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Abstract: To obtain predictions closer to concrete behaviour, it is necessary to employ a particle model
(PM) that considers contact softening. A bilinear softening contact model (BL) has been adopted
in PM studies. Several limitations in PM predictions have been identified that may be due to BL
assumptions. For this reason, this paper compares BL predictions with those obtained with more
complex models to assess if PM predictions can be improved. As shown, it is possible to calibrate
each contact model to reproduce the complex behaviour observed in concrete in uniaxial and biaxial
loading. The predicted responses are similar, and the known PM limitations still occur independently
of the adopted model. Under biaxial loading, it is shown that a response closer to that observed in
concrete can be obtained (higher normal-to-stiffness ratio of ≈0.50, maximum contact compressive
strength of ≈60 MPa, and 30% reduction in the number of working contacts). The BL contact model
for PM concrete DEM-based simulations is shown to have (i) lower associated computational costs
(15% to 50% lower); (ii) a reduced number of contact strength parameters; and (iii) similar responses
to those predicted with more complex models. This paper highlights that the BL contact model can
be used with confidence in PM fracture studies.

Keywords: particle model; discrete element; contact softening laws; concrete fracture

1. Introduction

Detailed rigid particle models (PMs) based on the discrete element method (DEM) that
take directly into account the material grain structure, namely, its randomness and its inter-
nal length, and the physical mechanisms of particle interaction can predict cracking phe-
nomena in quasi-brittle materials and have gained relevance in rock [1–5], concrete [6–10],
reinforced concrete [11,12], masonry [13,14], and asphalt mixtures [15,16]. DEM-based PM
models have also been shown to be an effective tool for understanding the effect of particle
shape and size on the macroscopic behaviour of granular materials and clays [17,18].

Meshless-based particle models based on a continuum framework, such as smoothed
Particle Hydrodynamics (SPH) [19] or the material point method [20] have been proposed
for concrete fracture. Still, the heterogeneous internal structure of concrete, which is
composed of aggregates of different sizes embedded in a cement matrix with different
phases and pores, favours the adoption of discrete-based particle models.

Regarding DEM-based particle models (PMs) for concrete, most of the research has
been focused on generating PMs closer to the real concrete structure using, for example,
X-ray computed tomography (XCT) [21–23], or focused on considering more complex
aggregate shapes, either through particle clusters [10] or polyhedra [24], that can either be
rigid or flexible. Very few studies have focused on the importance of the adopted contact
models [6]. To obtain predictions closer to experimental observations in concrete, it may be
necessary to employ a PM that accounts for softening at the contact level [6,7,9,10]. When
employing a brittle contact model, the concrete heterogeneity at the meso-level needs to be
included with greater detail, which significantly increases the associated computational
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costs. Such refined particle models have primarily found application in 2D simulations [25]
or in 3D simulations through the adoption of higher minimum particle content thresholds
for the aggregate and mortar components [8,22].

In the early works of meso-modelling, namely, in lattice models [26] or in the com-
bined beam-particle model [27], which are detailed PMs that adopt particle interaction and
solution schemes different from a DEM-based PMs, a brittle contact model was usually
considered. Nowadays, there is still a discussion in the particle modelling community on
whether the contact model should be as simple as possible (brittle model) and whether the
macroscopic behaviour should be an emergent property of the heterogeneity included in
the PM or if more complex contact models should be adopted, such as linear or bilinear
softening models, in order to predict a response in better agreement with the known con-
crete behaviour, with lower discretization requirements (particle refinement and material
heterogeneity). Examples of the latter can be found in the early PM proposed in [28], in
3D modelling using the rigid body spring method (RBSM) [29,30], and in DEM-based PMs
that adopt either a non-physical [7] or a physical representation of concrete [6,8–10].

A PM that includes a 3D contact model (VGCM-3D), which enables moment trans-
mission through the contact surface, approximates polyhedral particle shapes and uses
a bilinear softening contact model (BL), has been proposed [31]. Through these features,
the PM has been shown to accurately replicate the ratio of compressive strength to tensile
strength, as well as the ratio of direct tensile strength to indirect tensile strength typically
observed in hard rock specimens [31]. Several limitations in PM predictions have been
identified that may be due to BL assumptions, namely, with the BL contact model, a clear
two-slope curve is predicted under uniaxial compression for a hard rock [31].

A 3D lattice discrete particle model (LDPM) that only considers larger aggregate
particles and adopts softening/hardening contact laws based on a stress–strain boundary
concept (LSSB) has been proposed for concrete fracture modelling [32]. Contrary to the
LDPM model, the particle modelling approach here adopted also includes the particles
representing the mortar, allowing for a more realistic representation of concrete, and
updates contacts as the calculation progresses, allowing the PM to be applied to large
deformation problems. A PM that only adopts the larger aggregate sizes embedded
in a matrix phase using a 3D finite element model (FEM) and considers for the zero-
thickness interface finite elements a cohesive fracture constitutive model (CFM) has also
been proposed for concrete fracture studies [33]. Compared with the detailed particle
modelling approach here adopted, the PM-based FEM model has a significant associated
computational cost, and for this reason, it has only been applied in smaller geometries,
only considering a few coarse aggregates [34]. In this work, BL predictions are compared
with those obtained with more complex models [32,33] to assess if PM predictions can
be improved.

The performance of the constitutive contact models [6,32,33] is initially compared
for a single contact in tensile, pure shear, shear under uniaxial loading, and mixed mode,
which are contact force trajectories that may occur in the contacts of a PM concrete model
under complex loading. Additionally, uniaxial tensile and uniaxial compression tests and
biaxial tests are presented. The predicted macroscopic response of the different constitutive
models is compared. Several parametric studies are also carried out to assess if the contact
model agreement with the known concrete biaxial behaviour can be improved.

It is shown that the macroscopic response predicted with the contact models under
assessment is similar but requires, for each contact model, the adoption of a different set
of best-fit calibration properties, which are model-dependent. For all contact models, it is
shown that a better agreement with the known concrete biaxial compressive loading failure
envelope can be obtained if (i) the normal to shear stiffness is increased to ≈0.50; (ii) the
number of working contacts is reduced in 30%; and (iii) a maximum contact compressive
strength of 60.0 MPa is adopted. A two-step calibration procedure that greatly reduces the
required computational time can be adopted with all the softening based contact models.
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This paper shows that the BL contact model can be used with confidence in PM
fracture studies. The BL contact model has the following advantages when adopted in
detailed 3D PM DEM based models: (i) a fewer number of contact parameters requiring
calibration, (ii) substantially reduced associated computational costs, and (iii) for the best-fit
properties found using uniaxial tests, it provides the best agreement with concrete-observed
biaxial behaviour. To enhance the agreement with known concrete behaviour under biaxial
loading, a compression cap needs to be included in the BL model.

The LSSB contact model is also shown to be a viable alternative for concrete fracture
studies, with the advantage of including a stress–strain boundary for high compressive
stresses. However, the LSSB contact model computational costs are much higher than those
associated with the BL contact model. The CFM contact model is the most challenging
model to implement within a DEM-based PM. It also requires the consideration of a
compression cap and needs, for the best agreement with concrete biaxial behaviour, a
normal to shear stiffness ratio closer to 1.0, which cannot be adopted in PM studies if
Poisson’s ratio is to be properly approximated.

2. Discrete Element-Based Particle Model
2.1. Basics

In a discrete element-based PM, the domain is divided into an assembly of particles
that interact through contact interfaces. The DEM is based on the following two main
assumptions: (i) the set of forces acting on each particle are related to the relative displace-
ments of the particle to its neighbours and given the applied forces and (ii) Newton’s law
of motion is applied to define the new particle position. In each calculation step, given the
forces applied at each particle, the new positions and velocities are calculated based on
Newton’s second law. The equations of motion are given by:

Fi(t) + Fd
i (t) = m

..
xi (1)

Mi(t) + Md
i (t) = I

.
ωi (2)

where Fi(t) and Mi(t) correspond, respectively, to the total force and total momentum
applied at instant t, Fd

i (t) and Md
i (t) correspond, respectively, to the damping force and

damping momentum applied at instant t, m and I correspond to the mass and inertia of
the particle,

..
xi is the acceleration of the particle, and

.
ωi is the angular acceleration of the

particle. Equation (2) represents the equation of rotational motion for a spherical particle.
If the angular velocities are relevant and the particles are not spherical, it is necessary to
use a more complex approach, given the non-linear nature of the equations of rotational
motion. In the simulations presented, it is not relevant to perform a correct integration of
the particles’ rotational movement given that a quasi-static regime based on a scaled mass
algorithm is adopted and the particles’ geometries are closer to a sphere, which greatly
reduces the angular motion relevance. Also, the adopted PM are compact assemblies where
each particle has a high number of interactions with neighbouring particles, which also
limits the relevance of the angular motion. In a dynamic analysis, under high strain rates
and in highly fractured models, with irregular polyhedral particles, the correct integration
of the rotational equations would be paramount. In the uniaxial tests here presented, a
local non-viscous damping approach with a local damping value of 0.70 was adopted [35].
The uniaxial tests were carried out under displacement control, adopting a constant plate
velocity that assures quasi-static loading conditions. An adaptive dynamic relaxation
viscous damping (ADR) approach was adopted in the biaxial tests that were carried out
under load control. When compared with a local damping approach, an ADR approach
allows for larger loading steps to be adopted and faster convergence rates, making this
approach more suitable when only peak load values are required [6].
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2.2. Voronoi-Generalized Contact Model (VGCM-3D)

A 3D Voronoi-generalized contact model (VGCM-3D) was adopted, where both the
contact surface and the contact location are determined through the Laguerre–Voronoi
tessellation of the gravity centres of the interacting spherical particles [31], as shown in
Figure 1. Laguerre–Voronoi diagrams are constructed based on a weighted metric, which
considers the radius of the spherical particle associated with its gravity centre point. Thus,
the facets of Laguerre–Voronoi diagrams are equidistant from the associated spheres, while
the facets associated with simple Voronoi diagrams are equidistant from their gravity
centres. A Laguerre–Voronoi tessellation was chosen because, compared with Voronoi
tessellation, the facets are closer to the contact location adopted in the single point contact
model (PCM) usually adopted in the DEM modelling of spherical particles, that is, at half
the distance between the spherical particles [1].
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The local contact point locations, where force transmission occurs between two in-
teracting particles through normal and shear springs, as shown in Figure 1b, are given
by the common Laguerre–Voronoi facet vertexes including its gravity centre. As shown
in Figure 1b, the VGCM-3D contact model considers, in an approximate way, the polyhe-
dral shaped particles associated with the Laguerre–Voronoi cells. The advantage of a PM
model that adopts a VGCM-3D contact over complex polyhedral-based PMs [24] lies in
its ability to maintain the simplicity of spherical particle PMs while avoiding the need for
a substantial increase in computational effort compared to the traditional PCM [1]. The
contact location and the contact unit normal are still defined as if the particles are spherical,
whereas in complex polyhedral interactions, the contact detection and resolution is a much
more complex geometric problem.

