
1 INTRODUCTION 
The extensive coastline of Portugal, which 

extends to approximately 1,860 kilometres, 
including the mainland and the Azores and 
Madeira archipelagos, is frequently exposed to 
emergency situations arising from storms and 
adverse sea conditions. These coastal hazards 
present a significant threat to public safety, 
maritime structures, infrastructures, and port 
activities. Given the high exposure of the 
coastline to severe storms and hurricanes, 
especially in the Azores islands, which have a 
long history of such incidents, it is crucial to 
understand and predict the risks associated with 
wave-induced overtopping, flooding, and 
navigation challenges. In this context, it is evident 
that early warning systems (EWSs), play an 
important role. 

The initial attempts to develop EWSs for 
extreme ocean-related events were primarily 
focused on coastal areas and parameters such as 
currents, sea levels, and flooding (Gracia et al. 
2014). These endeavours frequently drew upon 
limited data sources (Doong, et al. 2012). 

Some EWSs employ a simplified approach 
based on empirical equations (Stokes, 2021) or on 
offline simulations (a limited set of pre-run 
scenarios), thereby lacking the modelling of 

complex physical phenomena (Lane et al. 2008; 
van Dongeren et al. 2018; Garzon et al. 2022).  
In contrast, more sophisticated systems use real-
time complex numerical simulations to generate 
more precise forecasts (Gracia et al., 2014, 
Auclair 2022). However, certain systems still 
concentrate on parameters such as currents, sea 
level, temperature, waves or salinity fields (Trotta 
et al., 2021; Moore et al. 2021; Leitão et al., 
2023). This approach may lack specificity in 
quantifying the actual risks faced by port 
infrastructure or fail to provide timely warnings. 

An effective Early Warning System (EWS) is 
defined as a system that is capable of predicting 
the occurrence and severity of hazards. Such a 
system ultimately reduces a port’s vulnerability 
by enhancing its capacity for planning and 
efficient response to emergency situations. 

In order to achieve this objective, the system 
must: a) be underpinned by robust data 
concerning meteorological, oceanographic, and 
geological conditions; b) provide accurate 
forecasts of critical parameters, using suitable 
numerical models and statistical techniques; c) 
communicate warning information to coastal/port 
stakeholders and communities in a timely and 
effective manner; d) educate stakeholders and 
coastal communities about potential hazards and 
develop comprehensive evacuation plans. 
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However, reliable data on coastal met-ocean 
conditions are scarce and confined to a few 
locations where buoy measurements are 
available, often subjected to flaws primarily due 
to inoperability periods. 

Moreover, the complexity of atmospheric and 
oceanic systems makes it extremely challenging 
to forecast wave and wind conditions, their 
transformations, and the intensity of the ensuing 
coastal hazards. EWS heavily depend on the 
quality of the offshore data and of the numerical 
models upon which they are built. 

The case study presented in this paper, which 
illustrates these developments, is the port of Praia 
da Vitória, located on Terceira Island, and its 
adjacent coastal bay. 

A recent enhancement to the system involves 
the application of neural network tools to 
calibrate the wave propagation models. As with 
any EWS, its effectiveness is significantly 
influenced by its reliability and accuracy 
(Dominguez & Resio, 2016). 

In order to achieve more accurate predictions, 
a new method was developed with the objective 
of optimising the forecasts produced by the 
system.  

The use of data from available databases 
encompassing buoys, pressure sensors, and 
meteorological stations enabled the application of 
neural networks to enhance the accuracy of the 
numerical models’ results.  

 

2 EARLY WARNING SYSTEM 

2.1 Development and Scope 

In recent years, a number of serious incidents 
involving moored ships and navigation have 
occurred in various ports and coastal areas of the 
Azorean islands. In response, the port authority, 
Portos dos Açores, SA, recognised the necessity 
for an EWS capable of forecasting waves, 
overtopping, flooding, and navigation risks, 
particularly those associated with moored ships 
and the navigation of access channels. 
Consequently, the development of this system 
was initiated for the ports of Praia da Vitória S. 
Roque do Pico and Madalena do Pico. 

The HIDRALERTA system retrieves daily 72-
hour wave and wind forecasts from the European 
Centre for Medium-Range Weather Forecasts and 
Copernicus, with intervals of either 3 or 1 hour, to 
drive the wave module and operates in real-time 
mode.  

