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Resumo 

 

A interferometria por RADAR de abertura sintética é uma técnica de geodesia aplicada, que 

permite a medição de deslocamentos a partir de imagens de satélite. A revisão da literatura dos 

princípios da técnica e de estudos anteriores relativos à sua aplicação ao controlo de segurança 

de estruturas possibilitou a identificação de alguns entraves à utilização operacional desta 

tecnologia de elevado custo-benefício na monitorização de estruturas. 

Foram definidas três linhas de investigação. A primeira foi o desenvolvimento de uma estratégia 

de exploração de dados para extração de informação relativa ao comportamento estrutural, a 

partir de séries temporais de deslocamento de milhares de pontos na região de interesse e com 

dezenas de épocas de observação para cada ponto. A segunda linha foi a integração de 

deslocamentos obtidos por esta técnica num sistema de monitorização de estruturas já existente, 

tendo este sido ampliado para um maior número de pontos na estrutura e na sua envolvente. A 

terceira linha foi o desenvolvimento de uma infraestrutura experimental para a realização de 

testes para validação de deslocamentos e determinação da sua incerteza. A infraestrutura incluiu 

um novo modelo de refletor artificial para os sinais do satélite, desenvolvido nesta tese.   

Os métodos desenvolvidos permitiram a monitorização bem-sucedida de diferentes tipos de 

estruturas civis e geotécnicas. Foi monitorizado o comportamento de taludes na vizinhança de 

albufeiras, foram detetadas inclinações em edifícios numa zona de património cultural e 

identificadas as reações de uma barragem de betão a variações de temperatura. O trabalho 

experimental mostrou concordância entre os deslocamentos da técnica e os obtidos por outros 

métodos geodésicos, tendo sido obtidas incertezas para os deslocamentos de aproximadamente 

2 mm. 

Concluindo, a interferometria por RADAR de abertura sintética é uma técnica promissora, com 

capacidade para fornecer informação útil para a monitorização de estruturas, como apoiar o 

planeamento de monitorizações in situ e identificar padrões espácio-temporais no 
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comportamento estrutural. Graças à sua cobertura espacial, período de observação de alguns 

dias e incerteza obtida, é vantajoso complementar sistemas de monitorização de estruturas já 

existentes com dados desta técnica. 

 

Palavras-chave: sistemas de monitorização de estruturas; geodesia; interferometria por 

RADAR de abertura sintética; exploração de dados; análise de incerteza. 
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Title Displacement measurement through InSAR geodesy for structural health monitoring 

 

 

 

Abstract 

 

Interferometric synthetic aperture RADAR is an applied geodesy technique, which enables 

displacement measurement through satellite images. A literature review of the technique 

principles and of previous studies regarding its application to structural health monitoring 

allowed the identification of a few bottlenecks to the operational usage of this cost-effective 

technology for monitoring purposes.  

Three research lines were defined. First, a data mining strategy was developed to extract 

structural behaviour information from displacement time series from thousands of points on the 

region of interest, with tens of observation epochs each. Second, displacements from this 

technique were integrated into a previously existing monitoring system and were used to expand 

it to a larger number of points on the structure and to its surroundings. Third, an experimental 

infrastructure was deployed in order to perform several tests for displacement validation and 

uncertainty assessment. The infrastructure included a new model of artificial reflector to the 

satellite signals, purposefully developed in the scope of this study.  

The developed methods enabled the successful monitoring of different types of civil and 

geotechnical structures. Slope behaviour around water reservoirs was assessed during both the 

reservoir first impoundment and regular operation. Differential displacements were detected on 

building-blocks at a cultural heritage urban area and concrete arch dam responses to 

temperature loads were identified. The experimental work showed the achieved displacements 

agreed with those of other geodetic techniques and uncertainties around 2 mm were obtained 

for the measurements. 

In conclusion, interferometric synthetic aperture RADAR is a promising technique, able to 

provide useful information for structure monitoring, such as aiding in the planning of in situ 

monitoring activities and in identifying space-time patterns in structural behaviour. Thanks to 

its spatial coverage, observation period of a few days and achieved displacement uncertainty, it 

is advantageous to complement existing monitoring systems with data from this technique.             

 

Key-words: structure monitoring systems; geodesy; interferometric synthetic aperture 

RADAR; data mining; uncertainty analysis. 



vi 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 

 

Acknowledgements 

Many people have contributed to the study presented in this thesis. I would like to express 

my gratitude to everyone who manifested their interest on the subject of InSAR, who made 

questions, comments, suggestions and helped with the data interpretation. Special 

acknowledgements are due to: 

- My supervisors, Professor Ana Paula Falcão, Researcher Ana Maria Fonseca and 

Researcher José Vieira de Lemos, for accepting to supervise this research, the fruitful 

discussions, support and timely feedback; 

- Professor Daniele Perissin, the author of SARPROZ, for allowing me to use his amazing 

software and for his help with data processing at the initial stage of the study; 

- Everyone in LNEC’s Concrete Dam Department, especially in the Applied Geodesy 

Unit. Here I must highlight Researcher Nuno Lima, for expressing interest in this work 

and support with the usage of the GNSS data; Researcher Maria João Henriques, also for 

her interest in this study and for letting me use the computer for InSAR processing; 

Technicians Aires Moita and José Alberto Santos for doing the levelling operations and 

support with the reflectors’ installation and maintenance; 

- The team of LNEC’s Scientific Instrumentation Centre, for designing, building and 

installing the bidirectional reflector I idealised; 

- Professor João Catalão, from the Faculty of Sciences of the University of Lisbon, for 

lending the triangular trihedral reflectors; 

- The colleagues at LNEC for their encouragement, support and good mood at lunch time; 

- My family and long-time friends, for all their support – my mother, my sister, Daniel, 

Cláudia, Fábio, Luísa, Ana Sofia, Rute, Sara;  

- The National Laboratory for Civil Engineering, the Foundation for Science and 

Technology and the European Social Fund, for funding and providing the conditions for 

the execution of this study; 

- EDP – Energias de Portugal, for allowing the usage of Baixo Sabor dam data.  

 

 

 

 

 



viii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 

 

Table of contents 
 

Chapter 1. Introduction .............................................................................................................. 1 

1.1. Motivation ................................................................................................................... 1 

1.2. Research objectives ..................................................................................................... 3 

1.3. Contributions ............................................................................................................... 4 

1.4. Outline of the document .............................................................................................. 5 

Chapter 2. The usage of InSAR data for structure monitoring .................................................. 7 

2.1 Interferometric synthetic aperture RADAR ..................................................................... 7 

2.2 InSAR methods for structural health monitoring ........................................................... 18 

Chapter 3. RADAR interpretation of InSAR displacement time series ................................... 29 

3.1 Introduction .................................................................................................................... 29 

3.1.1 RADAR interpretation ............................................................................................ 29 

3.1.2 Clustering of time series .......................................................................................... 38 

3.2 Methods .......................................................................................................................... 45 

3.3 Application to case studies ............................................................................................. 51 

3.3.1 Odelouca slopes ....................................................................................................... 52 

3.3.1.1 Description of study area .................................................................................. 52 

3.3.1.2 PSI processing .................................................................................................. 53 

3.3.1.3 Cluster analysis ................................................................................................ 55 

3.3.2 Lisbon Downtown ................................................................................................... 57 

3.3.2.1 Description of study area .................................................................................. 57 

3.3.2.2 PSI processing .................................................................................................. 58 

3.3.2.3 Identification of PSs on structures ................................................................... 60 

3.3.2.4 Cluster analysis ................................................................................................ 64 

3.4 Results ............................................................................................................................ 66 

3.4.1 Odelouca slopes ....................................................................................................... 66 

3.4.2 Lisbon Downtown ................................................................................................... 79 

3.5 Discussion ...................................................................................................................... 98 

3.6 Conclusions .................................................................................................................. 109 

Chapter 4. Integration of InSAR displacements in structure monitoring systems ................. 111 

4.1 Introduction .................................................................................................................. 111 

4.2 Methods ........................................................................................................................ 119 



x 

 

4.3 Application to case study ............................................................................................. 125 

4.3.1 Description of study area ....................................................................................... 125 

4.3.2 PSI processing ....................................................................................................... 128 

4.3.3 Network analysis ................................................................................................... 129 

4.3.4 Displacement analysis ........................................................................................... 131 

4.4 Results .......................................................................................................................... 133 

4.5 Discussion .................................................................................................................... 148 

4.6 Conclusions .................................................................................................................. 152 

Chapter 5. Uncertainty assessment for InSAR displacements ............................................... 155 

5.1 Introduction .................................................................................................................. 155 

5.2 Methods ........................................................................................................................ 161 

5.3 Application to case study ............................................................................................. 165 

5.3.1 Bidirectional corner reflector ................................................................................ 165 

5.3.2 Triangular trihedral corner reflectors .................................................................... 169 

5.3.3 Validation and uncertainty assessment tests ......................................................... 171 

5.3.4 PSI processing ....................................................................................................... 174 

5.3.5 In situ measurements ............................................................................................. 177 

5.4 Results .......................................................................................................................... 180 

5.4.1 Amplitude analysis ................................................................................................ 180 

5.4.2 Displacement analysis – static test ........................................................................ 184 

5.4.2 Displacement analysis – first sequence of imposed displacements ...................... 188 

5.4.3 Displacement analysis – second sequence of imposed displacements .................. 194 

5.5 Discussion .................................................................................................................... 197 

5.6 Conclusions .................................................................................................................. 200 

Chapter 6. Discussion ............................................................................................................. 203 

Chapter 7. Conclusions .......................................................................................................... 207 

7.1 Main conclusions .......................................................................................................... 207 

7.2 Future research ............................................................................................................. 210 

References .............................................................................................................................. 213 

Annexes .................................................................................................................................. 235 

Annex A.1 – RADAR interpretation ...................................................................................... 237 

Annex A.2 – Integration on structure monitoring systems .................................................... 255 

Annex A.3 – Uncertainty assessment ..................................................................................... 271 

 



xi 

 

List of figures 

 
Figure 1 – Summary of satellites with SAR sensors, from (UNAVCO, 2020a). ..................... 10 

Figure 2 – SAR imaging geometry (a), ascending and descending passes (b), from Confuorto 

(2016) and Bateson et al. (2010), respectively. ........................................................................ 11 

Figure 3 – Interferogram showing a fringe pattern caused by deformation during the Bam 

earthquake in Iran (Dentz et al., 2006). .................................................................................... 12 

Figure 4 – Comparison of scatterer density using PSInSAR (a) and SqueeSAR (b), from Ferretti 

et al. (2011). ............................................................................................................................. 17 

Figure 5 – Classification of InSAR techniques according to the set of used interferograms. . 18 

Figure 6 – Average displacement rate along LOS on an embankment dam achieved by applying 

SBAS to TerraSAR-X data (Emadali et al., 2017). ................................................................. 23 

Figure 7 – Comparison between observed and modelled displacements, temperature, water 

volume and model residuals (Milillo, Perissin, et al., 2016). .................................................. 25 

Figure 8 – Summary of methods for individual structure monitoring with InSAR techniques.

 .................................................................................................................................................. 26 

Figure 9 – Displacement time series belonging to different clusters (Milone and Scepi, 2011).

 .................................................................................................................................................. 32 

Figure 10 – Behaviour classes considered at PS-Time technique (Berti et al., 2013). ............ 33 

Figure 11 – Alignment between the time series S and the template T (a); density matrix with 

the cumulative distances for each pair of data points and selection of the minimum cumulative 

distance path (blue line) in (b). ................................................................................................. 42 

Figure 12 – Constraints on DTW search area based on band (a) and on slope (b). ................. 42 

Figure 13 – Clustering of time series based on RPCD similarity measure, adapted from Silva et al. 

(2013). ....................................................................................................................................... 44 

Figure 14 – Summary of strategies to cluster time series. ....................................................... 45 

Figure 15 – Examples of correction time series (full lines) built from stable PSs selected based 

on cumulative displacement (a) and velocity (b) criteria; crosses are average displacement plus 

and minus one standard deviation for each epoch. ................................................................... 47 

Figure 16 – Proposed workflow for the time series clustering. ............................................... 51 

Figure 17 – Location of Odelouca dam and its reservoir. The inset on the left shows the dam 

and the one on the right highlights the dam location in Portugal (red star); background is a 

Sentinel-2 image from February 2020. Coordinate grid in WGS84. ....................................... 52 



xii 

 

Figure 18 – Geological map at 1:100000 from the National Laboratory for Energy and Geology 

(1992); black line is the reservoir boundary in February 2020 manually delimited from a 

Sentinel-2 image. Coordinate grid in WGS84. ........................................................................ 53 

Figure 19 – Distribution of normal and temporal baselines. .................................................... 54 

Figure 20 – Correction time series for the reference point effect (line); the crosses represent the 

average time series plus and minus one standard deviation. .................................................... 55 

Figure 21 – Dendrograms for Ward method (a), complete linkage (b) and single linkage (c). 56 

Figure 22 – Orthophoto of Lisbon Downtown, provided by the General Directorate of the 

Territory through the Geographic Information National System (GINS). Coordinate grid in 

WGS84. .................................................................................................................................... 57 

Figure 23 – Manual digitalization of the geological formations at the Downtown area, from the 

geological map by the National Laboratory for Energy and Geology, at 1:50000 scale. 

Coordinate grid in WGS84. ...................................................................................................... 58 

Figure 24 – Distribution of normal and temporal baselines for (a) ascending and (b) descending 

passes for the city of Lisbon. .................................................................................................... 59 

Figure 25 – Segmentation result (a) and map of proportion of red (b). ................................... 61 

Figure 26 – Training and validation datasets for the supervised classification. Coordinate grid 

in WGS84. ................................................................................................................................ 62 

Figure 27 – Classification map after manual editing. Coordinate grid in WGS84. ................. 63 

Figure 28 – Histograms of residual height, in metres, for PSs on structures and PSs on non-

structures. ................................................................................................................................. 64 

Figure 29 – Displacement time series corresponding to the reference point effect for (a) the 

ascending pass and (b) for the descending pass (solid line) plus and minus one standard 

deviation (crosses). ................................................................................................................... 64 

Figure 30 – Dendrogram for PS aggregation, where the blue horizontal line corresponds to the 

automatic solution and the green line is the manually selected solution (a); chart of the relative 

linkage distances as a function of the number of clusters, with the blue circle being the 

automatic solution and the green circle being the manually selected one (b). ......................... 65 

Figure 31 – Cumulative displacement for PSs on Odelouca slopes. Optical image is from 

Sentinel-2, acquired in February 2020. Coordinate grid in WGS84. ....................................... 66 

Figure 32 – Automatic cluster solution achieved through Ward method for Odelouca slopes. 

Coordinate grid in WGS84. ...................................................................................................... 67 



xiii 

 

Figure 33 – Displacement time series representative of the clusters achieved for Odelouca 

slopes through the Ward method; crosses are the average displacement time series plus and 

minus one standard deviation. .................................................................................................. 68 

Figure 34 – Identification of PSs with different degrees of susceptibility to landslide occurrence 

for Odelouca slopes. Coordinate grid in WGS84. .................................................................... 70 

Figure 35 – Automatic cluster solution achieved through complete linkage for Odelouca slopes. 

Coordinate grid in WGS84. ...................................................................................................... 70 

Figure 36 – Displacement time series representative of the clusters achieved through complete 

linkage for Odelouca slopes; crosses are the average displacement time series plus and minus 

one standard deviation. ............................................................................................................. 71 

Figure 37 – Automatic cluster solution achieved through single linkage for Odelouca slopes. 

Coordinate grid in WGS84. ...................................................................................................... 72 

Figure 38 – Displacement time series representative of the clusters achieved through single 

linkage; crosses are the average displacement time series plus and minus one standard deviation.

 .................................................................................................................................................. 73 

Figure 39 – Chart of relative linkage distance as a function of the number of clusters for the 

Odelouca reservoir slopes; blue dot corresponds to the automatic solution and the green dot is the 

manually selected one. ............................................................................................................... 74 

Figure 40 – Cluster solution achieved through manual selection of number of clusters for 

complete linkage at Odelouca slopes. Coordinate grid in WGS84. ......................................... 75 

Figure 41 – Displacement time series representative of the clusters achieved through complete 

linkage with manual selection of the number of clusters for Odelouca slopes; crosses are the 

average displacement time series plus and minus one standard deviation. .............................. 76 

Figure 42 – Location of clusters 4 and 5 achieved through the solution with manually selected 

number of clusters using complete linkage for Odelouca slopes. Coordinate grid in WGS84.77 

Figure 43 – Comparison of displacement time series representative of clusters 1, 3, 4 and 5 with 

the water level at the reservoir. ................................................................................................ 79 

Figure 44 – Cumulative vertical displacement between March 2015 and February 2018 at Lisbon 

Downtown. Coordinate grid in WGS84. .................................................................................... 80 

Figure 45 – Cumulative horizontal displacement between March 2015 and February 2018 at Lisbon 

Downtown. Coordinate grid in WGS84. ..................................................................................... 80 

Figure 46 – PSs aggregated into the 10-cluster solution for Lisbon Downtown. Coordinate grid 

in WGS84. ................................................................................................................................ 81 



xiv 

 

Figure 47 – Position of the PSs belonging to the clusters with centroid for distance to subway 

lower than 100 m and the location of the subway line. Coordinate grid in WGS84. ............... 84 

Figure 48 – Vertical and horizontal displacement time series representative of cluster 1 (black 

line) for Lisbon Downtown; crosses are displacement plus and minus one standard deviation.

 .................................................................................................................................................. 85 

Figure 49 – Spectral density charts for tidal height and vertical displacement time series 

representative of cluster 1. ....................................................................................................... 86 

Figure 50 – Comparison of the vertical displacement time series representative of cluster 1 with 

(a) the filtered tidal heights and (b) the monthly temperature. ................................................. 87 

Figure 51 – Decomposition of the vertical displacement time series representative of cluster 1 

based on STL method; from top to bottom: original data, seasonal component, trend component 

and residuals. ............................................................................................................................ 87 

Figure 52 – Vertical and horizontal displacement time series representative of cluster 2 (black 

line) for Lisbon Downtown; crosses are displacement plus and minus one standard deviation.

 .................................................................................................................................................. 89 

Figure 53 – Vertical and horizontal displacement time series representative of cluster 3 (black 

line) for Lisbon Downtown; crosses are displacement plus and minus one standard deviation.

 .................................................................................................................................................. 89 

Figure 54 – Vertical and horizontal displacement time series representative of cluster 4 (black 

line) for Lisbon Downtown; crosses are displacement plus and minus one standard deviation.

 .................................................................................................................................................. 90 

Figure 55 – Objects on the roof of a building where a PS from cluster 4 was located; photo from 

August 2019. ............................................................................................................................. 90 

Figure 56 – Vertical and horizontal displacement time series representative of cluster 5 (black 

line) for Lisbon Downtown; crosses are displacement plus and minus one standard deviation.

 .................................................................................................................................................. 91 

Figure 57 – Vertical and horizontal displacement time series representative of cluster 6 (black 

line) for Lisbon Downtown; crosses are displacement plus and minus one standard deviation.

 .................................................................................................................................................. 92 

Figure 58 – Vertical and horizontal displacement time series representative of cluster 7 (black 

line) for Lisbon Downtown; crosses are displacement plus and minus one standard deviation.

 .................................................................................................................................................. 93 

Figure 59 – Location of clusters 6 and 7. Coordinate grid in WGS84. .................................... 93 



xv 

 

Figure 60 – Vertical and horizontal displacement time series representative of cluster 8 (black 

line) for Lisbon Downtown; crosses are displacement plus and minus one standard deviation.

 .................................................................................................................................................. 94 

Figure 61 – Vertical and horizontal displacement time series representative of cluster 9 (black 

line) for Lisbon Downtown; crosses are displacement plus and minus one standard deviation.

 .................................................................................................................................................. 95 

Figure 62 – Carmo Convent (a) and Pombalino building (b), where PSs from cluster 9 were 

located; photos from August 2019. .......................................................................................... 95 

Figure 63 – Vertical and horizontal displacement time series representative of cluster 10 (black 

line) for Lisbon Downtown; crosses are displacement plus and minus one standard deviation.

 .................................................................................................................................................. 96 

Figure 64 – Code map for differential displacements of building blocks at Lisbon Downtown, 

based on cluster results. ............................................................................................................ 98 

Figure 65 – Classification of the displacement time series according to PS-Time method. 

Coordinate grid in WGS84. .................................................................................................... 102 

Figure 66 – Displacement time series of PSs in each class from PS-Time; class 0: uncorrelated; 

class 1: linear; class 2: quadratic; class 3: bilinear; class 4: discontinuous with constant velocity; 

class 5: discontinuous with variable velocity. ........................................................................ 103 

Figure 67 – Displacement time series of all PSs on Odelouca slopes. ................................... 103 

Figure 68 – Displacement time series of all PSs in each cluster, for the seven cluster solution 

using complete linkage for Odelouca slopes. ......................................................................... 104 

Figure 69 – Simulation of tidal loading effect at a PS in the Downtown (top) and at the reference 

point (bottom) with a delay with respect to the Downtown; green dashes represent the SAR 

observation epochs and the green circles correspond to the observed displacement component 

caused by tidal loading. .......................................................................................................... 108 

Figure 70 – Displacement time series of a PS on the roof of Rossio train station (a) and of a PS 

on the roof of a Pombalino building (b), both from cluster 1. ............................................... 108 

Figure 71 – Network of scatterers (green points) and GPS stations (black triangles) used in Chen et 

al. (2010). ................................................................................................................................ 113 

Figure 72 – Improved location of PSs (circles) and DSs (squares) on an aqueduct aided by RTK 

GPS observations; colours correspond to LOS velocity (Tapete et al., 2015). ...................... 114 

Figure 73 – I2GPS unit (Mahapatra et al., 2018). .................................................................. 116 

Figure 74 – Baixo Sabor concrete arch dam (LNEC, 2017b). ............................................... 126 



xvi 

 

Figure 75 – Location of GNSS antennas on the dam and its vicinity; blue polygon identifies the 

area for analysis. Background images are optical orthophotographs (2018) provided by the 

Portuguese General Directorate of the Territory through GINS. Coordinate grid in WGS84.

 ................................................................................................................................................ 127 

Figure 76 – Map of the geological formations at Baixo Sabor ROI, from the geological map by 

the National Laboratory for Energy and Geology, at 1:50000 scale. Coordinate grid in WGS84.

 ................................................................................................................................................ 128 

Figure 77 – Distribution of normal and temporal baselines for the SAR images available for 

Baixo Sabor ROI. ................................................................................................................... 129 

Figure 78 – LOS cumulative displacement before the adjustment for PSs in the network. 

Coordinate grid in WGS84. .................................................................................................... 134 

Figure 79 – Amplitude of error interval for precision analysis. Coordinate grid in WGS84. 135 

Figure 80 – Local redundancy numbers for each connection / observation in the network. . 135 

Figure 81 – Spatial distribution of the local redundancy numbers for each connection. 

Coordinate grid in WGS84. .................................................................................................... 136 

Figure 82 – Original PSI (a) and adjusted cumulative LOS displacements (b) for vertices on the 

dam crest. Coordinate grid in WGS84. .................................................................................. 137 

Figure 83 – Division of the dam crest into zones: zone 1 – white rectangle, zone 2 – yellow 

rectangles, zone 3 – cyan rectangles. Coordinate grid in WGS84. ........................................ 138 

Figure 84 – Adjusted LOS displacement time series for the vertices on each zone. ............. 138 

Figure 85 – Weekly moving averages of air temperature (top) and water level (bottom). .... 139 

Figure 86 – Sensitivity of LOS adjusted displacements to displacements along the vertical (left), 

radial (centre) and tangential (right) directions of the dam. Coordinate grid in WGS84. ..... 140 

Figure 87 – A priori (a) and a posteriori (b) standard deviations of LOS displacements for 

vertices on the dam crest. Coordinate grid in WGS84. .......................................................... 142 

Figure 88 – LOS displacement time series of the original PSI, adjusted and GNSS LOS 

displacements. GNSS was filtered with a weekly moving average. ...................................... 143 

Figure 89 – A priori (a) and a posteriori (b) cumulative LOS displacement at vertices on the 

slopes. Coordinate grid in WGS84. ........................................................................................ 143 

Figure 90 – A priori (a) and a posteriori (b) standard deviation of LOS displacements at network 

vertices on the slopes. Coordinate grid in WGS84. ............................................................... 144 

Figure 91 – Cumulative displacement along the slope direction (a) and standard deviation of 

displacement along the slope direction (b). Coordinate grid in WGS84. .............................. 145 



xvii 

 

Figure 92 – Values of sun·lun (factor) as a function of slope inclination (ᵒ) and slope orientation 

(ᵒ). ........................................................................................................................................... 145 

Figure 93 – Spatial distribution of the four clusters on the slopes. Coordinate grid in WGS84.

 ................................................................................................................................................ 146 

Figure 94 – Time series of displacement along the slope representative of each cluster; crosses 

are the average time series plus and minus one standard deviation. ...................................... 147 

Figure 95 – Average displacement along the slope direction for points in cluster 2 at each bank.

 ................................................................................................................................................ 147 

Figure 96 – Reflectivity map of the dam from the descending pass acquisition geometry; red 

circumference highlights the zone in the dam crest with gaps in PS acquisition and low 

reflectivity. ............................................................................................................................. 151 

Figure 97 – CR of the model used in Yu et al. (2013). .......................................................... 156 

Figure 98 – Small bidirectional CR (Dheenathayalan et al., 2017). ...................................... 158 

Figure 99 – Truncated twin corner reflectors (Bányai et al., 2020). ...................................... 159 

Figure 100 – Example of CAT device (Mahapatra, 2015). .................................................... 159 

Figure 101 – Example of rectangular corner reflector, from Qin et al. (2013). ..................... 161 

Figure 102 – Proposed model for the bidirectional CR: green faces are the horizontal square 

bases and grey faces are the vertical rectangular plates. ........................................................ 164 

Figure 103 – Grass field and building (blue ellipse) where the experiment with the bidirectional 

CR was performed. Coordinate grid in WGS84. ................................................................... 166 

Figure 104 – Bidirectional corner reflector proposed in this study. ....................................... 168 

Figure 105 – Stair-like structure to move the bidirectional CR with the handle at the central part 

of the structure allowing the rotation of the stairs around the vertical axis (a) and installation of 

the stair-like structure on the concrete block (b). ................................................................... 168 

Figure 106 – Location of the three CRs at LNEC campus. Coordinate grid in WGS84. ...... 169 

Figure 107 – Individual CR of the triangular trihedral model oriented towards the LOS of the 

descending pass. ..................................................................................................................... 170 

Figure 108 – Distribution of normal and temporal baselines for the ascending pass at the first 

test. ......................................................................................................................................... 175 

Figure 109 – Distribution of normal and temporal baselines for the descending pass for the first 

test. ......................................................................................................................................... 176 

Figure 110 – Distribution of normal and temporal baselines for the ascending pass (a) and for 

the descending pass (b) for the second test. ........................................................................... 177 



xviii 

 

Figure 111 – Location of CRs, pass points (except concrete block corners) and benchmarks for 

levelling and GNSS. Coordinate grid in WGS84. .................................................................. 178 

Figure 112 – Levelling rod at the centre of triangular trihedral with the aid of a metallic piece.

 ................................................................................................................................................ 179 

Figure 113 – CRs oriented towards the ascending pass represented on a backscatter coefficient 

image from October 30, 2019. Coordinate grid in WGS84. .................................................. 181 

Figure 114 – CRs oriented towards the descending pass represented on a backscatter coefficient 

image from November 5, 2019. Coordinate grid in WGS84. ................................................ 181 

Figure 115 – Amplitude (equalised and non-calibrated values) time series achieved for the CRs 

during the static test: (a) rectangular trihedral for ascending pass, (b) rectangular trihedral for 

descending pass, (c) triangular trihedral for ascending pass and (d) triangular trihedral for 

descending pass. ..................................................................................................................... 183 

Figure 116 – LOS displacement from PSI and levelling for the rectangular trihedral CR for the 

ascending pass in the static test, for the reference PS to the west of the CR; error bars are the 

uncertainty of double-differences. .......................................................................................... 185 

Figure 117 – LOS displacement from PSI and levelling for the triangular trihedral CR for the 

ascending pass in the static test; error bars are the uncertainty of double-differences. ......... 185 

Figure 118 – LOS displacement from PSI and levelling for the rectangular trihedral CR for the 

descending pass in the static test, for the reference PS to the west of the CR; error bars are the 

uncertainty of double-differences. .......................................................................................... 187 

Figure 119 – LOS displacement from PSI and levelling for the triangular trihedral CR for the 

descending pass in the static test; error bars are the uncertainty of double-differences. ....... 187 

Figure 120 – Relationship between temporal coherence of reference PSs and the standard 

deviation of diferences from PSI and levelling. ..................................................................... 188 

Figure 121 – LOS displacement from PSI and laboratory measurements for the rectangular 

trihedral CR for the ascending pass in the first sequence of imposed displacements test; error 

bars are the uncertainty of double-differences. ...................................................................... 189 

Figure 122 – Levelling vertical double-differences for the corners of the concrete block used as 

base for the bidirectional CR, with respect to the benchmark to the east of the CR. NE was the 

northeast corner, SE was the southeast corner, SW was the southwest corner and NW was the 

northwest corner. .................................................................................................................... 190 

Figure 123 – LOS displacement from PSI and laboratory measurements for the rectangular 

trihedral CR for the descending pass in the first sequence of imposed displacements test. Error 

bars are not visible at this scale. ............................................................................................. 190 



xix 

 

Figure 124 – LOS displacement from PSI and laboratory measurements for the triangular 

trihedral CR for the descending pass in the first sequence of imposed displacements test. Error 

bars are not visible at this scale. ............................................................................................. 191 

Figure 125 – Vertical double-differences from PSI and levelling for the bidirectional CR in the 

first sequence of imposed displacements test. ........................................................................ 192 

Figure 126 – Vertical double-differences from GNSS and PSI for the bidirectional CR in the 

first sequence of imposed displacements test. ........................................................................ 193 

Figure 127 – East – west double-differences from GNSS and PSI for the bidirectional CR in 

the first sequence of imposed displacements test. .................................................................. 193 

Figure 128 – LOS double-differences from GNSS and PSI for the bidirectional CR in the first 

sequence of imposed displacements test. ............................................................................... 194 

Figure 129 – Vertical double-differences from PSI and levelling for the bidirectional CR in the 

second sequence of imposed displacements test. ................................................................... 195 

Figure 130 – Vertical double-differences from GNSS and PSI for the bidirectional CR in the 

second sequence of imposed displacements test. ................................................................... 195 

Figure 131 – East-west double-difference from GNSS and PSI for the bidirectional CR in the 

second sequence of imposed displacements test. ................................................................... 196 

Figure 132 – Standard deviations for vertical (dV) and east – west (dE-W) displacements for 

different movement directions. .............................................................................................. 199 

Figure 133 – Identification of εsouth and εnorth at a sketch of the bidirectional CR base. 205 

Figure 134 – LOS displacement time series for all PSs considered stable for (a) the ascending 

pass and (b) the descending one, at Lisbon Downtown. ........................................................ 239 

Figure 135 – Boxplots of slope inclination for the clustering solution using Ward method at 

Odelouca. ................................................................................................................................ 241 

Figure 136 – Boxplots of slope curvature for the clustering solution using Ward method at 

Odelouca. ................................................................................................................................ 241 

Figure 137 – Residual height centroids for the manual seven-cluster solution with complete 

linkage at Odelouca slopes; red ovals identify the clusters with outlier residual height centroids, 

which may correspond to unwrapping errors. ........................................................................ 242 

Figure 138 – Cumulative displacement map for Lisbon city (ascending pass); background 

image from Sentinel-2 acquired in May 2020. Coordinate grid in WGS84. ......................... 242 

Figure 139 – Cumulative displacement map for Lisbon city (descending pass); background 

image from Sentinel-2 acquired in May 2020. Coordinate grid in WGS84. ......................... 243 

Figure 140 – Centroids for distance variables at Lisbon Downtown. .................................... 243 



xx 

 

Figure 141 – Decomposition of representative horizontal displacement time series for cluster 1 

from 10 cluster solution at Lisbon Downtown. ...................................................................... 244 

Figure 142 – Decomposition of representative vertical displacement time series for cluster 2 

from 10 cluster solution at Lisbon Downtown. ...................................................................... 244 

Figure 143 – Decomposition of representative horizontal displacement time series for cluster 2 

from 10 cluster solution at Lisbon Downtown. ...................................................................... 245 

Figure 144 – Decomposition of representative vertical displacement time series for cluster 3 

from 10 cluster solution at Lisbon Downtown. ...................................................................... 245 

Figure 145 – Decomposition of representative horizontal displacement time series for cluster 3 

from 10 cluster solution at Lisbon Downtown. ...................................................................... 246 

Figure 146 – Decomposition of representative vertical displacement time series for cluster 5 

from 10 cluster solution at Lisbon Downtown. ...................................................................... 246 

Figure 147 – Decomposition of representative horizontal displacement time series for cluster 5 

from 10 cluster solution at Lisbon Downtown. ...................................................................... 247 

Figure 148 – Decomposition of representative vertical displacement time series for cluster 6 

from 10 cluster solution at Lisbon Downtown. ...................................................................... 247 

Figure 149 – Decomposition of representative horizontal displacement time series for cluster 6 

from 10 cluster solution at Lisbon Downtown. ...................................................................... 248 

Figure 150 – Decomposition of representative vertical displacement time series for cluster 7 

from 10 cluster solution at Lisbon Downtown. ...................................................................... 248 

Figure 151 – Decomposition of representative horizontal displacement time series for cluster 7 

from 10 cluster solution at Lisbon Downtown. ...................................................................... 249 

Figure 152 – Decomposition of representative vertical displacement time series for cluster 8 

from 10 cluster solution at Lisbon Downtown. ...................................................................... 249 

Figure 153 – Decomposition of representative horizontal displacement time series for cluster 8 

from 10 cluster solution at Lisbon Downtown. ...................................................................... 250 

Figure 154 – Decomposition of representative horizontal displacement time series for cluster 9 

from 10 cluster solution at Lisbon Downtown. ...................................................................... 250 

Figure 155 – Vertical (top) and horizontal (bottom) displacement time series for all PSs at 

Lisbon Downtown. ................................................................................................................. 251 

Figure 156 – Vertical (left) and horizontal (right) displacement time series of all PSs in each 

cluster, at Lisbon Downtown. ................................................................................................ 253 

Figure 157 – LOS cumulative displacement map around Baixo Sabor dam. Background image 

is Sentinel-2 from February 2019. Coordinate grid in WGS84. ............................................ 257 



xxi 

 

Figure 158 – Original LOS displacement time series for the vertices on each zone. ............ 263 

Figure 159 – Cumulative displacement along the slope direction (a) and standard deviation of 

displacement along the slope direction (b) for the vertices selected for slope monitoring. 