Similar to the PCM [1], in the VGCM-3D contact model, the contact unit normal (ni)
is defined based on the centre of gravity of the interacting particles and on the distance
between the particle gravity centres (d). The contact overlap (Un) also follows the usual
PCM approach [1]. The reference contact point defined at the Laguerre–Voronoi facet is
given by:

x[0]i = x[A]
i +

(
R[A] − 1

2
Un − dv

)
ni (3)

where dv is the distance, in the direction normal to the contact plane, between the contact
plane usually adopted between two spherical particles in a PCM and the contact plane
defined by the Laguerre–Voronoi facet (Figure 1a).

The novelty of the VGCM-3D contact model is that the local contact points correspond
initially to the vertices of the Laguerre–Voronoi facet. The position of each local contact
point (x[J]i ) in global coordinates is defined based on the relative position of the local point
in a local reference frame (t,s) centred on the reference contact point (Figure 1b). The relative
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positions are defined at the start of the simulation considering the global coordinates of
each vertex of the Voronoi facet and the global coordinates of the reference point. Thus, at
each calculation step, the position of each local point in global coordinates is given by:

x[J]i = x[0]i + s[J]x[s]i + t[J]x[t]i (4)

where x[s]i and x[t]i are, respectively, the local coordinates along the local axis s and the

local axis t, defined on the global coordinate axis, based on
→
s ×

→
t =

→
n . Given the normal

(k[J]n ) and shear local contact point stiffness (k[J]s ), the normal and shear local contact force
increments are obtained following an incremental linear law:

∆F[J,N] = −k[J]n ∆x[J,N] = −k[J]n

( .
x[J]i ∆t

)
ni (5)

∆F[J,S]
i = −k[J]s ∆x[J,S]

i = −k[J]s

( .
x[J]i ∆t

)
−∆x[J,N]ni (6)

where ∆x[J,N] is the local contact displacement normal increment (scalar) and ∆x[J,S]
i is the

local contact shear displacement increment (vector). Additional details of the VGCM-3D
contact model can be found in [31].

2.3. Local Contact Stiffness and Strength

In this study, the contact stiffness at each local contact point within the VGCM-3D
model is determined by the Young’s modulus of the equivalent continuum material (E)
and by a constant that correlates the local contact point normal and shear stiffnesses spring
values (α):

k[J]n =
E
d

A[J]
c (7)

k[J]s = α k[J]n (8)

where A[J]
c is the contact area of local point J and d is the distance between the particles’

centres of gravity. The maximum tensile and shear strength properties are established given
the maximum contact tensile stress (σn.t), the maximum contact cohesion stress (τ), and the
local contact point area ( A[J]

c ):
F[J]

n.max = σn.t A[J]
c (9)

C[J]
max = τ A[J]

c (10)

2.4. PM Generation

Figure 2 shows the adopted PM generation procedure for the tensile tests that are
assessed in Section 3. The aggregate content, comprising particle dimensions ranging
from 4.0 to 8.0 mm in diameter and from 8.0 to 16.0 mm in diameter, which represent 44%
of the total volume of the aggregate size distribution [36], is considered in the PM. The
aggregate particles are inserted from the highest to the smallest particle diameter. The
particles representing the mortar are subsequently introduced adopting a porosity value of
0.1 and a uniform distribution, featuring diameters ranging between 4.0 and 5.0 mm [6].

Next, the centres of gravity of the spherical particles are triangularized based on a
weighted Delaunay algorithm. The associated Laguerre–Voronoi diagram is then con-
structed from the weighted Delaunay tetrahedra structure. Figure 2c presents the Laguerre–
Voronoi cells of the aggregate particles with 8.0 to 16.0 mm. As mentioned, the VGCM-3D
contact between two neighbouring particles is established given the associated Laguerre–
Voronoi facet [31]. The adopted PM generation scheme promotes an increase in the number
of contacts per particle and allows for moment transmission, which leads to a better agree-
ment with known experimental results in hard rock [31]. A comprehensive review of
DEM-based concrete model generation approaches can be found in [37].
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Figure 2. PM generation steps for concrete: (a) aggregate particle insertion: particles with 8.0 to
16.0 diameter (black) and particles with 4.0 to 8.0 mm diameter (light grey); (b) compact assembly
with particles with 4.0 to 5.0 mm diameter representing the mortar (red); and (c) Laguerre–Voronoi
cells of the aggregate particles with 8.0 to 16.0 mm diameters.

2.5. Contact Softening Models
2.5.1. Vectorial Simplified Softening Contact Model (BL)

A vectorial bilinear softening contact model for both normal and shear directions
has been introduced for concrete fracture studies in particle modelling [6,12], as depicted
in Figure 3. The incorporation of linear/bilinear softening contact models increases the
performance of PM, namely, under tensile loading [6,12]. The BL contact model’s simplicity
facilitates its implementation in particle modelling. The force/displacement relationships
are straightforwardly established based on the maximum contact tensile stress, the max-
imum cohesion stress, and the contact fracture energies in mode I (G f .n) and mode II
(G f .s). Damage in each direction is quantified as a function of the maximum displacement
experienced by the contact in that direction, Figure 3. In an approximate way, the local
contact point damage is given by the sum of the tensile and shear damages. Given the
current total contact damage, the maximum values of tensile and cohesive strengths are
reduced accordingly, and the contact forces are corrected given the updated maximum
strength values. With the current contact damage assessed, the maximum values of tensile
and cohesive strengths are adjusted, and the contact forces are recalibrated according to the
revised maximum strength values.
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2.5.2. Lattice Discrete Particle Stress–Strain Boundary-Based Contact Model (LSSB)

A contact constitutive model based on the concept of the stress–strain boundary has
been proposed for concrete fracture within the framework of a 3D lattice discrete-based
PM [32]. Note that, the stress–strain boundary concept is introduced in [38] for microplane
model M3, which is a continuous approach that has some similarities with the PMs, namely,
through its concept of integrating the constitutive laws in several directions on a unit sphere.

The lattice discrete particle stress–strain boundary-based contact model (LSSB) is
based on a stress–strain boundary that is defined as a function of the equivalent contact
stress (σeq) given by:
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σeq =

√(
σ
[J]
n

)2
+

(
τs [J]

)2

α
(11)

The local contact point normal stress, σ
[J]
n , and the local point contact shear stress, τs

[J],
are set given the local contact point normal (F[J]

n ) and shear (F[J]
s ) forces and given the local

point contact area (A[J]
c ).

The equivalent stress–strain boundary enables the simulation of weakening and hard-
ening behaviours based on the equivalent contact stress state. The stress–strain boundary
is characterized by the effective strain (ε) and the coupling variable (ω) and it is mathemati-
cally expressed through the function:

σb(ε, ω) = σ0(ω)exp
{

K(ω)

σ0(ω)
⟨ε1(ε, ω)− ε0(ε, ω)⟩

}
(12)

where ⟨ε1(ε, ω)− ε0(ε, ω)⟩ = max{ε1(ε, ω)− ε0(ε, ω), 0}}. The function ε0(ε, ω) denotes
the deformation limit beyond which the boundary is no longer equal to σ0(ω) but has
changed exponentially as a function of ε1(ε, ω)− ε0(ε, ω). The effective strain (ε) is deter-
mined by the expression:

ε =

√(
εn [J]

)2
+ α

(
εs [J]

)2 (13)

where the effective normal strain (εn
[J]) and the tangential strain (εs

[J]) are derived from
the normal (xn

[J]) and shear (xs
[J]) displacements at the local contact point, as well as the

inter-particle distance (d):

εn
[J] =

xn
[J]

d
; εs

[J] =

∥∥xs
[J]
∥∥

d
(14)

Figure 4a shows the function σ0(ω), which represents the boundary in the (σ, τs) plane:

σ0(ω) =

{
σ01(ω) if ω ≤ ω0
σ02(ω) if ω > ω0

(15)

where tan ω0 = σ0
τ/

√
α

represents the point at which the two curves intersect, as shown
in Figure 4a, which is associated with the angle of internal friction of the LSSB contact
model. The function σ01(ω) represents the stress–strain boundary for high compressive
stress states and is characterized by an elliptical function:

(
σ
[J]
n

)2
+

(
τs

[J]
)2

β
= σc

2 (16)

where σc is the maximum contact compressive stress at the contact. A value of β equal to
1.0 is considered in this work. In [32], the value of β is defined by setting an expression
in terms of the confinement stress, which is approximated by the average stress value at
the contact location. The stress at each particle can be approximated given the contact
forces [1,27].

