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Water utilities face challenges in managing non-revenue water, which encompasses unbilled authorised
consumption, leaks, bursts, authorised consumption errors, and unauthorised consumption. Several approaches
have been developed to address these issues. Most existing methods focus on estimating individual components
of non-revenue water, rather than considering all aspects comprehensively. The installation of smart water
meters has significantly reduced unmetered billed consumption, addressing issues related to the absence of
water meters in some customer locations or difficulties in systematic meter reading. Water utilities can obtain
a comprehensive view of non-revenue water over time by combining the billed metered consumption time
series obtained with smart meters with the network flow time series. Partitioning the non-revenue water
time series into several components, each representing a different pattern in the data, can help one better
grasp the underlying patterns. In this paper, time series decomposition techniques reveal hidden non-revenue
water components, allowing the water utilities to create a network strategy to reduce water losses. Several
decomposition methods were applied, and the best reliable results were achieved with Singular Spectrum
Analysis.

The unbilled authorised consumption is divided into metered and
unmetered and is usually due to water uses for network operation and

1. Introduction

Efficient management of freshwater resources is a significant topic
in the 2030 Agenda for Sustainable Development
(Casale and Cordeiro Ortigara, 2019), especially in a water scarcity
situation.

The water balance, published by the International Water Association
(IWA) (Alegre et al., 2006) is a technique widely used by water utilities
to quantify the system’s input volume, authorised consumption, and
water losses (Table 1). The water balance is usually computed with

maintenance, street cleaning, and garden watering. This component of
non-revenue water is relatively easy to control by the water utilities
since it is possible to estimate or measure the water use points. Ap-
parent losses encompass both unauthorised consumption (e.g., due to
illegal water uses or illegal connections to the public network) and
authorised consumption errors (related to the systematic error in water
meters’ measurements due to their age). Real losses include all the leaks

a periodicity of one year, due to the difficulty in computing and
estimating all the components with an higher frequency (e.g., monthly,
daily). Water utilities use this approach for quantifying non-revenue
water in their distribution systems. The non-revenue water represents
a significant percentage of the system input volume in drinking water
systems and substantially impacts the economic sustainability of wa-
ter utilities. In the Portuguese water utilities, the non-revenue water
reached 27.1% of the system input volume in 2022 (ERSAR, 2023).
Nevertheless, for some water utilities, the annual water balance is the
only way to estimate non-revenue water and its components (unbilled
authorised consumption, apparent losses, and real losses).
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and pipe bursts occurring in the network up to the customers’ mea-
surement point. In general, real losses constitute the largest portion of
non-revenue water and can have a significant impact on several dimen-
sions, including service interruptions caused by pipe bursts and energy
efficiency. Moreover, real losses are the most challenging component
to estimate alongside the unauthorised consumption (Liemberger and
Wyatt, 2019).

More and better tools to analyse non-revenue water and estimate its
components are always welcomed by water utilities. Several literature
methods aim to detect and account for the water volume lost due to
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Table 1
Water balance defined according to IWA (Alegre et al., 2006).
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leaks and bursts and authorised consumption errors (Alkasseh et al.,
2013; Amoatey et al.,, 2014; Fu et al.,, 2022; McKenzie and Seago,
2005; Mutikanga et al., 2011; Palau et al., 2004, 2012; AL-Washali
et al, 2016). However, to our knowledge, the literature does not
commonly provide methods for estimating unauthorised consumption.
Most methods focus on estimating only one component of non-revenue
water, leaving the other components unaddressed. As a result, these
components are typically estimated separately.

A review of the current methods for managing any type of water loss
in a water distribution system is presented in Mutikanga et al. (2013).
This paper reviews and presents tools and methodologies for managing
leakages, apparent losses, and real losses.

In AL-Washali et al. (2016), three methods to assess real losses in
a water supply system are compared: Minimum Night Flow Analysis
(MNFA), Burst And Background Estimates (BABE), and the top-down
water balance. The advantages and disadvantages of each one are
presented. MNFA allows for evaluating the measurement accuracy and
estimating the leakages. However, it requires intensive fieldwork and
pressure information, and the legitimate nighttime flow should be
estimated. MNFA was also used in Alkasseh et al. (2013) to understand
which factors contribute most to the minimum night flow. On the
other hand, the BABE methodology divides the losses into background
losses (also known as leakages) and bursts based on the flow rate and
duration. Due to the high number of assumptions, this method should
only be applied when another option is not possible to use. McKenzie
and Seago (2005) reviewed this methodology and its evolution over
the years, aiming to assess real losses. In Amoatey et al. (2014), water
losses due to leakages and bursts were investigated using the MNFA
and BABE and applied to Ghana’s urban water supply network with
losses of around 40%. The top-down water balance does not depend
either on the pressure or on extensive fieldwork. However, it requires
an unauthorised consumption estimate, which is still a limitation for
water utilities. Moreover, this method does not allow the estimation of
leaks and bursts separately.