Coordinate grid in WGS84. .................................................................................................... 268 

Figure 160 – Amplitude time series for a natural PS. ............................................................ 273 

Figure 161 – LOS displacement from PSI and GNSS for the rectangular trihedral CR for the 

ascending pass in the static test; error bars are the uncertainty of double-differences. ......... 273 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xxii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xxiii 

 

List of tables 

 
Table 1 – Comparison of different techniques for RADAR interpretation. ............................. 36 

Table 2 – Confusion matrix for the supervised classification. ................................................. 62 

Table 3 – Percentage of PSs in each cluster and centroids achieved through the Ward method 

for Odelouca slopes. ................................................................................................................. 69 

Table 4 – Percentage of PSs in each cluster and centroids achieved through complete linkage 

for Odelouca slopes. ................................................................................................................. 71 

Table 5 – Percentage of PSs in each cluster and centroids achieved through single linkage for 

Odelouca slopes. ........................................................................................................................ 72 

Table 6 – Percentage of PSs in each cluster and centroids achieved through complete linkage 

for manual solution at Odelouca slopes. .................................................................................. 76 

Table 7 – Relative number of PSs in each cluster and centroids for the 10-cluster solution, 

considering variables achieved through the PSI processing and from the additional raster files 

for Lisbon Downtown. ............................................................................................................. 82 

Table 8 – Summary of the cluster analysis. ............................................................................. 97 

Table 9 – Comparison of InSAR and GNSS merging strategies and of obtained uncertainties 

for different studies. ............................................................................................................... 117 

Table 10 – Comparison of studies that used artificial reflectors to assess InSAR measurements 

uncertainty. ............................................................................................................................. 160 

Table 11 – RCS of rectangular and triangular trihedrals with the properties tested in this 

experiment. ............................................................................................................................. 182 

Table 12 – Temporal coherence for the PSs used at each validation, double-difference 

dispersion, standard deviation of differences for each validation, f – degrees of freedom for 

Welch t test, v – test statistic for Welch t test and tf – critical value (for a level of significance 

of 0.05) at individual CRs oriented towards the ascending pass, for different CR models for the 

static test. ................................................................................................................................ 186 

Table 13 – Temporal coherence for the PSs used at each validation, double-difference 

dispersion, standard deviation of differences for each validation, f – degrees of freedom for 

Welch t test, v – test statistic for Welch t test and tf – critical value (for a level of significance 

of 0.05) at individual CRs oriented towards the descending pass, for different CR models for 

the static test. .......................................................................................................................... 187 



xxiv 

 

Table 14 – Temporal coherence for the PSs used at each validation, double-difference 

dispersion, standard deviation of differences for each validation, f – degrees of freedom for 

Welch t test, v – test statistic for Welch t test and tf – critical value (for a level of significance 

of 0.05) at individual CRs, for different CR models, for the first sequence of imposed 

displacements test. .................................................................................................................. 192 

Table 15 – Double-difference dispersion for vertical, east – west and LOS double-differences, 

standard deviation of differences, f – degrees of freedom for Welch t test, v – test statistic for 

Welch t test and tf – critical value (for a level of significance of 0.05) at the bidirectional CR, 

for the first sequence of imposed displacements test. ............................................................ 194 

Table 16 – Double-difference dispersion for vertical and east – west displacements, standard 

deviation of differences, f – degrees of freedom for Welch t test, v – test statistic for Welch t 

test and tf – critical value (for a level of significance of 0.05) at the bidirectional CR, for the 

second sequence of imposed displacements test. ................................................................... 196 

Table 17 – Parameters for cluster analysis for Odelouca case study; the symbol “/” separates 

the options selected at different tests. ..................................................................................... 239 

Table 18 – Parameters for cluster analysis for Lisbon Downtown case study; the symbol “/” 

separates the options selected at different tests. ..................................................................... 240 

Table 19 – Amplitude of error interval for the precision analysis, at each vertex in the network.

 ................................................................................................................................................ 257 

Table 20 – Quadratic form of the residuals for the observations quality control, for each 

observation epoch. .................................................................................................................. 261 

Table 21 – A priori and a posteriori standard deviations for LOS displacements at vertices on 

the dam. .................................................................................................................................. 264 

Table 22 – A priori and a posteriori standard deviations for LOS displacements at vertices on 

the slopes. ............................................................................................................................... 264 

Table 23 – Parameters for cluster analysis at Baixo Sabor slopes; the symbol “/” separates the 

options selected at different tests. .......................................................................................... 269 

Table 24 – Welch t test for PSI and levelling double-differences at rectangular trihedral CR 

oriented towards the ascending pass using the reference PS to the west of the CR, for the static 

test. ......................................................................................................................................... 273 

Table 25 – Welch t test for PSI and levelling double-differences at triangular trihedral CR 

oriented towards the ascending pass, for the static test. ......................................................... 274 



xxv 

 

Table 26 – Welch t test for PSI and levelling double-differences at rectangular trihedral CR 

oriented towards the descending pass using the reference PS to the west of the CR, for the static 

test. ......................................................................................................................................... 274 

Table 27 – Welch t test for PSI and levelling double-differences at triangular trihedral CR 

oriented towards the descending pass, for the static test. ....................................................... 275 

Table 28 – Welch t test for PSI and theoretically expected double-differences at rectangular 

trihedral CR oriented towards the ascending pass, for the first sequence of imposed 

displacements test. .................................................................................................................. 275 

Table 29 – Welch t test for PSI and laboratory measured displacement double-differences at 

rectangular trihedral CR oriented towards the descending pass, for the first sequence of imposed 

displacements test. .................................................................................................................. 276 

Table 30 – Welch t test for PSI and laboratory measured displacement double-differences at 

triangular trihedral CR oriented towards the descending pass, for the first sequence of imposed 

displacements test. .................................................................................................................. 276 

Table 31 – Welch t test for PSI and levelling vertical double-differences at bidirectional CR, 

for the first sequence of imposed displacements test. ............................................................ 277 

Table 32 – Welch t test for PSI and GNSS vertical double-differences at bidirectional CR, for 

the first sequence of imposed displacements test. .................................................................. 277 

Table 33 – Welch t test for PSI and GNSS east – west double-differences at bidirectional CR, 

for the first sequence of imposed displacements test. ............................................................ 278 

Table 34 – Welch t test for PSI and GNSS LOS double-differences at bidirectional CR, for the 

first sequence of imposed displacements test. ........................................................................ 278 

Table 35 – Welch t test for PSI and levelling vertical double-differences at bidirectional CR, 

for the second sequence of imposed displacements test. ....................................................... 279 

Table 36 – Welch t test for PSI and GNSS vertical double-differences at bidirectional CR, for 

the second sequence of imposed displacements test. ............................................................. 279 

Table 37 – Welch t test for PSI and GNSS east – west double-differences at bidirectional CR, 

for the second sequence of imposed displacements test. ....................................................... 280 

 

 

 

 

 



xxvi 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xxvii 

 

List of acronyms and abbreviations 

 
ADA Active Deformation Areas  

AGU Applied Geodesy Unit  

APS Atmospheric Phase Screen  

AR AutoRegressive models 

CAT Compact Active Transponder  

CDD Concrete Dam Department 

COVID-19 Coronavirus Disease 2019 

CPS Cousin Persistent Scatterers 

CRInSAR Corner Reflector Interferometric Synthetic Aperture RADAR 

CRs Corner Reflectors 

csv Comma-Separated Values 

CTTC Centre Tecnològic de Telecomunicacions de Catalunya  

CUPiDO Connecting Undifferenced Points in Deformation Observations 

DBSCAN Density-Based Spatial Clustering of Applications with Noise  

DEM Digital Elevation Models 

DePSI Delft University of Technology PSI method 

DFT Discrete Fourier Transform 

DInSAR Differential Interferometric SAR  

DSs Distributed Scatterers  

DTW Dynamic Time Warping  

DWT Discrete Wavelet Transform  

EnviSat Environmental Satellite 

ERS European Remote-sensing Satellite 

ESA European Space Agency 

EU-DEM European Digital Elevation Model  

GCP Ground Control Point 

GINS Geographical Information National System  

GIS Geographic Information Systems  

GLONASS GLObal NAvigation Satellite System 

GNSS Global Navigation Satellite System  

GPS Global Positioning System  

GRD Ground Range Detected  

HMM Hidden Markov Models  

HST Hydrostatic-Seasonal-Time 

HTT Hydrostatic-Temperature-Time  

IDW Inverse Distance Weighted  

InSAR Interferometric Synthetic Aperture RADAR 

IPTA Interferometric Point Target Analysis 

IW Interferometric Wide  

k-NN k-Nearest Neighbour  



xxviii 

 

LCSS Longest Common Subsequence  

LiDAR Light Detection And Ranging  

LNEC Laboratório Nacional de Engenharia Civil  

LOS Line-Of-Sight 

LPC Linear Predictive Coding  

LUT Look-Up-Table  

MAI Multiple Aperture Interferometry 

MHT Multiple Hypothesis Testing  

MUSE MUltipass Scattering Equipment 

MVC Method of Variation of Coordinates  

NASA / JPL National Aeronautics and Space Administration / Jet Propulsion 

Laboratory  

OBIA Object-Based Image Analysis  

PCA Principal Component Analysis  

pdf Portable Document Format  

POLInSAR Polarimetric SAR Interferometry 

POT Pixel-Offset Tracking  

PSC Permanent Scatterers Candidates  

PSI Persistent Scatterer Interferometry 

PSIG PSI Chain of the Geomatics Division 

PSInSAR Permanent Scatterers InSAR  

PSP Persistent Scatterer Pairs  

PSs Persistent Scatterers  

QPS Quasi-Permanent Scatterers  

RADAR Radio Detection and Ranging 

RCS RADAR Cross Section  

RMSE Root Mean Square Error  

ROI Region of Interest  

RPCD Recurrence Patterns Compression Distance  

RTK Real-Time Kinematic 

SAR Synthetic Aperture RADAR 

SBAS Small BAseline Subset  

SCR Signal-to-Clutter Ratio 

SDQI SAR Dataset Quality Index  

SHM Structural Health Monitoring 

SISTEM Simultaneous and Integrated Strain Tensor Estimation from Geodetic and 

Satellite Deformation Measurements  

SLC Single Look Complex  

SRTM Shuttle RADAR Topography Mission  

SSE Sum of Squared Error  

StaMPS Stanford Method for Persistent Scatterers  

STL Seasonal-Trend decomposition procedure based on Loess 

TomoSAR Tomographic SAR  

TOPSAR Terrain Observation with Progressive Scans SAR  



xxix 

 

UAV Unmanned Aerial Vehicles  

UTC Coordinated Universal Time 

VHR Very High Resolution  

WLS Weighted Least Squares 

WRF Weather Research and Forecasting Model  

ZWD Zenith Wet Delays  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xxx 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 

 

 

 

Chapter 1. Introduction 

1.1. Motivation 

The research presented in this thesis intends to explore data from the Interferometric Synthetic 

Aperture RADAR (InSAR) technique and to evaluate the contribution this technology may be able 

to provide in the field of Structural Health Monitoring (SHM). InSAR is an applied geodetic 

technique, based on Radio Detection and Ranging (RADAR) images, which enable a remote and 

non-invasive assessment of the object of interest condition through the analysis of the interaction 

between the object and microwave radiation. This technique has been used in construction of 

Digital Elevation Models (DEM), deformation monitoring or atmospheric studies (Massonnet and 

Feigl, 1998). The presented research was focused on the use of the technique for displacement 

measurement, which was the reason why the term “InSAR geodesy” was referred to in the title. 

For the sake of brevity, only “InSAR” will be used throughout the remainder of the text. The study 

relied on Synthetic Aperture RADAR (SAR) systems transported by satellites, with revisit periods 

of a few days; therefore, only slow varying displacements were considered and dynamic analysis 

was not performed, which would only be possible through ground-based systems with an 

observation frequency of a cycle in a few minutes (Monserrat et al., 2014). 

The importance of remote monitoring is increasing in nowadays fast changing world. Climate 

change is bringing more extreme meteorological events (Aalst, 2006), with increased frequency, 

which were not considered in the design of older structures. Furthermore, seismic actions to be 

considered in design have become more severe in many regions and new design codes often 

impose stricter requirements (Lynch and Loh, 2006). SHM is a key activity to verify if structures 

still follow their behaviour requirements, through the analysis of their responses to the new loads 

they are subjected to, and whether they fulfil their expected safety conditions.  

Remote monitoring systems enable large scale monitoring tasks (Kim et al., 2013), resulting in 

economic and environmental benefits, as the transportation of monitoring teams can be reduced. 
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In the actual context of Coronavirus Disease 2019 (COVID-19) pandemics, this topic becomes 

even more relevant.  

Among the many variables considered for SHM, displacements measured through geodetic 

techniques are a valuable input (LNEC, 1989). A cost-effective and remote method for 

displacement measurement at the structures and their surroundings may provide important data for 

the evaluation of the safety conditions, by detecting early signs of possible displacement 

anomalies, which would enable a more efficient planning of in situ monitoring tasks. 

InSAR based on satellite platforms are a promising choice for a remote displacement 

measurement technique. This technology enables displacement measurement for large areas, 

possibly thousands of square kilometres observed simultaneously, which may include the structure 

and its surroundings, and with a revisit period of a few days. The usage of RADAR technology 

allows the observation of Earth surface during both day and night and through cloud cover 

(Ferretti, Monti-Guarnieri, et al., 2007). Large SAR image datasets can be used for displacement 

measurement at a high number of points, naturally materialised on the structure and its 

surroundings, possibly located in difficult access places and with millimetre precision. Although 

InSAR is an already operational technique for monitoring geodynamic events, such as deformation 

caused by earthquakes or volcanic eruptions, its application to structure monitoring, which requires 

a lower displacement uncertainty, still poses a challenge. InSAR measurements are performed 

along the sensor Line-Of-Sight (LOS), which is oblique with respect to the Earth surface and 

hardly coincides with the directions of interest for structure monitoring. The slant direction of LOS 

leads to geometric effects, which avoid displacement measurement at locations in the signal 

shadow or superposition areas (Ferretti, Monti-Guarnieri, et al., 2007).  

Technologic advances and recent data availability policies are having an important role in the 

spreading of this technology through the scientific community. The first used InSAR technique 

enabled displacement measurement with centimetre precision (Massonnet and Feigl, 1998), later 

improved to millimetre precision mesurements (Ferretti et al., 2001), when systematic image 

acquisition began in the 1990s and larger image datasets became available. High resolution images 

appeared around 2007, allowing an increase in the number of object points from hundreds to 

thousands or even tens of thousands per square kilometre in urban areas. The European Space 

Agency (ESA) has adopted a policy of sharing the data from its satellites for free, through the 

Copernicus programme, facilitating the access to the data and representing an important 

contribution to the cost-effectiveness of the technique. 

This study was performed at the Applied Geodesy Unit (AGU) of the Concrete Dam 

Department (CDD) of the Portuguese National Laboratory for Civil Engineering (Laboratório 
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Nacional de Engenharia Civil – LNEC) and at the Department of Civil Engineering, Architecture 

and Georesources of Technical Superior Institute – University of Lisbon, Portugal. AGU has 

decades of experience of displacement measurement through geodetic methods for structure 

monitoring, such as classic surveying methods or Global Navigation Satellite System (GNSS). The 

portfolio of techniques for the acquisition of geographic information with the goal of aiding SHM 

has grown to include Earth observation and Unmanned Aerial Vehicles (UAV) data. This thesis 

intends to contribute to the inclusion of InSAR into the set of available techniques at AGU, in 

order to complement the existing information from other methods. The research was developed in 

the scope of a research project of LNEC’s 2013-2020 plan for research and innovation called 

“InfraSAR – SAR interferometry with permanent scatterers (PSInSAR) applied to displacement 

detection in geodynamics and infrastructures”. 

1.2. Research objectives 

InSAR is a promising technique for displacement measurement, but the usage of its 

displacements for structure monitoring led to some research questions, which this study intends to 

answer, namely: 

 How to explore the InSAR data to detect changes in the structures’ behaviour that may 

aid to identify anomalies? 

 Is it possible to obtain displacements along the directions of interest for structure 

monitoring through data combination, with uncertainty similar to that of the traditional 

geodetic methods? 

 How much is the uncertainty of InSAR displacements? 

The main objective of this thesis was to evaluate the potential and limitations of InSAR 

displacements to be applied to SHM and to develop strategies to overcome some of the identified 

difficulties. In order to pursue this goal, three research areas were identified, from which three 

research objectives were defined.  

First, InSAR products, if multitemporal techniques are used, can provide displacement 

measurements for a large number of points, during a long time interval and with high observation 

frequency, which results in a large amount of data to analyse. The visual analysis of thousands of 

displacement time series, with tens of observation epochs each, is time consuming and subjective. 

Automatic methods for time series analysis are needed to objectively identify patterns in the data 

and to detect signs that may correspond to eventual anomalies in structure behaviour.  

Second, InSAR is useful to monitor structures where there are no other data available, such as 

old structures without embedded equipment that are not frequently observed through other 
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geodetic techniques, or even to monitor the structures’ surroundings, whose stability contribute 

largely to the structure safety conditions, but are not evaluated so often. However, InSAR may 

also bring value added to complement the observations from other techniques in existing structure 

monitoring systems, by providing measurements at new points, new epochs, along a distinct 

direction and enabling the extension of the existing systems, focused on the structure, to its 

surroundings. Thus, there is the need for the development of techniques to integrate InSAR data 

into existing structure monitoring systems, evaluate the achieved measurement uncertainty and 

search for eventual displacement anomalies. 

Third, unlike other geodetic methods, InSAR is a displacement measurement technique without 

redundant observations, as each point is observed a unique time at each image acquisition epoch; 

therefore, a posteriori variances, which are of vital importance for SHM as they provide the 

uncertainty level of the displacements, are not determined. Besides, several variables influence the 

quality of InSAR measurements, such as the brightness of the reflective target with respect to its 

surroundings (Signal-to-Clutter Ratio – SCR), the adequacy of the measured displacements to an 

assumed displacement model or even the direction along which the displacement occurs. 

Experimental installations, formed by artificial reflectors to the SAR signal, are required to enable 

the evaluation of the influence of each parameter on the displacement uncertainty. These devices 

enable the univocal identification of the SAR reflective centre, necessary to compare 

displacements from InSAR and a reference (more precise) geodetic technique, in order to perform 

displacement validation and uncertainty assessment.  

Therefore, the objectives of this research are: 

 To design a workflow (and implement it in a computer tool) that allows the evaluation 

of a large number of displacement time series in an objective way and application-

independent; 

 To evaluate displacements resulting from combination of InSAR datasets, or of InSAR 

with other techniques, and verify if the uncertainty-level required for SHM is achieved; 

 To design, implement and operate an experimental corner reflector infrastructure that 

will enable the determination of displacement uncertainty in different scenarios. 

1.3. Contributions 

The main contribution of this research is the uptake of InSAR technology for structure 

monitoring purposes, with all its inherent benefits, regarding the observed area, number of object 

points, observation frequency and measurement precision. Furthermore, this study led to the 

development of computer tools that allow a more efficient exploration of the InSAR derived data 



5 

 

and of new equipment, which besides uncertainty analysis, may also be useful to establish the 

connection between data from InSAR and other measurement techniques.  

In the scope of this thesis, two computer tools were developed in R software (R Core Team, 

2018). One executes the automatic analysis of InSAR displacement time series and aggregates 

object points into clusters of similar displacement patterns, facilitating the identification of 

eventual anomalies on structure behaviour. The other tool uses a well-known technique, the 

Method of Variation of Coordinates (MVC), to integrate InSAR displacements into an existing 

GNSS monitoring system, to determine adjusted displacements along LOS direction and a 

posteriori variances for object points on a structure and on its surroundings. Furthermore, a new 

model of artificial reflector to the SAR signal, capable to provide measurements for the same target 

from distinct SAR acquisition geometries, is proposed, after being projected, constructed, 

deployed and tested at LNEC.  

The research associated to the first objective, the analysis of InSAR displacement time series, 

was presented at SARWatch Workshop – Advances in the Science and Applications of SAR 

Interferometry through an oral presentation in Lisbon, Portugal, in 2018, for one of the case studies 

presented in this document (Roque et al., 2018). Studies related to the third objective, InSAR 

displacement uncertainty evaluation at artificial reflectors, were presented as a poster at Living 

Planet Symposium, in Milan, Italy, in 2019 and as an oral presentation by invitation at Colloque 

G2 2019 Géodésie & Géophysique, in Le Mans, France, in 2019. The submission of three papers, 

one regarding each objective, are planned for the near future.    

1.4. Outline of the document 

The thesis is formed by seven chapters. The first one is the present introduction, where the 

motivation for the proposed research is presented, the research objectives are highlighted, together 

with the contributions and publications achieved so far. 

The second chapter presents a literature review of InSAR methods and of previous applications 

of this technology in the field of SHM.  

Chapters 3, 4 and 5 are dedicated to each of the objectives presented in the previous section, 

with Chapter 3 regarding the analysis of InSAR displacement time series, called RADAR 

interpretation; Chapter 4 considering the integration of InSAR data in existing structure monitoring 

systems and Chapter 5 containing the measurements’ uncertainty evaluation at an infrastructure of 

artificial reflectors. Each of these chapters contains a dedicated literature review, a methods section 

presenting the strategy proposed in each case, a section presenting how the proposed methods were 

applied to the particular case studies, the achieved results, their discussion and the conclusions. 
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Chapter 3 considers two case studies: the slopes around an embankment dam during the reservoir 

first impoundment and the buildings at a heritage urban area. Chapter 4 presents one case study: a 

concrete arch dam and its neighbour slopes. Finally, Chapter 5 is referred to an infrastructure of 

artificial reflectors to SAR signal installed at LNEC campus.  

Chapter 6 contains a discussion considering the contributions of the previously mentioned three 

chapters to promote the operational usage of InSAR displacements at SHM applications. Chapter 

7 summarises the main conclusions of the study and suggests some research topics for future 

research. 

The document also contains a list of the bibliographic references cited throughout the text and 

three annex sections, one for each research objective, providing additional figures and tables. 
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Chapter 2. The usage of InSAR data for 

structure monitoring 

2.1 Interferometric synthetic aperture RADAR 

 This section presents a literature review of InSAR techniques. It reports some basic 

principles of SAR image formation, the available acquisition systems and modes, 

applications and the evolution of the interferometric techniques. The first InSAR methods 

enabled DEM construction with precisions in the order of tens of metres and displacement 

determination at centimetre-level. The growing availability of stacks of SAR images, after 

the launch of satellites with SAR sensors on board for systematic acquisition in the 1990s, 

allowed a more precise determination of the parameters of interest, with altitudes and 

displacements being computed with metre and millimetre precisions, respectively. In the last 

20 years, several research teams developed distinct InSAR methods and the combination of 

those strategies permitted the assessment of altitude and displacements with high precision 

for a large number of natural points, both on man-made structures and natural landscapes. A 

brief description of other techniques using SAR data is also provided in this section.   

 

RADAR systems are active sensors that operate in the microwave band of the electromagnetic 

spectrum. The sensor itself emits the signal, which is reflected by the illuminated surface and 

returns to the sensor. As the system is independent of sunlight, data can be acquired during both 

day and night. Besides, microwave radiation can pass through clouds; therefore, image acquisition 

can be performed in all-weather conditions. The all-time and all-weather imaging capabilities of 

RADAR data can be important information sources in many situations. Emergency management 

is one of the fields in which RADAR remote sensing has a valuable contribution, e.g. for flood 
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monitoring through cloud cover (Pulvirenti et al., 2011; Roque et al., 2014), detection of wildfire 

scars (Kasischke et al., 1992; Menges et al., 2004) or oil spill detection (Azevedo, 2010).  

RADAR images from the Earth surface started being acquired during the 1950s and in the 1970s 

image pairs began being analysed through the interferometric technique. An interferogram is an 

image of the phase difference between two RADAR images acquired in distinct epochs and it 

reflects, at each pixel, the distance between the sensor and the Earth surface (Massonnet and Feigl, 

1998). Massonnet and Feigl (1998) listed several applications of the interferometric technique, 

such as monitoring deformation caused by earthquakes, volcanoes, glaciers, landslides, subsidence 

and agriculture activities. Due to the technique’s capability to measure altitudes, DEM 

construction is also a frequent application (Goldstein et al., 1988). The usage of interferograms to 

evaluate water vapour content in the atmosphere is also being exploited (Mateus et al., 2017). 

RADAR systems evolved to SAR systems, which result from the simulation of an antenna 

larger than its physical dimension by integrating observations of the same object acquired from 

distinct positions. This strategy allows an improved spatial resolution1 along the direction of the 

platform movement with respect to real aperture RADAR systems and the images used nowadays 

are achieved through this method.  

SAR sensors can be transported by different platforms. Data from sensors on board of satellites 

are widely used by the scientific community, due to their potential global coverage and availability 

from space agencies. Besides satellites, SAR sensors have been transported in other platforms, 

such as the space shuttle (Farr and Kobrick, 2000), unmanned aerial vehicles (Rosen et al., 2006; 

Hensley et al., 2008) or ground rails (Monserrat et al., 2014; Di Traglia et al., 2018; Carlà, Tofani, 

et al., 2019). The present study uses satellite images and only these will be considered in the 

remainder of the text.       

National Aeronautics and Space Administration / Jet Propulsion Laboratory (NASA / JPL) 

Seasat satellite, which operated only during 110 days in 1978, provided the first dataset of SAR 

images for scientific use. An increase in the usage of this type of data started in the 1990s, with 

the launch of European Remote-sensing Satellite-1 (ERS-1) by ESA in 1991, enabling the global 

coverage of the planet and the acquisition of images suitable for interferometry every 35 days 

(Massonnet and Feigl, 1998; ESA, 2020). ERS-1 was operated until 2000, but before the end of 

its mission, ESA launched its successor, the European Remote-sensing Satellite-2 (ERS-2), 

functioning between 1995 – 2011. ERS-2 was followed by the Environmental Satellite (EnviSat) 

between 2002 – 2012 and nowadays the mission is assured by Sentinel-1A and Sentinel-1B, 

launched in 2014 and 2016, respectively. ESA SAR sensors from ERS-1, ERS-2 and EnviSat 

                                                 
1 Pixel size. 
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assured the continuity and compatibility of the images, allowing the analysis of long time series 

of data. Sentinel-1A/B brought a new generation of SAR images, achieved through a new imaging 

mode, improved spatial resolution, higher and regular acquisition frequency and wide coverage of 

a single scene. ESA SAR images are characterised by a coarse spatial resolution (in the order of 

tens of metres), usage of microwave C-band (wavelength of approximately 6 cm) and free 

distribution. ERS-1/2 and EnviSat data are available to scientific community through submission 

of a project proposal. However, Sentinel-1 data are freely available to any user through the 

European Union Copernicus program (managed by the European Commission and ESA).  

Other spatial agencies have invested in Earth observation systems using SAR also for 

commercial purposes. It is the case of the Canadian, German, Italian, Japanese or South Korean 

space agencies, which commercialise data from the satellites Radarsat-1/2 (Canada), TerraSAR-X 

/ TanDEM-X (Germany), COSMO-SkyMed-1/2/3/4 (Italy), JERS-1 and ALOS-1/2 (Japan), 

KOMPSAT-5 (South Korea). While Radarsat also has a C-band sensor, TerraSAR-X / TanDEM-

X, COSMO-SkyMed-1/2/3/4 and KOMPSAT-5 transport X-band sensors (wavelength around 3 

cm), which brought an increase in spatial resolution. The first of these sensors was launched in 

2007 and their systems made available the first high resolution SAR images, appropriate for urban 

applications. The sensors on board of the Japanese satellites JERS-1 and ALOS-1/2 acquired / 

acquire images in L-band (wavelength around 24 cm), able to pass through vegetation foliage, 

which turn them appropriate to study vegetated areas. Despite being commercially available, small 

sets of images have been made freely available for research, under a project proposal, by the 

German, Italian, Japanese and South Korean agencies.  

Recently, collaboration between agencies from different countries led to the launch of more 

satellites with SAR sensors. It is the case of Spanish satellite PAZ, launched in 2018, which follows 

the same orbit as TerraSAR-X / TanDEM-X and whose images are fully compatible to those from 

the German satellites. The images are destined to both military and commercial purposes. 

Argentina launched the SAOCOM-1A satellite in 2018, through a collaboration with the Italian 

agency, which transports an L-band sensor. A second satellite is expected to be launched in 2020. 

The Indian agency is collaborating with NASA to launch an L-band sensor on board of satellite 

NISAR planned to 2022, after having deployed RISAT-1 in 2012 in C-band (ESA, 2020). Figure 

1 presents the satellites from space agencies that held or still hold SAR sensors on board.  

Recently, private companies are entering the SAR business, which is contributing to the 

advance in this field of Earth observation. The Polish and Finnish company ICEYE is launching 

the first constellation of very small satellites with SAR sensors, with three spacecrafts on space in 

2020, and they plan to start providing daily Very High Resolution (VHR) SAR images, for 
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commercial use, in 2021. The current system, which uses X-band sensors, already enables image 

acquisition with spatial resolution of 25 cm (ICEYE, 2020). The most recently launched satellites 

(both from private and national agencies) were transported to orbit by SpaceX Falcons, reducing 

the waiting time required for satellite launch approval and enabling the “return to launch site 

recovery” of the rocket, in some cases (ESA, 2020).  

 

Figure 1 – Summary of satellites with SAR sensors, from (UNAVCO, 2020a). 

There are distinct SAR image operation modes, which influence image spatial resolution and 

covered area. Stripmap mode considers a fixed antenna and the imaging of a continuous strip along 

the direction of satellite movement (along-track). In Spotlight mode, the antenna is steered along 

the direction of satellite movement, in order to increase the observation time of a Region of Interest 

(ROI) and the spatial resolution along that direction. On the other hand, the imaged area is limited 

to that ROI and continuous acquisition is not performed (Moreira et al., 2013). ScanSAR mode 

steers the antenna in elevation, enabling a wider covered area, but lower spatial resolution along 

the direction of satellite movement. A new type of ScanSAR is used by the sensor on Sentinel-1 

(Terrain Observation with Progressive Scans SAR – TOPSAR), where the antenna is steered in 

both elevation and along-track directions (ESA, 2020). 

For example, for TerraSAR-X system, Stripmap images have a spatial resolution of 3 m x 3 m, 

Spotlight images have 2 m cross-track (perpendicular to direction of satellite movement) and 1 m 
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along-track, while ScanSAR images have 16 m x 16 m. Regarding swath coverage, it is lower than 

1500 km along-track x 30 km cross-track for Stripmap, 10 km x 10 km for Spotlight and lower 

than 1500 km along-track x 100 km cross-track for ScanSAR (ESA, 2020).  

At the image formation process, each portion of Earth surface, which is represented in a pixel 

(resolution cell) is attributed a two-dimensional coordinate: azimuth and slant range (Figure 2a). 

Azimuth is determined along the direction of the satellite movement and the image spatial 

resolution in this direction depends on the antenna dimension. In order to achieve a better 

resolution, a larger antenna is simulated by integrating the data of a certain location observed from 

different points along the orbit (SAR system). The slant range coordinate corresponds to the 

distance between the imaged point and the sensor and it is determined along the sensor LOS, which 

is perpendicular to the satellite trajectory and oblique with respect to the Earth surface. Spatial 

resolution in slant range direction depends on the pulse duration (Bamler and Hartl, 1998; 

Massonnet and Feigl, 1998). Satellites transporting SAR sensors have quasi-polar orbits, with 

azimuth direction being approximately in the north – south direction and the ground range 

(projection of slant range on the horizontal plane) almost along east – west. Images can be acquired 

with two geometries: ascending, when the satellite passes from south to north, and descending, 

when it passes from north to south (Figure 2b).    

 
 

 
 

 

(a) (b) 

 

Figure 2 – SAR imaging geometry (a), ascending and descending passes (b), from Confuorto (2016) and 

Bateson et al. (2010), respectively.  

The electromagnetic signal reflected by the Earth surface and represented in a pixel is 

characterized by an amplitude and a phase, which are registered as a complex number. The 

amplitude is the strength of the signal reflected by the elements in the resolution cell and it 
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corresponds to the absolute value of the complex number. The phase is the argument of the 

complex number and results from the sum of the phases of the signal reflected by all elements 

represented in the pixel (Massonnet and Feigl, 1998).  