The function σ02(ω) defines the stress–strain boundary for both the tensile/shear and
compressive/shear stress states, expressed through a hyperbolic function, which correlates
the shear stress at the contact (τs

[J]) with the normal stress at the contact (σ[J]
n ) considering:

τs
[J] = µ1

√(
σ
[J]
n − σn.t − σa

)2
− σa2 (17)

where µ1 is the slope of the function σ02(ω) asymptote at the intersection point with the
function σ01(ω) and σa is given by:
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σa =
σn.t

2

[(
2

µ1 τ

)2
− 1

]
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surface (F {σ, Φ} = 0) and plastic potential (Q {σ, Ψ} = 0).

The LSSB contact model has been shown to effectively capture concrete behaviour
under complex loading conditions [32], even with a coarser particle model (PM). Additional
details about the implementation of the LSSB model can be found in [32]. A more complex
LSSB model has been proposed that can handle pore collapse and material compaction [39].
Unlike the BL contact model, the LSSB contact model incorporates a stress–strain boundary
for high contact compression values, and the contact friction angle functions is an internal
variable determined by the following expression:

φ = arctan
( α

tan ω0

)
(19)

2.5.3. Cohesive Fracture Constitutive Model (CFM)

Within the framework of particle modelling, a cohesive fracture constitutive model
(CFM) has been proposed, where concrete is represented by the larger aggregate sizes
embedded within a matrix phase. In this PM, both the aggregate particles and the matrix
deformability are represented through an internal finite element tetrahedral mesh [33,34].

In this cohesive fracture constitutive model, cracking behaviour is characterized by
a hyperbolic function, that enables a smooth transition from tensile to shear cracking.
The yield surface in terms of maximum tensile stress, cohesion, and a frictional term is
represented by:

F {σ, Φ} =
(

τs
[J]
)2

−
(

τ − σ
[J]
n µc

)2
+ (τ − σn.t µc)

2 = 0 (20)

The plasticity potential is likewise represented by a hyperbolic function that is defined
given the maximum tensile stress, an apparent cohesion term (τQ), and an apparent friction
term (µcQ):

Q {σ, Ψ} =
(
τQ − σn.t µcQ

)
+

2
√
(τs J)

2
+

(
τQ − σn.t µcQ

)2
= 0 (21)

In this way, contrary to the BL and LSSB contact models, the CFM contact model
allows for the adoption of non-associated formulations that in continuum macroscopic
analysis are required to successfully model materials like concrete that have a significant
pressure sensitivity behaviour. The evolution of this surface is governed by an internal
variable (WCR), which is determined by the work performed during the fracture process:
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d WCR =

 σ
[J]
n dxn.crack

[J] σ
[J]
n ≥ 0 (tension)(

τs
[J] + σ

[J]
n µc

)
d
∥∥xs.crack

[J]
∥∥ σ

[J]
n < 0 (compression)

(22)

The evolution of the maximum tensile stress, cohesion, and the frictional term is
defined as a function of the internal variable (WCR) and of the values of fracture energy in
mode I (G f .n) and mode II (G f .s). Further specifics regarding the CFM model’s implementa-
tion are detailed in [33].

2.5.4. Summary of the Three Different Contact Models

Three contact softening models have been briefly described. The BL contact model is
vectorial-based and requires the definition of the following five strength properties: the
maximum tensile strength (σn.t), the contact energy in mode I (G f .n), the maximum cohesion
stress (τ), the contact friction term (µc), and the fracture energy in mode II (G f .s). Several
limitations in PM predictions have been identified that may be due to BL assumptions. For
this reason, this paper compares BL predictions with those obtained with more complex
models that have been adopted with success in coarser PMs including the LSSB and the
CFM contact models.

The LSSB contact model is an analytical model based on the evolution of a stress–strain
boundary. Noteworthy, to ensure that the adopted fracture energy in tension and pure
shear is respected and that the stress–boundary equations are mathematically sound, the
contact input values have to follow some rules and are interconnected, which may limit the
application of the LSSB model to materials other than concrete [26]. Compared with the BL
contact model, the LSSB has the following additional strength parameter: the maximum
compression contact strength that controls the evolution of the stress–strain boundary
for higher contact compressive forces. The model is defined in terms of stress/strain
parameters that are approximated given the contact forces and contact displacements, and
its implementation within a PM is straightforward.

The CFM contact model is a cohesive fracture constitutive model that adopts hyper-
bolic functions to represent the cracking surface and the plastic potential. The CFM is
defined in terms of stress values that are approximated given the contact forces and the
contact area. Its implementation within a PM is challenging given that it requires the
numerical integration of the constitutive equations. It is the most complex model under
assessment, allowing for dilatancy and the reduction of the frictional term with damage
increase. If a non-associated formulation is adopted, the model requires, when compared
with the BL contact model, the definition of three additional contact strength parameters
as follows: an apparent cohesion term (τQ), an apparent friction term (µcQ) and a residual
contact friction term ( µcr).

3. Application Examples
3.1. Methodology

The three contact models under assessment were initially evaluated for a single contact
for different loading conditions, which attempt to simulate possible contact force evolutions
that may occur in a PM assembly.

In the following, for each contact model, the best-fit contact properties that predict the
best agreement with known concrete behaviour under uniaxial and compression loading
using a trial-and-error procedure are presented. With this task, it will be possible to
compare the best-fit predictions obtained with each model and to assess the best-fit strength
property values of each contact model. For the best-fit contact strength properties, the
biaxial response predicted by each contact model is compared.

Additionally, the following parametric studies are also presented to improve the
contact models’ biaxial failure envelope predictions and to evaluate if the tendencies and
behaviour of each contact model under assessment follow similar trends:
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• Normal to shear stiffness ratio (α) of 0.50;
• A 30% reduction in the PM total number of contacts;
• Maximum compressive contact strength of 60.0 MPa;
• Single-point contact model (PCM);
• PM refinement.

3.2. Single VGCM-3D Contact

The behaviour of a single VGCM-3D contact under tensile loading (T), under shear
loading with an initial imposed axial stress (S&A), and under mixed loading (HMM) was
assessed by adopting the presented constitutive models that include softening at the contact
level, as shown in Figure 5. The tensile test (T) was performed under displacement control
by applying a vertical velocity at the upper spherical particle, and the shear test with an
initial imposed axial force (S&A) was performed by setting, in a first stage, axial contact
stress and, after reaching the equilibrium, horizontal velocity is imposed on the upper
particle. The mixed loading test (HMM) attempts to model the experiment developed
in [40] for concrete plates, and a vertical displacement-controlled test is initially performed
until damage occurs at the contact, followed by imposing a controlled displacement on
the upper particle in both the horizontal and vertical directions. In all tests, the contact
unit normal and the contact surface location were defined as if the lower spherical has
a plate-like geometry, dashed line in Figure 5, assuring that pure shear tests could be
performed with a single VGCM-3D contact.
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The adopted elastic and strength contact properties in the tensile tests (T), the shear
tests with axial force (S&A), and the mixed-mode tests (HMM) are presented in Table 1.
The adopted contact values closely resemble those adopted in [33], where the cohesive
fracture constitutive contact model (CFM) is presented and validated.

Table 1. VGCM3D single-contact elastic and strength properties.

E
(GPa)

α µc
σn.t

(MPa)
τ

(MPa)
Gf.n

(N/mm)
Gf.s

(N/mm) µcr
τQ

(MPa) µcQ

T 6.0 1.0 0.8 3.0 14.0 0.015 & 0.03 0.1 0.2 - -
S&A 1 112.5 1.0 0.8 3.0 4.5 0.025 0.06 0.2 45.0 0.04

HMM 2 0.9 1.0 0.8 2.8 7.0 0.20 2.0 0.2 105.0 0.04
1 σc = 30.0 MPa, Kc = 0.1 E in the LSSB model. 2 σc = 45.0 MPa, Kc = 0.1 E in the LSSB model.

Figure 6 shows the predicted tensile test stress–displacement curves for two different
values of contact fracture energy in mode I. As shown, under tensile loading, the BL contact
model is a bilinear approximation of the responses obtained with the LSSB and with the
CFM contact models, in which the softening branch closely follows an exponential decay.
Figure 6 also shows that in all adopted contact models, a higher fracture energy in mode I
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leads to a more ductile response under tensile loading in all tests and that the predicted
maximum strength is the input value (3 MPa).
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Figure 6. Tensile test (T)—stress vs. displacement for different values of G f .n: (a) G f .n = 0.015 N/mm
and (b) G f .n = 0.03 N/mm.

Figure 7 shows the predicted shear test stress–displacement curves for four dis-
tinct imposed axial stress values (σv = 0.05 MPa, σv = 0.0 MPa, σv = −0.05 MPa, and
σv = −6.0 MPa). As shown, under shear loading, when compared with the tensile test,
more noticeable differences in the predicted response obtained with each contact softening
model can be identified. Under an imposed axial tensile stress, as shown in Figure 7a, the
BL predicts a more ductile response than the LSSB and the CFM contact models’ responses.
Under a pure shear test, the contact models’ predictions follow the trends previously ob-
served in the tensile test, namely, the BL linear approximation to the more complex LSSB
and CFM predicted responses, as shown in Figure 7b. Figure 7b also shows that under
pure shear, the BL and the LSSB contact models predict similar responses, and the obtained
maximum strength under pure shear is the initial input value (4.5 MPa), whereas in the
CFM model, the maximum strength depends on the input contact strength value and the
adopted initial frictional contact term. Figure 7c shows that under a low contact axial
compression stress value, the responses predicted with the three contact models are similar.
As shown in Figure 7d, for a higher initial compressive contact stress, the CFM model
incorporates a degradation of the friction term, from the initial value of 0.8 to a residual
value of 0.2. Figure 7d further demonstrates that the friction angle in the LSSB contact
model is a variable internal to the model that is influenced by the ratio of normal to shear
stiffness of the springs and the value of tan ω0, as depicted in Figure 4a. Based on the data
provided in Table 1, the internal frictional term for the LSSB contact model is calculated to
be 0.97.

