, t′)
J(t, t′+∆t) − 1

]
, ∆t= t− t′

2 (4.28)

The age-adjusted effective modulus method, age-adjusted effective modulus (AAEM)

method (Bažant 1972), based on the linear principle of superposition, is used for obtaining

an approximate solution of the creep strains development by assuming that,

ε(t, t′)− ε0(t) = ε0 + ε1φ(t, t′), t > t′

σ(t′) = 0, t < t′
(4.29)

where ε0 and ε1 are given constants. The advantage of this method is that the creep

analysis converts into an elastic analysis considering an incremental form,

∆σ(t) = E′′(t, t′)
(
∆ε(t, t′)−∆ε′′(t, t′)

)
(4.30)

in which,

∆ε(t, t′) = ε(t)− ε(t′), ∆σ(t, t′) = σ(t)−σ(t′) (4.31)

∆ε′′(t, t′) = σ(t′)
E(t′)φ(t, t′) + ε0(t)− ε0(t′) (4.32)

E′′(t, t′) = E(t′)
1 +χ(t, t′)φ(t, t′) (4.33)
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φ(t, t′) = J(t, t′)E(t′)− 1 (4.34)

χ(t, t′) =
(

1− R(t, t′)
E(t′)

)−1

− 1
φ(t, t′) (4.35)

where φ(t, t′) and χ(t, t′) are, respectively, the creep coefficient and the age coefficient and

E′′(t, t′) is the age-adjusted effective modulus.

This method was used by Granger and Bažant (1995) to introduce the aging viscoelas-

ticity of concrete into a composite two-phase model (§ 4.3.5).

4.3.5 Composite model for the characterization of the long-term properties

The second part of the study concerns the use of composite models to predict the delayed

behaviour of concrete with different coarse aggregate contents.

The heterogeneity of concrete can be studied using models where the meso-structure is

taken into account. The first composite models applied to concrete concerned the elastic

behaviour using approaches based on uniaxial rheological models (Hirsch 1962; Counto

1964; Hansen 1965) and on homogenization models, such as the variational approach con-

sidering spherical inclusions (Hashin-Shtrickman bounds) (Hashin 1963), the self-consistent

model considering ellipsoidal inclusions (Hill 1965) and the Mori-Tanaka method (Ben-

veniste 1987). The prediction of the aging viscoelastic behaviour of the materials using

composite model was developed with the work of Counto (1964) and Popovics (1987) and

later with Granger and Bažant (1995) and Baweja et al. (1998), based on the uniaxial

rheological models, and, more recently using homogenization concepts, by Sanahuja (2013)

and Lavergne et al. (2015).

The chosen model is the two-phase coupled series and parallel composite model, de-

scribed by Granger and Bažant (Granger and Bažant 1995), which considers the mortar

as the aging viscoelastic material and the coarse aggregates as the elastic inclusions. The

model is based in a simple uniaxial rheological model which is strongly related to the

physical behaviour of the material. The extension to triaxial behaviour was developed

later by Baweja et al. (Baweja et al. 1998). It is considered that a part of the mortar is

placed in series with the aggregates (related with parameter α) and another part is placed

in parallel (related with parameter β) (Figure 4.8 b)). The series portion can be perceived
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as the amount of mortar that separates the coarse aggregates avoiding their direct contact

and the parallel portion corresponds to the remaining volume between the aggregates.

The composite model estimates the modulus of elasticity of the composite material

based on the modulus of elasticity of the mortar, Em, the modulus of elasticity of the

aggregate, Eagg, its respective unit volume, Vagg and the proportion of mortar placed in

series and in parallel defined by β (Equation 4.36).

1
Ec

= 1−β
Em

+ β

αEagg + (1−α)Em
(4.36)

where αβ = Vagg.

The physical meaning of the free parameter β is related to the amount of paste coupled

in series and the product αβ is the volume of aggregate per unit volume of concrete,

Vagg. When β is equal to 1.0 (Figure 4.8 a)), the model derives into Voigt model (purely

parallel model (Counto 1964)) which can be related the maximum compactness, Va,max.

The maximum compactness of aggregate is related to the aggregate size distribution and

corresponds to the volume of aggregate in the mix necessary to obtain the most compact

packing (Larrard and Roy 1992). If the aggregates are in contact with each other, it is

expected that the series portion is null and that the composite model turns into a parallel

model (β = 1, Figure 4.8 b)). An example of this type of concrete is the prepacked or

preplaced aggregate concrete in which the aggregates are first placed in the formworks and

then the empty spaces are filled with a fluid mortar. In this case, the aggregates are in

direct contact with each other and, since there is no compaction procedure, no mortar is

coupled in series with the aggregates.

Figure 4.8: Schematic representation of the composite model: (a) volume of aggregate,
Va, lower than the maximum compactness of aggregate, Va,max considered as a model
with a series and parallel portions; b) volume of aggregate, Va, equal to the maximum
compactness of aggregate, Va,max yielding a model with parallel coupling

The aging viscoelastic behaviour and the continuous stress transfer from the mortar to
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the stiffer aggregates are modelled using the AAEM method (Bažant 1972) (Equations 4.29

to 4.35), described earlier in § 4.3.4, in which the stress-strain behaviour is related the

coupled series and parallel two-phase composite model conditions.

The total strain, ε(t, t′), due to a stress, σ(t′), is obtained by the sum of the strain

of mortar placed in series, εm(t, t′), and the strain of the parallel coupling of mortar and

aggregates, εam(t, t′). Considering firstly the strain of the parallel coupling of the composite

model, εam(t, t′), the stresses variations in both the mortar, ∆σm, and the aggregates, ∆σa,

which yield the stress transfer from the mortar to the aggregates over time, can be obtained

by

∆σa(t, t′) = Eagg∆εpar(t, t′) (4.37)

∆σm(t, t′) = E′′(t, t′)
[
∆εm(t, t′)− σm(t′)

Em(t′)φ(t, t′)
]

(4.38)

and the total stress in the mortar is ruled by the parallel model stress-strain relationships,

α∆σa(t, t′) + (1−α)∆σm = 0 (4.39)

yielding,

σm(t′) = σ(t′) Em(t′)
αEagg + (1−α)Em(t′) (4.40)

Considering an unit stress to obtain the concrete’s creep compliance J(t, t′), it is

possible to derive the expression for the proposed composite model, taking into account

the creep compliance of the mortar placed in series, Jm(t, t′).

J(t, t′) = β

αEagg + (1−α)Em(t′)

[
1 + (1−α) E

′′
m

E′′am
φ(t, t′)

]
+ (1−β)Jm(t, t′) (4.41)

in which,

φm(t, t′) = Em(t′)Jm(t, t′)− 1 (4.42)

E′′m(t, t′) = Em(t′)−Rm(t, t′)
φm(t, t′) (4.43)
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E′′am(t, t′) = αEa + (1−α)E′′m(t, t′) (4.44)

where φm(t, t′) is the creep coefficient of the mortar, E′′m(t, t′) is the age-adjusted modulus

of elasticity of the mortar and E′′am(t, t′) is the age-adjusted modulus of elasticity of the

parallel portion of aggregate and mortar.

In conclusion, given the mortar’s creep compliance, Jm(t, t′), the modulus of elasticity of

the inclusions, Ea, the fraction volumes of each component, Va and Vm, and the appropriate

parameter β is possible to predict the creep compliance of the concrete, J(t, t′), using simple

analytical expressions.

4.3.6 Prediction of dam concrete creep strains under compression based on

experimental tests of wet-screened concrete

4.3.6.1 Fit of the creep test results to B3 model considering in situ and laboratory

conditions

An optimization procedure based on genetic algorithm (GA) (Scrucca 2013) was applied

to obtain the aging viscoelastic parameters q1, q2, q3 and q4, following the methodology

proposed by Wendner et al. (2015). The optimization procedure defined constraints for the

fitting parameters (only positive values were allowed). The fit considered the data obtained

in creep cells for the three available loading ages, 28, 90 and 365 days, simultaneously.

Only the results equally spaced in logarithmic scale were considered in order to ensure a

proper weight in the analysed loading time scale. Also, only the periods of time where

the temperature was approximately constant were taken into account in the optimization

procedure. The choice of the equally spaced values was based on expert judgement, starting

with the first available measurement.

The obtained parameters minimize the sum of the square difference between the experi-

mental results, Jexp(tT,j , t′e,i), and the theoretical creep compliance, JB3(tT,j , t′e,i,Tj , q1, q2,

q3, q4) (Equation 4.45), considering the measured temperature in each creep cell according

to the extension of the model B3 to constant elevated temperature (§4.3.3).

min

 m∑
i=1

n∑
j=1

(
Jexp(tT,j , t′e,i)− JB3(tj , t′i,Tj , q1, q2, q3, q4)

)2
 (4.45)

where the n and m are the number of loading ages and the number of measured values
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over the loading time, respectively, and Tj is the measured temperature.

The equivalent loading age, t′e, and the equivalent loading time, tT − t′e, are calculated

using the equivalent age method and the correspondent apparent activation energies, Uh/R,

Uc/R and U ′c/R (§ 4.3.3). An accurate estimate for these apparent activation energies

for this concrete is not possible to obtain using the limited experimental results. Some

work have been done regarding the development of the strength of concrete with large

fly ash content (Bamforth 1980; Sennour and Carrasquillo 1989; Han et al. 2003; Brooks

et al. 2007; Trebuňa et al. 2012) but an extensive evaluation of the effect on the apparent

activation energies related to creep, Uh/R, Uc/R and U ′c/R, is still to be done.

The empirical values for Uh/R and Uc/R were calculated with the average composi-

tion data (Table 3.3) and the strength test results provided from quality control, during

construction, for the #38 concrete: w = wadd +wagg = 172.2 kg/m3 and fc,90 = 25.2 MPa

(Table 4.5). At a loading age of 28 days, the compressive creep strains obtained in situ are,

in average, 5% lower than compressive creep strains obtained in laboratory at 20℃ (Fig-

ure 4.9, t’=28 days).

Table 4.5: Coefficients for the extension of model B3 to basic creep at constant elevated
temperature

Type of w t′ fc(t′) Uh/R Uc/R U ′c/R
concrete (kg/m3) (days) (MPa) (◦K) (◦K) (◦K)
Dam 120.1 90 24.7

5000
5300.9 954.2

#76 (SCR76) 137.6 90 24.7∗ 5109.8 919.8
#38 (SCR38) 162.0 90 25.2 4942.6 889.7
Note: The compressive strength of #76 concrete was considered to be
the same as dam concrete

Tables 4.6 and 4.7 present the parameters and the obtained coefficient of determination,

R2. The obtained determination coefficients show a good agreement between the model

and the experimental results. The lower determination coefficients correspond to the

optimization of the creep compliance for three loading ages (dam and #76 concretes).

Figure 4.9 shows the in situ (total results and the values used for the optimization

process) and the laboratory results, the fit considering the in situ temperatures, J#38(tT , t′e),

and model B3 creep compliance for the reference temperature (20℃), using the fitted

parameters q1, q2, q3 and q4, J#38(t, t′).

Figures 4.10 and 4.11 show the results and fit obtained for the dam and #76 concretes,

respectively, including the measured in situ creep strains (#76, in situ), the experimental
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Table 4.6: Equivalent age and equivalent loading time used in the analysis

Type of Creep t′ t− t′ t′e tT − t′e
concrete Cell (days) (days) (days) (days)

Dam
CC1 27.5 159.1 65.6 182.8
CC2 89.0 83.0 215.8 93.8
CC3 364.4 33.0 505.2 29.1

#76 (SCR76)
CC1 27.8 152.0 66.6 185.8
CC2 89.1 56.9 205.5 67.4
CC3 364.6 33.0 502.2 27.2

#38 (SCR38) CC1 27.79 152.0 64.1 169.8

Table 4.7: Parameters obtained by the optimization procedure

Creep q1 q2 q3 q4 R2
(×10−6/MPa) (×10−6/MPa) (×10−6/MPa) (×10−6/MPa)

DAM 26.47 13.87 8.21 5.87 0.837
#76 (SCR76) 30.40 60.16 4.61 4.89 0.796
#38 (SCR38) 24.17 82.75 17.40 5.54 0.986
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Figure 4.9: Compressive creep test results of #38 concrete at several ages and fit to
model B3 for elevated constant temperature (in situ conditions) and constant reference
temperature conditions

values used for obtaining the model B3 parameters (equally spaced in log-scale), the fitted

creep compliance considering the measured temperatures,J#76(tT , t′e) and JDam(tT , t′e), and

the fitted creep compliance for the reference temperature (20℃), J#76(t, t′) and JDam(t, t′).

The differences between the in situ and laboratory conditions for these types of concretes

are less significant, especially for the early loading times, t− t′.

The obtained creep strains for each concrete show a decrease of rate of development for

later loading ages, due to aging, and for larger coarse aggregate contents. The aggregates

restraint the development of the creep strains over time, due to a transfer of stress from

the mortar to the aggregate skeleton.
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Figure 4.10: Compressive creep test results of #76 concrete at several ages and fit to
model B3 for elevated constant temperature (in situ conditions) and constant reference
temperature conditions
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Figure 4.11: Compressive creep test results of dam concrete at several ages and fit to
model B3 for elevated constant temperature (in situ conditions) and constant reference
temperature conditions

4.3.6.2 Prediction of the dam concrete creep strains under compression using

composite models

The proposed prediction of dam concrete creep under compression is based on the experi-

mental results of wet-screened concrete measured in situ. The methodology relies, firstly,

on the equivalence between in situ and laboratory results, described in § 4.3.6.1 to take

into account the elevated constant temperature measured in situ. Secondly, it is proposed

the use of the composite model theory (§ 4.3.5) to predict the effects of the changes on

composition, in particular, the variations of coarse aggregate content.

Similarly to the methodology used in the previous section, the composite model de-

scribed in § 4.3.5 was adapted to consider dam concrete a composite material in which

the wet-screened concrete works as an equivalent matrix and the remaining aggregate as

the inclusions. Two composite models, Composite #76-Dam and Composite #38-Dam,
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were considered. The compressive creep test results of both types of wet-screened concrete,

J#76(t, t′) and J#38(t, t′), its fraction volumes with respect to the volume of the dam

concrete, V#76 and V#38, the modulus of elasticity of the removed aggregate, Eagg, and

the fraction volumes of the removed aggregate, Va>76 mm and Va>38 mm, were considered.

An additional composite model, Composite #38-#76, was used to validate the application

of the proposed methodology. Table 4.8 summarizes the properties used in the equivalent

composite model analysis.

The wet-screening procedure implies a change in the matrix composition since some

mortar is removed with the larger aggregates (Table 3.3 in § 3.3.3). This mortar is

considered to be a very small portion of volume when compared with the equivalent matrix

(considered, in this case, to be the wet-screened concrete).

Table 4.8: Properties used for the equivalent composite model analysis

Composite Creep compliance of Eagg Veq.matrix= Va>MSAmodel equiv. matrix (10−6/MPa) (GPa) Vwet−scr. concrete

#76-Dam J#76 (Table 4.7)
46.3

0.86 0.14
#38-Dam

J#38 (Table 4.7) 0.72 0.28
#38-#76 0.84 0.16

Figure 4.12 shows a representation of the considered composite models (Composite

#76-Dam, Composite #38-Dam and Composite #38-#76), and the involved different

parameters (α#76−Dam, β#76−Dam, α#38−Dam, β#38−Dam, α#38−#76 and β#38−#76). For

the Composite #76-Dam the volume fraction of the wet-screened aggregates is lower than

for the Composite #38-Dam (Table 4.8) and, therefore, the involved parameters can be

different for each case.

Figure 4.12: Adapted composite model for wet-screening procedure

Firstly, the procedure described in §4.3.6.1 leads to the creep compliance under compres-

sion at a reference constant temperature, JDam(t, t′), J#76(t, t′) and J#38(t, t′). Therefore,
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the comparison of the results for each type of concrete, dam, #76 and #38 concretes,

independently from the maturing conditions, was possible. Considering the composition

data and the creep compliance under compression of both wet-screened concretes for refer-

ence temperatures,J#76(t, t′) and J#38(t, t′), the equivalent composite model was used to

predict the compressive creep compliance of dam concrete, Jβcomposite(t, t′) and compare it

with JDam(t, t′).

The optimum β was obtained by calculating the percentage difference, %∆
β
composite,

between the composite prediction and the experimental result for the range of possible

β, varying from 0.1 to 1.0. The percentage different, %∆
β
composite, represents the average

relative error of a prediction and was calculated using the range of available loading times

for each composite model, n (Equation 4.46).

%∆
β
composite(t

′) =
∑n
j=1

|Jβcomposite(tj ,t′)−JDam(tj ,t′)|
JDam(tj ,t′)
n

(4.46)

The influence of the composite model free parameters, β#76−Dam, β#38−Dam and

β#38−#76 on the obtained predictions of dam concrete is presented in Figure 4.13 (Equa-

tion 4.46).

The percentage difference for the three loading ages, varies significantly with β. The β

value with the lowest value of %∆
β
composite corresponds to the prediction model to be used.

For the Composite #76-Dam and the Composite #38-#76, the value of β that gives the

best fit for the three loading ages are, β = 0.5 and β = 0.3, respectively (Figure 4.14). The

Composite #38-Dam has its lowest percentage difference for a β = 0.6. The existence of a

minimum for almost every loading age and for the validation example (Composite #38-

#76), shows the consistency of the proposed methodology and that the model is able to

accurately predict the composite creep strains, for a given β.

Considering the average differences of the available loading ages, the results show a

better agreement for a low value of β for the composite model using the #76 composite

model and for a higher value of β for the #38 composite model (Figure 4.13). The higher

the β, the least is the volume of matrix that is coupled in series with the aggregates.

The Composite #76-Dam has, therefore, more equivalent matrix placed in series with the

inclusions than the Composite #38-Dam due to the small amount of inclusions, Va>76mm,

and due to the fact that the larger aggregates (MSA > 76 mm) are sparser in the wet-

screened concrete matrix.
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Figure 4.13: Percentage difference between the prediction using the equivalent composite
and the experimental results for several values of β

Figures 4.14 and 4.15 show the development of the creep strains of the wet-screened

concrete (grey solid lines) and the dam concrete (black dashed lines) and the dam concrete

prediction using the respective composite model (black solid lines).

It can be concluded that the predictions of dam concrete creep strains are good, given

the complexity of the phenomena and the limited test results. The higher deviations occur

for the Composite #38-Dam at the loading age of 28 days and for the early ages after

loading. These deviations can be due to limited compressive creep strain results and its

implications on the optimization procedures to fit the model B3 parameters.
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Figure 4.14: Prediction of full-mixed concrete creep compliance under compression using
#76 mm equivalent composite model (β = 0.5)

The β values are related to the amount of equivalent matrix placed parallel in the

composite model and can be related to the maximum amount of aggregate, Va,max. The

maximum amount of aggregate in the composite model is obtained for β = 1.0. According

to the theoretical Caquot law, the maximum amount of aggregate can be given by,
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Figure 4.15: Prediction of full-mixed concrete creep compliance under compression using
#38 mm equivalent composite model (β = 0.6)
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Figure 4.16: Prediction of #76 concrete creep compliance under compression using #38 mm
equivalent composite model (β = 0.3)

Va,max = 1− 0.47
(
dmin
dmax

) 1
5

(4.47)

where dmin and dmax are the minimum and maximum size of the aggregates. This estimate

can be used to compare the obtained βCaquot coefficients for each composite, given the

hypothesis of the equivalent composite model (Table 4.9).

Table 4.9: Comparison between estimate of β given by Caquot law and the by the fit to
the experimental results

Composite dmin dmax Va,max βCaquot = Va/Va,max βfitmodel (mm) (mm)
#76-Dam 76 150 0.59 0.27 0.5
#38-Dam 38 150 0.64 0.44 0.6
#38-#76 38 76 0.59 0.27 0.3

Although the β estimates are lower than the ones obtained by the optimization of

the percentage difference to the experimental results, the relationship between them are
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consistent.

4.4 Prediction of dam concrete compressive and splitting tensile

strength

4.4.1 Introductory note

The content of this sub-section was published in a scientific paper in the international

Journal of Materials for Civil Engineering of ASCE with the title "Prediction of dam

concrete compressive and splitting tensile strength based on wet-screened concrete test

results" (Serra et al. 2017b) (Appendix B).

4.4.2 Proposed methodology

The proposed methodology aims the prediction of dam concrete compressive and splitting

tensile strengths based on the test results of the wet-screened concrete and using structural

concepts, such as the size effect law and an extension of the established Abrams law taking

into account the influence of the maximum size of the aggregate. A practical expression is

developed for the ratio between dam and wet-screened concrete strengths containing the

influence size of the specimen and composition of the concrete.

Figure 4.17 illustrates the steps used to predict the compressive, fc, and splitting tensile

strength, ft,spl, of DAM concrete based on the test results of SCR concrete.

Figure 4.17: Schematic view of the proposed methodology for the prediction of the dam
concrete strength properties

Since the strength of concrete is size dependent, a direct comparison between two

types of concrete is only possible considering equal specimens. A size effect law is used
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to convert the strength results of wet-screened concrete obtained in smaller specimens

into compatible results in larger specimens. The obtained corrected strength results of

wet-screened concrete can thus be compared with the results of dam concrete with larger

aggregates. The application of the methodology is done with the established size effect

laws (Kim et al. 1999; Kim et al. 1990) and with the mean strength results of dam and

wet-screened of several types of concrete placed in Baixo Sabor dam (core, downstream

and upstream face concretes and the concrete used in the reinforced areas).

Afterwards, an extension of the Abrams law, incorporating the maximum size of the

aggregate (MSA), is proposed to predicted the strength of concrete based on the water to

cementitious materials and the maximum size of the aggregates. The diversity of concretes

produced during construction (§ 3.3.3) with the same materials allowed for the calibration

of the extended Abrams law and for the development of the relationship between dam

and wet-screened concrete strength results. The influence of the fly ash was taken into

account using the cementing efficiency factor, k, in the water-cementitious material ratio

(w/(c+ kf)).

Furthermore, to validate the proposed methodology, a specific testing program was

also carried out for the characterization of the mortar. The validation procedure consists

in converting the test results of the mortar to equivalent large specimens values and then

compared with the predicted extended Abrams law.

As a result of the proposed methodology, a practical expression for the ratio between

dam concrete and wet-screened strengths as a function of the age of wet-screened concrete

is obtained.

4.4.3 Conversion of specimen size based on size effect law

Based on the work of Bažant concerning the size effect on quasi-brittle materials (Bažant

1984), Kim et al. updated the proposed law introducing a size-independent strength (Kim

et al. 1990; Kim 1990). Fitting that expression to several experimental data, Kim et al.

obtained a generic function for compressive strength (Equation 4.48) in which the effect

of the maximum aggregate size could be neglected (Kim et al. 1999),

fc,Φ = 0.8fc,Φ0 +
0.4fc,Φ0√
1 + (H−Φ)

50

(4.48)

where fc,Φ is the uniaxial compressive strength given in MPa obtained in a cylinder with
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diameter Φ and height H, both given in mm, and fc,Φ0 is the uniaxial compressive strength

given in MPa obtained in a reference cylinder with diameter Φ0, given in mm.

Likewise, for the splitting tensile strength, Kim et al. (1990) developed a similar

expression (Equation 4.49) fitted to specific test results .

ft,spl,Φ =
59.76ft,spl,Φ0√

1 + 86.6Φ
+ 0.5ft,spl,Φ0 (4.49)

Figure 4.18 presents Kim et al.’s size effect laws. The conversion from small specimens

(Φ = 103 mm for MORTAR and Φ = 150 mm for wet-screened concrete) into larger

specimens (Φ = 450 mm) is based on the relationship given by the former expressions.

Both the compressive and splitting tensile strength decrease as the specimen size increases,

which implies a reduction of the wet-screened concrete and mortar properties for larger

specimens.
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Figure 4.18: Size effect laws for the compressive and splitting tensile strengths

4.4.4 Abrams law for the prediction of concrete strength

Analytical models to predict the strength of concrete are often used to establish the water-

cement ratio of a given concrete in order to achieve a required strength (ACI Committee

211.1-91 2002). The Abrams law is one of the most common expressions for this purpose

but considers only the "quality"of the matrix while the "quantity"of the cement, cement

paste or aggregate are not taken into account (Popovics and Ujhelyi 2008). The original

Abrams law (Abrams 1918) relates the compressive strength with the water-cement ratio

and can be described as a linear combination of this variable (Equation 4.50),

150



4.4. PREDICTION OF DAM CONCRETE COMPRESSIVE AND
SPLITTING TENSILE STRENGTH

fc = A

B
w
c

⇒ logfc = logA− w
c

logB = b0 + b1
w

c
(4.50)

where fc is the concrete compressive strength, w/c is the water-cement ratio and A and B

are parameters that depend on the type of strength, cement and aggregate type, admixtures,

curing and testing conditions and the age of concrete.

Based on the original Abrams law, a more comprehensive expression is developed in

order to take into account the specific characteristics of dam concrete, namely the large

replacement of cement by fly ash and the large aggregate sizes.

4.4.4.1 Influence of the fly ash content in concrete

The fly ash cementing efficiency factor is used for proportioning fly ash concrete (Smith and

Hammons 1993) and is obtained by considering that the relationship between water-cement

ratio and strength of normal concretes is equivalent to the water-effective cementitious

material ratio and strength relationship. The former hypothesis can be represented by the

following expression,

w

c0
≡ w

c+ kf
(4.51)

where c0 is the reference cement content for normal concretes, k is the overall cementing

efficiency and f is the fly ash content.

Ganesh Babu and Siva Nageswara Rao (1996) proposed a general expression for the

overall cementing efficiency, k, for the age of 90 days (Equation 4.52), based on the replace-

ment ratios of fly ash. The study used concrete results from several other experimental

works, considering a wide range of water-cementitious material ratios and of fly ash re-

placements. Although the results can be used for different types of fly ash, the size of

the aggregate used was less than 20 mm, significantly lower than the sizes used in dam

concrete.

k90 = 2.50p2− 3.59p+ 1.73, p = f

c+ f
(4.52)

Since the replacement ratios in the present case study were equal to 0.5 for every type

of concrete (dam and wet-screened, core, upstream and downstream and reinforcement

concretes), the value of k90 for the studied concretes is 0.56.
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4.4.4.2 Extended Abrams law for the study of effect of maximum size aggregate

This study proposes an extension of the original Abrams law for the prediction of dam

concrete over time, based on the test results of wet-screened concrete. This extended

Abrams law (Equation 4.53) considers the water-effective cementitious material ratio and

the maximum size of aggregate (MSA) used in the concrete or mortar (Φmax). Due to

the lack of information, the overall cementing factor, described previously, will be used for

both compressive and tensile strength predictions.

fc = A

B

(
w

c+kf +αdlog Φmax
Φ0
max

) (4.53)

where fc is the compressive strength, k is the efficiency factor of the fly ash, w is the water

content, c is the cement content, f is the fly ash content, Φmax is the maximum size of

aggregate (MSA), Φ0
max is the reference maximum size of aggregate and A, B and αd are

parameters to be determined.

This type of expression allows the analysis of the strength as linear combination of the

main parameters.

logfc = b0 + b1
w

c+ kf
+ b2 log

Φmax

Φ0
max

(4.54)

where b0 = log A, b1 = − log B and b2 = αd b1.

Table 4.10 shows the concrete data and the test results of each type of concrete used for

the fit of Equation 4.54, in which MSA is the maximum size of aggregate, w/(c+f) is the

water-cementitious material ratio, w/(c+ kf), is the water-effective cementitious material

ratio, fc,Φ = 450 is the compressive strength obtained from a cylinder with 450 mm of

diameter and ft,spl,Φ = 450 is the splitting tensile strength obtained from a cylinder with

450 mm of diameter.

Table 4.10: Baixo Sabor dam data for the fit to the extended Abrams law

Type MSA w
c+f

w
c+kf

fc,Φ = 450 (MPa) ft,spl,Φ = 450 (MPa)
of 28 90 365 28 90 365

concrete (mm) days days days days days days
Core-DAM 152 0.56 0.72 - 24.7 32.1 - 2.19 2.8
Core-SCR 38 0.56 0.72 20.4 23.4 30.6 - 2.16 -
Face-DAM 76 0.55 0.71 - 26.3 36.9 - 2.21 -
Face-SCR 38 0.55 0.70 20.3 24.9 34.49 - 2.25 -

Reinf.-DAM 38 0.50 0.64 25.0 34.0 - - 2.77 -
MORTAR 4.75 0.52 0.67 18.9 30.4 - 1.6 2.15 -
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The fit of the proposed extended Abrams law to the available test results of different

types of concretes is based on fact that they were produced with the same components and

cast with the same conditions. The results related to the concretes (Core-SCR, Core-DAM,

Face-SCR, Face-DAM and Reinf.-DAM) are used to find the parameters A, B and αd by

minimizing the square difference between Equation 4.53 and the compressive and splitting

tensile test results obtained or estimated for the large specimen size, Φ = 450 mm. The

obtained parameters are presented in Table 4.11, as well as the adjusted determination

coefficients obtained by the linear regression. The R2
adj values close to the unit indicate a

good fit and a statistical analysis shows that each parameter is meaningful to the prediction

(p-values lower than 0.05). Other parameters, such as the cement content and the water

content (Popovics 1982) were introduced into the extended Abrams law in addition to

Φmax but their contribution to the model was not statistically significant.

The MORTAR results are used for the validation of the proposed law since the mortar

specimens were produced and cast, independently from the concretes but with the same

type of components used in the concretes, after the dam construction.

Table 4.11: Parameters of the extended Abrams law

Reference Parameter fc ft,spl

28 days 90 days 365 days 90 days

k90 0.56

This work A (MPa) - 705.3(∗∗∗) 19389.3(.) 20.4(∗)

(Baixo Sabor B - 102.2(∗∗) 6958.8() 22.6(∗)

dam) αd - -12.8×10−3(∗∗) -7.7×10−3() 10.2×10−3(∗)

R2
adj - 0.99 0.84 0.89

(Blanks and McNamara 1935)

k90 -

A (MPa) 62.1(∗∗∗) 58.1(∗∗∗) 60.0(∗∗∗) -
B 8.0(∗∗∗) 5.2(∗∗∗) 4.3(∗∗∗) -

(w/c= 0.54) αd 28.0×10−3(∗) 46.6×10−3(∗∗∗) 63.7×10−3(∗∗∗) -
R2
adj 0.81 0.79 0.79 -

(Higginson et al. 1962)

k90 -
A (MPa) 61.7(∗∗∗) 66.1(∗∗∗) 83.6(∗∗∗) -

B 7.5(∗∗∗) 5.6(∗∗∗) 7.8(∗∗∗) -
(Series IV) αd 42.5×10−3(∗∗) 25.6×10−3(∗∗) 42.1×10−3(∗∗∗) -

R2
adj 0.96 0.95 0.96 -

Note: p-values (***) 0.001, (**) 0.01, (*) 0.05, (.) 0.1, ( ) 1

Figures 4.19 and 4.20 show the fit of the proposed extended Abrams law to the concrete

test results and the validation with the mortar test results, concerning the compressive

strength and the splitting tensile strength, respectively.

The results show that the proposed extended Abrams law can describe the influence
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Figure 4.19: Extended Abrams law for the compressive strength at the age of 90 days of
Baixo Sabor dam concrete

of the maximum size of aggregate (MSA) on the strength properties of concrete and that

it has a role in the development of strength. Similar results were obtained by Akçaoğlu

et al. (2004) but considering smaller aggregates , namely up to 32 mm and without fly ash

replacement.

The experimental study of Higginson et al. (1962) shows that, for constant low cement

contents the compressive strength increases as MSA increases. For this study and consid-

ering the concrete used in Baixo Sabor dam with low cementitious content, the strength

increases as MSA increases for a given constant water to cementitious ratio. This behavior

is explained by the fact that a low cement content and good quality aggregates yield failure

paths through the mortar and around the aggregates and, as the aggregates get larger, the

failure surface increases as well as the compressive strength (Zhou et al. 2010; Yang et al.

2016). This type of failure mode is also strongly related to the quality of the ITZ, which

is lower for concretes with larger aggregates (Elsharief et al. 2003; Akçaoğlu et al. 2004).

154



4.4. PREDICTION OF DAM CONCRETE COMPRESSIVE AND
SPLITTING TENSILE STRENGTH

MSA (mm)
w/(c+kf)

S
plitting tensile strength (M

P
a)

0 50 100 150 200

0

1

2

3

4

5

6

MSA (mm)

S
pl

itt
in

g 
te

ns
ile

 s
tr

en
gt

h 
(M

P
a)

●

●

fit(w/(c+f)=0.50)
fit(w/(c+f)=0.55)
fit(w/(c+f)=0.56)
fit(w/(c+f)=0.52)

Reinf. concrete
Face concrete
Core concrete
MORTAR

0.60 0.65 0.70 0.75 0.80

0

1

2

3

4

5

6

w/(c+kf)

S
pl

itt
in

g 
te

ns
ile

 s
tr

en
gt

h 
(M

P
a)

●

●

fit(MSA=38 mm)
fit(MSA=76 mm)
fit(MSA=152 mm)
fit(MSA=4.75 mm)

SCR (38 mm)
DAM (76 mm)
DAM (152 mm)
MORTAR

Figure 4.20: Extended Abrams law for the splitting tensile strength at the age of 90 days
of Baixo Sabor dam concrete

The extended Abrams law for splitting tensile strength yields a small increase in

strength as the MSA increases. Compared to the compression failure mode, the splitting

failure is mainly due to the opening of a single crack, making the aggregate size less

relevant to the final cracking pattern. Moreover, larger aggregates may introduce more

imperfections which can explain the lower increase of tensile strength Yang et al. 2016.

4.4.5 Prediction of dam concrete strength based on wet-screened test results

Based on the proposed extended Abrams law, the ratio between dam and wet-screened

concrete strengths for a given age and a given specimen size can be determined relying on

the intrinsic properties of each type of concrete, namely the effective water-cementitious

material ratio (w/(c+ kf)) and the MSA (Φmax).

Considering the conversion between specimen sizes, given by Kim’s size effect law, and

the proposed extended Abrams law for a given age, Equation 4.55 yields both effects for
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the specific case of wet-screening dam concrete (from DAM concrete to SCR concrete).

The effects are divided, respectively, into two different coefficients, kΦ and kAbrams. This

expression, fitted to experimental results, allows for the prediction of the dam concrete

strength obtained using a large specimen (Φ = 450 mm) based on the strength of wet-

screened concrete obtained using a smaller specimen (Φ = 150 mm).

fDAMΦ = 450
fSCR
Φ = 150

= kΦ × kAbrams = kT (4.55)

kΦ = 0.8 + 0.4√
1 + (H−Φ)

50

= 0.93 (4.56)

kAbrams = B

{(
w

c+kf

)
SCR
−
(

w
c+kf

)
DAM

+αd log
(

Φmax
Φ0
max

)
SCR
−αd log

(
Φmax
Φ0
max

)
DAM

}
(4.57)

The application of the size effect law was only required for the Baixo Sabor dam and

for Blanks and McNamara results since full-mixed and wet-screened concretes were tested

using different specimen sizes. Higginson et al. results can be directly compared and

only the extended Abrams law needs to be applied as same specimen size was used in

the compressive strength tests. Table 4.12 and 4.13 presents the average experimental

and predicted strength values and the effect of both size of the specimen, kΦ , and of the

composition, kAbrams, in which SCR38,φsmall, SCR38,φlarge and DAM,φlarge refer to the

test results of wet-screened concrete obtained using small specimens, test results of wet-

screened concrete obtained using large specimens and test results of dam concrete obtained

using large specimens. The comparison between the experimental and the predicted values

show a maximum difference of 12% for the Higginson results at the age of 365 days.