An interferogram is a phase difference image that can be obtained after the corregistration2 of 

a pair of SAR images. It is computed through the multiplication of the value of each pixel from 

one image (the master) by the complex conjugate of the corresponding value in the second image 

(the slave). There are several variables that contribute to the phase difference: orbital differences, 

terrain altitude, target motion, changes in atmospheric conditions, variations of scattering 

behaviour of imaged elements and instrumental artifacts. However, phase differences are known 

as a fraction of a cycle, having values varying between -π and π radians (wrapped phase). Altitude 

and displacements form fringe patterns in the interferograms and can be determined from them. 

For displacement computation, a DEM of the ROI can be used to remove the altitude-related 

fringes from the interferogram in order to isolate those caused by displacement (Figure 3). This 

technique is known as Differential Interferometric SAR (DInSAR). One fringe corresponds to a 

relative displacement between two points with magnitude of half a wavelength (Massonnet and 

Feigl, 1998). 

 

Figure 3 – Interferogram showing a fringe pattern caused by deformation during the Bam earthquake in 

Iran (Dentz et al., 2006). 

Phase unwrapping is the process of estimating the absolute phase values from the wrapped ones 

along a finite number of points. Its main assumption is that the diffence in unwrapped phase 

between neighbour points (either in space or in time) is lower than π and phase differences are 

                                                 
2 The alignment between the images, pixel by pixel. 
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integrated along paths connecting the points where that condition is fulfilled. However, the above-

mentioned assumption is not always verified, due to unsufficient point sample, displacement 

discontinuities or topographic effects on SAR images, which lead to errors that are integer 

multiples of 2π. Existing algorithms try to mitigate this limitation (e.g., Costantini, 1998; Hooper 

and Zebker, 2007; Piyush and Zebker, 2010). 

The normalized cross-correlation coefficient between two SAR images i and j is called 

interferometric or spatial coherence (𝜁𝑖,𝑗). It is determined for each pixel through Equation (1), 

where E[] is the mathematical expectation, * is the complex conjugate of a complex number and 

si and sj are the complex numbers registered for the pixel in images i and j, respectively (Perissin 

and Wang, 2012). It provides a measure of the interferogram quality. 

ζi,j =
E[sisj

∗]

√E[|si|
2]E[|sj|

2
]

                                                         (1) 

When several interferograms are available, the multiinterferometric complex coherence γ can 

be considered, given by Equation (2), where N is the number of interferograms and w are the phase 

residuals resulting from the difference between the observed phase and a phase model across all 

interferograms (Colesanti et al., 2003). 

 γ =
1

N
∑ ejwN

i=1                                                          (2) 

The absolute value of the multiinterferometric complex coherence |𝛾| is called temporal 

coherence and provides a measure of the quality of the fit between the modeled and the observed 

phases. Its values vary between zero and one, with better fits corresponding to values closer to one.  

DInSAR enables spatially continuous displacement measurement for wide areas; however, the 

results are affected by changes in targets’ scattering properties and in SAR sensor point of view 

(named temporal and geometric decorrelations, respectively) and by atmospheric effects (Ferretti 

et al., 2001). Temporal decorrelation happens when the time interval between image acquisitions 

is large, while geometrical decorrelation occurs for large distances between the image acquisition 

points. Atmospheric effects are caused by differences in atmospheric conditions at the image 

acquisition epochs, mainly related to the presence of water vapour, which introduces a delay in the 

signal. This results in a precision of tens of metres to altitude and of centimetres to displacement. 

The continuously increasing archive of SAR images after the launch of ERS-1 enabled the 

development of new interferometric techniques to solve the limitations of DInSAR. Ferretti et al. 

(2001) proposed a method based on multitemporal SAR images. Instead of analysing all the pixels 

in an interferogram, they recommended the selection of a subset of pixels that keep their reflective 

properties in all images. These pixels, called Permanent Scatterers, do not suffer from temporal 

nor geometric decorrelation. The scatterer dimension should be smaller than that of the resolution 
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cell and they are identified in the images through an amplitude dispersion index (the ratio between 

the standard deviation and the average of amplitude values for all images in the stack), which 

approximates phase stability when signal to noise ratio is large. These points are called Permanent 

Scatterers Candidates (PSC) and they are used to estimate the atmospheric effects for each image 

(Atmospheric Phase Screen – APS). For the estimation, a set of interferograms is considered, in 

which one single image is selected as the master, while the remaining ones are used as slaves. The 

master image is chosen in order to minimise both temporal and normal baselines3 of the image 

dataset. For each PSC in each interferogram, Equation (3) is used to estimate a constant (a1) and 

linear terms of APS (pξ and pη), altitude (q) and average velocity4 of the PSC along LOS (v). The 

equation is solved iteratively as the observed interferometric phase is wrapped. 

Φ = a1T + pξξ
T + pηη

T + BqT + TvT + E                                        (3) 

In Equation (3), Φ is the interferometric phase, ξ and η are azimuth and slant range pixel 

coordinates, respectively, B is normal baseline, T is temporal baseline and E is the residuals, which 

contain remaining APS, non-linear displacement and phase noise due to decorrelation. 

One of the components in the residuals of Equation (3) is the turbulent component of APS. In 

order to determine it, the residuals are filtered to isolate a low pass spatial component, which is 

then interpolated for each pixel. The interpolated values are removed from differential 

interferograms and the resulting phases (φn) are inputted into a periodogram, which corresponds 

to the temporal coherence (absolute value of Equation 2). For each pixel, the average velocity and 

the correction to the altitude that maximize the temporal coherence are estimated (Equation 4).  

arg max
Δq,v

{|γ| = |
1

N
 ∑ ejφn ∙ e−j(

4π

λRsin θ
∙B∙∆q+

4π

λ
∙T∙v)N

n=1 |}                             (4) 

In Equation (4), ∆q is the correction for the initial DEM altitude value (called residual height), 

v is velocity, |γ| is temporal coherence, N is the number of interferograms, λ is the signal 

wavelength, R is the distance between the sensor and the scatterer and θ is the incidence angle 

(angle between LOS and the vertical). Altitude correction and velocity precisions depend on phase 

stability and on the dispersion of normal and temporal baselines, respectively. This procedure is 

valid for small areas, where atmospheric and orbital effects can be considered linear, and for linear 

displacements. It is applied to a new pixel selection – the Permanent Scatterers – for which residual 

height and average velocity are determined. Furthermore, displacement time series are also 

computed for each Permanent Scatterer.  

                                                 
3 Temporal baseline is the time interval between image acquisitions; normal baseline is the projection of the distance 

between the image acquisition points in the direction perpendicular to the master LOS. 
4 A linear displacement model is considered. 
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In Ferretti et al. (2000), the previously described algorithm was improved in order to better 

separate the atmospheric effect from the non-linear motion present in the residuals of Equation 

(3). The residuals are first averaged to obtain the APS of the master image. This APS signal is then 

removed from the original residuals, which are low pass filtered in space to isolate the non-linear 

displacement. The final APS of each interferogram is achieved by adding the master APS to the 

result of the application of a high pass filter in time and a low pass filter in the spatial domain to 

the original residuals. With this processing strategy, it is possible to isolate the atmospheric effects 

and to obtain sub-metre and millimetre precisions for altitude and displacements, respectively. 

This technique is known as Permanent Scatterers InSAR – PSInSAR. 

After PSInSAR, many research groups developed new InSAR methods based on the analysis 

of multiple SAR images. The set of methods that uses a single master image is called Persistent 

Scatterer Interferometry (PSI) and the analysed scatterers are called Persistent Scatterers (PSs).   

Interferometric Point Target Analysis (IPTA) is a method presented in Werner et al. (2003). It 

considers a single master approach and relies on the linear relationships between interferometric 

phases and perpendicular and temporal baselines for pairs of nearby scatterers. The regression 

slopes correspond to the relative residual height and velocity between the two scatterers. These are 

iteratively improved in successive algorithm applications.  

Costantini et al. (2008) developed the Persistent Scatterer Pairs (PSP) method, which considers 

arcs between close scatterers. Scatterer selection depends on the arc quality and is performed 

iteratively until there are no new scatterers to add. Differential residual height and velocity are 

determined for each arc and integrated to obtain their values for each scatterer. After their removal 

from each scatterer phase, unwrapping is performed to obtain a non-linear component of 

displacement. As arcs tend to connect nearby scatterers, APS and orbit corrections can be 

neglected, which improves the algorithm performance with respect to other techniques. 

Berardino et al. (2002) presented the Small BAseline Subset (SBAS) technique. Instead of 

considering a single master, each image from the dataset is connected to one or more images as 

long as their normal baselines are small, in order to minimise decorrelation effects. Their model 

estimates residual heights and constant velocity (or another displacement model known a priori) 

and it is applied on multilooked unwrapped differential interferograms. APS is estimated similarly 

to Ferretti et al. (2000, 2001). Velocity values are integrated to obtain phase and displacement 

values for each date. Pixel selection is performed based on coherence. Therefore, this method 

enables displacement measurement for a larger number of pixels than PSInSAR, especially in non-

urban areas. This method uses Distributed Scatterers (DSs) instead of PSs, i.e., it considers the 
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phase contributions from all scatterers within the resolution cell and not only a dominant one like 

in PSInSAR. 

In order to increase the number of scatterers in non-urban areas, Hooper et al. (2004) developed 

the Stanford Method for Persistent Scatterers (StaMPS). Instead of using amplitude time series for 

pixel selection (which are stable mainly on urban areas), this method selects pixels based on their 

phase stability. Scatterers are aggregated into patches with a certain dimension, within which 

displacement, atmospheric effect and orbit inaccuracies are spatially correlated. The 

interferometric phase is subtracted by the average phase of the scatterers inside the patch and a 

phase component is estimated for the residual height. The obtained residue is used to compute the 

temporal coherence and PS are selected through coherence thresholding (large coherence 

corresponds to low phase noise and therefore, to a PS). After PS selection, the estimated residual 

height is removed from the interferometric phase and phase unwrapping in space and time is 

performed. Except for the displacement component of phase, after the unwrapping, the other phase 

components which are spatially correlated are uncorrelated in time, thus displacement can be 

isolated through filtering. The strategy of selecting PS through phase stability instead of amplitude 

enables the detection and analysis of low amplitude scatterers typical from non-urban areas that 

would not have been selected by the PSInSAR algorithm. 

The PSI method proposed by Delft University of Technology (DePSI) performs an initial 

selection of PSC with large amplitude stability and uses an iterative procedure to estimate the 

parameters of interest for a first order network that connects the PSC. At the iterative procedure, 

the integer phase ambiguities5 and the floating values of displacement and altitude along the 

network are determined through integer least squares. Then, the parameters are unwrapped and 

hypothesis testing is used to identify incoherent points, which are removed from the analysis. APS 

and orbit inaccuracies are estimated for the remaining PSC, their components are removed from 

phase and the process is repeated. When the final network configuration and respective parameters 

are determined, the network is densified and the parameters for the new points are achieved from 

the parameters of the first network (Kampes, 2005; Ketelaar, 2008; Sousa et al., 2011).   

Another method developed to deal with the low scatterer density in non-urban areas is the 

Quasi-Permanent Scatterers (QPS), developed by Perissin and Wang (2012) that detects temporary 

scatterers, i.e., scatterers that do not keep their reflective behaviour stable in all images. For each 

scatterer, only the subset of the interferograms in which the scatterer shows good coherence is 

used. This is achieved by using spatial coherence (Equation 1) as a weight in the periodogram to 

                                                 
5 The unknown number of integer cycles the signal travelled from the sensor to the object.  
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estimate velocity and residual height. A multimaster set of interferograms is used. Noise is reduced 

by filtering. 

Hooper (2008) proposed a method to combine both PS and DS in order to increase the number 

of analysed points. The two types of scatterers are identified separately, from the same images, but 

from different interferograms. They are then combined before phase unwrapping, by recomputing 

differential phases for the PSs using the interferograms with the small baselines used for DSs. As 

this increases the density of analysed scatterers, phase unwrapping is more successful. 

Ferretti et al. (2011) presented the SqueeSAR algorithm for the joint processing of PSs and 

DSs, also to increase the number of analysed scatterers. They start by identifying DSs as scatterers 

surrounded by other scatterers with similar behaviour. The phases of the similar scatterers are 

filtered and used to compute a coherence matrix, which includes all possible interferograms for 

the analysed images. It is considered that all identified similar scatterers belong to the same object 

and should have the same phase. Optimal phase values for each image date are estimated from the 

coherence matrix and attributed to the DS. DSs are then introduced into the original PSInSAR 

algorithm and processed together with the traditional PS. This approach enables the increase of 

the point density (Figure 4), from which results better unwrapping and APS estimations. 

 

Figure 4 – Comparison of scatterer density using PSInSAR (a) and SqueeSAR (b), from Ferretti et al. 

(2011). 

The Centre Tecnològic de Telecomunicacions de Catalunya (CTTC) proposed the method PSI 

Chain of the Geomatics Division (PSIG), which relies on unwrapping quality to achieve 

displacement and residual height estimations (Devanthéry et al., 2014). The study performs a 

selection of similar persistent scatterers providing a dense coverture of the ROI (the Cousin PSs – 

CPS). A redundant graph of interferograms is defined and phase unwrapping is performed for the 

CPSs considering the redundant set of interferograms. Phase unwrapping quality is verified and 
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CPSs for further analysis are selected. APS is estimated for those points. A new network of points, 

denser then the CPSs, is selected for velocity and residual height estimation. APS and residual 

height are removed from the redundant interferograms, which are subjected to unwrapping in order 

to determine the displacement component of phase.  

Figure 5 presents the relationship between the InSAR methods described in this Chapter. 

 

Figure 5 – Classification of InSAR techniques according to the set of used interferograms. 

There are also other techniques that use SAR data. Tomographic SAR (TomoSAR) enables the 

distinction between scatterers with different heights represented in the same pixel, e.g. on steep 

slopes or building façades, where layover occurs (Fornaro and Serafino, 2006). Differential 

approaches of this method have been tried for deformation monitoring (Lombardini, 2005; Fornaro 

and Serafino, 2006). Pixel-Offset Tracking (POT) determines displacements in both slant range 

and azimuth directions from the offsets between corresponding pixels in different images during 

the corregistration. Multiple Aperture Interferometry (MAI) applies filters in the azimuth direction 

to build auxiliary interferograms from which displacement along the azimuth direction can be 

retrieved (Hu et al., 2014). Polarimetric SAR Interferometry (POLInSAR) is a technique that 

combines the exploration of SAR data from multiple polarizations with InSAR and it has been 

applied for tree height estimation (useful for biomass studies) or coherence optimization (Corr et 

al., 2003; Cloude, 2011). Radargrammetry uses coregistered SAR images from different 

acquisition geometries (parallel tracks or pairs of ascending and descending scenes) to determine 

disparities between common points at the images and to compute objects’ heights (Wegmüller et 

al., 2003; Dubois et al., 2013). 

2.2 InSAR methods for structural health monitoring 

This section contains the literature review of the application of InSAR methods to structure 

monitoring studies. An evolution was observed, with the earliest researches being the direct 

application of InSAR techniques to targets on structures. Then, the InSAR algorithms were 
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adapted in order to provide better results in these specific problems. Later, InSAR data were 

introduced into structure behaviour models, providing information for a larger number of 

object points and with an observation period of a few days. 

 

SHM is the process of identifying the presence of damages in a structure, with damage being 

changes in the material or geometry that may compromise the structure’s performance. Damages 

are detected through comparison between different states of the structure: the one being evaluated 

and a previous, undamaged, one (Farrar and Worden, 2010). Structural safety is the structure 

capability to fulfil its behaviour requirements during its lifecycle (LNEC, 1989) and its assurance 

is of vital importance for human life well-being and property maintenance, whether civil or 

geotechnical structures are considered. The information required for assessing structural safety is 

achieved through monitoring systems, which consist on a set of equipments to collect values of 

variables relevant to the safety of each specific type of structure. For example, for concrete dams, 

it is frequent to monitor horizontal and vertical displacements, uplift pressures, seepage rates or 

strains (LNEC, 1989; Brownjohn, 2007). The main concerns regarding bridge safety are their 

dynamic behaviour and eventual responses to earthquakes, wind and traffic (Brownjohn, 2007). 

Regarding buildings and towers, the dynamic behaviour in response to earthquakes and storms are 

also of concern (Brownjohn, 2007). For geotechnical structures, such as slopes, embankment 

dams, tunnels or foundations, there are also several variables of interest, e.g., shear strength, 

compressibility, permeability, temperature, strain, stress, settlements or deflections (Pei et al., 

2014; Hong et al., 2016). 

Visual inspections performed by experts can be used for SHM (Chang et al., 2003; Majumder 

et al., 2008), sometimes supported by digital image acquisition and processing (Roque et al., 

2015). Many variables of interest to assess key information about the structure condition are 

acquired through embedded equipment and the usage of fibre optical sensors has been increasing 

due to their advantages related to size, weight, absence of electromagnetic interference and no 

corrosion problems (Nöther et al., 2009; Ye et al., 2014). The monitoring frequency of embedded 

equipment can be high and they allow for real-time monitoring whenever automated monitoring 

systems are available. On the other hand, some of the sensors have to be installed during the 

construction phase and they are not present in older structures.  

Geodetic methods have been used for displacement measurement on structures with respect to 

their surroundings. A network of points located on the structure being monitored (the object points) 

and of points outside of it (the benchmarks) is materialised and vertical and/or horizontal 

displacements are determined for the object points with respect to the benchmarks. The object 
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points are installed at key locations for the structure condition assessment and the benchmarks are 

materialised at areas considered stable after a geotechnical inspection. Vertical displacements for 

all points may be determined from observations of height differences between pairs of points 

through geometric or trigonometric levelling, while horizontal displacements can be achieved from 

observed distances and bearings, which may be inputted at triangulations or traverses (Casaca, 

Henriques and Mateus, 2009; Casaca, Henriques, Coelho, et al., 2009). Sub-millimetre and 

millimetre precisions are achieved for vertical and horizontal diplacements, respectively; however, 

the high costs associated to field campaigns may lead to the reduction of the observation frequency. 

Robotic total stations enable both static and dynamic monitoring of structures with accuracies of 

a few millimetres (Stiros and Psimoulis, 2012; Marendić et al., 2016; Alamdari et al., 2019). 

Satellite-based techniques, such as GNSS have also been used for structure monitoring, with the 

possibility of providing real-time data and measuring high rate dynamic displacements (Psimoulis 

et al., 2008; Lima, 2015b, 2015a; Lima et al., 2015; Yigit and Gurlek, 2017; Paziewski et al., 

2018, 2019). GNSS antennas are installed at structure locations of interest and their displacements 

are measured, in relative mode, with respect to one or more reference GNSS antennas deployed at 

nearby locations considered stable. The measurement precision depends on the observation 

duration and it may reach the sub-millimetric level in case observations are performed 

continuously (Lima et al., 2015; LNEC, 2018). Both horizontal and vertical displacements are 

determined. The major disadvantages of this technique are the high costs of the equipment and the 

exposure to acts of vandalism.     

InSAR is an applied geodetic technique, which enables displacement measurement at a large 

number of points and covering a wide area that may contain both the structure and its surroundings. 

The observation points exist naturally in the terrain, without need for being materialised, and if 

multitemporal data are used, millimetre precision measurements are achievable, with a revisit 

period that depends on the platform return time to the ROI. InSAR also has the advantage of 

allowing the study of past events, through the evaluation of archived images. At the present 

moment, the technique still presents some limitations regarding structure monitoring, such as the 

difficulty for controlling the points location (only possible through artificial reflectors, which will 

be discussed later), displacement measurement only along LOS or the non-availability of a 

postetiori variances for the measured displacements. Nevertheless, there are several examples of 

application of this technique to SHM reported in the literature. The types of structures most 

frequently analysed are bridges, dams, buildings, railways and slopes. 

Regarding bridges monitoring, Sousa and Bastos (2013) proposed InSAR displacements as a 

source to inform early warning systems for their structural safety. They verified historical 
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displacements for the 5.5 years prior to the collapse of Hintze Ribeiro bridge, in Portugal. Four 

scatterers were detected on the bridge, with those located on the later collapsed pillar showing a 

displacement rate of 20 mm/year. Del Soldato et al. (2016) used L- and X-band SAR images to 

measure displacements on a bridge during different time intervals. They found the bridge itself 

was stable, but there were settlements at embankment areas at the connection between the bridge 

and the abutments for both banks. Besides, angular distortion6 values larger than the safety limit 

were present at the same area. The results from the different time intervals showed that the 

settlements had been stronger right after the bridge construction and that the structure was 

stabilizing. Poreh et al. (2016) used PSI to monitor a railway bridge, which was verified to present 

a stable behaviour, with velocities ranging from -0.9 mm/yr to 0.05 mm/yr. Agreement between 

displacement and temperature time series was found.  

Thermal expansion of the materials along the longitudinal axis of the bridge is often found to 

be one of the main causes for InSAR non-successful performance in monitoring this type of 

structures, leading many authors to adapt the original PSI algorithms to deal with it. Lazecky et al. 

(2015) proposed an adapted version of the usual PSI algorithm that exploits the linear relationship 

between phase and temperature changes. This improved version estimated for each scatterer 

residual height, velocity and a thermal expansion coefficient. They applied this method on bridges 

and, although a precise estimate of thermal expansion coefficient was achieved, the uncertainty of 

the average velocity was too large. To overcome this limitation, the authors recommended the 

analysis of a minimum of two years of images to correctly separate the thermal component from 

the linear trend. Lazecky et al. (2017) presented a method to improve observed temperature values 

and to calibrate them in order to match structure properties (bridges in this case). First, they used 

the relationship between phase residuals and thermal expansion coefficient estimated from SAR 

data as in Lazecky et al. (2015) to correct possible temperature observation errors. Then, these 

corrected temperature values were calibrated for the estimated thermal expansion coefficient to 

match a theoretical value obtained from the structure properties. This method enabled the decrease 

of residuals Root Mean Square Error (RMSE), leading to an increase of temporal coherence. The 

main limitation pointed by the authors was the fact that a single temperature value was used for 

the whole structure, when temperature differences along it should be considered.  

The effect of temperature was also identified on high buildings. Reale et al. (2013) adapted the 

TomoSAR algorithm in order to account for structures’ thermal expansion. As the height of the 

scatterers increased, the displacement time series deviated more from a linear behaviour due to the 

temperature load, resulting in a decrease in the number of evaluated points. Therefore, a thermal 

                                                 
6 The ratio between differential settlement and the distance between points. 
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coefficient was estimated together with height and velocity. The inclusion of this term in the model 

not only enabled the construction of thermal expansion coefficient maps, but it also allowed the 

detection of a larger number of scatterers.  

Besides the temperature effect, other improvements in the algorithm may be required to obtain 

better results on structures. Zhao et al. (2017) improved the estimation of velocity values on a 

bridge by first improving the altitude data. The authors performed iterative altitude estimation 

from progressively increasing normal baselines interferograms until altitude corrections became 

small. Those altitude values were then used in the model from which velocities were retrieved. 

Both velocity and scatterers location benefited from this method.   

Tapete et al. (2015) also considered the correct determination of scatterers altitude as a key factor 

to structure monitoring through InSAR. They proposed the usage of GNSS Real-Time Kinematic 

(RTK) to improve the three-dimensional location of the scatterers along linear structures, such as 

aqueducts. Object points on the structure and on the ground were surveyed using Global Positioning 

System (GPS) RTK. As scatterers planimetric locations were determined with an error of 1 m, their 

altitude and planimetric location with respect to the GPS RTK benchmarks enabled the identification 

of their location: the structure top, the wall or the ground. This position improvement allowed a 

better evaluation of the observed deformation, specifically on determining to which part of the 

structure the observed displacement was referred to. Classes based on velocity values and trends on 

the displacement time series were attributed to the scatterers. 

InSAR has been used for displacement measurement on both embankment and concrete dams. 

Wang et al. (2011) monitored displacements at the Three Gorges dam, in China, between 2003 

and 2008, when part of the structure was still under construction. As the DEM available to the 

study was older than the SAR images, the authors used the QPS technique to perform a first 

estimate of the dam height and of its surrounding elements as well as of the average velocity. The 

estimated height values were used as input for a PSI processing from which displacement time 

series were derived with better precision. The analysis of those displacements revealed the dam 

settlement finished before the end of the studied time interval and the effects of temperature and 

water pressure on the structure were visible in the data.  

Di Martire et al. (2014) evaluated displacements on an embankment dam using EnviSat data during 

eight years. They found displacement with magnitude of 3 cm in the central zone of the dam and 2 cm 

on the lateral areas. The data were validated through comparison to extensometer measurements of the 

same time interval, with differences between 2.9 mm and 5.2 mm between them.  

Milillo, Bürgmann, et al. (2016) monitored displacements at the Mosul dam, in Iraq, before and 

during the stopping of maintenance actions required to keep the structure safe due to the geological 
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properties of its location. The authors combined datasets from different sensors, time intervals and 

geometries to evaluate vertical and east – west displacements on the dam. They found that most of 

the displacement occurred in the vertical direction, being compatible to subsidence. An increase in 

the subsidence rate was found from 2004 – 2010 to 2014 – 2015, probably due to the lack of 

maintenance since 2014. However, the ground dissolution rate has been kept approximately equal 

for both time intervals, maybe due to the lower water volume in the reservoir during the second one.  

Emadali et al. (2017) used both InSAR and in situ measurements to monitor an embankment 

dam in Iran. They applied SBAS on a dataset of TerraSAR-X spotlight images, achieving a dense 

coverture of scatterers on the structure (Figure 6). InSAR and in situ data were compared to 

validate the measurements, after projecting in situ to LOS direction, achieving a correlation 

coefficient of at least 0.95 between the two techniques. Between 2014 and 2015, displacement 

away from the sensor was detected on the crest (13 cm/yr) and on the downstream slope (7 cm/yr). 

The authors considered the value at the crest to be above the expected for a dam of that height 15 

years after its construction, as it represented a settlement rate of 0.08% of the dam height, when 

after 2 – 3 years after construction, it was expected to have a settlement rate of 0.02%.   

 

Figure 6 – Average displacement rate along LOS on an embankment dam achieved by applying SBAS to 

TerraSAR-X data (Emadali et al., 2017). 

The Morandi Bridge, in Genoa, Italy, collapsed in 2018 and Milillo et al. (2019) used back-

analysis to detect increasing displacements on the damaged area, starting in 2015 and their 

acceleration in 2017. The authors used data from three distinct geometries from COSMO-SkyMed 
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and Sentinel-1, which were combined through Markov Chain Monte Carlo in order to achieve 

three-dimensional displacements at the structure. 

Recent studies combined InSAR displacements with structural behaviour knowledge to 

interpret the data. Ciampalini et al. (2014) stated that InSAR data can be useful for both prevention 

and post-event risk evaluation. They used several datasets, from different time intervals, to assess 

velocities in buildings located at a landslide area. An average velocity was computed for each 

building from all scatterers located on the structure. The building velocity map was compared to a 

building damage map obtained from visual inspections and they agreed to each other.  

Pratesi et al. (2015) proposed a building classification system, composed of five degrees. The 

classifications were attributed based on three indexes derived from InSAR data. The completeness 

of information index evaluated the scatterer coverage of the building (and of a small 

neighbourhood around it) and provided the confidence level on the other indexes. The conservation 

criticality index was the maximum observed velocity on the building, whose dispersion was 

evaluated by the velocity distribution index. This last index identified if the scatterers on the 

building showed similar velocity values or if there was a localized deformation.  

Qin et al. (2017) monitored high-speed railways through an adapted InSAR algorithm. Analysis 

was limited to scatterers located on a buffer around the railway and that fulfilled a constraint on 

height (height difference between neighbours should be less than three times the height standard 

deviation). After scatterer identification, phase residuals were analysed in order to estimate the 

thermal expansion coefficient. Subsidence and negative values of the thermal expansion 

coefficient were detected for railway stretches near residential and industrial areas, possibly related 

to groundwater cycles. Risk analysis was performed through a weighted average of ranks given to 

subsidence rate, angular distortion and thermal expansion coefficient. 

 Milillo, Perissin, et al. (2016) proposed dam monitoring through the combination of InSAR 

displacements with dam behaviour models. They performed a sensitivity analysis of each dataset 

with respect to displacements in radial and vertical directions on the dam. They found that all 

datasets have similar sensitivity to vertical displacements along the entire dam crest. Regarding 

the radial displacements, ascending datasets were more sensitive in the centre and the 

southernmost part of the structure, while descending datasets were more sensitive only at the 

centre. Displacements from ascending and descending geometries for the same time interval were 

combined and vertical and radial displacements were obtained. Scatterers located on the crest 

centre showed radial displacement uncertainties below 3.00 mm. An ageing effect was searched 

for in the vertical displacements, but it was not present. Radial displacements were used as input 

to the Hydrostatic-Seasonal-Time (HST) and the Hydrostatic-Temperature-Time (HTT) models, 
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which relate radial displacements with seasonal, hydrostatic or temperature loads on the dam 

(Figure 7). For HST model, a linear trend was detected (with a rate of 0.5 mm/yr and uncertainty 

of 0.22 mm/yr), which could indicate possible anomalous behaviour of the structure. For HTT 

model, this trend presented the rate of 0.001 mm/yr with uncertainty of 0.003 mm/yr.  

 

Figure 7 – Comparison between observed and modelled displacements, temperature, water volume and 

model residuals (Milillo, Perissin, et al., 2016). 

Cerchiello et al. (2017) combined InSAR displacements with building models to achieve a risk 

map for part of the city of Rome. The buildings were modelled using a laminated beam model, in 

which only the main elements of the building were considered. These models could relate the 

InSAR displacements to geometric and material properties of the buildings and enabled the 

determination of the strain. Testing different values of building properties within acceptable 

ranges, critical values of strain were obtained and used to build a hazard map. Vulnerability maps 

were achieved from the area, height and materials of the buildings. Risk maps for several time 

intervals were computed by multiplying the hazard and the vulnerability maps, allowing the 

analysis of the risk evolution for the study object.  

Milillo et al. (2018) used InSAR data to assess damages on buildings located over a tunnel 

being constructed. The method relied on the comparison of strain values from the buildings with 

limit values that were related to damage classes. The strains were obtained from deflection ratios, 

which are the ratios between the relative deflection between two points and their horizontal 

distance. First, deflection ratios were determined through a model that did not consider the 

existence of buildings in the affected area and used the type of soil, depth and diameter of the 

tunnel as well as the excavated volume. Then, the authors determined the deflection ratios from 

displacements observed through InSAR for scatterers located on the ground and on the buildings, 
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independently. The two values were used to compute a modifying factor, from which strains were 

obtained. InSAR displacements were validated through comparison to levelling. 

Infante et al. (2019) proposed a method for vulnerability assessment along linear structures 

based on Geographic Information Systems (GIS), which integrated data from InSAR, altitude, 

landslide inventory maps and field surveys. PSI displacements along LOS were converted to slope 

direction, using a DEM, inside a buffer surrounding the structure. The scatterers were then 

compared to a threshold and clustered in order to identify unstable areas. These areas were 

compared to landslide inventory maps and crossed with structure damage information collected 

from visual inspections. Each cell from a grid covering the structure buffer was attributed a 

qualitative vulnerability degree (low, moderate, high or very high), according to its kinematics 

properties (PSI displacement crossed with existing landslide inventory) and level of damage. The 

method was applied to road monitoring and an updated landslide inventory map was achieved. 

Giardina et al. (2019) proposed that InSAR data are valuable for damage monitoring caused by 

tunnel excavation from the analysis of deformation on buildings located over the tunnels. 

Displacements from PSs on the buildings above the tunnel were used to build deformation profiles 

that characterised the soil-structure interaction induced by the tunnel. The authors stated that the 

usage of high resolution SAR data for a study of this nature was of the utmost importance.      

Figure 8 presents a summary of the strategies that have been used for SHM with InSAR-

derived data. 

 

Figure 8 – Summary of methods for individual structure monitoring with InSAR techniques. 

Although InSAR has been successfully used for individual structure monitoring as reported 

above, the strongest point of the technique is displacement monitoring at a regional level. Urban 

subsidence has been frequently evaluated using this type of data. Osmanoğlu et al. (2011) detected 
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subsidence rates of 300 mm/year at Mexico City, caused by groundwater extraction. Amelung et 

al. (1999) also used the technique to monitor subsidence at Las Vegas together with uplift resulting 

from aquifer recharge. Besides changes due to groundwater levels, the effect of hydrocarbon 

extraction on ground has been monitored through InSAR as well (Ketelaar, 2008). InSAR is an 

adequate technique for such studies due to its capability to cover wide areas throughout long time 

spans, enabling the identification of the subsiding area limits and its confrontation with geological 

elements, e.g., faults or lithology (Amelung et al., 1999). Ground movements have also been 

searched at the city of Lisbon, one of the case studies in this thesis, with subsidence being detected 

(Heleno et al., 2011; Catalão et al., 2016). The studies show the subsidence was related to the lack 

of acquifer recharge with groundwater, caused by the expansion of the subway line and increasing 

soil impermeability. 

Another application of InSAR methods commonly found in the literature is the study of 

landslides. According to Solari et al. (2020), InSAR is an advantageous technique for these studies 

due to its capability to monitor wide areas, at a large number of points, with a short revisit period, 

millimetre precision, all-day and all-weather image acquisition, data provision at difficult access 

areas and large image archives; thus being a cost-effective technique for this end. This applied 

geodetic technique has been used for back-analysis of past landslides in order to search for 

precursory signs of ground instability (e.g., Carlà, Intrieri, et al., 2019), which may be identified 

in future analysis allowing an early response from authorities. Landslide characterization is 

performed by crossing data from distinct sources, such as different SAR geometries and in situ 

data (e.g., Czikhardt et al., 2017). InSAR displacements can also be used as input for landslide 

model calibration (e.g., Bru et al., 2018), to map new landslides (e.g., Ciampalini et al., 2016), to 

update existing inventory maps (e.g., Rosi et al., 2018) or for slope monitoring (e.g., Ye et al., 

2004). Some of the reported limitations for the application of the technique in this field are SAR 

geometric effects (shadow, foreshortening and layover) and the frequent presence of vegetation 

(Shi et al., 2017, 2019).           
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Chapter 3. RADAR interpretation of InSAR 

displacement time series 

This chapter proposes a big data method for the radar interpretation of InSAR displacement 

time series achieved through PSI. The followed strategy performs the clustering of 

displacement time series in an automatic way and without the need for previous knowledge 

on the case study, which turns the method appropriate for monitoring any type of events. 