Figure 8 shows the predicted shear test stress–displacement curves in mixed mode for
two different loading conditions (tan θ = 30◦, tan θ = 60◦). As shown, the single contact is
initially cracked, adopting a displacement control procedure and at damage onset, a given
vertical to horizontal displacement is imposed (tan θ). Figure 8 shows that the response
predicted by the CFM closely matches the experimentally observed behaviour of a concrete
plate [40]. This behaviour was expected given that the strength values listed in Table 1 are
the same as those used in [33] to validate the CFM for the same experimental setup.

By considering dilatancy and a decrease in the frictional term with damage evolution,
the CFM allows for a complex response to be predicted with a single contact that closely
matches the response obtained with a concrete plate [40]. The BL and the LSSB contact
models can be further calibrated to predict a response in closer agreement with the response
obtained experimentally, namely, the peak values, but as shown, the response predicted
with the BL contact model is much more brittle than the responses predicted with the LSSB
and CFM contact models. Regardless, it is our point of view that in particle modelling, the
complex macroscopic response should be an emergent behaviour from the overall material
structure representation and material randomness and not due to a complex single-contact
phenomenological constitutive law.
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Figure 7. Shear test under constant axial stress (S&A)—stress vs. displacement for different values
of imposed axial contact stress (σv): (a) σv = 0.05 MPa; (b) σv = 0.0 MPa; (c) σv = −0.05 MPa; and
(d) σv = −6.0 MPa.
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Figure 8. Mixed-mode experiment (HMM)—shear stress vs. shear displacement for different values of
the vertical to shear displacement ratio (tan θ =

vy
vx

), including the experimental results Hassanzadeh
(1990) adopted from [40]: (a) tan θ = 30◦ and (b) tan θ = 60◦.

3.3. Concrete Fracture Tests
3.3.1. Numerical Models

To assess the contact softening models under more complex geometries and loading
conditions, uniaxial tensile tests, uniaxial compression tests, and biaxial tests were carried
out using the geometries presented in Figure 9. As referred to in Section 2.4, the PMs under
consideration directly incorporate an aggregate content spanning dimensions from 4.0
to 8.0 mm and from 8.0 to 16.0 mm, which represent 44% of the total volume within the
aggregate size distribution [36]. Additionally, for mortar particle representation, a uniform
distribution ranging between 4.0 and 5.0 mm in diameter and a porosity of 0.10 is adopted
to adequately occupy the void space [6].

Due to computational restrictions, the biaxial tests were carried out in a
100 × 100 × 50 mm3 geometry, which is half of the size adopted experimentally, which is
a 200 × 200 × 50 mm3 geometry [41]. The compression uniaxial tests assemblies have on
average 1600 particles representing the aggregates and 12,200 particles representing the
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mortar, corresponding to a total of 78,000 VGCM-3D contacts, which, in turn, correspond
to a total of 478,500 local contacts, as shown in Figure 9.
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(100 × 100 × 50 mm3)—aggregate; and (f) biaxial test (100 × 100 × 50 mm3)—aggregate + mortar.

3.3.2. Best-Fit Properties

Two different approaches are adopted in 3D particle modelling of concrete as follows:
(i) a uniform (U) approach that adopts similar contact properties across all contacts re-
gardless of their origin and (ii) a heterogeneous approach that adopts different contact
properties for the inter-particle contacts between the aggregate particles and the particles
representing the mortar (A-M) and for the inter-particle contacts between the particles
representing the mortar (M-M).

The adopted particle generation procedure presented in Section 2.4 also creates a small
number of contacts between aggregate particles (A-A). In the heterogeneous approach (H),
the contact properties adopted for the aggregate-to-aggregate contacts (A-A) are the same
as the contact properties adopted for the aggregate-to-matrix (A-M) contacts.

Table 2 presents, for both approaches (U&H), the elastic contact properties that pre-
dict a numerical macroscopic Young’s modulus of 32.0 GPa and a macroscopic Poisson
coefficient of 0.12, similar to the concrete elastic properties adopted in [36].

Table 2. VGCM-3D contact elastic contact properties—uniform (U) versus heterogeneous (H)
approach—concrete model best-fit properties.

Contact U Approach H Approach

Type E
(GPa)

α
E

(GPa)
α

A-A and A-M
54.1 0.17

81.45 0.20
M-M 27.15 0.20

Table 3 presents, for both approaches (U&H), the calibrated strength contact properties
for the contact softening models that are assessed, which predict a numerical macroscopic
uniaxial compressive strength (41.62 MPa) and a numerical macroscopic uniaxial tensile



Buildings 2024, 14, 801 14 of 29

strength (3.72 MPa) similar to the concrete strength properties adopted in [36]. In [36], it is
shown that the numerical predictions of a 2D PM that considers a linear contact constitutive
model and adopts a FEM discretization of the aggregates embedded in a cement paste
matrix represent concrete uniaxial experimental behaviour well.

Table 3. VGCM-3D strength properties—concrete model best-fit properties.

(a) Uniform approach

σn.t
(MPa)

τ
(MPa)

µc
Gf.n

(N/mm)
Gf.s

(N/mm)

BL (A-A, A-M, M-M) 6.33 20.25 0.2 0.0068 1.388
LSSB (A-A, A-M, M-M) 1 5.95 12.65 - 0.0060 0.542
CFM (A-A, A-M, M-M) 2 6.24 103.20 0.2 0.0066 36.064

(b) Heterogeneous approach

σn.t
(MPa)

τ
(MPa)

µc
Gf.n

(N/mm)
Gf.s

(N/mm)

BL
A-A and M-M 10.20 35.80 0.2 0.0117 4.612

A-M 5.10 17.90 0.2 0.0024 0.947

LSSB 1 A-A and M-M 10.45 17.60 - 0.0123 0.592
A-M 5.23 8.80 - 0.0025 0.122

CFM 2 A-A and M-M 9.66 155.90 0.2 0.0105 46.466
A-M 4.83 77.95 0.2 0.0022 9.548

1 σc = 450.0 MPa, Kc = 0.1 E, µ1 = 0.2 in the LSSB model. 2 µcr = µcQ = µc, τcQ = τ in the CFM model.

In the literature, there are several automatic contact calibration approaches based on
the design of experiment method (DOE), machine learning methods (ML), or evolutionary
approaches (GA) [42–44] that do not rely on the user experience. In this work, a simple trial-
and-error procedure that relies on the user experience with particle modelling was followed.
Regarding the macroscopic elastic contact properties, the normal and the shear stiffness
spring ratio (α) is the main parameter that controls the desired macroscopic Poisson’s
ratio, whereas the macroscopic Young’s modulus is mostly controlled by the equivalent
continuum material (E) value [31,45]. Concerning the contact strength properties, the
maximum contact tensile strength and the contact fracture energy in mode I are initially
calibrated by adopting uniaxial tensile tests, and then the maximum contact cohesion
strength, the contact frictional term, and the contact fracture energy in mode II are calibrated
using uniaxial compressive tests.

With the BL and the LSSB contact models, the calibration procedure is more straightfor-
ward than with the CFM contact model, namely, under uniaxial compression. In the BL and
LSSB contact models, an increase in the maximum contact cohesion strength is proportional
to an increase in the macroscopic uniaxial compressive strength. It is important to point out
that within a trial-and-error procedure, a uniform approach (U) calibration procedure is
much easier to carry out than a heterogeneous approach (H) calibration procedure. In the
heterogeneous approach, the adopted A-M to M-M elastic and strength contact properties
ratio follows closely the values adopted in other PM studies [6,34].

In the best-fit calibration procedure that was carried out, it was decided to adopt
the same contact frictional term in all contact models. In the LSSB contact model, a
high uniaxial compressive contact strength of 450.0 MPa was considered for the stress
boundary under high contact stress to not influence the numerical predictions, as shown in
Figure 4a. It was also decided to adopt an associated formulation for the CFM contact model
because, in the PMs, the non-associated macroscopic behaviour should be an emergent
macroscopic property.

As shown in Table 3, the maximum contact tensile strength best-fit values, mostly
related to the macroscopic uniaxial tensile strength, are very similar for all the assessed
softening contact models. This can be explained because in a tensile test, damage occurs at
contacts perpendicular to the load direction that carry small shear contact forces, and as
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seen in the previous section, for a single contact, the response under pure tensile loading is
very similar for all the assessed contact models.

The differences in the maximum contact cohesion term are more noticeable. The
maximum contact cohesion stress is much higher in the CFM contact model than in the
LSSB and BL contact models, as shown in Table 3. As referred to in Section 2.5.3, as
the adopted contact frictional term of 0.2 is a low value for the CFM contact model, the
maximum cohesion under pure shear is then much lower than the adopted maximum
contact cohesion stress.