The method proposed in Almandoz et al. (2005) uses simulation
to compute the water losses due to leaks and the volume of water
consumed but not measured. However, this methodology is analytical,
requiring multiple measurements and a mathematical model of the
network.

Palau et al. (2004) used multivariate principal component analysis
to detect moderate and severe outliers, i.e., bursts. The flow time series

is split into days, creating a multivariate problem, and the nighttime
period between O h and 6 h is analysed. In Palau et al. (2012), the
previous approach was extended for three day periods: from O h to 7 h,
from 7 h to 16 h, and from 16 h to 24 h, separating working days from
weekends.

A structured methodology (Mutikanga et al., 2011) was presented
to estimate every component of apparent losses, using a sample of
calibrated meters, auditors of the meter readers, data handling and
billing errors, and inspections of suspected locals. The paper affirms
that all the above methods can be used individually and occasionally;
however, applying the methodology proposed is usually difficult for
water utilities.

Bragalli et al. (2019) proposed a methodology to assess the water
losses in real-time using incomplete readings of smart meters. Random
sampling and the evolution of the corresponding error are used to study
the impact of the lack of reading from an increasing number of smart
meters on water losses.

Covas et al. (2008) presented a methodology for assessing real and
apparent losses in a DMA, using MNFA combined with pressure data
and hydraulic simulations of the system through EPANET.! Although
this paper includes an approach for assessing different components of
the non-revenue water at the same time, it is strongly dependent on
fieldwork.

Therefore, a gap persists in data-driven approaches that facilitate
the simultaneous assessment of all non-revenue water components.
Recent technology, such as smart water meters, could greatly assist in
developing a methodology to achieve this goal.

The installation of smart water meters greatly reduces unmetered
billed consumption (mainly when there are difficulties in accessing
water meters for systematic reading). The availability of billed metered
consumption time series, when combined with network flow time
series, enables the extraction of non-revenue water time series data.
Therefore, it is crucial to have methods for separating non-revenue
water into its constituent parts: unbilled authorised consumption, ap-
parent losses, and real losses. These parts could then be used to fill in
the water balance, reducing uncertainty about estimates.

1 EPANET is widely used software for modelling water distribution systems
worldwide.
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Fig. 1. Diagram for decomposition of non-revenue water time series.

In time series analysis, the data can show some patterns; there-
fore, splitting a time series into several components, each indicating a
different underlying pattern, can be useful to understand the dynam-
ical process. This paper aims to propose a data-driven approach for
non-revenue water time series decomposition based on a combination
of smart metering consumption, network flow data, and statistical
methods.

2. Time series decomposition

The most usual and basic decomposition of time series is through
their natural components — trend, seasonal, cyclical and random (Fuller,
2009), but it is unable to decompose the non-revenue water time series
into the desired components of the water balance. In order to achieve
the desired decomposition, it is necessary to employ other decom-
position methods. One option is the time-frequency representation,
which maps a one-dimensional signal of time into a two-dimensional
signal of time and frequency. Two examples of this type of time
series decomposition are the Fourier Transform (FT) and the Wavelet
Transform (WT).

FT is a classical technique for decomposing data into linear, station-
ary, and harmonic components, but it has limitations due to its linearity
and lack of time-domain information. WT is an alternative method
that uses mathematical functions to decompose time series at different
scales and resolutions. It is helpful for non-stationary processes, such
as historical price data (Khandelwal et al., 2015).

Besides the time-frequency decomposition methods, empirical meth-
ods can also be used to decompose time series into unusual compo-
nents, such as the Empirical Mode Decomposition (EMD) or Indepen-
dent Component Analysis (ICA). EMD is a key part of the Hilbert-Huang
Transform (HHT) (Huang et al., 1998) which decomposes any data
set into Intrinsic Mode Functions (IMFs). However, there is a lack
of mathematical understanding of EMD algorithms, and mode mixing
becomes a problem when the same IMF exhibits significantly different
amplitudes over time, or when different IMFs exhibit similar oscilla-
tions in amplitudes. A new method called Ensemble Empirical Mode
Decomposition (EEMD) was developed by Wu and Huang (2009) to
solve the mode mixing problem.

Several variations of EMD and EEMD (Chu et al., 2012; Jianwei
et al,, 2017; Moore et al.,, 2018) have emerged, including single-
channel signal data analysis, multivariate extensions, and higher-order
statistical techniques like Independent Component Analysis (ICA).