Although an automatic solution is always provided, the user has the possibility of changing 

the scale of the analysis into different levels of detail and to include additional data to aid in 

the displacement interpretation. The method proved to be able to detect and isolate object 

points with displacements affected by unwrapping errors, as well as, to identify distinct 

structural behaviour patterns in two case studies of distinct natures: slopes during the first 

impoundment of a water reservoir and cultural heritage buildings. 

3.1 Introduction 

3.1.1 RADAR interpretation 

The importance of extracting information from InSAR displacement time series, instead of 

analysing only variables such as average velocity or cumulative displacement during a certain time 

interval, has increased recently. Possible reasons may be the growing interest in InSAR 

applications characterized by non-linear displacements or the increase in the number of scatterers, 

which are becoming possible due to the improvements in the algorithms, the easiness in accessing 

image datasets and increasing computational capacity. Several strategies for retrieving information 

from InSAR displacement time series, named RADAR interpretation, have been developed in the 

last years.  
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Lanari et al. (2004) used SBAS to analyse seasonal displacements in Los Angeles. They fitted 

a sinusoidal model to the displacement time series of each scatterer and evaluated the spatial 

distribution of amplitude and phase shift with respect to a reference date. This enabled the 

identification of areas where seasonal behaviour was stronger and of delays that were related to 

the location of faults. Similarly, in Lanari et al. (2010) SBAS displacement time series were fitted 

to an exponential model that described the evolution of the displacements after an earthquake. 

Least squares adjustment was used to determine the amplitude (the value towards which 

displacements tend to with time) and the decay constant, which was then mapped and related to 

the displacement magnitude. 

Cigna et al. (2011) presented two methods for interpreting the displacement time series obtained 

for geological hazards in urban environment. In the first method, the displacement time series was 

divided in small time intervals and displacement rate was computed for each of them. Rate 

differences from consecutive intervals, after being normalized for accounting with different 

interval lengths, were used to evaluate the scatterer evolution. The second method consisted on the 

scatterers classification into the “unaffected” or “affected” classes. Scatterers considered to be 

unaffected by the geological hazard were stable or showed linear trends, while the “affected” label 

was attributed to scatterers with changes in their displacement time series, which could be 

temporary or permanent. Both methods were applied manually to the scatterers. The interpretation 

of the InSAR displacement time series complemented in situ data in order to identify the probable 

cause of the damages found in the buildings: tectonics. The authors stated that the implementation 

of this type of strategies for RADAR interpretation needs to be adapted for each situation at study.  

Cigna et al. (2012) presented an evolution of the previous research towards semi-automation. 

Two deviation indexes were proposed. One was used to detect behaviour changes prior to the 

occurrence of geological hazards, for example volcanic eruptions, to help predict the event. It 

required the manual selection of a breaking epoch in the displacement time series and a linear 

regression model was adjusted to the data from the first time interval. That model was expanded 

to the dates of the second time interval and the deviations from the predicted and observed 

displacements were computed. The deviation index was the average of those deviations divided 

by the standard error of the regression. Large values of the deviation index corresponded to large 

deviations between the predicted and observed displacements in the second time interval with 

respect to the data variability in the first one. The second index was applied to identify sudden 

displacement changes, like in tectonic motion. It also relied on the selection of a breaking epoch 

and two linear regression models were adjusted to the data (one to each time interval). Those 

models were used to predict the displacement values for the breaking epoch at each interval and 
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the index value was their difference. Mapping the indexes values for each scatterer enabled the 

analysis of their spatial distribution.  

Raspini et al. (2018) proposed a similar method for continuous monitoring of displacements. 

Their technique was applied every time a new SAR image was available. Displacement time series 

were divided in two parts and if the rate difference between the two parts was larger than a certain 

threshold, the scatterers were labelled as anomalous. However, an anomaly was only considered 

if the behaviour change was seen for at least two consecutive images and if the scatterer was not 

isolated. The method was applied at a regional level and a bulletin for each region (municipality) 

was provided, where they were classified regarding the absence/presence of anomalies. The 

presence of anomalies was divided into three subcategories: new anomalies, persistent anomalies 

and persistent anomalies putting key infrastructures (such as roads or hospitals) at risk. The 

classification into this last subcategory required the execution of field works to assess the 

dimension of the problem. 

Milone and Scepi (2011) applyed cluster analysis to displacement time series obtained from 

PSInSAR (Figure 9). They proposed the usage of the clustering large applications (CLARA) 

algorithm, which is a partitioning cluster technique that uses medoids7. Dissimilarities were 

evaluated between each scatterer and a certain seed of the cluster (the medoid, which is supposed 

to be in the central part of the cluster) and, based on those dissimilarities, the scatterers were 

attributed to the cluster with the more similar medoid. CLARA had the advantage of being able to 

deal with large datasets, when compared to other clustering algorithms of the same type. A sample 

of elements (scatterers in this case) was selected and the partitioning method explained above was 

applied iteratively only on that sample until the best medoids were found. Then, the remaining 

elements were attributed to each cluster based on their dissimilarity to each medoid. This sampling 

strategy enabled a reduction in the processing time; however, the quality of the final result 

depended on the sample size. Furthermore, this technique tended to form clusters approximately 

of the same size and the number of clusters had to be known a priori. The authors considered that 

the application of this algorithm was successful and they were able to relate the clusters to tectonic 

elements and water extraction. 

Berti et al. (2013) created an automatic system (PS-Time) for scatterer classification based on 

the comparison of their displacement time series to a library of expected behaviours of points 

located in landslide areas. The algorithm performed a series of hypothesis tests in order to accept 

or reject each PS into a certain class. The considered classes were: “uncorrelated”, which 

corresponds to stable points, “linear”, “quadratic” or “bilinear”. The “bilinear” class was divided 

                                                 
7 The median of the considered values. 
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into three categories: “continuous in time”, “discontinuous with constant velocity” and 

“discontinuous with velocity change” (Figure 10). Seasonal displacements were also considered 

and identified through frequency analysis. A crucial parameter for this algorithm was the level of 

significance used at hypothesis testing. The authors trained the algorithm by manually classifying 

the displacement time series for 1000 scatterers and by running PS-Time several times with 

different levels of significance. The values that provided the classification closer to the manual 

one were selected and applied on the classification of the whole dataset.   

 

Figure 9 – Displacement time series belonging to different clusters (Milone and Scepi, 2011). 

Notti et al. (2015) provided a series of methods for RADAR interpretation, resulting from a 

compilation of proposals from previous works that can help the data evaluation at different phases 

of the analysis: pre-processing, post-processing and trend analysis. The pre-processing phase 

consisted on the evaluation of the SAR Dataset Quality Index (SDQI) that relied on information 

such as the number of images, the time span of the study, temporal and spatial baseline 

distributions and image spatial resolution to assess the adequacy of a certain dataset to perform the 

study. The post-processing phase included four methods to improve the quality of the displacement 

time series: the removal of noise and regional trends (by subtracting a trend determined from 

displacement time series of stable scatterers), removal of anomalous values at individual dates 

(when one third of the stable scatterers showed large anomalous values at the same epoch), 

correction of unwrapping errors (by adding or removing half a wavelength to the displacement 

when there were jumps with magnitudes larger than one quarter of the wavelength) and noise 

reduction by averaging neighbour scatterers with similar behaviour. The trend analysis included 

the PS-Time and deviation indexes proposed by Berti et al. (2013) and Cigna et al. (2012), 

respectively. Besides, this study also proposed the evaluation of velocity time series, which 

consisted on determining velocity values for segmented intervals in the displacement time series 
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inside a moving window. These procedures were successful when applied to different datasets 

processed with different algorithms, showing its general applicability. 

 

Figure 10 – Behaviour classes considered at PS-Time technique (Berti et al., 2013). 

Bonì et al. (2016) applied Principal Component Analysis (PCA) on displacement time series 

(in vertical or east – west direction). Ground motion areas were defined by selecting scatterers 

with large scores in each principal component and PS-Time method was applied on them in order 

to identify the displacement model in each case. The ground motion areas were superimposed to 

geological, hydrogeological, optical images and other data in GIS software to help the data analysis 

and interpretation.  

Shirzaei et al. (2013) presented a wavelet decomposition of InSAR displacement time series 

for the flank of the Kilauea volcano. The method was also applied on GPS data, whose results 

were compared to those computed for SAR scatterers located inside a radius of 200 m. The results 

from both techniques agreed with each other, indicating that InSAR displacements were not 

affected by atmospheric effects. For validation, the spatial distribution of the wavelet coefficients 



34 

 

was compared to the output of a hierarchical cluster procedure and it was verified that there was 

agreement between the results. The authors found different behaviours bounded by faults that 

corresponded to aseismic deformation. 

Chang and Hanssen (2016) proposed a Multiple Hypothesis Testing (MHT) strategy to 

associate each scatterer to pre-defined behaviour models. In the first step, a hypothesis test was 

employed to verify if the scatterer displacement time series had linear trend (the null hypothesis). 

Whenever that hypothesis was rejected, alternative hypothesis corresponding to each pre-defined 

behaviour model were tested sequentially. The hypothesis test was adapted for each model, 

considering the different number of parameters to be estimated, and the model presenting the 

largest value of test statistic was selected. The parameters considered in the selected model (e.g., 

thermal expansion coefficient, discontinuity magnitude, among others) were then estimated 

together with their precision and their spatial distribution was evaluated. Van de Kerkhof et al. 

(2020) complemented this research by reducing the displacement time series dimensionality 

through applying a machine learning technique. Then, the clustering approach Density-Based 

Spatial Clustering of Applications with Noise (DBSCAN) was used to cluster the reduced 

information. Each cluster was represented by the average of the displacement time series of all 

scatterers belonging to it and the MHT proposed in Chang and Hanssen (2016) was applied only 

on those average time series. After the identification of the behaviour model of each cluster, the 

MHT method was applied to each scatterer of the cluster, but considering the selected model in 

the null hypothesis, for parameter estimation at each point. This procedure enabled the reduction 

of the computation time and also increased the quality of the estimated parameters. 

Costantini et al. (2018) presented a method for InSAR data analysis in space and time for SHM. 

They proposed a hierarchical clustering approach, which aggregated neighbour scatterers based 

on their spatial distance and on the difference between their displacement time series. Multiple 

regression models were applied to segments of the displacement time series, determining the 

values of several regression parameters: a constant, a linear trend and the amplitude and phase of 

periodic displacement. Anomalous behaviour was found for some buildings, which was later 

confirmed by visual identification of cracks on the walls. Zhu et al. (2018) complemented this 

research by proposing an automatic system to assess the stability of buildings. The results from 

cluster analysis and the regression model were evaluated together with the maximum observed 

settlement, differential settlement and angular distortion for each building, which allowed the 

detection of damaged structures.    
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Besides the data exploration, a user-friendly interface also facilitates the interpretation of 

InSAR results. Sousa et al. (2013) developed a MATLAB® tool for visualization and analysis of 

the data produced by StaMPS. 

Bakon et al. (2017) proposed a series of multivariate data mining techniques for outlier 

detection in order to include in the analysis scatterers with low coherence that still provide useful 

information. The method used a clustering method to aggregate the scatterers in three groups: 

group, islands and noise. PCA was applied on each cluster to detect outlier candidates that were 

then compared to their neighbours and had their coherence reevaluated to decide if they must be 

kept or rejected. 

Recently, machine learning techniques have also been used to retrieve information from InSAR 

data. Anantrasirichai et al. (2018) applied convolutional neural networks to classify wrapped 

interferograms, at a global scale, as presenting resting or unresting volcanoes. Their goal was to 

automatically detect unresting volcanoes on the large volume of data generated by Sentinel-1 

satellites. 

Tomás et al. (2019) proposed a semi-automatic method to classify groups of scatterers as 

landslides, sinkholes, subsidence or settlements. They defined Active Deformation Areas (ADA) 

through the analysis of neighbor scatterers, velocity thresholds and average cumulative 

displacements. Each ADA was then organized in cells and average horizontal (east – west) and 

vertical displacements were computed from ascending and descending data. Each ADA was then 

classified into one of four possible hazard classes, based on the horizontal displacements, 

geological class, slope, vector maps of urban areas and old hazard inventory maps. The method 

presented a good performance; however, the completeness of its applicability depended on the 

availability of the auxiliary data and it was subjective, as many thresholds needed to be user-

defined and a final verification of the results must be performed due to conflicting class attribution 

to the same ADA. 

Table 1 shows a summary of the studies previously described in the field of RADAR 

interpretation. An evolution in the presented strategies was found throughout the last decade. 

Different cluster analysis techniques have been used to identify scatterers with similar behaviour. 

The mapping of change detection indexes also enabled the evaluation of the spatial distribution of 

behaviour heterogeneities. The comparison of displacement time series with pre-defined models 

stored in libraries, such as PS-Time, has been applied by several authors, reflecting the 

acceptability of this method by the scientific community.  
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Table 1 – Comparison of different techniques for RADAR interpretation. 

Authors 
InSAR 

Technique 
Problem 

Data mining 

technique 
Summary 

Lanari et al. 

(2004) 
SBAS 

Aquifer 

recharge in 

urban area 

Regression 

models 

Built maps of amplitude and 

phase shift from sinusoidal 

functions fitted to the data. 

Lanari et al. 

(2010) 
SBAS Earthquake 

Exponential 

model 

Built maps of amplitude and 

decay constant for post-seismic 

data through fitting an 

exponential model through least 

squares adjustment. 

Milone and 

Scepi (2011) 
PSInSAR 

Tectonics and 

water extraction 

Cluster 

analysis 

CLARA algorithm was used to 

aggregate PS in clusters. 

Cigna et al. 

(2011) 
PSInSAR Tectonics 

Time series 

subdivision; 

classification 

Manual determination of indexes 

built from subsets of the 

displacement time series to 

evaluate velocity changes; 

classification of the PS into 

"unaffected" and "affected" 

classes. 

Cigna et al. 

(2012) 
PSInSAR 

Volcano / 

Tectonics 

Deviation 

indexes 

Semi-automatic deviation indexes 

to detect behaviour changes prior 

to the geological event and to 

identify sudden changes. 

Berti et al. 

(2013) 
PSI Landslides PS-Time 

A series of statistical tests were 

applied to classify the PS 

displacement time series into a 

set of pre-defined categories 

frequently found in landslide 

areas. 

Shirzaei et al. 

(2013) 

WabInSAR 

(wavelet 

based 

InSAR) 

Volcano flank Wavelet 

Performed wavelet 

decomposition of InSAR time 

series. Validated result with 

cluster analysis. 

Sousa et al. 

(2013) 
StaMPS Urban stability viStaMPS 

Development of software for 

InSAR results visualization and 

analysis. 

Notti et al. 

(2015) 
Several 

Landslides and 

subsidence 

Pre-

processing, 

post-

processing 

and trend 

analysis 

Compilation of several 

techniques: SDQI, improved time 

series, PS-Time, deviation 

indexes, velocity time series. 

Applicable in different situations. 
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Authors 
InSAR 

Technique 
Problem 

Data mining 

technique 
Summary 

Chang and 

Hanssen 

(2016) 

DePSI SHM 

Multiple 

hypothesis 

testing 

A set of statistical tests were 

sequentially used to evaluate the 

displacement time series of the 

scatterers in order to attribute a 

pre-defined model to it. After 

model selection, parameter values 

were estimated. 

Bonì et al. 

(2016) 
SqueeSAR 

Aquifer 

recharge in 

urban area 

PCA + PS-

Time 

Used PCA to define ground 

motion areas which were then 

classified using PS-Time and 

analysed with ancillary data in 

GIS. 

Bakon et al. 

(2017) 
PSInSAR Slopes 

Clustering + 

PCA 

Used several multivariate data 

mining techniques for outlier 

detection. 

Costantini et 

al. (2018) 
PSP SHM 

Cluster 

analysis and 

regression 

models 

Performed spatio-temporal 

analysis of scatterers located on 

buildings using cluster analysis 

and regression models to detect 

linear and periodic behaviours. 

Anantrasirichai 

et al. (2018) 
DInSAR Volcano 

Machine 

learning 

Applied Convolutional Neural 

Networks on interferograms to 

identify unresting volcanoes at a 

global scale. 

Zhu et al. 

(2018) 
PSP SHM 

Cluster 

analysis and 

regression 

models 

Same method from Costantini et 

al. (2018) complemented by 

maximum settling, differential 

settling and angular distortion for 

each building. 

Raspini et al. 

(2018) 
SqueeSAR 

Hydrogeological 

risk mitigation 

Deviation 

indexes 

Adapt deviation indexes from 

Cigna et al. (2012) to be applied 

on continuously updated 

displacement time series. 

Tomás et al. 

(2019) 
SqueeSAR 

Several 

geohazards 
Classification 

Defined ADAs and classified 

them based on auxiliary data. 
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Authors 
InSAR 

Technique 
Problem 

Data mining 

technique 
Summary 

van de 

Kerkhof et al. 

(2020) 

DePSI SHM 

Machine 

learning; 

cluster 

analysis; 

MHT 

Used machine learning to reduce 

data dimensionality and cluster 

analysis to aggregate scatterers 

with similar behaviour; MHT was 

applied only on cluster 

aggregated time series for model 

selection and it was then used for 

parameter estimation for all 

points. 

 

3.1.2 Clustering of time series 

Time series are sequences of a finite number of real-valued variables ordered along time at a 

regular sampling. The analysis of time series is used in different fields, such as engineering, 

science, finances, healthcare, economy, business, among others (Aghabozorgi et al., 2015; Abanda 

et al., 2019). However, the large dimension of data available, with a high number of observation 

epochs (data points) for each time series, make the extraction of information a big data problem. 

According to Esling and Agon (2012), there are seven data mining techniques frequently applied 

on time series: 

i) Query by content, which consists on the identification of the time series pertaining to a 

database that answer a certain query provided by the user; 

ii) Clustering, where the time series are aggregated into homogeneous groups through an 

unsupervised process; 

iii) Classification, a supervised process, in which labels are attributed to a training dataset of 

time series, possibly based on prior information on the data, and the remaining series are then 

associated to the label corresponding to the most similar series in the training data; 

iv) Segmentation, which is an approximation of the original time series with the reduction of 

the data dimension; 

v) Prediction, where the values of new data points are foreseen based on the values already in 

the time series; 

vi) Anomaly detection, which is the detection of subsequences of the time series with a 

behaviour considered as abnormal; 

vii) Motif discovery, where subsequences, called motifs, that are represented several times in 

a time series, are identified. 
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3.1.2.1. Clustering is the most used technique of data mining for time series (Fu, 2011) and, 

being an unsupervised technique, it is adequate to analyse large amounts of data without any prior 

knowledge on the observed phenomenon (Aghabozorgi et al., 2015), which makes it appropriate 

for the purpose of the present research. Therefore, this study used this technique and the following 

state-of-the-art is focused on it. Clustering methods are organized into three types: clustering of 

the complete time series as a whole, clustering of subsequences inside a single time series and 

clustering of consecutive data points with similar values (Aghabozorgi et al., 2015), but in this 

research only whole time series clustering was considered. Due to their dynamic nature, the 

clustering of time series requires some adaptation with respect to the traditional clustering 

operations. Either the clustering algorithms may be adapted to deal with the time series without 

transforming them, the time series may be transformed into lower dimension elements or the 

combination of both strategies (Aghabozorgi et al., 2015). The adaptation of clustering algorithms 

may comprise the adaptation of dissimilarity measures. On the other hand, the transformation of 

time series can be performed through representation techniques8, from which feature vectors or 

model parameters are retrieved. 

3.1.2.2. Aghabozorgi et al. (2015) refer six types of algorithms that have been applied to 

clustering time series (hierarchical, partitioning, model-based, density-based, grid-based and 

multi-step).  

Hierarchical algorithms can be agglomerative / divisive and consist in the sequential 

aggregation / separation of the most similar / most distinct clusters achieved in a previous step 

based on a dissimilarity measure. The procedure is repeated until all elements belong to a single 

cluster (in agglomerative method) or all elements are represented in individual clusters (in the 

divisive approach). The similarity measure is called linkage distance and can be evaluated in 

different ways. Single linkage uses the distance between the nearest elements in each cluster. 

Complete linkage is computed from the farthest elements. Average linkage relies on the average 

distance between all elements in the cluster. Centroid method utilizes the distance between the 

clusters’ centroids. Finally, Ward method minimises the distance between elements inside each 

cluster and maximizes it between clusters (Hair et al., 2009). The main advantage of these methods 

is that prior knowledge on the number of clusters to use is not required, as the dissimilarity 

measures between consecutive clusters aid in the analysis of each cluster homogeneity and on the 

decision of how many clusters must be built. On the other hand, the quality of the clustering may 

be compromised due to the fact that the clusters achieved at each step depend on those from the 

                                                 
8 Time series representation techniques enable the reduction of the time series dimensionality, improving the 

processing time and memory usage, but reducing the quality of the dissimilarity measurement. 
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previous one, not being readjusted, which may lead to clustering inaccuracies. Besides, these 

algorithms are computationally demanding, with quadratic complexity, which makes their 

application difficult for large datasets (Aghabozorgi et al., 2015).  

Partitioning algorithms lead to a set of clusters, whose number needs to be defined beforehand, 

and aggregates elements according to their similarity to a prototype. The aggregation is performed 

iteratively, with the prototype being redefined at each iteration. This procedure is repeated until 

changes stop occurring, which leads to high quality clusters. The definition of the prototype can 

be determined in different ways, for example, the average or the median of the elements in the 

cluster in the previous iteration, for the algorithms k-Means or k-Medoids, respectively. This class 

of clustering algorithms has a fast performance, however it requires a priori knowledge of the 

number of clusters, which is usually unknown.  

Model-based clustering assumes the elements belonging to a cluster follow a certain model. 

Centroids for each cluster are randomly selected, subjected to the addition of Gaussian noise, and 

then the closest elements to each centroid are attributed to the respective cluster. The method 

dependency on the initial assumptions may affect the quality of the clusters and it performs slowly 

for large amounts of data.  

Density-based methods rely on the elements density to form the clusters, in which the groups 

are formed at high element density regions separated by low density ones. These algorithms are 

quite complex, which limit its applicability to time series problems.  

Grid-based clustering organizes the elements space into cells, where the clustering is 

performed. According to Aghabozorgi et al. (2015), this method had never been applied to the 

clustering of time series.  

Finally, multi-step approaches combine several of the previous methods in order to take 

advantage from the positive points of each of them and to limit the influence of their drawbacks 

in the results. 

3.1.2.3. Time series clustering methods rely on dissimilarity measures between pairs of time 

series. When comparing time series, the human brain has the ability to do the comparison beyond 

differences in amplitude and time scales, noise or outliers. Dissimilarity measures do not intend to 

identify equal time series, but similar ones (Fu, 2011). Therefore, the developed techniques must 

perform the analysis in a way similar to that of the human brain. Dissimilarity measures can be 

based on shape, editions, features or structures (Esling and Agon, 2012). Shape-based methods use 

the comparison of the general shape of the time series. Edit-based ones, primarily developed for 

string comparison, rely on the number of changes required to transform a time series into another 

one. Feature-based approaches reduce the time series dimensionality by describing it through 
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features. Structure-based strategies can be divided into two categories: model-based, in which a 

model is fitted to the time series and the parameters of the model for each time series are used to 

do the comparison, and compression-based, where similar time series achieve higher compression 

ratios than non-similar ones. Examples of similarity / dissimilarity measures are correlation 

coefficients or distances. Distance measures may be lock-step, when the evaluation between series 

is performed for corresponding epochs, or they may be elastic, with the values from each epoch 

being compared with those from other epochs. 

Euclidean distance and Dynamic Time Warping (DTW) are the most used similarity measures 

in the clustering of time series, according to Aghabozorgi et al. (2015). Both evaluate 

dissimilarities based on shape. Euclidean distance between two time series is the sum of the 

Euclidean distances between data points from two time series observed at the same epoch. DTW 

is an elastic distance, originally developed for speech recognition, and firstly applied to the 

identification of patterns in time series by Berndt and Clifford (1994). The rationale behind this 

technique is the comparison of the time series with a template, not necessarily with the same 

length, in which the time axis is deformed in order to minimise the distance between the two series 

(Figure 11a). A distance measure between data points from the two time series is selected, 𝛿, such 

as the absolute value of the difference of the values or its square. DTW between time series S and 

template T is the minimum cumulative distance of all possible cumulative distances along the 

paths W that connect the k pairs of data points, as in Equation (5).     

DTW(S, T) = min
W

[∑ δ(wk)
p
k=1 ]                                                   (5) 

The cumulative distance 𝛾 for a certain pair of data points (𝑖, 𝑗) is the distance between those 

data points added to the minimum of the cumulative distance achieved at the neighbour elements 

(Equation 6) in Figure 11b.  

γ(i, j) = δ(i, j) + min[γ(i − 1, j), γ(i − 1, j − 1), γ(i, j − 1)]                          (6) 

The calculation of all possible paths is computationally demanding and the patterns to match 

usually occur at similar epochs. The computational performance of DTW can be improved through 

the imposition of constraints (Figure 12), which may be windows, where a strip around the 

diagonal is defined for limiting the search area, or slopes, controlling the dimension of each step 

(Sakoe and Chiba, 1978; Berndt and Clifford, 1994). 
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(a) 

 

(b) 

Figure 11 – Alignment between the time series S and the template T (a); density matrix with the 

cumulative distances for each pair of data points and selection of the minimum cumulative distance path 

(blue line) in (b). 

 

(a) 

 

(b) 

Figure 12 – Constraints on DTW search area based on band (a) and on slope (b). 

Longest Common Subsequence (LCSS) is used as an edit-based distance and it corresponds to 

the similarity between two time series defined by the maximum number of similar elements 

between them, without changing the elements’ order (Bergroth et al., 2000). The distance between 

two time series is the minimum cost required to transform a time series X into another time series 

Y, where individual costs are attributed to the operations of removing, adding or replacing 

elements in X. The distance Dist(X,Y) is defined by Equation (7): 

Dist(X, Y) = n + m − 2 ∙ r(X, Y)                                             (7) 

where “n” is the length of time series Y, “m” is the length of time series X and “r(X, Y)” is the 

length of the LCSS between X and Y. The major problems of this approach reported in the 

literature are the processing time and the large memory usage (Bergroth et al., 2000).  

In feature-based distances, the original elements of time series are replaced by feature vectors 

that characterize those time series, e.g. frequencies contained in the data and obtained through 

Discrete Fourier Transform (DFT) or Discrete Wavelet Transform (DWT). Traditional clustering 
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methods can be applied directly to the feature values, whose reduced dimension improves 

computational performance. This procedure is adequate to compare periodic time series; however, 

it is not suitable to analyse cause-effect relationships (Esling and Agon, 2012). 

Structure-based distances are divided into model and compression methods. Model-based 

distances benefit from a priori knowledge on the analysed phenomenon. The distance is 

determined through the likelihood of a certain time series being generated by a model. Hidden 

Markov Models (HMM) have been used to build similarity matrices that can be utilized to cluster 

time series. For example, Panuccio et al. (2002) evaluated the probability Lij of time series Sj being 

created by model λi (trained for time series Li) and used it to build a similarity matrix (Equation 

8). 

Lij = P(Sj| λi),     1 ≤ i, j ≤ N                                                 (8) 

Kalpakis et al. (2001) proposed AutoRegressive (AR) models in the definition of a model-based 

distance measure between time series. Stationary time series can be described by AR models 

according to Equation 9 (Xiong and Yeung, 2004), 

xt = ϕ0 + ∑ ϕjxt−j + et
p
j=1                                                     (9) 

where “xt” is the value in the time series at epoch “t”, “ϕ0” is a constant value, “ϕj” are the model 

parameters, “xt−j” are the values in the time series for epochs before “t”, “et” is white noise and “p” 

is the order of the model. The Linear Predictive Coding (LPC) cepstral coefficients, which consist 

on the computation of the cepstrum9 of the autoregression parameters “ϕj”, are then used to describe 

the time series and the distance used in the clustering was performed using the Euclidean distance 

between the cepstra as dissimilarity measure. The advantages of utilizing the cepstra instead of other 

methods were the reduction of the number of parameters to use in the computation, higher 

discriminatory capability and the possibility of dealing with time series with different characteristics 

(length, differences in amplitude and in time axis). The main limitation was that the application of 

this method was only feasible to time series that can be described by autoregressive models. 

Silva et al. (2013) proposed Recurrence Patterns Compression Distance (RPCD) as a 

compression similarity measure. This method combined the representation of time series as 

distance images and the application of image compression techniques, originally used for video 

compression, that was used as distance measure between the time series (Figure 13).  

                                                 
9 Cepstrum is the inverse Fourier transform of the logarithm of the amplitude achieved by applying a Fourier 

transform at a time series (Kalpakis et al., 2001). 
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Figure 13 – Clustering of time series based on RPCD similarity measure, adapted from Silva et al. (2013). 

Shape, edit and feature-based dissimilarity measures are appropriate to evaluate the distance 

between short time series, but their performance is lower for long time series. Structure-based 

measures are suitable to both short and long time series.  

3.1.2.4. Every clustering process requires the evaluation of the cluster quality, which can be 

performed by visualisation or through a scalar measure of accuracy. The visual analysis of the 

clustering performance by a human operator may be considered as ground truth. As for the scalar 

measures of accuracy, they can be divided into two types: external or internal indexes. The first 

type requires the existence of ground truth data to which compare the clustering results. One 

example of external index is purity, which evaluates the ratio between the number of elements 

correctly attributed to a cluster and the cluster size. Normalized Mutual Information is a 

normalized version of purity, which can be used to compare clustering solutions with different 

number of clusters. Internal indexes evaluate the dissimilarity of the elements inside each cluster, 

without using ground truth data. They must not be used to compare clustering solutions achieved 

through different methods or distinct dissimilarity measures. The most frequently used internal 

index is the Sum of Squared Error (SSE), with lower values corresponding to more homogeneous 

clusters (Aghabozorgi et al., 2015).  

Figure 14 shows a representation of the steps to perform the clustering of time series, the options 

available for each step and examples of dissimilarity measures (in grey).  
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Figure 14 – Summary of strategies to cluster time series. 

3.2 Methods 

The aim of the presented research, in the field of RADAR interpretation, was the development 

of an automatic tool for the post-analysis of InSAR displacement time series, in order to identify 

eventual displacement anomalies, which may reflect the presence of damages in structures.   

The InSAR technique considered in the study was the PSI method implemented in SARPROZ© 

software (Perissin et al., 2011), which follows the PSInSAR algorithm described in section 2.1.  

The RADAR interpretation method developed in this study was intended to be objective and 

independent of a priori information. Therefore, clustering was selected for the analysis, for being 

an unsupervised technique, and hierarchical clustering was chosen due to its independence of 

previous knowledge on the number of clusters. Several experiments executed in Ding et al. (2008) 

showed that DTW has a similar or better accuracy than other dissimilarity measures. To benefit 

from its accuracy, DTW was the distance measure used for displacement time series dissimilarity 

evaluation. Two versions of the tool were developed in R software (R Core Team, 2018). One 

considers only one SAR acquisition geometry, enabling an analysis of displacements along LOS 

(version 1D of the tool), while the other (version 2D) combines data from ascending and 

descending passes, allowing the determination of two displacement components: vertical and 

horizontal (along a direction of interest indicated by the user).  
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3.2.1. The first step of the analysis is the estimation and removal of the reference point effect. 

The PS selected as reference may not be completely stable during the entire time interval of the 

study, affecting the displacements of the remaining PSs which are referred to it. On the other hand, 

residual atmospheric effects may still be present in the data and require the adoption of mitigation 

measures. In this research, the method proposed in Notti et al. (2015) is adapted. PSs with temporal 

coherence above a certain threshold and considered stable are identified and their displacement 

time series are averaged, by computing the average displacement from all time series for each 

epoch. The resulting time series is the correction used to mitigate the mentioned errors and it is 

subtracted from the time series of all PSs in the study area.  

Notti et al. (2015) consider PSs with average velocity with absolute value equal or lower than 

0.5 mm/year as stable. However, in this research, a non-linear displacement model is considered 

at PSI processing (sections 3.3.1.2 and 3.3.2.2) and average velocity is not estimated. Instead, 

cumulative displacements during the time interval of the analysis are available for each PS.  

Two methods for the identification of stable PSs were tested. The first test considered as stable 

PSs presenting absolute value of cumulative displacement equal or lower to 0.5 ∙ ∆t mm, where 

∆t was the time interval considered in the study, in years. The second approach fitted a linear 

model to the displacement time series of each PS and selected those with absolute value of slope 

equal or lower than 0.5 mm/year. Figure 15 shows the correction time series achieved from 

averaging the displacement time series of the selected PSs for each situation. It is evident that 

different PSs were selected in each case, as the time series obtained for the first approach 

(cumulative displacement) presented a trend that was not represented in the second approach 

(slope of linear model). In case the result achieved from the first approach was used to perform the 

correction, the removal of this trend would affect the time series of all PSs, including those where 

the trend was not originally present. Therefore, the second approach was selected. 

This step is performed at both 1D and 2D versions of the tool. In version 1D, it is applied to the 

single geometry available to the analysis. On version 2D, it is applied to the LOS displacements 

of each geometry independently of each other. 
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      Figure 15 – Examples of correction time series (full lines) built from stable PSs selected based on 

cumulative displacement (a) and velocity (b) criteria; crosses are average displacement plus and minus 

one standard deviation for each epoch. 