Figure 10 shows the axial stress–displacement numerical predictions for each contact
softening model under uniaxial tensile and compression for both approaches (U&H).
Similarly, Figure 11 presents the damage–displacement numerical predictions for the same
set of tests and approaches. As shown in Figures 10 and 11, the three contact softening
models under assessment can be calibrated to make them reproduce complex macroscopic
behaviour in concrete under uniaxial tensile and compressive loading [36]. The predicted
contact damage evolutions are also very similar among all softening-based contact models,
especially under tensile loading, as shown in Figure 11.
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Figure 10. Concrete model best-fit properties—stress–displacement curves for the uniaxial tests,
including Vonk (1993) adopted from [36]: (a) uniaxial tensile test—U approach; (b) uniaxial com-
pression test—U approach; (c) uniaxial tensile test—H approach; and (d) uniaxial compression
test—H approach.
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Figure 11. Concrete model best-fit properties—damage–displacement curves for the uniaxial tests:
(a) uniaxial tensile test—U approach; (b) uniaxial compression test—U approach; (c) uniaxial tensile
test—H approach; and (d) uniaxial compression test—H approach.

The contact softening-based models under assessment, after a previous calibration,
have the following similarities:

• With a uniform (U) approach, the predicted numerical response under uniaxial tensile
loading is slightly less ductile than the response predicted with the 2D PM flexible
model that is known to represent concrete behaviour well [36]. Under a uniform
approach (U), a softening contact model is fundamental in order for the PM not to
predict a too brittle response, as shown in Figure 10a;
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• In the uniform approach (U), at around 20.0 MPa compressive strength, there is
a sudden change in stiffness: a two-slope stress–displacement response is clearly
predicted with all contact models, as shown in Figure 10b. A similar behaviour has
been found to occur in rock fracture tests using the BL contact model [31,45], and it was
thought that it could be due to the simplified assumptions of the BL contact vectorial
model. As will be shown, this anomalous two-slope behaviour can be mitigated in all
contact modes by adopting a higher value of the normal-to-shear stiffness ratio;

• As expected, with a heterogeneous approach (H), the predicted uniaxial tensile and
compression numerical responses are less brittle than the ones predicted with a uni-
form approach (U) and are in better agreement with the concrete experimental be-
haviour, as shown in Figure 11c,d;

• In the heterogeneous approach (H), at a uniaxial tensile loading of around 2.0 MPa
applied stress, there is a clear loss of stiffness that is due to the damage that initially
occurs at the A-M contacts that have lower contact strength properties. As will be
shown, this predicted loss of stiffness can also be mitigated in all contact models by
adopting a higher value of the normal-to-shear stiffness ratio.

Given the best-fit contact properties that were found through a trial-and-error proce-
dure using uniaxial tests, numerical biaxial tests under loading control were also carried out.
Figure 12 presents, for both approaches (U&H), the predicted biaxial failure envelopes for
the best-fit contact strength properties. Also presented is the experimental envelope for a
uniaxial compressive strength of 31 MPa [41] in the range of the concrete under assessment
uniaxial compressive strength (41.62 MPa). As shown in Figure 12, all the assessed contact
models under tensile/tensile and tensile/compression loading predict a failure envelope in
close agreement with the known concrete behaviour [41]. Under compression/compression
loading, all the contact models predict a much higher failure envelope than that observed
experimentally in concrete.
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Figure 12. Concrete model best-fit properties—biaxial failure envelope including experimental
envelope for σc ≈ 31 MPa, Exp (1969) adopted from [41]: (a) U approach and (b) H approach.

In both approaches (U&H), the BL contact model predicts the best agreement in
compression/compression loading, and the CFM contact model is the contact model whose
predictions are further away from the known concrete experimental behaviour. The results
obtained clearly show that a 3D PM particle model, based on a VGCM-3D contact model,
following a Laguerre–Voronoi generation to set the inter-particle contacts and contact area,
predicts a higher failure envelope under biaxial compression if the normal-to-shear stiffness
ratio is set to predict the correct macroscopic Poisson’s ratio.

In terms of computational costs, the BL contact model stands out as the most effi-
cient. The LSSB contact model, compared with the BL contact model, has an associated
computational cost that is 50% higher and the CFM contact model has an associated compu-
tational cost that is 15% higher. The computational costs within a 3D PM are of paramount
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importance, particularly if larger structures are modelled or if more complex automatic
calibration schemes are adopted that require a significant number of simulations.

In the numerical examples that were carried out, including the ones presented in the
following sections, no convergence issues were identified when adopting the CFM contact
model. This is most likely due to the fact that an explicit procedure was adopted that
limits the contact force increment in each time step (small time steps or scaled masses). No
solution issues were observed with the BL and LSSB contact models, both of which rely on
the application of analytical expressions.

3.3.3. Normal-to-Shear Stiffness Ratio (α) of 0.50

The LSSB contact model that was proposed for a similar 3D PM, which just considers
coarse aggregate particles and sets the contacts given a Delaunay triangulation, adopts a
normal-to-stiffness spring ratio (α) of 0.25 [32]. The CFM contact model that was introduced
within a FEM framework adopts an even higher normal-to-stiffness ratio (α) value of
1.0 [28]. Note that when adopting a flexible PM, Poisson’s ratio is mainly associated with
the adopted finite element Poisson’s coefficient [34,36], and the normal and shear spring
stiffnesses can be understood as being penalty terms.

As pointed out, within a PM framework, the α parameter should be chosen to ensure
that the desired macroscopic Poisson’s ratio is predicted, and as shown for the adopted 3D
PM based on Laguerre–Voronoi tessellation, values of α much lower than the ones adopted
in other PMs may be required (Table 2).

To assess the relevance of the α parameter, the same numerical tests in Section 3.3.2
were carried out with the best-fit contact strength properties presented in Table 3 and with
the equivalent continuum material (E) values presented in Table 2, but with a normal-to-
stiffness ratio (α) of 0.50. With the newly adopted elastic contact properties, a macroscopic
Young’s modulus of 42.0 GPa and a macroscopic Poisson coefficient of 0.11 are predicted
with a uniform approach (U), and a macroscopic Young’s modulus of 41.6 GPa and a
macroscopic Poisson coefficient of 0.12 are predicted with a heterogeneous approach (H).
When adopting an α parameter value of 0.50, similar trends were identified in the numerical
tests that were carried out with the different contact softening-based models:

• In both approaches (U&H) a higher value of α leads to higher values of tensile and
compression strength and to lower ductility after the peak strength is reached, as
shown in Figure 13a–d;

• Noticeable under tensile loading, the increase in peak strength is very similar in all
contact models, as shown in Figure 13a,c. Interestingly, under uniaxial compression,
the increase in the peak strength is less noticeable with a BL contact model than with
the LSSB and CFM contact models;

• In the uniform approach (U), an anomalous two-slope stress–displacement response is
no longer predicted under uniaxial compression, as shown in Figure 13b. In the hetero-
geneous approach (H), a loss of stiffness in the tensile test is mitigated when compared
with the response predicted with a lower α value, as shown in Figures 10c and 13c;

• Under biaxial compression, as shown in Figure 14, the 3D PM predicted responses are
closer to the observed concrete behaviour than the responses predicted with a lower α
value, as shown in Figure 12.

Under biaxial compression, the 3D PM response adopting a BL contact model is in close
agreement with the behaviour observed experimentally for concrete in both approaches
(U&H). Like in the previous example, the CFM contact model predicts a larger failure
envelope under biaxial compression. The results presented show that with an increase in
the normal to stiffness ratio, all softening-based contact models predict failure envelopes
under biaxial compression loading closer to those observed in concrete. Note that this
improvement in the predicted macroscopic biaxial response is due to a worst macroscopic
Poisson’s coefficient prediction.
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Figure 13. α parameter influence—stress–displacement curves for the uniaxial tests, including Vonk
(1993) adopted from [36]: (a) uniaxial tensile test—U approach; (b) uniaxial compression test—U
approach; (c) uniaxial tensile test—H approach); and (d) uniaxial compression test—H approach.
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Figure 14. α parameter influence—biaxial failure envelope including the experimental envelope for
σc ≈ 31 MPa, Exp (1969) adopted from [41]: (a) U approach and (b) H approach.

3.3.4. A 30% Reduction in the PM Total Number of Contacts

As shown in the previous section, an increase in the normal-to-stiffness ratio value
(α) leads to a better agreement with known concrete biaxial behaviour when compared
with the response predicted with a lower α value that is required so that a 3D PM based on
a Laguerre–Voronoi generation procedure predicts a correct macroscopic Poisson’s ratio,
especially under a uniform approach (U).

To predict a correct macroscopic Poisson’s ratio in the order of 0.20 with a higher α
parameter, one possibility is to transform some of the VGCM-3D contacts present in the PM
into cohesionless contacts, which are contacts that are no longer able to carry tensile forces.
For example, all the VGCM-3D contacts that have a contact area below a given threshold
can be transformed into cohesionless contacts. Table 4 presents the best-fit calibrated elastic
contact properties when the VGCM-3D contacts below a contact area of 6.0 × 10−6 m2 are
transformed into cohesionless contacts. A 30% reduction in the total number of VGCM-3D
contacts is obtained. The smaller contact areas correspond in general to interacting particles
that are further apart than the average inter-particle distance. Table 4 presents, for both
approaches (U&H), the elastic contact properties that predict a numerical macroscopic
Young’s modulus of 32.0 GPa and a macroscopic Poisson coefficient of 0.20 [36]. The contact
strength properties presented in Table 3 for the full particle assemblies were adopted.