Figure 4.21 shows the ratio between compressive and splitting tensile strengths of

the full-mixed concrete obtained in large specimens and the compressive and splitting

tensile strengths of the wet-screened concrete obtained in small specimens. The prediction

ratios were plotted against the range of values available in the literature and presented in

Table 2.1 in § 2.3.7. The large ratio range are mainly related to the diversity of concretes

used in dams and to the difficulties associated to testing conditions. These results indicate

that specific experimental programs are required in order to better understand the test

results. It also reinforces the need to have physically-based predictive tools.
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Figure 4.21: Ratios between full-mixed and wet-screened compressive and splitting tensile
strength

Although the ratios are close to unit in the latter ages, the proposed relationship

between dam and wet-screened concrete strength is able to capture the general trend

described by the test results of USBR (1988) (Figure 2.18 in § 2.3.7). The ratio between

the compressive test results of dam concrete, obtained from large specimens, and the

compressive test results of wet-screened concrete, obtained from small specimens, decreases

as the age of the concrete increases.

Table 4.12: Prediction of the dam concrete based on the proposed relationship and on the
test results of wet-screened concrete (part 1)

Reference Property Age Experimental values
(days) SCR38,φsmall SCR38,φlarge DAM,φlarge

This work fc
90 25.2 - 24.7

Baixo Sabor 365 33.1 - 32.1

dam ft,spl 90 2.7 - 2.2

(Blanks and McNamara 1935)
fc

28 27.9 - 21.3
(w/c= 0.54) 90 33.2 - 25.4

365 41.2 - -

(Higginson et al. 1962)
fc

28 - 27.7 24.8
(Series IV) 90 - 32.0 29.1

365 - 40.7 32.8
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Table 4.13: Prediction of the dam concrete based on the proposed relationship and on the
test results of wet-screened concrete (part 2)

Reference Property Age kΦ kAbrams
fDAM
Φ large

fSCR
Φ small

= kT
Predicted values

(days) DAM,Φ large Difference (%)

This work fc
90 0.93 1.03 0.96 24.2 2.0

Baixo Sabor 365 1.02 0.95 31.4 2.2

dam ft,spl 90 0.80 0.97 0.78 2.1 4.5

(Blanks and McNamara 1935)
fc

28
0.89

0.90 0.80 22.3 4.6
(w/c= 0.54) 90 0.87 0.77 25.6 0.8

365 0.85 0.76 31.3 -

(Higginson et al. 1962)
fc

28
-

0.87 0.91 25.2 1.6
(Series IV) 90 0.86 0.96 30.7 5.5

365 0.89 0.91 37.0 12.8

4.5 Proposed framework for dam concrete quality control based

on analytical models

Concrete quality control implies the conformity check of the mechanical properties of

the concrete placed on site. Quality control procedures verify that the main mechanical

properties of the placed concrete meet the minimum requirements or recommended limits

defined by the designer. Strength values below a given limit and deformability results

that fall out of a given range are labelled as non-conform, the test results should be

rejected and special measurements should be taken into account in order to identify and

correct the reason for the deviation. The limits are obtained from trial testing prior to the

construction when the material components and the concrete design are already established.

An accepted test result will be included into the database and used for the definition of

more accurate acceptance limits (ICOLD 2008).

Since the costs of testing dam concrete are high, its sampling frequency is limited. Thus,

the wet-screened concrete, used as a reference for the quality control assessments, is tested

with a must higher sampling frequency. It is common practice to evaluate the statistical

correlation between the two types of concrete by testing two sets from the same batch.

The statistical correlation is currently used for the conversion of wet-screened concrete test

results into dam concrete test results. A simple statistical correlation encloses different

physical effects which can be taken into account for the analysis of each concrete test

result and, ultimately, aid the identification and correction of deviations of the prescribed

structural properties.

Taking into account the presented analytical tools used for the prediction of dam

concrete and based on the experimental results of wet-screened concrete, a new framework
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for dam concrete quality control is proposed. The motivation is the establishment of

physically-based relationships between the two types of concrete. The effect of the size of

the structural elements and the environmental conditions should also be taken into account

in order to evaluate the real in situ structural properties.

The goal is to obtain an accurate estimate of the main mechanical properties of the

placed dam structural concrete, by means of testing the actual dam concrete (DAM) using

large specimens (Φspec=450 mm) or testing the wet-screened concrete (SCR) using conven-

tional size specimens (Φspec=150 mm) and converting these results into the equivalent dam

concrete results. The main mechanical properties are the uniaxial compressive strength,

fc, the splitting tensile strength, ft, the modulus of elasticity under compression, Ec, and

the creep compliance under compression, Jc.

The framework relates to determination of the mechanical properties through laboratory

testing and the conformity check based on:

• Dam concrete test results - The main mechanical properties are evaluated using large

specimens (EDAMc,450 , JDAMc,450 , fDAMc,450 , fDAMt,450 ) and can be directly checked using the

usual conformity criteria;

• Wet-screened concrete test results - The main mechanical properties, evaluated

using small specimens (ESCRc,150 , JSCRc,150f
SCR
c,150 and fSCRt,150 ), have to be converted into

its equivalent dam concrete test result in order to be compared with the designer’s

requirements.

Figure 4.22 illustrates the general procedure of the proposed quality control framework,

including the use of dam concrete results and wet-screened concrete results. The approach

relies on two separate conversion procedures, one for the deformability properties and

other for the strength properties, which are based on the analytical models developed in

this chapter.

The first type of conversion procedure predicts the modulus of elasticity, Ec(t), and the

creep compliance, Jc(t), of dam concrete based on the wet-screened test results (usually

determined at 20℃, using small specimens, Φspec = 150 mm, and screened by the 38 mm

aperture sieve), on the composition of each concrete (mainly its relative proportions, VSCR
and VDAM ), on the modulus of elasticity of the aggregates and on the use of the proposed

composite model (Figure 4.23). The use of the composite models require the calibration

of the parameter that defines the parallel and series proportion, βMSA, and determination
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of the proportions of wet-screened concrete, V SCR, and sieved aggregates, V AGG. As

described in Figure 4.24, the composite model parameter, βMSA, can be evaluated from

equal specimens maintained at a reference temperature but cast with different types of

wet-screened concretes (SCR19 screened using 19 mm aperture sieve, MSA=19 mm, SCR38

screened using 38 mm aperture sieve, MSA=38 mm, and SCR76 screened using 76 mm

aperture sieve, MSA=76 mm) and with the dam concrete (MSA=150 mm). The second

type of conversion concerns the wet-screened concrete strength properties measured in

small specimens, fSCRc,150 and fSCRt,150 . The prediction of dam concrete strength properties

measured in large specimens, fDAMc,450 and fDAMt,450 , requires the calibration of the size effect

parameters (K1 and K2) and extended Abrams law parameters (A, B and αd) and the

determination of the water to cementitious materials of each type of concrete (w/cSCR

and w/cDAM ). Figure 4.25 presents the main effects and parameters for the strength

conversion.

The extended Abrams law parameters should be determined using controlled strength

tests in which equal size specimens are cast with different wet-screened concretes (SCR19

screened using 19 mm aperture sieve, MSA=19 mm, SCR38 screened using 38 mm aperture

sieve, MSA=38 mm, and SCR76 screened using 76 mm aperture sieve, MSA=76 mm) and

with the dam concrete (MSA=150 mm), as illustrated in Figure 4.24. The size effect

should also be accounted for through specific experimental testing, varying only the size of

the specimen (Φ=120 mm, Φ=150 mm, Φ=450 mm). Figure 4.26 shows a proposal for the

number and size of specimens for the calibration of the size effect law. If supplementary

cementititious materials are being used in the mix, the overall cementing efficiency should

also be determined for different replacement ratios (10%, 30%, 50% and 70%) and loading

ages (k7, k28, k90 and k365) through specific testing (Ganesh Babu and Siva Nageswara

Rao 1996).

After the conversion procedure, the predicted properties are compared with past dam

concrete test results and checked for conformity, in order to be accepted or rejected. Sim-

ilarly to the direct dam concrete test results, a rejected value should trigger corrective

measures in design and/or in the production procedures. In order to assess the real

structural properties, the on site effect should be considered, namely: the size effect; the

temperature history effect; and the tridimensional stress state effect inside the dam’s core

(Figure 4.22). This structural size effect relates to the conversion from the specimen size

to the structural element.
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Figure 4.23: Illustration of the conversion procedure for the deformability properties
including the determination of the proportions of wet-screened (SCR) and full-mixed
(DAM) concretes and of the composite model parameters

Figure 4.24: Number and size of specimens for the calibration of the composite model
parameter, βMSA and of the extended Abrams law’s parameters, A, B and αd

Early cracking of large concrete placements is the main concern during construction

and determines the overall durability over time. The prediction of the actual mechanical

properties at a given time, based on its temperature history is very important for the

safety and durability assessment of each lift.The effect of temperature history can be taken

into account using the maturity method and the adequate apparent activation energies,

Ea/R, Uh/R, Uc/R and U ′c/R. In order to determine the apparent activation energies of

the tested concrete, several specimens should be tested at different curing temperatures

(10℃, 20℃, 30℃ and 40℃), similarly to the procedure described in (Carino and Lew 2001).
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Figure 4.25: Illustration of the conversion procedure for the strength properties including
the determination of the the water-cement ratio of wet-screened (SCR) and full-mixed
(DAM) concretes, of the Abram’s law parameters and of the size effect parameters

Figure 4.26: Number and size of specimens for the calibration of the size effect law param-
eters, K1 and K2
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Figure 4.27: Number and size of specimens for the determination of the effect of the
supplementary cementitious materials

Figure 4.28 illustrates minimum number of specimens for the calibration of the apparent

activation energies.

Figure 4.28: Number and size of specimens for the calibration of the equivalent age method

Inside a concrete dam, specially an arch dam, different stress states can occur, including

triaxial and biaxial stress states. For example, near the up and downstream faces biaxial

tension-compressive and tension-tension states can develop, while inside of the dam a

triaxial compressive state is usually the most common (Mehta and Monteiro 2006). Since

conventional laboratory tests are uniaxial, a reduction or amplification factor is needed in

order to compare it directly with the calculated or measured stress state.

Tables 4.14 and 4.15 summarizes the list of parameters, variables, type and number of

specimens proposed for the calibration of the different effects and analytical models used

in the conversion procedure. It is proposed that this calibration programme occurs during

the trial tests, before the dam’s construction.
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4.6 Concluding remarks

The first part of this chapter proposes a methodology for the prediction of the dam

concrete instantaneous and delayed deformability properties based on the experimental in

situ results of the wet-screened concrete.

Due to the different temperature conditions of each creep cell, the maturity method

was applied to set a comparable reference state with the equivalent age. A two-phase

composite model, considering the sieved coarse aggregates as the inclusions and the wet-

screened concrete as the binder, was used to predict the modulus of elasticity of the dam

concrete considering two type of wet-screening sizes. The best fit to the dam test results

was obtained with the Granger and Bažant model taking β as 1.0, which is the particular

case of a purely parallel model (Voigt model). A similar methodology was applied to

the creep strain development using the results obtained in the Baixo Sabor creep cells.

The comparison between the dam concrete compressive creep strains prediction and the

obtained experimental results, at reference temperature conditions, show an overall good

agreement. The main deviations between the predictions and the measurement seem to be

related to the fit to experimental results to the model B3 at a large range of loading ages

and loading durations and to the different compaction conditions related to the two types

of wet-screened concrete. A sensitivity analysis was made, using the composite model

parameter β, related to the aggregate compaction conditions of the concrete, to obtain a

good agreement with the experimental results of dam concrete and the optimum composite

model parameters.

In the second part of the chapter it is proposed a physically-based expression for the

relationship between strength properties of dam concrete obtained in large specimens and

of wet-screened concrete obtained in small specimens, for a given age of concrete. The

parameters were calibrated for the compressive and splitting tensile strength results of

Baixo Sabor dam concrete obtained during the construction. The strength results used

in the analysis concern the concretes placed in the dam’s core, in the upstream and

downstream faces and in the areas with reinforcement, which have different maximum size

of aggregate (MSA).

A size effect law for both compressive and splitting tensile strength was used to convert

the test results obtained in small specimens into results obtained in large specimens and

the direct comparison between concrete test results. Then, an extended Abrams law,
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proposed in this chapter, allowed for the differentiation of each type of concrete used in

dams through an important intrinsic characteristic, the size of the aggregates used. The

validation of the obtained expression with the test results of the mortar reinforced the

good fit and its potential for several types of wet-screenings. It is shown that the maximum

size of aggregate has statistical significance in the strength prediction, indicating that this

parameter should be taken into account. The results obtained from the prediction model

are in agreement with other experimental results available in literature (Higginson et al.

1962). The Baixo Sabor test results show that there is an increase of compressive strength

as the maximum size of aggregate increases . It is also shown that the increase of splitting

tensile strength with the maximum size of aggregate is less pronounced.

The further understanding of the relationship between dam and wet-screened concrete

structural properties and the development of prediction models will contribute towards the

improvement of design guidelines and of monitoring and safety control practices, regarding

the assessment of long-term lifetime deterioration scenarios. These type of methodologies

can be applied when designing the composition mix in the trial phase, for the optimization

of the concrete quality control during construction and for test results interpretation. The

proposed approaches can also improve service life prediction analysis because, due to

the lack of information with few experimental data available, the abnormal behaviour of

concrete due to deterioration processes is difficult to be assessed (USBR 2005).

Finally, a new framework for the dam concrete quality control is proposed, which is

based on the developed prediction tools for each type of structural property. The main

purpose of this framework is to obtain reliable predictions of dam concrete properties

based on the test results of wet-screened concrete. Each model and method used in each

prediction tool (composite models, maturity method, size effect law and Abrams law)

requires the calibration of parameters in order to describe the behaviour of each specific

concrete. The framework can reduce the number of dam concrete test sampling using

large specimen and reduce the obtained standard deviations once the main parameters are

calibrated and the prediction results are validated. It can also help the interpretation of

new test results and the identification of outlier results based on well-established physically

based models.
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Numerical modell ing of the concrete

structural properties using particle models

5.1 Introduction

Detailed numerical models of concrete’s mesostructure are useful to understand the in-

teractions between its components and to predict complex deterioration scenarios. This

chapter describes the use of discrete element method (DEM) applied to particle models

(PM) to the prediction of concrete behaviour at the mesoscale level and considering its

aggregate mesostructure.

Firstly, the two-dimensional discrete element method formulation for rigid particle

models is presented, including the detailed procedure for the implementation of the method.

The formulation relies on an explicit finite-difference integration scheme and on damping

in order to obtain a steady-state solution equivalent to the static response of the structural

system.

Four types of contact models are presented. The Hooke’s model and the aging vis-

coelastic model, based on the solidification theory, relate to the deformability properties of

contact. The contact failure is simulated following a Mohr-Coulomb model with a tension

cut-off and a Mohr-Coulomb model with tensile/shear softening.

In order to simulate the long-term behaviour of cementitious materials, an explicit

formulation of a DEM contact model that includes aging viscoelastic behaviour based
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on the solidification theory is presented. Due to the timestep constraints of the DEM,

a fast numerical procedure for the analysis of long-term aging viscoelastic behaviour of

concrete is also proposed. The contact aging model validation tests using larger regular and

random particle assemblies show that the fast numerical procedure significantly reduces

the computational costs by introducing large timesteps in which the solution is computed,

while giving the same accuracy of the fully explicit procedure.

A calibration procedure for the contact model parameters of each concrete component

at the mesolevel (mortar and aggregate) is also presented, including new expressions

that relate the delayed deformability macro properties with the aging viscoelastic contact

properties.

Two separate analysis are described in detail concerning the deformability properties

over time and the strength properties at a given loading age. The DEM aging concrete

model is validated using Ward’s test results (Ward et al. 1969) for both mortar and concrete,

whereas the failure behaviour is validated using the concrete behaviour described by Vonk

(1992).

The proposed DEM aging particle model was implemented in C++ for two-dimensional

analysis due to the computational costs associated with this type of detailed models. Note

that both the proposed aging contact model and the fast numerical procedure can be

readily extended to 3D and incorporated in both commercial and open source DEM based

programs.

The part of this section related to the development of the aging viscoelastic model and

to the analysis of the long-term behaviour of concrete using DEM has been accepted for

publishing in the international Journal of Engineering Mechanics of ASCE in October, 11

2017, with the title "Discrete element method for modelling the long-term aging viscoelastic

behavior of concrete considering its mesostructure" (Serra et al. 2017a) (Appendix B).

5.2 Discrete element method applied to rigid particle

5.3 General aspects

The discrete element method (DEM) can be described as a numerical method for solv-

ing structural systems of individual elements, blocks (polygons) or particles (circular or
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spherical) interacting with each other at contact points or interfaces. Each element, usu-

ally considered to be rigid, is ruled by a motion law and each contact by an interaction

law. The motion law defines the differential equation that governs the kinematic of the

elements. This differential equation is given by the Newton’s second law of motion. The

interaction law, known as the force-displacement law, determines the interaction forces

between particles at the contact point, according with their relative displacement. The

unbalanced force of each element at a given time is used for setting new velocities and

positions using the law of motion, and, therefore, new interaction forces.

The advantages of this type of method is the possibility to have large displacements

and rotations, the complete detachment of two elements when their contact reaches its

strength capacity and consider new contacts during the simulation (Monteiro Azevedo

2003). Figure 5.1 illustrates a complete DEM cycle with the update of the forces and

displacements of each element, in between the force-displacement law and the law of

motion.

Figure 5.1: General DEM cycle

Considering external applied forces or imposed deformations and predefined boundary

conditions it is possible to calculate the response of the system using a method for solving

the differential equation in each cycle. The numerical methods commonly used for this

type of problems rely on explicit integration schemes, where the solution at a given time

is predicted from the response at the former time-step. In DEM, the explicit integration
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scheme is used for the integration of accelerations into velocities.

The elements interacting with each other are therefore circular rigid particles defined

by a position in space and a given radius (Figure 5.2). With this type of element, the

contact detection and the general cycle calculations are easier to implement and require

less computational time.

5.3.1 Force-displacement law

The force-displacement law defines the behaviour of each contact between particles. When

a contact between two particles is identified, the subsequent incremental relative displace-

ments generates a contact force increment, which is applied to the centre of the particles.

A contact between two particles is defined by a line segment perpendicular to the line

connecting both particle centres (point A and Point B in Figure 5.2). The intersection

between those two lines is the contact point (point C in Figure 5.2). The contact overlap

is the superposition of each particle on another particle. The general convention consid-

ers compression forces related to positive contact overlap and tension forces for negative

contact overlap.

The distance between particle A and particle B, d, is given by Euclidean distance

between the two centres of gravity, x[A] and x[B], and the contact overlap, Un, is obtained

by the difference of the sum of both radius, R[A] and R[B], and the distance between

particles.

Figure 5.2: Contact point definition in particle models

d=

√√√√ 2∑
i=1

(
x

[B]
i −x

[A]
i

)2
(5.1)

Un =R[A] +R[B]− d (5.2)
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With the definition of the contact overlap and calculating the unit normal to the contact

plane, n, one can obtain the contact point location, x[C].

ni =

(
x

[B]
i −x

[A]
i

)
d

(5.3)

x
[C]
i = x

[A]
i +

(
R[A]− 1

2U
n
)
ni (5.4)

The contact velocity, ẋ[C], is defined by the relative velocity of both particles involved,

A and B, at the contact point,
(
ẋ[C]

)
A

and
(
ẋ[C]

)
B
. The dot above the position, x,

denotes the first derivative with respect to time and the bold refers to a vector with two

components.

ẋ[C] =
(
ẋ[C]

)
B
−
(
ẋ[C]

)
A

(5.5)

The velocity of the particle Φ at the contact point,
(
ẋ[C]

)
Φ
, (translational velocity) is

given by,

(
ẋ

[C]
i

)
Φ

= ẋ
[Φ]
i + εi3kω

[Φ]
3

(
x

[C]
k −x

[Φ]
k

)
(5.6)

εijk =


0 if two indices coincide

+1 if i.j.k permute like 1.2.3

−1 otherwise

(5.7)

where εijk is the permutation symbol and ω[Φ]
3 is the rotational velocity of particle Φ. In

Figure 5.3 the velocities of each particle and of the contact are represented.

The displacement increment of the contact, ∆x[C], for a given time increment, ∆t, is,

by integration,

∆x[C] = ẋ[C]∆t (5.8)

and can be decomposed into the normal, ∆x[C]
n , and the shear, ∆x[C]

s , components:

∆x
[C]
n =

2∑
i=1

(
∆x

[C]
i ni

)
(5.9)
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Figure 5.3: Contact point velocity definition in particle models

∆x[C]
s = ∆x[C]−∆x

[C]
n n (5.10)

The normal and shear contact force increments, ∆F [C]
n and ∆F[C]

s , are obtained from

the linear constitutive law of the contact and the normal and shear contact stiffness, kn
and ks, respectively (Figure 5.4).

∆F
[C]
n =−kn∆x[C]

n (5.11)

∆F[C]
s =−ks∆x[C]

s (5.12)

Figure 5.4: Incremental linear contact model in particle models

Since the shear contact force is defined in global coordinates and to take into account
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large displacements, its necessary the correction of the shear contact force to refer it to the

new contact plane, between each timestep, assuming infinitesimal rotations. Figure 5.5

shows the corrected shear force referred to the new contact plane.

∆F
[C],corrected
s,i = ∆F

[C],old
s,i − εij3ε3mn∆F

[C],old
j noldm nn (5.13)

and, therefore, the updated predicted normal and shear forces at contact point are obtained

from,

F
[C]
n = F

[C],old
n +∆F

[C]
n (5.14)

Fs
[C] = Fs

[C],corrected + ∆Fs
[C] (5.15)

Figure 5.5: Correction of shear contact force in particle models

The contact model is applied and then the new contact force, F[C], is given by the

vectorial sum of normal and shear components,

Fi
[C] = F

[C]
n ni + Fs,i

[C] (5.16)

The contact forces, from each contact, are then transmitted and summed to both

particles, obtaining the resultant internal forces and moments acting at particle centre,

F[Φ]
t+1 and M [Φ]

3,t+1 (Figure 5.6),

F[A]
t+1 = F[A]

t −F[C]
t (5.17)

F[B]
t+1 = F[B]

t + F[C]
t (5.18)
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M
[A]
3,t+1 =M

[A]
3,t − ε3jk

(
x

[C]
j −x

[A]
j

)
F

[C]
k,t (5.19)

M
[B]
3,t+1 =M

[B]
3,t + ε3jk

(
x

[C]
j −x

[B]
j

)
F

[C]
k,t (5.20)

Figure 5.6: Transmission of contact force to particle forces and moments in particle models

5.3.2 Law of motion

5.3.2.1 Newton’s second law

Newton’s second law of motion defines the response of a single particle with applied forces

or moments,

F(t) =mẍ(t) (5.21)

M3(t) = Iω̇3(t) (5.22)

where F(t) and M3(t) are the total applied force and moment at time t, m and I are the

total mass and inertia of the particle, and ẍ(t) and ω̇3(t) are the particle translational and

angular accelerations. The inertia is βmR2, where β is 2/5 for spherical shaped particles

and 1/2 for disk shaped particles.
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There are several numerical techniques for solving differential equations based on time

discretization into timesteps, ∆t, and approximating derivatives within that discretization.

Explicit methods calculate a solution at time t+∆t based only on the previous solution

in t and the derivative using a time increment. The updated velocities are obtained from

the accelerations using centred difference scheme for calculating derivatives.

5.3.2.2 Centred difference time-integration scheme

Differential equations can be numerically solved using finite difference approximations for

each derivative. A derivative of the function f(t) in time, t, ḟ(t) = df(t)
dt , can be defined

as limit of the slope of f within a predefined interval, ∆t, when ∆t tends to zero.

ḟ(t) = df(t)
dt

= lim
∆t→0

f(t+∆t)− f(t)
∆t

(5.23)

One can see that, as ∆t gets smaller, more accurate is the value of the derivative.

The development of a given variable, x(t), in a Taylor series at time, t0, follows,

x(t) = x(t0)(t− t0)0 + ẋ(t0)(t− t0)1

1! + ẍ(t0)(t− t0)2

2! +
...
x (t0)(t− t0)3

3! + · · · (5.24)

Taking t= t0 +∆t and considering O(∆tn) the truncated ∆tn terms of the Taylor series

one can write the following expression,

x(t) = x(t0)(∆t)0 + ẋ(t0)(∆t)1

1! + ẍ(t0)(∆t)2

2! +
...
x (t0)(∆t)3

3! + · · · (5.25)

From which follow the derivative, ẋ(t0),

ẋ(t0) = x(t0 +∆t)−x(t0)
∆t

+O(∆t2) (5.26)

and, therefore, the smaller the ∆t, smaller the error, O(∆t), obtained from discarding the

remaining terms.

The centred difference scheme for the first derivative of x(t) uses two points, x(t−∆t)

and x(t+∆t),

x(t−∆t) = x(t0)− ẋ(t0)(∆t) + ẍ(t0)(∆t)2

2 −
...
x (t0)(∆t)3

6 +O(∆t4) (5.27)
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x(t+∆t) = x(t0) + ẋ(t0)(∆t) + ẍ(t0)(∆t)2

2 +
...
x (t0)(∆t)3

6 +O(∆t4) (5.28)

The derivative, using these two points, is,

ẋ(t0) =x(t0 +∆t)−x(t0−∆t)
2∆t + 1

3
...
x (t0)∆t2 +O(∆t4)

= x(t0 +∆t)−x(t0−∆t)
2∆t +O(∆t2)

(5.29)

from which can be concluded that centred difference scheme gives an accuracy of O(∆t2)

(by disregarding the ∆t2 and further terms).

For this work it will be considered that the accelerations at time t, ẍ(t), are related

to former and future velocities evaluated at mid-interval, ẋ(t−∆t/2) and ẋ(t+∆t/2), as

stated by the centred difference time-integration scheme,

ẍ(t) = ẋt+∆t/2− ẋt−∆t/2

2×∆t/2 (5.30)

Considering Newton’s second law of motion (Equation 5.21 and Equation 5.22), the

velocities ẋ(t+∆t/2) are obtained from,

ẋt+∆t/2 = ẋt−∆t/2 +
(

F(t)
m

)
∆t (5.31)

ω
t+∆t/2
3 = ω

t−∆t/2
3 +

(
M3(t)
I

)
∆t (5.32)

The future position, x(t+∆t), and future rotation, θ(t+∆t), are given by,

xt+∆t = xt + ẋt+∆t/2∆t (5.33)

θt+∆t = θt +ω
t+∆t/2
3 ∆t (5.34)

Figure 5.7 shows a graphical representation of the adopted central finite difference

scheme. Velocities are determined at mid-interval (t±∆t/2) and positions are determined

at primary intervals (t±∆t). The numerical scheme starts by considering an initial value

for the particle velocity at the time t−∆t, ẋt+∆t/2 and a given external force, F (t), applied

to one or several particles. The unbalanced force, due to the external force, is converted
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into an acceleration, and using Equations 5.31 and 5.32 the new velocities can be calculated.

The new positions are given by Equations 5.33 and 5.34 based on the velocities at mid-

interval and the former position. The overlap is recalculated, new contact forces are derived

from the contact model and new particle forces are obtained. If there are unbalanced forces,

the accelerations are not null and the numerical procedure continues until convergence.

Figure 5.7: Graphical representation of the central difference scheme

5.3.2.3 Global viscous damping

For a single degree of freedom damped system, with mass, m, stiffness, k, and c as the

damping coefficient, the dynamic equation of motion is,

mẍ(t) + cẋ(t) + kx(t) = 0 (5.35)

Critical damping occurs when,

c= cc = 2ωm (5.36)

where ω is the natural angular frequency (Clough and Penzien 1993). A damping ratio

can be defined as the ratio between damping, c, and critical damping, cc,

ξ = c

cc
(5.37)
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Usually dynamic systems are undercritically-damped (c < cc) and, therefore, the damp-

ing ratio, ξ, is lower than 1. One can choose the value of c equal to cc and ξ equal to

unity, in order to ensure that the vibration mode is critically damped and, therefore,

obtain a response that does not include oscillatory behaviour and converges faster to the

steady-state position, where the unbalanced forces are null.

In N degree of freedom systems, there are N natural angular frequencies and it is diffi-

cult to choose the value of damping coefficient that ensures maximum damping efficiency.

For complex systems it is usual to estimate the damping coefficient value for the lowest

circular frequency, considering an undamped system,

c= 2ω0mξ (5.38)

The equilibrium is obtained from a sum of the inertial forces and damping forces,

F(t) =mẍ(t) + cẋ(t) (5.39)

M3(t) = Iω̇3(t) + cω3(t) (5.40)

For damped systems the law of motion has a viscous term in the right hand sides of

Equation 5.31 and Equation 5.32 and the linear and angular velocities, ẋ(t) and ω3(t), can

be obtained from,

ẋt+∆t/2 =

D1ẋt−∆t/2 +
(

F(t)
m

)
∆t

D2 (5.41)

ω
t+∆t/2
3 =

D1ω
t−∆t/2
3 +

(
M3(t)
I

)
∆t

D2 (5.42)

where D1 = 1− (c/m)∆t/2 and D2 = 1
1+(c/m)∆t/2 .

5.3.2.4 Local non-viscous damping

Another type of damping, proposed by (Cundall 1987), is the local non-viscous damping

in which the damping force is proportional to the absolute value of the unbalanced force.

This results in the following expressions for the law of motion,
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F(t) + Fd(t) =mẍ(t) (5.43)

M3(t) +Md
3 (t) = Iω̇3(t) (5.44)

where Fd(t) and Md
3 (t) are, respectively, the translational and the rotational damping

forces, which can be obtained from,

Fd(t) =−α
∣∣F(t)

∣∣ ẋ(t)
‖ẋ(t)‖ (5.45)

Md
3 (t) =−α

∣∣M3(t)
∣∣ ω3(t)∣∣ω3(t)

∣∣ (5.46)

where α is the non-local damping coefficient. The linear and angular velocities, ẋ(t) and

ω3(t), can be obtained from,

ẋt+∆t/2 = ẋt−∆t/2 +
(

F(t) + Fd(t)
m

)
∆t (5.47)

ω
t+∆t/2
3 = ω

t−∆t/2
3 +

(
M3(t) + Md

3(t)
I

)
∆t (5.48)

5.3.3 Stability of the solution in explicit integration schemes

5.3.3.1 Mechanical critical timestep determination

When considering explicit time integration schemes the solution is more accurate and

stable for infinitesimal timestep increments and there is a critical timestep for which error

do not grow along the simulation. The stability of the solution along time is obtained if

the chosen timestep, ∆t, is under this critical value, ∆tcrit (Belytschko and Hughes 1983).

If mass proportional damping is applied, the critical timestep should be corrected to

take into account the amount of damping used,

∆t6 ∆tcrit = 2
ωmax

(√
1 + ξ2− ξ

)
(5.49)

where ωmax is the highest angular frequency of the undamped structural system and ξ is

a fraction of the critical damping in the maximum frequency.
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5.3.3.2 Gerschgorin theorem for highest circular frequency estimate

An upper bound of the maximum frequency, ωmax, and therefore a lower value of the

critical timestep can be obtained using Gerschgorin’s theorem (Underwood 1983), which

guarantees that the highest frequency of a structural system is less than or equal to the

absolute ratio between the sum of the stiffness row to the sum of the mass row,

ωmax ≤max


√√√√∑n

j=1

∣∣∣kij∣∣∣
mi

 (5.50)

∆tcrit ≈min

2
√√√√ mi∑n

j=1

∣∣∣kij∣∣∣
 (5.51)

where i, j are the degrees of freedom of a row and a column of the stiffness matrix, n is

the maximum number of degrees of freedom,
∑n
j=1

∣∣∣kij∣∣∣ is the absolute sum of the ith row

of the stiffness matrix and mi is the generalized mass of the particle with the degree of

freedom i.

A simplified approach for calculating
∑n
j=1

∣∣∣kij∣∣∣ is to consider the sum of translational

(Equation 5.52) or rotational (Equation 5.54) stiffness of each particle, taking those values

as the maximum bounds,

ktrans =
n∑
j=1

∣∣∣kij∣∣∣< Nc∑
c=1

2
(
kn,c + ks,c

)
(5.52)

∆tcrit ≈min
{

2
√

mi

ktrans

}
(5.53)

krot =
n∑
j=1

∣∣∣kij∣∣∣< Nc∑
c=1

(
R[B]2ks,c +R[B]R[A]ks,c

)
(5.54)

∆tcrit ≈min

2

√
Ii
krot

 (5.55)

where (kn,c+ks,c) is the sum of normal and shear stiffness of the particle, Nc is the number

of contacts of the particle and R is the radius of the particle.
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5.3.3.3 Density scaling

The mechanical critical timestep, related to the maximum frequency and required for

explicit time integration schemes, is usually very small which can be time consuming and

computationally demanding. A way to overcome this is to use density scaling or mass

scaling.

This approach simulates an equivalent system were these properties are calculated to

maximize the ratio between the lowest frequency, ω0, and the maximum frequency, ωmax,
ω0
ωmax

, which, as stated by (Underwood 1983), maximizes the convergence rate to the steady

state solution, by minimizing the spectral radius, ρ∗,

ρ∗ =
∣∣∣∣1− 2 ω0

ωmax

∣∣∣∣ (5.56)

For this work, the timestep was chosen as the unity (∆t = 1.0) and, therefore, from

Equation 5.51, one can obtain the equivalent mass and inertia of the scaled system,

1.0 = 2
√
mscaled

ktrans
⇔mscaled =

(1.0
2

)2
ktrans (5.57)

1.0 = 2
√
Iscaled
krot

⇔ Iscaled =
(1.0

2

)2
krot (5.58)

The highest frequency, ωmax, is mesh and material dependent and the lowest frequency,

ω0, corresponds to the lowest participating mode of the structure, related to the load

distribution (Tavarez and Plesha 2007).

Sauvé and Metzger (1995) guarantee a level of tolerance for the stability of the algorithm

by increasing the critical timestep by a safety factor of 10% and obtaining the corresponding

scaled mass and inertia (safety factor, SF ).

Table 5.1 shows the model properties for the case of using real masses or scaled masses

(density scaling).
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Table 5.1: Real and scaled system properties

Real properties Properties using density scaling
mreal, Ireal mscaled =

(
1.0×SF

2

)2
ktrans ∗

Iscaled =
(

1.0×SF
2

)2
krot

ktrans, krot ktrans, krot

ξ = c
cc

ξ = c
cc

c= ccξ c= ccξ

cc = 2ωreal0 mreal cc = 2ωscaled0 mscaled

ωreal0 ≈ {Equation 5.59} ωscaled0 ≈ {Equation 5.59}

ωrealmax ≈ {Equation 5.50}

∆treal = 2
√

m
k , (Equation 5.51) ∆tscaled = 1.0

* where SF is a safety factor in order to guarantee convergence.

5.3.4 Adaptive dynamic relaxation

For damping the whole range of frequencies in an efficient way, a method, called dynamic

relaxation (DR), is usually used (Underwood 1983; Petrinic 1996). This method calculates

an equivalent frequency, ω0, through the Rayleigh’s quotient. The advantage is that there

is no need to determine the natural frequencies at each timestep. This circular frequency,

ω0, is upper bounded by the maximum frequency, ωmax. Note that, when density scaling

algorithm is adopted and timestep is set to unity, ωmax < 2 which results in ω0 < ωmax < 2

(Underwood 1983; Monteiro Azevedo 2003).