Singular Spectrum Analysis (SSA) is another common technique for
decomposing time series. The arbitrary number of additive components
that are obtained can be grouped and interpreted as the slowly varying
trend, oscillatory and noise components. A single parameter, the win-
dow length, is involved in the algorithm, but the decomposition results
depend on the choice of this parameter. Kume and Nose-Togawa (2015)
proposed a decomposition of the power spectrum with filters useful for
monitoring how the SSA algorithm works for the time series decompo-
sition and the proper choice of the window length. This method was
applied in Kume and Nose-Togawa (2015) to daily currency exchange
rate EUR/USD time series.

3. Methodology

This section presents the suggested approach, along with a con-
cise description of all implemented procedures. The proposed method-
ology aims to decompose a non-revenue time series into its latent
components; the steps are summarised in the following:

1. Collect the system input flow from the DMA, for some time (e.g,
one month);

2. Compute the non-revenue water: Does the water utility have
smart meters installed on all customers?

(Yes) Calculate the non-revenue water by subtracting the me-
tered water consumption from the system input flow using
synchronous series, normalised with the same time step;

(No) (a) Infer the water consumption over time for the same
period, using a representative sample of customers
with smart water meters installed (Silva et al., 2024);

(b) Compute the estimated non-revenue water through
the subtraction of the estimated metered water con-
sumption from the system input flow;

(c¢) Smooth the estimated non-revenue water time series

using the kernel regression smoother;

3. Decompose (smoothed estimated) non-revenue water time se-
ries.
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Fig. 1 summarises the proposed methodology.

Although the statistical decomposition method is applied to the non-
revenue water time series, in fact the whole methodology proposed
allows to decompose the system input flow time series, since the
authorised metered consumption is estimated using the smart metering
data.

If the water utility has smart water meters in all billed customers,
the decomposition method can be applied to the non-revenue water
time series to obtain its components. In this scenario, neither the
authorised billed metered consumption estimation nor the smoothing
of the estimated non-revenue water are necessary, as it is possible to
obtain the real non-revenue time series.

A more detailed description of the methods used in the methodology
steps 2a, 2c and 3 is presented below.

3.1. Inference of the water consumption over time

The following procedure is only required if the water utility does
not have smart water meters for all of its customers. The paper by Silva
et al. (2024) introduced a comprehensive approach to infer the water
consumption over a period of time in that case. The method can be
summarised in the following steps:

1. Acquisition of water billing data obtained by the water utility’
responsible person at the local from a predominantly domestic
network area;

2. Cleaning of water billing data, e.g., through the elimination of
the locals without active customers in the analysis period;

3. Clustering of water billing time series data;

4. Obtain a stratified sample of customers by the minimisation of
the variance of the error estimator of the total billed consump-
tion. The strata corresponds to clusters obtained in the previous
step.

5. Inference of the total metered water consumption for each time
instant #: using the sample of n customers with smart metering
U¥it o Yings - Yats > Yan, ) Where yy; = {y;0 V00 Vijnr )
represents the smart metering time series of customer j from
cluster i and M is the length of the time series), the total
consumption is given by:

k
Vrea = 2 NV eb)
i=1

n;

where y;, = ni Zj:l Yiji>» #; is the number of selected customers
from stratum ;', N, is the size of stratum i and 7 € {1,..., M}.

3.2. Kernel regression smoother for smoothing the non-revenue water time
series

The water balance presented in Table 1 shows that the flow time se-
ries has different components: metered authorised water consumption
(billed or unbilled), unmetered authorised water consumption (billed or
unbilled), unauthorised water consumption, water losses due to leaks
and bursts, and measuring errors regarding the water meters.

The sampling approach allowed inferring the metered authorised
water consumption over time for all customers supplied by a DMA.
Thus, the total metered authorised water consumption can be sub-
tracted from the flow time series, and the remaining flow (the non-
revenue water) could be decomposed.

Nevertheless, the sampling approach was designed to infer the
total water consumption in a given period. The estimated non-revenue
water time series has greater variability than the real non-revenue
water time series, which is explained by the sampling approach used
to estimate the water consumption. Therefore, in order to achieve a
more effective decomposition, it is suggested that smoothing is used
as an essential step. The kernel-regression smoother was selected over
moving averages due to its superior results.