3.2.2. The second step of the algorithm is the merging of displacements from ascending and 

descending geometries and it is performed only at the 2D version of the tool. In order to obtain 

vertical and horizontal displacements for each PS, it is required that displacements from both LOS 

geometries are known for all PSs and at the same epochs. Thus, interpolations in both space and 

time are needed.  For the interpolation in space, Inverse Distance Weighted (IDW) is the selected 

method, in which the inverse of a power of the distance between the sample points and the 

interpolation point is used as a weight. In Equation (10), from Bartier and Keller (1996), zx,y is the 

interpolated value of variable z at the point with coordinates (x,y), zi is the value of z at sample 

point i, dx,y,i is the distance between sample point i and interpolation point on coordinates (x,y) and 

β is the power of the distance. In this research, the value 2 is used for this parameter. 

zx,y =
∑ (zi∙dx,y,i

−β
)n

i=1

∑ d
x,y,i
−βn

i=1

                                                      (10) 

The interpolation in time is performed through linear interpolation.  

Let us consider one of the acquisition geometries as the reference geometry and the other one 

as the auxiliary geometry. LOS displacements from the auxiliary geometry are spatially 

interpolated to the PSs from the reference one and LOS displacements from the reference geometry 

are interpolated to the PSs of the auxiliary one, using IDW. Then, for each PS, displacements from 

the auxiliary geometry are linearly interpolated to the dates of the reference one. Thus, LOS 

displacements from the reference and the auxiliary geometries become known for all PSs at the 

epochs of the reference geometry observations. Vertical and horizontal displacements are 

determined for all PSs from both acquisition geometries, for the epochs at which displacements 

from both directions are known. The equations to compute vertical and horizontal displacements 
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were derived from Dentz et al. (2006), where displacement along LOS (dLOS) is defined in function 

of displacements in vertical (dV), easting (dE) and northing (dN) directions, as in Equation (11). 

dLOS = dV ∙ cos θ − sin θ ∙ [dN ∙ cos (αh −
3π

2
) + dE ∙ sin (αh −

3π

2
)]                 (11) 

In the Equation, θ is the incidence angle and αh is the satellite heading. The satellite heading is 

given by Equations (12) and (13) for ascending (αh
ASC) and descending (αh

DESC) geometries, 

respectively. 

αh
ASC = β                                                                  (12) 

αh
DESC = π − β                                                              (13) 

The angle β is the angle between the projection of the LOS onto the horizontal plane and the east 

– west direction, which is given by Equation (14): 

β = asin (
cosα

cosφ
)                                                           (14) 

where α is the inclination of the satellite orbit and φ is the latitude. Let dH be the displacement 

along the direction of interest on the horizontal plane (e.g., the direction perpendicular to a dam’s 

crest or the direction along a slope) and γ be the azimuth of the direction perpendicular to that 

direction of interest. From Dentz et al. (2006), if it is assumed that all horizontal displacement 

occurs in the direction perpendicular to that defined by γ, Equation (15) takes place: 

[
dE

dN
] = [

cos γ

sin(−γ)] ∙ dH                                                    (15) 

Combining Equations (11), (12), (13) and (15) for both ascending and descending geometries, 

Equations (16) and (17) are obtained, where dLOS
ASC is the LOS displacement from the ascending 

geometry, dLOS
DESC is the LOS displacement from the descending geometry, θASC is the incidence 

angle from the ascending geometry and θDESC is the incidence angle from the descending 

geometry. 

dLOS
ASC = dV ∙ cos θASC − dH ∙ sin θASC ∙ cos(β − γ)                              (16) 

          dLOS
DESC = dV ∙ cos θDESC + dH ∙ sin θDESC ∙ cos(β + γ)                           (17) 

Solving the system formed by Equations (16) and (17), Equations (18) and (19) for dV and dH are 

achieved. 

dV =
dLOS

DESC∙sinθASC∙cos(β−γ)+dLOS
ASC∙sinθDESC∙cos(β+γ)

cosθASC∙sinθDESC∙cos(β+γ)+cosθDESC∙sinθASC∙cos(β−γ)
                                 (18) 

dH =
dLOS

DESC∙cosθASC−dLOS
ASC∙cosθDESC

cosθASC∙sinθDESC∙cos(β+γ)+cosθDESC∙sinθASC∙cos(β−γ)
                                 (19) 

3.2.3. The third step of the algorithm is the construction of the dissimilarity matrix to be used 

in the cluster analysis. As previously mentioned, a hierarchical clustering is applied, using DTW 

as dissimilarity measure. Therefore, DTW is computed between the time series of all pairs of PSs 
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and a distance matrix is built from those values. Pre-processing operations, such as representation 

(section 3.1.1) or normalisation are not performed, as these techniques may introduce changes in 

the time series structure, which can affect the success of their comparison (Esling and Agon, 2012; 

Aghabozorgi et al., 2015).  

Romano and Scepi (2006) stated that DTW is not an appropriate dissimilarity measure for PSI-

derived displacement time series, due to the noise the series present. In this research, a visual 

inspection of the clustering results performed on the original displacement time series has shown 

indeed that neighbour PSs (e.g., PSs on the same roof) with similar displacement time series could 

be set to different clusters, while PSs with distinct behaviours and geographically far from each 

other could be aggregated into the same cluster. Therefore, a moving average, with a window size 

of three, is applied at the time series for noise reduction purposes, which enables the inclusion of 

these PSs in the correct clusters. The filtered time series are used exclusively for the DTW 

computation. All the following steps of the algorithm are applied on the non-filtered time series, 

to preserve the original data and to keep the measurement precision.  

Loads affect displacements of neighbour PSs at close epochs and it is intended that PSs showing 

similar displacements at distant epochs are included in different clusters. Therefore, a constraint 

in the search area of DTW is applied, in order to avoid the association of displacement values 

observed at far epochs. A Sakoe Chiba band of size 2 is applied to limit the search area into a small 

neighbourhood of the original epoch. The usage of a constraint has the additional benefit of 

reducing the number of comparisons, which results in the decreasing of the computation time.  

Nevertheless, due to the large number of PSs and observation epochs usually obtained through 

PSI technique, the computation time and memory usage are still limitations for this procedure. In 

order to reduce even more the computation time, the code for the construction of the dissimilarity 

matrix is parallelized. To deal with large datasets, the developed code is adapted to be run in 

Jupyter10.  

The implementation of this step differs for the 1D and 2D versions of the tool. In the 1D version, 

DTW is applied to the univariate LOS displacement time series. In the 2D version, the user may 

choose from three options: univariate vertical displacement time series, univariate horizontal 

displacement time series or multivariate displacement time series with both vertical and horizontal 

displacements being evaluated simultaneously. 

3.2.4. The forth step is the selection of the number of clusters and the consequent clustering of 

the time series. The hierarchical agglomerative clustering method is applied based on the 

                                                 
10 Project Jupyter is a non-profit organization for the development of open-source software, standards and services 

(Project Jupyter, 2020). 



50 

 

dissimilarity matrix built from DTW and all PSs are iteratively aggegagted until they form a single 

cluster. Three aggregation criteria are available at the tool: single linkage, complete linkage and 

Ward method (section 3.1.2). The distances required to merge two clusters at each step of the 

iterative procedure are the linkage distances and they provided information on each cluster 

homogeneity. Small linkage distances mean that the time series in each cluster are similar among 

them, while large linkage distances correspond to the fusion of heterogeneous clusters. 

The linkage distances enable the automatic selection of the number of clusters , which 

correspond to the number of clusters achieved before the largest step in linkage distance 

occurs. However, there is not an optimal criterion for the selection of the number of clusters 

for all situations and the user must evaluate the results achieved by using the proposed number 

and verifying if the obtained solution is satisfactory for the problem under analysis. The tool 

creates two types of outputs: a displacement time series representative of each cluster and 

cluster centroids.  

The representative time series results from the average of the displacement time series from all 

PSs in each cluster. A Seasonal-Trend decomposition procedure based on Loess (STL) is applied 

to the representative time series to achieve seasonal and trend displacement components 

(Cleveland et al., 1990). Centroids are average values of certain variables for all PSs in each 

cluster, which may be computed during PSI processing (e.g., residual height or cumulative 

displacement) or provided by the user as raster images. The usage of these raster images is optional 

and they can provide any type of information the user found may be useful to the cluster 

interpretation (e.g. slope inclination or distance to a river). All results computed by the tool are 

exported into Comma-Separated Values (csv) or into Portable Document Format (pdf) files. The 

csv files can be imported into a GIS software for a spatial visualization of the results. If the user is 

satisfied with the level of detail provided by the automatic solution, the procedure is finished. 

However, if the user wishes to change the aggregation level, it is possible to increase or to decrease 

the number of clusters to a manually selected number and to achieve a new organization of the 

data. The reclustering operation is performed based on the previous dissimilarity matrix, without 

recomputing the DTW, and it can be repeated until the user is satisfied with the results. This last 

step is performed equally for both 1D and 2D versions of the tool. The workflow of the whole 

procedure is presented in Figure 16.        
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Figure 16 – Proposed workflow for the time series clustering.  

3.3 Application to case studies 

The method proposed in section 3.2 for RADAR interpretation of PSI displacement time series 

was tested for two case studies. The 1D version of the tool was used to analyse displacements on 

the slopes around a water reservoir during its first impoundment, while the 2D version monitored 

a heritage urban area with 260 years old buildings located on alluvial soil.  
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3.3.1 Odelouca slopes 

3.3.1.1 Description of study area 

The first case study were the slopes around Odelouca dam, in Monchique municipality, Faro 

district, Portugal, owned by Águas do Algarve, SA (Figure 17). Odelouca is the second largest 

embankment dam in the country. The structure height above the foundation is 76 m and the crest 

is 418 m long. The reservoir spans an area of 7.8 km2, storing 128 hm3 of water at its full capacity 

and it is an important source of water supply and irrigation in its region (Águas do Algarve, 2020).  

 

Figure 17 – Location of Odelouca dam and its reservoir. The inset on the left shows the dam and the one 

on the right highlights the dam location in Portugal (red star); background is a Sentinel-2 image from 

February 2020. Coordinate grid in WGS84. 

The predominant geological formations around Odelouca reservoir are Mira and Brejeira 

formations, both from the Carboniferous period, Paleozoic era (Figure 18). The northeastern 

region is occupied by Mira formation, with shales and greywacks as main lithologies (Pereira et 

al., 2008). Southwest of Mira formation, there is Brejeira formation, formed by greywacks and 

quartz wacks  interbedded with shales (Fernandes et al., 2012). At the border with Mira formation, 

Brejeira formation contains a band of quartz wackes and quartzites. Most of the reservoir is 

surrounded by steep slopes, with 79% of the hillsides presenting slope inclination larger than 14º 

and 61% between 19º and 33º. These properties turn the slopes around the reservoir susceptible to 

land and rockslide occurrence, especially downstream of Ribeira of Benafátima junction with the 
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reservoir. The most susceptible areas are those subjected to changes in the soil saturation, mainly 

areas that are emerged or submerged, depending on the time of the year (Nemus - Gestão e 

Requalificação Ambiental, 2007).    

 

Figure 18 – Geological map at 1:100000 from the National Laboratory for Energy and Geology (1992); 

black line is the reservoir boundary in February 2020 manually delimited from a Sentinel-2 image. 

Coordinate grid in WGS84. 

The first impoundment of a reservoir is a critical phase for slope stability, as the shear strength 

of flooded slopes decrease, the rise in water hydrostatic pressure reduces sliding resistance and the 

stored water presses groundwater contributing to slope saturation; thus, increasing landslide 

susceptibility (Fujita, 1977; Hui, 2015). In this study, the analysis of displacements during the first 

impoundment of Odelouca reservoir was performed, in order to verify if there were measurable 

changes on the emerged slopes caused by the water accumulation. The first impoundment began 

in December 2009 and water extraction started in May 2012 (Águas do Algarve, 2020). 

3.3.1.2 PSI processing 

The slopes around Odelouca reservoir were covered with vegetation, which led to the selection 

of L-band SAR images from the sensor PALSAR-1 on board of ALOS-1 Japanese satellite to be 

selected for the study. This sensor was active between 2006 and 2011, covering part of the first 

impoundment period. The dataset selected for the analysis was from the high-resolution mode, 

with a swath width of 70 km, with single and dual polarization. The spatial resolution for single 

polarization images was of 10 m x 10 m, while for dual polarization it was of 20 m x 20 m. These 

later images were oversampled to match the resolution of those with single polarization. Only HH 
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polarization data were used for the analysis. The images were from an ascending pass of the 

satellite, acquired around 11 pm UTC, from path 10 and frame 730. The Japanese space agency 

provided the images in level 1.1 (SLC) and with an orbit accuracy below 1 m (Nakamura et al., 

2007; JAXA, 2008). Despite the nominal acquisition frequency of 46 days, there were many gaps 

in the image time series, resulting in only 20 images acquired for the required geometry during the 

whole period of the sensor activity (Figure 19).  

 

Figure 19 – Distribution of normal and temporal baselines. 

The PSI processing was performed in SARPROZ© software. From the stack of SAR images, 

one of them was selected as master image, which minimised the set of temporal and normal 

baselines (the image from August 1, 2010). The remaining images were corresgistered into the 

master’s geometry, based on initial approximations using orbital data and refined through cross-

correlation. The image dataset was geocoded with respect to a DEM, through the manual selection 

of a Ground Control Point (GCP), allowing the removal of flat Earth and altitude phase 

components. The utilized DEM was the European Digital Elevation Model (EU-DEM), freely 

provided through Copernicus Land Monitoring Service, with spatial resolution of 25 m and vertical 

accuracy of 7 m (Copernicus Programme, 2020). APS was estimated at pixels presenting large 

values of amplitude stability index (1 −
𝜇𝐴

𝜎𝐴
), where 𝜎𝐴 was the amplitude standard deviation and 

𝜇𝐴 was its average. The APS was interpolated for all pixels and it was also removed from phase. 

A larger set of pixels was selected for displacement and residual height estimation. As this research 

was dedicated to structure monitoring, where non-linear displacements are often found (e.g., 

seasonal effects or ageing), a non-linear displacement model was considered, instead of the usual 
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PSI method with linear displacements as presented in Equation 4. The non-linear displacement 

model resulted from the application of a moving average on the unwrapped residual heights 

(Milillo, Perissin, et al., 2016). Only points with temporal coherence above 0.9 were considered 

as PSs. Each PS provided a residual height, a cumulative displacement and a displacement time 

series, with an observation at each SAR image acquisition epoch.  

This procedure was performed for an area of 18 km x 18 km. However, the subsequent analysis 

was executed only for a buffer varying between 750 m and 1000 m around the reservoir, in order 

to limit the evaluation to the slopes in the reservoir area of influence. 

3.3.1.3 Cluster analysis 

The displacement time series along LOS direction for the achieved PSs were analysed through 

the clustering method proposed in section 3.2. After data input, the reference point effect was 

determined and removed from all time series. The reference point was located 3 km away from 

the reservoir and it was one of the most stable PSs in the 18 km x 18 km area analysed at the PSI 

processing. Remaining movement of that point and residual atmospheric artifacts were estimated 

through the average of displacement time series of PSs considered stable (section 3.2) and 

subtracted from the displacements of all other scatterers (Figure 20). The correction time series 

showed that the reference point may have moved away from the sensor between 2006 and 2009 

and may have moved towards it from that year on, causing the reverse behaviour on the other 

studied PSs. However, that effect may have been caused by residual atmospheric effects, as well. 

 

Figure 20 – Correction time series for the reference point effect (line); the crosses represent the average 

time series plus and minus one standard deviation. 

The corrected displacement time series were then clustered following three different 

aggregation methods (Ward method, complete linkage and single linkage), with the respective 
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dendrograms (tree chart of the linkage distances showing how the PSs were aggregated with each 

other) presented in Figure 21. 

 

(a) 

 

(b) 

 

(c) 

Figure 21 – Dendrograms for Ward method (a), complete linkage (b) and single linkage (c). 

The three aggregation methods led to distinct solutions. Ward method built two large clusters, 

each of them divided into two other clusters: a small one, with few PSs, and a large one, containing 

the remaining points. Complete linkage formed a progressively growing cluster, where smaller 

sets of PSs were aggregated into the main cluster until they formed a single group. A similar pattern 

was found for single linkage, where the dimension of the clusters being aggregated in each iteration 

was even smaller than on complete linkage, often being constituted by single PSs. The three 

strategies automatically suggested a number of clusters to be used in the analysis. Ward method 

proposed four clusters, complete linkage led to three and single linkage to two. Solutions with 

manually selected number of clusters were also analysed and will be presented in section 3.4.1. 

Two additional data were included in raster files to aid the cluster interpretation: slope 

inclination and curvature. The two information sources were built in GIS software through the 

EU-DEM. Slope inclination was provided in degrees and attributed to each raster pixel the 

largest inclination among that pixel and its adjacent neighbours. Curvature was determined 

through the second derivative of the surface, based on a 3 x 3 pixel neighbourhood. This 

procedure was executed in ArcGIS® software, which attributed negative curvature values to 

convex surfaces and positive values to concave ones. 

The mentioned strategy enabled the achievement of displacement time series representative 

of each cluster and cluster centroids, which can be used in the identification of eventual 
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anomalies on the slope behaviour. Parameters used in clustering processing are presented in 

Annex A.1 Table 17. 

3.3.2 Lisbon Downtown 

3.3.2.1 Description of study area 

The city of Lisbon, in Portugal, is located at the right bank of Tagus River, 15 km east of the 

river mouth at the Atlantic Ocean. The municipality spans an area of 100 km2. There are 0.5 million 

people living in the city, but 2.8 million inhabit its metropolitan area, with a large number of daily 

commutations to and from the city. The Downtown area is an important government, business and 

touristic centre. It is located close to the river and natural disasters have affected it in the past. In 

1775, an Mw 8.7 earthquake with epicentre southwest of Portugal and the subsequent tsunami 

caused severe damage at the area, requiring its reconstruction. A new urban organization and 

building type emerged in order to mitigate the effects of future disasters. The streets became larger 

than before, perpendicular to each other and oriented towards the river (Figure 22). The buildings, 

called Pombalinos, have wooden structures to increase their flexibility and resistance to 

earthquakes. Since 1956, LNEC’s AGU performs high-precision geometric levelling along the 

west wing building of Praça do Comércio (large square close to the river at Figure 22). They found 

a progressive settlement towards the river, which reached more than 15 cm by 2017 at the 

benchmark closest to the water line (LNEC, 2017a).  

 

Figure 22 – Orthophoto of Lisbon Downtown, provided by the General Directorate of the Territory 

through the Geographic Information National System (GINS). Coordinate grid in WGS84. 
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The Downtown is located at the junction point of two old streams, which are now piped, and it 

was reconstructed over alluvial soil (Quaternary period) formed by the sediments transported by 

those streams and debris from the buildings destroyed during the earthquake. The area is flanked 

by geological formations from Miocene epoch (Neogene period), with main lithologies being sand, 

limestone and clay. To the west and north of the alluvial soil is the formation “Areolas de Avenida 

da Estefânia”, with fine and clayey sand, claystone and some bio-calcarenite stone. Smaller areas 

formed by “Calcários de Entrecampos” (bio-calcarenite stone) and “Argilas de Prazeres” (clay and 

marl) are also present in the area west of the alluvial soil. To the east of the alluvial soil, there is 

“Areias com placuna miocénica”, formed by sand, pebbles, sandy clay and other elements, which 

is surrounded by “Calcários de Casal Vistoso” (limestone rich in organic matter), “Areias de 

Quinta do Bacalhau” (deposited sand), “Argilas de Prazeres” and “Calcários de Entrecampos” 

(Figure 23).  

 

Figure 23 – Manual digitalization of the geological formations at the Downtown area, from the geological 

map by the National Laboratory for Energy and Geology, at 1:50000 scale. Coordinate grid in WGS84. 

3.3.2.2 PSI processing 

The PSI analysis considered part of Lisbon metropolitan area, including the whole Lisbon 

municipality and parts of the neighbour municipalities of Loures, Odivelas, Amadora, Sintra and 

Oeiras, spanning an area of 16 km x 16 km. The goal was to achieve a displacement map for this 

area, where smaller regions were then analysed using the method proposed for RADAR 

interpretation of displacement time series. 
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This study used SAR images from the C-SAR system on board of Sentinel-1 from ESA. These 

are images acquired in microwave C-band, with a centre frequency of 5.405 GHz, corresponding 

to a wavelength of, approximately, 55 mm. The scenes are in Interferometric Wide Swath (IW) 

imaging mode and are acquired using TOPSAR, in which a strip of 250 km is imaged, divided into 

three subswaths, through successive bursts resulting from the steering of the antenna in both 

elevation and azimuth directions (ESA, 2020). The image nominal spatial resolution is of 20 m in 

azimuth and of 5 m in slant range. The time interval for the study spaned three years, from March 

2015 to February 2018. In order to assure a regular acquisition frequency in time (and due to 

computational constraints), only scenes from Sentinel-1A were considered. The temporal 

resolution was 12 days. The orbits had accuracies of 2 cm to 3 cm at radial and cross-track 

directions and of 5 cm at along-track direction (Sandwell et al., 2016). Two datasets were 

considered (Figure 24). The first one was from the ascending pass of the satellite with the relative 

orbit 45, subswath 2. Eighty-nine scenes composed the dataset, with only three gaps in the 

acquisition time series. The second dataset was from the descending pass with relative orbit 125, 

subswath 1, which contained 86 images, from 92 that were expected during the three years of the 

study. The images were in SLC format.  

 

(a) 

 

(b) 

   Figure 24 – Distribution of normal and temporal baselines for (a) ascending and (b) descending passes 

for the city of Lisbon. 

Altitude data was from the EU-DEM, with a spatial resolution of 25 m and vertical accuracy 

of 7 m.  

PSI processing was performed, independently, for each dataset using SARPROZ© software. 

The images from July 17, 2016 and August 16, 2016 were the master images for the ascending 

and descending datasets, respectively. Slave images from each dataset were coregistered with 
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respect to their corresponding master and a GCP, manually selected, ensured the alignment 

between the SAR images and the DEM. Flat earth and topographic components of phase were 

removed through orbits and the DEM. APS was estimated for selected points with stable 

amplitude, interpolated and removed from all pixels. For residual height and movement estimation 

for each point, the non-linear displacement model was used, similar to Odelouca case study, as the 

monitored structures (mainly buildings) were expected to have non-linear responses to certain 

loads (e.g. temperature). Residual height, a displacement time series and cumulative displacement 

during the study time interval were determined for each scatterer. Scatterers with temporal 

coherence above 0.9 were considered as PSs.  

Displacements and residual heights were determined with respect to reference points, which 

differed for each dataset. The reference points were distanced 2 km from each other, but they were 

both located at areas considered stable.       

3.3.2.3 Identification of PSs on structures 

In urban areas, there are many objects which keep their reflective behaviour stable to SAR 

signal, thus being potential PSs. Besides structures, other elements such as lampposts or 

advertising signs can also originate PSs. As this study focussed on the use of SAR interferometry 

for structure monitoring, the identification of the PSs located on the objects of interest was 

required. For that, an orthophotograph was classified, following an Object-Based Image Analysis 

(OBIA) approach, in which structures were separated from streets, squares and vegetated areas, 

where the unwanted elements were most likely located. 

This step was performed only for Lisbon Downtown, at an area of 1 km x 1 km. The 

orthophotograph had a spatial resolution of 50 cm and it was provided by the Portuguese General 

Directorate of the Territory. The optical data were from 2004 – 2006, around 10 years older than 

the SAR data. Despite some changes between the acquisition dates of optical and SAR images, 

especially close to the river where the subway line expansion was on going at the acquisition time 

of the optical data, the core of the Downtown did not suffer many changes between the two epochs. 

Thus, the area of the subway construction works was excluded from the analysis and the 

orthophotograph was used as a source for structure location. Orfeo ToolBox11 was used to perform 

the OBIA approach. The Large Scale Mean Shift algorithm segmented the image into variable 

dimension objects, which became the unit for analysis, instead of individual pixels. The level of 

required smoothing in each object, the accepted distance between spectral signatures of different 

                                                 
11 https://www.orfeo-toolbox.org/ 
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pixels and the minimum acceptable size for an object were criteria used to perform the 

segmentation. A vector layer with the object delimitation was achieved, for which radiometric and 

shape indices to be used in classification were defined. For each object, the mean and variance of 

the radiometric levels in the red, green and blue bands were computed during the segmentation 

procedure. Additional radiometric indices, computed in QGIS12, were included, such as brightness 

and the proportion of red, green and blue in each object (ratio between the digital number of a 

band and the sum of the digital numbers from the three bands). Shape parametres were the object 

area, perimeter and their ratio. The segmentation result and a map of proportion of red for each 

object are presented in Figure 25.    

 

(a) 

 

(b) 

Figure 25 – Segmentation result (a) and map of proportion of red (b). 

The image was classified using a supervised approach. Six classes composed the classification 

nomenclature: four types of structures – red roofs with small area, red roofs with large area, dark 

roofs and bright roofs – squares and roads. The variables used for the classification for each object 

were their red and blue average digital numbers, the variance of their red digital numbers, indexes 

of red, green and blue proportions, brightness (the average of the three bands), object area, 

perimeter and the ratio between area and perimeter. Training and validation samples were 

manually selected and a classification model was defined from the training dataset (Figure 26). 

Orfeo Toolbox performed a classification of the validation dataset using the model. From the 

comparison of the result with the classes manually attributed, it provided a confusion matrix. Table 

2 presents the confusion matrix, after aggregating the six classes into structures and non-structures. 

From the 844 objects in the validation dataset, 817 were correctly classified, resulting in a global 

accuracy13 of 97%. The producer’s accuracy14 for the structure class was of 99.5%, while it was only 

                                                 
12 https://qgis.org/en/site/ 
13 Percentage of correctly classified objects at all classes. 
14 Probability of an object from a certain class to be correctly classified (Zanotta et al., 2019). 
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36.1% for non-structures. The user’s accuracy15 for the structure class was 97.2% and it was 76.5% 

for the non-structures. Cohen’s Kappa index evaluated the overall classification accuracy 

considering also the proportion of the objects being correctly classified by chance (Cohen, 1960) 

and in this case its value was 0.97. As both global accuracy and Cohen’s Kappa were values close 

to 1, the classification model was considered acceptable and it was used to classify the whole 

segmented image. The classification algorithm was the k-Nearest Neighbour (k-NN) (Zouhal and 

Denoeux, 1998), which is a supervised machine learning algorithm that compares the feature vector 

(vector containing the values of the variables selected for the classification) of each object to classify 

to the feature vectores of the objects in the training dataset. The algorithm considers the k training 

objects with the closest feature vectors to that of the object to classify as neighbours. The object to 

classify was attributed the most common class among its neighbours. In this case, it used 32 

neighbours. The classification map passed an edition phase to improve the quality (Figure 27).  

 

Figure 26 – Training and validation datasets for the supervised classification. Coordinate grid in WGS84. 

Table 2 – Confusion matrix for the supervised classification. 

  Classification 
  Structure Non-structure 

G
ro

u
n
d
 

tr
u
th

 Structure 804 4 

Non-

structure 
23 13 

                                                 
15 Probability of objects classified in a certain class to actually belong to it (Zanotta et al., 2019). 
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Figure 27 – Classification map after manual editing. Coordinate grid in WGS84. 

PSs located on structure or on non-structure elements were distinguished through their 

superposition with objects of the corresponding classes. As residual height provides relative 

heights between PSs, this variable was inspected for both classes, in order to verify if it could 

provide a way to separate them from each other, without the need to perform the OBIA 

classification. Figure 28 presents the histograms of residual heights for the two classes of PSs, for 

ascending and descending geometries together. Both structure and non-structure PSs occupied the 

same residual height classes, not being possible to identify a threshold to separate them. This may 

happen because non-structure PSs were not only located on the ground, they might also be on high 

objects, such as lampposts. There were some differences between the classes, though. First, there 

were more PSs located on structures than on non-structures. Second, there was a shift on the 

variable histogram modes: while the mode for PSs located on structures was 5 m below the 

reference height surface, the mode for PSs located on non-structures was 13 m below that surface. 

Third, while the histogram for non-structure PSs showed a symmetry, the histogram for structure 

PSs was asymmetric, presenting a tail to the right.      
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Figure 28 – Histograms of residual height, in metres, for PSs on structures and PSs on non-structures. 

3.3.2.4 Cluster analysis 

Cluster analysis was performed on the PSs associated to structures in the previous section, 

analysing the ascending and descending datasets together. The PSs to be included were selected 

by their temporal coherence (larger or equal to 0.9) and by the coordinates of a rectangular area 

containing the ROI. The reference point effect was determined and removed from the displacement 

time series of each acquisition geometry. Figure 29 shows the average displacement time series of 

the PSs considered stable and the corresponding standard deviation for both passes. The 

displacement time series for all PSs considered stable in each pass are presented in Annex A.1 

Figure 134. Each geometry presented a distinct behaviour, with oscillations reaching a maximum 

range of 4 mm at both passes, which might result from displacement at the reference points or 

residual atmospheric effects.  

 

(a) 

 

(b) 

    Figure 29 – Displacement time series corresponding to the reference point effect for (a) the ascending 

pass and (b) for the descending pass (solid line) plus and minus one standard deviation (crosses).  
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Displacements from ascending and descending passes were merged into vertical and horizontal 

displacements. As there was no previous knowledge regarding dominant directions for horizontal 

displacements at the ROI, the east – west direction was selected, since it is the direction at the 

horizontal plane along which LOS is more sensitive (Chapter 5). Displacement time series of both 

vertical and east – west directions were considered simultaneously for the cluster analysis. 

Complete linkage was used as aggregation method. The proposed algorithm identified an 

automatic solution for the problem of defining the number of clusters, which corresponded to the 

number of clusters, n, with the maximum relative linkage distance with respect to the previous 

solution with number of clusters n+1. In this case, the automatic solution led to the creation of 

three clusters, but the analysis of the dendrogram (Figure 30a) revealed that the largest cluster still 

presented PSs with heterogeneous behaviours, as large steps in linkage distance separated clusters 

aggregated in previous steps. Therefore, the 10-cluster solution was manually selected, as it 

corresponded to a local maximum in relative linkage distances (Figure 30b). The new achieved 

clusters were formed by PSs with homogeneous behaviour, as there were not large steps in linkage 

distance between clusters visible in the dendrogram. Thus, this solution was accepted. 

 

 

 

(a) 

 

(b) 

Figure 30 – Dendrogram for PS aggregation, where the blue horizontal line corresponds to the automatic 

solution and the green line is the manually selected solution (a); chart of the relative linkage distances as a 

function of the number of clusters, with the blue circle being the automatic solution and the green circle 

being the manually selected one (b).  

In order to aid the cluster interpretation, additional information was included through raster 

images and centroids of those variables were computed for each cluster. Five variables were 

considered for this analysis. Slope and curvature were used to assess the susceptibility to landslide 

occurrence on the hillsides that flank the Downtown. These images were built from the EU-DEM 

in a GIS software. The three remaining rasters were images of distance to elements that may have 

some influence on structure displacements: geological faults, subway lines and the Tagus river. 
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The distance images were created at a GIS software, with the same spatial resolution of the DEM, 

by attributing each pixel the Euclidean distance between that pixel and the considered elements. 

The above procedure enabled the construction of displacement time series representative of 

each cluster and cluster centroids for variables achieved through the PSI processing and for the 

additional ones. Parameters used in clustering processing are presented in Annex A.1 Table 18. 

3.4 Results 

3.4.1 Odelouca slopes 

3.4.1.1. This section presents the results achieved through PSI processing and cluster analysis 

(1D version) for the slopes around Odelouca reservoir during its first impoundment. A total of 

7949 PSs were achieved inside the ROI (Figure 31). Positive displacement values correspond to 

displacements along LOS towards the sensor and negative values are LOS displacements away 

from it. The figure shows some PSs apparently located on the water, but that is due to the different 

acquisition dates of the data: SAR images are from 2006 to 2011, before the conclusion of the 

reservoir first impoundment, and the optical image is from 2020.  

 

Figure 31 – Cumulative displacement for PSs on Odelouca slopes. Optical image is from Sentinel-2, 

acquired in February 2020. Coordinate grid in WGS84. 

The cumulative displacement during the time interval of the analysis (approximately 4.5 years) 

varied between 228.8 mm away from the sensor and 221.9 mm towards it. However, 97.5% of the 

PSs presented cumulative displacement between 78.5 mm away from the sensor and 71.7 mm 
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towards it. Some PSs with cumulative displacement at centimetre-level and close to the water 

reservoir were identified, which might be a sign of slope instability. Thus, their displacement time 

series must be inspected in order to verify how those scatterers behaved during the study time 

interval: whether their movement has changed after the beginning of the first impoundment and if 

they were still moving by the end of the study time interval. 

3.4.1.2. The identification of spatio-temporal patterns in the data was executed through the 

cluster analysis, where the performances of the three cluster aggregation methods were evaluated. 

The Ward method led to the construction of four clusters, which were spread throughout the ROI. 

Cluster 1 was predominant at the southwest of the ROI, closer to the dam, and cluster 2 was more 

concentrated at the northeast, i.e., farther from it. Clusters 3 and 4 were equally spread throughout 

the ROI (Figure 32).  

 

Figure 32 – Automatic cluster solution achieved through Ward method for Odelouca slopes. Coordinate 

grid in WGS84. 