The goal of DR is to avoid overshooting the solution. For this, an adaptive DR

algorithm (ADR) is used in which the global damping coefficient, the mass and the inertia

are updated at each time increment.

At each timestep, the approximate fundamental frequency, ω0, is recalculated using

the diagonal matrix that approximates the global stiffness matrix, Kdiag (non-assembled

stiffness matrix).

An approximation of the lowest circular frequency, ω0, associated to a loading condition

is based on the principle of energy conservation, by the Rayleigh’s quotient,

ω2
0 ≈

uTKu

uTMu
(5.59)

where uT and u are the current displacement vector and its transpose and K and M are

the current tangent stiffness and mass matrix.
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In this work, the adopted approach for the Rayleigh quotient is incremental based, using

displacement increments, ∆ut, and the internal forces at each timestep, F inti,t (Underwood

1983),

ω2
0 ≈

∆uTi K
diag
ij ∆uj

∆uTkMkl∆ul
(5.60)

Kdiag
ii =

F inti,t −F inti,t−∆t
ui,t−ui,t−∆t

(5.61)

5.3.5 Convergence criteria

When converging to the steady state solution, a stopping criteria is needed to terminate

the DR iterations.

Force and displacement tolerances, ftol and utol, are defined for this convergence criteria.

Within this work a tolerance of 0.001 was considered for the ratio between the mean of the

unbalanced force norm, ‖Funbalancedt ‖mean, and the mean contact force norm, ‖FCt ‖mean,

and for the ratio between the average displacement increment norm, ‖∆ut‖mean, and the

total displacement norm, ‖ut‖mean, at a given timestep,

‖Funbalancedt ‖mean
‖FCt ‖mean

< ftol (5.62)

‖∆ut‖mean
‖ut‖mean

< utol (5.63)

5.3.6 Micro-macro approximations

The behaviour of a contact can be related to the behaviour of an equivalent beam and a

general equivalence between contact micro properties, normal and shear stiffness, kn and

ks, and material macro properties, elastic modulus, E, can be obtained.

The height of the equivalent beam, R̄, is determined by the average radius of the

particles, R[A] and R[B], and the beam length, L, is defined as the sum of both radius,

R̄= R[A] +R[B]

2 (5.64)

L= 2R̄=R[A] +R[B] (5.65)
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For 2D particle models, with t thickness, the equivalent cross-sectional area, Aeq, and

moment of inertia, Ieq, is given by,

Aeq = 2.0R̄t (5.66)

Ieq =

(
2.0R̄

)3
t

12 (5.67)

The equivalence between micro and macro properties follows,

kn = EAeq
L

(5.68)

ks = 12EIeq
L3 (5.69)

which for pure axial load and pure shear load follows that,

kn = ks = Et (5.70)

Figure 5.8: Equivalent elastic beam in particle models

5.3.7 Energy terms

The use of explicit integration schemes in nonlinear analysis can introduce numerical

instabilities which can influence the structural response. The monitoring of the energy

balance controls the eventual generation of spurious energy (Monteiro Azevedo 2003).

The energy balance at a given time is,

|Uk +Uel +U inel +W damp−W ext|6 δ‖W‖ (5.71)
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‖W‖= ‖Uk‖+ ‖Uel‖+ ‖W ext‖ (5.72)

where Uk is the kinetic energy of the particles, Uel is the internal elastic strain energy

of the particles, U inel is the internal energy dissipated by inelastic deformation of each

contact, W ext is the work done by external forces, W damp is the work done by the damping

forces, the parameter, δ, specifies the tolerance and the energy term ‖W‖ is the norm of

the total energy of the system.

The internal kinetic energy is given by the sum of the individual kinetic energy of each

particle,

Uk = 1
2

Np∑
i=1

3∑
j=1

Miẋ
2
ij (5.73)

where Np is the number of particles in the assembly, Mi is the mass of particle "i" and ẋij
is the component "j" of the velocity of particle "i".

The internal elastic strain energy of the assembly is obtained by,

Uel = 1
2

Nc∑
i=1

 |F [C]
ni |2

kn
+

2∑
j=1

|F [C]
sij |2

ks

 (5.74)

where Nc is the number of contacts in the assembly, |F [C]
ni | and |F

[C]
sij
| are the norm of

normal and shear components of the contact force.

The internal energy dissipated by inelastic deformation can be obtained directly by

the inelastic contact displacements, ∆U ineln and ∆Uinel
s ,

U inel = 1
2

Nc∑
i=1

|F [C]
ni |∆U inelni +

2∑
j=1
|F [C]
sij |∆U inelsij

 (5.75)

The work associated with the damping forces at a given timestep, t, is the sum of the

work of local damping forces, W local, and the work of the global damping forces, W global,

W damp =W local +W global (5.76)

W local
t =W local

t−1 +
Np∑
i=1

(
Flocalti ∆ui

)
(5.77)
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W global
t =W global

t−1 +
Np∑
i=1

(
Fglobalti ∆ui

)
(5.78)

where Flocal is the local damping force, Fglobal is the global damping force (Fglobal = cMẋ)

and ∆u is the displacement increment of each particle

5.4 Random assemblies of concrete

It is known that the main heterogeneity of concrete is due to the "stiff" coarse aggregates

randomly distributed inside the specimen and completely embedded in a "soft" mortar

(Coutinho and Gonçalves 1994). In order to simulate the behaviour of heterogeneous

cementitious materials using particle models it is strongly recommended that each material

is represented inside the particle assembly considering their main mechanical properties. In

the case of conventional concrete, the mortar and the coarse aggregates will be considered

as homogeneous materials with specific deformability properties.

The particle assembly of concrete includes the shape, aspect ratio and distribution

of the coarse aggregates according to Wang et al. (1999). The initial aggregate particle

assembly is created by first inserting the aggregate particles from the largest sieve aperture

to smallest sieve aperture ensuring that the particles do not overlap with each other. As

each circular particle representing the aggregate is placed, the particle boundary contour

is redefined using an harmonic function of the polar angle. After all the aggregate particles

are placed, the inner area of each aggregate particle given by its polygonal contour is

discretized with inner circular particles (Monteiro Azevedo et al. 2008). Later, the outer

boundary of the aggregate particles is discretized with particles representing the particle

size adopted for the cement paste, including an initial reduction radius prior to the particle

insertion. After the particle insertion, the real particle radius is adopted and a DEM

cohesionless type solution is carried out, leading to a redistribution of the particle overlap

throughout the assembly. At the end of this stage, the initial particle overlap and the

particle contact forces are set to zero and the described incremental contact approach

presented is adopted.

The aggregate generation procedure allows for the definition of an arbitrary aggregate

distribution, which, in this particular case, follows the properties of the tested concrete

and the proportion of each one in the concrete mix. More details concerning the concrete
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used for the numerical modelling are described further in the next section, including the

concrete’s aggregate distribution and the obtained particle assembly.

5.5 Contact constitutive models for the analysis of long-term

behaviour of concrete

5.5.1 Hooke’s model

The elastic model is shown in § 5.3.1 (Equations 5.11 and 5.12) as an incremental linear

model, relating the incremental contact forces and the incremental relative displacement,

for both normal and shear behaviours. Figure 5.9 illustrates the contact model properties

for normal and shear behaviour, for both instantaneous and over time response. The

normal and shear stiffness at contact interface are given by kn and ks, respectively, which

do not change over time and yields a constant response over time for constant applied

forces.

Figure 5.9: Mechanical representation of the elastic model: a) Force-overlap diagram; b)
Development of contact forces and overlap over time
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5.5.2 Numerical formulation of solidification theory

Since particle models are described by the displacements and forces of each particle, the im-

plementation of the aging viscoelastic constitutive model based on the solidification theory

requires an equivalence from an uniaxial model described by a strain-stress constitutive law

to a displacement-force constitutive law. This equivalence is obtained by approximating

the normal relative displacement, ∆x[C]
n , at the contact to a normal contact strain, ∆εn

(∆x[C]
n = ∆εn(R[A] +R[B])), and the normal contact force, F [C]

n , is approximated to a nor-

mal contact stress, σ[C]
n (F [C]

n = σ
[C]
n Rmint). R[A] and R[B] are the radius of the particle

A and B in contact, Rmin is the minimum radius and t is the thickness of the contact

plane, taken to be a disk for two-dimensional analysis. An approximated relationship

between the modulus of elasticity in the normal direction, En, and the normal stiffness, kn
(kn = EnRmint/(R[A] +R[B])), is also adopted. Similarly to other DEM models (Potyondy

and Cundall 2004; Plassiard et al. 2009; Nitka and Tejchman 2015; Oñate et al. 2015), the

shear contact stiffness is assumed to be proportional to the normal contact stiffness.

The aging viscoelastic model is based on Bažant and Prasannan (1989a)’s solidification

theory. According to the model, aging is due to cement hydration (formation of new

calcium hydrates) and, probably, due to gradual formation of bonds as a result of poly-

merization. The model considers the viscoelastic strain, εv, a consequence of the volume

fraction growth associated to the viscoelastic behaviour, v(t), and the viscous strain, εf ,

a consequence of the volume fraction growth associated with the viscous behaviour, h(t),

and are mathematically formulated in its early formulation in (Bažant 1977) and further

developed in (Bažant and Prasannan 1989b).

Considering only the stress-dependent contact normal displacement, xFn (t), as a function

of contact normal force, Fn(t′), applied at the age t′, a constitutive relation can be obtained

as follows,

xFn (t) = xinstn (t) +xcreepn (t) =
∫ t

0
Jn(t, t′)dFn(t′) (5.79)

where xinstn (t) is the normal contact instantaneous displacement, xcreepn (t, t′) is the normal

contact creep displacement and Jn(t, t′) is the normal compliance function (normal contact

displacement at the time t due to a constant unit normal force, Fn(t′), applied at time t′).

Similarly to the stress-strain-based solidification theory and considering a discretiza-

tion of time, ti, each displacement increment is related to a type of deformation. The
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instantaneous displacement increment is given by ∆xinstn (ti) = q1,n∆Fn(ti), where q1,n is a

material parameter defined for the normal direction of the contact plane (equivalent to q1

in the original formulation).

The normal contact creep displacement is given by the sum of the viscoelastic contact

displacement increment, ∆xvn(ti), and the viscous contact displacement increment, ∆xfn(ti),

which are modeled, respectively by,

∆xvn(ti) = γ̇n(t)/vn(ti) =
∫ t

0

(
Φ̇n(ti− t′)dFn(t′)

)
/vn(ti) (5.80)

∆xfn(ti) =
∫ t

0

(
Ψ̇n(ti− t′)dFn(t′)

)
/hn(ti) (5.81)

where Φn(ti − t′) is the non-aging microscopic compliance of the binder, which can be

represented analytically by,

Φn(t− t′) = q2,nln

1 +
(

(t− t′)
λ0

) , n= 0.1,λ0 = 1 day (5.82)

and rheologically by a non-aging Kelvin chain of N elements, represented by Dirichlet

series,

Φn(t− t′) = 1
k0,n

+
N∑
µ=1

1
kµ,n

(
1− e−(t−t′/τµ,n)

)
, τµ,n = ηµ,n

kµ,n
(5.83)

where ηµ,n are the normal viscosities of the Kelvin chains, kµ,n are the normal stiffness

of the Kelvin chain, defined for a predefined retardation times, τµ,n. Bažant and Xi

recommend the use of the continuous retardation spectra, Ln(τµ,n), and a logarithmic

discretization of retardation times for the determination of the 1
kµ,n

coefficients (n is, as

previously stated, equal to 0.1) (Bažant and Xi 1995). The additional term 1
k0,n

is related

to the instantaneous tail of the continuous retardation spectra, Ln (Bažant et al. 2004).

In Equation 5.84, Ψn(ti − t′) is the microscopic compliance function for incremental

normal displacements of non-aging material related to the viscous deformation and with

the development law, hn(t) = ηn(t)/η0,n, where η(t) is the effective macroscopic viscosity

given by ηn(t) = t/q4,n.

The aging is given by the variable vn(t) defined by,
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vn(t) =
(1
t

)m
+ q3,n
q2,n

(5.84)

which represents the development of volume fraction of the binder that contributes to

the viscoelastic deformation (q2,n and q3,n are material parameters defined in the normal

direction of the contact plane and m is also a material constant which can be considered

equal to 0.5 (Bažant and Prasannan 1989a).

Considering a time discretization, ti, that the stress is constant in a given timestep

(ti, ti+1), and that it varies at the beginning of the timestep, the total increment of vis-

coelastic microstrain, given by the sum of each Kelvin unit, ∆γn =
∑N
µ=1(γn,i+1 − γn,i),

can be written as,

∆γn =
N∑
µ=0

(
1−λµ,n
kµ,n

)
∆Fn,i +∆γ′′n,i, λµ,n = 1− e−

∆t
τµ,n

∆t
τµ,n

(5.85)

∆γ′′n,i =
N∑
µ=0

∆γ′′µ,n =
N∑
µ=0

(
Fn,i
kµ,n

− γµ,n,i

)(
1− e−∆γµ,n

)
(5.86)

For each timestep, the viscoelastic normal displacement increment, ∆xvn, is given by

Equation 5.87,

∆xvn = 1
vn(t∗)∆γn = 1

vn(t∗)

 N∑
µ=0

(
1−λµ,n
kµ,n

)
∆Fn +∆γ′′n

 (5.87)

where t∗ = t′+ [(ti+1− t′)(ti− t′)]1/2, which represents the middle of the timestep in the

logarithmic time scale.

Taking into account the flow strain increment, ∆xfn = q4,nFn∆t/t∗, and the increment

of instantaneous elastic strain, q1∆Fn, one can write the quasi-elastic incremental contact

normal force, Fn,

∆Fn,i = k′′n
(
∆xn(ti)−∆x′′n,i

)
(5.88)

in which,

1
k′′n

= q1,n + 1
vn(t∗i )

N∑
µ=0

(
1−λµ,n
kµ,n

)
, ∆x′′n,i =

∆γ′′n,i
vn(t∗i )

+ q4,nFn,i(t∗i )∆ti
t∗i

(5.89)
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The shear contact behaviour follows the same formulation as the one previously de-

scribed for the normal direction,

∆Fs,i = k′′s
(
∆xs(ti)−∆x′′s,i

)
(5.90)

in which,

1
k′′s

= q1,s + 1
vs(t∗i )

N∑
µ=0

(
1−λµ,s
kµ,s

)
, ∆x′′s,i =

∆γ′′s,i
vs(t∗i )

+ q4,sFs,i(t∗i )∆ti
t∗i

(5.91)

5.5.3 Proposed calibration procedure for the macro-micro relationship of

elastic and aging viscoelastic properties

Considering the behaviour at the contact to be similar to a beam, a general equivalence

between contact micro properties and material’s macro properties can be obtained. The

height of the equivalent beam is determined by the minimum radius of the two particles

in contact, Rmin, and the beam length is defined as the distance between particle centres,

d. In two dimensional analysis, tdisk defines the thickness of the disks.

For elastic materials, the macroscopic behaviour is defined by the normal and shear

contact stiffnesses, kn and ks, respectively. Therefore, the equivalence for the definition of

the micro-parameters of the aggregate contact is given by,

kn,agg = αn,agg
2Rmint

d
Emacroagg , ks,agg = αs,aggkn,agg (5.92)

where the αn,agg and αs,agg are two calibration parameters.

Following the solidification theory, the macroscopic response of the material, defined by

the macro-creep compliance, Jmacro, is dependent of the parameters qmacroi (i=1, 2, 3 and

4) which are amplifiers of the instantaneous, viscoelastic, viscous and flow strains of the

aging viscoelastic material. The aging viscoelastic micro-parameters at the contact point

are defined as qmicron,i for the normal direction and qmicros,i for the shear direction (i=1, 2, 3

and 4). For the calibration of the micro-parameters, it is proposed that the micro-creep

compliance in the normal direction, Jmicron , is proportional to the macro-creep compliance,

Jmacro, and that the shear behaviour, described by the micro-creep compliance in the

shear direction, Jmicros , is proportional to the normal behaviour,
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Jmicron = 1
αn

2Rmintdisk

d
Jmacro, Jmicros = 1

αs
Jmicron = 1

αsαn

2Rmintdisk

d
Jmacro (5.93)

Considering this simplification it is possible to define only two calibration parameters,

αn,mortar and αs,mortar, for each type of material.

Based on the work of Wang and Tonon (2009), the elastic micro-parameters, which

yield the macro properties of the aggregate, Poisson’s ratio, νDEMagg (αs,agg), and modulus

of elasticity, EDEMagg (t,αs,agg), were obtained adjusting the results of a parametric study

to the following expressions, using the calibration procedure proposed by (Kazerani and

Zhao 2010),

νDEMagg (αs,agg) =Aagg

[
a1,agg − a2,agg

(
αs,agg −αs,agg,0

)
1 + b1,agg

(
αs,agg −αs,agg,0

) ]
(5.94)

EDEMagg (αs,agg) = c0,agg + c1,aggαn,agg (5.95)

where Aagg, a1,agg, a2,agg, b1,agg, and αs,agg,0 are the calibration coefficients to fit the

parametric study for the determination the Poisson’s ratio of the aggregates using the

calibration parameter, αs,agg, c0,agg and c1,agg are the calibration coefficients to fit the

parametric study for the determination the modulus of elasticity of the aggregates using

the calibration parameter, αn,agg.

For the study of delayed deformability properties over time, namely the Poisson’s ratio,

νDEMmortar(t,αs,mortar), and the creep compliance, JDEMmortar(t,αn,mortar), it is proposed an

adaptation of the former expressions for the development of the Poisson’s ratio over time

as a function of the contact stiffness ratio (equivalent to the calibration parameter, αs,

Equation 5.96) and for the inverse of the creep compliance as a function of the normal

stiffness (equivalent to the calibration parameter, αn, Equation 5.97). These equations

were developed to obtain the optimum calibration parameters for the entire range of time

under analysis, t, and are expressed by,

νDEMmortar(t,αs,mortar) =Amortar

[
a1,mortar − a2,mortar

(
αs,mortar −αs,mortar,0

)
1 + b1,mortar

(
αs,mortar −αs,mortar,0

)
log t

]
(5.96)
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1
JDEMmortar

(t,αn,mortar) = c0,mortar + c1,mortarαn,mortar + c2,mortar
1

log t + c3,mortar
αn,mortar

log t
(5.97)

where Amortar, a1,mortar, a2,mortar, b1,mortar, and αs,mortar,0 are the calibration coefficients

to fit the parametric study for the determination the Poisson’s ratio of the aggregates

using the calibration parameter, αs,agg, c0,mortar, c1,mortar, c2,mortar and c3,mortar are the

calibration coefficients to fit the parametric study for the determination the modulus of

elasticity of the aggregates using the calibration parameter, αn,agg.

The proposed calibration procedure for the mortar’s micro parameters can be described

in the following steps, provided that the particle size remains the same:

1. For a given loading age, t′, and time under loading, (t− t′), run a parametric test,

varying the calibration parameter αs, maintaining the calibration parameter αn = 1.0;

2. Fit the DEM’s Poisson’s ratio to the proposed Eq. 5.96 using an optimization pro-

cedure to find the coefficients a1, a2, αs,0 and b1 minimizing the square difference

between the fit and the Poisson’s ratio obtained from the parametric study;

3. Obtain the optimum calibration parameter, αopts , using an optimization procedure

that minimized the square difference between the fit and the Poisson’s ratio,

min{
(
ν− νDEM (t,αs)

)2
};

4. For the loading age, t′, and time under loading, (t− t′), run a parametric test, vary-

ing the calibration parameter αn, maintaining the calibration parameter αs = αopts

constant;

5. Fit the DEM’s creep compliance for all the times under loading (t − t′) to the

proposed Eq. 5.97 using an optimization procedure to find the coefficients c0, c1 and

c2 minimizing the square difference between the fit and the creep compliance at all

times under loading obtained from the parametric study;

6. Obtain the optimum calibration parameter, αoptn , minimizing the square difference

between the fit and the creep compliance, min{
(
1/J(t, t′)− 1/JDEM (t,αn)

)2
}.
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5.5.4 Proposed fast numerical procedure for long-term analysis using DEM and

validation of the aging viscoelastic contact model

The numerical stability of explicit integration procedures rely on a maximum timestep

value which can be very small. To simulate the creep behaviour of structural systems,

such as rock or concrete, the total calculation time can be very long. Feng et al. (2003)

proposed a numerical procedure for overcoming the need of a large number of steps based

on equivalent incremental contact forces related to the expected creep deformation using

a non-aging viscoelastic model, the Burger’s model.

This fast numerical procedure for the long-term behaviour was adapted for cementitious

materials and makes use of both the adaptive dynamic relaxation method, to obtain a fast

equilibrium without overshooting, and the aging viscoelastic contact model. The procedure

is divided into two main steps as shown in Figure 5.10. The first step uses the dynamic

relaxation in order to converge to the static solution at a given age of concrete considering

scaled masses and ∆t = 1.0. In the second step, considering large time increments, ∆T ,

the equivalent incremental contact forces are computed based on the aging viscoelastic

constitutive model. The large time increments are the real time increments associated with

the age of concrete and can be choosen in order to have a fine or sparce time discretization.

Figure 5.10: DEM cycle with the proposed numerical scheme for viscoelastic behaviour
with incremental contact forces
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For the simulation of a creep test, a loading is applied at the age of T1 = t′, the initial

real time, and the first step of the fast numerical procedure converges to the steady-state

solution, through dynamic relaxation and scaled masses (∆t = 1.0) and considering the

properties of the material at that age. The first displacement increment, xn,elastic(T1 = t′),

is obtained using a DEM dynamic relaxation considering the time under loading equal to

0.01 days and its correspondent stiffness, kn(T1 = t′).

After convergence is obtained, the real time is incremented by ∆Ti, the incremen-

tal aging viscoelastic displacements, ∆xn,visco(Ti) and ∆xs,visco(Ti), and the equivalent

incremental contact forces, ∆F eqn (Ti) and ∆Feq
s (Ti), are obtained considering the aging vis-

coelastic model, which are added to the existing contact forces introducing an unbalanced

state. The new steady-state solution for T2 = T1 +∆T1 is again obtained by considering

the pseudo-elastic normal and shear stiffnesses, k′′n(Ti) and k′′s (Ti) for that age and loading

time,

∆F eqn (Ti) = ∆xn,visco(Ti)k′′n(Ti), ∆Feq
s (Ti) = ∆xs,visco(Ti)k′′s (Ti) (5.98)

Once the equilibrium is obtained for the timestep, Ti, a new real time increment

is imposed, ∆Ti, the new incremental aging viscoelastic displacements, ∆xn,visco(Ti+1)

and ∆xs,visco(Ti+1), is calculated and the incremental contact forces, ∆F eqn (Ti+1) and

∆Feq
s (Ti+1), are added to each contact forces.

The Appendix C presents the structure of the fully-explicit and the numerical procedure

algorithm developed in C++.

5.5.5 Validation of the aging viscoelastic contact model using the proposed fast

numerical procedure

Figure 5.11 shows the particle assemblies used for the validation of the aging viscoelastic

contact model and Table 5.2 presents the main parameters used in the analysis. It was

considered that the contacts related to the applied force are time-dependent (grey dots in

Figure 5.11) and the boundary wall contacts and the remaining contacts are kept elastic

(black dots in Figure 5.11). For this type of model only the normal direction was validated,

since the shear behaviour is assumed to be proportional to the normal behaviour.

Two types of analysis were done and compared with the analytical solution. The

first analysis is based on the fully explicit DEM formulation and is divided in order to
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Table 5.2: Parameters for the particle model validation

Model parameter Aging viscoelastic
model

R (m) 0.00048
q1 (1/GPa) 0.007 *
q2 (1/GPa) 0.108 *
q3 (1/GPa) 0.044 *
q4 (1/GPa) 0.014 *
Nchains 13
t′ (days) 7.0
t− t′ (days) 10.0
* Fit to Granger’s creep test results (§ 5.6.1)

Figure 5.11: Assemblies for the validation of the aging viscoelastic models

calculate the static instantaneous deformation and the aging viscoelastic deformation

for each timestep, set to the critical value for the structural system. For the delayed

deformation, the real time is equal to the calculation time. The separation between the

instantaneous and delayed deformation is needed to reach the equilibrium on every contact

of the assembly and, therefore, accurately estimate the delayed deformation for the next

timestep. Since the delayed behaviour is stress dependent, the contact model requires that

the internal and external forces are equilibrated. If the original DEM formulation was used

since the first timestep using the viscoelastic model (real time equal to the calculation

time), an error would be made since the forces on the contacts would not be balanced with

the applied forces. Recently, Abdellatef et al. (2015) presented similar results of numerical

creep tests using lattice models considering an aging viscoelastic model.

The second analysis is based on the proposed fast numerical procedure for the long-term

behaviour of concrete, previously described. With this proposal, for each real timestep the
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equilibrium is obtained using dynamic relaxation, ensuring that the delayed strains and

forces are accurately calculated, during the period of analysis. Three analysis were done

considering different magnitude of large timesteps, ∆T . The period of analysis was divided

into 10, 5 and 2 large timesteps (N), equally spaced in the logarithmic scale. The results

show that the fast numerical procedure is suited for both short and large discretization of

time. At each real timestep, Ti, the contact forces are accurately calculated in order to

obtain the aging-viscoelastic response.

The results of the fast numerical procedure match the fully explicit DEM solution using

the aging viscoelastic contact model and real masses (∆t = ∆tcritical) and the analytical

solution throughout the entire analysis. Using the fully explicit DEM formulation, the

numerical critical timestep and the real timestep (age of concrete) is considered the same

and, therefore, it is not possible to use the scaled masses. The analysis of the assembly of

2×1 particles has a computational cost of around 15 minutes, since the timestep is very

small, and the proposed fast numerical procedure takes only 15 seconds, using 10 large

timesteps over the loading time of 10 days.

Table 5.4 presents the description of the three types of particle assemblies, including

number of particles, Nparticles, number of contacts, Ncontacts, maximum radius, Rmax,

ratio between minimum and maximum particle radius, RmaxRmin
, and the normal and shear

contact viscoelastic properties, qi,n and qi,s (i=1,2,3 and 4).

Figure 5.12 shows the validation results of the proposed fast numerical procedure for

three types of particle assemblies (2×1 particle, 2×2 particles and 10×10 particles). The

results were obtained considering the creep compliance of a mortar loaded at the age of 7

days and fitted to experimental tests (Ward et al. 1969). The load duration, t− t′, was 10

days.

Figure 5.13 presents the normal contact force development over time for the two type

of approaches. While the original DEM formulation using aging viscoelastic contact model

maintains the normal contact forces constant, the proposed numerical procedure only

insures that the contact forces are constant once the particle assembly is in equilibrium

with the applied force, after the dynamic relaxation of the incremental viscoelastic contact

forces.

Figure 5.14 shows the additional validation results of the fully-explicit solution and

the proposed fast numerical procedure for a two particle-one contact system against the

analytical creep compliance obtained from the fit to Ward et al. (1969) experimental tests
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Figure 5.12: Comparison between the analytical solution of the creep compliance based
on the solidification theory, the numerical solution obtained from the fully explicit DEM
formulation with damping and the numerical solution using the proposed fast numerical
procedure and three different time discretizations

Table 5.3: Comparison of performance results of the original DEM formulation without
damping, with local non-viscous damping and using the adaptive dynamic relaxation
method (ADR) and of the numerical incremental procedure for creep model applied to the
solidification theory

Assembly: 2×1 particles, 1 contact

Adaptive Proposed
dynamic numerical

relaxation (ADR) procedure

Total loading time (days) 10 10

Time step (days) 5.5× 10−6 - 1

Total steps 1815475 304 2

Total calculation time (min.) 13.5 0.25
1 The numerical procedure divides the loading time into 10 large time
steps, ∆T, equally spaced in the logarithmic scale and converges to
the solution using ADR and scaled masses (∆t=1 day).
2 Total number of steps divided into 10 large timesteps, ∆T.
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Figure 5.13: Contact force development for the numerical solution obtained from the
original DEM formulation using the adaptive dynamic relaxation method (ADR) for the
instantaneous deformation and the aging viscoelastic constitutive model for the delayed
deformation and the numerical solution using the numerical incremental procedure for
creep model applied to the solidification theory

(black lines in Figure 5.14). The results show an excellent agreement is obtained between

both numerical responses and the analytical creep compliance solution for several loading

ages, for the unloading case and for several fast procedure time intervals discretization

(N).

In order to further validate the proposed fast numerical procedure for more complex

assemblies, its results were compared with the fully-explicit DEM numerical solution for a

10×10 regular assembly with a hexagonal arrangement and for a large random assembly

(1280 particles). In the random particle assembly the external forces are applied through

a rigid wall (Figure 5.15).

As shown in Figure 5.15 the fast numerical procedure results closely match the fully-

explicit DEM solution adopting real masses (∆t= ∆tcritical) throughout the entire analysis
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for several loading ages and different fast procedure time intervals discretization.

Table 5.5 presents the number of steps, Nsteps, and calculation times, Tcalc., for each

numerical analysis that was carried out. The calculation times presented in Table 5.5

clearly show that when compared with the fully-explicit DEM solution the proposed fast

numerical procedure significantly reduces the computational time.

The presented results show that the fast numerical procedure is suited for both short

and large discretization of time. At each real timestep, Ti, the contact forces are accurately

calculated in order to obtain the aging-viscoelastic response at the given age for any loading

history. The fast procedure computational time reduction is especially relevant for detailed

particle DEM base models when applied to long-term analysis. The long term concrete

analysis that is presented in the next section is only possible using the proposed fast

procedure.

Table 5.4: Description of the three types of particle assemblies and contact properties

Assembly
Particle Nparticles Rmax Contact properties∗

arrangement Ncontacts (mm)
Rmin
Rmax

qi, (i=1,2,3,4) αn αs
(1×10−6/MPa)

2×1 Regular 0.48 1.0

q1 = 66.6

1.0 0.52 q2 = 108.1
1 q3 = 44.2

q4 = 14.3

10×10 Hexagonal 0.48 1.0

q1 = 66.6

1.0 0.5100 q2 = 108.1
261 q3 = 44.2

q4 = 14.3

Random Irregular 0.48 2
3

q1 = 66.6

1.0 0.51280 q2 = 108.1
3730 q3 = 44.2

q4 = 14.3
∗Aging viscoelastic contact properties were obtained from a fit to the experimental
results of mortar samples as described in this work
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Figure 5.14: Comparison between the solidification theory analytical solution, the fully
explicit DEM formulation with ADR and the proposed fast numerical procedure considering
three time internals (N=2, 5 and 10) for a two particle, one contact assembly

Table 5.5: Comparison of calculation times for three types of particle assemblies for both
fully explicit DEM and the proposed fast numerical procedure

Assembly
Fully-explicit Fast numerical proc.

Nparticles t′ t− t′ ∆tcrit Nsteps
Tcalc N Nsteps

Tcalc
(days) (days) (days) (sec.) (sec.)

2×1 2 7 10 5.5×10−6 1815475 147
2 70 1
5 116 1
10 142 1

10×10
100 7 10 3.9×10−6 2567470 965

2 538 2
(hexagonal 5 1033 6

arrangement) 10 1481 8

Random 1280 7 10 2.1×10−6 4842672 63378
2 1752 15
5 2999 17
10 4443 27
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Figure 5.15: Comparison between the solidification theory analytical solution, the fully
explicit DEM formulation with ADR and the proposed fast numerical procedure consid-
ering three time internals (N=2, 5 and 10) for 10×10 particle assembly with hexagonal
arrangement and for a large random assembly
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5.6 Analysis of the long-term behaviour of concrete considering

its mesostructure

5.6.1 Mortar, aggregate and concrete test results and fit to B3 model

B3 model, proposed by Bažant and Baweja (1995a) and supported by the solidification

theory (Bažant and Prasannan 1989a), describes the basic creep compliance, J(t, t′), as

the sum of the asymptotic elastic strains due to unit stress, q1 and a linear combination

of material parameters, q2, q3 and q4, and time-dependent variables,

J(t, t′) = q1 + q2Q(t, t′) + q3 ln
[
1 + (t− t′)n

]
+ q4 ln

(
t

t′

)
(5.99)

where t is time since casting, t′ is age of loading and Q(t, t′) is a binomial integral with

no analytical expression. The expressions for the approximated solution of Q(t, t′) can

be obtained in (Bažant and Prasannan 1989a). In this study only basic creep will be

considered.

In order to validate the use of detailed DEM particle models for the prediction of

long-term behaviour of concrete considering its mesostructure, the mortar and concrete

creep test results of Ward et al. (1969) were used. These results allow the comparison

between the development of concrete and mortar basic creep strains. The basic creep tests

were performed at the age of 7 days and considering 76 mm-diameter cylinders loaded

with an uniaxial stress of 30% of the compressive strength of the material.

Table 5.6 presents the main properties of the mortar (mortar M6), the aggregates and

the concrete produced with those components (concrete C4). The volume of aggregate,

Vagg, is taken as the total aggregate, considered as the sum of the fine, Vfine agg, and

coarse aggregate, Vcoarse agg, and is calculated from the available data of the ratio of sand

content to gravel content, (s/g), given by weight. The coarse and fine aggregate unit weight

were considered to be 2650 and 2600 kg/m3, respectively. The compressive strength, fc,

and modulus of elasticity, Ec, of each material at the age of 7 days are also presented in

Table 5.6.

The best fit parameters, q1, q2, q3 and q4, related to the mortar and concrete creep test

results were obtained using an optimization procedure based on a genetic algorithm (GA),

following the methodology proposed by Serra et al. (2016a). The obtained parameters

minimize the sum of the square difference between Ward’s experimental results, Jexp(t, t′),
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Table 5.6: Properties and composition of the aggregate, the mortar and of the concrete

Material fc Ec Vagg
(
s
g

)mass (
s
g

)volume
Vcoarse agg. Vmortar(MPa) (GPa)

Aggregate -∗ 70.0∗∗ 1.00 - - 1.00 -
Mortar M6 40.0∗∗∗ 18.8∗∗∗ - - - - 1.00
Concrete C4 34.1∗∗∗ 24.2∗∗∗ 0.69 0.78 0.80 0.38 0.62
∗The compressive strength of the aggregate is not available
∗∗The modulus of elasticity was obtained from Ward’s work
∗∗∗The mechanical properties of the mortar and of the concrete were obtained
for the age of 7 days

and the B3 model creep compliance, JB3(t, t′, q1, q2, q3, q4). Table 5.7 presents the obtained

parameters and the macroscopic results of each aging material and the adjusted coefficient

of determination, R2
adj . Figure 5.16 shows the fit of the B3 model to the test results of

mortar M6 and of concrete C4. The experimental results show that the stiff aggregates

restrain the development of the mortar’s creep strains and contributes to higher modulus

of elasticity and lower creep rate.
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Figure 5.16: Fit of B3 model to Ward’s creep test results of mortar and concrete using
genetic algorithm (GA) (Ward et al. 1969)

Table 5.7: Parameters of B3 model fit to Ward’s creep test results of mortar and concrete
using genetic algorithm (GA)

Material q1 q2 q3 q4 R2
adj(1×10−6/MPa) (1×10−6/MPa) (1×10−6/MPa) (1×10−6/MPa)

Mortar M6 66.6 108.1 44.2 14.3 0.93
Concrete C4 9.0 23.7 46.6 5.1 0.86
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5.6.2 Modelling the instantaneous behaviour of the aggregates and the

long-term behaviour of the mortar

In order to model the composite effect of concrete, first it is necessary to calibrate the

micro-parameters related to the individual behaviour of the aggregates and the mortar.