The selection of the time interval is contingent 
upon the specific requirements of the prototype. 
For instance, erosion estimation within the system 
utilises a 1-hour interval, a practise that is also 
being implemented for the system’s ongoing 
expansion to include ship manoeuvring 
simulations. Presently, for the prototypes at the 
ports, a 3-hour interval is employed due to the 
constraints of computational resources. The 
decision to utilise a 1-hour interval is typically 
straightforward, contingent upon whether 
employing a three-hour interval might yield less 
accurate results by failing to fully capture the tidal 
influence. 

The simulated incident wave conditions at the 
toe of the structures/ships, along with other met-
ocean parameters such as wind, currents, and sea 
level, are used to compute wave overtopping and 
ship motions. As all numerical models operate in 
real-time, modifications to the initial data or 
boundary conditions (such as bathymetry, 
structures) can be readily implemented. 

The HIDRALERTA system has previously 
assisted local entities in Praia da Vitória before 
and during the passage of Hurricane Alex over the 
Azores islands. It is noteworthy that the system 
was able to identify the low-pressure atmospheric 
system from which that hurricane developed a 
week in advance. The tools provided by the 
HIDRALERTA system, in conjunction with the 
expertise and experience of local entities, 
facilitated the decision-making process regarding 
risk prevention and minimisation measures.  

One of the most notable features of 
HIDRALERTA is its capacity to issue alerts for 
overtopping and induced flooding in coastal areas 
and harbours, as well as for moored ships within 
the port or harbour. Typically, port activities such 
as ships’ approach manoeuvres and 
loading/unloading operations, are conditioned or 
suspended based on weather or wave forecasts, 
often leading to significant economic losses. 
Nevertheless, there are instances when dire 
weather forecasts result in minimal distress, and 
severe accidents frequently occur under nearly 
average wind and wave conditions. Furthermore, 
the effects of excessive mooring forces on ships 
can be effectively managed with an appropriate or 
reinforced mooring arrangement if their effects 
on the ships can be accurately forecasted. A 
precise risk assessment must rely on specific 
parameters that are directly related to the actual 
risks being predicted. These include overtopping 
discharges or volumes, as well as the movements 
of the ship and its mooring loads. In order to 
accurately predict the aforementioned risks, it is 
essential to consider the entire wave-structure 
interaction system or the wave-moored ship 
interaction system. This specifically renders the 



HIDRALERTA system a unique and valuable 
asset. Furthermore, it is becoming an increasingly 
effective tool to establish, implement, and 
monitor emergency plans, thereby supporting 
authorities in managing hazardous situations. 
Moreover, the system serves as a long-term 
management tool, as it is capable of simulating 
responses to future scenarios related to climate 
change. These scenarios may include increases in 
mean sea level and/or storm severity, which are 
likely to elevate the possibility of coastal 
flooding.  

The HIDRALERTA EWS (Figure 1) 
encompasses three Azorean ports: Praia da 
Vitória, São Roque do Pico and Madalena do 
Pico, (ECOMARPORT project), and six 
mainland ports: Ericeira (To-SEAlert project), 
Costa da Caparica (To-SEAlert project), Sines 
(BLUESAFEPORT project), Peniche 
(BSafe4Sea project), Faro and Quarteira (EW-
Coast project). 

 
Figure 1. HIDRALERTA EWS pilot sites in Azores and 
mainland Portugal. 

The case study presented in this paper 
concerns the Praia da Vitória coastal bay and 
harbour, Figure 2. Praia da Vitória is a small town 
situated along the eastern coast of Terceira Island, 
which forms part of the Azores archipelago. The 
bay and harbour of Praia da Vitória are of 
significant economic importance to the island of 
Terceira. The bay's deep, sheltered waters provide 
an optimal environment for a diverse range of 
maritime activities, including fishing, 
commercial shipping, recreational sailing, and 
yachting. The harbour is home to the island’s sole 
container ship quays and a substantial fishing 
fleet. To the north of the bay, a marina caters to 
pleasure crafts, while an expanding maritime 
tourism sector is also in evidence. 

 

Figure 2. Praia da Vitória Bay and harbour (left). Container 
terminal (right). 