Water Research 280 (2025) 123442

Considering a time series {x;,x,,...,x} of dimension 7, the pur-
pose is to compute a smoother time series {X,X,,...,%;}. Kernel
regression is a non-parametric technique to estimate the conditional
expectation of a variable Y relative to a variable X:

EY|X) = m(X), (2)

where m is a function.
Nadaraya (1964) and Watson (1964) proposes that m is defined as:

T Kne—xp)
where K}, is a kernel with a bandwidth 4, i.e., K,(x) = K (%). A Gaussian
kernel could be considered. When applied to a time series, the variable

X is considered the time and Y is the value of the time series. The
bandwidth, A, needs to be chosen and validated in practice.

3)

my(x) =

3.3. Decomposition of non-revenue water into hidden components

The time series decomposition techniques mentioned in Section 2
can be used to carry out the process of splitting the non-revenue
time series into its hidden components. This section briefly discusses
the most common decomposition strategies that can be useful in this
application domain.

3.3.1. Fourier Transform (FT)

Considering a  sequence of N  complex numbers
{x,} = {x¢,xy,...,xy_;}, the Discrete Fourier Transform (DFT) trans-
forms this sequence into another sequence of complex numbers {X,} =
{Xo, X;,.... Xn_1} given by:

N-1
i2r
Xi= Y, xue N )
n=0
N-1
= ,,25 X, [cos <2N”kn> —i sin <2N”kn>] . (5)

The DFT transforms a sequence of values in the time domain into
a sequence of values in the frequency domain. After identifying the
predominant frequencies and removing the undesired ones, an inverse
transformation is necessary to return to the time domain. The Inverse
Fourier Transform (IFT) is such that:

N-1
1 lz—nkn
X, = — X, e ™™, 6
! N 1;) ‘ ( )
For the application of FT, the system must be linear and the data
must be strictly periodic or stationary.

3.3.2. Empirical Mode Decomposition (EMD)

The Empirical Mode Decomposition (EMD) method decomposes any
data set into Intrinsic Mode Functions (IMFs) (Huang et al., 1998). An
IMF is a function that satisfies two conditions: (1) in the whole data set,
the number of extrema and the number of zero crossings must either
equal or differ at most by one; (2) at any point, the mean value of the
envelope defined by the local maxima and the envelope defined by the
local minima is zero.

The method proposed for the decomposition into IMF components
is intuitive, direct, a posteriori and adaptive, only based on the data.
The systematic process for the extraction of IMFs is designated as the
sifting process. In the end, the data can be decomposed into n-empirical
modes and a residue, either the mean or a constant.

EMD has been tested and validated, but only empirically. This
method greatly benefits from the true physical meanings found in
many of the examined data sets. Furthermore, it is a data-driven
algorithm and works in the temporal domain directly rather than in
the corresponding frequency domain (Mijovic et al., 2010).
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3.3.3. Ensemble Empirical Mode Decomposition (EEMD)

Despite the EMD method has been widely adopted to decompose
time series (Hong, 2011; Qiu et al., 2016; Yaslan and Bican, 2017;
Nava et al., 2018), there is a lack of mathematical understanding of the
EMD algorithms, e.g., the dependence of IMFs on the number of sifting,
the convergence property and the stability to noise perturbation (Singh
et al.,, 2017; Moore et al., 2018). Moreover, a problem was pointed
out when the same IMF has very different amplitudes along time or
different IMFs have similar amplitude oscillations, called mode mixing.
In addition, applying EMD often results in more IMFs than the number
of characteristic time scales actually present.

As previously mentioned, Wu and Huang (2009) introduced the
Ensemble Empirical Mode Decomposition (EEMD) method, which ad-
dresses the issue of mode mixing in EMD by enhancing the high-
frequency component through the addition of random white Gaussian
noises to the original signal.

Adding white noise improves the accuracy of the decomposed signal
and preserves its original characteristics. EEMD depends on the ampli-
tude of the added noise and the ensemble times. When the amplitude of
the added white noise is too low, the mode mixing problem cannot be
suppressed, while if the amplitude is too high, more pseudo components
will appear (Yang et al., 2017). Relative to the ensemble times, if the
noise is added in the EEMD more times, then the noise of the average
result is smaller, and the result is closer to the real value (Zhang et al.,
2018).

3.3.4. Independent Component Analysis (ICA)

The Independent Component Analysis (ICA) is a technique aiming
to find a linear representation of non-Gaussian data, through a set
of statistically uncorrelated components (Hyvarinen and Oja, 2000;
Hyvérinen et al., 2001).

When the data are time series, the model is defined as:

X, = As,, (2]

where A is a square matrix and the Independent Components (ICs)
s;; (the hidden components) are uncorrelated. The assumption is not
that the ICs are non-Gaussian, but rather that they have different
auto-covariances, particularly non-null ones, or their variance is not
stationary. The method based on auto-covariances is applicable for
temporal dependent data, but only works when auto-covariances are
different. An alternative method uses non-stationary data, which works
better for data with changing variance over time (Hyvirinen et al.,
2001).