The calibration procedure was done using a 76 mm (A) square particle assembly of

mortar and a 10 mm (A) square particle assembly of aggregate. These dimensions were

chosen to match the concrete specimen and the largest aggregate, respectively. The size of

the particles used for the calibration of the mortar’s and aggregate’s properties calibration

has to take into account the concrete’s mesostructure. It should be small enough to

represent the contribution of the smallest aggregate in the concrete behaviour maintaining

a reasonable computational cost. The maximum particle radius was considered to be one

fifth of the minimum size of the coarse sand, φaggmin (Rmax = φaggmin/5 = 2.4/5 = 0.48 mm).

The ratio between the minimum and the maximum particle radius, Rmin and Rmax, was

considered to be two thirds (Rmin = 2/3Rmax = 0.32 mm), in order to obtain a compact

assembly.

Figure 5.17 shows the results of the two step calibration procedure of the micro-

parameters of aging viscoelastic behaviour of the mortar, αs,mortar and αn,mortar, at a

loading age of 7 days for a loading time of 365 days.

In Figure 5.17 the first two plots (top line) refer to the parametric study for different

times under loading, t− t′, concerning the stiffness of the contact in the shear direction

controlled by the parameter, αs, and the determination of its optimum value, αopts , to fit

the mortar’s Poisson’s ratio of 0.2. The two last plots (bottom line) show the influence

of the contact stiffness in the normal direction, defined by αn, on the axial response over

time, t− t′, and the fit of αoptn to the analytical values. As previously described, the fit to

the macroscopic properties was done considering a minimization procedure that averages

the deviations between the results of the model and the analytical values over the full

loading time.

With the Equations 5.94, 5.95, 5.96 and 5.97 it is possible to fit the calibration pa-

rameters, αn and αs, to obtain the long-term properties of the material, for any particle

dimensions and size of the specimen. Table 5.8 shows the optimum calibration parameters,

αoptn and αopts that yield the aging viscoelastic behaviour of mortar and the elastic behaviour

of the aggregate.
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Figure 5.17: Results of the calibration procedure of the αn,mortar and αs,mortar for a
loading age of 7 days

Table 5.8: Optimum parameters αoptn and αopts of the mortar and the aggregate

Material t′ t− t′ EM6
eff (t, t′) ν α

opt
s α

opt
n

EDEMeff (t, t′)
νDEM(days) (days) (GPa) (GPa)

Mortar M6 7

0.01 20.7

0.20 0.329 0.775

21.0 0.20
4.3 12.8 12.6 0.20
15.8 10.7 10.5 0.20
47.3 9.1 9.0 0.20
132.7 7.9 7.8 0.20
365.0 6.9 6.9 0.20

Mortar M6 28

0.01 26.1

0.20 0.317 0.770

26.1 0.21
4.3 17.2 17.3 0.20
15.8 14.9 15.0 0.20
47.3 12.7 12.8 0.20
132.7 10.8 10.8 0.20
365 9.2 9.2 0.20

Mortar M6 90

0.01 29.5

0.20 0.319 0.766

29.4 0.21
4.3 20.0 20.2 0.20
15.8 18.0 18.1 0.20
47.3 15.9 16.0 0.20
132.7 13.7 13.6 0.20
365 11.6 11.5 0.20

Mortar M6 365

0.01 32.2

0.20 0.318 0.764

31.9 0.21
4.3 22.2 22.1 0.20
15.8 20.3 20.4 0.20
47.3 18.7 18.8 0.20
132.7 16.9 16.8 0.20
365 14.7 14.8 0.20

Aggregate - - 70.0 0.15 0.449 0.678 70.0 0.15

208



5.6. ANALYSIS OF THE LONG-TERM BEHAVIOUR OF CONCRETE
CONSIDERING ITS MESOSTRUCTURE

5.6.3 Modelling the long-term behaviour of the concrete considering the effect

of the interfacial transition zone (ITZ)

The mesoscale models are particularly relevant for the study of different types of concrete

deterioration since the aggregate structure of concrete and the interfacial transition zone

(ITZ) are explicitly taken into account (Scrivener et al. 2004). The interfacial transition

zone (ITZ) between the cement paste and the aggregates is known to have an important

role in the mechanical properties of concrete. Reference values for the deformability of

the ITZ have been considered in other numerical studies but limited to the instantaneous

deformation:

• EITZ/Emortar = 8.8/11.0 = 0.8 (Suchorzewski et al. 2017);

• EITZ/Emortar = 19.2/24.0 = 0.8 (Sinaie et al. 2016);

• EITZ/Emortar = 16.0/19.0 = 0.8 (Sun and Li 2015);

• EITZ/Ecement paste = 0.6 (Zheng and Zhou 2006; Lutz et al. 1997);

• EITZ/Emortar = 0.447− 5.01/Emortar (Ghebrab and Soroushian 2011).

The following procedure was used to obtain a prediction of the ITZ’s creep compliance

based on the fitted mortar creep compliance, Jmortar(t, t′) and concrete numerical results,

JDEMconcrete(t, t′). Firstly, it was considered that the contact between an aggregate particle

and a mortar particle has a specific creep compliance, JITZ(t, t′), with the parameters,

qi,ITZ , is given by,

JITZ(t, t′) = q1,ITZ + q2,ITZQ(t, t′) + q3,ITZ ln
[
1 + (t− t′)n

]
+ q4,ITZ ln

(
t

t′

)
(5.100)

Secondly, it was also considered that the parameters, qi,ITZ , are proportional to the

mortar’s creep compliance parameters, qi,mortar (i=1, 2, 3, 4):

qi,ITZ =KITZqi × qi,mortar i= 1,2,3,4 (5.101)

where the coefficients KITZqi define the relationship between the ITZ’s and the mortar’s

creep compliance.

The effect of the ITZ’s creep compliance, JITZ(t, t′), defined by the coefficients KITZqi
was considered using a quadratic model for the prediction of the concrete’s creep compliance,

JDEMconcrete(t, t′),
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JDEMconcrete(t, t′) =a0 +
4∑
i=1

ai×KITZqi+

4∑
i=1

4∑
j=1

aij ×KITZqi ×KITZqj+

4∑
i=1
×ait×KITZqi × log

(
t− t′+ 1

)
+

4∑
i=1

4∑
j=1
×aijt×KITZqi ×KITZqj × log

(
t− t′+ 1

)
i= 1,2,3,4;j = 1,2,3,4

(5.102)

where ai, aij , ait and aijt are the coefficients to be fitted to the concrete numerical creep

compliance results, JDEMconcrete(t, t′).

Based on the Central Composite Design (CCD) method (Yoon 2007), several numerical

tests ranging the values of KITZqi between 0.1 and 3.0 and for several loading ages, t′

and loading times, t, were performed in order to obtain the best fit coefficients, aopti , aoptij ,

aoptit and aoptijt . These coefficients define the relationship between the DEM particle model

response and the coefficients, KITZqi . The influence of each parameter on the concrete

creep compliance for the age of 7 days and the fit of the proposed quadratic model are

presented in Figure 5.18. It is possible to perceive that KITZq2 , KITZq3 and KITZq4

are the parameter that have the larger effect on the development of concrete creep strains.

Considering the fitted quadratic model, the optimum values of the coefficients,KITZoptqi ,

were obtained by minimizing the quadratic difference between the experimental concrete’s

creep compliance, JC4
exp, and the DEM result, JDEMconcrete(tj , t′,KITZqi), obtained from Equa-

tion 5.102, using the optimum parameters,

min

 n∑
j=1

(
JC4
exp(tj)− JDEMconcrete(tj , t′,KITZqi)

)2
→KITZoptqi , i= 1,2,3,4 (5.103)

where n is the number of measured values over the loading time.

The results of the minimization of the quadratic model are presented in Table 5.9 which

are the average KITZqi coefficients for several loading ages and for 5 random particle

assemblies. These coefficients, especially due to the influence of KITZq1 and KITZq2

which are mostly related to the instantaneous deformation, increase the values of the ITZ’s
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Figure 5.18: Results of the parametric study for the determination of the influence of ITZ
on the behaviour of concrete

creep compliance when compared with the mortar’s creep compliance.

Table 5.9: Optimum coefficients obtained from the minimization of the quadratic model
to fit the concrete behaviour

Age
KITZoptq1 KITZoptq2 KITZoptq3 KITZoptq4(days)

7 2.2 0.9 0.6 0.6
28 2.9 2.1 1.1 0.2
90 3.5 2.0 2.1 0.1
365 3.0 2.2 2.8 1.2

Figure 5.19 shows an overview of the study of concrete’s long-term behaviour using

DEM particle model regarding the main components and its mesostructure and illustrates

the refinement used in the concrete DEM particle model. The main variables of the long-

term analysis of concrete using a DEM particle model are the size of the specimen, the

boundary conditions, the maximum particle size, defined earlier as one fifth of the smallest

coarse sand (Rmax = 0.48 mm), the arrangement of the coarse aggregates in the specimen,
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the arrangement of the particle assembly inside each aggregate and of the mortar around

the aggregate and the micro properties of each type of contact: MORTAR-MORTAR;

MORTAR-AGG (ITZ); and, AGG-AGG. MORTAR represents a particle of mortar (grey

circle in Figure 5.19) and AGG represents a particle of coarse aggregate (white circle in

Figure 5.19).

This degree of refinement, both inside the aggregates, the ITZ and the mortar, allows for

the study of local interactions between each component over time. A detailed DEM particle

model including the particles representing the mortar allows for the contact constitutive

models to be less complex when compared with other particle models that do not have

the same degree of discretization (Alnaggar et al. 2013; Pan et al. 2017). The fact that

the laws are simpler makes it easier to understand the obtained macroscopic behaviour

and the influence that each individual contact behaviour has on the macroscopic response

of concrete.

The particle model includes two rigid walls, one on the top of the specimen to transfer

the load uniformly and another in the bottom to establish the zero displacement boundary

condition. The specimen is laterally unconfined. The particle assembly simulates concrete

cylinders with 76 mm in diameter and 228 mm of height. The axial and lateral strains

were calculated based on the average relative displacements of the particles crossed by the

horizontal and vertical dashed lines drawn inside the specimen in Figure 5.19. For elastic

and viscoelastic behaviour the strain measurements can be considered independent of the

adopted measurement length and location. Similar results would be obtained if the total

specimen geometry was used. Given that fracture studies are also intended to be carried

out in the near future, different deformability behaviours at the different locations can be

identified with the adopted measurement procedure.

The optimum parameters of the mortar, αmortarn and αmortars , were taken as the average

values of the several loading ages.

The analysis included five randomly generated samples of concrete considering the same

properties but with different random seeds and, therefore, different aggregate and particle

arrangements. Table 5.10 presents the total aggregate volumes in the planar section used

in the generation of the particle assembly, V 2D
2.4−4.75 and V 2D

4.75−10.0, the two-dimensional

volume of mortar, V 2D
mortar and the average number of particles, Nparticles, of five randomly

generated concrete assemblies, divided into coarse aggregate particles and mortar particles

(the fine aggregate).
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Figure 5.19: Description of the detailed particle model for the study of concrete’s long-term
behaviour

The mesostructure of concrete was represented using the procedures described earlier

and considering the volumes of aggregate passing through a specific sieve. The volumes of

aggregate were corrected to take into account the two-dimensional analysis. An equation,

derived by Walraven (1980), defines the particle radius on a planar section using the

probability, Pc, that an arbitrary point on the concrete body of the planar section is

located in a circle with diameter, D, lower than a specific diameter, D0 (defined as each

sieve aperture),

Pc(D <D0) = Pk(1.455D0.5
0 D−0.5

max − 0.50D2.0
0 D−2.0

max + 0.036D4.0
0 D−4.0

max

+ 0.006D6.0
0 D−6.0

max + 0.002D8.0
0 D−8.0

max

+ 0.001D10.0
0 D−10.0

max )

(5.104)

where Pk is the ratio of the total volume of the aggregate to the concrete volume and

Dmax is the maximum size of aggregate in the concrete, equal to 10 mm.

Table 5.10: Aggregate distribution, total aggregate volumes and number of particles of the
concrete compact assemblies (average of five numerical samples)

Material V 2D,agg.
coarse agg. V 2D

mortar
Nparticles

V 2D
2.4−4.75 V 2D

4.75−10 Coarse agg. Mortar
Concrete C4 0.236 0.119 0.645 12269 23133
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Table 5.11 presents the average results obtained in the five random concrete assemblies

using five time intervals (N=5) and a loading time of one year (t−t′ = 365 days). Figure 5.20

shows average results of the DEM numerical creep compliance for several loading ages

using five and ten time intervals discretization (N=5 and 10), the comparison with Ward’s

experimental results and the fitted creep compliance. For each large timestep the solution

is obtained by the convergence of the viscoelastic contact forces using the proposed fast

numerical procedure, as previously described (§ 5.5.4). The extension of the loading time

to 10 years (t− t′ = 3650 days) shows that the model is able to predict the long-term

behaviour of concrete beyond the period used for the calibration of the components, without

large deviations.

Table 5.11: Results of the long-term analysis of concrete using DEM particle model and
five time intervals (N=5)

Material t′ t− t′ EC4
eff (t, t′)

νC4
EDEMeff (t, t′) νDEM (t, t′)

(mean(st.dev.)) (mean(st.dev.))
(days) (days) (GPa) (GPa)

Concrete C4 7

0.01 27.6

0.20

28.4 (0.1) 0.20 (0.001)
4.3 18.5 18.7 (0.1) 0.20 (0.002)
15.8 16.3 16.4 (0.2) 0.20 (0.002)
47.3 14.5 14.3 (0.2) 0.20 (0.003)
132.7 13.0 12.7 (0.1) 0.21 (0.003)
365.0 11.8 11.5 (0.1) 0.21 (0.003)

Concrete C4 28

0.01 29.4

0.20

29.5 (0.1) 0.20 (0.001)
4.3 20.4 20.6 (0.1) 0.20 (0.002)
15.8 18.5 19.0 (0.2) 0.20 (0.002)
47.3 16.6 17.0 (0.2) 0.20 (0.002)
132.7 14.9 15.1 (0.1) 0.20 (0.002)
365.0 13.4 13.5 (0.2) 0.20 (0.002)

Concrete C4 90

0.01 30.3

0.20

30.3 (0.1) 0.19 (0.001)
4.3 21.3 21.4 (0.1) 0.19 (0.002)
15.8 19.6 20.3 (0.1) 0.19 (0.002)
47.3 18.0 18.5 (0.2) 0.19 (0.002)
132.7 16.4 16.4 (0.2) 0.19 (0.002)
365.0 14.7 14.9 (0.1) 0.19 (0.002)

Concrete C4 365

0.01 30.9

0.20

30.1 (0.1) 0.19 (0.002)
4.3 21.8 21.4 (0.1) 0.18 (0.002)
15.8 20.2 20.6 (0.1) 0.18 (0.002)
47.3 18.9 18.9 (0.1) 0.19 (0.002)
132.7 17.6 17.8 (0.2) 0.19 (0.002)
365.0 16.2 16.4 (0.1) 0.19 (0.002)

The results show a good agreement between the B3 model creep compliance (grey

continuous lines in Figure 5.20) fitted to the experimental results ("×" grey mark in

Figure 5.20) and the range and mean of numerical results obtained with DEM particle

model for the behaviour of concrete (grey area and black diamonds in Figure 5.20), for
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Figure 5.20: Comparison between the experimental concrete creep test results by Ward,
the fit to B3 model and the results of the long-term analysis of concrete using the DEM
applied to particle model using the proposed fast numerical procedure with five and ten
time intervals (N=5 and 10) and for two loading times (t-t’=365 and 3650 days) (average
of 5 numerical samples)

each loading age. The Poisson’s ratio of the concrete is 0.20 immediately after loading

(t− t′ = 0.01 days) and presents a small increase over time (Table 5.11).

The fact that the mortar parameters were calibrated using a large uniform specimen

and, inside the concrete mesostructure, the mortar is interleaved with aggregate, can

influence the effect of the optimal parameters in the model results. The effect of the

different sizes of the coarse aggregates in the concrete can also imply a specific calibration

of each aggregate size.

The proposed DEM based particle model is able to simulate the different long-term

behaviour of mortar and concrete. The model also predicts the decrease of creep strains

development over time due to the addition of the stiff elastic coarse aggregates when

compared with the creep strain development of the particle model of the mortar. The
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Assembly
(links between particles)

t = 7.01 days
(after loading)

t = 372 days
(long-term stress distribution)

Figure 5.21: Normal contact force distributions after loading (t=7.01 days) and after one
year under constant loading (t=372 days)

influence of different aggregate arrangements is not very significant.

Figure 5.21 shows the development of normal contact forces in a section of the concrete

where two coarse aggregates are close to each other. Contacts aligned with the loading

direction have compressive forces and contacts perpendicular to the loading direction have

tensile forces. The results indicate that the force chain inside the concrete structure

develop gradually overtime due to the creep properties of the mortar and the stiff elastic

aggregates. Over time, the mortar between two coarse aggregates aligned in the loading

direction tends to increase their compressive force due to the transfer of forces into the

stiffer aggregates.

The analysis that was carried out clearly shows the potential of DEM based particle

models to the study of concrete long-term behaviour. Due to the associated computational

costs it is important to point out that the long-term analyses are only possible using the

proposed fast numerical procedure. This type of models and approach can be particularly

important for the prediction of slow deterioration scenarios in which the interaction of the

cementitious materials and the aggregate over time has an important role in the behaviour

of concrete, such as the developement of internal stresses inside large placements of dam

concrete and the development of alkali-aggregate reactions over several decades.
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5.7 Contact constitutive models for the analysis of failure

behaviour of concrete

5.7.1 Mohr-Coulomb model with a tension cut-off (brittle model)

Although the Mohr-Coulomb model is traditionally defined in stresses, the failure of the

contact between particles is usually defined in forces, therefore, the Mohr-Coulomb failure

equation is multiplied by the contact areas in order to obtain forces instead of stresses.

The Mohr-Coulomb model defines the behaviour for the normal and shear directions at

a contact level in which the tensile force is limited by a maximum tensile normal strength,

Fn,t,max. The force-displacement model in the normal direction is brittle for tensile forces.

The normal failure criteria at the contact is presented in Figure 5.22 and is defined

by, 1

Fn =


0, if Fn,predicted >−Fn,t,max

Fn,predicted, otherwise
(5.105)

where Fn is the normal contact force to consider in the calculation at the current timestep,

Fn,predicted is the predicted normal contact force before failure and Fn,t,max is the maximum

tensile normal strength.

For the shear direction, the maximum shear strength is given by the classical Mohr-

Coulomb criteria,

Fs,max = C +Fntanφ (5.106)

where Fs,max is the maximum shear contact force, C is the contact cohesion and φ is the

contact friction angle.

Figure 5.22 also presents the shear failure criteria which can be described as,

Fsi =


Fs,predicted

Fs,residual
Fs,predicted

, if Fs,predicted > Fs,max

Fs,predicted, otherwise
(5.107)

Fs,residual = Cresidual +Fntanφ2 (5.108)
1the normal compression forces are positive and normal tension forces are negative
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Figure 5.22: Mohr-Coulomb model with tension cut-off

Fs,predicted = ‖Fs,predicted‖ (5.109)

Until the contact is elastic, i.e. until the normal contact force and the shear force is

below their maximum values, the contact is elastic. Once one of the failure conditions is

met, the contact breaks and behaves as a Mohr-Coulomb model with residual cohesion,

Cresidual (which can be null) for the shear sliding at the contact, the contact friction angle

could also change to a different value, φ2, and the contact only bears compressive forces.

In order to take into account the decrease of stiffness due to high compression stresses, a

bilinear law was implemented in the compressive behaviour, in which the contact normal

stiffness is reduced from kn to k∗n, after the predefined value of Un,c is reached (Oñate

et al. 2015). Figure 5.22 shows the normal and shear behaviour of the brittle model and

the normal-shear representation of the failure surface.

5.7.2 Mohr-Coulomb model with softening in tension and shear

As described by Monteiro Azevedo (2003), the use of a contact tensile and shear fracture

energy using a softening model can reduce the fracture propagation velocities and the

particle size dependency.
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Similarly to the brittle model, the model is elastic until the contact forces are below

the maximum strengths (for both tension and shear). Once one of the maximum strength

is reached, a linear softening allows for a gradual reduction of the contact forces. The

softening was adopted for the normal and shear directions and the global damage takes

into account the two types of softening. After the maximum tensile strength is reached, the

normal contact force is reduced using the global contact damage. If the maximum shear

strength is reached, the initial cohesion is reduced using also the global contact damage.

The global contact damage, d, varies between 0, for an undamaged contact, and 1, for

completely damaged contact.

In order to take into account the normal and shear fracture energies at the contact,

Gf,t and Gf,s, the maximum overlaps, Un,t,max and Us,max, after the complete softening,

is given by,

Un,t,max =
2Gf,n
Fn,t,max

(5.110)

Us,max =
2Gf,s
C

(5.111)

The overlaps at maximum contact forces, Un,t,max and Us,max, are obtained using the

elastic energy, Ge,t and Ge,s,

Un,t,Fmax = 2Ge,n
Fn,t,max

(5.112)

Us,Fmax = 2Ge,s
C

(5.113)

Beyond the maximum normal contact force and cohesion, the softening law defines

a normal tensile and shear damage coefficients, d+
n and ds, which relates to the overlap

values after yielding, Un,t,i and Us,i,

d+
n = Un,t,i−Un,t,max

Un,t,Fmax −Un,t,max
(5.114)

ds = Us,i−Us,max
Us,Fmax−Us,max

(5.115)

It is assumed that the normal and shear damage are coupled and that the global contact

219



CHAPTER 5. NUMERICAL MODELLING OF THE CONCRETE
STRUCTURAL PROPERTIES USING PARTICLE MODELS

damage, d, is a linear combination of two components, d+
n and ds (considering a maximum

of one for the global contact damage). The actual tensile strength, F actualn,t , and the actual

cohesion, Cactual, are obtained from the global contact damage, d, and the correspondent

contact forces are updated,

F actualn,t,max = Fn,td= Fn,t
(
d+
n + ds

)
(5.116)

Cactual = Cd= C
(
d+
n + ds

)
→ F actuals,max = Cactual +Fntanφ (5.117)

Fn =


F actualn,t , if Fn,predicted >−F actualn,t,max

Fn,predicted, otherwise
(5.118)

Fsi =


Fs,predicted

F actuals,max

Fs,predicted
, if Fs,predicted > F actuals,max

Fs,predicted, otherwise
(5.119)

Fs,predicted = ‖Fs,predicted‖ (5.120)

Similarly to the brittle contact model, once the maximum overlap is reached the contact

breaks and the cohesion is set to zero and the residual shear force relies only on final friction

value, φf . Also, if the global contact damage is higher than 1, only a friction model is left

for the maximum shear strength.

Figure 5.23 shows the normal and shear behaviour of the softening model and the

normal-shear representation of the failure surface at different stages of loading. Fig-

ures 5.24 and 5.25 illustrate an example of the stress path of a normal tensile contact

failure and of a shear contact failure, respectively. In both cases, as soon as the contact

force exceeds the maximum forces, the new updated contact force is obtained in order to

be at the failure surface, defined by the softening law. As the displacements increase, the

contact force drops smoothly until zero, the damage increases until its maximum value,

d= 1, and the normal and shear stiffnesses also decrease, kn > kdn and ks > kds .
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Figure 5.23: Mohr-Coulomb model with softening in tension and shear
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5.7.3 Validation of Mohr-Coulomb contact models (brittle and softening)

In order to validate the model implementation on the computational code, simple testing

examples were used for tension and shear loadings in which the failure mode is previously

known. The full description of failure behaviour was obtained for a constant boundary

wall velocity. A set of hypothetical micro properties were used for the analysis of these

examples (Table 5.12). Figure 5.26 shows the particle assemblies used for the validation

of the Mohr-Coulomb contact model. For the 2×1 assembly the contact between particles

has a Mohr-Coulomb model and the wall contacts are kept elastic. For the 2×2 and 10×10

particle assemblies, the central contacts have a Mohr-Coulomb model and the remaining

contacts are elastic. The normal and shear behaviours of the contact models are validated

considering different types of loading under constant velocity control.

Table 5.12

Model Mohr-Coulomb model Mohr-Coulomb model
parameter with cut-off with softening
R (m) 0.00048
kn (N/m) 10× 106

ks/kn 1.0
kn∗ (in compression) 0.3 kn
Fn,t,max (N) 1× 105

C (N) 5× 104

tan φ 0.3
Ge,n (N/m) Fn,t,max

2kn
Ge,s (N/m) Fs,t,max

2ks
Gf,n (N/m) - 4 Ge,n
Gf,s (N/m) - 4 Ge,s

The validation tests of the two particle model included a specific force path in order

to describe the complete behaviour of the contact brittle and softening model: firstly, a

vertical wall velocity, vy, is set to introduce only tension forces into the contact until the

contact breaks and the two particles separate; secondly, the wall velocity is inverted in

order to approximate the two particles, which after failure do not undergo forces; as the

two particles touch, the compressive stiffness and the model in compression is activated.

Figure 5.27 shows the result of the validation test for the two particles model and for

the brittle and softening models. A similar test was done for the 10×10 assembly under

tension loading considering brittle and softening contact model (Figure 5.28).

In order to validate the shear behaviour of the contact model, a 2×2 assembly was

tested considering a constant horizontal wall velocity, vx, with and without an applied
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Figure 5.26: Assemblies for the validation of the Mohr-coulomb models

Figure 5.27: Contact force-displacement law for the 2×1 assembly under tension and
compression loading considering brittle (left) and softening (right) contact model
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Figure 5.28: Contact force-displacement law for the 10×10 assembly under tension loading
considering brittle (left) and softening (right) contact model

compressive force and for brittle and softening models. A pure shear test yields the results

shown in Figure 5.29, without any residual shear force in the contact. If the contact has a

compressive force, a residual shear force derived from the friction coefficient still remains

after the contact is broken (Figure 5.30).

Figure 5.29: Global and contact force-displacement law for the 2×2 assembly under shear
loading considering brittle (left) and softening (right) contact model
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Figure 5.30: Global and contact force-displacement law for the 2×2 assembly under com-
pression and shear loading considering brittle (left) and softening (right) contact model

5.8 Analysis of the failure behaviour of concrete considering its

mesostructure

5.8.1 Particle model properties and parametric study

In order to validate the particle model for the prediction of concrete behaviour taking

into account the coarse aggregate distribution inside the specimen, 5 random particle

models were generated for both tensile and compressive loadings. The tests follow the

work of Vonk (1992) which describes the experimental conditions and results. Vonk (1992)

tested conventional concrete in tension and in compression considering different lateral

restraints in the platens, presents the obtained stress-strain results and the numerical

simulations using a micromechanical approach based on the discrete element method in

which the domain is divided into deformable polygonal elements. The numerical tests

using a concrete particle model are directly compared to the Vonk’s numerical results.

The generation of concrete mesostructure using particle models follow the description

in § 5.4 and the composition data presented in Table 5.13. The specimens used for tensile

strength tests have 50 mm in height and 100 mm-width and the compressive strength is

obtained in 100 mm×100 mm specimens. The maximum radius, Rmax, and ratio between

minimum and maximum particle radius, Rmax
Rmin

, are equal to 1.0 and 2/3, respectively.

The generated assemblies have around of 2500 particles and 7000 contacts for the tensile
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strength tests and around 4700 particles and 14000 contacts for the compressive strength

tests.

100 mm

50 mm

vy

100 mm

100 mm

vy

Figure 5.31: Specimen size and type of loading of the concrete particle models

Two rigid walls simulate the platens in which the external loading is applied (Fig-

ure 5.31). The external loading is an imposed constant velocity of the top wall of 5×

10−5 m/s. In order to validate the model using Vonk’s numerical results, the rigid wall

do not restrain the lateral displacements of the particles. The forces are damped by local

non-viscous damping, as described in § 5.3.2.4, using non-viscous damping coefficient,

α= 0.7.

Table 5.13: Concrete composition of Vonk (1992) tests

Component Content (kg/m3)
Cement (Portland A) 330.0

Water 165.0

Fine aggregate

0.0 - 0.25 150.3
0.25 - 0.5 225.5
0.5 - 1.0 225.5
1.0 - 2.0 187.9
2.0 - 4.0 263.1

Coarse aggregate 4.0 - 8.0 375.8
8.0 - 16.0 451.0

Prior to the calibration of the micro parameters and fit to Vonk’s numerical results, a

sensitivity study is presented in order to evaluate the influence of the main factors on the

tensile and compressive behaviour of concrete. The factors under study are the modulus of

elasticity of the aggregates, the contact strength parameters of the mortar in the normal and

tangential directions, Fmortarn,t,max, Cmortar, tan φmortar, the ratio between contact properties

of the ITZ and the mortar, rF = F ITZn,t,max

Fmortarn,t,max
, rC = CITZ

Cmortar , the ratio between the contact’s
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total and elastic fracture energy in both directions, rG,n = Gf,n
Ge,n

and rG,s = Gf,s
Ge,s

, the wall

imposed velocity, vwally , and the lateral restraint of the walls, kwalls . Table 5.14 describes

the variation of the influencing parameters on each factor and Figures 5.32 to 5.37 show

the effect of the stress-strain response for tensile and compressive stresses. The bold values

in Table 5.14 refer to the reference state for the direct comparison between each analysis.

The imposed wall velocity is an important factor in this type of numerical models using

DEM. In order to evaluate the quasi-static response of concrete the wall velocity should

be as small as possible. High wall velocities introduce large contact force variations which

can be difficult to balance and yield an apparent global softening behaviour. The adopted

wall velocity for all the sensitivity study cases was vy = 5×10−4 m/s for compression tests

and vy = 5× 10−5 m/s for tension tests. The criteria for establishing the quasi-static wall

velocity concerned the energy balance between work and kinetic energy during the test. If

the kinetic energy differs from the work done in the system there are significant dynamic

effects that not being taken into account in the constitutive model and, therefore, the wall

velocity should decrease in order for the system to dissipate the excessive contact velocities

during the calculation and obtain a quasi-static solution.

Figure 5.32 shows the effect of aggregate’s modulus of elasticity variations on the global

stress-strain behaviour for both direct tensile strength tests and compressive tests. The

most significant effect is the decrease of the modulus of elasticity of concrete and the small

increase of peak strength in tension and compression as the modulus of elasticity of the

aggregate decreases. The concrete with softer aggregates (Eagg=35 GPa) have less internal

heterogeneity which can imply also less stress concentration around the aggregates and

can lead to a delay in the development of large cracks and an increase of the peak strength.

It is shown that higher maximum normal contact forces of mortar yield higher concrete

tensile and slightly higher compressive strengths (Figure 5.33) and more brittle responses,

considering the ratio between ITZ and mortar contact strength properties is maintained

equal to 0.5. The variation of the ratio between ITZ and mortar contact strength properties

shows that the tensile strength is more sensitive to the ITZ properties than the compressive

strength (Figure 5.35). Higher ITZ strength properties also yield brittle responses. When

the ITZ strength properties are reduced, the first cracks around the aggregates develop

very early but the large inter-aggregate cracks, which imply the failure of the mortar with

much higher strength, occur later in time.

Figure 5.34 shows also the influence of mortar’s contact cohesion on the macroscopic
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Table 5.14: Definition of variables for the sensitivity study

Parameter Type of Valueunder study loading

Tension
Eagg = 35 GPa

Modulus of elasticity Eagg = 70 GPa
of the aggregate Eagg = 105 GPa

(Eagg)
Compression

Eagg = 35 GPa
Eagg = 70 GPa
Eagg = 105 GPa

Tension
Fmortarn,t,max = 4500 kN,Cmortar = 15000 kN

Maximum contact Fmortar
n,t,max = 9000 kN,Cmortar = 15000 kN

force of mortar Fmortarn,t,max = 13500 kN,Cmortar = 15000 kN(
Fmortarn,t,max

)
Compression

Fmortarn,t,max = 4500 kN,Cmortar = 15000 kN
Fmortar

n,t,max = 9000 kN,Cmortar = 15000 kN
Fmortarn,t,max = 13500 kN,Cmortar = 15000 kN

Tension
Fmortarn,t,max = 9000 kN,Cmortar = 7500 kN

Contact cohesion Fmortar
n,t,max = 9000 kN,Cmortar = 15000 kN

of mortar Fmortarn,t,max = 9000 kN,Cmortar = 22500 kN(
Cmortar

)
Compression

Fmortarn,t,max = 9000 kN,Cmortar = 7500 kN
Fmortar

n,t,max = 9000 kN,Cmortar = 15000 kN
Fmortarn,t,max = 9000 kN,Cmortar = 22500 kN

Tension
rf = 0.25, rC = 0.25, rφ = 0.25

Ratio between contact rf = 0.5,rC = 0.5,rφ = 0.5
properties of ITZ and mortar rf = 1.0, rC = 1.0, rφ = 1.0(
rf =

fITZn,t,max

fmortarn,t,max
, rC = CITZ

Cmortar Compression
rf = 0.25, rC = 0.25, rφ = 0.25

, rφ = tanφITZ

tanφmortar

)
rf = 0.5,rC = 0.5,rφ = 0.5
rf=1.0, rC=1.0, rφ=1.0

Tension
rG,n = rG,s = 1.0 (brittle)

Ratio between total and elastic rG,n = rG,s = 4.0
contact fracture energy rG,n = rG,s = 10.0(
rG,n = Gf,n

Ge,n
, rG,s = Gf,s

Ge,s

)
Compression

rG,n = rG,s = 1.0 (brittle)
rG,n = rG,s = 4.0
rG,n = rG,s = 10.0

Tension
kwall

s = 0kN/m
Lateral restraint kwalls = 0.5kmortars

of the walls kwalls = 1.0kmortars

(kwalls )
Compression

kwall
s = 0kN/m

kwalls = 0.5kmortars

kwalls = 1.0kmortars
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strength properties of concrete. It is shown that, due to the type of failure of tensile

strength tests, contact cohesion does not affect the tensile strength behaviour since there

is no shear involved. In compression, large shear displacements take place across the

specimen and around the coarse aggregates and, therefore the contact cohesion has a great

effect on the ultimate compressive strength values.
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Figure 5.32: Influence of the modulus of elasticity of the aggregate in the stress-strain
behaviour in tension and compression
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Figure 5.33: Influence of the contact strength properties of the mortar in the stress-strain
behaviour in tension and compression

The effect of the contact fracture energy is presented in Figure 5.36 in which the total
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Figure 5.34: Influence of the contact cohesion of the mortar in the stress-strain behaviour
in tension and compression
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Figure 5.35: Influence of the ratio between contact strength properties of the ITZ and the
mortar in the stress-strain behaviour in tension and compression
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contact fracture energy is varied from a brittle behaviour (Gf =Ge) to a large softening

behaviour (Gf = 10Ge). The influence of the brittle behaviour is more pronounced for

tensile loadings. Larger total contact fracture energies yield higher tensile and compressive

peak strengths.
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Figure 5.36: Influence of the contact fracture energy in the stress-strain behaviour in
tension and compression

The effect of the lateral restraint of the wall was also studied and Figure 5.37 shows

the stress-strain responses considering no lateral restrictions and two degrees of restraint.