Figure 33 presents the displacement time series representative of each cluster obtained from the 

Ward method and Table 3 shows the corresponding centroids. Cluster 1 was the second most 

frequent cluster in the ROI and, in average, it moved away from the sensor. Its behaviour was 

almost stable until 2009, when it started moving away from the sensor a few months before the 

beginning of the first impoundment. Between February 2009 and July 2010, cluster 1 moved away 

from the sensor 18 mm, when it became stable until the end of the study time interval. Movement 

away from the sensor is compatible to subsidence, which has been reported in literature to affect 

the neighbourhood of water reservoirs (Saleh et al., 2018). The displacements at Odelouca started 

in March 2009, when the construction of the dam body was finished (Rodrigues, 2013), and may 
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be due to the interaction between accumulated water and the riverbed. The hypothesis of the 

displacement being caused by the water influence is reinforced by the stronger presence of this 

cluster at the region closer to the dam, where the water started accumulating.  

 

Figure 33 – Displacement time series representative of the clusters achieved for Odelouca slopes through 

the Ward method; crosses are the average displacement time series plus and minus one standard 

deviation. 

Cluster 2 was the most frequent cluster in the ROI, containing more than 60% of the PSs. This 

cluster also presented displacement away from the sensor; however, its duration and magnitude 

were shorter than at cluster 1. Cluster 2 moved away from the sensor 11 mm, in average,  between 

July 2009 and April 2010, when the ground recovered its original position, resulting in a 

cumulative displacement centroid close to zero (Table 3). Similar to cluster 1, that behaviour may 

be related to subsidence caused by the water weight. However, perhaps due to the larger average 

distance to the water storage place, that influence was smaller for cluster 2 than for cluster 1, 

allowing the ground recovery.  

Clusters 3 and 4 together contained 1.2% of PSs at the ROI. Both clusters presented average 

cumulative displacement at the decimetre-level, in opposing directions, with cluster 3 moving 

away from the sensor and cluster 4 moving towards it. The large observed displacements and the 
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large difference between the residual height centroids for these two clusters and for clusters 1 and 

2 (Table 3) suggested the results from both clusters might be affected by unwrapping errors. This 

issue will be further addressed in section 3.5.  

Table 3 – Percentage of PSs in each cluster and centroids achieved through the Ward method for 

Odelouca slopes. 

Cluster 
Percentage 

of PSs (%) 

LOS 

cumulative 

displacement 

(mm) 

Altitude 

(m) 

Residual 

height (m) 

Slope 

inclination 

(º) 

Curvature 

(m-1) 

1 37.4 -22.7 128 -4 10.7 0.037 

2 61.4 0.3 126 -5 10.2 0.003 

3 0.6 -188.5 137 8 11.1 0.033 

4 0.6 171.8 111 -15 10.7 -0.009 

 

Regarding the centroids of the remaining variables (Table 3), clusters 1 and 2 were located at 

close average altitudes. Cluster 3 presented the largest average altitude, while cluster 4 had the 

lowest, but this might be a consequence of unwrapping errors.  

According to Rosi et al. (2018), landslides tend to occur for slope inclinations between 10º and 

15º and at slightly concave surfaces. In average, all clusters presented slope inclinations above 10º 

and the boxplots of slope inclination for each cluster (Annex A.1 Figure 135) show that 

approximately 50% of the PSs in each group were located on surfaces with slope inclinations 

above that threshold. Clusters 1, 2 and 3 presented positive average curvatures, i.e., they were 

mainly located on concave surfaces; while cluster 4, with negative average curvature, was mostly 

at convex surfaces. Nevertheless, the boxplots of curvature showed that also around 50% of the 

PSs in each cluster had positive curvature (Annex A.1 Figure 136). There were 1906 PSs (24% of 

all points) which fulfilled both criteria, i.e., they were placed at locations with slope inclinations 

above 10º and positive curvature, meaning that they were located at areas more susceptible to 

landslide occurrence than the remaining PSs (Figure 34). Most of these PSs belonged to cluster 2 

(57.1%) and to cluster 1 (41.7%), while clusters 3 and 4 contained 0.6% of these points each. 

Displacement time series representative of clusters 1 and 2 did not present signs of slope instability 

after July 2010. Thus, although these clusters contained many PSs on surfaces with geometric 

properties that turn them prone to landslide occurrence, the displacement time series did not show 

signs of ground instability by the end of the time interval considered for the analysis. As 

displacement time series of PSs from clusters 3 and 4 might be affected by unwrapping errors, the 

results for these clusters were inconclusive.      
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Figure 34 – Identification of PSs with different degrees of susceptibility to landslide occurrence for 

Odelouca slopes. Coordinate grid in WGS84. 

Complete linkage led to a solution formed by three clusters: a large cluster with almost all PSs 

(98.2%) and two small clusters (Figure 35 and Table 4). There was similarity between the clusters 

achieved through the Ward method and complete linkage. Cluster 1 from complete linkage 

contained, approximately, the PSs organized into clusters 1 and 2 by the Ward method. This group 

moved 12.5 mm away from the sensor, in average, beginning in March 2009 until the end of the 

time interval of the study (Figure 36).  

 

Figure 35 – Automatic cluster solution achieved through complete linkage for Odelouca slopes. 

Coordinate grid in WGS84. 
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Table 4 – Percentage of PSs in each cluster and centroids achieved through complete linkage for 

Odelouca slopes. 

Cluster 
Percentage 

of PSs (%) 

LOS 

cumulative 

displacement 

(mm) 

Altitude 

(m) 

Residual 

height (m) 
Slope (º) 

Curvature 

(m-1) 

1 98.2 -8.1 127 -5 10.4 0.016 

2 1.0 -150.6 138 4 10.2 0.048 

3 0.7 162.2 111 -14 10.8 -0.041 

 

 

Figure 36 – Displacement time series representative of the clusters achieved through complete linkage for 

Odelouca slopes; crosses are the average displacement time series plus and minus one standard deviation. 

There was also a resemblance between cluster 3 from Ward solution and cluster 2 from 

complete linkage and between cluster 4 from Ward method and cluster 3 from complete linkage. 

Given the similarity of the displacement time series representative of each cluster and the extreme 

residual height centroids, clusters 2 and 3 from complete linkage solution might also be formed by 

PSs affected by unwrapping errors, isolating these points from the remaining ones. The main 
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difference between the clusters from the Ward and from the complete linkage solutions was that 

clusters 2 and 3 from the complete linkage contained more PSs than the corresponding clusters in 

Ward method. Thus, complete linkage was more sensitive to the presence of unwrapping errors 

than the Ward method. The centroids for altitude, slope inclination and curvature were also similar 

to those of the corresponding clusters from Ward method.  

The automatic solution of single linkage built two clusters, one of them containing 99.97% of 

the points and the other one formed by only two PSs (Figure 37 and Table 5). Cluster 1 presented 

a similar behaviour to clusters 1 and 2 from Ward method and to cluster 1 from complete linkage, 

moving away from the sensor 12.6 mm, beginning in March 2009 (Figure 38). Its average residual 

height was similar to those from the corresponding clusters in the previous clustering solutions, 

average slope was above 10º and curvature was positive.  

 

Figure 37 – Automatic cluster solution achieved through single linkage for Odelouca slopes. Coordinate 

grid in WGS84. 

Table 5 – Percentage of PSs in each cluster and centroids achieved through single linkage for Odelouca slopes. 

Cluster 
Percentage 

of PSs (%) 

LOS 

cumulative 

displacement 

(mm) 

Altitude 

(m) 

Residual 

height (m) 
Slope (º) 

Curvature 

(m-1) 

1 99.97 -8.4 127 -5 10.4 0.016 

2 0.03 218.0 70 -20 2.8 -0.058 

 

The two PSs in cluster 2 were isolated and distant from each other (Figure 37). The cluster 

average altitude was lower than that of cluster 1 and the PSs were located on a convex and almost 
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flat surface; thus, with small susceptibility to landslide occurrence. The two PSs in cluster 2 

presented large cumulative displacements towards the sensor during the time interval of the study. 

The behaviour of this cluster was similar to those of cluster 4 from Ward method and cluster 3 

from complete linkage. Therefore, the displacements of these two PSs might be affected by 

unwrapping errors. From the analysis of the other clustering solutions, it was known that there 

were more PSs affected by unwrapping errors. However, single linkage was not able to isolate 

them and they were included in cluster 1, revealing low sensitivity of this aggregation method to 

detect this type of errors, at least for clustering solutions with a small number of clusters.  

 

Figure 38 – Displacement time series representative of the clusters achieved through single linkage; 

crosses are the average displacement time series plus and minus one standard deviation. 

All clusters from all solutions presented increasing displacement standard deviation with time 

(Figure 33, 36 and 38), except cluster 2 from single linkage, which was formed only by two points 

with similar behaviour. The increase in standard deviation with time reflected a larger detachment 

among the PSs’ displacements as time passed. 

3.4.1.3. From the above results achieved through the different aggregation methods, it was 

verified that the automatic solutions were capable of isolating PSs with time series affected by 

unwrapping errors, although the degree of that detection varied with the aggregation method. On 

the other hand, only Ward method was able to detect two distinct behaviour patterns at the slopes, 



74 

 

while complete and single linkages included all the non-erroneous PSs in a single cluster. In order 

to identify eventual slope instability signs, it was necessary to increase the detail of the analysis 

by further dividing those major clusters into smaller ones. 

As complete linkage was the method with larger sensitivity to the detection of displacement 

time series affected by unwrapping errors, this aggregation method was selected to deepen the 

analysis. The chart of relative linkage distances was inspected and a new number of clusters was 

manually selected, corresponding to a local maximum (Figure 39). Seven clusters were considered 

for the slope stability analysis.    

 

Figure 39 – Chart of relative linkage distance as a function of the number of clusters for the Odelouca reservoir 

slopes; blue dot corresponds to the automatic solution and the green dot is the manually selected one. 

The seven clusters were spread throughout the ROI (Figure 40). The displacement time series 

representative of each cluster showed that this solution identified three clusters with PSs possibly 

affected by unwrapping errors: cluster 2 with points moving away from the sensor and clusters 6 

and 7 with PSs moving towards the sensor (Figure 41). The behaviour of these clusters was similar 

to those from previous solutions, with the cluster of anomalous PSs moving towards the sensor 

being divided in two. The main difference between clusters 6 and 7 was that cluster 6 presented 

smaller magnitude displacements. For this clustering solution, the cluster centroids for residual 

heights were also evaluated and it was observed that clusters 2, 6 and 7 presented residual height 

centroids distinct from the remaining clusters (Table 6 and Annex A.1 Figure 137). Residual height 

is the correction of the PS altitude with respect to the DEM used in PSI processing. As the seven 

clusters were spread uniformly throughout the ROI, it would be expectable that the centroid for 

residual height would be similar for all clusters, which was verified for clusters 1, 3, 4 and 5. The 

extreme values presented by clusters 2, 6 and 7 reinforced the hypothesis that the PSs in these 

clusters might be affected by unwrapping errors. The errors may have led to an incorrect 

determination of the residual heights, and, consequently, of the PSs’ altitudes. This may be the 
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reason why, for all clustering solutions, the clusters with PSs possibly affected by unwrapping 

errors presented extreme values of altitude centroids.   

 

Figure 40 – Cluster solution achieved through manual selection of number of clusters for complete 

linkage at Odelouca slopes. Coordinate grid in WGS84. 

The evaluation of slope stability was performed for clusters 1, 3, 4 and 5. Cluster 1 was the 

most frequent cluster in the ROI, with more than 80% of the PSs. This cluster presented low 

displacement magnitudes during the time interval of the study. Movement away from the sensor 

was observed starting in March 2009, which reached its maximum in April 2010 (7.3 mm) and 

after that became stable until the end of the study time interval. Similar to the clusters analysed 

at the previous solutions, the observed displacements might be due to subsidence caused by the 

water weight.  

According to Colesanti et al. (2003), dispersion of a single displacement measurement at a PS 

(σ̂displacement) can be estimated through Equation (20): 

σ̂displacement =
λ

4π
√−2ln|γ̂|                                              (20) 

where λ is the SAR signal wavelength and |γ̂| is the estimated absolute value of temporal 

coherence. For a PS achieved through PALSAR-1 images, with a wavelength of 229 mm, and 

coherence of 0.90, which was the minimum accepted for this study, displacement dispersion is of 

8.4 mm. Therefore, it was not reasonable to consider that displacements with the observed 

magnitude were actual movement. On the other hand, the displacement time series representative 

of each cluster resulted from the average displacement time series of all PSs forming the cluster; 
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thus, there might be points with magnitude displacements above the displacement dispersion and 

the analysis must be performed carefully. 

 

Figure 41 – Displacement time series representative of the clusters achieved through complete linkage 

with manual selection of the number of clusters for Odelouca slopes; crosses are the average displacement 

time series plus and minus one standard deviation. 

Table 6 – Percentage of PSs in each cluster and centroids achieved through complete linkage for manual 

solution at Odelouca slopes. 

Cluster 
Percentage 

of PSs (%) 

LOS 

cumulative 

displacement 

(mm) 

Altitude 

(m) 

Residual 

height (m) 
Slope (º) 

Curvature 

(m-1) 

1 82.7 -7.4 127 -5 10.4 0.013 

2 0.6 -187.5 139 8 11.1 0.031 

3 8.5 -39.7 131 -4 10.8 0.053 

4 7.1 22.1 125 -6 9.0 0.010 

5 0.4 -97.3 137 -3 8.9 0.073 

6 0.5 151.0 111 -14 10.9 -0.101 

7 0.2 184.7 111 -14 10.7 0.080 
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Cluster 3 was spread throughout the ROI and, in average, it moved around 4 cm away from the 

sensor during the time interval of the study. Part of the movement, with magnitude of 2 cm, 

occurred between December 2006 and August 2007. At that time, it stabilized until March 2009, 

when it began to move away from the sensor once again, reaching 26.7 mm by the end of the time 

interval of the study. As only the possible effects of the reservoir first impoundment on the slopes 

were being evaluated in this research, the causes for the first period of movement were not 

analysed. The movement in the second period was probably caused by the water weight, similarly 

to what was discussed for the other clustering solutions.  

Cluster 4 was the only cluster presenting average displacement towards the sensor during the 

time interval of the study. This behaviour might be explained by groud uplift due to water 

infiltration or it might correspond to horizontal displacement from east to west. Using images from 

a single acquisition geometry, it was not possible to identify the displacement direction. Between 

July 2009 and April 2010, the cluster moved away from the sensor, similar to the other groups, 

possibly due to the water weight. In May 2010, cluster 4 recovered from the displacement away 

from the sensor and kept a stable behaviour until the end of the study. The cluster contained 7.1% 

of the PSs and it was not uniformly distributed along the ROI, as it had a larger number of points 

concentrated at the region farther away from the dam and from the stored water (Figure 42). That 

might be the reason why the movement away from the sensor occurred later than in other clusters, 

similar to cluster 2 from Ward method, as the larger distance to the stored water might have led 

most PSs in the cluster to be affected later.    

 

Figure 42 – Location of clusters 4 and 5 achieved through the solution with manually selected number of 

clusters using complete linkage for Odelouca slopes. Coordinate grid in WGS84. 
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Cluster 5 contained 0.4% of the PSs, equally spread throughout the ROI (Figure 42). The cluster 

moved almost 10 cm away from the sensor, presenting distinct displacement rates along time. 

After a first phase of displacement away from the sensor finished by March 2008, the cluster 

remained stable and one year later, possibly under the influence of the reservoir water, it started 

moving away from the sensor again until July 2010. Around that time, it stabilized until the end 

of the time interval of the study. The first period of movement was not further analysed, as it 

occurred much earlier than the first impoundment. The second period was possibly related to the 

effect of the water weight.   

Figure 43 presents the displacement time series representative of clusters 1, 3, 4 and 5 compared 

to the water level at the reservoir. Water level data were only available after December 200916, 

when the first impoundment began; thus, it was not possible to verify whether the displacements 

observed in March that year were related to changes in the water level or not. There was an increase 

in the water level of almost 12 m during December 2010, but there were not large changes on the 

clusters’ behaviour around that time. The dataset contained only two images acquired after the rise 

in the water level. The slopes may have taken some time to respond to the water load and the 

displacements induced by the water weight occurred later, when there were no images available. 

From the existing data, only movement away from the sensor with magnitude below 3 mm was 

detected after the rise in the water level, which was lower than the displacement dispersion of 8.4 

mm for each individual PS.  

In summary, several PSs were identified on the slopes around Odelouca reservoir, which were 

located at areas prone to landslide occurrence (slope inclination above 10º and concave surfaces). 

Displacement time series representative of each cluster, which were not affected by unwrapping 

errors, displayed movement away from the sensor during some months. For clusters closer to the 

dam, that behaviour was observed to begin in March 2009 (when the construction of the dam body 

was finished). For clusters with PSs concentrated far from the dam, that behaviour began later, in 

July 2009. All clusters’ behaviour stabilized around July 2010, when the water level did not present 

large variations for some months. The observed movement away from the sensor might have 

reflected the occurrence of subsidence, perhaps due to the stored water weight. A rise of almost 

12 m in the water level did not cause significative changes on the clusters behaviour during the 

study time interval. It was possible the slopes needed some time to respond to the load and that its 

effect had occurred only after the considered time interval, when there were no SAR images 

available.  

                                                 
16 Data retrieved from the Hydric Resources National Information System (https://snirh.apambiente.pt/) 

https://snirh.apambiente.pt/
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Figure 43 – Comparison of displacement time series representative of clusters 1, 3, 4 and 5 with the water 

level at the reservoir. 

3.4.2 Lisbon Downtown 

3.4.2.1. Tens of thousands of PSs were detected at the 16 km x 16 km ROI considered for the 

PSI processing at part of Lisbon metropolitan area. The analysis of the dataset from the ascending 

pass detected 87731 PSs, while the descending one led to 90968 points, resulting at a PS density 

around 350 PS/km2 for each dataset. The cumulative displacement maps are shown in Annex A.1 

Figure 138 and Figure 139. Most of the ROI presented cumulative displacements with magnitude 

below 10 mm during the three years of the analysis, for both acquisition geometries, with some 

localized areas presenting displacement away or towards the sensor.  

The focus of this study was the analysis of displacements on PSs located on structures at the 

Downtown. After combining ascending and descending data, 974 PSs were achieved at the ROI, 

with vertical and east – west displacements determined every 12 days. Figure 44 and 45 display 

the cumulative vertical and horizontal displacement at the Downtown, respectively. For vertical 

displacements, positive values corresponded to uplift, while negative ones were associated to 

settlements. For horizontal displacements, positive values were displacement towards east and 

negative ones were movement towards west. At the ROI, vertical displacement varied between an 

uplift of 28.9 mm to a settlement of 35.6 mm, while east-west displacement ranged from 46.9 mm 

towards east to 24.5 mm towards west.   



80 

 

  

Figure 44 – Cumulative vertical displacement between March 2015 and February 2018 at Lisbon Downtown. 

Coordinate grid in WGS84. 

 

Figure 45 – Cumulative horizontal displacement between March 2015 and February 2018 at Lisbon Downtown. 

Coordinate grid in WGS84. 

3.4.2.2. The PSs were aggregated based on both vertical and east – west displacement time 

series, resulting in the identification of 10 clusters of distinct behaviour (Figure 46). Cluster 1 

contained 71.0% of the PSs at the ROI (Table 7), being spread throughout the whole region being 

analysed. Cluster 3 held the second largest cluster at the ROI, with 25.7 % of the PSs, and it was 
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also represented at the entire study area. The remaining clusters were formed by small numbers of 

PSs, varying from 0.1% to 0.9% of the total number of points. 

 

Figure 46 – PSs aggregated into the 10-cluster solution for Lisbon Downtown. Coordinate grid in 

WGS84. 

Table 7 presents the centroids of the considered variables for all the clusters. Clusters 1 and 3 

had cumulative vertical displacements, in average, close to zero; therefore, PSI did not detect signs 

of vertical movement for most of the ROI. Clusters 4, 6, 7 and 8 settled from a minimum of 9.2 

mm to a maximum of 35.6 mm during the three years of the study. However, clusters 2, 5, 9 and 

10 presented uplift ranging values between 6.9 mm and 28.9 mm. 

Regarding the cumulative horizontal displacements, in average, only cluster 3 presented a 

cumulative east – west displacement close to zero during the three years of the analysis. Clusters 

1, 2, 5 and 7 moved towards west, with cluster 1 showing the lowest magnitude displacement (2.8 

mm). Clusters 2, 7 and 5 presented increasing displacement towards west, with the last cluster 

reaching more than 20 mm. On the other hand, clusters 4, 6, 8, 9 and 10 moved towards east, all 

of them presenting cumulative displacements above 10 mm.  
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Table 7 – Relative number of PSs in each cluster and centroids for the 10-cluster solution, considering variables achieved through the PSI processing and from 

the additional raster files for Lisbon Downtown. 

 

Cluster 

Relative 

number of PSs 

(%) 

Vertical 

displacement 

(mm) 

East – west 

displacement 

(mm) 

Slope (º) Curvature (m-1) 

Distance 

to faults 

(m) 

Distance 

to subway 

(m) 

Distance 

to river 

(m) 

1 71.0 0.2 -2.8 6.0 -0.04 674 132 588 

2 0.9 6.9 -7.5 6.4 -0.14 630 73 382 

3 25.7 1.2 0.7 6.4 -0.02 810 104 737 

4 0.2 -21.9 31.6 10.0 0.81 723 30 469 

5 0.3 14.2 -21.2 6.5 1.05 772 47 635 

6 0.6 -9.2 10.5 5.2 -0.63 687 157 656 

7 0.7 -10.2 -16.0 8.4 0.29 685 127 565 

8 0.1 -35.6 46.9 12.8 2.12 768 40 885 

9 0.3 12.1 10.8 8.6 0.25 601 92 526 

10 0.1 28.9 31.1 7.0 0.18 684 20 337 
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Although the Downtown is a flat area, the hillsides at its flank reach inclinations of 26º at some 

locations of the ROI. The centroids for slope inclination and curvature were evaluated to verify if 

any of the identified clusters was located at landslide prone areas, according to the criteria in Rosi 

et al. (2018). The centroid for slope inclination showed that only clusters 4 and 8 presented an 

average value above the threshold of 10º. Furthermore, those clusters were also located on concave 

surfaces. The structures with PSs belonging to these two clusters were those more prone to be 

affected by eventual slope movement.  

The analysis of the centroids for the three distance variables revealed that all clusters were 

closer to the subway line than to faults or the river, in average (Annex A.1 Figure 140). Clusters 

2, 4, 5, 8, 9, and 10 had average distance to the subway line lower than 100 m. Comparing the 

locations of the PSs in these clusters with respect to the subway line, it was clear that all clusters 

had PSs on buildings flanking the underground structure (Figure 47). Cluster 5 and 8 had PSs near 

the subway green line, between Martim Moniz and Rossio stations. This is one of the oldest 

segments of the line, built in the 1960s (Metropolitano de Lisboa E.P.E, 2018). Other clusters were 

located along the blue line, between Restauradores and Terreiro do Paço stations. The segment 

between Restauradores and Baixa/Chiado started to be operated in 1998 and it was expanded to 

Terreiro do Paço, being concluded in 2007. An accident occurred during this last expansion, in 

2000, when there was the flooding of a tunnel during the construction works (Ribeiro, 2000). 

Nevertheless, the construction of these segments of the subway line were concluded several years 

before the time interval of the analysis (2015 – 2018); thus, it was not likely that there was some 

relationship between the observed displacements and the construction works. A study performed 

by LNEC’s Building Department analysed vibrations at a building over the subway line and close 

to the building with a PS in cluster 10 and concluded subway vibrations were not affecting the 

structure (LNEC, 2020). Therefore, it was not likely that the displacement anomalies at these 

clusters were caused by vibrations due to the trains’ passages. On the other hand, these clusters 

were mostly located on the hillsides that flank the Downtown, on steep slopes and concave surfaces 

(Table 7); thus, susceptible to ground movement (Rosi et al., 2018), which might be the cause for 

the observed displacements at the buildings.   
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Figure 47 – Position of the PSs belonging to the clusters with centroid for distance to subway lower than 

100 m and the location of the subway line. Coordinate grid in WGS84.  

3.4.2.3. The displacement time series representative of each cluster provided information 

regarding the cluster behaviour along the time interval of the analysis. Cluster 1 represented the 

most frequent behaviour at the ROI, located at both the Downtown and at the flanking hillsides. 

This cluster was the one with the lowest cumulative vertical displacement and the time series 

representative of its vertical behaviour was the closest to zero among the ten clusters, presenting 

oscillations of a few millimetres around this value (Figure 48). Regarding the east – west 

displacement, this cluster moved some millimetres towards west until January 2016, when it 

slightly recovered and stabilized around 2 mm to the west of the original position. Standard 

deviation of displacements inside the cluster were similar for all dates, for both vertical and 

horizontal time series, as represented by the symbol ‘+’ in Figure 48.    

According to Sun (1997), the changes in estuary water level caused by tides influence the 

ground vertical behaviour at land, due to variations of water infiltration – tidal loading. As cluster 

1 vertical displacement time series seemed unaffected by any trends and it covered most of the 

ROI, its representative vertical displacement time series was inspected in order to verify the 

presence of tidal effects on the structure behaviour. Tidal heights were available from the Lisbon 

tide gauge, located 1 km away from the ROI (Antunes, 2007). Hourly observations were 
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considered for the analysis during the three years of the study. In order to compare the frequencies 

present at both the tidal heights and the vertical displacement time series representative of cluster 

1, spectral densities were determined for each time series (Figure 49). Tidal height frequencies 

were analysed only for the frequency range common with the displacements (below 15 year-1). For 

the considered frequencies, tidal heights time series presented a single peak at frequency 0.974 

year-1. The largest peak for the vertical displacements time serie spectral density occurred at 

frequency 1 year-1. Smaller peaks were visible for frequencies 2 year-1 and 3 year-1. Thus, both 

time series presented peaks of spectral density for frequencies around 1 year-1. This suggested that 

there might be some tidal influence on the structure behaviour. Nevertheless, there are other 

variables capable of influencing structure behaviour that also present an annual period, such as 

temperature, whose possible influence was evaluated. 

 

Figure 48 – Vertical and horizontal displacement time series representative of cluster 1 (black line) for 

Lisbon Downtown; crosses are displacement plus and minus one standard deviation. 

The tidal height data were band-pass filtered to isolate the frequency component corresponding 

to 0.974 year-1. A band width of 0.01 year-1 was considered. The  filter was applied at TSOFT 

software, developed at the Royal Observatory of Belgium (Van Camp and Vauterin, 2005). 

Monthly temperature data at Lisbon airport were also collected from Meteored (2020).  

  The vertical displacement time series representative of cluster 1 was compared to the filtered 

tidal heights and to the temperature data (Figure 50). It was verified that the maximum tidal height 

(at the considered frequency) occurred in October / November and the minimum was in April / 

May, after the extreme uplift and settlement occurrence. Therefore, tidal heights might not be the 

cause for the observed seasonal displacements. On the other hand, maximum temperature was 

observed in July / August and the minimum in January / February, slightly before the displacement 

extreme values. Thus, it was more likely that the observed vertical displacements were structures’ 
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responses to the changes of air temperature than to tidal heights. The delay of displacements with 

respect to temperature might be due to the time the structures take to adapt to the new temperature 

conditions (thermal inertia) and to temperature differences between the airport and the Downtown 

(approximately 6.5 km away from each other).  

 

Figure 49 – Spectral density charts for tidal height and vertical displacement time series representative of 

cluster 1. 

The decomposition of the vertical displacement time series representative of cluster 1 was 

performed, following the method STL as in Cleveland et al. (1990). The time series was 

decomposed into seasonal, trend and remainder components (Figure 51). Iterative detrending and 

smoothing operations enabled the separation of the three components. The remainder was tested 

for normality through a Shapiro-Wilk test, for a level of significance of 0.05, and the null 

hypothesis of the remainder following a normal distribution was accepted. The decomposition 

showed the data were affected by a seasonal component, which reached its maximum uplift in 

August and maximum settlement in March.     
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(a) 

 

(b) 

Figure 50 – Comparison of the vertical displacement time series representative of cluster 1 with (a) the 

filtered tidal heights and (b) the monthly temperature. 

 

Figure 51 – Decomposition of the vertical displacement time series representative of cluster 1 based on 

STL method; from top to bottom: original data, seasonal component, trend component and residuals.  
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The trend component presented a cumulative uplift of 0.8 mm during the three years of the 

analysis, which could be considered negligible. The decomposition of the horizontal displacement 

time series for cluster 1 (Annex A.1 Figure 141) displayed a submillimetric seasonal component 

and the trend showed a cumulative displacement of 0.5 mm. The remainder followed a normal 

distribution. Therefore, there were no meaningful horizontal displacements at this cluster. 

Cluster 2 was one of the clusters with PSs close to the subway lines. The displacement time 

series representative of this cluster confirmed the cumulative displacements presented in Table 7, 

with its PSs moving up and towards west during the study (Figure 52). The standard deviations 

were similar for all epochs for the horizontal displacement component, but for the vertical 

displacements, there was a time interval of 48 days by the end of 2015 when it was larger than for 

the remaining time. This meant that there was more variability in the vertical displacements of the 

PSs during that period. Besides, the larger standard deviation for the horizontal time series showed 

the cluster admited more variability in the horizontal component than in the vertical one. The 

vertical displacements in this cluster were characterised by a seasonal component with an 

amplitude of 2 mm, annual period, with maximum uplift in summer and maximum settlement in 

winter, compatible with thermal expansion. The cluster trend showed an average uplift of 6 mm, 

with a decrease in rate starting in the summer of 2016. Horizontal behaviour displayed a 

submillimetric seasonal component and the trend showed movement towards west of around 6 mm 

until 2017, when an inversion started to occur. The results of the decomposition were presented 

for both displacement components in Annex A.1 Figure 142 and Figure 143. The remainder 

followed a normal distribution for both cases. The combined vertical and horizontal displacements 

suggested the PSs might be located on tilting objects. These objects can be the buildings, but the 

hypothesis of the reflective points being located on elements on their roofs, such as skylights, 

cannot be discarded. Displacement rates decreased along time for both vertical and horizontal 

components, meaning the PSs were starting to stabilize.    

Similar to cluster 1, cluster 3 also contained a large number of PSs (25.7%) and it was spread 

throughout the ROI. The behaviour of cluster 3 was similar to that of cluster 1. The STL 

decomposition of cluster 3 presented a seasonal component in the vertical displacement time series 

with amplitude of 1 mm, annual period, maximum uplift in summer and settlement in winter. Its 

trend component showed an average uplift of 1 mm, only slightly larger than that of cluster 1. 

Regarding the horizontal behaviour, the seasonal component was submillimetric and its trend 

oscillated towards east and west along the time interval of the analysis, reaching a cumulative 

displacement of 1 mm towards east. The difference in cumulative uplift and cumulative 

displacement towards east, despite having small magnitudes, were the major distinctions between 
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the two clusters and may have been the causes for the split of a larger cluster into these two. The 

remainder of the decomposition followed a normal distribution and the results from this operation 

are in Annex A.1 Figure 144 and Figure 145. The standard deviations of vertical and horizontal 

displacement time series were homogeneous along the time interval of the study (Figure 53).     

 

Figure 52 – Vertical and horizontal displacement time series representative of cluster 2 (black line) for 

Lisbon Downtown; crosses are displacement plus and minus one standard deviation. 

 

Figure 53 – Vertical and horizontal displacement time series representative of cluster 3 (black line) for 

Lisbon Downtown; crosses are displacement plus and minus one standard deviation. 

Cluster 4 was formed by two PSs close to the subway blue line. These points settled around 2 

cm, with a larger rate during 2015 than at the later years (Figure 54). The cluster also presented 

horizontal displacements at the centimetre-level, having moved around 3 cm towards east. Similar 

to the vertical displacements, the horizontal displacement rate during 2015 was larger than at the 

other years. The data showed the PSs on this cluster tilted a few centimetres; however, it was 

possible the measurement point did not reflect the building behaviour, but that of elements located 
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on its roof, such as chimneys or ventilation systems (Figure 55). Nevertheless, both vertical and 

horizontal displacements started to stabilize in 2016. The STL decomposition of the representative 

displacement time series for cluster 4 did not lead to a remainder following a normal distribution; 

thus, seasonal and trend components were not analysed. This cluster presented variable 

displacement standard deviation along the time interval of the analysis. For the vertical component, 

displacement variability reached a maximum of 10 mm in January 2016, while for the horizontal 

component, it took the maximum value of 16.4 mm for the same epoch. The horizontal 

displacement time series representative of cluster 4 presented larger standard deviations than the 

vertical one for almost all epochs, meaning the PSs in cluster 4 have more variability in the 

horizontal displacements than on the vertical ones.     

 

Figure 54 – Vertical and horizontal displacement time series representative of cluster 4 (black line) for 

Lisbon Downtown; crosses are displacement plus and minus one standard deviation. 

 

Figure 55 – Objects on the roof of a building where a PS from cluster 4 was located; photo from August 2019. 
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Cluster 5 contained three PSs, relatively close to the subway lines. The cluster presented 

centimetre-level displacements, having moved up and towards west (Figure 56). There was larger 

displacement variability in the cluster between April 2015 and November 2016, with the vertical 

displacements presenting standard deviations around 7 mm and horizontal displacements with 

standard deviations around 10 mm. After that time interval, standard deviation of vertical 

displacements decreased to 3 mm and that of horizontal displacements to 4 mm. Thus, this cluster 

admited more behaviour variability during the first years of the analysis and, after November 2016, 

the behaviour of the PSs in the cluster became more similar. The remainder of the STL 

decomposition followed a normal distribution; therefore, the decomposition results could be 

evaluated (Annex A.1 Figure 146 and Figure 147). Oscillations with a range of 3.5 mm, but 

without a clear period, were observed for the seasonal component of the vertical displacement time 

series representative of the cluster. The data showed an uplift of 16 mm during the three years, 

with a deceleration starting in 2017. Regarding the horizontal displacements, the seasonal 

component revealed oscillations with a range of 5 mm, without a clear period. The trend displayed 

movement towards west until May 2017, reaching a magnitude of 15 mm. After May 2017, the 

cluster presented a stable horizontal trend.   