ICA requires multivariate data. However, if the data is only one time
series, a typical approach in the literature is to use EMD or EEMD before
applying ICA to the set or a subset of IMFs (Mijovic et al., 2010; Xian
et al., 2016; Yu et al., 2018).

3.3.5. Singular Spectrum Analysis (SSA)

Singular Spectrum Analysis (SSA) is one technique whose primary
objective is to separate the original time series into an interpretable
set of time series. The arbitrary number of additive components that
are obtained can be grouped and interpreted as the slowly varying
trend, oscillatory, and noise components. SSA is a nonparametric,
data-adaptive spectral technique that is essentially an application of
principal component analysis in the time domain. A single parameter,
the window length, is involved in the algorithm, and the decomposition
results depend on its choice.

Considering a time series {x|,x,,...,xy} of dimension 7, the algo-
rithm of SSA can be summarised as follows (Hassani, 2007):

1. Embedding: Built the trajectory matrix X of the time series;

2. Singular Value Decomposition (SVD): Perform the SVD of the
trajectory matrix X;

3. Grouping: Considering m disjoint subsets I, ..., I,, of the
indices {1,2,...,rank(X)}, and I, = {ikl,...,ikp}, compute the
matrix X, corresponding to the group /;;
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4. Diagonal averaging: Each matrix X, is transformed in a Han-
kel matrix and, then, into a new series of length T through
the correspondence between Hankel matrices and time series.
Diagonal averaging applied to the resultant matrix X; produces
a reconstructed time series { y’l‘, s y’;}. Therefore, the original
time series can be decomposed into the sum of m reconstructed
subseries:

kon=1,..,T. ©))

4. From theory to practice: Methodology application
4.1. Case study description

A predominantly domestic water distribution network area was used
in this work to illustrate the proposed methodology. The water distribu-
tion network is organised into network areas where the water utility has
invested in smart metering to monitor water losses. According to the
latest available data (ERSAR, 2023), unbilled water for this water utility
in 2022 was 19.2%. This figure is relatively low compared to the last
reported average by ERSAR for the entire country, which was 27.1%.
Furthermore, real losses averaged 62 liters per service connection per
day, significantly below the IWA’s upper limit for good performance,
which is 100 liters per service connection per day. Results from this
study indicate that there are few pipe bursts in the network, aligned
with the water utility’s overall performance of 13 failures per 100
km per year — this figure is within the acceptable limits for good
performance.

Locals without customers were removed from the analysis because
it makes no sense to include them. Thus, from the total 582 locals of
the DMA, only 496 with active customers were considered.

System input flow data were collected between March 2017 and
February 2019, while water billing data was collected from April 2017
to March 2019.? During this period, no smart meters were installed
in the customers and the water utility manually collected the monthly
consumption of each customer for invoicing. This case study was used
in Silva et al. (2024) to infer water consumption over time using a
representative sample of customers with smart meters.

The approach presented in Section 3.1, which only uses billing
data obtained without smart metering for the representative sample
selection of customers and uses smart data for the subsequent revenue
water estimation, was used to estimate the revenue water. Afterwards,
the non-revenue water was computed as the subtraction between the
system input flow and the total water metered consumption for de-
composition. The non-revenue water volume accounts 19% of the total
system input volume (which can be considered a low value (Liemberger
and Wyatt, 2019), and is aligned with the value reported by the water
utility for the entire system) in the period between the 26th of October,
2019 and the 4th of January, 2020. This was the period considered for
the revenue water inference since there are smart metering data from
all customers for this period, as well as the system input time series.
Thus, the estimated non-revenue water (based on the estimated revenue
water) can be compared with the real non-revenue water (based on the
smart metering data from all customers).

In this case study, all the smart water meters were new, and it was
assumed that the measurement errors could be neglected. Therefore,
the negative values in the non-revenue water (without a physical
meaning) come from to the fact that the flowmeter, that controls the
flow into and out of the distribution network, has systematic errors
(due to under-registration, for example) that are not known (Ribeiro
et al., 2018). To prevent this from happening, it would be necessary to
calibrate this equipment either in situ or in the laboratory, a process
that was not possible in this study. The next sections present the
smoothing and decomposition results obtained.

2 Billing data has a delay of one month since the invoice corresponds to
the last month’s consumption.
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Fig. 2. Real, estimated and smoothed estimated non-revenue water using the kernel regression smoother with a bandwidth equal to eight.