Several studies refer to the study of concrete softening considering zero lateral restraints

in order to evaluate the concrete material properties without the influence of the testing

conditions (Vonk 1992; Mier 1998). The platens introduce a lateral restrictions which

influences the failure mode and, therefore, the stress strain response. Figure 5.37 show a

significant increase on the peak strength and on the softening response of concrete when

some lateral restraint is considered.
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Figure 5.37: Influence of the lateral restraint of the walls in the stress-strain behaviour in
tension and compression

5.8.2 Modelling the tensile and compressive instantaneous stress-strain

behaviour

For the fit to Vonk’s results, the tensile and compressive tests are simulated using a Mohr-

Coulomb model with softening in which the contact’s total fracture energy for the normal

direction, Gf,n, and for the tangential direction, Gf,s, are taken as 10 times larger than

the respective contact’s elastic energy, Ge,n and Ge,s. It is assumed that the aggregate

contacts (AGG-AGG) are elastic and do not break. The calibration of the elastic micro-

parameters followed the procedure previously described (§ 5.5.3) and the main strength

parameters were obtained from trial-and-error in order to fit the stress-strain response

to the Vonk’s tests. Table 5.15 and Table 5.16 present the main parameters and results.

Figures 5.39 and 5.40 present the complete stress-strain behaviour for both tensile and

compressive loadings and the development of the modulus of elasticity and Poisson’s ratio,

of the number of normal and shear contact breaks and of the work and kinetic energy

(range of 5 numerical simulations for randomly generated assemblies).

The obtained results show a good prediction of the tensile and compressive peak

strengths although with a much higher brittle response (Figures 5.39 and 5.41).

The direct tensile strength tests of the concrete particle model show that the work of

the boundary walls and the kinetic energy are equal and the elastic properties remain the

same until some inelastic displacement occurs (after 50000 steps and at 80% of the peak
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Table 5.15: Parameters used for the concrete particle model

Type Eagg (GPa) Emortar (GPa) EITZ (GPa) Fmortarn,t,max (N) F ITZn,t,max (N)
of α

agg
n αmortarn αITZn Cmortar (N) CITZ (N)

loading α
agg
s αmortars αITZs tanφmortar tanφITZ

Tension
70 × 106 25 × 106 25 × 106 7.5 × 103 3.75 × 103

1.15 1.15 1.15 13.0 × 103 6.5 × 103
0.30 0.30 0.30 0.3 0.3

Compression
70 × 106 25 × 106 25 × 106 7.5 × 103 3.75 × 103

1.50 1.50 1.50 13.0 × 103 6.5 × 103
0.30 0.30 0.30 0.3 0.3

Table 5.16: Results of tensile and compressive numerical tests of concrete particle models

Type vwall
Gf,n
Ge,n

= Gf,s
Ge,s

EDEM (mean(st.dev.)) (GPa) Eexp (GPa)
of (m/s) νDEM (mean(st.dev.)) νexp

loading FDEM (mean(st.dev.)) (kN) F exp (kN)

Tension 5× 10−5 10
31.0 (0.2) 30.6
0.22 (0.002) 0.2
421.9 (19.9) 369.6

Compression 5× 10−5 10
40.7 (0.2) 40.7
0.20 (0.003) 0.2

4349.4 (242.6) 4221.1

strength). After this point, the tensile modulus of elasticity drops as a consequence of

internal damage. It should be noted that normal and shear breaks refer to the end of the

softening path. Just before the peak strength is reached, the number of normal breaks

increase rapidly since several softening contacts are not capable of withstanding more load.

In tensile failure the number of shear breaks are very small which indicates that the shear

behaviour is not dominant for this type of loading (Figure 5.39). The lines in the plots

refer to the mean values of the 5 random assemblies, where as the grey areas show the

variation of each test result.

Figure 5.38 presents three stages of the failure process due to tensile loading: 1 with

no damage; 2 at peak strength; and, 3 at the end of the softening curve. At peak strength

the main cracks are already formed on the ITZ and across some aggregates and, as the

upper wall moves, these cracks bridge with each other and propagate through the mortar

until all cross section of the specimen has failed.

Figure 5.40 presents the compressive strength test results including the development

of the external work and kinetic energy, the decrease of the modulus of elasticity and

the brittle stress-strain response. Figure 5.41 shows the failure patternsin compressive

loading at peak strength and at the end of the softening curve. At peak strength large

vertical cracks are already developed across the specimen and only very narrow concrete
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columns remain intact. After peak strength, these vertical cracks increase their width and

propagate into several ramifications very quickly.

The progressive reduction of the modulus of elasticity is due to both the decrease of

the compressive contact stiffness (from kn and ks to k∗n = 0.3kn and k∗s = 0.3ks, § 5.7.2

and § 5.7.1) and the development of softening of some contacts. This decrease of global

stiffness occurs at approximately 40% of the peak strength and introduces the nonlinear

behaviour of concrete before the maximum strength is reached (Coutinho and Gonçalves

1994). Since the stiff coarse aggregates introduce nonuniform stressed areas, there are

some contacts that change to the reduced stiffness earlier than others, which allows for a

progressive reduction of the global stiffness. Despite the progressive stiffness reduction,

the concrete particle model still yield a brittle failure after the peak strength is reached.
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Figure 5.38: Development of cracking pattern and correspondence to the stress-strain
behaviour under tensile stress
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Figure 5.39: Results of direct tensile strength tests of the concrete particle model including
the stress-strain behaviour and the development of the modulus of elasticity and Poisson’s
ratio, of the number of normal and shear contact breaks and of the work and kinetic energy
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Figure 5.40: Results of compressive strength tests of the concrete particle model including
the stress-strain behaviour and the development of the modulus of elasticity and Poisson’s
ratio, of the number of normal and shear contact breaks and of the work and kinetic energy
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Figure 5.41: Development of cracking pattern and correspondence to the stress-strain
behaviour under compressive stress

5.9 Concluding remarks

This chapter describes the discrete element method (DEM) formulation and its application

to 2D particle models (PM) for the instantaneous and long-term analysis of quasi-brittle

material behaviour with particular focus on concrete behaviour. The instantaneous and

long-term analysis regarding the deformation properties require that the model reproduces

the aging viscoelastic behaviour of cementitious materials considering a computationally

efficient procedure. The prediction of the instantaneous stress-strain behaviour until failure

for the prediction of concrete strength properties is based on a quasi-static test using the

Mohr-Coulomb model at the contact level.

Firstly, an explicit formulation of a DEM particle model that includes aging viscoelastic

contact behaviour based on the solidification theory is presented. Due to the computational

costs associated with timestep constraints of DEM based particle model, a fast numerical

procedure for the analysis of long-term aging viscoelastic behaviour of concrete is proposed.

The fast numerical procedure separates the real time, related to the age since casting,

and the numerical time, related to the convergence of the DEM model to a steady state
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solution. A calibration procedure for the aging viscoelastic contact model parameters is

presented, including new expressions for the delayed deformability macro properties.

The aging viscoelastic contact model based on the solidification theory is validated

using a simple one contact particle assembly and other simple assemblies. It is shown that

both the fully explicit DEM procedure response with small timestep and the fast numerical

procedure response match the creep compliance analytical solution. The contact aging

model validation tests using larger regular and random particle assemblies showed that

the fast numerical procedure significantly reduces the computational time by introducing

large timesteps in which the solution is computed, while giving the same accuracy of the

fully explicit procedure.

The DEM aging concrete model was validated using Ward’s experimental results and

a B3 model fit to the Ward’s experimental results for different loading ages. The aging

viscoelastic contact properties of the mortar and of the interfacial transition zone (ITZ)

and the elastic contact properties of the aggregate were determined during the particle

model calibration procedure. The obtained numerical results show that the DEM aging

viscoelastic particle model considering the concrete mesostructure can predict the long-term

behaviour of concrete.

The second part of the chapter relates to the implementation and validation of failure

contact models for the analysis of the stress-strain behaviour of cementitious material

in quasi-static conditions. The Mohr-Coulomb model with tensile cut-off (brittle) and

the Mohr-Coulomb model with linear softening were implemented into the DEM code at

the contact level (normal and shear directions). A contact stiffness reduction for high

compressive loadings was also implemented in order to have some control on the damage

in compressed areas and increase the stress-strain curvature before the peak strength, as

measured in normal strength concrete tests. The contact behaviour was validated using

simple particle assemblies, predefined failure areas and controlled loading conditions, both

pure tension and pure shear loadings.

A more complex model validation was done regarding realistic concrete particle models

with explicit representation of the coarse aggregates. Prior to the calibration of the micro

parameters, a sensitivity analysis for the main parameters was presented. This sensitivity

analysis helped to understand the effect of the main input parameters and model properties

on the macroscopic structural response. The main conclusions relate to the effect of normal

contact strength and cohesion of the mortar and of the ITZ, the effect of the contact fracture

240



5.9. CONCLUDING REMARKS

energy and the effect of lateral stiffness of the boundary wall. The validation of the model

was based on the examples described by Vonk (1992) and on its numerical results using

a polygonal DEM model for both tensile and compressive strength tests. The obtained

results show that the concrete particle model has a much brittle response than Vonk

(1992)’s model but it is able to reproduce the peak strength, the stiffness reduction before

the strength maximum value and the expected failure patterns, both in tension and in

compression.

Although the validation examples adopt a two-dimensional DEM particle model that

has been implemented in C++, the proposed aging contact model, the proposed fast

numerical procedure and the Mohr-Coulomb contact models can be readily incorporated

in tridimensional DEM based codes.

The proposed numerical tool can be used to improve the prediction of long-term dete-

rioration processes of concrete in which the properties of the coarse aggregate are relevant,

for example for the prediction of early-age cracking due to hydration and temperature

variations and for the study of alkali-aggregate reaction effect on the development of the

mechanical properties.
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Numerical modell ing of the dam concrete

structural properties using particle models

6.1 Introduction

The particle models can be used to predict the behaviour of heterogeneous materials con-

sidering different contact properties. For the modelling of concrete, the main heterogeneity

is due to the aggregates, mainly because the rock used for the aggregates and the cement

paste have very different mechanical properties and due to the weaker properties of the

interfacial transition zone (ITZ).

This chapter presents the prediction of dam concrete mechanical properties using

particle models. The behaviour of dam concrete depends mainly on the properties of the

mortar and the aggregate obtained from the presented experimental results (§ 3) and on

the content of each component in the concrete mixture. The computational costs limits

the use of large number of particles and the refinement of the particle model relates to

the minimum particle radius. The physical representation of the fine aggregates would

require the use of very small particles when compared with the size of the specimen and

would significantly increase the number of particles in the model. Therefore, for this

work, concrete is represented by a mortar (cement paste and fine aggregates) and the

coarse aggregates. The smallest coarse aggregate defines the radius of the particles used

in throughout the specimen model.
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The proposed approach is to characterize and model both the mortar and the coarse

aggregates separately in order to control their behaviour in the heterogeneous model of

concrete. The contact micro properties are calibrated using small homogeneous numerical

specimens and following the procedure described in the previous chapter (§ 5.5.3). For

the mortar, a long-term analysis is required for modelling the aging viscoelastic properties.

For the aggregates, an elastic analysis defines the contact micro properties in order to

obtain the macro properties of the intact rock.

The second part of this chapter presents the calibration of mortar’s compressive and

tensile strengths for several loading ages using the Mohr-Coulomb model with linear soft-

ening and the incorporation of these results on the prediction of wet-screened and dam

concrete fracture behaviour.

The particle model of concrete considers the mortar and the coarse aggregates, which

are explicitly taken into account. The aggregate’s structure is built using an algorithm

for the placement of coarse aggregates in the specimen based on a given sieve analysis

(Monteiro Azevedo 2003).

Figure 6.1 shows the overall proposed approach for the prediction of wet-screened

(SCR38 and SCR76) and dam (DAM) concretes using particle models. After the calibration

of the properties of each component, they are used for modelling the different types of

concrete, namely the wet-screened concrete and the dam concrete. The model prediction

results are then compared with the available test results in order to evaluate the accuracy

of the prediction.

The main difference between the two types of concrete is the aggregate’s structure. The

maximum size of aggregate of wet-screened concrete is 38 mm or 76 mm and the fraction

volume of mortar is higher. The dam concrete has larger aggregates and, therefore, a large

coarse aggregate content. It is considered that the mortar around the aggregates has the

same properties in both concretes.

The numerical results obtained from the wet-screened and dam concrete particle model

using DEM are compared with the experimental results.
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AGGREGATES

WET-SCREENING

PROCEDURE

Figure 6.1: Schematic representation of the proposed approach for the prediction of dam
concrete properties using particle models

6.2 Prediction of dam concrete deformability properties using

particle models

6.2.1 Particle model definitions

The goal of this type of analysis is to explicitly take into account the deformability and

strength properties of each component of concrete. Therefore, the particle model definitions

should reflect, as much as possible, the internal structure of the different types of concrete.

It is assumed that the maximum particle radius, Rmax and the same ratio between

maximum and minimum particle radius, Rmin/Rmax is the same for each type of material

across the entire particle assembly. This option is important due to the sensitivity of

the results to the size of particles. The same discretization was used for the calibration

procedure of the mortar and the aggregate.

The size of the particles have to take into consideration the size of the smallest coarse

aggregate. On the other hand, the model refinement is constraint to the computational

costs, especially when testing large specimens of dam concrete. The maximum particle

radius definition is a combination of these two factors. By trial and error procedure,

the maximum particle size was set to 1.5 mm, which is a fraction of the smallest coarse

aggregate (4.75 mm). This value insures reasonable number of particles for testing the

larger specimen within the smaller aggregates. The use of a ratio between maximum and
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minimum particle radius, Rmin/Rmax, equal to 2/3 increases the number of interactions

between particles and increasing the number of contacts per particle, the coordination

number, Ncoord.

It has been shown that higher coordination number increases the internal material

friction which can lead to more accurate stress-strain responses (Wang and Tonon 2009;

Monteiro Azevedo and Lemos 2011). For the prediction of dam concrete behaviour using

particle models, the definition of the contact points between particles and the contact area

is obtained by a Voronoi tessellation, similarly to the work of Monteiro Azevedo et al.

(2015). This type of contact detection increases the number of contacts when compared

with the traditional contact detection scheme in which only real particle interactions are

considered (Potyondy and Cundall 2004).

In order to reproduce the testing conditions, the particle model includes two rigid

boundary walls, at the top and bottom of the specimen, which represent the rigid platens

of the testing equipments and sets the same loading conditions for each boundary particle.

Since only unconfined conditions will be considered, no lateral confinement is taken into

account (Figure 6.2).

The loading conditions can be an applied force vector or an imposed velocity vector.

The external applied force is distributed into contact force for each boundary particle

according to the stiffness of the wall contact. When an imposed velocity is applied to

the wall, all the boundary particles are affected with the same velocity. The boundary

conditions are also defined by the walls, which can be restrained or unrestrained in the

horizontal and vertical direction and for rigid body rotations. Although the wall can be

fixed in all directions, the wall contacts define the actual boundary conditions between the

platen and the specimen. The wall contacts are defined to link the wall to the assembly,

transferring the loading and setting the restrains, and also to introduce the type of lateral

interaction between the wall and the assembly. This lateral interaction can be defined as a

shear stiffness in order to simulate the lateral forces developed during standard tests due

to the friction between the platen and the concrete specimen or as a completely shear-free

wall, for specific tests in which there is no lateral restraint to the specimen deformation

(Vonk 1992).

Table 6.1 presents the definition of the model properties including each type of contact

and its micro-properties for the prediction of aging viscoelastic and strength properties
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shear stiffness
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Wall 
contact

Particle 
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Figure 6.2: Representation of the loading conditions at the top wall and the boundary
conditions of the particle model

of concrete. Five types of contacts are defined for interactions inside each type of aggre-

gate (AGG150-AGG150, AGG76-AGG76, AGG38-AGG38, AGG19-AGG19 and AGG9.5-

AGG9.5) and five types are also defined for the interactions between the mortar particles

and each type of aggregate (MORTAR-AGG150, MORTAR-AGG76, MORTAR-AGG38,

MORTAR-

-AGG19 and MORTAR-AGG9.5). The contacts between a given particle and a rigid wall

(MORTAR/AGG i-WALL k) is always considered elastic, without the possibility of failure.

The behaviour of each type of ITZ is taken into account using a serial model of the elastic

properties of the aggregate (Eagg) and the aging viscoelastic properties of the ITZ (qi,ITZ).

Since the aggregates only have elastic behaviour, the asymptotic elastic part of the aging

viscoelastic model of ITZ, q1,ITZ , is affected by the aggregate’s stiffness and the other

aging coefficients, q2,ITZ , q4,ITZ and q4,ITZ , remain equal to the mortar properties,

q1,ITZ = 1
2Eagg

+ q1,mortar
2

q2,ITZ = q2,mortar

q3,ITZ = q3,mortar

q4,ITZ = q4,mortar

(6.1)
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As previously described in § 5.5.3, the prediction of concrete long-term behaviour using

particle models requires the calibration of the microproperties of the main components of

this heterogeneous material. Figures 6.3 and 6.4 show each calibration specimen and prop-

erties used for the prediction of wet-screened concrete and dam concrete. Table 6.2 presents

the calibration scheme for each type of concrete considering its different components and

the specimen sizes used for each test.

Figure 6.3 refers to the prediction of wet-screened concrete, where the maximum size

of aggregate is 38 mm and only three coarse aggregate sizes are used, 38 mm, 19 mm

and 9.5 mm. The contact behaviour for the three types of aggregates and for the mortar

were calibrated to yield their macroscopic properties. For a concrete particle assembly,

the particles inside the aggregates are classified as aggregate particles and the particles

surrounding the aggregates are classified as mortar particles. The type of contact is defined

by the classification of the two particles in contact. For example, a contact of two mortar

particles is a mortar particle. The special case of the contact between an aggregate particle

and a mortar particle is defined by a serial model of both the aggregate contact model and

the interfacial transition zone contact model.

In order to compare the predicted results with the ones obtained in creep cells, the

temperature history and its influence on the mechanical properties were taken into account

in the contact model. This effect was considered using the maturity method, as previously

used for the analytical composite models, considering uniform temperature field over the

specimen. This effect is known to accelerate the mechanical property development as the

temperature before testing increases. For each real time, T , the equivalent time, Te, is

calculated based on the previous temperature history and then used for the determination

of the stiffness of each contact properties (§ 5.5.4).

Figure 6.4 illustrates the same calibration procedure for the dam concrete prediction

including the larger aggregates that were removed during the wet-screening procedure

(MSA>38 mm) and the actual dam concrete specimen size. The properties of mortar and

the ITZ’s equivalent stiffnes are considered the same as the SCR38 and SCR76 particle

models. The effect of temperature on the development of the creep strains of viscoelastic

materials is also considered.
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Figure 6.3: Calibration of the deformability properties of each component of concrete and
modelling of #38 wet-screened concrete
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Table 6.2: Calibration scheme for each type of concrete considering its different components

Type of Specimen size Macro Type of Specimen size Macro Micro
concrete (mm × mm) properties component (mm × mm) properties parameters

SCR38 150× 300

AGG38 38× 38 Eagg, νagg αagg38
n , αagg38

s

JSCR38, AGG19 19× 19 Eagg, νagg αagg19
n , αagg19

s

νSCR38 AGG9.5 9.5× 9.5 Eagg, νagg αagg9.5
n , αagg9.5

s

MORTAR 100× 100 Jmortar, αmortarn , αmortarsνmortar

SCR76 300× 600

AGG76 76× 76 Eagg, νagg αagg76
n , αagg76

s

AGG38 38× 38 Eagg, νagg αagg38
n , αagg38

s

JSCR76, AGG19 19× 19 Eagg, νagg αagg19
n , αagg19

s

νSCR76 AGG9.5 9.5× 9.5 Eagg, νagg αagg9.5
n , αagg9.5

s

MORTAR 100× 100 Jmortar, αmortarn , αmortarsνmortar

DAM 450× 900

AGG150 150× 150 Eagg, νagg αagg150
n , αagg150

s

AGG76 76× 76 Eagg, νagg αagg76
n , αagg76

s

JDAM , AGG38 38× 38 Eagg, νagg αagg38
n , αagg38

s

νDAM AGG19 19× 19 Eagg, νagg αagg19
n , αagg19

s

AGG9.5 9.5× 9.5 Eagg, νagg αagg9.5
n , αagg9.5

s

MORTAR 100× 100 Jmortar, αmortarn , αmortarsνmortar

6.2.2 Prediction of mortar’s creep compliance based on the concrete properties

Due to several types of constraints, the experimental characterization of the long-term

properties of the mortar was not possible. In order to obtain the aging viscoelastic

properties of the mortar, the composite model, proposed by Granger and Bažant (1995)

and described in § 4.3.5, was used.

The composite model gives a prediction of the concrete behaviour based on the prop-

erties of the aging viscoelastic matrix and of the elastic inclusions and their proportion in

a unit volume (Equations 6.3 to 6.6). An inverse procedure using genetic algorithms was

used to find the aging viscoelastic parameters of the mortar, qMortar,SCR38
1 , qMortar,SCR38

2 ,

qMortar,SCR38
3 and qMortar,SCR38

4 . The inverse procedure optimizes the goal function de-

fined by Equation 6.2, which minimizes the difference between the wet-screened creep

compliance fitted to experimental results, JSCR38(t, t′) (defined in Table 6.3), and the

creep compliance prediction of the composite model, Jcomposite(t, t′) (defined by the Equa-

tion 6.3),
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min

 m∑
i=1

n∑
j=1

(
JCore−SCR38(tj , t′i)−

− Jcomposite(tj , t′i, q
Mortar,SCR38
1 , qMortar,SCR38

2 , qMortar,SCR38
3 , qMortar,SCR38

4 )
)2
]

(6.2)

where the n and m are the number of loading ages and the number of measured values

over the loading time, respectively,

Jcomposite(t, t′) = β

αEa + (1−α)Em(t′)

[
1 + (1−α) E

′′
m

E′′am
φ(t, t′)

]
+ (1−β)Jm(t, t′) (6.3)

in which,

φm(t, t′) = Em(t′)Jm(t, t′)− 1 (6.4)

E′′m(t, t′) = Em(t′)−Rm(t, t′)
φm(t, t′) (6.5)

E′′am(t, t′) = αEa + (1−α)E′′m(t, t′) (6.6)

where φm(t, t′) is the creep coefficient of the mortar, E′′m(t, t′) is the age-adjusted modulus

of elasticity of the mortar and E′′am(t, t′) is the age-adjusted modulus of elasticity of the

parallel portion of aggregate and mortar.

Table 6.3: Parameters of B3 model for Core-SCR38 wet-screened concrete (#38)

Material qSCR38
1 qSCR38

2 qSCR38
3 qSCR38

4
(1× 10−6/MPa) (1× 10−6/MPa) (1× 10−6/MPa) (1× 10−6/MPa)

Core-SCR38 concrete 24.17 82.75 17.4 5.54

The composite model parameter, β, was obtained using the Caquot law for the predic-

tion of the maximum aggregate volume, Va,max (Equation 6.7) applied to the wet-screened

concrete. Table 6.4 presents the calculation of βCaquot based on the properties of Core-

SCR38 concrete.
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Va,max = 1− 0.47
(
dmin
dmax

) 1
5

(6.7)

Table 6.4: Calculation of βCaquot based on the properties of Core-SCR38 concrete

Composite model dmin dmax Va Va,max βCaquot(mm) (mm) (m2/m2) (m2/m2)
Mortar Core-SCR38 4.75 38 0.35 0.69 0.51

The optimization procedure using genetic algorithms yield the B3 model parameters

presented in Table 6.5, which was validated using the composite model, for several loading

ages. Figure 6.5 shows the validation of the fit with the comparison between the concrete

creep compliance obtained from the experimental results and the creep compliance obtained

from the composite model using the fitted parameters of the mortar.

Table 6.5: Parameters of B3 model for the mortar

Concrete qmortar1 qmortar2 qmortar3 qmortar4
(1× 10−6/MPa) (1× 10−6/MPa) (1× 10−6/MPa) (1× 10−6/MPa)

Mortar Core-SCR38 27.2 164.7 26.0 11.6
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Figure 6.5: Validation of the composite model for the prediction of mortar’s creep compli-
ance based on the #38 wet-screened concrete

As discussed in the previous chapter, test results of the ITZ are difficult to obtain

and its effect on the concrete behaviour is complex. For the case study example, the ITZ

properties were obtained by fitting the results of the particle model to the experimental

values of concrete deformability, using the mortar and the aggregate properties.
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The use of the two-phase composite model implies that the matrix embedding the

inclusions includes both the mortar’s and the ITZ’s deformability properties, for this type

of concrete. The estimated mortar’s creep compliance using this methodology reflects the

proportion of these two materials and its effect on the long-term properties of concrete.

After the validation of the particle model, the mortar Core-SCR38, which includes the

contribution of the ITZ, is then used for the prediction of both SCR76 wet-screened (#76)

and dam concrete.

6.2.3 Calibration of micro parameters of the contacts for the aggregates and

for the mortar

As described in the previous chapter, the discrete element method implies the calibration

of the micro-properties for the interaction law at the contact between elements. For a

given discrete element assembly, the macroscopic response is determined by each set of

micro-properties.

Following the proposed procedure for particle models (§ 5.4), the aging viscoelastic

micro-properties and the elastic micro-properties were fitted to the creep compliance of

the mortar and of the aggregates, respectively.

The elastic macroscopic properties of the aggregate are the modulus of elasticity,

Emacro,agg and the Poisson’s ratio, νmacro,agg, which are know to be proportional to the

elastic normal contact stiffness, kn, and to the ratio between the shear and normal contact

stiffness, ks/kn,

kaggn = αaggn
Emacro,aggA

d
(6.8)

νmacro,agg ∝ kaggs

kaggn
= αaggs , kaggs = αaggs kaggn (6.9)

where αaggn and αaggs are calibrated micro-parameters. A and d are the contact area and

the distance between particle centers. As described in the previous chapter, different values

of A can be used. For the study of dam and wet-screened concrete the value is the contact

area provided by the Voronoi tesselation (§ 6.2.1).

Table 6.6 presents the obtained micro-parameters calibrated to fit the mean modulus

of elasticity and Poisson’s ratio of the aggregate. As shown in Figures 6.3 and 6.4, the

calibration models for each aggregate are square homogeneous particle assemblies with
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sides of Aspecimen equal to the size of the aggregate. The micro-parameters, αaggn and αaggs ,

of the different aggregates are very similar to each other.

Table 6.6: Calibration micro parameters for the modelling of each aggregate’s deformability
properties

Calibration Emacro
νmacro

Aspecimen Rmax αn αsmodel (GPa) (mm) (mm)
AGG150

46.3 0.25

150

1.5

1.318 0.220
AGG76 76 1.339 0.209
AGG38 38 1.376 0.171
AGG19 19 1.331 0.169
AGG9.5 9.5 1.283 0.378

The calibration procedure of the mortar aims to find the micro-parameters, αmortarn and

αmortars , which relates the macroscopic creep compliance, Jmacro,mortar, and Poisson’s ratio,

νmacro,mortar, of the mortar with the microscopic normal and shear creep compliances,

Jmicron and Jmicros . The macroscopic creep compliance yields the development of the

modulus of elasticity and of the creep strains over time.

Jmicron = 1
αmortarn

Jmacro,mortar (6.10)

νmacro,mortar ∝ Jmortars

Jmortarn
= αmortars , Jmicros = 1

αmortars
Jmicron = 1

αmortars αmortarn
Jmacro

(6.11)

Table 6.7 presents the mortar calibration results for each loading age. For a given

particle assembly, the micro-parameters, αmortarn and αmortars , do not vary significantly

with loading age and the mean value was used for numerical simulations.

Table 6.7: Calibration micro parameters for the modelling of mortar’s deformability prop-
erties

Calibration Jmacro
νmacro

Rmax β
Age

αn αs
αn αs

model (GPa) (mm) (days) (mean) (mean)

Mortar
Table 6.5 0.20 1.5 0.51

7 0.418 0.318

0.408 0.325Core-SCR38 28 0.405 0.340
90 0.405 0.320
365 0.402 0.323
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6.2.4 Generation of wet-screened and dam concrete’s aggregate structure

The procedures for the generation of a particle assembly is already described in the previous

chapter (§ 5.4) and published in specific documents (Wang et al. 1999; Monteiro Azevedo et

al. 2008). This section aims to give some insight on the generation of particle assemblies of

wet-screened and dam concretes and to discuss the difficulties associated to the construction

of realistic models.

In order to have a refined particle model throughout the entire specimen and a realistic

contribution of each coarse aggregate, the size of the particle had to take into account the

size of the smallest aggregate and the computational limitations. The use of very small

particles would represent the smallest coarse aggregate but with a high computational cost,

especially for the case of large specimen tests.

Three particle sizes were tested in order to evaluate the computational time of each

particle model considering the maximum radius, Rmax, equal to 1.0, 1.2 and 1.5 mm.

The ratio between the minimum and the maximum radius was considered equal to 2/3.

Table 6.8 presents the discretization of the smallest coarse aggregate and the estimated

size of the concrete particle assembly for each specimen and for each maximum particle

radius.

It was considered that the value of 1.5 mm for the maximum radius was sufficiently small

to include the influence of the deformability of the smallest coarse aggregate (Φ4.75 = 4.75 mm)

without compromising the size of the structural problem with an excessive number of par-

ticles and contacts, especially for the analysis of Core-DAM concrete. In average, the

smallest aggregate includes two particles in each direction, i.e., one contact in each direc-

tion (Φ4.75/Rmean× 2, Rmean is the mean radius).

Table 6.8: Influence of the minimum particle radius on the size of the concrete particle
assembly

Type of Type of Vspec Rmin
Rmax

Rmax Rmin Rmean Φ4.75
Rmed×2

Number of Number of
concrete specimen (m2) (mm) (mm) (mm) particles contacts

Core-DAM 450 × 900 0.405 2
3

1.00 0.67 0.84 2.83 ± 182703 ± 1096218
1.20 0.80 1.00 2.38 ± 128916 ± 773496
1.50 1.00 1.25 1.90 ± 82506 ± 495036

Core-SCR76 300 × 600 0.180 2
3

1.00 0.67 0.84 2.83 ± 81202 ± 487212
1.20 0.80 1.00 2.38 ± 57296 ± 343776
1.50 1.00 1.25 1.90 ± 36669 ± 220014

Core-SCR38 150 × 300 0.045 2
3

1.00 0.67 0.84 2.83 ± 20300 ± 121800
1.20 0.80 1.00 2.38 ± 14324 ± 85944
1.50 1.00 1.25 1.90 ± 9167 ± 55002
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The particle assembly procedure starts by defining the largest coarse aggregates areas

inside the specimen geometry and generating a compact assembly for each aggregate.

The placement of one type of aggregate is defined by the upper and lower sieve and

follows a uniform distribution within that apperture range (for example, MSA=150 mm

aggregate area is defined between the 150 mm and the 76 mm sieve apperture). After

the prescribed volume is placed and the compact particle assembly is completed inside

each placed aggregate, the next type of aggregate is defined and so forth for the remaining

aggregates. Finally, after all the aggregate types are placed, the remaining specimen

volume is filled following a similar algorithm. Figure 6.6 shows the aggregate placement

procedure for each type of concrete and specimen.

MSA=150 mm MSA=76 mm MSA=38 mm MSA=19 mm MSA=9.5 mm MORTAR

DAM
CONCRETE

SCR76
CONCRETE

SCR38
CONCRETE

Figure 6.6: Generation of concrete’s aggregate structure for the analysis of particle models

Tables 6.9 and 6.10 present the sieve analysis for the studied concretes considering the

unit volume of each type of coarse aggregate (between sieves) and the properties of the

particle models including the volume of the specimen, the volume of fine aggregate and

coarse aggregates. The aggregate fraction volume can reach up to 68% of the specimen

volume, for the Core-DAM concrete and 50% are coarse aggregates.

Figure 6.7 shows the comparison between the sieve analysis of the coarse aggregates

placed in the concretes and in particle models (DEM), in cumulative weight percent retained

in each sieve. The coarse aggregate distributions in the concrete particle models (dots in

Figure 6.7) are very close to ones in the real concrete specimens (lines in Figure 6.7).
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Beside presenting the aggregate placement procedure, Figure 6.6 illustrates the size

of each specimen and its relationship with the maximum size of the aggregate. This

figure clearly shows the differences between the SCR38 wet-screened concrete and the dam

concrete.

Table 6.9: Sieve analysis for each type of concrete placed in Baixo Sabor dam

Material Va (coarse aggregate) (m2/m2)
4.75/9.5 mm 9.5/19 mm 19/37.5 mm 37.5/75 mm 75/150 mm Total

Core-DAM 0.065 0.082 0.096 0.123 0.133 0.499
Core-SCR76 0.076 0.096 0.112 0.144 - 0.428
Core-SCR38 0.093 0.117 0.136 - - 0.346

Table 6.10: Properties of each type of concrete and of concrete particle models

Type of Type of Vspec Va,fine Va,coarse Va,total/Vspec Va,coarse/Vspecconcrete specimen (m2) (m2) (m2)
Core-DAM 450× 900 0.405 0.075 0.202 0.68 0.50
Core-SCR76 300× 600 0.180 0.038 0.077 0.64 0.43
Core-SCR38 150× 300 0.045 0.011 0.016 0.58 0.35
Core-DAM 450× 900 0.405 -∗ 0.202 -∗ 0.50(DEM-random #1)
Core-SCR76 300× 600 0.180 -∗ 0.074 -∗ 0.41(DEM-random #1)
Core-SCR38 150× 300 0.045 -∗ 0.015 -∗ 0.33(DEM-random #1)

∗ The fine aggregates are not represented in the concrete particle models
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Figure 6.7: Comparison between the sieve analysis of DAM and SCR38 concretes and of
the generated assemblies for the DEM analysis

6.2.5 Influence of the aggregate content and maximum size of aggregate on the

behaviour of concrete

Most of the studies involving the concrete mesostructure are applied to conventional

concrete, in which the coarse aggregate size ranges from 4.75 mm to 25-32 mm. In the

special case of dam concrete the range of coarse aggregate sizes is very wide, from 4.75 mm

to 150 mm. The heterogeneity of dam concrete and the aggregate distribution inside the

mortar matrix is expected to be higher than conventional concretes. Additionally, since

the minimum radius used in the concrete assembly is fixed, the ratio between the size of

the aggregate and the particle radius is also very different, for each sieve size.

In order to investigate the behaviour of each type of aggregate embedded in a mortar

matrix, a series of simple particle assemblies were generated. Each particle model has only

one type of aggregate and three aggregate fraction volume (Va/Vt). The particle models

were tested in compression and the macroscopic modulus of elasticity was determined. The

results were compared with the results of Granger’s composite model.

The particle models were generated using square specimens around each type of aggre-

gate according to the aggregate fraction: four aggregate sizes (Φ = 150 mm, Φ = 76 mm,

Φ = 38 mm, Φ = 19 mm and Φ = 9.5 mm); and three fraction volumes (Va/Vt = 0.2,

Va/Vt = 0.4 and Va/Vt = 0.6). Three random assemblies were generated for each type
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of particle model. Figure 6.8 shows the twelve types of particle models and the micro

properties of each type of material.

The macroscopic modulus of elasticity of each individual material was obtained using

an uniform particle model for the aggregate and for the mortar. The macroscopic modulus

of elasticity of the aggregates and of the mortar yield reasonably close values to the mean

aggregate’s and mortar’s modulus of elasticity (46.3 and 14.9 GPa at the age of 28 days,

respectively). The micro properties of each type of contact were fixed to values similar to

the obtained previously in the calibration process (αmortarn = 0.5, αmortars = 0.3, αaggn = 1.3,

αaggn = 0.15). The results of the uniform particle models are presented in Table 6.11.

Considering the individual macroscopic modulus of elasticity of each material, Granger’s

composite model was used to obtain an estimate of the concrete modulus of elasticity for

each aggregate’s fraction volume. It is assumed that the value of β is the square root of the

unit volume of aggregate, which is the most usual case in a concrete mix. The comparison

between the prediction of the particle model and the estimate of the composite model is

presented in Table 6.11 and Figure 6.9.