 

Figure 56 – Vertical and horizontal displacement time series representative of cluster 5 (black line) for 

Lisbon Downtown; crosses are displacement plus and minus one standard deviation. 

Cluster 6 presented settlements and horizontal displacement towards east (Figure 57). Both 

vertical and horizontal displacement time series representative of this cluster showed an increase 

in the standard deviations after January 2017, leading to a larger variability of the displacements 

admitted into this cluster after that date. The seasonal component of the vertical displacement 

showed an annual period with a range of values of 3.5 mm, maximum uplift in summer and 

maximum settlement in winter, compatible with thermal expansion. The trend displayed a 
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settlement of 8 mm, stronger during the first years of the analysis, which tended to stabilize starting 

in 2017. Horizontal displacement presented a seasonal component without a clear period and the 

trend displayed 10 mm of movement towards east, also during the first years of the considered 

time interval. This behaviour stoped in the beginning of 2017. The remainder of the STL 

decomposition followed a normal distribution. The results from the decomposition are presented 

in Annex A.1 Figure 148 and Figure 149.  

 

Figure 57 – Vertical and horizontal displacement time series representative of cluster 6 (black line) for 

Lisbon Downtown; crosses are displacement plus and minus one standard deviation. 

Cluster 7 settled and moved towards west during the time interval of the study (Figure 58). The 

standard deviation was slightly larger during 2015. Vertical displacement showed a seasonal 

component with 2 mm of amplitude, annual period, with maximum uplift in summer and maximum 

settlement in winter, compatible with thermal expansion. The cluster settled 8 mm during 2015 

and then became stable. Regarding the horizontal displacement, a seasonal behaviour with annual 

period, 2 mm amplitude, moving east in summer and west in winter was present. This behaviour 

was superimposed on a trend of displacement towards west during 2015, which then stabilized. 

Remainder followed a normal distribution and the results of decomposition are in Annex A.1 

Figure 150 and Figure 151. 

Cluster 6 and 7 had a spatial distribution distinct from that of other clusters. Most of their PSs 

formed an alignment along the west-northwest – east-southeast direction (Figure 59), which 

suggested the two clusters might be related. However, distinctive geological or underground 

features at that area, which could aid in the clusters interpretation, were not found. Besides, the 

analysis of the displacement time series representative of each cluster revealed different behaviour 

in time: horizontal displacement in opposite directions and stabilization processes beginning one 

year apart. Therefore, there was no evidence that the clusters might be related to each other. 
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Figure 58 – Vertical and horizontal displacement time series representative of cluster 7 (black line) for 

Lisbon Downtown; crosses are displacement plus and minus one standard deviation. 

 

Figure 59 – Location of clusters 6 and 7. Coordinate grid in WGS84. 

Cluster 8 was formed by a single PS, which settled and moved towards east (Figure 60). The 

STL decomposition (with remainder following a normal distribution) showed the point had a 

seasonal component with annual period, amplitude of 4 mm, reaching the maximum uplift in 

summer and the maximum settlement in winter, compatible to thermal expansion. The point settled 

30 mm until the summer of 2016, when it stabilized. The horizontal displacements also presented 

a seasonal component with annual period and amplitude of 4 mm, which reached its maximum 
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displacement towards east in winter and maximum displacement towards west in summer. The 

trend displayed a movement of 40 mm towards east, with a rate that started decreasing in 2016, 

until stabilization (Annex A.1 Figure 152 and Figure 153). The PS in this cluster was located at a 

roof, near a skylight. 

 

Figure 60 – Vertical and horizontal displacement time series representative of cluster 8 (black line) for 

Lisbon Downtown; crosses are displacement plus and minus one standard deviation. 

Cluster 9 contained three PSs, which moved up and towards east during the three years of the 

study (Figure 61). Standard deviation was larger for some epochs between March and June 2015. 

For most epochs, the cluster had more variability in the horizontal displacements than in the 

vertical ones. The decomposition of the vertical displacement time series representative of the 

cluster did not lead to a remainder following a normal distribution; thus, seasonal and trend 

components were not analysed. The cluster presented uplift with a magnitude of 14 mm until May 

2015 (corresponding to the interval with larger variability of displacements inside the cluster), 

when it started to settle and stabilized around 12 mm. The decomposition of the horizontal 

displacement time series led to a remainder with normal distribution; thus, its results could be 

evaluated (Annex A.1 Figure 154). A clear period was not found for the seasonal component and 

the trend presented 6 mm of displacement towards east, when it inverted the movement direction 

and started going west. One of the PSs in this cluster was located at one of the arches of Carmo 

Convent, built in the 14th century and partially destroyed during the 1755 earthquake. The other 

two PSs were on roofs of Pombalino buildings (Figure 62). 
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Figure 61 – Vertical and horizontal displacement time series representative of cluster 9 (black line) for 

Lisbon Downtown; crosses are displacement plus and minus one standard deviation. 

 

(a) 

 

(b) 

Figure 62 – Carmo Convent (a) and Pombalino building (b), where PSs from cluster 9 were located; 

photos from August 2019. 

Cluster 10 was formed by a single PS located on a roof and close to a PS from cluster 7. Neither 

the vertical nor the horizontal displacement time series representative of each cluster led to an STL 

decomposition with remainder normally distributed; thus, seasonal and trend components were not 

analysed. The point moved up around 30 mm and another 30 mm towards east during 2015 and 

then stabilized (Figure 63). The proximity between this point and the PS in cluster 7 may be cause 

for some concern, as these clusters had distinct behaviour (cluster 7 moved down and towards 

west). The opposite behaviour from the two PSs may indicate the presence of some damage. 

However, both clusters stabilized by the beginning of 2016.   
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Figure 63 – Vertical and horizontal displacement time series representative of cluster 10 (black line) for 

Lisbon Downtown; crosses are displacement plus and minus one standard deviation. 

Table 8 summarizes the results from the cluster analysis. All clusters presented distinct 

behaviour among each other, with the main distinctive features being displacement direction, 

magnitude and the epoch when they started to stabilize. By the end of the time interval of the study, 

all clusters presented stable behaviour. 

An evaluation of differential displacements at building block-level was performed using the 

cluster information (Figure 64). It was considered that building blocks with PSs from distinct 

clusters could have differential displacements, being a sign of possible damage. A code was 

attributed to each block, considering the different behaviour of the represented clusters. Code 0 

was set to building blocks containing PSs of a unique cluster. Code 1 was attributed to blocks 

displaying PSs from both clusters 1 and 3, which presented similar behaviour. Code 2 was given 

to the blocks containing PSs from more than one cluster and in which at least one of those clusters 

was cluster 2, 4, 5, 6, 7, 8, 9 or 10. The building blocks were identified through the merging 

operation of adjacent structure objects achieved through OBIA in section 3.3.2.3. 
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Table 8 – Summary of the cluster analysis. 

 

 Vertical Horizontal 

 Movement direction Magnitude 
Stable by 2018 

Movement 

direction 
Magnitude 

Stable by 2018 

Cluster Uplift Settlement None Millimetre Centimetre East West None Millimetre Centimetre 

1     X X   X   X   X   X 

2 X     X   X   X   X   X 

3     X X   X     X X   X 

4   X     X X X       X X 

5 X       X X   X     X X 

6   X   X   X X       X X 

7   X     X X   X     X X 

8   X     X X X       X X 

9 X       X X X       X X 

10 X       X X X       X X 
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Figure 64 – Code map for differential displacements of building blocks at Lisbon Downtown, based on 

cluster results. 

3.5 Discussion 

This section presents a discussion of several topics regarding the method for RADAR 

interpretation proposed in this Chapter, based on the results presented in the previous section.  

3.5.1. PSI technique enabled the identification of several PSs on both types of studied structures. 

Although C-band SAR images are freely available worldwide through Copernicus programme, for 

vegetated areas such as the slopes around Odelouca reservoir, the usage of L-band data is 

advantageous (Shi et al., 2019), due to its capability to pass through foliage and to be reflectd by 

elements which move together with the slope, such as rocks. Despite the vegetation cover of the 

ROI at Odelouca, several PSs were detected on the slopes, providing a density measurement of 

346 PSs/km2. However, some PS gaps were detected at shadow areas to the SAR signal.  

3.5.2. The number of images and distribution of normal and temporal baselines were also 

important for the results’ quality. According to Benoit et al. (2020), unwrapping errors tend to 

occur at areas with alterations in scattering properties caused by vegetation, humidity, anthropic 

activities, strong relief or fast deformation. Large temporal and normal baselines also contribute 

to low spatial coherence, which may also lead to unwrapping errors. For the slopes case study, the 

number of images was small, there were many gaps in the acquisition time series, some temporal 
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baselines spanned more than three years and there were normal baselines around 3000 m (Figure 

19), which may have contributed to the occurrence of the detected unwrapping errors.  

On the other hand, Sentinel-1 datasets for Lisbon Downtown had a regular acquisition frequency, 

with few gaps in the time series, maximum temporal baselines around 1.5 years (at an area with 

small decorrelation) and normal baselines below 200 m. Unwrapping errors were not detected; 

however, the fact that the Downtown is mostly flat may also have contributed to their absence.  

3.5.3. Sentinel-1 C-band data led to a similar PS density for Lisbon metropolitan area, with 

around 350 PSs/km2. The analysed area included large vegetated regions, such as Monsanto Forest 

Park, where PSs were not detected; thus, leading to the low achieved density. On the other hand, 

at the Downtown, the combined ascending and descending datasets restricted to structures 

originated a density of 1200 PSs/km2. All blocks of adjacent structures had at least one PS, which 

enabled the evaluation of differential displacements at block-level. Image properties also 

influenced the precision of the measured displacements. According to Equation (20), the 

dispersion of a displacement value at a certain epoch depends on the SAR signal wavelength and 

PS temporal coherence. In this study, only scatterers with coherence greater or equal to 0.9 

(ranging from zero to one) were considered as PSs. Therefore, for PALSAR-1 ALOS-1 images, 

the maximum displacement dispersion at a certain epoch for a PS used in the study was 8.4 mm. 

On the other hand, for SAR-C Sentinel-1 data, that value was 2.0 mm. Thus, it was not reasonable 

to consider that displacements with magnitudes lower than these values were actual movement. 

3.5.4. The method proposed to analyse PSI displacement time series was intended to be 

objective, independent of prior knowledge about the problem being studied and usable by InSAR 

non-experts. An unsupervised strategy for time series exploration, such as clustering, was 

appropriate for this purpose. Allied to a hierarchical procedure, in which the elements were 

progressively aggregated or separated given a dissimilarity measure, the method was objective, as 

an automatic selection of the number of clusters could be performed, without the user intervention.  

Other clustering methods found in the literature, such as partitioning (Milone and Scepi, 2011), 

required the user to select the number of clusters. The solution presented to the problem was the 

application of the clustering procedure to a few pre-selected number of clusters and then choose 

one of the solutions, which turned the method subjective. In the method proposed in this study, a 

solution was always provided automatically, which ensured the data division into homogeneous 

clusters. However, the user had the freedom to select other numbers of clusters and to change the 

detail of the analysis, informed by auxiliary data provided by the tool. For example, at Odelouca 

case study, the automatic solution was able to separate PSs affected by unwrapping errors from 

regular PSs. This was an important result, as it increased the trust the user could have in the data 
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from the other clusters, where the errors were minimised or even removed. However, in order to 

detect possible signs of instability, which was the aim of the study, the scale of the analysis had to 

be increased into a more detailed one.  

At the Downtown case study, clusters 1 and 3 were very similar to each other in both 

displacement time series and centroids, which showed the proposed method had high sensitivity 

to behaviour changes and that it was able to separate distinct clusters even when the difference 

between them was not much evident.    

3.5.5. Three aggregation methods were tested at Odelouca slopes case study: single linkage, 

complete linkage and Ward method. Single linkage tended to add PSs to a main cluster one by 

one. Despite this large sensitivity to outlier presence, a large number of clusters would be required 

to detect all the PSs behaving distinctly from the more homogeneous clusters. The outliers may 

correspond to unwrapping errors or to signs of structure instability and must be separated from the 

other points and carefully analysed. Complete linkage and Ward method led to the inclusion of 

several wrongly-unwrapped PSs on the same clusters, which was a more efficient solution, as those 

points could be analysed together and separated from the regular PSs. Besides, other outliers, such 

as those reflecting signs of possible structure instability, could be detected more easily by using a 

lower number of clusters.  

Complete linkage was found to be more sensitive to outlier presence than Ward method, as the 

first technique detected a larger number of PSs with unwrapping errors. Therefore, complete 

linkage provided a balance between building compact clusters and outlier detection, while Ward 

method privileged the construction of compact clusters over the outlier identification and included 

some of these deviant points into regular clusters.  

3.5.6. The dissimilarity measure used to compare the time series was DTW. This is a shape-

based and elastic distance measure, which uses only the displacement time series. Thus, a priori 

knowledge on the displacement cause was not required to apply the method. According to Romano 

and Scepi (2006), DTW is not an appropriate distance measure to compare InSAR displacement 

time series, due to the noise present in the data. A qualitative evaluation of the clustering quality 

using displacement time series without being pre-processed actually revealed many clustering 

errors. PSs spatially close and with similar displacements time series were aggregated into distinct 

clusters, while PSs far from each other and with different behaviour were attributed to the same 

group. In order to minimise those errors, the proposed method low-pass filtered the displacement 

time series with a moving average and DTW was applied on the filtered data instead. This 

operation was successful, as the visual inspection of the results for the same PSs showed the points 

were aggregated into the correct clusters afterwards. Despite performing DTW on the filtered data, 
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after the cluster definition, operations were executed on the original time series to avoid working 

with approximated data.  

In this study, another limitation regarding DTW usage for InSAR displacement time series 

comparison was identified. The fact that DTW is an elastic distance measure may lead to the 

inclusion of PSs with displacement anomalies occurred at distinct epochs into the same cluster. In 

this study, this potential error source was minimised through the constraint of the DTW through a 

Sakoe Chiba band, which limited the epochs for which the comparison was performed. The 

strategy was successful, as at both case studies, different clusters were identified presenting similar 

behaviour occurring at different epochs.  

It was also verified that DTW may not be appropriate to deal with long time series. If a pair of 

long displacement time series was similar for most of the epochs, presenting some eventual 

anomaly during a small number of dates that might cause a small change in the distance value and 

become unnoticed for the cluster construction. This limitation was already referred in the literature 

(Esling and Agon, 2012), where the authors state that compression-based distances might be the 

most appropriate to deal with long time series. The application of representation techniques, such 

as Piecewise Aggregate Approximation (Keogh et al., 2001), which divides the time series into 

segments and considers the average value of each of them to represent it, could also be helpful to 

deal with long time series, as they reduce their dimension. The application of these techniques to 

InSAR displacement time series is an important issue, as the SAR image availability has increased 

significantly in the last years, especially with the contribution of Sentinel-1 data, and the analysis 

of long time series is becoming common. The usage of long SAR image time series is beneficial 

for PSI processing, as it allows a more precise determination of the parameters of interest. 

However, the small sensitivity to disturbances occurred at a small number of epochs may cause 

the late detection of anomalous behaviour. This limitation could be surpassed by dividing the long 

PSI displacement time series into smaller segments, in which short-duration anomalies would 

cause a larger difference in the distances among time series; thus, being more easily identified and 

aggregated into a separated cluster. 

3.5.7. The quality of the results achieved through the RADAR interpretation method proposed in 

this thesis was evaluated through the comparison with one of the methods proposed in the literature: 

PS-Time, developed in Berti et al. (2013) and described in section 3.1.1 of this document. PS-Time 

performs a series of statistical tests until it classifies each PS in one of six pre-defined classes 

according to the point displacement time series (Figure 10). As PS-Time analyses a single 

displacement direction, the quality control was performed only for the LOS displacement time series 

from Odelouca slopes study case, in order to directly compare both results. PS-Time was applied to 
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the displacement time series after correction of reference point effect. The thresholds used for the 

statistical tests were 0.5 to test for linear correlation, 0.5 to evaluate quadratic regression and 1.0 for 

segmented regression. Figure 65 presents the spatial distribution of PS-Time classes. There were PSs 

attributed to all six classes, with class 0 (uncorrelated time series) being associated to 41.5% of the 

PSs. Classes 3 (bilinear) and 1 (linear) contained 24.1% and 20.6% of the points, respectively, being 

the second and third more frequent. Quadratic behaviour affected 10.5 % of the points and 3.3% of 

the PSs presented discontinuities in their displacement time series. From those, 1.4% kept velocity 

values before and after the discontinuity, while 1.9% suffered a change in displacement rate. All 

classes were equally distributed along the ROI.  

 

Figure 65 – Classification of the displacement time series according to PS-Time method. Coordinate grid 

in WGS84. 

In this case study, PS-Time classes admited PSs with different behaviour. Each class included 

PSs moving both away and towards the sensor, showing superposition among classes. Besides, 

except for class 0, all other classes included PSs affected by unwrapping errors together with 

regular PSs (Figure 66), which made the performance of the algorithm proposed in this thesis more 

effective than PS-Time in this topic. The method proposed in this study is also more objective, as 

a solution was achieved automatically and information was provided to aid the user to select 

another adequate level of detail to the analysis, while PS-Time required a trial and error approach 

to identify the level of significance for the hypothesis tests that were performed.  

Comparing the displacement time series of all PSs found at the ROI (Figure 67) and the 

displacement time series of the PSs in each cluster from the proposed method (Figure 68), it was 

arguable that a similar result could be achieved through a simpler method, such as the thresholding 
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of the PS cumulative displacements. Nevertheless, it was verified for both case studies from the 

present Chapter, that some of the clusters presented superposition of their PSs cumulative 

displacement values; thus, cumulative displacement was not the only used criterion. Due to the 

usage of the Sakoe Chiba band, the epochs of anomaly occurrence were also considered. Therefore, 

it was advantageous to apply the proposed method. Displacement time series of all PSs and of all 

PSs at each cluster at the Downtown are presented in Annex A.1 Figure 155 and Figure 156. 

 

Figure 66 – Displacement time series of PSs in each class from PS-Time; class 0: uncorrelated; class 1: 

linear; class 2: quadratic; class 3: bilinear; class 4: discontinuous with constant velocity; class 5: 

discontinuous with variable velocity. 

 

Figure 67 – Displacement time series of all PSs on Odelouca slopes. 
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Figure 68 – Displacement time series of all PSs in each cluster, for the seven cluster solution using 

complete linkage for Odelouca slopes. 

3.5.8. The proposed method provided measures that aided the interpretation of each cluster. 

These measures were average displacement time series representative of each cluster behaviour 

and centroids of variables computed during PSI processing or added as optional raster files. These 

data were accompanied by information about the variability inside each cluster, such as 

displacement standard deviation for each epoch at the representative time series or boxplots for 

the centroids. The average values were useful to identify the general behaviour trends for each 

group, but when interpreting the data, attention must be paid to the fact that the cluster may contain 

PSs whose behaviour deviates from the average values provided. For example, as seen at Odelouca 

study case, a cluster with curvature centroid below zero may still have a large number of PSs 

located on concave surfaces. The average data were useful to identify major trends in the clusters, 

to compare them among each other and to analyse their spatial and temporal behaviour, which may 

be helpful information when evaluating the need for sending a team to perform in situ field work.   

3.5.9. Another relevant question for the application of the proposed method are the PSI 

reference points when two datasets are combined, as performed for the Downtown study case. The 
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reference point for each dataset was selected among the most stable PSs at the ROI. However, the 

two reference points were not coincident. At the Downtown case study, displacements from 

ascending and descending passes were referred to reference points separated by 2 km. Those points 

may have distinct physical natures, be located at elements with different behaviour and have 

relative displacements with respect to each other, which will affect the combined data. The applied 

procedure to estimate and remove the reference point movement and residual atmospheric artifacts 

minimised the differences between the reference points, but the ideal solution would be to have 

the same point as reference for both datasets. Such a goal could be achieved by using an artificial 

reflector capable to receive and transmit the SAR signal from both geometries, e.g. a compact 

active transponder (Mahapatra, 2015) or a bidirectional corner reflector like the one proposed in 

this thesis Chapter 5. 

There is the risk that the method used for estimation and removal of reference point effect may 

remove displacement components of interest to the analysis from the displacement time series. If 

all analysed structures present similar responses to a certain load (e.g. the buildings at the 

Downtown are similar to each other), it will be possible for these responses to be included in the 

correction time series, being removed from all PSs. However, for these responses to be removed 

from the data, they will have to be present at a large number of PSs with low average velocities. 

In that case, they will not correspond to an anomaly at that ROI, whose identification is the goal 

of the presented analysis. If the anomaly is present only at a small number of PSs considered stable, 

their anomalous observations will be smoothed through the average with displacement time series 

from other PSs and the anomaly will not be removed from the PSs.  

3.5.10. The major hindrance of the proposed method was the computational requirements. 

Hierarchical clustering and DTW both have quadratic complexity (Aghabozorgi et al., 2015; Gold 

and Sharir, 2018); thus, the processing of large displacement time series is time consuming. 

Besides, the available memory also influences the maximum number of points to be analysed. In 

order to reduce processing time, the code for clustering operation was parallelized using R 

packages “parallel”, “foreach” and “doParallel” (Corporation and Weston, 2018; R Core Team, 

2018). The case study of the Downtown considered 974 PSs, with two time series each, and 

observations at 92 epochs. The processing took 11 minutes at a laptop with 2.40 GHz CPU, 8 GB 

of RAM and four cores. Odelouca slopes case study, with 7949 PSs and 35 epochs each17, was 

processed in Jupyter during 6 hours. 

3.5.11. The RADAR interpretation method proposed in this thesis enabled the detection of 

behaviour patterns on both case studies and the identification of research questions specific for 

                                                 
17 After linear interpolation in time to assure a regular observation frequency. 
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each situation. Displacement away from the sensor was found on Odelouca slopes compatible to 

subsidence caused by water load, similar to what was found in literature for other water reservoirs. 

From February 2009, when there was no sign of slope movement, to April 2011, when the last 

SAR image was acquired, LOS subsidence rate varied from 1.6 mm/year (at cluster 4) to 21.1 

mm/year (at cluster 5). These values were larger than the 1 mm/year – 2 mm/year of subsidence 

rate found around lake Nasser, in Egypt (Saleh et al., 2018), caused by the water load. To 

understand the difference in both values, it must be noted that the evaluation of displacement rates 

at both areas were performed at distinct phases of the structures’ life cycles. LOS displacement 

rate at Odelouca was evaluated during the reservoir first impoundment, while the values presented 

for subsidence rate at lake Nasser were measured around 30 years after the Aswan High Dam 

construction and the impoundment of the respective reservoir, being expectable that the Egyptian 

lake shows lower values. The lithology of both areas was distinct, with slopes around lake Nasser 

being formed by granite, granitoids, gneisses, schists, sandstones, conglomerates and shales 

(ElKobtan et al., 2016). At Odelouca, the main lithologies are shales and greywacks (section 

3.3.1.1.). In particular, shales tend to suffer modifications when in contact with air and water: a 

rise in moisture may reduce the shear strength, originating cracks. The presence of those cracks 

increases the surface with which water can interact, thus enhancing the rock deformation and 

leading to landslide susceptibility (Walkinshaw and Santi, 1996). Therefore, it is expectable that 

reservoir banks composed of shale present a deformation behaviour due to their constant contact 

with water. The data from Odelouca presented a trend to stabilize after the initial phase of the 

impoundment.  

A crucial point for the results’ interpretation was the knowledge on the physical nature of the 

PSs. The aim of the study was to evaluate eventual contributions of PSI displacements to structure 

monitoring; thus, PSs located on structures were identified to be analysed separately from PSs on 

other objects, such as lampposts or fences. At the Downtown case study, an OBIA image 

classification was executed to distinguish between structure and non-structure elements and to 

associate the corresponding PSs to each class. PSs on structures were successfully isolated and 

their behaviour was evaluated through the clustering analysis proposed in this thesis. Nevertheless, 

a few PSs presenting anomalies in their displacement time series were located on building roofs 

close to skylights or ventilation systems. Thus, the observed displacements for those PSs may 

result from some instability of those elements instead of the buildings themselves.  

Tidal loading was expected to exert some effect on the displacements of Downtown buildings, 

due to the ROI proximity to the river and to its geological properties. However, the frequency 

analysis of tidal heights at Lisbon port for the time interval of the study did not reveal signs of this 
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effect. According to Sun (1997), more than 80% of tidal height amplitude is due to diurnal and 

semidiurnal tides, with periods of 24 hours and 12 hours, respectively. For the same acquisition 

geometry, a new SAR image was acquired by Sentinel-1A every 12 days at the same hour. Therefore, 

to each SAR observation corresponded a similar tidal height and, consequently, a similar tidal load 

effect. For this reason, this effect was not identified on the PSI displacement time series.  

A similar effect was found on GNSS data. Lima (2009) studied the effect of tidal loading for 

two GNSS bases in Lisbon region for observation sessions of distinct durations. For the same base, 

if the GNSS session lasted for less than 24 hours, the difference of tidal loading between the two 

points reached 10 mm. On the other hand, if the GNSS session was longer than 24 hours, the 

difference in tidal loading for the same two points was lower than 3 mm.  

In the research for this thesis, ascending and descending data were combined, when images 

from the ascending pass were acquired around 6:35 pm and images from the descending pass were 

from 6:43 am. One could think that the combined data could detect the effect caused by the diurnal 

tide; however, that was not verified. Each SAR image geometry was processed individually and 

displacements were referred to a reference epoch, which coincided with an image acquisition of 

that geometry. Thus, the tidal load at the reference epoch was equal to the tidal load at the other 

image acquisition epochs and it was not detected for the individual geometries. Consequently, 

when the data from the two passes were combined, it was not detected neither.  

Sun (1997) stated that tidal loading reduces its amplitude and presents a phase delay as it moves 

towards inland. Therefore, the tidal loading effect at reference point was lower (and occurred later) 

than at the Downtown. However, as the movement inland did not change angular velocity, tidal 

loading effect was not identified for the reference point neither (Figure 69).  

The observed displacements at PSs on buildings at Lisbon Downtown were consistent with 

thermal expansion. Nevertheless, it must be noted that the displacements in the representative time 

series resulted from the average of displacements from structures with distinct properties and 

responses to temperature changes. Figure 70 presents the displacement time series for two PSs in 

cluster 1: one is on the roof of Rossio train station and the other is on the roof of a Pombalino 

building. Both presented oscillatory behaviour consistent with thermal expansion, but the effect 

has a larger magnitude at Rossio station, perhaps due to the different materials of the roofs. 
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Figure 69 – Simulation of tidal loading effect at a PS in the Downtown (top) and at the reference point 

(bottom) with a delay with respect to the Downtown; green dashes represent the SAR observation epochs 

and the green circles correspond to the observed displacement component caused by tidal loading. 

 

(a)  

 

(b) 

Figure 70 – Displacement time series of a PS on the roof of Rossio train station (a) and of a PS on the 

roof of a Pombalino building (b), both from cluster 1. 
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Studies by LNEC’s AGU showed the west wing of Praça do Comércio, at the Downtown, has 

been settling at least since the 1950s (LNEC, 2017a). The settlements presented increasing 

magnitude towards the river, reaching its maximum value at the tower at the southernmost part of 

the building. Several PSs were identified on the building, including on the tower; however, those 

PSs were all included in cluster 1, which was the one with the most stable vertical behaviour. 

Levelling data along the building showed the closest benchmark to the river settled 2.3 mm 

between September 2015 and September 2017 with respect to a benchmark at the northernmost 

part of the building (LNEC, 2017a). In case the settlement rate was constant during the three years 

of this study, the point may have settled around 3.4 mm, which was consistent with the point 

inclusion in cluster 1, in case there were no relative displacements between the levelling and the 

PSI reference points. As there were no PSs near the levelling reference point, it was not possible 

to verify the existence of relative displacements between them.  

3.6 Conclusions 

In this Chapter, a method to automatically identify distinct displacement patterns on structures, 

based on PSI displacement time series, was proposed and its efficiency was evaluated for anomaly 

detection at both geotechnical and civil structures. The method proved to be independent of prior 

knowledge about the problem being evaluated, relying only on the displacement time series 

achieved through the PSI processing. However, the optional inclusion of additional information 

describing the ROI was helpful to the results’ interpretation, providing clues about the potential 

causes of the detected behaviour anomalies. The usage of an unsupervised method for time series 

analysis like clustering, allied to a hierarchical aggregation strategy, led to an objective evaluation 

of the displacement time series. Although an automatic clustering solution was always provided, 

which presented the distinction of important patterns, e.g. between regular PSs and those affected 

by unwrapping errors, it was verified that the automatic solution may not conduct to the isolation 

of the eventual anomalies. In those situations, an increase in the number of clusters to be analysed, 

informed by data as linkage distances and dendrograms, enabled the detection of the wanted 

patterns. Complete linkage proved to be an adequate choice for aggregation method, as it enabled 

the construction of compact clusters, yet being sensitive to outlier detection. DTW may not be the 

optimal choice for dissimilarity measure for time series as long and noisy as those typically 

achieved through PSI; however, the pre-processing and the parameter choices executed minimised 

the limitations of the technique and led to its successful application for two case studies of distinct 

natures. The whole procedure was integrated at a computer tool, developed in R, and expert 

knowledge on InSAR or time series analysis was not required to operate it. The tool may be useful 
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for decision-makers in charge of monitoring of large urban or rural areas. The issue of early-

warnings using the tool needs to be carefully managed, perhaps requiring the analysis of smaller 

segments of the original displacement time series. The spatio-temporal information of the 

anomalies provided by the tool may help the planning of other monitoring activities, such as visual 

inspections or in situ measurements. Computational requirements may be a hindrance for the 

processing of large numbers of PSs, but the growing access to on-line platforms, such as Jupyter, 

may solve this issue, as done in this research.    

The proposed RADAR interpretation method successfully detected distinct structure behaviour 

for this Chapter case studies. At Odelouca slopes, the method detected movement away from the 

sensor, which may correspond to subsidence due to the load associated to the weight of the stored 

water. Those displacements began in March 2009, before the official start of the reservoir first 

impoundment in December that year, but right after the end of the dam body construction, when 

some water may have started accumulating. The clusters also revealed the eventual subsidence 

affected different regions of the ROI at different epochs, with the phenomenon evolving from 

southwest to northeast, accompanying the water route. At Lisbon Downtown, centimetre-level 

displacements were detected on buildings on the neighbourhood of the subway line and on steep 

slopes. Nevertheless, by the end of the considered time interval, in February 2018, there were no 

more signs of anomalous displacements.    

In conclusion, the method proposed for RADAR interpretation of PSI displacement time series 

was successfully used to identify behaviour patterns in both geotechnical and civil structures.   
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Chapter 4. Integration of InSAR 

displacements in structure monitoring 

systems 

This chapter proposes an adaptation of the Method of Variation of Coordinates (MVC) to 

integrate InSAR displacements into an existing structure monitoring system. The strategy 

uses GNSS observations to constrain InSAR displacements along a network of object points 

located on both the structure and its surroundings. It enables displacement measurement at 

a large number of object points, which naturally exist in the terrain and do not need to be 

materialised, with the mitigation of some of the errors associated to InSAR observations and 

the determination of a posteriori variances for the adjusted displacements. The method is 

applied on the simultaneous monitoring of a concrete dam and its neighbour slopes. 

 

4.1 Introduction 

This section presents a literature review of studies that attempted to combine InSAR 

displacements with data from other techniques, in order to improve the monitoring capability of 

the considered techniques. Data from GNSS are often used in this type of studies, but other 

technologies are also employed, such as Light Detection And Ranging (LiDAR), classic surveying 

methods or photogrammetry (Muller et al., 2015).  According to Hu et al. (2014), the first study 

to consider the merging of InSAR and GNSS was Gudmundsson et al. (2002). They used four 

interferograms with a temporal baseline of one day obtained throughout one year and one GPS 

observation per year on several points of their ROI. Three-dimensional displacements for each 

pixel in the interferograms were initialized through the interpolation of east – west and north – 
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south GPS displacements and from the difference of two DEM (obtained from differential GPS). 

As displacement was assumed to be smooth in time, the initial displacements were scaled to the 

time interval of the interferogram with dates closer to those of the GPS observations. An 

optimization procedure based on the minimisation of energy functions was then applied. The 

optimized result for the first interferogram was then used as an initial approximation for the 

interferogram with the closest dates and the optimization was applied again. This procedure was 

repeated until all interferograms were optimized. 

Other authors have also used the optimization of energy functions for this purpose. Catalão et 

al. (2011) proposed a method to merge vertical velocities derived from PSI with horizontal ones 

obtained from GPS. As there is a bias between PSI and GPS observations, they performed a 

calibration operation. The median vertical velocities of scatterers inside a 200 m neighbourhood 

of each GPS station and the vertical velocity from GPS were used to minimise a cost function from 

which the bias and differences in parameters of the ellipsoids used by both techniques were 

obtained. The bias was then applied to correct scatterers vertical velocities, while GPS horizontal 

ones were interpolated to each scatterer location. WRF18 meteorological model was used to 

determine atmospheric phase delays for the dates of SAR image acquisitions, whose differences 

were removed from the interferograms.  