If the number of contacts present in the PM that are able to carry tensile forces is
initially reduced, similar trends are identified with the different contact softening-based
models as follows:

• In both approaches, the reduction in the uniaxial tensile strength is more noticeable
than the reduction in the uniaxial compressive strength, as shown in Figure 15a–d;
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• The predicted stress–displacement responses have a better agreement with uniaxial
concrete behaviour when compared with the predicted curves when all contacts are
adopted, as shown in Figure 10;

• In the uniform approach (U), as shown in Figure 15b, the predicted two-slope stress–
displacement response is much smoother than the one predicted in Section 3.3.2
(Figure 10b). In the heterogeneous approach (H), as shown in Figure 15c, a loss of
stiffness in the tensile test is almost mitigated when compared with the response
predicted in Section 3.3.2 (Figure 10c);

• Under biaxial compression loading, as shown in Figure 16, when compared with the
response predicted in Section 3.3.2, the 3D PM predicted responses with a reduction
in the total number of contacts are closer to that observed in concrete. Under a
heterogeneous approach (H), the response predicted with the LSSB contact model
has an excellent agreement with the response predicted with the BL contact model.
The CFM contact model predictions are still too far away from the known concrete
behaviour under biaxial compression.

Table 4. Contact reduction—VGCM3-D contact elastic contact properties—uniform (U) versus
heterogeneous (H) approach—contact reduction.

Contact (U) Approach (H) Approach

Type E
(GPa)

α
E

(GPa)
α

A-A and A-M
51.5 0.25

75.90 0.30
M-M 25.20 0.30
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Figure 15. Contact reduction—stress–displacement curves for the uniaxial tests, including Vonk
(1993) adopted from [36]: (a) uniaxial tensile test—U approach; (b) uniaxial compression test—U
approach; (c) uniaxial tensile test—H approach); and (d) uniaxial compression test—H approach.
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Figure 16. Contact reduction-biaxial failure envelope for best-fit contact strength properties including
the experimental envelope for σc ≈ 31 MPa, Exp (1969) adopted from [41]: (a) U approach and
(b) H approach.
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In both approaches (U&H), and for the LSSB contact model and the CFM contact model,
the decrease in the uniaxial tensile strength (≈32%) is in the same order of magnitude as
the decrease in the predicted uniaxial compression strength (≈28%). With a BL contact
model, the decrease in the predicted uniaxial compressive strength is slightly lower (≈28%)
than the decrease in the uniaxial tensile strength, which is in the same order as the decrease
obtained with the other softening contact models.

With a reduction in the number of working contacts by setting cohesionless contacts
given a certain contact area threshold, a better agreement with known concrete behaviour is
obtained with all contact softening-based models. The better agreement is more noticeable
with the BL contact model and with the LSSB contact model following a heterogeneous
approach (H). Note that with an initial contact reduction, the proper macroscopic elastic
behaviour is predicted with an increase in the normal-to-shear ratio.

3.3.5. Maximum Compressive Contact Strength of 60.0 MPa

The LSSB contact model also includes a stress–strain boundary for higher compression
contact stresses, which was not considered in the previous calculations given that a high
contact maximum strength (450 MPa) was adopted, see Table 3 and Section 2.5.2. In this
section, the LSSB contact model was calibrated by adopting a maximum compressive
contact stress of 60.0 MPa (LSSB-Y). The BL contact model was also extended to include
a yield plateau (BL-Y) in the normal direction under compression. For the BL-Y contact
model, the contact strength properties were calibrated using a yield compressive contact
stress of 60.0 MPa. Compression cap models have also been proposed as an extension of
the CFM contact model [46] and within the DEM framework [14,47] for masonry analysis.
A CFM compression cap extension has not been implemented in the VGCM-3 contact
model. For this reason, the effect of adopting a maximum compressive contact strength
was not evaluated for the CFM contact model. To ease the calibration procedure, the
influence of the maximum contact compressive strength was only assessed for a uniform
(U) approach.

Table 5 presents the best-fit properties for the BL-Y and LSSB-Y contact models. As
shown, when compared with the values presented in Table 3, for the BL contact model, the
maximum cohesion stress value is higher when a compressive strength yield plateau is
adopted. For the LSSB contact model, which adopts a more complex stress boundary for
high axial stresses, both the tensile and the shear maximum contact strengths needed to be
increased when a contact compressive strength of 60.0 MPa was considered.

Table 5. Compressive contact strength influence on VGCM3D strength properties—uniform (U) approach.

σn.t
(MPa)

τ
(MPa) µc

Gf.n
(N/mm)

Gf.s
(N/mm)

BL-Y (A-A,
A-M, M-M) 1 6.33 24.40 0.2 0.0068 1.388

LSSB-Y (A-A,
A-M, M-M) 2 6.15 12.65 - 0.0064 0.894

1 σc = 60.0 MPa yielding value under compression in the BL model. 2 σc = 60.0 MPa, Kc = 0.1 E, µ1 = 0.2 in the
LSSB model.

Figure 17 presents the predicted stress displacement curves including the numerical be-
haviour predicted in Section 3.3.2. As shown, under uniaxial tensile loading, the predicted
response is very similar in both contact models (Figure 17a,c). Under uniaxial compression,
as shown in Figure 17b,d, the response predicted with the LSSB-Y contact model is less
brittle than the response predicted when a high maximum compressive strength is adopted.
With the BL contact model, the consideration of a yield compressive contact strength does
not have much influence on the post-peak region, and the BL and the BL-Y predicted
responses are similar, as shown in Figure 17b.
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Figure 17. Maximum compressive contact strength—stress–displacement curves for the uniaxial
tests, including Vonk (1993) adopted from [36]: (a) uniaxial tensile test—U approach; (b) uniaxial
compression test—U approach; (c) uniaxial tensile test—H approach; and (d) uniaxial compression
test—H approach.

Figure 18 presents the predicted biaxial failure envelopes when a maximum compres-
sive contact strength is adopted. As expected, a maximum contact compressive strength
of 60.0 MPa leads, in both the BL and LSSB contact models, to failure envelopes under
biaxial compressive stress closer to those observed in concrete. The BL-Y contact model
with a yield compressive value of around 150% of the macroscopic concrete compressive
strength value leads to a very good agreement with the concrete experimental response
under biaxial loading, as shown in Figure 18a.
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Figure 18. Maximum compressive contact strength—-biaxial failure envelope including the experi-
mental envelope for σc ≈ 31 MPa, Exp (1969) adopted from [41]: (a) BL contact model and (b) LSSB
contact model.

3.3.6. Single-Point Contact Model (PCM)

It has been shown that a contact model that allows moment transmission increases the
compression-to-tensile ratio for the same set of parameters [31,45]. In [7], it is mentioned
that with a similar spherical PM representing concrete that does not take into account
moment transmission, a compressive-to-tensile strength ratio of 8 is only possible following
a uniform approach if the particle rotations are prevented; otherwise, only a ratio of 3 to 4
is obtained.

In this section, the VGCM-3D with a single local contact point is evaluated to assess the
influence that the moment transmission has on the contact softening models. The concrete
that was modelled had a compressive-to-tensile strength ratio of around 11.20, and with a
uniform approach (U), it was not possible to find a set of contact strength parameters for all
contact models that had a similar compressive-to-tensile strength ratio, even when higher
maximum cohesion stress values and high contact frictional terms were adopted. Within
a uniform approach (U), the maximum predicted numerical compressive tensile strength
ratio with a PCM was ≈7.2 for the BL contact model, ≈6.5 for the LSSB contact model, and
≈8.0 for the CFM contact model.
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Table 6 presents the best-fit strength properties for the PMs with a PCM for the
heterogeneous approach (H). As shown, when adopting a single contact point, higher
values of maximum cohesion stress values needed to be adopted when compared with
values adopted when moment transmission is considered. For the CFM, it was also
necessary to increase the contact frictional term to predict the desired compressive-to-
tensile strength ratio. The best fit maximum tensile strength values, as shown in Table 6,
are of the same order as the values adopted when moment transmission is considered, as
shown in Table 3.

Table 6. PCM—VGCM3-D strength properties—concrete model best-fit properties—heterogeneous
(H) approach.

σn.t
(MPa)

τ
(MPa) µc

Gf.n
(N/mm)

Gf.s
(N/mm)

BL
A-A and M-M 10.12 80.00 0.2 0.0114 22.797

AM 5.06 40.00 0.2 0.0023 4.696

LSSB 1 A-A and M-M 10.52 70.00 - 0.0123 9.273
AM 5.26 35.00 - 0.0025 1.910

CFM 2 A-A and M-M 9.56 460.00 0.5 0.0101 40.420
AM 4.78 230.00 0.5 0.0021 8.248

1 σc = 450.0 MPa, Kc = 0.1 E, µ1 = 0.2 in the LSSB model. 2 µcr = µcQ = µc, τcQ = τ in the CFM model.

Figure 19 shows, for the PCM and for each contact softening model, the axial stress–
displacement numerical predictions under uniaxial tensile and compression for the hetero-
geneous (H) approach. Under uniaxial tensile loading, the responses predicted with a PCM,
as shown in Figure 16a, and with a contact model that allows moment transmission, as
shown in Figure 10c, are very similar. Under uniaxial compressive loading, the responses
predicted with a PCM, as shown in Figure 19b, have, for all contact models, a much more
brittle post-peak behaviour than the responses predicted with a contact model that allows
moment transmission, as shown in Figure 10d.
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Figure 19. PCM—stress–displacement curves for the uniaxial tests, including Vonk (1993) adopted
from [36]: (a) uniaxial tensile test—H approach and (b) uniaxial compression test—H approach.