 

2.2 Structure of the EWS 

The Early Warning System (EWS), known as 
HIDRALERTA, Pinheiro et al. (2020, 2022), 
operates on a daily basis to provide emergency 
alerts related to wave overtopping and ship 
navigation, as well as operational constraints of 
port activities across seven ports and coastal 
zones in mainland Portugal and three additional 
ports in the Azores Islands. 

The HIDRALERTA system employs a 
combination of numerical models that run in real-
time to simulate wave propagation, estimate mean 
overtopping discharge over port infrastructures 
and coastal defence structures, and determine the 
motions and mooring forces of ships. The system 
employs available forecasts of regional wind and 
sea-wave characteristics offshore, in conjunction 
with astronomical tidal data as inputs to the 
numerical models. These generate forecasts of 
overtopping volumes, movements, and mooring 
forces on a three-hour basis, which are 
subsequently compared with pre-set thresholds. 
The probability assessment of exceeding these 
thresholds facilitates risk level assessment. Based 
on the forecasted risk level, potential emergency 
situations, and the safety of port operations can be 
foreseen in advance (72h), thus allowing for the 
issuance of adequate warning alerts. 

Any modifications to the initial data or 
boundary conditions, such as bathymetry or 
structural details, can be readily incorporated. 

In accordance with the recommendations set 
forth by Basher (2006) & the ISDR Platform, an 
effective and comprehensive early warning 
system comprises four essential elements: Risk 
knowledge, Monitoring and warning service, 
Dissemination and communication, and Response 
capability. 

The current architectural framework of the 
HIDRALERTA system, Figure 3, prioritizes the 
Monitoring and warning service (modules I to 
IV), and the Dissemination and communication 
(Module V) elements.  



  
Figure 3. The HIDRALERTA EWS architectural 
framework with NN modelling. 

 
Module I – Forcings. In this module, the 

characteristics of the sea-waves, as well as water 
levels and wind conditions, are defined. Offshore 
wave conditions (either hindcast or forecast data) 
are provided by the ECMWF and CMEMS and 
are propagated inshore using the SWAN model 
(Booij et al., 1996). While inshore wave 
conditions can be directly applied to coastal 
applications, specific models are required for 
ports. In such instances, HIDRALERTA employs 
either the DREAMS model (Fortes, 2002) or 
BOUSSWMH (Pinheiro et al. 2011). A more 
detailed explanation can be found in sections 3.1 
and 3.2. 

Module II – Specific parameters. The sea 
conditions delineated in Module I serve as an 
input to estimate: 

i) Wave overtopping over port structures 
with NN_OVERTOPPING2 (Coeveld et 
al., 2005), with ongoing enhancements 
incorporating SWASH (Zijlema et al., 
2011). 

ii) Flood height at natural beach profiles 
based on empirical formulas derived from 
physical model tests by Hunt (1959) and 
field data (natural beaches) by Holman 
(1986), Stockdon et al. (2006), Nielsen 
and Hanslow (1991), Ruggiero et al. 
(2001), Guza and Thornton (1982) and 
Teixeira (2009). The values obtained from 
the aforementioned formulas are 
evaluated for consistency. In the event that 
no discrepancies are identified, the results 
are averaged and combined with the tide 
level and storm surge to determine the 
flooding height. 

iii) Wave overtopping over coastal structures 
with empirical formulae from Mase et al., 
(2013) and Masatoshi et al. (2019), which 
are based on physical model tests, are 
employed for structures situated in 
proximity to or along the coastline. For 
certain prototypes, HIDRALERTA 
integrates simulations from XBeach 

(Roelvink et al., 2009) with Bayesian 
networks to enhance accuracy. 

iv) For the calculation of forces on mooring 
lines and fenders, as well as ship motions 
at quays, the SWAMS software (Santos, 
1994, Pinheiro et al., 2013) is employed. 
More details are given in Section 3.3. 

v) Ship manoeuvring safety (through the 
evaluation of dynamic under-keel 
clearance along the ship route while 
entering the port).  

Module III – Forecast optimization. In this 
module, neural networks are trained to enhance 
the accuracy of numerical wave prediction 
models (as detailed in section 4) at inshore 
locations using data from wave buoys. 