The comparison shows that the particle model follows the expected elastic behaviour

of concrete. The maximum percentual deviation (Equation 6.12) is approximately 10% of

the composite modulus of elasticity. These deviations can be explained by the randomness

of the shape and position of the aggregate inside the square specimen of the particle model.

For example, particle models with aggregate fraction volume equal to 0.6 have larger

predicted values than the composite estimate. This can be due to a very small portion

of mortar in parallel in the particle assembly, yielding higher larger modulus of elasticity.

Despite that, the particle models capture the overall behaviour.

εE = EDEMconcrete−E
composite
concrete

Ecompositeconcrete

× 100 (6.12)

Although similar situations can occur inside the concrete mix it is considered that the

particle models are adequate to simulate the composite behaviour even for the specific case

of dam concrete with a large ratio between the size of larger and the smaller aggregate.
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Va/Vt = 0.2

Va/Vt = 0.4

Va/Vt = 0.6

MSA=150 mm MSA=76 mm MSA=38 mm MSA=19 mm

αn=0.5
αs=0.3

MORTAR

AGGREGATES

αn=1.3
αs=0.15

MICRO-
PROPERTIES

STUDY OF THE INFLUENCE OF MAXIMUM SIZE OF AGGREGATE  AND 
AGGREGATE’S VOLUME FRACTION

AGG150 AGG76

AGG38 AGG19

Figure 6.8: Types of simple particle models for the studying the influence of the aggregate
content and maximum size of aggregate

Table 6.11: Results of each type of single aggregate particle model

MSA
Va/Vt Va/Vt (DEM) β = α

EDEMmortar EDEMagg Ecompositeconcrete EDEMconcrete εE
(mm) (GPa) (GPa) (GPa) (GPa) (%)
19 0.2 0.23 0.48 16.1 43.2 20.5 18.9 (0.2) -8.0
19 0.4 0.43 0.65 16.1 43.2 24.5 26.2 (0.4) 3.4
19 0.6 0.63 0.79 16.1 43.2 29.4 31.7 (0.6) 11.4
38 0.2 0.23 0.48 16.1 43.2 20.4 19.9 (0.1) -3.4
38 0.4 0.43 0.66 16.1 43.2 24.6 24.4 (0.2) 2.9
38 0.6 0.64 0.80 16.1 43.2 29.7 32.5 (0.1) 12.8
76 0.2 0.23 0.48 16.1 43.7 20.5 20.0 (0.0) -2.8
76 0.4 0.45 0.67 16.1 43.7 25.1 26.3 (0.0) 4.5
76 0.6 0.66 0.81 16.1 43.7 30.6 34.2 (0.1) 10.8
150 0.2 0.23 0.48 16.1 43.7 20.5 20.8 (0.0) -0.5
150 0.4 0.46 0.68 16.1 43.7 25.3 25.3 (0.1) 3.0
150 0.6 0.66 0.81 16.1 43.7 30.4 33.6 (0.1) 10.9

Note: The presented DEM results are the mean and standard deviation (inside the parenthesis)
of three random particle generations
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Figure 6.9: Results of each type of simple particle model

6.2.6 Influence of temperature on the development of the mechanical

properties

As previously discussed, temperature has a dual effect on concrete deformability: higher

temperatures increases the mechanical property rate of development, decreasing the creep

rate; and it increases the movement of water inside the cement structure and the rate

of bond breakage and, therefore, increasing the creep strains (Bažant and Baweja 2000).

The effect of temperature can be taken into account by converting both the loading age

and the time under loading into equivalent values, based on the measured temperature

and maturity concepts. This mechanism is especially relevant for the interpretation of the

experimental results obtained in creep cells (§ 3.7.3).

The equivalent time, t′e, and the reduced time, tr, can be obtained, respectively, by

Equations 6.13 and 6.14. Both times are applied to the aging viscoelastic model at each

contact, discussed in § 5.5.2.
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t′e =
∫ t′

0
βT (τ) dτ (6.13)

tr =
∫ t

t′
ψT (τ) dτ (6.14)

βT = exp

Qh
R

(
1

Tref + 273 −
1

T + 273

) (6.15)

ψT = exp

Qv
R

(
1

Tref + 273 −
1

T + 273

) (6.16)

where Tref is the reference temperature in degrees Celsius, T is the measured temperature

in degrees Celsius and R is the gas constant (8.31JK−1mol−1) and, according to experi-

mental fit to laboratory tests (Bažant and Baweja 2000), the apparent activation energies

for hydration, Qh/R, and viscous processes, Qv are, respectively, 2700°K and 5000°K.

In order to validate the temperature effect on creep strains, an uniform particle assem-

bly was tested using the concrete properties and results available in (Bažant and Baweja

2000) from Kommendat, in 1976. Kommendat’s creep tests included a reference test at a

temperature of 23℃ and two validation tests at temperatures of 43℃ and 71℃. The creep

compliance macro-properties were obtained from literature (qmacro1 = 20.0× 10−6/MPa,

qmacro2 = 70.0×10−6/MPa, qmacro3 = 5.6×10−6/MPa, qmacro4 = 7.0×10−6/MPa, νmacro = 0.20)

(Bažant and Baweja 2000) and the micro-properties were calibrated yielding the following

micro-parameters, αn = 0.402 and αs = 0.323, considering a minimum particle radius equal

to 1.5× 10−4 m.

Figure 6.10 show the comparison between Kommendat’s creep test results and the

numerical results obtained using the uniform particle model. The dashed lines are the

fit to the reference temperature results (23℃). The continuous lines are the numerical

results using the fitted macro-properties, the calibrated micro-parameters and considering

the testing temperatures of 43℃ (left plot) and of 71℃ (right plot).

The results show that the maturity concepts using the equivalent time, t′e, and the

reduced time, tr, applied to the particle model are able to represent the main effect of

temperature on creep strains, i.e. as the temperature increases there is an acceleration of

the creep strain development.
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Figure 6.10: Validation of the temperature effect on the development of the creep strains

6.2.7 Prediction of wet-screened concrete long-term deformability properties

6.2.7.1 Validation of the particle model

The prediction of wet-screened concrete properties using particle models is based on the

micro-properties obtained from the calibration procedure of each component of concrete

and on the particle assembly considering the concrete mesostructure. The two types of wet-

screened concretes, SCR38 and SCR76, where used to validate the results obtained using

the two-phase composite models, discussed in § 4. The analysis includes the development

of over time of the modulus of elasticity of concrete and of the creep strains for several

loading ages, t′, and a loading duration of one year, t− t′ = 365 days.

Table 6.12 and Figures 6.11 and 6.12 present the obtained results of the SCR76 and

SCR38 concrete particle models. The left side of the Figures 6.11 and 6.12 show the

comparison between the mortar’s and the SCR38 and SCR76 concrete’s modulus of elas-

ticity. The prediction of the two-phase composite model shows a good agreement with the

experimental results obtained in laboratory (§ 3.7). It should be noted that the mortar’s

modulus of elasticity prediction was obtained from the wet-screened concrete results and,

therefore, it includes the effect of the ITZ’s properties (§ 6.2.2). The numerical results of

the concrete particle models show also a good agreement with the results obtained using

the two-phase composite model. This comparison validates the calibration procedure ap-

plied to each component and the generation of the concrete’s internal aggregate structure.

The numerical results were obtained from five different random particle assemblies, with

the same aggregate sieve distribution input.
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The right side of Figures 6.11 and 6.12 show the same comparison for the development

of the creep strains over time, for four different loading ages, 7, 28, 90 and 365 days. The

prediction of the particle model is very close to the analytical result for the two types of

concrete studied for both instantaneous and delayed behaviour (modulus of elasticity and

creep compliance, respectively). The particle models are able to reproduce the reduction

of creep strains of the mortar (dashed lines in Figures 6.11 and 6.12) due to the effect of

the elastic restraint of the stiff aggregates.

Table 6.12 presents the obtained values, including the mean and standard deviation of

the particle model results and a measurement of the error between numerical and analytical

results for both the modulus of elasticity, εE , and the creep compliance, εJ (Equations 6.17).

The percentage deviations between analytical (Composite) and numerical models (DEM)

vary between 0.7% and 5.8%. The standard deviations of the numerical results of the five

random assemblies are also very small compared with the average values (for example, for

the SCR38 concrete, 0.4 GPa for the modulus of elasticity at the age of 365 days (28.6 GPa)

and 2.9 ×10−6/MPa for the creep compliance at the age of 372 days). The results show

a constant difference of approximately 8 and 10 GPa between the modulus of elastic of

mortar and SCR38 and SCR76 concretes, respectively.

Table 6.12: Results of SCR76 and SCR38 concrete particle model based on the mortar’s
and aggregate’s deformability mean properties and considering a constant temperature of
20 ℃

Concrete t′ t Ecomposite Jcomposite EDEM εE JDEM εJ
(days) (days) (GPa) (×10−6/MPa) (GPa) (%) (×10−6/MPa) (%)

SCR76

7 372 22.8 74.2 21.5 (0.3) 5.7 78.4 (2.0) 5.7
28 393 26.2 58.6 25.8 (0.3) 1.5 61.3 (1.3) 4.6
90 455 28.0 49.2 28.3 (0.3) 1.1 51.3 (0.9) 4.3
365 730 29.2 41.7 30.2 (0.3) 3.4 43.2 (0.6) 3.6

SCR38

7 372 20.6 91.6 19.7 (0.4) 4.3 89.3 (2.9) 2.5
28 393 24.6 71.7 24.0 (0.4) 2.4 68.7 (1.9) 4.2
90 455 27 59.6 26.6 (0.4) 1.5 56.6 (1.3) 5.0
365 730 28.8 49.8 28.6 (0.4) 0.7 46.9 (0.9) 5.8

Note: The presented DEM results are the mean and standard deviation (inside the parenthesis)
of five random particle generations

εE =
∣∣∣∣∣EDEM −EcompositeEcomposite

∣∣∣∣∣× 100, εJ =
∣∣∣∣∣JDEM − JcompositeJcomposite

∣∣∣∣∣× 100 (6.17)
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Figure 6.11: Results of SCR38 concrete particle model based on the mortar’s and aggre-
gate’s deformability mean properties and considering a constant temperature of 20 ℃
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Figure 6.12: Results of SCR76 concrete particle model based on the mortar’s and aggre-
gate’s deformability mean properties and considering a constant temperature of 20 ℃

6.2.7.2 Prediction of wet-screened concrete test results obtained in creep cells

In order to compare the numerical results with the experimental results obtained in the

creep cells, the effect of temperature on the instantaneous and long-term properties should

be taken into account. The temperature inside the creep cells, which are embedded in

a dam lift, varies with the placement temperature, the development of the hydration

reactions and the different boundary conditions over time. A typical temperature profile

includes a sharp temperature increase in the first days, followed by a slow decrease which

can last several months. Figure 3.22 in Chapter 3 shows an example of the measured
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temperature inside a creep cell.

Taking into account the validated particle model for the reference temperature of 20℃,

the equivalent times, described previously in § 6.2.6, and the measured temperatures inside

each creep cell, a numerical prediction of the in situ measured behaviour for both SCR76

and SCR38 concrete was obtained. As it would be expected, the high initial temperatures

accelerates the hydration processes and yield an increase of the modulus of elasticity. The

grey area in the left plot of Figures 6.13 and 6.14 is the particle model prediction which

are in agreement with the measured modulus of elasticity in creep cells (diamond points).

This effect is also present in the development of the creep strains, since its initial

values are lower mainly due to higher modulus of elasticity at loading age (right plot in

Figures 6.13 and 6.14). The creep development over time has a misfit for the younger ages

after loading, especially for the loading age of 28 days.

The percentage deviations between the numerical prediction and the experimental

results are presented in Table 6.13, for both types of concrete and for the instantaneous,

εexpE , and long-term properties, εexpJ (Equations 6.18). Unfortunately, it was not possible

to have full experimental description of the concrete properties, including the several ages,

especially for the SCR38 concrete (Chapter 3) but the maximum percentage deviations

are 4.1% for the modulus of elasticity and 11.1% for the creep strains.

The results show that this type of model is capable of accurately simulate the concrete

deformability including not only the internal mesostructure of concrete but also the effect

of temperature. The typical high temperatures in the early ages and rapid temperature

variations, besides introducing differential imposed strains are known to increase the

concrete stiffness and, therefore, influence the development of stresses over time.

εexpE =
∣∣∣∣∣EDEM −EexpEexp

∣∣∣∣∣× 100, εexpε =
∣∣∣∣∣εDEM − εexpεexp

∣∣∣∣∣× 100 (6.18)

267



CHAPTER 6. NUMERICAL MODELLING OF THE DAM CONCRETE
STRUCTURAL PROPERTIES USING PARTICLE MODELS

1 5 10 50 500

0

10

20

30

40
Instantaneous behaviour

t' (days)

M
od

ul
us

 o
f e

la
st

ic
ity

 (
G

P
a)

Numerical results
Analytical solution − SCR76
Analytical solution − Mortar
Experimental results − Mortar
Experimental results (CC) − SCR76

1 5 10 50 500

0

50

100

150

200
Delayed behaviour

t (days)
C

re
ep

 c
om

pl
ia

nc
e 

(1
/M

P
a)

●

Numerical results
Analytical solution − SCR76
Analytical solution − Mortar
Experimental results (CC) − SCR76

Figure 6.13: Results of SCR76 concrete particle model based on the mortar’s and aggre-
gate’s deformability mean properties and considering the measured temperature inside the
creep cell
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Figure 6.14: Results of SCR38 concrete particle model based on the mortar’s and aggre-
gate’s deformability mean properties and considering the measured temperature inside the
creep cell
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Table 6.13: Results of SCR76 and SCR38 concrete particle model based on the mortar’s
and aggregate’s deformability mean properties and considering the measured temperature
inside the creep cells

Concrete t′ t Eexp εexp EDEM εE,exp εDEM εε,exp
(days) (days) (GPa) (×10−6/MPa) (GPa) (%) (×10−6/MPa) (%)

SCR76

7 372 26.2 - 25.9 (0.3) 1.1 57.8 (1.2) -
28 393 27.8 48.2 28.2 (0.3) 1.4 50.1 (0.9) 3.9
90 455 29.7 42.2 29.6 (0.3) 0.3 43.7 (0.6) 3.6
365 730 31.8 38.6 30.5 (0.3) 4.1 38.0 (0.4) 1.6

SCR38

7 372 25.1 - 24.1 (0.4) 4.0 64.4 (1.7) -
28 393 26.0 62.1 26.0 (0.4) 0.0 55.2 (1.3) 11.1
90 455 27.9 - 27.9 (0.4) 0.0 47.5 (0.9)
365 730 29.9 - 28.9 (0.4) 3.3 40.8 (0.7) -

Note: The presented DEM results are the mean and standard deviation (inside the parenthesis)
of five random particle generations

6.2.8 Prediction of dam concrete long-term deformability properties

6.2.8.1 Validation of the particle model and sensitivity studies

Similarly to the wet-screened concrete validation, this section compares the dam concrete

behaviour prediction using the two-phase composite models (Chapter 4) and the results of

the dam concrete particle model, taking into account the remaining aggregate sizes into

the concrete mesostructure and the calibrated micro-properties of the mortar and of each

type of aggregate.

Table 6.14 and Figure 6.15 show the results of both analysis, using analytical and

numerical models, and the results of the mortar’s deformability. The numerical results

are compatible with the ones obtained from the composite model, which validates the

hypothesis assumed for this type of analysis. The maximum percentage deviations between

analytical and numerical results are 1.3% for the modulus of elasticity and 8.1% for the

creep compliance.

Table 6.14: Results of DAM concrete particle model based on the mortar’s and aggregate’s
deformability mean properties and considering a constant temperature of 20 ℃

Concrete t′ t Ecomposite Jcomposite EDEM εE JDEM εJ
(days) (days) (GPa) (×10−6/MPa) (GPa) (%) (×10−6/MPa) (%)

DAM

7 372 24.1 71.9 23.9 (0.2) 0.8 66.8 (0.7) 7.1
28 393 28.0 58.0 28.0 (0.2) 0.0 53.6 (0.5) 7.6
90 455 30.1 49.6 30.4 (0.2) 0.9 45.6 (0.4) 8.1
365 730 31.7 42.6 32.1 (0.2) 1.3 39.2 (0.3) 8.0

Note: The presented DEM results are the mean and standard deviation (inside the parenthesis)
of five random particle generations
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Figure 6.15: Results of DAM concrete particle model based on the mortar’s and aggregate’s
deformability mean properties and considering a constant temperature of 20 ℃

As previously stated, due to several reasons, mechanical properties of dam concrete

placed on site are known to have a large scatter. It is also known that the aggregate’s

modulus of elasticity test results show large standard deviations (5.1 GPa, 11% of the mean

value). This section studies the influence of the coarse aggregate modulus of elasticity on

DAM concrete particle model results.

Three scenarios were tested to evaluate range of concrete property prediction based

on the results of the particle model: the case where the modulus of elasticity of the

coarse aggregates is taken as the mean value (µ(Eagg)) obtained from specific laboratory

tests to the granitic rock (§ 3.6); the case where the modulus of elasticity of the coarse

aggregates is a lower bound of the tested samples (µ(Eagg)−σ(Eagg)), where σ(Eagg) is

the standard deviation of the results; and, the case where the modulus of elasticity of the

coarse aggregates is an upper bound of the tested samples (µ(Eagg) +σ(Eagg)).

The five random particle generations used in the three cases show that effect of the

large variation of the coarse aggregate modulus of elasticity results on the deformability

properties of concrete (Figure 6.16). The results show that a range of 10.2 GPa (22% of the

average values) in the aggregate’s modulus of elasticity, between µ(Eagg)−σ(Eagg)=46.3-

5.1=41.2 GPa and µ(Eagg) + σ(Eagg)=46.3+5.1=51.4 GPa, yields a maximum range of

|-1.6|+1.6=3.2 GPa (10% of the average value) at the age of 365 days. Tables 6.15 and 6.16

presents the obtained results and the absolute, ∆Eσ(Eagg) and ∆Jσ(Eagg), and percentage

deviations, εE,σ(Eagg) and εJ,σ(Eagg), for each sensitivity case study (Equations 6.19 to 6.22)
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Table 6.15: Results of DAM concrete particle model using different aggregate’s modulus
of elasticity (part 1)

Eagg t′ t EDEM ∆Eσ(Eagg) εE,σ(Eagg)
(GPa) (days) (days) (GPa) (GPa) (%)

46.3

7 372 23.9 (0.2) - -
28 393 28.0 (0.2) - -
90 455 30.4 (0.2) - -
365 730 32.1 (0.2) - -

41.2

7 372 22.9 (0.3) -1.0 -4.2
28 393 26.7 (0.2) -1.3 -4.6
90 455 28.9 (0.2) -1.5 -4.9
365 730 30.5 (0.2) -1.6 -5

51.4

7 372 24.9 (0.2) 1.0 4.2
28 393 29.3 (0.2) 1.3 4.6
90 455 31.8 (0.2) 1.4 4.6
365 730 33.7 (0.2) 1.6 5

Note: The presented DEM results are the mean and standard deviation
(inside the parenthesis) of five random particle generations

Table 6.16: Results of DAM concrete particle model using different aggregate’s modulus
of elasticity (part 2)

Eagg t′ t JDEM ∆Jσ(Eagg) εJ,σ(Eagg)
(GPa) (days) (days) (×10−6/MPa) (×10−6/MPa) (%)

46.3
7 372 66.8 (0.7) - -
28 393 53.6 (0.5) - -
90 455 45.6 (0.4) - -
365 730 39.2 (0.3) - -

41.2
7 372 68.8 (1.2) 2.0 3
28 393 55.5 (0.8) 1.9 3.5
90 455 47.5 (0.6) 1.9 4.2
365 730 41.0 (0.4) 1.8 4.6

51.4
7 372 64.9 (0.7) -1.9 -2.8
28 393 51.7 (0.5) -1.9 -3.5
90 455 43.9 (0.4) -1.7 -3.7
365 730 37.6 (0.3) -1.6 -4.1

Note: The presented DEM results are the mean and standard deviation
(inside the parenthesis) of five random particle generations

∆Eσ(Eagg) = E
µ(Eagg)±σ(Eagg)
DEM −Eµ(Eagg)

DEM (6.19)

∆Jσ(Eagg) = J
µ(Eagg)±σ(Eagg)
DEM − Jµ(Eagg)

DEM (6.20)

εE,σ(Eagg) =
E
µ(Eagg)±σ(Eagg)
DEM −Eµ(Eagg)

DEM

E
µ(Eagg)
DEM

× 100 (6.21)

εJ,σ(Eagg) =
J
µ(Eagg)±σ(Eagg)
DEM − Jµ(Eagg)

DEM

J
µ(Eagg)
DEM

× 100 (6.22)
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Figure 6.16: Results of DAM concrete particle model using different aggregate’s modulus
of elasticity

Although it is assumed that the composite model prediction of the mortar’s creep

compliance includes the ITZ’s contribution (§ 6.2.2), a sensitivity study was also done in

order to evaluate the influence of the ITZ’s deformability properties on the behaviour of

dam concrete. It is known that the ITZ has smaller modulus of elasticity (§ 2.4.2) and

an expected higher creep compliance when compared with the mortar properties but a

full characterization of this local material is very difficult. The ITZ’s thickness has also a

great influence on the deformability properties of concrete and it does not vary with the

size of the aggregate (Bentz et al. 1993).

For this sensitivity study two scenarios were tested in order to evaluate the influence of

the ITZ’s deformability on the macroscopic behaviour of concrete. The first is the reference

state in which the ITZ and the MORTAR have the same properties and in the second

scenario it was assumed that the ITZ’s macro-creep compliance is twice as much as the

mortar’s creep compliance (JITZ = 2× JMORTAR). This second scenario is taken as an

extreme case of a poor quality ITZ and it is considered that the ITZ’s thickness is the

same for every type of aggregate.

The effect of the highly deformable ITZ is shown in Figure 6.17 and the results are

presented in Table 6.17. The percentage reduction of the modulus of elasticity and of

the creep compliance can be as much as 7.9% and 12.0%, respectively. This variability,

although not very significant, can explain some misfit between the numerical results and

the experimental results and should be taken into account in the interpretation of the

predicted values.
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Table 6.17: Results of DAM concrete particle model using different ITZ’s modulus of
elasticity

JITZ
t′ t EDEM ∆E εE JDEM ∆J εJ

(days) (days) (GPa) (GPa) (%) (×10−6/MPa) (GPa) (%)

JMORTAR

7 372 23.9 (0.2) - - 66.8 (0.7) - -
28 393 28.0 (0.2) - - 53.6 (0.5) - -
90 455 30.4 (0.2) - - 45.6 (0.4) - -
365 730 32.1 (0.2) - - 39.2 (0.3) - -

2×JMORTAR

7 372 22.0 (0.3) -1.9 -7.9 74.8 (1.3) 8.0 12.0
28 393 25.9 (0.3) -2.1 -7.5 59.3 (0.9) 5.7 10.6
90 455 28.2 (0.2) -2.2 -7.2 50.1 (0.6) 4.5 9.9
365 730 30.0 (0.2) -2.1 -6.5 42.6 (0.5) 3.4 8.7

Note: The presented DEM results are the mean and standard deviation (inside the parenthesis)
of five random particle generations
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Figure 6.17: Results of DAM concrete particle model using different aggregate’s modulus
of elasticity

The effect of crushed aggregates with alongated shapes is also compared with the

concrete particle model results using rounded aggregates. The properties of the crushed

aggregate structure are similar to the one used for the rounded aggregate structure. The

difference, as described in § 6.2.4 is the shape of the aggregates. Table 6.18 and Figure 6.18

show the comparison between the two types of aggregate shape. The average values of

crushed aggregate structure modulus of elasticity are slightly higher than the ones obtained

for the rounded aggregate structure. The scatter of both the modulus of elasticity and

creep compliance is larger for the concrete with crushed aggregate which indicates a more

non-uniform distribution of the forces inside the specimen.
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Table 6.18: Results of DAM concrete particle model based on the mortar’s deformability
properties and considering crushed aggregates

Type of t’ t EDEM ∆E εE εDEM ∆J εJ
aggregate (days) (days) (GPa) (GPa) (%) (×10−6/MPa) (GPa) (%)

Rounded

7 372 23.9 (0.2) - - 66.8 (0.7) - -
28 393 28.0 (0.2) - - 53.6 (0.5) - -
90 455 30.4 (0.2) - - 45.6 (0.4) - -
365 730 32.1 (0.2) - - 39.2 (0.3) - -

Crushed

7 372 24.2 (0.8) 0.3 1.3 65.9 (3.0) -0.9 -1.3
28 393 28.3 (0.7) 0.3 1.1 52.9 (2.1) -0.7 -1.3
90 455 30.6 (0.7) 0.2 0.7 45.1 (1.6) -0.5 -1.1
365 730 32.4 (0.6) 0.3 0.9 38.8 (1.1) -0.4 -1.0

Note: The presented DEM results are the mean and standard deviation (inside the parenthesis)
of five random particle generations
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Figure 6.18: Results of DAM concrete particle model based on the mortar’s deformability,
considering the crushed aggregates

6.2.8.2 Prediction of dam concrete test results obtained in creep cells

Figure 6.19 and Table 6.19 present the dam concrete particle model results considering the

variability of the aggregate’s modulus of elasticity and the measured temperature inside

the creep cells. By taking into account the in situ conditions , it is possible to compare

this prediction with the test results obtained in the dam concrete creep cells.

As previously stated, the prediction of dam concrete deformability properties is greatly

related to the aggregate’s modulus of elasticity. Due to the its large scatter, the presented

numerical results include three scenarios, considering: the mean value of the aggregate’s

modulus of elasticity (µ(Eagg)); an upper bound value of the aggregate’s modulus of

elasticity (µ(Eagg) + σ(Eagg)); and, a lower bound value of the aggregate’s modulus of
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elasticity (µ(Eagg)−σ(Eagg)), similarly to the sensitivity study in § 6.2.8.1.

The percentage deviations between numerical and experimental results are higher

for dam concrete than for the wet-screened concrete. The percentage deviation of the

modulus of elasticity and of the creep strains are as high as 11% and 33%, respectively

(using the aggregate’s mean modulus of elasticity of 46.3 GPa). The difference between the

prediction of the composite model at reference constant temperature (continuous black line

in Figure 6.19) and the experimental results (diamond points in Figure 6.19) is partially

due to the acceleration of hydration processes, which is very significant at the younger

ages. For the latter ages, the deviation between the numerical results and the experimental

results can be due to the variability of the aggregate’s modulus of elasticity. Figure 6.19

shows that this variability can introduce significant scatter to the concrete prediction since

the coarse aggregate volume is high and the size of the aggregates is large. The scatter

is less pronounced for the concrete creep strains. The large percentage deviation of the

creep strain for the loading age of 28 days (Table 6.19) can be due to the difficulty of the

maturity concepts under heating and cooling conditions applied to the creep rate. Some

studies indicate that creep increases under cooling while other show the opposite effect

(Bažant and Baweja 2000).

Table 6.19: Results of DAM concrete particle model based on the mortar’s and aggregate’s
deformability properties and considering the measured temperature inside the creep cells

Eagg t′ t Eexp εexp EDEM εexpE εDEM εexpε

(GPa) (days) (days) (GPa) (×10−6/MPa) (GPa) (%) (×10−6/MPa) (%)
7 372 31.3 - 28.2 (0.3) 9.9 50.5 (0.8) -

46.3 28 393 31.5 33.4 30.4 (0.3) 3.5 44.5 (0.6) 33.2
(mean) 90 455 33.5 41.0 31.6 (0.3) 5.7 39.4 (0.5) 3.9

365 730 36.3 - 32.5 (0.3) 10.5 35.0 (0.3) -
7 372 31.3 - 27.1 (0.6) 13.4 52.2 (1.1) -

41.2 28 393 31.5 33.4 29.1 (0.6) 7.6 46.1 (0.9) 38.0
(lower) 90 455 33.5 41.0 30.3 (0.7) 9.6 41.0 (0.8) 0.0

365 730 36.3 - 31.1 (0.7) 14.3 36.5 (0.8) -
7 372 31.3 - 29.3 (0.7) 6.4 49.1 (1.3) -

51.4 28 393 31.5 33.4 31.5 (0.8) 0.0 43.1 (1.1) 29.0
(upper) 90 455 33.5 41.0 32.8 (0.8) 2.1 38.1 (1.0) 7.1

365 730 36.3 - 33.8 (0.9) 6.9 33.8 (0.9) -

Note: The presented DEM results are the mean and standard deviation (inside the parenthesis)
of five random particle generations
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Figure 6.19: Results of DAM concrete particle model based on the mortar’s deformability,
considering the aggregate’s deformability variability and the measured temperature inside
the creep cells

6.2.9 Study of the normal and shear force distribution inside the concrete

mesostructure

The analysis of concrete considering its mesostructure enables the study of the interactions

between the aging mortar and the aggregate inclusions and introduces new insight into the

stress and force distribution inside a concrete specimen and its development over time. The

main features of concrete’s mesostructure are the coarse aggregate distribution, including

content and arrangement inside the specimen, and the stiffness differences between the

mortar, the aggregate and the interfacial transition zone (ITZ).

The discrete element method applied to particle models allows for the analysis of large

assemblies with a fine refinement which is especially relevant for modelling dam concrete

behaviour using large specimens. In order to fully represent the deformability properties

of the coarse aggregate structure, the smaller coarse aggregate has to be considered into

the particle model.

Dam concrete is usually made with stiff aggregates and the binding matrix has lower

modulus of elasticity than the aggregates, especially in the younger ages. The mesostructure

of concrete behaves as structural system a random combination of different aggregate sizes

and shapes placed in series and in parallel with each other. The force distribution follows

the stiffer elements of the system and, therefore, introduces local areas of higher stresses

and strains which lead to a non-uniform stress state.

The stress distribution is highly dependent of the aggregate structure and, in the case
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of dam concrete, the range of coarse aggregate sizes introduces a complex stiff structure

in which the applied forces are drawn to. This type of representation highlights the areas

where the normal and shear contact forces are higher and illustrates the "force path" from

the top to the bottom of the specimen. An accurate physical representation of the stiffness

distribution enables a realistic stress localization. Figure 6.20 illustrates the compressive

and tensile normal contact forces for the case of a concrete particle model with rounded

aggregates. In the detailed area of each particle assembly the links between particles show

the intensity of the normal contact force. For compressive contact forces, darker links

have larger compressive forces (in the center of Figure 6.20). For tensile contact forces,

darker links have larger tensile forces (in the right of Figure 6.20). The arrows represent

qualitatively the "force path" and the areas which have higher forces.

ROUNDED
AGGREGATES

CRUSHED
AGGREGATES

COMPRESSIVE 
CONTACT 
FORCES

TENSILE
CONTACT 
FORCES

COMPRESSIVE 
CONTACT 
FORCES

TENSILE
CONTACT 
FORCES

Figure 6.20: Comparison between compressive and tensile normal contact forces in rounded
coarse aggregate structure and crushed coarse aggregate structure for the DAM concrete
particle model

Figure 6.21 presents the development over time of the maximum and minimum normal

contact forces over time for each contact type considering a rounded particle model and

the measured temperature inside the creep cells. The plotted values are related to every

contact in the concrete assembly. These graphs show that the range of normal contact

forces is significant for the compressive values and very narrow for the tensile contact forces

and that every type of contact, aggregate-aggregate, mortar-mortar and aggregate-mortar

have similar maximum and minimum normal contact values. The mortar and the ITZ work

as the filling between the aggregate skeleton and, therefore, it is also likely to undertake

high stresses. This phenomena can be especially relevant for mortar areas between large

aggregates where tensile stresses can develop. Although tensile strength is the weak link
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in cement-based materials, compressive stresses can be relevant in the ITZ around the

aggregates. Van Mier refers to the potential crushing of the ITZ in local stressed areas

around the aggregates (Mier 1998).
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Figure 6.21: Development of the maximum and minimum normal contact forces over time
for each contact type considering a rounded particle model and the measured temperature
inside the creep cells

Following the measurement logic adopted in the commercial program PFC2D (Itasca

Consulting Group Inc. 2008), the stresses inside the specimens can be approximated by

an averaging procedure within a given region. The measurement region is usually a circle

large enough to include a representative number of contacts. The approximated stresses

are given by the Equation 6.23,

σij =

 1−n∑
Np V

(p)


∑
Np

∑
N

(p)
c

(
x

(c)
i −x

(p)
i

)
F c,pj

 (6.23)

where V (p) is the volume of the particle inside the measurement region, n is the porosity

inside the measurement region (Equation 6.24), N (p)
c is the number of contacts inside the

measurement region, x(p)
i and x(c)

i are, respectively, the locations of the particle and of its

contact and F c,pj is the force acting on particle (p) at contact (c).

n= 1− Vmat
Vreg

= 1−
∑
Np V

(p)

Vreg
(6.24)

Two different cross sections, composed by consecutive uniform measurement circles

(MC), were considered to obtain the stress distribution variations inside the specimen. The

identification and properties of each analyzed cross section are presented in Table 6.20 and

in Figure 6.22. CS-H-1 and CS-V-2 represent generic cross sections over the width and

the height of the specimen.
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Table 6.20: Identification and properties of each analysed cross section of DAM concrete
specimen

Type of Cross Direction Number of Location of MC Radius of
concrete section MC x direction (m) y direction (m) MC (m)

Core-DAM CS-H-1 Horizontal 49 0-0.45 0.30 0.009
CS-V-2 Vertical 99 0.225 0.0-0.90 0.009

CROSS SECTIONS

CS-H-1

���

���

High vertical 
stresses

High horizontal
stresses

y

x

���

���

������

CS-V-2

Figure 6.22: Localization and results of each analyzed cross section of DAM concrete
specimen

Figures 6.23 and 6.24 shows the normal contact stiffness and the stress distribution

over the cross sections CS-H-1 and CS-V-2 of the DAM concrete specimen, immediately

after loading (t− t′ = 0.01 days) and after one year of loading (t− t′ = 365 days). The

most significant result is the variation of stress inside the specimen, both for the vertical

and horizontal stresses.

Although the vertical compressive "stress path" is very much dependent of the aggre-

gate’s structure, the vertical compressive stresses, σyy, are mainly correlated with the

average normal contact stiffness. CS-H-1 crosses two side-by-side aggregates (between the

0.15 m and 0.30 m) but the "stress path" is more pronounced in the aggregate in the left

(between 0.15 m and 0.20 m). This reason is due to the fact that there is a vertical chain of

aggregates, which introduces a stiffer path for the development of stress (Figure 6.22). This

example shows the importance of a global analysis of the results for the interpretation of
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Figure 6.23: Stress distribution over the cross section CS-H-1 of the DAM concrete speci-
men loaded at the age of 7 days

local effects, since each specimen has a random aggregate arrangement. Local high stresses

can be due to specific patterns which can occur inside a concrete specimen, especially

when a large range of aggregate sizes is used.

The stress development over time in Figures 6.23 and 6.24 show that the areas in

which the stress is higher for t− t′ = 0.01 days tend to increase their stress over time

(t− t′ = 365 days) and that the areas in which the stress is lower for t− t′ = 0.01 days

tend to decreases their stress over time (t− t′ = 365 days), highlighting the stress transfer

between soft and stiff material. The horizontal stresses, σxx, are mainly tensile stresses and

are due to the internal structure of both mortar and aggregates. The Poisson’s ratio effect

introduces a complex local behaviour inside the concrete specimen and significant stress

variations over time. Deviations on direction of the compressive "stress path" can also

generate horizontal tensile forces. Over the vertical cross section, CS-V-2, the horizontal

stresses vary significantly, ranging between 1 MPa in tension to -1 MPa in compression.