Figure 20 presents, for all the assessed contact models, the predicted biaxial failure
envelope. Also presented as a dashed line are the predictions obtained with a contact
model that considers moment transmission; see Section 3.3.2. As shown for the BL contact
model, the failure envelope under biaxial compression is of the same order as the failure
envelope predicted with a contact model that allows moment transmission, whereas for the
LSSB contact model and for the CFM contact model, the predicted failure envelopes under
biaxial compression are lower than the failure envelopes predicted with a contact model
that allows moment transmission. Noticeably, with a PCM, the biaxial failure envelopes
predicted with the three contact softening models under analysis are in closer agreement
than the biaxial failure envelope predicted when moment transmission is considered.
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Figure 20. PCM—biaxial failure envelope for best-fit contact strength properties including the
experimental envelope for σc ≈ 31 MPa, Exp (1969) adopted from [41]—heterogeneous (H) approach.

Figure 21 presents, for all the assessed contact models, the best-fit predicted biaxial
failure envelopes obtained with a PCM for both approaches when a normal-to-shear
stiffness ratio of 0.50 is adopted. Under this assumption, the PMs predict a failure biaxial
envelope in close agreement with that observed in concrete, especially for the BL and LSSB
contact models. It can be highlighted that with a PCM, a 60% computational time reduction
is obtained when compared with a 3D PM that considers moment transmission. However,
as pointed out, with a PCM, a uniform approach cannot be adopted if a compression-to-
tensile ratio higher than 8.0 is required.
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Figure 21. PCM (α = 0.5)—biaxial failure envelope including the experimental envelope for σc ≈ 31 MPa,
Exp (1969) adopted from [41]: (a) uniform (U) approach and (b) heterogeneous (H) approach.

3.3.7. PM Refinement

To evaluate the performance of the contact softening models with a more detailed
discretization, an aggregate content featuring sizes from 2.0 to 4.0 mm, 4.0 to 8.0 mm,
and 8.0 to 16.0 mm, which makes up to 58% of the total aggregate volume distribution,
is considered [36]. Additionally, for the mortar representation, a uniform particle size
distribution ranging from 2.5 to 3.0 mm and a porosity of 0.1 is selected to effectively fill
the void space [6].

In the refined PMs, the compression uniaxial test assemblies have on average 10,100 par-
ticles representing the aggregates and 39,000 particles representing the mortar, correspond-
ing to a total of 308,000 VGCM-3D contacts, which, in turn, correspond to a total of
1,850,200 local contacts. Compared with the coarser model adopted in the previous ex-
amples, the refined model is much more computationally demanding. Within a particle
modelling approach, the particle content should be as close as possible to the real concrete
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aggregate/mortar content; however, due to computational restrictions, there must be a
compromise on the degree of refinement, especially in 3D PMs.

Table 7 presents the best-fit contact elastic properties and Table 8 presents the best-fit
strength properties for the more refined PMs for both approaches (U&H). As shown, given
that a PM based on a Laguerre–Voronoi tessellation of the particles’ gravity centres assures
a certain degree of regularization, contact area, and contact length, the best-fit parameters
of a refined PM are closer to the best-fit parameters of a coarser PM; see Table 2 versus
Tables 3 and 7 versus Table 8. This type of behaviour is not possible to obtain with a PM
that sets the contact areas as a function of the particles’ interacting radius [8,10].

Table 7. Three-dimensional PM refinement—VGCM-3D contact elastic contact properties—uniform
(U) versus heterogeneous (H) approach.

Contact Uniform Approach Heterogeneous Approach

Type E
(GPa)

α
E

(GPa)
α

A-A and A-M
54.1 0.17

71.80 0.20
M-M 23.90 0.20

Table 8. VGCM3D strength properties—concrete model best-fit properties—refined PMs.

(a) Uniform (U) approach

σn.t
(MPa)

τ
(MPa)

µc
Gf.n

(N/mm)
Gf.s

(N/mm)

BL (A-A, A-M, M-M) 6.30 20.13 0.2 0.0043 0.946
LSSB (A-A, A-M, M-M) 1 6.00 13.55 - 0.0039 0.397
CFM(A-A, A-M, M-M) 2 6.24 105.80 0.2 0.0042 24.418

(b) Heterogeneous (H) approach

σn.t
(MPa)

τ
(MPa)

µc
Gf.n

(N/mm)
Gf.s

(N/mm)

BL
A-A and M-M 11.50 33.34 0.2 0.0108 2.895

A-M 5.75 16.67 0.2 0.0022 0.602

LSSB 1 A-A and M-M 11.66 19.02 - 0.0111 0.500
A-M 5.83 9.51 - 0.0023 0.104

CFM 2 A-A and M-M 11.10 139.50 0.2 0.0100 26.922
A-M 5.55 69.75 0.2 0.0021 5.596

1 σc = 450.0 MPa, Kc = 0.1 E, µ1 = 0.2 in the LSSB model. 2 µcr = µcQ = µc, τcQ = τ in the CFM model.

Figure 22 shows the axial stress–displacement numerical predictions for each contact
softening model under uniaxial tensile and compression for both modelling approaches
(U&H). As shown, for all contact models, the refined PM numerical predictions, which
have a much higher associated computational cost, are closer to the coarser PM predictions;
see Figures 10 and 22.

Figure 23 presents the predicted biaxial failure envelopes for all the assessed contact
models. Also presented as a dashed line are the predictions obtained with a coarser model.
In a uniform approach (U), the refined PM calibrated predictions are in close agreement
with the predictions obtained with the coarser PM, whereas in the heterogeneous approach
(H), the refined PM predictions are closer to the observed concrete behaviour under biaxial
loading. Noticeably, the differences are more pronounced with a CFM contact model.

The results presented show that for all softening-based contact models and for all
modelling approaches, it is possible to carry out a two-step calibration procedure that
greatly reduces the required computational times. First, the best-fit parameters can be
found using a coarser assembly with reduced computational costs and then a localized
refinement can be carried out with the refined PMs.



Buildings 2024, 14, 801 25 of 29

Buildings 2024, 14, x FOR PEER REVIEW 25 of 30 
 

(b) Heterogeneous (H) approach 

  𝝈𝒏.𝒕  (𝐌𝐏𝐚) 
𝝉  (𝐌𝐏𝐚) 𝝁𝒄 𝑮𝒇.𝒏  (𝐍 𝐦𝐦⁄ ) 

𝑮𝒇.𝒔  (𝐍 𝐦𝐦⁄ ) 

BL 
A-A and M-M 11.50 33.34 0.2 0.0108 2.895 

A-M 5.75 16.67 0.2 0.0022 0.602 

LSSB 1 A-A and M-M 11.66 19.02 - 0.0111 0.500 
A-M 5.83 9.51 - 0.0023 0.104 

CFM 2 A-A and M-M 11.10 139.50 0.2 0.0100 26.922 
A-M 5.55 69.75 0.2 0.0021 5.596 

1 𝜎௖ = 450.0 MPa , 𝐾௖ = 0.1 𝐸ത , 𝜇ଵ = 0.2  in the LSSB model. 2 𝜇௖௥ = 𝜇௖ொ = 𝜇௖ , 𝜏௖ொ = 𝜏  in the CFM 
model. 

Figure 22 shows the axial stress–displacement numerical predictions for each contact 
softening model under uniaxial tensile and compression for both modelling approaches 
(U&H). As shown, for all contact models, the refined PM numerical predictions, which 
have a much higher associated computational cost, are closer to the coarser PM predic-
tions; see Figures 10 and 22. 

(a) (b) (c) (d) 

Figure 22. Three-dimensional PM refinement—stress–displacement curves for the uniaxial tests, in-
cluding Vonk (1993) adopted from [36]: (a) uniaxial tensile test—U approach; (b) uniaxial compres-
sion test—U approach; (c) uniaxial tensile test—H approach; and (d) uniaxial compression test—H 
approach. 

Figure 23 presents the predicted biaxial failure envelopes for all the assessed contact 
models. Also presented as a dashed line are the predictions obtained with a coarser model. 
In a uniform approach (U), the refined PM calibrated predictions are in close agreement 
with the predictions obtained with the coarser PM, whereas in the heterogeneous ap-
proach (H), the refined PM predictions are closer to the observed concrete behaviour un-
der biaxial loading. Noticeably, the differences are more pronounced with a CFM contact 
model. 

The results presented show that for all softening-based contact models and for all 
modelling approaches, it is possible to carry out a two-step calibration procedure that 
greatly reduces the required computational times. First, the best-fit parameters can be 
found using a coarser assembly with reduced computational costs and then a localized 
refinement can be carried out with the refined PMs. 

0.0

1.0

2.0

3.0

4.0

0.00 0.01 0.02 0.03 0.04 0.05

σ
t
(M

Pa
)

Vertical displacement (mm)

0.0
10.0
20.0
30.0
40.0
50.0

0.00 0.10 0.20 0.30 0.40 0.50 0.60

σ c
(M

Pa
)

Vertical displacement (mm)

0.0

1.0

2.0

3.0

4.0

0.00 0.01 0.02 0.03 0.04 0.05

σ
t
(M

Pa
)

Vertical displacement (mm)

0.0
10.0
20.0
30.0
40.0
50.0

0.00 0.10 0.20 0.30 0.40 0.50 0.60

σ c
(M

Pa
)

Vertical displacement (mm)

BL LSSB CFM Vonk (1993)

Figure 22. Three-dimensional PM refinement—stress–displacement curves for the uniaxial tests,
including Vonk (1993) adopted from [36]: (a) uniaxial tensile test—U approach; (b) uniaxial compres-
sion test—U approach; (c) uniaxial tensile test—H approach; and (d) uniaxial compression test—H
approach.

Buildings 2024, 14, x FOR PEER REVIEW 26 of 30 
 

  
(a) (b) 

Figure 23. Three-dimensional PM refinement—biaxial failure envelope including the experimental 
envelope for σc ≈ 31 MPa, Exp (1969) adopted from [41]: (a) uniform approach and (b) heterogeneous 
approach. 