Module IV – Risk assessment. Comparison of 
the computed values generated in Module II 
(overtopping discharge, flood height, ship 
movements, mooring forces, and under keel 
clearance) against pre-set thresholds, with the 
objective of issuing warnings. The risk levels are 
classified into four distinct categories (from 0 to 
3, where 0 indicates no risk and 3 represents the 
highest level of risk). Further details on the 
assessment of risk for moored ships can be found 
in Section 3.3. 

Module V – Dissemination and 
communication of the results of the preceding 
modules. This module generates and provides 
access to 72-hour forecasts, which are updated 
daily via a web platform and include all results 
from the previous modules. The Web platform 
offers a number of functionalities, including. alert 
maps that identify potentially at-risk 
elements/activities. Furthermore, Module IV is 
responsible for issuing two daily bulletins (one 
pertaining to overtopping and the other to moored 
ships) to relevant authorities. These bulletins 
provide details of alerts for the following 72 
hours. Furthermore, the bulletins facilitate the 
continuous validation of the alert system through 
the feedback received from local authorities, with 
whom the development team has established 
cooperative protocols. 

3 FORCINGS 

3.1 Wind and Wave Forecasts 

The system employs a suite of numerical models 
that utilise forecasts of regional wind and sea-
wave characteristics offshore, in conjunction with 
astronomical tide. A 3-day advance forecast for 
offshore sea-waves and winds is downloaded 
(every day) from the High-Resolution Forecasts 
(HRES) provided by the ECMWF, which 



currently offers a horizontal resolution of 9 km. 
The HRES provides detailed descriptions of 
future weather conditions, available for 3.5 days 
at 06UTC and 18UTC. The HRES is integrated 
with the Wave model (ECWAM, which is the 
ECMWF WAM model, WAMDI, 1988) and the 
Dynamic Ocean model (NEMO), influencing the 
development of Tropical Storms. The WAM 
model is capable of providing accurate forecasts 
of sea waves parameters, including significant 
height (Hs), mean and peak periods (Tm and Tp, 
respectively), and average direction (θm) as 
illustrated in Figure 4. The spatial resolution of 
the wave and wind fields is 0.1 degrees. The 
XTide tool (Flater, 1998) is employed to generate 
astronomical tide levels, utilising the US National 
Ocean Service algorithm for tide prediction.

 
Figure 4. Wave and wind forecasts. ECMWF-WAM & 
CMEMS Copernicus Marine Service Forecasts. 

 

3.2 Wave Modelling 

The wave propagation modelling incorporates 
three numerical models designed for large scale 
(SWAN model), and local scale (DREAMS and 
BOUSSWMH models) analyses, which are 
supplemented by a finite element mesh generator.  

The numerical simulations are conducted on 
the Central Node for Grid Computing (NCG) of 
the Portuguese Infrastructure for Distributed 
Computing (INCD), which comprises a 64-node 
high-performance computing facility. 

The primary model employed is a spectral 
wind-wave model, which has been designated as 
a third-generation model and is specifically the 
SWAN model (Booij et al., 1996). The model is 
employed over a regional expanse of several 
hundred kilometres around the test site with three 
nested computational grids. The model is tasked 
with solving spectral wave energy (E) balance 
equation (eq.1) which accounts for energy gained 
(P – due to wind stress) and energy loss (D – due 
to wave breaking and friction; R – due to 
radiation; C – due to wave-current interaction): 
!"
!#
= P − D − R − C	 	 (1)	

where E is the wave energy per unit area. 
In this context, the SWAN model is employed 

to simulate the propagation of irregular wave 

spectrums at the domain boundaries and to 
convey wave characteristics from the offshore 
area to the harbour entrance. It is therefore 
evident that the accurate bathymetric data with 
high spatial resolution are essential for the SWAN 
model to be able to effectively shape the complex 
nearshore processes. The SWAN calculation 
domains discussed herein were discretized into 
three nested grids with varying resolutions to 
address this requirement (Figure 5). At each grid 
point, the sea state is modelled on the assumption 
that the integrated spectral variables are 
representative of a specific area. The wave 
parameters used to characterize the spectrum are 
Hs, Tp, and θm. Although this approach is 
applicable to the west coast of mainland Portugal 
(Saulnier et al., 2011), on the south coast, the 
spectrum frequently exhibits a bi-modal 
distribution, thus necessitating a previous 
evaluation. In the Azores, the integrated spectral 
variables are also being considered, although no 
study has yet been conducted to assess this aspect 
comprehensively.  