4.2. Smoothing of the estimated non-revenue water

The sampling approach used to infer the total water consumption
in a given period also allowed inferring the metered authorised water
consumption over time for all customers supplied. However, this ap-
proach generates greater variability in the estimated non-revenue water
time series, as can be observed in Fig. 2, where the real and estimated
non-revenue water are represented. Therefore, the kernel-regression
smoother was suggested as an essential step.

A bandwidth (h) must be defined to apply kernel regression
smoother (Egs. (2) and (3)). To choose the best option for the band-
width, a Euclidean distance between the real and the smoothed es-
timated non-revenue water was computed for several values of the
parameter:

T

dX,X) = 4| D (x; - %), )
i=1

where X = {x,x,, ..., x7} is the real non-revenue water time series and

X = {X,,%,,..., %7} is the smoothed estimated non-revenue water time

series.

The Euclidean distance between the real and smoothed estimates
of non-revenue water was calculated for bandwidths ranging from 2
to 20. Typically, when selecting a bandwidth, one should consider the
curve’s elbow. However, the elbow is not evident in this situation,
and the distance ranges from 12.5 to 10.5. Therefore, the first band-
width with a distance below 11 was considered, i.e., a bandwidth of
8. Fig. 2 illustrates the difference between the real, estimated, and
smoothed estimated non-revenue water over a period of one and a half
weeks. The discrepancies between the real non-revenue water and the
smoothed estimates are minimal, with deviations primarily arising from
the estimation process of the non-revenue water itself.

4.3. Decomposition of the smoothed estimated non-revenue water

The next goal is to decompose the smoothed estimated non-revenue
water using the methods discussed in Section 3.3. In this section, the
decomposition results of the application of each method or a combi-
nation of methods to the smoothed estimated non-revenue water are
presented and discussed. Since the real components of the non-revenue
water are not known, the analysis is based on the components’ shape,
common sense and the opinion of knowledgeable people. To validate
these approaches, it is essential to understand the history of bursts, the

unmetered uses, and the illegal uses, based on data available at the wa-
ter utility (e.g., work orders, identified illegal water uses, identification
and characterisation of authorised unmetered consumption, namely for
garden watering, fire fighting).

4.3.1. Fourier Transform

To decompose the estimated smoothed non-revenue water using the
FT, the first step was to compute the existing frequencies and respective
amplitudes of the time series in the study (spec.fft function from
spectral R package).

This series presented 6789 different frequencies with a different
amplitude associated, which corresponds to its length. Fig. 3 shows
the spectrum of the time series, i.e., the frequencies and the respective
amplitudes. Although the null frequency has a prominent amplitude,
there are also several frequencies around zero with important values
of amplitude. For the decomposition using the FT, the predominant
frequencies should be considered, and the undesired ones should be
removed. However, observing the spectrum of the smoothed estimated
non-revenue water, there are a huge number of predominant frequen-
cies. Thus, the decomposition procedure will result in many compo-
nents, one per frequency. Furthermore, each of these components will
exhibit harmonic characteristics. Grouping frequencies is one possible
solution. Nevertheless, the number of possible combinations makes this
procedure impractical.

4.3.2. Empirical Mode Decomposition

EMD is a technique that decomposes data into IMFs based solely on
the data, without the need for defined parameters. Applying EMD to
the smoothed estimated non-revenue water (emd function from EMD R
package) resulted in 10 IMFs and the residue, presented in Fig. 4.

The residue serves as a representation of the data trend and may
indicate the occurrence of small leaks spread through the network.
Furthermore, the first four components may indicate the occurrence
of bursts, authorised unmetered consumption and unauthorised con-
sumption. Nevertheless, it is believed that the shape of the remaining
IMFs does not correspond to the shape of any desired component
of the smoothed estimated non-revenue water decomposition. Some
combinations of IMFs could be more meaningful. However, the high
number of IMFs, the lack of information about possible combinations,
and the difficulty in understanding what the remaining components
represent complicate this process.
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4.3.3. Ensemble Empirical Mode Decomposition

For the EEMD application, two parameters are necessary to be
defined: the amplitude of the noise and the ensemble times. When the
amplitude of the noise is too high, pseudo components will appear.
When the amplitude is too low, the mode mixing problem cannot be
suppressed. Some values for the amplitude were considered without sig-
nificant changes in the results. Regarding the ensemble times, when the
noise is added more times, the result is closer to the real value. In this
case, the ensemble times was defined as 50. The results presented from
now on were obtained with a noise equal to 0.0001. The application
of EEMD (EEMD function from hht R package) with these parameters
resulted in nine average IMFs and the residue, presented in Fig. 5.