4. Discussion and Conclusions 
Given that some limitations have been identified when using a PM that adopts a BL 

contact model, namely, a clear two-slope curve is predicted under uniaxial compression 
for hard rock, BL contact model predictions are compared with those obtained using more 
complex contact models for different application examples adopting a 3D rigid PM.  

4.1. Single VGCM-3D Contact 
For a single contact point under tensile loading, the contact softening models’ re-

sponse is very similar. Under pure shear loading, there are some differences in the numer-
ical predictions, especially between the CFM contact model and the other contact models 
given that in the CFM contact model, the maximum shear cohesion strength input value 
does not match the maximum predicted shear strength, particularly for lower contact fric-
tional values. For the shear tests under constant axial force, more noticeable differences in 
the responses are identified as follows: (i) in the LSSB contact model, the contact frictional 
term is an internal variable and (ii) the CFM contact model can include a deterioration of 
the frictional term with damage evolution. For a complex mixed-mode test under dis-
placement control, the difference in the predicted responses is even more evident. The 
response predicted with a single CFM contact model under mixed mode can be quite com-
plex as the model also allows non-associated plastic flow.  

4.2. Uniaxial and Biaxial Behaviour for Best-Fit Properties 
Uniaxial tensile and uniaxial compression tests and biaxial tests of 3D PMs represent-

ing concrete were also carried out, following a uniform and heterogeneous approach. As 
shown in both approaches, it is possible to calibrate the 3D PM contact strength properties 
in order for each softening-based contact model to predict the known experimental be-
haviour of concrete under uniaxial tensile and uniaxial compressive loading. The maxi-
mum contact tensile strength values, mostly related to the macroscopic uniaxial tensile 
strength, are very similar for all the assessed softening contact models. The differences in 
the maximum contact cohesion terms are more noticeable, and the maximum contact co-
hesion stress is much higher in the CFM contact model than in the LSSB and BL contact 
models, but despite the differences in value, the contact models do lead to similar macro-
scopic responses.  

The contact softening-based contact models under assessment after a previous cali-
bration have some similarities in the predicted behaviour under uniaxial loading as fol-
lows: (i) in the uniform approach (U), a two-slope stress–displacement response is clearly 
predicted with all contact models at around a 20.0 MPa compressive strength and (ii) in 

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

−3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5

σy
y 

/ σ
c

σxx / σc
BL LSSB CFM Exp (1969)

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

−3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5

σy
y 

/ σ
c

σxx / σc
BL LSSB CFM Exp (1969)

Figure 23. Three-dimensional PM refinement—biaxial failure envelope including the experimental
envelope for σc ≈ 31 MPa, Exp (1969) adopted from [41]: (a) uniform approach and (b) heterogeneous
approach.

4. Discussion and Conclusions

Given that some limitations have been identified when using a PM that adopts a BL
contact model, namely, a clear two-slope curve is predicted under uniaxial compression
for hard rock, BL contact model predictions are compared with those obtained using more
complex contact models for different application examples adopting a 3D rigid PM.

4.1. Single VGCM-3D Contact

For a single contact point under tensile loading, the contact softening models’ response
is very similar. Under pure shear loading, there are some differences in the numerical
predictions, especially between the CFM contact model and the other contact models given
that in the CFM contact model, the maximum shear cohesion strength input value does
not match the maximum predicted shear strength, particularly for lower contact frictional
values. For the shear tests under constant axial force, more noticeable differences in the
responses are identified as follows: (i) in the LSSB contact model, the contact frictional term
is an internal variable and (ii) the CFM contact model can include a deterioration of the
frictional term with damage evolution. For a complex mixed-mode test under displacement
control, the difference in the predicted responses is even more evident. The response
predicted with a single CFM contact model under mixed mode can be quite complex as the
model also allows non-associated plastic flow.

4.2. Uniaxial and Biaxial Behaviour for Best-Fit Properties

Uniaxial tensile and uniaxial compression tests and biaxial tests of 3D PMs represent-
ing concrete were also carried out, following a uniform and heterogeneous approach. As
shown in both approaches, it is possible to calibrate the 3D PM contact strength properties in
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order for each softening-based contact model to predict the known experimental behaviour
of concrete under uniaxial tensile and uniaxial compressive loading. The maximum contact
tensile strength values, mostly related to the macroscopic uniaxial tensile strength, are
very similar for all the assessed softening contact models. The differences in the maximum
contact cohesion terms are more noticeable, and the maximum contact cohesion stress is
much higher in the CFM contact model than in the LSSB and BL contact models, but despite
the differences in value, the contact models do lead to similar macroscopic responses.

The contact softening-based contact models under assessment after a previous calibra-
tion have some similarities in the predicted behaviour under uniaxial loading as follows:
(i) in the uniform approach (U), a two-slope stress–displacement response is clearly pre-
dicted with all contact models at around a 20.0 MPa compressive strength and (ii) in the
heterogeneous approach (H), there is a clear loss of stiffness at a uniaxial tensile loading at
around 2.0 MPa of applied stress. Previously, it was thought that these anomalies could be
due to the vectorial nature of the BL contact model.

For the best-fit contact strength parameters, all the assessed contact models under
tensile/tensile and under tensile/compression loading predict a failure envelope in close
agreement with the known concrete behaviour. Under biaxial compression/compression
loading, all the contact models predict a much higher failure envelope than that observed
experimentally in concrete.

In both approaches (U&H), the BL contact model predicts the best agreement in
compression/compression loading, and the CFM contact model is the contact model whose
predictions are further away from the known concrete experimental behaviour.

4.3. Additional Parametric Studies

Additionally, several parametric studies were carried out in order to assess if the
contact softening-based model agreement with the known concrete behaviour under biaxial
compressive loading could be improved if the contact models under assessment had similar
tendencies. The following results were found:

• In all contact models under assessment, an increase in the normal-to-stiffness ratio
leads to a better agreement with the known concrete biaxial compressive loading
failure envelope. It should be noted that this improvement in the predicted response
is due to the worst prediction of the macroscopic Poisson’s coefficient;

• With a reduction in the number of working contacts, by setting cohesionless contacts
given a certain contact area threshold, a better response is obtained with all contact
softening-based models. The better agreement is more noticeable with the BL contact
model and with the LSSB contact model following a heterogeneous (H) approach.
It should be stressed that with contact reduction, the proper macroscopic elastic
behaviour is predicted with an increase in the normal-to-shear ratio.

• If a maximum contact compressive strength of 60.0 MP is adopted, both the BL and the
LSSB contact models predict, under biaxial compressive loading, a failure envelope
closer to the known concrete behaviour. A similar result is expected to occur with
a CFM contact model if a compression cap is adopted. It should be mentioned that
with the LSSB contact model under uniaxial compressive loading, the adoption of
maximum compressive strength of the order of 60.0 MPa leads to an increase in the
post-peak ductility that does not occur in concrete and is not predicted with a BL-Y
contact model;

• If a PCM is adopted, the failure envelope predicted with a BL contact model under
biaxial loading is of the same order as the failure envelope predicted when moment
transmission is considered, whereas for the LSSB contact model and the CFM contact
models, the failure envelope predicted with a PCM under biaxial compression loading
is smaller than the failure envelope predicted when moment transmission is considered.
Note that with all contact models, a maximum macroscopic compressive strength-
to-tensile strength of 6 to 8 is predicted with a uniform approach (U) when a PCM
is adopted;
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• If a PCM and a normal-to-shear stiffness ratio of 0.50 are adopted, all contact-based
models under assessment predict a biaxial failure envelope in close agreement with
the known concrete behaviour, especially the BL and LSSB contact models. It can be
highlighted that with a PCM, a 60% computational time reduction is obtained when
compared with a 3D PM that considers moment transmission;

• For all softening-based contact models and for all modelling approaches, it is possible
to carry out a two-step calibration procedure that greatly reduces the required com-
putational times: an initial estimate of the best-fit parameters can be found using a
coarser assembly, and then a localized search can be carried out with a refined PM.

4.4. Final Conclusions and Further Work

This paper highlights that the BL contact model can be used with confidence in PM
fracture studies with the following advantages in detailed 3D PM DEM-based models:

• Reduced number of contact strength parameters requiring calibration. In addition, the
relationship between the macroscopic properties and the contact properties is more
straightforward than the one that occurs with the CFM contact model;

• Lower associated computational costs. Compared with the BL contact model, the LSSB
contact model has an associated computational cost that is 50% higher and the CFM
contact model has an associated computational cost that is 15% higher;

• It predicts, for the best-fit properties that are found using uniaxial tests, the best
agreement with concrete observed biaxial behaviour.

To improve the agreement with known concrete behaviour under biaxial loading, a
compression cap needs to be included in the BL contact model. The LSSB contact model
is also shown to be a valid option for concrete fracture studies, with the advantage of
including a stress–strain boundary for high compressive stresses, but the computational
costs are much higher than with the BL contact model. The CFM contact model is the most
complex model to be implemented within a DEM-based PM. The CFM also requires the
consideration of a compression cap and needs a normal-to-shear stiffness ratio closer to 1.0
for the best agreement with concrete biaxial behaviour, which cannot be adopted in PM
studies if Poisson’s ratio is to be properly approximated.

Further work is underway to validate the adopted 3D PM model to larger structures
pursuing hybrid FEM/DEM models, where a finite element discretization is used in the
zones where elastic behaviour is expected to occur. In addition, an evolution algorithm
is also being developed to automatically calibrate the strength properties in uniaxial and
biaxial loading conditions. Given the computational costs, which are quite relevant in both
approaches, the BL model is an efficient and accurate modelling option.
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