The model operates in stationary mode, 
encompassing a number of key physical 
processes, including refraction, diffraction, and 
swell resulting from bottom variations. It also 
considers wave amplification due to wind, wave 
breaking influenced by the seabed, white capping, 
and energy dissipation as a result of bottom 
friction. 

SWAN diffraction computation has 
limitations, and its formulation is based on an 
approximate approach. Consequently, to convey 
wave characteristics from the harbour entrance 
area to the interior of the harbour, the EWS uses 
the DREAMS model (Fortes, 2002). 

 
Figure 5. Bathymetry and coarse, medium, and fine grids 
nested domains for SWAN numerical models. 
Geographical Location of wave buoys (B_PV and PO_PV). 

 
The models employed for the assessment of 

wave disturbances inside ports are the DREAMS 
and BOUSSWMH models. The DREAMS model 



outputs the sea state characteristics at any point 
within the port, which are essential to solve the 
problem of characterizing the motions of a 
moored ship, Figure 6. 

The bathymetry of the study area, used in the 
simulations with SWAN and DREAMS models, 
was constructed from hydrographic surveys 
provided by the Port of Azores Authority.  

3.3 Moored Ships 

The response of ships to wave and wind forces 
is computed using SWAMS – Simulation of 
Wave Action on Moored Ships (Santos, 1994, 
Pinheiro et al., 2013) numerical modelling tool. 
This tool incorporates a hydrodynamic 3D panel 
method model, WAMIT (Korsemeyer et al., 
1988), and a motion equation solver, BAS 
(Mynett et al., 1985). The system assembles and 
solves the equations of moored ship motion in the 
time domain, taking into account the time series 
of forces due to sea waves acting on the ship and 
the constitutive relations of the mooring system 
elements.  

The prototype system for the Praia da Vitória 
harbour includes the multipurpose terminal, quay 
12, and the container terminal, quay 10. Two 
ships are modelled, i.e., a general cargo ship and 
a container ship, respectively, Figure 6. The 
mooring arrangement of each ship, comprising 10 
mooring lines and 5 defences, is depicted in 
Figure 6,.  

 
Figure 6. Quay 10 and 12 mooring arrangements for the 
ships. 

 

3.4 Risk assessment. Moored Ships 

Forecasted hourly movements and mooring 
forces are compared against pre-set thresholds.  

The probability assessment of exceedance of 
these values leads to a risk level assessment. The 
risk levels are determined based on the Maximum 
Breaking Load (MBL) of the mooring lines 
(OCIMF, 1992) and movements (PIANC, 1995, 
PIANC, 2012).  

Based on these risk levels, the system issues 
alerts, defining danger levels associated with the 

difficulty of loading and unloading operations 
and the probability of a component of the mooring 
system breaking due to excessive ship motions: 
• No danger (level 0 - green symbol): No 

changes are required in port activities. 
• Low danger (level 1 - yellow symbol): 

Loading and unloading operations are subject 
to certain conditions. It is possible to reinforce 
mooring lines. 

• Moderate danger (level 2 - orange symbol): 
Loading and unloading operations are not 
possible. It is necessary to reinforce the 
mooring lines. 

• Maximum danger (level 3 – red symbol): 
Loading and unloading operations are 
suspended. There is a possibility of breakage 
of mooring system elements and structural 
damage. 

The risk levels pertaining to the ships’ 
motions and the forces on their mooring lines are 
colour-coded and symbolized in order to facilitate 
the issuance of system alerts.  

4 FORECAST OPTIMIZATION 

4.1 Forecast validation 

Initially, wave and wind climates were 
established to characterize the met-ocean 
conditions of the region. Four points were 
selected for extracting wave and wind forecasts 
from the global Atlantic Ocean meteorological 
model, Figure 7, which is provided by the 
European Centre for Medium-Range Weather 
Forecasts, ECMWF (Persson, 2001). 

 
Figure 7. HIDRALERTA EWS four points (N, S, E, W) of 
offshore wave/wind data used for long-term analysis and as 
forecast forcing data. 