The combination of highly stressed areas and local weaker areas, such as the ITZ, can
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Figure 6.24: Stress distribution over the cross section CS-V-2 of the DAM concrete speci-
men loaded at the age of 7 days

be the focus of initial damage which can lead to damage and cracking. Understanding the

beginning of damage and the development of cracking patterns for several types of loading

or deterioration scenarios is key for the accurate prediction of material properties.

6.3 Prediction of dam concrete strength properties using particle

models

6.3.1 Correlation between modulus of elasticity and strength results of mortar

and aggregate

The prediction of the contact strength parameters is based on the statistical correlation

between the strength properties and the modulus of elasticity of the mortar and the aggre-

gates. It is assumed that this statistical correlation obtained from test results of mortar and

aggregate is valid for the contact properties. Additionally, since the deformability contact

properties were previously calibrated for these two materials and for different loading ages,
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it is possible to obtain a first estimate of the development of strength contact properties.

The implemented contact models only allow tensile failures, therefore only splitting tensile

strength results were predicted.

Based on the aggregate and mortar test results, presented in § 3.6 and § 3.7 respectively,

and on the correlation expression proposed by the ACI Committee 318 (ACI Committee

318 1995) and the FIB (Fib 2010). The parameters of the correlation were fitted to the

experimental results for different loading ages.

Emortar(t′) =Kmortar
1

(
fmortart,spl (t′)

) 1
nmortar1 ⇔ fmortart,spl (t′) =Kmortar

2
(
Emortar(t′)

)nmortar1

(6.25)

Eagg =Kagg
1

(
faggt,spl

) 1
n
agg
1 ⇔ faggt,spl =Kagg

2 (Eagg)n
agg
1 (6.26)

Figure 6.25 shows the test results and the fitted correlation for both mortar and

aggregate, using nonlinear regression model. Table 6.21 presents the obtained correlation

parameters.
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Figure 6.25: Correlation between splitting tensile strength and the modulus of elasticity
and fit to mortar and aggregate test results

Table 6.21: Correlation parameters fitted to experimental results of mortar and aggregate

Material K1 K2 n1 R2
(GPa) (MPa)

Mortar 6.9 0.12 1.1 0.96
Aggregate 13.9 0.11 1.7 0.46
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As previously described, considering a load duration, ∆t, usually taken to be 0.01 days,

the static modulus of elasticity yields from the creep compliance, J(t, t′),

E(t′) = 1
A0 + A1√

t′

(6.27)

where A0 = q1 + q3ln(1 +∆tn) and A1 = q2ln(1 +∆tn).

Taking into account the correlation between the modulus of elasticity and the splitting

tensile strength and the hypothesis that direct tensile strength, ft(t′) is equal to 0.9 ft,spl,

the development of direct tensile strength over time can be predicted using the proposed

equation for both mortar and aggregate,

fmortart (t′) = 0.9fmortart,spl = 0.9Kmortar
2 Emortar(t′)nmortar1 =

= 0.9Kmortar
2

 1
Amortar0 + Amortar1√

t′


nmortar1 (6.28)

faggt = 0.9faggt,spl =

= 0.9Kagg
2 (Eagg)n

agg
1

(6.29)

6.3.2 Micro-macro approximations for contact strength

Similarly to the criteria used for the viscoelastic properties, a beam equivalence can be

used between contact micro properties and material macro properties,

Fn,t,max = 2.0ftA (6.30)

where Fn,t,max is the normal contact ultimate force, ft is the material’s direct tensile

strength and A is the area of the contact, respectively.

This equivalence yields for both mortar and aggregate contacts:

Fmortarn,t,max = αmortarft 1.8AKmortar
2

 1
Amortar0 + Amortar1√

t′


nmortar1

(6.31)

F aggn,t,max = αaggft
1.8AKagg

2 (Eagg)n
agg
1 (6.32)

where αmortarft
and αaggft

are coefficients to be calibrated. The shear contact behaviour,

defined by the contact cohesion, Cmortar and Cagg, and the contact friction angle, φmortar
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and φagg, are obtained by trial-and-error procedures.

6.3.3 Calibration of micro parameters of the contacts for the mortar and

aggregates

Taking into account the proposed micro-macro relationship based on the development of the

modulus of elasticity over time, the main micro parameters and coefficients are calibrated

to fit the measured behaviour of the mortar and the aggregates. For this practical example,

the aggregates have infinite strength. This hypothesis simplifies the calibration process

and follows the observed behaviour of normal strength concrete produced with good quality

aggregates in which the cracking pattern develops around the aggregates (Piotrowska 2013;

Wang et al. 2016). Dam concrete failure mode is especially bound to have this type of

behaviour due to the use of very good quality aggregates and low cement content. Similarly

to other studies, the contact strength properties of the ITZ are taken as half of the contact

strength properties of the mortar (Grassl et al. 2012; Suchorzewski et al. 2017).

The calibration procedure starts with the fit of the coefficient αft (Equations 6.31 and

6.32), maintaining the parameters of the shear behaviour constant, in order to predict the

tensile strength of concrete for different loading ages. Once the model predicts the tensile

strength, compressive tests are done to fit the contact cohesion and the contact friction

angle for several loading ages.

Tables 6.22 and 6.23 present the obtained parameters and coefficients for describing the

mortar and aggregate behaviour. The deformability properties were calibrated previously

in the chapter and are presented in Tables 6.7 and 6.6.

Figure 6.26 presents the stress-strain curves for both tensile and compressive tests of

mortar particle models for three different loading ages. The numerical results fit well with

the experimental results and show the brittle response of mortar specimens. As described

in § 2, the nonlinear behaviour is mainly due to the coarse aggregates which introduce a

residual resistance to failure after the peak strength is reached.

Figures 6.27 and 6.28 show the cracking patterns and the damage coefficients for

tensile and compressive strength tests, respectively. The direct tensile strength test results

show the development of an almost horizontal crack across the specimen width in which

the contact softening fully develops. Despite that, it is possible to observe that there

are other random contacts within the specimen which also undergo damage (normal and

shear) representing an overall microcracking. The amount of damaged contacts in the
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compressive strength test is much higher than the tensile strength test. The microcracking

related to the normal contact damage develop almost vertically but the failure pattern is

the shear band across the specimen, related to the shear damage in both directions.

Table 6.22: Parameters of MORTAR particle model for the prediction of strength properties

Material
Age Deformability αn, K2 n1

Ft,n,max αft
C, tanφ

(days) properties αs (MPa) (kN) (kN)

Mortar
7

Table 6.7 0.12 1.1 Equation 6.31 1.3
4.1×103, 0.3

28 5.3×103, 0.3
90 8.1×103, 0.3

Aggregate - Table 6.6 0.11 1.7 Equation 6.32 1.0 8.1×103, 0.3

Table 6.23: Strength results of MORTAR particle model

Material Age Eexp
ν

fexpt fexpc EDEM
νDEM

fDEMt fDEMc

(days) (GPa) (MPa) (MPa) (GPa/m) (MPa) (MPa)

Mortar
7 14.2 0.20 1.73 14.6 14.7 0.20 1.74 15.0
28 18.1 0.20 2.14 20.1 18.9 0.21 2.29 19.6
90 20.7 0.20 2.57 32.9 21.6 0.21 2.67 30.4

Note: The direct tensile strength, fexpt was considered to be 0.9 of the splitting tensile
strength, fexpt,spl, § 3.7.5
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Figure 6.26: Tensile and compressive stress-strain curves of mortar for three different
loading ages
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Figure 6.27: Cracking pattern, normal and shear contact damage for direct tensile test of
mortar at the age of 7 days

Figure 6.28: Cracking pattern, normal and shear contact damage for compressive test of
mortar at the age of 7 days

6.3.4 Prediction of wet-screened and dam concrete strength properties

The prediction of wet-screened and dam concrete is firstly based on the ultimate properties

of the mortar and on a trial-and-error calibration process for the determination of the

ultimate properties of the ITZ assuming that they are lower than the mortar. In order to

simplify the calibration process and due to the good quality of the aggregates, the coarse

aggregates are not allowed to fail.

The experimental results show that the mortar and SCR38 concrete splitting tensile

strengths are very similar (Table 6.24). As described in § 5.8, the ITZ properties has

a large influence on the stress-strain behaviour of concrete, mainly for tensile loadings
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(Grassl and Jirásek 2010). Since it is known that tensile strength is mainly influenced by

the properties of ITZ, the obtained test results indicate that the ITZ and the mortar of

SCR38 concrete have similar strengths. This conclusion do not agree with experimental

evidence (Scrivener et al. 2004) and numerical studies (Suchorzewski et al. 2017) that the

ITZ has higher porosity and lower bearing capacity.

An explanation for the obtained results can be the different compaction conditions of

the mortar specimens. As described in chapter 3.7, the characterization of the mortar was

based on a specific experimental programme using the materials and contents of the mortar

binding the coarse aggregates of dam concrete. However, due to compaction conditions

in a small specimen and without the aid of aggregates, the tested mortar could yield low

strength than the mortar that actually is binding the coarse aggregates.

In order to simulate the behaviour of SCR38 concrete using particle models three cases

studies are tested, combining the calibrated strength parameters using the mortar’s test

results (Table 6.22) and a given strength of the ITZ. The first uses the low maximum

normal contact forces for the ITZ’s contacts and high contact cohesion, the second uses

ITZ with high maximum normal contact properties but lower contact cohesion and the

third uses reduced values of ITZ’s maximum normal contact force and contact cohesion.

The SCR38 concrete particle model is described in § 6.2.1.

The results of first two cases studies yield similar compressive strengths but very

different tensile behaviour (Table 6.25). The use of the maximum contact force from the

mortar’s calibration, αmortarft
, and half the maximum contact force for the properties of

the ITZ, αITZft
, yields, as expected, very low values of macroscopic tensile strength of the

wet-screened concrete but adequate macroscopic compressive strength. The use of the

maximum contact force from the mortar’s calibration for both the mortar and the ITZ,

αmortarft
= αITZft

, and lower values of contact cohesion of the ITZ, CITZ gives more suitable

values of macroscopic tensile and compressive strengths (Table 6.25) but tensile strength

below what would be expected suggesting that both the ITZ contact strength parameters

should be reduced. Figure 6.29 shows the stress-strain behaviour for both study cases in

which the higher maximum normal contact force and lower contact cohesion give larger

tensile strengths and similar compressive strengths.

In third case study both the values of maximum contact normal force and cohesion of the

mortar and of the ITZ were calibrated in order to fit the SCR38 concrete test results using

small specimens. The relationship between the mortar’s and the ITZ’s strength parameters
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Table 6.24: Parameters of mortar, ITZ and aggregate contact model for the prediction of
strength properties of concrete

Case Material Age K2 n1
Ft,n,max αft

C, tanφ

study (days) (MPa) (kN) (kN)

Reduced Mortar 90 0.12 1.1 Eq. 6.31 1.3 8.1×103, 0.3

F ITZt,n,max
ITZ 0.7 8.1×103, 0.3

Reduced Mortar 90 0.12 1.1 Eq. 6.31 1.3 8.1×103, 0.3

CITZ ITZ 1.3 4.0×103, 0.3

Reduced Mortar 90 0.12 1.1 Eq. 6.31 3.4 4.7×103, 0.3

F ITZt,n,max and CITZ ITZ 1.7 2.4×103, 0.3

0.00000 0.00010 0.00020

0

1

2

3

4
Tensile strength

Strain

S
tr

es
s 

(M
P

a)

Fn,max:low + C:high
Fn,max:high+ C:low

0.0000 0.0010 0.0020

0

10

20

30

40
Compressive strength

Strain

S
tr

es
s 

(M
P

a)
Fn,max:low + C:high
Fn,max:high+ C:low

Figure 6.29: Comparison between stress-strain curves of the two sets of strength properties
of ITZ (reduced F ITZt,n,max and reduced CITZ) for the prediction compressive strength of
SCR38 concrete

was fixed:
αITZft

αmortarft

= 0.5, CITZ

Cmortar = 0.5. The numerical results of SCR38 particle model

using the third approach, considering higher contact strength values for mortar and reduced

contact strength values for ITZ show a good agreement with the experimental results of

SCR38 concrete for both tensile and compressive strengths (Table 6.25). The deformability

contact properties of each component were obtained from the numerical results, presented

in § 6.2.8.2.

Figure 6.30 shows the stress-strain behaviour and number of normal and shear contact

breaks for tensile and compressive loadings of SCR38 concrete in small specimen using three

random particle assemblies. Additionally, Figures 6.31 and 6.32 present, respectively, the

tensile and compressive fracture patterns for the three random concrete particle assemblies.

The figures show that the stress-strain results of the three random examples are very

similar although its different failure mechanisms. The tensile stress-strain results show a
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Table 6.25: Strength results of SCR38 and DAM concrete particle model

Case Material φ Age Eexp f
exp
t f

exp
c EDEM fDEMt fDEMc

study (mm) (days) (GPa) (MPa) (MPa) (GPa) (MPa) (MPa)

Reduced SCR38 150 90 25.4 2.4 25.3 23.5 1.1 24.3
F ITZt,n,max

Reduced SCR38 150 90 25.4 2.4 25.3 23.4 1.8 22.6
CITZ

Reduced SCR38 150 90 25.4 2.4 25.3 23.0 2.3 26.0

F ITZt,n,max
SCR38 450 90 - - - 24.0 1.9 26.3

and CITZ DAM 450 90 27.6 2.0 24.7 27.9 1.9 24.9

Note: The direct tensile strength, fexpt was considered to be 0.9 of the splitting tensile strength,
f
exp
t,spl, § 3.7.5

progressive damage until peak strength and some softening. The tensile failures illustrate

some of the observed phenomena, namely, the crack localization and some generalized

microcracking around the larger aggregates, the bridging of the main cracks on the ITZ

across the mortar, the development of two main cracks from each side of the specimen

(random #2) and the complete debonding of a coarse aggregate (random #3). The

numerical results of SCR38 concrete particle model show a continuous increase of broken

contacts both in tension and shear directions (microcracking) but with a small decrease of

global stiffness until the peak strength is reached. The microcracking occurs not only due

to the internal heterogeneity of concrete (higher stress concentration and lower properties

of ITZ) but also due to the use of Voronoi contact area which introduces additional

randomness to the particle assembly (the contact area is related to the particle radius

and to the distance between particles). Small contact areas with low strength capacity

are scattered throughout the assembly, introducing local weakness similar to voids in the

cement paste or mortar (see, for example, the damage obtained in mortar particle model

in Figures 6.27 and 6.28).

At peak strength, local damage develop into large macrocracks which lead to instability

and failure. Similarly to the work of Monteiro Azevedo et al. (2008), the post-peak response

of SCR38 concrete particle model is more brittle than it would be expected, as reported

in different experimental and numerical results concerning conventional concrete (Vonk

1992; Wendner et al. 2014) and dam concrete (Deng et al. 2008). The softening and

fracture toughness can be enhanced not only by increasing the contact softening but

also by increasing the capacity for load redistribution inside the particle assembly. The

contact friction, the roughness and shape of the aggregates, the aggregate interlocking, the

289



CHAPTER 6. NUMERICAL MODELLING OF THE DAM CONCRETE
STRUCTURAL PROPERTIES USING PARTICLE MODELS

strength properties of the ITZ and mortar, the lateral restraint of the walls, the minimum

size of the particles and the use of 3D analysis are known to influence the post-peak load

redistribution (Monteiro Azevedo et al. 2008; Sinaie et al. 2016; Suchorzewski et al. 2017).

Figure 6.32 shows the deformed shape and distribution of normal contact damage of

SCR38 concrete particle models under uniaxial compressive strength tests with constant

wall velocity. The model predicts crack localization across the height of the specimen

which can be divided into main cracks that lead to failure and secondary cracks that do

not develop in their full extent. The phenomena of crack bridging and crack branching,

which is particularly important for the prediction of large specimens (Mier et al. 2002), is

fairly modelled.
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Figure 6.30: Stress-strain curves of SCR38 concrete considering ITZ’s properties half of
mortar’s properties
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Figure 6.31: Cracking pattern and normal contact damage for tensile test of SCR38 concrete
at the age of 90 days considering ITZ’s properties half of mortar’s properties
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Figure 6.32: Cracking pattern and normal contact damage for compressive test of SCR38
concrete at the age of 90 days considering ITZ’s properties half of mortar’s properties
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The influence of the lateral restraint of the walls was also studied. Figures 6.33 and 6.34

show the comparison between the stress-stain curves and failure patterns under compressive

load considering no lateral restrain of the wall and considering 20% of the shear stiffness of

the mortar in the particle-wall contacts. The results show a similar stress-strain response

but a significant difference in failure patterns. The restraint of the top and walls yield

the development of diagonal cracks and two almost undamaged areas next to the walls,

similarly to what is usual obtained in standard laboratory tests.
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Figure 6.33: Stress-strain curves of SCR38 concrete considering ITZ’s properties half of
mortar’s properties with and without lateral restraint

Figure 6.34: Comparison of failure patterns for compressive loading with (right) and
without (left) lateral restraint of the walls

The strength contact properties of mortar and ITZ fitted to agree with the SCR38

concrete’s tensile and compressive macroscopic strengths obtained in small specimens
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were used for the prediction of SCR38 concrete behaviour in large specimens and for the

prediction of DAM concrete behaviour in large specimens (third row on Table 6.24). The

DAM concrete particle model is described in § 6.2.1.

The DAM concrete particle model results show a good agreement with the experimental

results predicting the lower tensile and compressive strengths of DAM concrete obtained in

large specimens (φ= 450 mm) when compared with the strength values of SCR38 obtained

in small specimens (φ= 150 mm). Figure 6.35 presents the predicted stress-strain curves

which shows the brittle behaviour for both tensile and compressive loadings. The cracking

patterns of DAM concrete particle model are close to the ones obtained for SCR38 concrete

particle model, with similar phenomena as previously described (Figures 6.37 and 6.38).

It is noteworthy the extent of damaged areas around the large coarse aggregates in the

compressive strength test and the thickness of the main cracks, embedding the smaller

coarse aggregates (Figure 6.38).

The effect of the shear stiffness of the wall contacts is also captured for the DAM

concrete simulations (Figure 6.39). The stress-strain results show an almost identical

result for tensile loading and an increase of the peak-strength and softening when some

lateral restrain occurs between the specimen and the walls (Figure 6.36).

Figures 6.40 and 6.41 illustrates the tensile force distribution and normal contact

damage inside the DAM concrete particle assembly near peak strength and after peak

strength for compressive loading (black lines are higher tensile forces and higher damage).

The tensile force distribution shows a slightly higher stress concentrations in the larger

aggregates but also significant in the mortar and in the ITZ. In the tensile force distribution,

the white line around the side of the larger aggregates indicates that the damaged areas do

not withstand any tensile load and there is a complete detachment of the aggregate. After

failure, there is a crack localization between the larger aggregates and a further debonding

of the aggregates (Figure 6.41).

Figures 6.42 and 6.43 show the same type of result for the compressive force distribution

at peak compressive strength and after peak compressive strength. As discussed previously

in this chapter, the stiff coarse aggregates work as stress concentrators and influences the

force distribution inside the concrete specimen. Figure 6.42 shows that the ITZ and the

mortar between the aggregates is highly compressed when compared to other areas of the

specimen and shows the lateral deviation of the vertical compressive forces which generates

horizontal tensile forces. After failure, the load in the aggregates completely unloads and
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some residual forces remain in the mortar between the main cracks (Figure 6.43).
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Figure 6.35: Stress-strain curves of DAM concrete considering ITZ’s properties half of
mortar’s properties and no lateral restrain
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Figure 6.36: Stress-strain curves of DAM concrete considering ITZ’s properties half of
mortar’s properties with and without lateral restraint
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Figure 6.37: Cracking pattern and normal contact damage for tensile test of DAM concrete
at the age of 90 days considering ITZ’s properties half of mortar’s properties

Figure 6.38: Cracking pattern and normal contact damage for compressive test of DAM
concrete at the age of 90 days considering ITZ’s properties half of mortar’s properties and
without lateral restrain of the walls
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Figure 6.39: Cracking pattern and normal contact damage for compressive test of DAM
concrete at the age of 90 days considering ITZ’s properties half of mortar’s properties and
with lateral restrain of the walls

Figure 6.40: Distribution of tensile contact forces of DAM concrete near the peak strength
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Figure 6.41: Distribution of tensile contact forces of DAM concrete after peak strength

Figure 6.42: Distribution of compressive contact forces of DAM concrete near the peak
strength

Figure 6.43: Distribution of compressive contact forces of DAM concrete after peak strength
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In order to study the influence of the effect of specimen size on strength of wet-screened

concrete, to separate this effect from the effect of the composition and to compare with the

results obtained using the analytical models in § 4.4, a two large particle assemblies of wet-

screened concrete were also tested. The size of the numerical specimens are 450×450 mm

cube and 450× 900 mm rectangle of wet-screened concrete, for tensile and compressive

loadings, respectively. The simulations considered the same contact properties as the previ-

ous examples (Table 6.24). The peak strength values are presented in Tables 6.25 and 6.26

and Figure 6.44. The size effect on wet-screened concrete specimens is properly described

with a decrease of tensile strength as the size of the specimen increases: fDEMt,φ=150=1.1 MPa;

fDEMt,φ=450=1.0 MPa (Table 6.25). The size effect is not predicted for compressive strength

behaviour. This could be due to the fact that there is lateral no restraint of the walls in

the particle model, which reduces the influence of specimen aspect ratio and size and to

the lack of more random assembly results.
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Figure 6.44: Comparison between stress-strain curves of SCR38 concrete tested in small
and large specimens

Figures 6.45, 6.46 and 6.47 show the comparison between the results obtained using

large particle assemblies for the study of SCR38 and DAM concretes. The stress-strain

behaviour predicts a decrease of tensile and compressive peak strengths and a decrease of

ductility for both loading conditions due to the addition of large aggregates (Figure 6.45).

The higher strain development and ductility before complete failure is due to higher gen-

eralized microcracking and secondary cracks throughout the specimen of SCR38 concrete

when in comparison to DAM concrete (Figure 6.46 for tensile loading and Figure 6.47 for

compressive loading).

Table 6.26 compares the results obtained using analytical and numerical models for the
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different effects: the size effect, considering the parameter kΦ , and the effect of composition,

considering the parameter, kAbrams (§ 4.4). Both effects are well represented for tensile

strength but, although the particle model captures the lower strength values of DAM

concrete, the size effect and the composition effect are not in agreement with the analytical

prediction. This results could be due to the fact that, as previously described, the size effect

is more relevant when there is some lateral restraint of the boundary walls and that there

is low internal friction due to the presence of the coarse aggregates which leads to early

and brittle failure. The large aggregates also influences the shear and friction behaviour

of the ITZ contacts, before and after peak-strength. ITZ and mortar properties in DAM

concrete could be different from those present in the SCR38 concrete since experimental

results show that larger aggregates allow for better packing and can increase the quality

of the matrix (Walker and Bloem 1960; Higginson et al. 1962; Stock et al. 1979).
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Figure 6.45: Comparison between stress-strain curves of SCR38 and DAM concrete tested
in large specimens

Table 6.26: Comparison between analytical and numerical predictions

Type of Property Age kΦ kAbrams
fDAM
Φ large

fSCR
Φ small

= kT
Predicted values

model (days) DAM,Φ large Diff. (%)

Analytical fc 90 0.93 1.03 0.96 24.2 2.0

model ft,spl 90 0.80 0.97 0.78 2.1 4.5

Numerical model fc 90 1.01 0.95 0.96 24.9 -0.8

(no lateral restraint) ft,spl 90 0.83 1.00 0.83 1.9 13.0

Numerical model fc 90 1.05 0.97 1.00 27.3 -10.5

(lateral restraint) ft,spl 90 0.90 0.90 0.80 1.8 18.0
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Figure 6.46: Comparison between cracking patterns of tensile tests of SCR38 concrete
(left) and DAM concrete (right) using the same specimen size
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Figure 6.47: Comparison between cracking patterns of compressive tests of DAM concrete
(top) and SCR38 concrete (bottom) using the same specimen size

301



CHAPTER 6. NUMERICAL MODELLING OF THE DAM CONCRETE
STRUCTURAL PROPERTIES USING PARTICLE MODELS

6.4 Concluding remarks

Based on the particle model developed in chapter 5 and taking advantage of its capabilities,

chapter 6 presents a practical application for the prediction of dam concrete behaviour

using the available results of wet-screened concrete and the properties of each material

components, namely the mortar, the aggregates and the ITZ. The complexity of the

dam concrete particle models are mainly related to the accurate representation of each

component, to the calibration of each component, especially of the ITZ, and its relationship

with the available test results. Other main difficulty is the size of particle assembly since,

similarly to the previous validation examples, the particle size is constraint by the size of the

smallest coarse aggregate. In order to have an uniform particle discretization throughout

the specimen and a detailed representation of the material, the larger aggregates and the

mortar have the same discretization as the smaller aggregates. The large size aggregates

and the large specimens of dam concrete imply a significant number of particles and

contacts and a high computational analysis time.

The advantage of this type of detailed particle models is the possibility of studying

the several complex interactions inside the concrete mesostructure without discretization

assumptions and using simple contact models and a direct micro properties calibration

using smaller homogeneous assemblies for each type of material. The ITZ representation

is directly obtained by the contact between an aggregate particle and a mortar particle

and the thickness of the ITZ can easily be predefined using the series model.

Previously to the prediction of dam concrete using this type of particle models, the

elastic behaviour of an each individual aggregate and its interaction with the surrounding

mortar was validated. This analysis ensured the expected behaviour for very large aggre-

gates and considering different aggregate contents. Additionally, the effect of temperature

was also taken into account using the maturity method in order to model the in situ

behaviour of dam and wet-screened concretes measured in creep cells.

Firstly, homogeneous particle models were used to calibrate the contact properties of

each component, namely the mortar and ITZ as a combined material and each aggregate.

Secondly, the instantaneous elastic and long-term aging viscoelastic behaviour of wet-

screened concrete was validated by the fitted analytical models, namely the B3 model,

for standard constant temperature conditions and by the creep test results for variable

temperature conditions. This preliminary analysis ensured the physical representation of
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not only the reduction of the mortar creep strains over time due to the restraint of the

aggregates but also the gain in stiffness at early ages due to the temperature rise in the

first months. Once the response of wet-screened concrete long-term behaviour was fitted

to the experimental results and the concrete particle model was validated, the long-term

behaviour of in situ dam concrete was predicted and compared with the measured test

results obtained in creep cells. The prediction showed a good agreement with the test

results and allowed for the interpretation of the high values of dam concrete modulus of

elasticity at early ages which is mainly due to the high coarse aggregate content and to

the sustained high temperatures.

The same procedure was adopted for the prediction of strength properties of dam con-

crete: calibration of micro parameters of each concrete component; validation and further

adjustment of micro properties based on wet-screened concrete results; and, prediction of

dam concrete behaviour under extreme tensile and compressive loadings. A correlation

law between the modulus of elasticity and the tensile strength of both the mortar and the

aggregates, fitted to experimental results, was used to obtain a first estimate of the contact

tensile strength of these concrete components. Since the deformability properties of the

concrete particle model were already well established and the strength results are scarce,

the correlation law allowed for the definition of the strength development over time at the

contact level.

The prediction of fracture concrete was divided into modelling of tensile and compres-

sive tests of both wet-screened concrete (SCR38) and full-mixed concrete (DAM). The

micro properties fitted to describe the behaviour of SCR38 concrete were used for the

prediction of DAM concrete macroscopic properties with good global results. Although

only the experimental peak strengths are available, the complete stress-strain curve and the

failure modes were analysed. The concrete particle models allowed for the representation

of complex fracture behaviours, such as microcracking, localization, crack bridging and

branching and global softening of the material.
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Conclusions and future developments

7.1 Summary and main conclusions

The main goal of the presented work was to study the behaviour of dam concrete and to

develop physically-based models for the prediction of its structural properties based on

the properties of wet-screened concrete. The proposed methodologies featured: results of

the developed experimental work that characterized the development of main structural

properties over time; analytical models based on semi-empirical expressions tailored for

the study the effect of dam concrete wet-screening; and, complex numerical tools based

on particle models in which the concrete mesostructure is explicitly taken into account.

Firstly, a literature review was presented in the second chapter. The objective was

to present the main structural properties of hardened dam concrete, the influence of

composition data, the most relevant approaches for the study of concrete behaviour and

the available correlations between the properties of dam and wet-screened concretes. This

review set the foundation for this work and showed the need for the use of physically-

based approaches to study not only the effect of wet-screening on dam concrete structural

properties but also the influence of the internal aggregate mesostructure on the overall

behaviour of concrete.

A comprehensive study of the properties of dam concrete placed on Portuguese dams

established an overview of the composition and properties of different types of concretes,

from 1951 to 2014. One of the main differences between past and present concretes is the
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use of large percentages of other cementitious materials introduced during the mix instead

of blended cements, the use of highly effective superplasticizers and the new production and

compaction procedures on site. The results of both deformability and strength properties

show a large scatter mainly due to the different types of aggregates used but it was possible

to establish a general relationship between the properties of dam concrete and wet-screened

concrete, considering the results of four dams, in which granitic aggregates were used.

The in situ experimental installation in Baixo Sabor dam presented several technical

improvements favouring the creep cell installation procedures, reducing the stiffness of lost

moulds and reducing the production costs. The improvements related to the redesign of the

flat-jack allowed for a more uniform and effective load application and, ultimately, to better

results. The results of this specific experimental study concluded that the deformability

properties of dam concrete are different from the wet-screened deformability properties,

with higher modulus of elasticity and lower creep strain development over time and lower

creep rate. This results could be explained by the coarse aggregate content and also by

the effect of elevated temperature during the first months which increases the rate of

development of the main structural properties.

The experimental laboratory results obtained during construction, provided by the

dam’s owner, revealed a large scatter at each testing age, a significant rate of development

even for later ages and that the ratio between dam and wet-screened concrete structural

properties is close to the unit. Although the obtained strength results agree with the

available results in the literature, the modulus of elasticity test results differs from what

would be expected. Both dam and wet-screened concrete yielded similar modulus of

elasticity laboratory test results. It would be expected that the large aggregate content of

dam concrete would yield higher modulus of elasticity values, as it was obtained for the

in situ test results.

In order to include some type of physical meaning into the analysis of the test results

and to enhance the interpretation of the behaviour of concrete, several semi-empirical or

analytical models were developed to predict the main structural properties based on the

obtained results of wet-screened concrete and composition data. The work concerning these

analytical models was divided into two main parts, the first relates to the instantaneous

and delayed properties of concrete and the second relates to the strength properties.

The prediction of deformability properties of dam concrete relied on different two-phase
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composite models and on the equivalent age method. An innovative adaptation of two-

phase composite models to the wet-screening procedure established a direct correlations

between the two types of concrete showing a good fit between the model results and

the experimental results. It was concluded that the high modulus of elasticity results

were better fitted by the Granger’s composite model using the β parameter equal to 1.0,

equivalent to the Voigt composite model, which gives the upper bound of modulus of

elasticity values. Similarly, the dam concrete creep strain prediction relied on the use

of Granger’s composite model and to the fit of the free parameter β. The best fit was

obtained using values of β of 0.5 and 0.6 for the prediction using SCR76 and SCR38

wet-screened concretes, respectively. This result relates mainly to the amount of equivalent

creeping matrix placed in parallel in the composite model and to the maximum amount of

aggregate for this type of concrete. The differences between the β results for instantaneous

and delayed properties can be due to the temperature effect which is more pronounced

before 28 days of age.

In order to establish a correlation between dam and wet-screened concrete creep strain

development over time and interpret the test results obtained in the creep cells, it was

necessary to incorporate the temperature effect into the prediction model. Each of the

creep cell test results are influenced by a different temperature history, usually above

30℃ during the first month. The effect of elevated temperature was corrected in order to

estimate the creep strain development at a constant temperature and, therefore have a

comparable base for the correlation between each type of concrete. This approach validated

the use of maturity method to take into account the effect of temperature on creep strain

and can be used for the interpretation of in situ test results or global safety assessments

during construction.

The prediction of compressive and splitting tensile strengths of dam concrete was also

obtained considering the size effect, an adaptation of the Abrams law in order to take into

account the maximum size of aggregate (MSA) and the water to cementitious materials

ratio. The extended Abrams law was fitted to the experimental results of the different

types of concrete placed in Baixo Sabor dam. It was concluded that the influence of MSA

is statistically significant and it has an important role on the prediction of these types

of concretes produced with large aggregates. It was also concluded that the separation

between the size effect and the influence of composition data is crucial for the analysis of

the strength results of dam and wet-screened concrete.
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Two different methodologies were proposed and validated using the available test results,

concerning the deformability properties and the strength properties. It was successfully

shown that different models and methods can be adapted and combined to predict the

behaviour of dam concrete.

When calibrated with a trial experimental programme, these models can be used for

the prediction of dam concrete structural properties and help the main quality control

procedures concerning conformity check and for obtaining estimates when dam concrete

test results are not available. A new framework for the dam concrete quality control is

proposed in chapter 4 based on the developed analytical models.

Although the analytical models successfully describe the behaviour of dam concrete

based on concrete’s composition data, namely the aggregate content, the MSA and the

water to cement ratio, and on results of mortar and aggregate, it should be bear in mind

that only the macroscopic behaviour is described. Only the global effect of "stiff" coarse

aggregate inclusions on the "soft" and aging viscoelastic mortar is described and local

effects are averaged and resumed in an global law. It is known that, for example, the

prediction of concrete strength is a complex task and it is influenced by both intrinsic

factors, such as the type and content of each component, and external factors, such as the

type of loading. Tensile and compressive strengths involve different failure mechanisms

which are intimately related to composite nature of concrete and to the properties of the

interfacial transition zone (ITZ). Additionally, the effect of coarse aggregate’s content

and maximum size are known to have contradictory effects on concrete strength (§ 2.3.7).

The developed analytical relations between strength properties of dam and wet-screened

concretes does not take every factor into consideration but describes the global behaviour

of concrete fitted to experimental results.

For example, the extended Abrams law for strength properties evaluation includes the

effect of the maximum size of the aggregate and the water to cementitious materials ratio

but failed to predict the ultimate behaviour of mortar based on the test results of concrete.

This could be due to the higher porosity or more entrapped air in mortar specimens

(Neville et al. 1983), to the different testing conditions of the mortar specimens and/or to

the effect of the ITZ on the concrete specimens. The obtained results enhance the fact

that coarse aggregates have a significant effect on the properties of concrete, affecting both

the composition and the failure mechanisms.

In order to study the effect of the internal aggregate structure of concrete and to
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predict the behaviour of dam concrete, a numerical model was developed considering the

Discrete Element Method (DEM). For this work, DEM is based on rigid particle models for

the representation of both aggregates and surrounding mortar. In each contact between

two circular particles a constitutive model defines the behaviour of a specific material

(aggregate, mortar or ITZ) and the global assembly defines the complex behaviour of

concrete.

Chapter 5 defines the general DEM numerical scheme and the rigid particle model

formulation. Based on DEM, it is also described the implementation of the constitutive

contact models which includes the proposed aging viscoelastic model based on the solidifi-

cation theory and its adaptation for long-term analysis and the Mohr-Coulomb model with

and without softening. Due to numerical constraints, the numerical time step is linked to

the stiffness of the assembly and is often very small. This limitation is a major difficulty

for long-term analyses using DEM and, therefore, a new fast numerical procedure was

developed for the implementation of the aging viscoelastic contact model.