EEMD allowed reducing one IMF relative to the application of EMD.
Moreover, the last two average IMFs together with the residue could
represent the leaks, while the first three, maybe four, average IMFs
could be the bursts, authorised unmetered consumption and the unau-
thorised consumption. Still, it is difficult to understand the meaning of
the remaining elements.

4.3.4. Independent Component Analysis

A multivariate time series is required for the application of ICA.
Because the goal is to decompose the smoothed estimated non-revenue
water, a standard combination of procedures was employed. Thus,
EMD/EEMD was used first to produce the set of IMFs, and then ICA
was applied to the IMFs. Three choices were explored based on the
literature (Mijovic et al., 2010; Xian et al., 2016; Yu et al., 2018): using
all IMFs, using the original time series and a set of IMFs less correlated
with it, and using the set of IMFs more correlated with it. The three
alternatives were repeated, with EMD and EEMD as the first step.

ICA was run using the FastICA algorithm that uses non-gaussianity
measured by the negentropy (fastICA function from fastICA R pack-
age with default values).

Using the 10 IMFs obtained with EMD, ICA was applied to the set
of all IMFs, obtaining 10 ICs represented in Fig. 6. There are some ICs
(2nd, 3rd and 10th) that could represent a trend, i.e., the leaks that
occur in the system. The 1st, 5th, 6th and 9th ICs could be the bursts,
authorised unmetered consumption and the unauthorised consumption.
Nevertheless, it is still hard to understand the remaining components
and their physical meaning.

Applying EMD to the original time series, either to the set of IMFs
less correlated with the original time series or to the set of IMFs
more correlated with the original time series, rendered interpreting
the IMFs challenging. Although fewer ICs were obtained, there was
no physical meaning for the components from the non-revenue water
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decomposition. In some cases, the IMFs are unable to represent the
desired components of the decomposition of the smoothed estimated
non-revenue water. Even though some components could be combined
(although knowing which components should be combined could be
difficult), this will be a manual operation without a practical guide
to follow. Since the goal is to give practical tools for water utilities,
combining components based on common sense may not be a beneficial
option.

The previous three ICA applications were redone using the average
IMFs obtained from EEMD. Similar difficulties were encountered in
all applications, thus the results are not reported. In this case, certain
combinations make no physical sense, or possible combinations are
hard to define. Furthermore, it seems that the usual leaks are not
represented in some of the decompositions.

4.3.5. Singular Spectrum Analysis

For the SSA application, besides the window length, the number
of eigenvalues considered is also a parameter to be selected in SSA.
Initially, the window length was defined as L = T where T is the
length of the time series, and the number of eigenvalues as the same
default value of the R function, i.e., 50.

The norm of each component linked to each eigenvalue was cal-
culated (Fig. 7) in order to figure out how the components should
be grouped. Observing this plot, the components with similar norms
should be grouped. In this case, the 1st component stands alone, the
2nd and 3rd should be grouped as a 2nd final component, and the 4th
to 50th component should also be grouped as a 3rd final component.
This means the smoothed estimated non-revenue water is decomposed
into three components plus the residuals.

Fig. 8 presents the three components and the residuals after the
grouping and diagonal averaging. These components characterise non-
revenue water (authorised unbilled unmetered consumption, apparent
losses due to unauthorised consumption, and real losses due to leaks
and pipe bursts). Component 1 stands for a trend almost constant,
probably representing the set of small continuous leaks and back-
ground leakage in the system. The remaining components may be
attributed to variations in consumption behaviour (unbilled unmetered
consumption and unauthorised consumption) rather than pipe bursts.
Based on the identified components, it is unlikely that pipe bursts
have occurred. Such events are typically associated with a sudden
and sustained increase in flow until the pipe is repaired. These bursts
usually lead to prolonged disruptions and abnormal flow increases that
alert utility managers to potential failures. Component 2 represents
some oscillations, maybe due to some weekly water consumption vari-
ations. Component 3 and residuals could represent authorised unbilled
unmetered or unauthorised consumption. It is pinpointed that the
negative values in components 2, 3 and residuals could be due to
flowmeter errors. A characterisation was conducted for the negative
values observed in components 2 and 3. It was found that their magni-
tudes range from —10~7 to —10~2, which is significantly lower compared
to non-revenue water values. Therefore, these negative values can be
considered negligible (Simdes et al., 2024). Additionally, the regression
line associated with the calibration of the flowmeters could be utilised
to correct these values.

Tests with the window length varying between 25% and 75% of the
time series length in steps of 250 were run. Some differences were ver-
ified in the cut-off point between the 2nd and 3rd components in terms
of the 4th and 5th eigenvalues. However, observing the corresponding
components makes it difficult to identify the differences. Thus, L = %
continued to be the choice.