 
Figure 8 presents statistical data for the 

representative offshore wave and wind regime 
(point W, Figure 7) alongside buoy measurements 
of wave height statistics (point B_PV, Figure 5), 
covering the data period from 2005 to 2020. The 
offshore wave regime is characterized by waves 
predominantly originating from the NW 
quadrant, accounting for over 80% of the records, 



while the wind regime is primarily from the SW 
quadrant. At the buoy (B_PV, Figure 5) location 
the wave regime has undergone a shift due to the 
diffraction effect around Terceira Island, 
resulting in a more predominant direction from N. 

 
Figure 8 - Offshore (point W) wave (left) and wind (centre) 
statistics provided by ECMWF. Buoy (B_PV) 
measurements wave statistics (right). The dataset 
encompasses the period from 2005 to 2020. 

 
A comprehensive long-term error analysis was 

conducted using a 15-year dataset (wave and 
wind data) from the ERA5 reanalysis model of the 
ECMWF, which employs the WAM model 
(WAMDI Group, 1988). The aforementioned 
dataset serves as the input for the boundary 
conditions in SWAN simulations, as 
implemented in the EWS. 

The Root Mean Square Errors (RMSE) for the 
significant wave height, Hs, at the buoy location 
were recorded at 0.61m (indicating an 
overestimation by SWAN compared to buoy 
measurements) and 2.36s for the mean period, Tz 
(which also reflects an overestimation). 

The monitoring of wave characteristics is of 
paramount importance for the validation of the 
results generated by numerical models, on a daily 
basis, the discrepancies between the forecasts and 
wave characteristics are assessed daily, Figure 9.  

 
Figure 9. HIDRALERTA EWS validation of wave 
parameters against wave buoy measurements.  
 

The outcomes of continuous validation of the 
wave characteristic forecasts at the buoy location 
indicated that the development of neural networks 
would enhance these forecasts.  

4.2 Neural Networks  

4.2.1 Model training 
 

A machine learning (ML) model was 
developed to analyse and predict ocean wave 
characteristics using data collected from wave 
buoys, Figure 10. The ML developed for the Port 
of Praia da Vitória was based on the methodology 
previously applied to the port of Sines (Pinheiro 
et al., 2022). Three Neural Networks were 
designed and trained (one for each wave 
parameter at the buoy, Hs, Tz, and q) to explore 
the potential for enhancing the accuracy of the 
forecasts. The development of the NNs was 
conducted utilising Kera, an open-source neural 
network library written in Python. The input data 
for the NN comprised a combination of wave 
heights, periods and directions, along with wind 
velocity and direction (Brownlee, 2019).  

The NN were trained using the 15-year dataset 
mentioned above (section 4.1). The dataset 
enabled the NN to identify patterns within the 
data and make accurate predictions about future 
wave conditions based on current environmental 
conditions. The training process was designed to 
minimize the discrepancy between the predicted 
outputs and the actual measurements (Loss or 
RMSE in this case). The dataset was divided into 
two distinct sets, with 80% allocated for the 
training of the network and 20% reserved for 
testing. The cost function employed was the mean 
squared error, MSE, of the entire training set. The 
rectified linear unit (ReLU) activation function 
was employed to introduce non-linearity into the 
network. 

Each neural network (NN) in the machine-
learning model incorporated five input layers 
corresponding to offshore wave parameters (Hs, 
Tz, and θ) and wind data (velocity and θ). The 
input nodes comprised the offshore wind and sea-
wave data provided by ECMWF over a 15-year 
period, including significant height (Hs), the 
mean period (Tz), the average direction (θm) of 
the sea waves, and wind velocity and direction, 
covering the period between 2005 and 2020, 
Figure 8.  

 

 
Figure 10 – Structure of the Neural Network for the wave 
height estimation/forecast at the B_PV Buoy. 
 



The parameters that can influence the 
network's accuracy in reflecting reality include 
the number of neurons, the batch size (bs), and the 
number of epochs. The batch size refers to the 
number of training examples used in one 
forward/backward pass. A larger batch size 
necessitates the use of more memory. The number 
of epochs indicates the number of times that the 
model is exposed to the training dataset. 