The proposed fast numerical procedure defines two different times, one related to the

real time and age of concrete and other related to the calculation time. By doing so, it is

possible to have large real time increments in which equivalent aging viscoelastic forces are

introduced into the model. The unbalanced system reaches equilibrium with DEM cycling,

using the small time step necessary for convergence of the structural system and equivalent

elastic properties. It is shown that this fast numerical procedure significantly reduces the

computational time allowing for the study of the macroscopic concrete creep compliance

and the interactions between aging viscoelastic mortar and the stiff elastic aggregates over

time.

Additionally, a calibration procedure was proposed for the determination of long-term

micro properties in order for the particle model to describe the macroscopic behaviour of

the material. Taking into account that the calibration of the micro parameters is pointed

out as one of the main drawbacks of particle models, this procedure insures a direct

relation between the contact properties and the material’s macroscopic properties, for the

deformability properties.

The DEM aging concrete model was validated using a B3 model fit to Ward et al.

(1969) experimental results for different loading ages. The aging viscoelastic contact

properties of the mortar and of the interfacial transition zone (ITZ) and the elastic contact

properties of the aggregate were determined during the particle model calibration procedure.
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The obtained numerical results show that the DEM aging viscoelastic particle model

considering the concrete mesostructure can predict long-term behaviour of concrete. The

obtained results revealed high creep strain development for the ITZ, which agrees with

the experimental results and other numerical studies for the prediction of ITZ properties.

In the second part of chapter 5 the failure contact model, based on the brittle and

linear softening Mohr-Coulomb models, was validated using simple particle assemblies for

both tensile and shear loadings.

A sensitivity study was also carried out to better understand the effect of the main input

parameters on the macroscopic stress-strain behaviour of concrete. The main parameters

were the modulus of elasticity of the aggregate, the maximum normal contact force of the

mortar contacts, the cohesion of the mortar contacts, the ratio between contact strength

properties of ITZ and mortar, the ratio between total and elastic contact fracture energy

and the lateral restrain of the boundary walls. The results show that: similarly to the

previous results concerning the aging viscoelastic behaviour, the ITZ has a great influence

on the strength properties, especially on the tensile strength; the contact cohesion has

a much higher influence on the compressive strength; and, the lateral restrain of the

boundary walls changes the global failure pattern and increases the model’s ductility.

Although this type of concrete particle models yield lower fracture energy than the models

based on deformable polygons (Vonk 1992), the developed particle models are capable of

reproducing the global macroscopic behaviour of concrete, including the main cracking

patterns, and the peak strength values.

The development of a C++ computational code of DEM applied to particle models for

the study of instantaneous and delayed behaviour of concrete allowed for the implementa-

tion of tailored solutions for the main numerical difficulties and a complete control of the

input parameters for the analysis. The development of the concrete particle models focused

on the prediction of concrete behaviour considering a detailed mesostructure, using faithful

representations of reality and physically-based input parameters. For example, although

the model is always constraint by the minimum particle radius, this model property was

taken as a portion of the size of the smallest coarse aggregate insuring that its properties

were represented in the model.

Chapter 6 presents the practical application of DEM concrete particle models to the

prediction of dam concrete considering the mortar, aggregate and wet-screened concrete

test results and the analytical models developed in chapter 4. The proposed approach was
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to determine the micro properties of contacts related to the mortar and to each coarse

aggregate size and, based on those input parameters, predict the behaviour of wet-screened

and dam concrete using a concrete particle model and a realistic representation of the

coarse aggregates and the mortar within the model.

This analysis ensured the physical representation of, not only the reduction of the

mortar creep strains over time due to the restraint of the aggregates, but also the gain in

stiffness at early ages due to the temperature rise in the first months. The dam concrete

prediction showed a good agreement with the test results and allowed for the interpretation

of the high values of dam concrete modulus of elasticity at early ages which is mainly due

to the high coarse aggregate content and to the sustained high temperatures.

The modelling of quasi-static behaviour of cementitious materials requires the represen-

tation of its micro and meso structure in order to obtain a realistic response and to capture

the different fracture mechanisms. Based on the work presented in chapter 5, in which

the basis for fracture behaviour of concrete was developed and validated, it was possible

to establish a prediction approach for modelling dam concrete based on the wet-screened

results, similarly to what was presented for the deformability properties.

The detailed particle model of DAM concrete shows a good global agreement with the

experimental tensile and compressive strength results, using the same micro properties

as the ones used for the validation of SCR38 concrete. The numerical results were also

compared directly to the ones obtained by the analytical models developed in § 4. Although

the obtained tensile strength results for small and large specimens follow the size effect

law (decrease of tensile strength as the size of the specimen increases), the compressive

strength results remains approximately the same as the specimen size increases.

The concrete particle model is also able to simulate different fracture mechanisms of

concrete, such as generalized microcracking around the larger aggregates, crack localization,

bridging of the main cracks on the ITZ across the mortar, the development of main and

secondary cracks and the partial or complete debonding of a coarse aggregate. This

behaviour is captured for both SCR38 and DAM concretes, although SCR38 yields higher

microcracking and ductility in tension and compression.
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7.2 General recommendations and future developments

During the progression of this study it was possible to better understand the main diffi-

culties of dam concrete testing and to develop methodologies to tackle those difficulties.

The recommendations presented in this section are focused on the improvement of the

experimental procedures concerning dam concrete characterization, both in laboratory and

in situ, namely:

• The increase of the number of laboratory creep tests of wet-screened concrete in

order to have a more representative sample of the concrete placed on site and to

study the effect of composition variations that occur during construction;

• A rigorous control of the specimen curing, transport and testing conditions, especially

during the first days of curing and for dam concrete specimens;

• Each main structural properties should be obtained at several ages of concrete (at

least four testing ages) in order to fit to a time development law capable of providing

information on intermediate ages and accurate predictions of the ultimate structural

properties;

• Testing of early age properties of dam and wet-screened concrete into the quality

control procedures in order to have early alerts of concrete non-conformities and to

have a better characterization of the early age behaviour;

• The improvement of creep strain measurement, including more measurement points,

internal and external measurements (other type of embedded strainmeter), both in

situ and in laboratory;

• The implementation of an automatic acquisition system for strain and pressure

measurements would also improve the overall quality of the results.

Regarding creep tests, although recognizing that it is very difficult to increase the

number of in situ testing using creep cells, due to its cost and schedule constraints. As

recommended in standard concrete testing procedures (NP EN 206 2005; ASTM 2006), the

number of specimens from the same batch should be at least 3 to 5 specimens in order to

have statistical representation of the results. Additionally, it is known that small differences

in curing conditions, temperature and moisture variations, have a great influence on the

strength development of concrete over time.

Regarding future developments, due to the diversity of the developed work, the pro-

posals are divided into three main parts, related to: the experimental developments and
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research topics; analytical models for the prediction of concrete behaviour; and, concrete

particle models.

Future work concerning experimental programmes should include:

• The characterization of the strength properties of mortar, aggregates and concrete,

measuring the stress-strain curves with controlled displacements for tensile and

compressive loadings and the characterization of its deformability properties based

on compressive creep tests at several ages;

• The study the effect of wet-screening of dam concrete on the main structural prop-

erties using more types of wet-screened concretes;

• The characterization of the early age properties of dam and wet-screened concrete

and the mortar binding the coarse aggregates;

• The study of the temperature variations on the development of the main structural

properties.

The early age behaviour of concrete placed in dams is of the foremost importance

due to high temperature gradients, the low strength development and, therefore the high

cracking risk at early ages (JCI-RILEM 2017). In order to extend the analysis of dam

concrete to its early age behaviour, it is necessary to define experimental setups for the

first ages after setting. Combined with standard tests, specific experimental programmes

can be used to determine the structural properties of dam concrete, for example, the new

EMM-ARM (Elasticity Modulus Measurement through Ambient Response Method) which

is being used for obtaining a continuous measurement of the modulus of elasticity of cement

paste and concrete (Azenha et al. 2009; Granja and Azenha 2017) and tensile creep tests

of dam concrete.

The analytical and numerical tools developed for the prediction of concrete structural

behaviour are bound to have limitations which can be reduced or overcome in future

developments. The analytical models based on semi-empirical expressions can be further

developed considering research focused on:

• Studying the magnitude of parameter β of Granger’s model for other sets of experi-

mental results, for both instantaneous and delayed properties;

• Developing three or four-phase composite models that would be helpful to include

the effect of the ITZ on the prediction of dam concrete deformability properties;
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• Testing the accuracy of other prediction models, such as the Bolomey law and the

recommendation of USBR based on Feret formula, in the proposed methodology for

the prediction of dam concrete based on wet-screened test results;

• Extending the developed analytical models for the prediction of strength of concrete

to take into account the effect of the age of concrete;

• Studying the significance of other composition data and properties on the strength

properties of concrete using a comprehensive test result database;

• Establishing a procedure for the conversion of strain histories measured on site in

wet-screened concrete into strain histories that would develop in dam concrete and

the calculation of the stress development over time.

The effect of temperature on the development of the main structural properties of

dam concrete has been a concern at LNEC. The experimental work of (Silveira and

Florentino 1971; Silveira et al. 1981; Soares de Pinho et al. 1988; Serra et al. 2012)

on creep strain development is still of great importance but there is the need for the

development of numerical tools that include not only the effect of elevated temperature

taking into account the maturity method (Bažant and Baweja 2000) but also to include

large temperature variations (higher temperatures during hydration and, for some cases,

significant temperature drops during forced cooling).

It would be important to test and implement the proposed framework for the dam

concrete quality control during the construction (§ 4.5) of a new dam in order to validate

the proposed analytical models. The framework includes extensive experimental work, the

adjustment of prediction laws and the study of the effect of temperature on the development

of the main structural properties in situ.

Concerning the concrete particle models, the main proposed future developments are:

• The implementation of the extension of the DEM to 3D analysis, particularly the

proposed fast numerical procedure for long-term analysis using the aging viscoelastic

contact model;

• The implementation of imposed deformations, such as thermal strains, shrinkage

strains and expansion strains due to internal expansion reactions (IER), into the

DEM computational code;

• The development of specific studies focusing on other types of tests, such as: biax-

ial/triaxial tests; 3-point bending test; brazilian or tensile splitting test; stiffness
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damage test (SDT); and, tensile creep tests;

• The development of specific studies of tertiary creep and nonlinear creep, of the

coupling between creep and damage, size effect and the influence of the specimen

height-width ratio, the effect of the ratio between MSA and specimen width, the

effect of the ratio between MSA and the embedded measurement devices and the

hysteretic properties of concrete;

• The development of specific studies concerning the behaviour of different types of

concretes in which the interaction between the each component has particular interest,

such as, reinforced concrete, high strength concrete, recycled aggregate concrete, fiber

concrete, asphalt concrete and pre-placed aggregate concrete.

Mesoscale analyses are being used for the study of the behaviour of concrete focusing

on the interactions between coarse or fine aggregates and the maturing mortar or cement

paste in order to evaluate the main mechanical properties and their deterioration (Pan et al.

2012; Alnaggar et al. 2013; Giorla et al. 2015). At early ages, the self-induced stresses

due to hydration and shrinkage can introduce local damage and reduce the potential

mechanical properties (Aydin et al. 2007; Azenha et al. 2017; Xu et al. 2017). These types

of models are particularly relevant for the study of internal expansion reactions (IER) since

the aggregate structure of concrete and the interfacial transition zone (ITZ) are explicitly

taken into account (Scrivener et al. 2004). Since the swelling reactions occur relatively slow

over a large period of time, creep and relaxation properties of concrete have an important

role in the development of stress and in the progress of damage (Dunant and Scrivener

2010). Limited numerical work has been done considering the interaction between creep

and damage of swelling concrete at the mesoscale (Giorla et al. 2015) and in a practical

application at the macroscale (Saouma et al. 2015; Esposito et al. 2016).

The implementation of imposed deformations, such as thermal strains, shrinkage strains

and expansion strains due to IER, into the DEM computational code is also expected to

be done in the near future. This feature would allow to simulate the behaviour of concrete

since cast for several types of internal and external "loadings"and would be a important tool

for the study of the self-induced or self-balanced stresses that develop during hydration.

It would be possible also to simulate the behaviour of concrete for controlled and in situ

conditions, since cast and for long-term analysis. The implementation of the expansion

strain development on specific materials (in the ITZ for the alkali-silica reactions (ASR)
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and in the mortar for the internal sulfate reaction (ISR)) would allow to study the behaviour

of the mesostructure over the years due to IER and to better interpret the experimental

results, which are often executed in accelerated testing conditions.

The development of these types of concrete particle models set the foundations for the

study of concrete behaviour at the specimen level, including the explicit influence of its

mesostructure. The presented work focused only on standard laboratory tests (uniaxial

compressive modulus of elasticity test, uniaxial compressive creep test, uniaxial direct

tensile strength test and uniaxial compressive strength test) and further studies can be

done focusing on other types of tests, previously listed.

Finally, a significant future development would be the study of the influence of dam

concrete structural properties on the strain and stress fields of a dam since construction,

considering the different types of concrete, the casting schedule, the curing process (tem-

perature and moisture variations), the effect of curing on the development of the main

structural properties. The accurate prediction of creep strains and tensile strength over

time for in situ conditions is key for determining the cracking risk during construction but

also for lifetime predictions and assessment of deterioration scenarios.
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A
Properties of the cement and of the fly ash

used in Baixo Sabor dam

A chemical analysis was performed to both the cement and fly ash used in the dam concrete.

The chemical analysis of the cement was carried out according to NP EN 196-2:2014 (IPQ

2014); whilst that performed to the fly ash generally followed the methods recommended

in NP EN 450-1:2012 (IPQ 2012b). The determination of the fly ash alkali content, not

covered by NP EN 450-1, was done using a LNEC Internal Method. The fly ash iron

oxide content was determined following LNEC Specification E 406:1993 (LNEC 1993d).

The results obtained and the specific test methods used for each property are presented

in Table A.1. The cement and fly ash average bulk density was also determined and is

presented in TableA.1.
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APPENDIX A. PROPERTIES OF THE CEMENT AND OF THE FLY
ASH USED IN BAIXO SABOR DAM

Table A.1: Chemical characteristics of the cement and fly ashes

Cement Fly ash
Property Value (%) Test method Property Value (%) Test method

SiO2 18.25 NP EN 196-2:2014 SiO2 50.12 NP EN 196-2:2014
(section 5) (sections 4.5.4 and 4.5.6) C,D

Al2O3 4.66 Al2O3 25.21 NP EN 196-2:2014
(sections 4.5.11) C

Fe2O3 3.24 Fe2O3 8.91 LNEC E 406:1993 C

CaO 61.39 CaOtotal 2.66 NP EN 196-2:2014
(sections 4.5.14) C

MgO 1.89 CaOfree <0.1 NP EN 451-1:2006

SO3 3.66 CaOreactive 2.62 NP EN 196-2:2014 A,B,C

K2O 1.49 MgO 1.91 NP EN 196-2:2014
(sections 4.5.15) C

Na2O 0.12 SO3 0.5 NP EN 196-2:2014
(section 4.4.2)

Na2Oeq. 1.1 K2O 4.11 LNEC Internal
Method C,E

TiO2 0.3 Na2O 0.8 LNEC Internal
Method C,E

P2O5 0.07 Na2Oeq. 3.5 -

Mn2O3 0.04 - - -

SrO 0.05 - - -

Cr2O3 0.01 - - -

ZnO 0.02 - - -

Cl 0.02 - - -

L.O.I. 1.86 NP EN 196-2:2014 - - -
(section 5)

I.R. 1.26 NP EN 196-2:2014 - - -
(section 4)

NOTES: L.O.I. – loss on ignition; I.R. – insoluble residue;
A – The reactive calcium oxide content was calculated according to the definition and test method given in
NP EN 197-1:2012 IPQ 2012b;
B – The carbon dioxide content was determined according to a LNEC Internal Method by treating the sample
with phosphoric acid and collecting the released carbon dioxide with an ascarite absorbent;
C – The sample was fused with lithium tetraborate;
D – The soluble silica, indicated in section 4.5.9 of NP EN 196-2:2014, was determined according to
LNEC Specification E 407:1993 LNEC (Laboratório Nacional de Engenharia Civil) 1993;
E – The alkali content of the solutions was determined by means of flame photometry;
Na2Oeq. = Na2O + (0.658 K2O).

Table A.2: Physical characteristics of the cement and fly ashes

Material Density (kg/m3) Test method
Cement 3120 NP EN 196-6:2010
Fly ash 2480 NP EN 1097-7:2012

354



A
p

p
e

n
d

i
x

B
Scienti f ic papers published in national and

international journals during the Ph.D.

355



Resumo

AnáLise integrada dos resuLtados dos ensaios
de deformabilidade do betão de grandes

barragens portuguesas

Comprehensive ana[ysis of the concrete deformabi[ity
test resu[ts of Portuguese [arge dams

Abstract

Carlos Serra

António Lopes Batista

Nuno Monteiro Azevedo

A caacte:ização das propriedades cos materiais estruturais
através de ensaios é ptica corrente em obras onde as
deformações e tensões são elevadas, como pontes de
grarde vão, centrais njclea-es. edifícios altos e grar.des
barragens

Neste trabalho apresentam-se alguns estudos de avaliação
da correlaçào entre a comoosição e as propriedades de
deformabitidade dos oetões in:egral e crivaco u:lizaoos
na construção cc barragens. tara isso complaram-se
os eemeitos reativos à composição e aos principais
resultados dos ensaios de deformabílídade do betão de
diversas barragens portuguesas, efetuados pelo Laboratório
Nacional de Engenharia Civil desde 1951. Foi possivel
estabelecer correlações entre alguns dados de composição
e os resultados experimentais e entre os coeficientes de
fluência do betão crivado e do betão integral, considerando
os resultados dos ensaios realizados em laboratório em 5/tu.

Stmctu& material onaractenzation through :esting is a
common oractce in structures sjch as targe-span bridges,
nuclear power sta:ions, tau buildings and large dams, where
the installed strains ano stress take significantvalues,

Tne co:lected data of composaion and deformabi:ity test
resuas of tbe concrete oi several Portugese oams, bu;lt
since 1951, properly treated, allcwed zhe estaolishmënt of
corelaticns be:ween tne compositon and tbe deformability
properties of the futl-mixed ano tne wet-screered concrete
useG indamconstruction.Takinginto accountthe tabcrarory
and in 51W testing, correlations between some composition
elements and the experimental test results and between
creep coefflcients o! wet-screened and full-mixed concrete
were obtained,

Palavras-chave: Betão de barragens / Deformabilidade do betão / Keywords: Dam concrete 1 concrete deformability 1 Insitu and
/ Ensaias in siru e em laboratório / correlação entre labaralory lests / Hechanical property correlation
propriedades mecãnicas



Effect of Wet Screening in the Elastic Properties
of Dam Concrete: Experimental In Situ Test

Results and Fit to Composite Models

Carlos Serra1; António Lopes Batista2; and Nuno Monteiro Azevedo3

Abstract: This paper proposes the use of the maturity method and a two-phase composite model for the prediction of dam concrete modulus

of elasticity. The methodology was validated with test results obtained from experimental in situ setup using creep cells placed in the dam’s

body, subjected to variable environmental conditions. It is shown that composite models can be used to predict the modulus of elasticity of in

situ dam concrete based on the modulus of elasticity of the wet-screened concrete. DOI: 10.1061/(ASCE)MT.1943-5533.0001672. © 2016

American Society of Civil Engineers.

Author keywords: Dam concrete; Wet-screened concrete; In situ experimental tests; Maturity method; Composite models.

Introduction

This work focuses on mass concrete, in particular on dam concrete,

placed in large volumes and produced with large aggregate sizes.

The size of the aggregate reduces the use of cement but it is limited

by the concrete strength and by the costs associated with handling,

mixing, transporting and with the consolidation of large aggregate

concrete [ACI Committee 207 (ACI 2005)]. The maximum size of

aggregates (MSA) can be 150 mm, the total aggregate percentage is

usually 60–70% of the total volume and the binder content is low

(100–300 kg=m3). Because of the thermal cracking risk, the ce-

ment content of dam concrete is customized to decrease the heat

generation, considering the strength properties as a secondary

requirement (ACI 2005; ICOLD 2008). Design practice often con-

siders material properties based on coarse estimates obtained

from experimental data from other works and/or based on exper-

imental test results obtained from trial compositions (CEN 2005;

ICOLD 2008).

The number of experimental tests on dam concrete is sparse due

to local conditions, namely related with the source of the concrete

component materials. Comprehensive experimental study of dam

concrete or even mass concrete is still to be done. Generally, the

elastic, viscoelastic, and strength properties of dam concrete have a

slower rate of development, lower maximum strengths, and higher

modulus of elasticity when compared with conventional concretes

(ICOLD 2008).

Wet-screened concrete, obtained from the dam concrete (full-

mixed concrete) by sieving or screening the larger aggregates after

mixing the components, is widely used for laboratory testing and

for embedding the monitoring devices, such as strain and stress

meters, but it has a distinct composition and different mechanical

properties. Although using the same type of materials, the mix

proportions change when the larger aggregates are removed by

wet-screening (ICOLD 2008). Earlier research studies focused

on characterizing the relation between dam and wet-screened

concrete mechanical properties can be found in Sajna and

Linsbauer (1998), Vilardell et al. (1998), ICOLD (2008), and Serra

et al. (2012).

The wet-screening procedure changes significantly the concrete

composition of dam concrete, mainly the coarse aggregate content.

To take into account the wet-screening effect on the structural

properties, specific studies are required. Nevertheless, the available

results focused on the influence of the aggregate properties, grada-

tion, and content on the modulus of elasticity of the concrete are

relevant to the study of the wet-screening procedure (Walker and

Bloem 1960; Hirsch 1962; Counto 1964; Vilardell et al. 1998;

Alexander and Mindess 2010).

The prediction and modeling of the concrete behavior based on

the properties of the components used in the mix is a complex task

for elastic, viscoelastic (Granger and Bažant 1995; Bažant and

Baweja 2000), and strength properties (Hwang et al. 2004). Several

studies focused on the characterization and modeling of the cement

paste in order to determine the behavior of the produced concrete,

because it is responsible for the growth of mechanical properties

over time. Besides, the rate of development over time is coupled

with the environmental conditions (Bažant et al. 2011). Multiscale

analysis and property homogenization can be used to model the

behavior of concrete based on the known behavior of each compo-

nent, validated with experimental results, and submitted to variable

temperature and humidity conditions (Maekawa et al. 2009).

This paper shows the influence of the dam concrete wet-

screening on the development of the modulus of elasticity based

on a specific experimental program, using in situ creep cells. Dam

and wet-screened concrete creep cells were installed in the dam’s

core and the modulus of elasticity was determined for several ages

and for the environmental conditions inside the concrete mass. The

prediction of the instantaneous deformability properties of dam

concrete over time was based on the composite model theory, con-

sidering the wet-screened concrete as equivalent binder of the larger
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Abstract This paper proposes a methodology for the

prediction of the compressive creep strains of dam

concrete based on wet-screened experimental results

at constant elevated temperature conditions measured

in situ. Due to its large aggregate dimensions, the

experimental characterization of dam concrete has

particular constraints. The wet-screened concrete,

obtained by sieving the aggregates larger than a given

dimension, after mixing, is used to cast standard

specimens and to embed monitoring devices. An

experimental in situ installation using creep cells was

used to obtain the compressive creep strain develop-

ment over time for the maturing conditions of the dam

core. The study of the effect of wet-screening proce-

dure on creep in compression considers three types of

concrete, dam concrete and two wet-screened con-

cretes tested at three loading ages, 28, 90 and 365 days.

The comparison between different types of concrete at

different maturing conditions requires the definition of

a reference state given by the maturity method, using

the equivalent age, and relies on the fit of compressive

creep strains to the RILEM recommended model B3.

To take into account the effect of the aggregate content

on the deformability properties of dam concrete, an

equivalent two-phase composite model was applied.

The equivalent composite model considered the

equivalent matrix as the wet-screened concrete and

the inclusions as the larger aggregates that are

removed during the wet-screening procedure. Predic-

tions obtained with the composite model are close to

the dam concrete experimental results, for the tested

loading ages.

Keywords Dam concrete � Wet-screened concrete �

Creep in compression � In situ tests � Model B3 �

Composite models

1 Introduction

Dam concrete is considered to be a mass concrete with

a poor binder content, 100–300 kg/m3, and with large

admixtures dosage, up to 50 % of the cement

replacement [1]. It has a large aggregate content and

the maximum size of aggregate (MSA) can reach up to

150 mm [2, 3]. The combination of the temperature

gradients due to heat dissipation, the slow mechanical

property development and, therefore, the cracking risk

at early ages are the main concerns of mass concrete

[2, 3]. For an accurate cracking risk assessment it is

necessary to determine the mechanical properties

development, as well as the stress development during

the first year [4, 6]. Moreover, to interpret the dam

structural behaviour for several decades, long-term

instantaneous and time-dependent properties are key
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Prediction of Dam Concrete Compressive and Splitting
Tensile Strength Based on Wet-Screened

Concrete Test Results

Carlos Serra1; António Lopes Batista2; Nuno Monteiro Azevedo3; and João Custódio4

Abstract: The mechanical property characterization of dam concrete is a challenging task mainly due to the use of large aggregate sizes. The

properties of dam concrete are often evaluated from wet-screened concrete tests using standard specimen sizes. A physically based relation-

ship between dam concrete and wet-screened concrete strength properties is currently unavailable. A prediction methodology is proposed that

can be used to obtain the compressive and the splitting tensile strength of dam concrete by taking into account the wet-screened strength

results, the effect of the specimen dimensions, and the effect of the maximum size of aggregate. The predicted results are compared with test

results available in the literature and with test results recently obtained during the construction of the Baixo Sabor dam. It is shown that the

proposed prediction tool can be used to obtain accurate estimates of dam concrete strength. DOI: 10.1061/(ASCE)MT.1943-5533.0002012.

© 2017 American Society of Civil Engineers.

Author keywords:Damconcrete;Wet-screened concrete; Compressive strength; Splitting tensile strength; Size effect; ExtendedAbrams law.

Introduction

This work focuses on the prediction of the compressive and split-

ting tensile strength properties of dam concrete. The placement of

large volumes of dam concrete requires special measures to reduce

the heat generation during hydration reactions, to control volume

changes, and to minimize the cracking risk at early ages (ACI 2005).

The dam concrete composition is designed to decrease the heat

generation by reducing the cement content. The maximum size of

aggregate (MSA) can reach 150 mm, and the total coarse aggregate

percentage is usually 60–70% of the total volume, which implies

that the cementitious material content is low (100–300 kg=m3).

The strength properties are often taken as a secondary requirement

for the composition design (ACI 2005). Nevertheless, the strength

properties are important for the evaluation of the cracking risk at

early ages and for long-term deterioration assessment scenario,

which can occur due to potentially alkali-reactive aggregates (Nixon

and Sims 2016a).

In dam concrete the cement is replaced by fly ash to cope

with the temperature rise effect and to control future swelling ef-

fects related with alkali-aggregate reactions [ACI Committee 207

(ACI 2005)]. When compared with conventional concretes, dam

concrete elastic and strength properties have a slower development,

lower maximum strengths, and slightly higher modulus of elasticity

(ICOLD 2008).

The characterization of dam concrete (full-mixed concrete or

fully graded concrete) is difficult due to its large aggregates, which

imply the use of large specimens and heavy testing equipment, in-

creasing the costs of quality-control procedures. These constraints

lead to the use of wet-screened concrete to evaluate the material

properties. The wet-screened concrete is obtained from the pro-

duced dam concrete by removing the aggregates larger than a given

sieve aperture. The 38-mm aperture sieve is usually adopted for the

wet-screening of full-mixed dam concrete. The wet-screening pro-

cedure is done aftermixing,while the concrete is still fresh, changing

mainly the coarse aggregate content (Blanks and McNamara 1935).

Dam structural design practice often considers material proper-

ties based on estimates provided by experimental data available in

the literature or based on preliminary test results obtained from

trial compositions (ICOLD 2008). A reliable concrete strength

prediction tool based on the wet-screened results is relevant as it

(1) will allow the reduction of the required number of tests of

full-mixed concrete, which are known to be costly; (2) will guar-

antee, during the construction phase, that the concrete strength

evaluated from wet-screened samples meets the design require-

ments of the full-mixed concrete; and (3) will allow an accurate

assessment of full-mixed concrete’s long-term strength properties

for the modeling of the dam’s structural behavior, especially for

deterioration scenarios (USBR 2005; Nixon and Sims 2016a).

The relation between full-mixed and wet-screened concrete

mechanical properties has been studied in the past mainly through

experimental testing (USBR 1988; Pinho et al. 1988; Sajna and

Linsbauer 1998; Vilardell et al. 1998; Li et al. 2004; Topçu

2005; ICOLD 2008; Deng et al. 2008; Khaloo et al. 2009; Zhou

et al. 2010; Kumar et al. 2015; Serra et al. 2012, 2016a, b;

Guan et al. 2016; Yang et al. 2016). However, a general physically
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DISCRETE ELEMENT METHOD FOR MODELING
THE LONG-TERM AGING VISCOELASTIC

BEHAVIOR OF CONCRETE CONSIDERING ITS
MESOSTRUCTURE

Carlos Serra1 , Not a member, ASCE
Nuno Monteiro Azevedo 2, Not a member, ASCE
António Lopes Batista 3, Not a member, ASCE

Noemi Schclar 4, Not a member, ASCE

ABSTRACT
Detailed models of concrete mesostructure can be used to understand the inter-

actions between its components and predict complex deterioration scenarios. The
discrete or distinct element method (DEM) is currently being used for modelling
the fracture process of quasi-brittle materials, such as rock and concrete.

An explicit formulation of a DEM contact model that includes aging viscoelas-
tic behaviour based on the solidification theory is proposed allowing the DEM
particle model to be applied to delayed concrete analysis. Due to the time step
constraints of the DEM, a fast numerical procedure for the analysis of long-term
aging viscoelastic behavior of concrete is also proposed. A calibration procedure
for the aging viscoelastic contact model parameters is presented, including new
expressions for the delayed deformability macro properties.

The presented validation tests using a one contact particle assembly show a
good agreement between the fast numerical procedure, the fully explicit DEM
procedure with small timestep and the creep compliance analytical solution. The
contact aging model validation tests using larger regular and random particle
assemblies show that the fast numerical procedure significantly reduces the com-
putational costs by introducing large time steps in which the solution is computed,
while giving the same accuracy of the fully explicit procedure.
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C++ computational structure of the 2D

particle model for the behaviour analysis

For the implementation of the DEM, the former concepts and procedures were structured

into a C++ computational code (Microsoft Corporation 2010a). Figure C.1 shows a

schematic view of the code’s structure, divided into three main parts. The first SETUP

part deals with the definition of properties, geometries, boundary and analysis conditions.

It is possible to generate a regular, rectangular or hexagonal, mesh, and to built input data

files for a generic mesh (including several types of materials). The second part, CYCLE,

iterates over time and applies the law of motion and the law of forces to all the particles

and contacts until the convergence criteria is reached and the third part, OUTPUT, is

where the main results are written into ASCII files, including data files (.dad) and files

with the undeformed and deformed meshs (using .vtk files).

The fully-explicit algorithm is summarized in the following steps:

SETUP

1. Generation of particle assembly (predefined mesh, rectangular or hexagonal, or user-

defined mesh);

2. Definition of contacts;

3. Definition of boundary and loading conditions;

4. Definition of real or scaled masses;

5. Calculation of the critical timestep or the scaled masses;
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6. Definition of the stopping criteria (maximum simulation time, maximum number of

steps and convergence criteria using force and displacement tolerances);

7. Set type of damping;

8. Set constitutive law;

9. Calculates initial natural frequency, ω0;

10. Calculation of the initial velocities and positions (obtained from an undamped sys-

tem);

CYCLE

11. Law of motion:

a) Calculation of new velocities;

b) Calculation of new positions;

c) Calculation of displacements;

d) Update of the velocities and positions.

12. Law of forces:

a) Calculation of overlap;

b) Calculation of contact position;

c) Calculation of contact velocity;

d) Calculation of incremental contact displacement;

e) Calculation of incremental contact forces;

f) Calculation of total contact forces;

g) Calculation of total particle forces;

h) Updates of the total particle forces.

13. Recalculation of critical timestep or scaled masses;

14. Recalculation of natural frequency, ω0;

15. Check convergence criteria (unbalanced force or displacement criteria). If convergence

is reached, exit; otherwise, go to 11.

OUTPUT
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The proposed fast numerical procedure is summarized in the following steps:

1. Generation of particle assembly (rectangular or hexagonal);

2. Definition of contacts;

3. Definition of boundary and loading conditions;

4. Definition of real or scaled masses;

5. Calculation of the critical timestep or the scaled masses;

6. Definition of the stopping criteria (maximum simulation time or maximum number

of steps);

7. Set type of damping;

8. Set constitutive law;

9. Calculation of the initial velocities and positions (obtained from an undamped sys-

tem);

10. Start the cycle for time-dependent behaviour:

a) Setting creep time, Ti = 0, creep time increment, ∆T and maximum creep time

of analysis, Tmax:

CYCLE

b) Starting the cycle for dynamic relaxation, considering DR time, t and a DR

timestep, ∆t:

i. Law of motion:

A. Calculates new velocities;

B. Calculates new positions;

C. Calculates displacements;

D. Update velocities and positions.

ii. Law of forces:

A. Calculates overlap;

B. Calculates contact position;

C. Calculates contact velocity;

D. Calculates incremental contact displacement;

E. Calculates incremental contact forces;

F. Calculates total contact forces;

G. Calculates total particle forces;
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H. Updates total particle forces.

iii. Recalculation of critical timestep or scaled masses;

iv. Recalculation of natural frequency, ω0;

v. Checking convergence criteria (unbalanced force or displacement criteria).

If convergence is reached, exit. Otherwise, go to i).

OUTPUT

c) Increase of time to Ti+1. If Ti+1 ≥ Tmax, exit. Otherwise, return to b).

d) Calculation of viscoelastic displacement increment, ∆Uvisco, for Ti+1;

e) Calculation of incremental contact force, ∆Fc, add to the contact force, Fc;

The output files are composed by ".dad" file types with the results obtained for the

control particles, including particle ID, step, time, particle position, particle velocity and

particle forces, a ".info" file with the information about the analysis and ".vtk" files for the

graphical representation of the system.

Figure C.2 shows the structure used for the code implementation using C++. The

definition of classes "Particle" and "Contact" within the "Domain" allows for the use of

object-oriented programming and for each problem "Particle" and "Contact" objects are

created were their properties and specific "functions" are predefined.

The Particle.cls class file includes the properties regarding the rigid particles, such

as the radius, the specific mass, the position ()displacements and rotations) the linear

velocities and angular velocities and defines functions to deal with those properties. The

Contact.cls class file defines the properties and functions related to the interaction of

two particles, such as the ID of particle A and particle B, the contact normal and shear

stiffness.

The global functions are defined in the Domain.cls class file which controls the SETUP,

CYCLE and OUTPUT phases. In the CYCLE phase, the domain class calls the law of

motion and the law of forces functions for each timestep until the convergence criteria is

reached.

In the OUTPUT phase the main results for a set of particles (ID =N) and contacts

(ID = M) are written into ASCII files (..._part_ID_N.dad and ..._cont_ID_M.dad).

The results are also written in .vtk format for the representation into a graphical view

using, for example, the ParaView software (Ayachit 2005).
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Figure C.1: C++ discrete element method code flowchart
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Figure C.2: C++ classes
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