In terms of eigenvalues, a range of 5 to 50 was investigated, with
steps of 5. When the number of eigenvalues is reduced, the variability
of the 3rd component reduces, reaching almost a trend when five
eigenvalues are used. Since this makes no physical sense, it was decided
that 50 eigenvalues would be the best option.
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Fig. 6. ICA decomposition of the smoothed estimated non-revenue water into 10 ICs, using all IMFs obtained with EMD.

Thus, of all the decompositions obtained previously, the one pre-
sented in Fig. 8 has the most physical meaning. Fig. 9 presents the
decomposition of the real non-revenue water. There are some differ-
ences, especially in component 2 and the residuals. These differences
are essentially visible in the variability and peaks, the result of the
smoothing that had to be applied previously and which were already
visible when comparing the real non-revenue water time series with
the smoothed estimated series. However, the general behaviour of
the components seems to be in line with the expected behaviour
of the non-revenue water components and the results obtained are
therefore considered a satisfactory approximation. Table 2 presents
the system input volume series decomposition obtained with SSA and
according to the water balance. The estimated real losses due to small
continuous leaks and background leakage result from the Component
1 and Component 2, while the estimated authorised unmetered and
unauthorised consumption result from Component 3 and residuals. The
identified base loss (small continuous leaks and background leakage)
seems reasonable for a network with the characteristics of the water
utility and could likely be managed through pressure regulation or
network rehabilitation. However, the current rehabilitation rate is only
0.4% per year, which is below the recommended rate.

5. Conclusion

This work introduces and evaluates an approach for decomposing
the flow time series, specifically those related to non-revenue water.
When the water utility does not have smart water meters for all con-
sumers, the non-revenue water needs to be estimated based on stratified
sampling and time series smoothing.

A real-case study of a drinking water distribution system was consid-
ered. Smart water meters were already installed in this network area.
For achieving the non-revenue water time series, the metered water
consumption time series was estimated using smart metering data from
a representative sample of customers. Because the stratified sampling
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Fig. 7. Norm of each component associated with each eigenvalue in the SSA analysis.

approach uses global statistics, the inherent time variability is not taken
into account. This variation is spread when the estimated metered
consumption time series is subtracted from the system input flow to get
the estimated unmetered consumption. Therefore, we needed to smooth
out the estimated unmetered consumption before using decomposition
methods, and we considered a kernel regression smoother for that
purpose. Since the bandwidth definition is required, many values for
this parameter were tried. The parameter value that produced the
smallest Euclidean distance between the real and smoothed estimated
non-revenue water was chosen. In this case, the kernel regression
smoother with a bandwidth of eight was used to smooth the estimated
non-revenue water.

Afterwards, different methods for time series decomposition into un-
usual components were applied to the smoothed estimated non-revenue
water. The results with SSA were considered satisfactory according to
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Table 2
System input volume series decom
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osition according to the water balance.

Estimated revenue water
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System input volume

Estimated non-revenue water
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Fig. 8. SSA decomposition of the smoothed estimated non-revenue water into three
components and the residuals.

the water utility. Thus, the smoothed estimated non-revenue water was
decomposed into three components plus the residuals. Component 1
could be considered the usual small continuous leaks and back-
ground leakage since it is a trend, while component 2 presents some
oscillations, maybe due to weekly water consumption variations.
Component 3 and residuals might be related to authorised unbilled
unmetered consumption or unauthorised consumption. It is noted
that the negative values in components 2, 3 and residuals could be
due to flowmeter errors. Although SSA is applied to the non-revenue
water, the entire methodology is able to decompose the system input
flow into its components: authorised metered consumption, autho-
rised unmetered consumption, unauthorised consumption, authorised
consumption errors, and real losses due to leaks.

According to the water balance, the decomposition achieved is
aligned with the goal of breaking down the non-revenue water into
its individual parts. These findings are crucial for the water utility as
they contribute to fill the water balance and effectively managing water
losses. It is important to note that the water company only needs to
use SSA (Singular Spectrum Analysis) on the real non-revenue water
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Fig. 9. SSA decomposition of the non-revenue water into three components and the
residuals.

time series for the decomposition, provided that all customers already
have smart water meters. For future development, it is advisable to
implement the SSA decomposition in other network sectors that have
higher levels of non-revenue water (both apparent and real losses) and
various problematic components. In addition, calibrating the existing
flowmeters in the network and correcting the respective flow series
for systematic errors should be one of the first steps in the time series
decomposition process.
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