The optimal parameters for configuring the 
neural network were selected in three stages. In 
stage 1, the number of neurons (32, 64, 128) and 
the number of epochs (800, 1000, 2000) were 
varied while maintaining a fixed batch size of 
1024 values. This established the optimal settings 
for stage 2, namely the number of neurons and the 
number of epochs. In stage 2, the batch size was 
varied while using the optimal neuron and epoch 
values identified in stage 1. Stage 3 involved a 
new iteration of the first stage, employing the 
optimal batch size determined in the second stage. 
The most effective configurations were identified 
as follows: for the Hs NN - batch size=153, 
neurons=32, epochs=2000; for the Tz NN - batch 
size=200, neurons=32, epochs=1000, Figure 11.  

 
Figure 11 – Three stages of NN, wave height (Hs) 
parameters optimization. 

4.2.2 Real-time prediction and forecasting 
optimization 

 
Once the NNs have been trained and 

optimized, the machine learning model is 
integrated into the operational wave forecast 
models and utilised to make real-time predictions 
about ocean wave conditions at the buoy location, 
based on the forecasts supplied daily by weather 
and marine forecast providers (ECMWF and the 
Copernicus Marine service).  

Upon comprehensive analysis of the entire 
dataset, Figure 12, the NN estimations are 
compelled to align with the measured data. This 
adjustment is most evident in the Tz parameter, 
which is significantly overestimated by the 
SWAN model. It is crucial to recognise that the 
SWAN model does not accurately replicate the 

wave period. This limitation is due to the formula 
used in its spectral method, which relies on the 
zero and second-order moments of the spectrum 
and thus considers all waves present in the record, 
including the smallest ones (Capitão &Fortes, 
2011).  

It is also evident that Hs is consistently 
overestimated by the outputs of the SWAN 
model. In this process, while the majority of 
predictions produced by the NNs demonstrate an 
improvement, a subset does not. For instance, the 
scattered orange points below the 1:1 line in 
Figure 12 illustrate deviations from the ideal 
predictions. 

An analysis of the test data (which comprises 
data not included in the training data and thus 
represents how the system will likely perform in 
future forecasts) reveals that while the SWAN 
model tends to overestimate predictions, the NN 
predictions more closely align with the optimal 
1:1 line for the Hs parameter (Figure 13). 

Figure 14 presents frequency histograms 
comparing buoy measurements, NN outputs, and 
SWAN numerical simulations. It demonstrates 
that the NN model produces a more accurate 
adjustment in terms of distribution frequency 
over the data ranges of Hs. 

 
Figure 12 – Significant wave height. Comparison of the NN 
and SWAN train data. Left: NN; Right: SWAN.  

 



 
Figure 13 – Significant wave height. Comparison of the NN 
and SWAN test data. Left: NN; Right: SWAN.  

 

 
Figure 14 – Comparison of the frequency histograms of 
Significant wave height Buoy measurements, Neural 
Network output, and SWAN numerical simulations.  

 
Upon examining the last 400 records of the 

buoy measurements and comparison with the 
outputs from the NN and SWAN models, Figure 
15, it is evident that the NN has made significant 
improvements, particularly at the peaks, which 
are the critical moments for this kind of EWS.  

 
Figure 15 – Comparison of the last 400 records of the 
Significant wave height Buoy measurements, Neural 
Network output, and SWAN numerical simulations. 
 
Table 1 presents the overall mean absolute error 
(MAE) and root mean square error (RMSE) for 
the SWAN numerical model and the NN. The 
error reduction is notable. The application of the 
aforementioned neural network (NN) resulted in 
an 80% reduction of the RMSE of significant 
wave height and a 78% reduction for the mean 
wave period, in comparison to the SWAN model 
simulations.  

 

Table 1 – Mean absolute error and root mean square error 
for SWAN numerical model and NN. 

 batch size neur epoc 
MAE (m) RMSE (m) 

SWAN NN SWAN NN 

Hs 306 32 2000 0.47 0.26 0.61 0.12 

Tz 1024 64 800 2.13 0.54 2.36 0.52 

 
The RMSE for the Hs decreased from 0.61m 

to 0.12m. In comparison, other calibration 
methods, such as nonlinear regression, which 
have been used to calibrate significant wave 
height time series using both buoy measured data 
and satellite data (Mínguez et al. 2011 ), were able 
to reduce the Hs RMSE from 0.59 to 0.43. 

The clear evidence that the developed NN 
produces more accurate predictions of Hs and Tz 
at the buoy location led to the integration of these 
networks into the warning system architecture. 
Consequently, the results for the entire domain of 
the 3rd SWAN nested grid are now adjusted using 
a simple correction factor, which is determined by 
the percentage difference between the NN and 
SWAN computed parameters. It is anticipated 
that this adjustment will enhance the accuracy of 
subsequent calculations performed by the EWS, 
including wave propagation into the port domain 
and the assessment of forces and motions of the 
ships. 

Moreover, these NN algorithms can be 
continuously updated with new data to improve 
their performance over time. 

5 DISSEMINATION AND 
COMMUNICATION 

Based on the results obtained, various layouts 
are produced by HIDRALERTA. All information 
generated by this EWS is accessible via a 
dedicated website (http://aurora.lnec.pt) and 
mobile application. Currently, access to both 
platforms is restricted to authorized users (Figure 
16), as certain details concerning port 
infrastructures are confidential. Furthermore, an 
alert bulletin is disseminated to stakeholders via 
email. Therefore, port stakeholders are equipped 
with a decision-support tool that enables them to 
implement mitigation measures in a timely 
manner, thereby preventing accidents and 
minimising economic losses.  

 



Figure 16. HIDRALERTA EWS web page and mobile 
application. 

Figure 17 shows the dashboard of alerts 
disseminated on the SAFEPORT system 
platforms.  

 
Figure 17. Dashboard of the alerts for the forces on the 
ships’ mooring lines. 

6 CONCLUSIONS 

The EWS utilises offshore forecasts generated 
by precise weather-oceanographic forecasting 
models to calculate relevant wave parameters for 
the assessment of the behaviour of ships moored 
within port basins. This is achieved through the 
use of a suite of numerical models. The EWS 
issues alerts corresponding to danger levels 
associated with the ships’ motions and forces 
exerted on their mooring lines. The results are 
disseminated via digital platforms, specifically a 
web page and a mobile application.  

The effectiveness of this EWS is contingent 
upon the accuracy of the atmospheric and wave 
forecasts, as well as the numerical models used 
for wave propagation and the behaviour of the 
moored ships. Consequently, the system’s 
reliability is contingent upon the potential for 
errors to arise from the models' parameterisation 
and approximations, as well as from the boundary 
conditions imposed upon these models. 

This paper presents a novel approach to 
numerical wave prediction models that employs 
neural networks to mitigate errors and enhance 
efficiency.  

Such machine learning (ML) algorithms are 
capable of learning from historical data and 
identifying patterns that might elude human 
experts, thus fostering more accurate and reliable 
forecasts. 

The neural networks trained in this study have 
demonstrated their capacity to generate more 
accurate estimates for the significant wave height 
and mean wave period at the buoy location 
situated in front of the Port. The use of the newly 
developed NNs has resulted in a substantial 
reduction of the RMSE, with a reduction of 
approximately 80% compared to simulations 
from the SWAN numerical model. Consequently, 
this facilitates a more accurate determination of 
wave characteristics in front of the port, which, in 
turn, allows for a more precise estimation of the 
mooring forces on ships and the wave 
overtopping risks. The integration of these NN 

significantly enhances the accuracy and reliability 
of the EWS. 

Moreover, NN algorithms are capable of 
adapting to changes in environmental conditions, 
such as climate change or alterations in the 
coastline. This adaptability ensures the continued 
effectiveness of the EWS over time. 

However, it is important to note that NN 
algorithms may exhibit overfitting of the training 
data, which may result in a lack of generalisation 
to new data sets. This proclivity can result in 
erroneous predictions when applied to real-world 
scenarios. Consequently, it is imperative to 
exercise caution when conditions alter, in order to 
ensure the reliability of the predictions. The 
application of machine learning is a powerful tool 
with the potential to enhance the accuracy and 
reliability of EWS. As ML techniques continue to 
evolve, they are poised to play an increasingly 
critical role in safeguarding coastal communities 
from the devastating effects of coastal hazards. 

An effective EWS, when integrated with soft 
adaptation measures, can significantly enhance 
the protection of people, property, and 
environmental assets.  
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