Polcari et al. (2016) computed 3D velocity vectors derived from InSAR and GPS for the 2014 

South Napa earthquake. A coseismic interferogram from Sentinel-1 images and observations 

from 142 GPS permanent stations were used. GPS velocities were interpolated for each scatterer 

through Kriging. Determining the 3D velocity vector for each pixel corresponded to find the 

velocity values that minimised a likelihood energy function, which depended on the interpolated 

GPS and on the InSAR LOS velocities. Displacement values were obtained from the velocities, 

whose uncertainties were 5.31 mm in north – south, 4.27 mm in east – west and 5.96 mm in the 

vertical components. This study was then improved in Polcari et al. (2017) in order to include 

results from POT and MAI (introduced in section 2.1). Horizontal displacements were firstly 

determined through POT and, although these were just approximated values, they were used to 

input constraints / barriers to the GPS displacements interpolation, in order to simulate 

discontinuities in the displacement field. InSAR, MAI and GPS observations were used to 

determine the 3D displacement values for each pixel through the minimisation of an energy 

function. Quality control was performed through the evaluation of residuals. The best fit was 

obtained for the vertical component with residuals of 2 cm. The second best was that of the north 

                                                 
18 Weather Research and Forecasting Model https://www.mmm.ucar.edu/weather-research-and-forecasting-model 
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– south component with residuals varying from 2 cm to 5 cm. The worst component was east – 

west with residuals reaching 6 cm.  

Chen et al. (2010) determined improved vertical velocities for a set of sparse points in Hong 

Kong area (Figure 71). They used tropospheric zenith wet delays (ZWD) at GPS stations to correct 

atmospheric effects in SAR interferograms. The differences in time of ZWD were removed from 

each interferogram after being projected into the SAR LOS. GPS stations and SAR scatterers were 

connected to each other through a Delaunay triangulation. For each connection between pairs of 

points and for each interferogram, differences of vertical velocity and of altitude correction 

between points were computed through the maximization of the temporal coherence. Weighted 

Least Squares (WLS) was used to determine vertical velocities and altitude corrections for each 

point from the differential values observed for each connection. Temporal coherence was used as 

a weight and GPS vertical velocities were used as constraints for the connections that have a GPS 

station in one of its ends.        

 

Figure 71 – Network of scatterers (green points) and GPS stations (black triangles) used in Chen et al. (2010). 

In Guglielmino et al. (2011), the Simultaneous and Integrated Strain Tensor Estimation from 

Geodetic and Satellite Deformation Measurements (SISTEM) method to derive 3D displacement 

from DInSAR and GPS was presented. This method used the elasticity theory to relate an InSAR 

displacement and the 3D displacements of nearby GPS stations to 3D strain, rigid body rotation 

tensors and the 3D displacements of the scatterer. This relation was described by a linear matrix 

equation that was solved using WLS. The weights of each connection / equation between the 

scatterer and the neighbour GPS stations were computed from a function of the distance between 
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them. Muller et al. (2015) performed an adaptation of the SISTEM method in order to include 

other geodetic techniques besides InSAR and GPS. The authors showed an example of application 

using InSAR, GPS and classic surveying methods. The measurements of all techniques were 

converted into the same local reference frame. GPS was used at the fiducial sites (the points 

forming the local reference frame) and performed the connection between different clusters of 

points observed from the other techniques. GPS, InSAR and tacheometric measurements were all 

determined for each observation epoch, from which displacement time series were computed and 

velocities obtained. The SISTEM approach was then used to integrate the data. 

Application of these combination methods to SHM is not often found in the literature. The only 

study identified was performed by Tapete et al. (2015). The authors used RTK GPS measurements 

for height determination on linear structures, such as aqueducts, and on the ground. Those data 

were utilized to determine the correct location on the structures of PSs and DSs used for 

displacement analysis (Figure 72), by the comparison of the heights observed for all points through 

both techniques, which enabled a better interpretation of the displacements and of the structure 

behaviour.     

 

Figure 72 – Improved location of PSs (circles) and DSs (squares) on an aqueduct aided by RTK GPS 

observations; colours correspond to LOS velocity (Tapete et al., 2015). 

Interpolation has often been used for data integration. Hu et al. (2016) merged InSAR 

velocities from ascending and descending geometries with interpolated horizontal velocities 

from continuous GPS. Kriging was used to interpolate the data and WLS to perform the 

combination, achieving 3D displacements.  

Farolfi, Bianchini, et al. (2019) merged vertical velocities from GNSS and InSAR in order to 

obtain an accurate vertical velocity map for all scatterer positions. Ascending and descending 

passes from Envisat were combined to obtain vertical and east – west velocity components. The 

velocities of scatterers within a certain neighbourhood of the GNSS stations were interpolated to 
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the GNSS station location. For each station, a correction value computed from the difference 

between the GNSS and the scatterer-interpolated vertical velocity was determined and a correction 

map for the whole study area was obtained from interpolation. That correction was then added to 

the vertical velocity of all scatterers. The results showed a good agreement between GNSS and 

corrected scatterer values, with velocities more accurate than those obtained only from InSAR. In 

Farolfi, Piombino, et al. (2019), this study was adapted to national scale and to consider also the 

east – west component of displacement.  

Van Leijen et al. (2017) proposed the Connecting Undifferenced Points in Deformation 

Observations (CUPiDO), a system that intended to integrate data from several techniques: InSAR, 

GPS and levelling. As all techniques had different characteristics, such as measurement direction, 

reference points, geodetic data or uncertainties, the method used double-differences, both in space 

and in time, for all of them, which were then analysed together. This paper only presented an 

example of integration between GPS and levelling, but it is being adapted to include InSAR 

measurements as well. 

Other authors tried to achieve 3D displacements using SAR data alone. Fuhrmann and 

Garthwaite (2019) attempted a WLS approach to combine LOS velocities from multiple distinct 

geometries to achieve 3D displacements; however, besides requiring a minimum of three 

acquisition geometries, the north – south velocity component was not accurately determined and 

its magnitude influenced the errors of vertical and east – west components.  

SAR artificial reflectors have been combined with GPS to perform the merging of the data. Zhu 

et al. (2014) used triangular trihedral Corner Reflectors (CRs) for X-band to monitor 

displacements along a slope. GPS observations at the CRs’ locations were used to compute the 

points’ height and tropospheric correction. Those data were then used to improve the InSAR 

processing for the CR. GPS horizontal displacements combined with the LOS displacements from 

InSAR at the CR enabled the determination of vertical displacements. The three-dimensional 

displacements were projected onto the slope direction, in which an accuracy of 1.89 mm and a 

precision of 1.1 mm were achieved for the measurements.  

Komac et al. (2015) presented a device named I2GPS which consisted of a Compact Active 

Transponder (CAT) together with a GNSS antenna (Figure 73). The equipment enabled the 

determination of improved 3D displacements for its installation location with reference to a global 

reference frame (e.g. ITRF2008) and the resolution of InSAR ambiguities for nearby artificial 

reflectors. In order to determine InSAR displacements with respect to the reference frame for all 

scatterers, if there was an I2GPS in the network, it was only required that GNSS LOS displacement 

at the I2GPS location was added to the scatterers displacement. In case there were more than one 
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I2GPS, an adjustment was required.  Quality control was performed through the determination of 

the daily station repeatability, i.e. the RMSE of the station coordinates, after removing a linear 

trend from it. For the horizontal components, a repeatability of 2 mm to 3 mm was achieved, while 

5 mm to 7 mm were obtained for the vertical direction. 

 

Figure 73 – I2GPS unit (Mahapatra et al., 2018). 

Table 9 shows a summary of the procedures followed by each presented study in order to merge 

data obtained from InSAR and other techniques. Uncertainty measurements are presented for each 

case, although they are not comparable to each other as different techniques, goals and 

measurements have been applied. Some of the studies were focused on merging data from distinct 

methods in order to determine more accurate displacements along a single direction of interest to 

the problem under analysis, such as vertical direction, SAR LOS or a slope, but there was also 

interest in obtaining 3D displacements. Many studies were related to geodynamic problems, for 

example deformation caused by earthquakes, volcanic eruptions or tectonics, for which 

displacements in the order of centimetres were observed and, therefore, centimetric-level 

uncertainty might be acceptable. Although most strategies achieved millimetre uncertainties, there 

were few applications to SHM. Several strategies required a smooth displacement constraint to be 

used, which would make difficult its application to the simultaneous monitoring of structures and 

its surroundings. 



117 

 

Table 9 – Comparison of InSAR and GNSS merging strategies and of obtained uncertainties for different studies. 

Study 
InSAR 

technique 

GNSS 

technique 

Studied 

problem 

Uncertainty 

Strategy 
E - W N - S V 

Other 

direction 

Gudmundsson 

et al. (2002) 
DInSAR 

Repeated 

GPS 

Ice surface 

motion 

14%  

*1 

16%  

*1 

25%  

*1 
- 

GPS 3D displacements were interpolated for 

each interferogram pixel and an optimization 

procedure was applied based on energy 

functions. 

Chen et al. 

(2010) 
MT-InSAR 

Continuous 

GPS 

Urban 

subsidence 
- - 

0,15 - 

0,69 

mm/yr 

*2 

- 

Use of GPS-derived ZWD to correct 

atmospheric effects in InSAR. Performed 

WLS to determine vertical velocities using 

GPS observations as constraints. 

Catalão et al. 

(2011) 
PSI 

Repeated 

GPS 
Tectonics - - 

1,5 - 1,6 

mm/yr 

*3 

- 

Merge of vertical PSI velocity with 

horizontal GPS ones. Use of WRF 

meteorological data to correct vertical 

velocities. 

Guglielmino 

et al. (2011) 
DInSAR 

Continuous 

GPS + 

Repeated 

GPS 

Volcano 

4 - 5 

mm  

*2 

4 - 5 

mm  

*2 

4 - 5 

mm  

*2 

- 

SISTEM: used WLS to combine InSAR and 

GPS displacements with strain and rigid 

body rotation. 

Zhu et al. 

(2014) 
CRInSAR 

Repeated 

GPS 
Landslide - - - 

1,89 mm  

*2 

Used altitude and atmospheric corrections 

from GPS to improve the InSAR processing 

at corner reflectors. 

Muller et al. 

(2015) 
SBAS 

Repeated 

GPS 
Volcano - - - 

25 mm/yr 

*2 

Adaptation of Guglielmino et al. (2011) to 

include other techniques. 

Komac et al. 

(2015) 
CAT 

Continuous 

GPS 
Landslide 

2 - 3 

mm  

*4 

2 - 3 

mm  

*4 

5 - 7 

mm  

*4 

- 
Use of I2GPS units: a device that includes a 

CAT and a GNSS antenna. 

Tapete et al. 

(2015) 
SqueeSAR RTK GPS SHM   0.97 *5  

Improve of PS and DS location through 

comparison to RTK GPS heights. 
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Study 
InSAR 

technique 

GNSS 

technique 

Studied 

problem 

Uncertainty 

Strategy 
E - W N - S V 

Other 

direction 

Hu et al. 

(2016) 
SBAS 

Continuous 

GPS 

Tectonics and 

anthropogenic 

activities 

0,9 

mm/yr 

*2 

1,5 

mm/yr 

*2 

2,4 

mm/yr 

*2 

- 

Merge of InSAR data from two acquisition 

geometries with interpolated horizontal GPS 

velocities. 

Polcari et al. 

(2016) 
DInSAR 

Continuous 

GPS 
Earthquake 

4,27 

mm/yr 

*6 

5,31 

mm/yr 

*6 

5,96 

mm/yr 

*6 

- 

Minimised a likelihood energy function to 

merge InSAR velocities with interpolated 3D 

GPS ones. 

Polcari et al. 

(2017) 
DInSAR 

Continuous 

GPS 
Earthquake 

6 cm  

*7 

2 - 5 

cm  

*7 

2 cm  

*7 
- 

Use of POT to determine approximated 

displacements that were used to constraint 

GPS interpolation. Bayesian statistical 

approach was used to merge the GPS, MAI 

and the InSAR data. 

Farolfi, 

Bianchini, et 

al. (2019) 

PSI 
Continuous 

GPS 

Urban 

subsidence 
- - 

0,95  

*8 
- 

Determined a correction for InSAR vertical 

velocities based on the difference between 

GNSS and interpolated InSAR vertical 

observations. 

Farolfi, 

Piombino, et 

al. (2019) 

PSI 
Continuous 

GPS 

National scale 

displacements 

0,94  

*8 
- 

0,95  

*8 
- 

Similar to the previous one, but considered 

east – west displacements. 

Fuhrmann and 

Garthwaite 

(2019) 

SBAS - 

Crustal 

deformation 

and simulated 

data 

0.33 – 

0.53 

mm/yr 

*9 

3.21 – 

4.60 

mm/yr 

*9 

0.20 – 

0.63 

mm/yr 

*9 

- 
Combination of multi-geometry InSAR 

displacements through WLS 

 

*1 Relative error *6 Standard deviation 

*2 RMSE *7 Residuals 

*3 Velocity interquartile range *8 Correlation coefficient between corrected and GNSS velocities 

*4 Daily station repeatability *9 Mean absolute difference between computed and simulated velocities 

*5 Coefficient of determination between PS+DS and GPS heights  
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4.2 Methods 

In this section, a method for integration of InSAR and GNSS data is proposed, with the aim 

of including InSAR data into structure monitoring systems; thus, contributing to the 

operationalisation of the usage of this type of data for SHM. 

The idea behind the proposed strategy is the extension of a previously existing GNSS-based 

structure monitoring sub-system through the inclusion of observed InSAR displacements, in 

order to increase the monitored area to the structure surroundings. Although critical 

infrastructures, e.g., dams or bridges, may be subjected to periodic monitoring through visual 

inspections, embedded equipment or geodetic techniques, the structure surroundings are not 

monitored so often through these methods, despite the importance of their stability to the 

structure safety conditions. The lack of monitoring at these elements may be due to the high 

costs associated to the surveying of such large areas, which makes InSAR a promising choice 

to fill this gap. 

The proposed method intends to combine GNSS data from permanent stations with InSAR 

displacements achieved through PSI. GNSS displacements are used to constrain the PSI 

measurements. The combination is performed using MVC, which is a widely used technique in 

traditional geodetic surveys. It relates variations of the observations between two points in two 

epochs with the variations of those points’ coordinates between the same epochs, i.e. the points’ 

displacements, by performing an adjustment through least-squares approach (Mittermayer, 

1972; LNEC, 2001, 2013; Casaca et al., 2015).  

In traditional geodetic surveys, MVC is applied to networks connecting points (vertices) on 

locations of interest. Those networks can be unidimensional, bidimensional or three-

dimensional, depending on the considered type of data. Unidimensional networks are usually 

utilized for altimetric data, bidimensional for planimetric and three-dimensional networks deal 

with both altimetric and planimetric data together. Observations are affected by systematic and 

random errors, whether they are height differences, distances or bearings, for example. Errors 

can be inherent to the equipment, influenced by the environmental conditions during the 

observation, such as temperature or humidity, or by the operator. The equipment manufacturer 

usually provides information on the uncertainty associated to the observations, which can be 

considered as a priori uncertainty. The redundant observation of each vertex at the network 

enables part of the observations affected by errors to go to the adjustment residuals, which 

allows the determination of a posteriori uncertainties. 
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In this thesis, the MVC was adapted to adjust a network of GNSS stations and PSs. The 

proposed method considers a unidimensional network, where the three-dimensional GNSS 

displacements dE, dN, dV (east – west, north – south and vertical components, respectively) are 

converted to SAR LOS direction following Equation (11) from section 3.2 and adjusted together 

with PSI measurements.  

Let us define a unidimensional reference system, with origin at one of the network vertices, 

Pref, LOS direction and values increasing from the ground to the SAR sensor. A vertex in the 

network has a coordinate L in that reference system, which is the orthogonal projection of that 

vertex into the defined reference system.  

The proposed method is intended to be performed fully remotely and automatically, for any 

geographic location and for any study object, which imposes some constraints on the network 

design. The variables to observe for each network connection have to be achieved remotely, 

which eliminates common variables such as distances between the vertices. The observations 

between the netweork vertices are the double-differences between the L coordinates of pairs of 

vertices and between two epochs, which are determined according to Equation (21): 

y = (Lp
i − Lq

i ) − (Lp
j

− Lq
j
)                                             (21) 

where y is the vector of observation differences, Lp
i and Lp

j are the coordinates of vertex p at 

epochs i and j, respectively, and Lq
i and Lq

j are the coordinates of vertex q at epochs i and j, 

respectively. The epochs for analysis are those of the SAR image acquisitions, with j being the 

reference epoch of PSI processing and also for the new method. Epoch i is any SAR image 

acquisition epoch, except the reference one. The terms in Equation (21) can be reorganised and 

it is verified that the observation differences correspond to the LOS relative displacements 

between vertices p and q, as in Equation (22):    

y = (Lp
i − Lq

i ) − (Lp
j

− Lq
j
) = (Lp

i − Lp
j
) − (Lq

i − Lq
j
) = dp

LOS − dq
LOS       (22) 

where dp
LOS is LOS displacement for vertex p and dq

LOS is LOS displacement for vertex q 

between epochs i and j. This vector has as many rows as the number of connections in the 

network. The vector of vertex coordinate differences between epochs i and j, x, is given by 

Equation (23): 

x = [

…

Lp
i − Lp

j

…
]                                                          (23) 

with Lp
i and Lp

j being defined as for Equation (21). Each row in vector x is the wanted 

displacement for the corresponding vertex and the vector has as many rows as vertices in the 

network. The design matrix, A, reflects the network configuration. In order to be automatically 
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applicable at any situation, a Delaunay triangulation is used to connect the vertices due to its 

simplicity and availability on most programming packages. The design matrix is defined as in 

Equation (24): 

A ∙ x = y                                                              (24) 

with x and y as previously defined in Equations (21) and (23). Matrix A has as many rows as 

observations, i.e., network connections defined through the Delaunay triangulation, and as 

many columns as vertices in the network. The matrix entries are filled with zeros, except for 

those corresponding to the starting and ending vertices of a certain connection, which are set to 

1 and to -1, respectively. As exemplified in Equation (25), the row corresponding to the 

connection that starts at vertex p and ends at vertex q is filled with zeros except for the column 

corresponding to vertex p, which is set to 1, and the column corresponding to vertex q, which 

is set to -1: 

                                                             p                            q    

A = [

… … …
0 … 1
… … …

     

… … …
… 0 …
… … …

     

… … …
−1 … 0
… … …

]                                  (25) 

In order to constraint the vertices’ displacements, GNSS measurements are introduced into 

the adjustment. The procedure requires the existence of two PSs coincident or close to two 

GNSS antennas. The constraint is introduced by setting the double-difference of L coordinates, 

i.e. the relative LOS displacements, of the PS pair equal to the double-difference of L 

coordinates of the GNSS antennas’ pair. This is performed by adding a row to the design matrix 

at Equation (25), where the value 1 is attributed to the column corresponding to one of the PSs 

in the pair, the value -1 is set to the column of the other PS and the remaining columns present 

the value zero. Furthermore, a row is also added to vector y, in Equation (21), containing the 

relative LOS displacement between the GNSS antennas’ pair, for the epoch under analysis.  

The design matrix has a rank defect of one; therefore, at least one of the vertices in the 

network must be considered fixed or with known displacements, in order to solve the system of 

observation equations. Those vertices form the local reference frame of the network and the 

vertices’ adjusted displacements are computed with respect to them. It is useful to select the 

vertex which is the origin of the reference system to be part of the local reference frame, as its 

coordinates are known (and equal to zero) at all epochs. The definition of the local reference 

frame is executed through matrix C, with as many rows as points in the local reference frame 

and as many columns as vertices in the network. The matrix is filled with zeros, except for the 

entries corresponding to the points in the local reference frame, which are set to 1. Equation 

(26) exemplifies matrix C for two vertices, s and t, to form the local reference frame: 
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                                                                     s                         t 

C = [
0 … 1
0 … 0

     
… 0 …
… 0 …

    
0 … 0
1 … 0

]                                 (26) 

The known displacements of the points in the local reference frame are defined in vector d, 

with as many rows as points in the local reference frame (Equation 27): 

d = [
ds

LOS

dt
LOS]                                                            (27) 

where ds
LOS is LOS displacement at point s and dt

LOS is LOS displacement at point t, between 

epochs i and j.  

Besides the deterministic component of the model, there is also a stochastic one and the 

observations are characterized through a covariance matrix. The matrix diagonal is filled with 

the a priori variances of the observed double-differences. Let us assume the PSI and GNSS 

displacements at a certain epoch follow a normal distribution (Colesanti et al., 2003; Leick, 

2004) and σp
2  and σq

2 are the variances of displacements of vertices p and q, respectively. Thus, 

given the definition of double-differences in Equation (22), the a priori variance for the double-

difference between vertices p and q for epochs i and j (σpq
2 ) is determined by Equation (28). 

σpq
2 = (

∂y

∂dp
LOS)

2

∙  σp
2 + (

∂y

∂dq
LOS)

2

∙  σq
2 = σp

2 + σq
2                              (28) 

The determination of the variances of displacements of vertices p and q is performed 

according to the vertex nature. If it is a PS, the variance is calculated through Equation (20) in 

section 3.4.1. If it is a GNSS antenna, the variance is achieved from the GNSS processing. The 

covariances in the matrix are assumed to be zero.  

The local reference frame also is attributed a stochastic component, which consists on a 

covariance matrix of the displacements at the points in the local reference frame. The matrix 

diagonal is attributed the variances of the points’ displacements, which can be determined from 

Equation (20) or from the GNSS processing, if the points are PSs or GNSS antennas, 

respectively. However, the points’ variances may be a value reflecting the confidence of the 

user in the points’ stability. Thus, if there is a great confidence that the point is fixed, e.g., the 

point is a GNSS antenna installed at a carefully built pillar and at a stable location, a small 

variance can be attributed. Otherwise, if there are some concerns regarding the point stability, 

a larger variance must be considered. Covariances are assumed to be zero.   

Let P be the inverse of the covariance matrix of the observations and Q be the inverse of the 

covariance matrix of the local reference frame. The adjusted displacements along LOS, �̂�, are 

achieved through Equation (29): 



123 

 

x̂ =  (ATPA + CTQC)−1(ATPy + CTQd)                                    (29) 

where A, P, C, Q, y and d are the matrices and vectors previously defined and T is matrix 

transpose. Displacement variances are the diagonal elements of covariance matrix Σx defined 

in Equation (30): 

Σx = (ATPA + CTQC)−1                                            (30) 

This procedure is performed iteratively for all SAR image acquisition epochs, except the 

reference one, and it provides adjusted displacement values for all vertices in the network and 

their respective a posteriori variances.  

For a geodetic network to be admissible, it must fulfil precision and robustness criteria 

(LNEC, 2001). Precision evaluation for unidimensional networks is performed through error 

intervals, which depend on the distribution of displacement errors for each network vertex, 

independently of the other vertices. The error interval is defined, for a certain level of 

significance, α, as the interval ]-q, +q] for which the probability of the displacement error to be 

inside it is (1-α), as in Equation (31), adapted from LNEC (2001): 

P(−q < N(0, σL
2) ≤ +q) = 1 − α                                      (31) 

where P is probability, q is the quantile of probability (1 −
𝛼

2
), N(0, σL

2) is the normal 

distribution of the displacement error with zero mean and variance equal to the variance of the 

vertex L coordinate. LOS displacement between epochs i and j at a vertex p (dp
LOS) is written 

as in Equation (32): 

dp
LOS = Lp

i − Lp
j

                                                       (32) 

where Lp
i  and Lp

j
 are the L coordinates of vertex p in epochs i and j, respectively. From the law 

of variance-covariance propagation, assuming Lp
i  and Lp

j
 follow normal distributions and that 

the variance of L coordinate at vertex p is equal for all epochs, the variance of adjusted LOS 

displacement (σ
dp

LOS
2 ) is given by Equation (33): 

σ
dp

LOS
2 = (

∂dp
LOS

∂Lp
i )

2

∙ σ
Lp

i
2 + (

∂dp
LOS

∂Lp
j )

2

∙ σ
Lp

j
2 = 2 ∙ σLp

2                         (33) 

with σ
Lp

i
2 and σ

Lp
j

2 being the variances of L coordinates at epoch i and j, respectively, and σLp

2  

being the variance of L coordinate at any epoch. As σ
dp

LOS
2  is known for all vertices from the 

network adjustment, the variance of the L coordinate can be computed through Equation (34): 

σLp

2 =
1

2
∙ σ

dp
LOS

2                                                    (34) 
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The amplitude of the error interval (q) is then compared to a tolerance value, defined by the 

user. The network fulfils the precision requirements if the amplitude of the error interval is 

lower than the tolerance value for all vertices.  

The robustness analysis evaluates the capability of the network to detect systematic and gross 

errors at the observations and to send them to the adjustment residuals. A network robustness 

is assessed through the local redundancy numbers, associated to each observation (L coordinate 

double-difference). Let A* be the matrix which results from adding the rows from matrix C to 

matrix A, as in Equation (35): 

A∗ = [
A
C
]                                                            (35) 

P* is the inverse matrix of the observations covariance matrix, which results from adding a 

block with the local reference frame covariance matrix (Q) to the original observations 

covariance matrix (P), as in Equation (36):             

P∗ =

[
 
 
 
 
 
 
⋱ 0 0
0 σpq

2 0

0 0 ⋱

0

0

σ
ds

LOS
2 0 0

0 ⋱ 0
0 0 σ

dt
LOS

2
]
 
 
 
 
 
 
−1

                                 (36) 

where σpq
2  is the a priori variance of the double-difference observed between vertices p and q, 

as in Equation (28), σ
ds

LOS
2  and σ

dt
LOS

2  are the variances of the LOS displacements at the vertices 

s and t, respectively, that form the local reference frame. C∗−1
 is the variance matrix of the error 

vector and it is determined through Equation (37): 

C∗−1 = A∗T ∙ P∗ ∙ A∗                                                   (37) 

The above mentioned matrices are used to define matrix U as in Equation (38): 

U = A∗ ∙ C∗−1 ∙ A∗T ∙ P∗                                                 (38) 

Local redundancy numbers are the elements in the diagonal of matrix I – U, where I is the 

identity matrix. A network is admissible regarding robustness when the average of local 

redundancy numbers is above a threshold, e.g., 0.60, and its standard deviation is below another 

threshold (0.10). If a network is admissible regarding robustness, the quality of the observations 

can be evaluated to verify the presence of gross or other unexpected errors. The quality control 

is performed through a hypothesis test, based on the adjustment residuals (LNEC, 2001), which 

are determined through Equation (39): 

δ = A∗ ∙ x̂ − y∗                                                       (39) 
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where δ are the residuals, A* is as defined in Equation (35), x̂ is as defined in Equation (29) and 

y* is the vector of observation differences after adding lines corresponding to the known 

displacements of the vertices in the local reference frame. The test statistic, v, is computed 

through Equation (40), with δ and P* as defined in Equations (39) and (36), respectively, and T 

being the transpose. 

v = δT ∙ P∗ ∙ δ                                                         (40) 

The test statistic follows a central qui-squared with degrees of freedom equal to the 

difference between the number of observations (including the local reference frame) – m – and 

the number of vertices – n. Let the null hypothesis H0 be: “The observations fulfil the quality 

criteria” against the alternative hypothesis HA: “The observations are affected by gross or 

unexpected systematic errors”. The null hypothesis is accepted, for a level of significance, α, if 

the value of the test statistic is inside an acceptance region, which corresponds to the interval 

[0,q], where q is the quantile of probability (1 – α) of a central qui-squared with (m – n) degrees 

of freedom. On the other hand, H0 is rejected and HA is accepted in case the test statistic belongs 

to the interval ]q,+∞[.   

4.3 Application to case study  

4.3.1 Description of study area 

The method proposed in section 4.2 was tested for displacement measurement at Baixo 

Sabor dam and the slopes around its reservoir, located in Torre de Moncorvo municipality, 

Bragança district, in the northeast of Portugal. This dam was chosen as case study because its 

geodetic monitoring system includes a GNSS monitoring sub-system, which makes it 

appropriate for the implementation of the proposed strategy. 

Baixo Sabor is a concrete arch dam, located at Sabor River, which is a tributary of Douro 

River (Figure 74). The dam is 123 m high above its foundation and its crest is 505 m long 

(LNEC, 2017b). Baixo Sabor dam is part of Baixo Sabor hydroelectric scheme, which also 

includes Feiticeiro dam, located 9 km downstream of Baixo Sabor. The scheme is expected to 

produce an average of 444 GWh of energy per year. Baixo Sabor reservoir alone can store a 

volume of 630 hm3 and occupies an area of 2820 ha, when it reaches its full storage level (Grupo 

Cimpor, 2020). 
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Figure 74 – Baixo Sabor concrete arch dam (LNEC, 2017b). 

Baixo Sabor dam is operating since 2016. Being a recently built dam, it is regularly 

monitored through embedded equipment. The geodetic monitoring system is composed by three 

parts. The altimetric monitoring sub-system considers five precision levelling lines, one on the 

dam crest and the remaining ones at the visiting galleries. The planimetric monitoring sub-

system is formed by three traverses at visiting galleries. The number of object points in each 

levelling line / traverse varies with the crest / visiting gallery extension and the reference points 

are located at rock massifs (LNEC, 2016). Finally, the GNSS monitoring sub-system comprises 

three GNSS antennas on the dam crest and a reference antenna at a stable location on the banks 

(Figure 75). Displacements at the dam antennas are computed with respect to the reference one, 

in relative mode. The GNSS equipment is formed by Leica GMX902 GNSS receivers, which 

operate together with GNSS Leica AR20 antennas equipped with conic protections. The three 

crest antennas are located close to plumb lines (named FP), with one of the antennas being close 

to the crest centre (FP3M) and the other two being one at the structure left side (FP2M) and the 

other at the right side (FP4M). The two lateral antennas are installed on pillars built on purpose, 

while the central one is on the cover of the floodgate control building. The reference antenna 

(REFM) is installed on the right bank, on a pillar purposefully built. The reference antenna is 

located around 500 m away from the dam at an altitude 270 m higher than the dam crest, as this 

structure was required to be located at a stable location and with good visibility to the satellites 

(LNEC, 2017b). Data from all GNSS stations are collected and processed automatically. The 

used software is Spider, from Leica Geosystems, and hourly solutions are continuously 
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computed, being low-pass filtered with a moving average in order to reduce displacement 

uncertainty while keeping the large observation frequency (LNEC, 2018).        

 

Figure 75 – Location of GNSS antennas on the dam and its vicinity; blue polygon identifies the area 

for analysis. Background images are optical orthophotographs (2018) provided by the Portuguese 

General Directorate of the Territory through GINS. Coordinate grid in WGS84.   

The ROI for the method application is a neighbourhood of the dam with an area of 2 km2, 

which includes the GNSS reference antenna and the slopes facing the reservoir. The main 

lithology inside the ROI is granite, from three distinct types: Granite of Estevais – Cabanas de 

Baixo, Granite of Amêdo – Estação de Larinho and Granite of Zêdes – Cabeça Boa – 

Especiarias. Desejosa Formation, composed by phyllites interbedded with metagraywackes and 

meta-quartz wackes, is also represented. Furthermore, there are also some veins of quartz and 

aplite (Figure 76). Slope inclinations are large, between 30º and 40º and the valley is 

asymmetric, suggesting the occurrence of rockslides of granite blocks at the left bank in the 

past (Sousa, 2011).    
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Figure 76 – Map of the geological formations at Baixo Sabor ROI, from the geological map by the 

National Laboratory for Energy and Geology, at 1:50000 scale. Coordinate grid in WGS84. 

4.3.2 PSI processing 

The time interval considered in this study were the two first years of operation of the GNSS 

monitoring sub-system, between June 2016 and May 2018. During this time interval, the first 

impoundment of the reservoir was already concluded and there were only small magnitude 

cyclic variations in the water level. 

The images used in the study were from SAR-C sensor on board of Sentinel-1A satellite, in 

IW swath mode, from the descending pass with relative orbit 52 and a revisit period of 12 days. 

The dataset presented a single gap on the image acquisition, which corresponded to 59 scenes 

available for the PSI processing (Figure 77). The ROI was located at subswath 2 and 

corresponded to an incidence angle of 38.3º. The satellite heading was of 191º. The scenes were 

provided in SLC format. The DEM used in the processing was the EU-DEM, like for the case 

studies evaluated in Chapter 3. 

InSAR displacements for the study were computed through the PSI processing implemented 

in SARPROZ©  software (Perissin et al., 2011). An area of 14 km x 14 km, centred at the dam, 

was selected for the analysis and the scene acquired in June 7, 2017 was selected as master 

image, since it minimised normal and temporal baselines. Slave images were coregistered with 

respect to the master geometry. A GCP was manually chosen to align the SAR data with the 

DEM, which was used to remove flat Earth and topographic components of phase. Similar to 

the procedures followed in Chapter 3, APS was removed from phase, from which residual 

height and cumulative displacements were estimated for each candidate to PS, based on a non-

linear displacement model. As the dam was expected to display seasonal displacements and the 
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slopes, in case of eventual instability, might present discontinuities in their displacement time 

series, the usage of a non-linear displacement model was more appropriate for the analysis than 

a linear one. Scatterers with temporal coherence greater or equal to 0.9 were considered as PSs. 

Displacements were referred to a reference point outside of the reservoir area of influence, 

located 3.7 km downstream of the dam. Displacement time series along LOS were achieved for 

all 59 epochs. 

 

Figure 77 – Distribution of normal and temporal baselines for the SAR images available for Baixo 

Sabor ROI. 

4.3.3 Network analysis 

The network analysis proposed in section 4.2 was implemented in R software (R Core Team, 

2018) and tested using the PSI displacements achieved through the procedure followed in the 

previous section. PSI displacements for each PS were determined for the 59 epochs of SAR 

image acquisition and the first observation epoch (June 12, 2016) was the reference epoch for 

both PSI and network analysis.  

A reference in space for PSI processing was also defined. A PS located close to the GNSS 

reference antenna, with average velocity19 close to zero and high temporal coherence was 

selected and its displacement time series was removed from the displacement time series of all 

PSs inside the ROI. Therefore, all PS displacements became relative to the reference PS (PSref), 

                                                 
19 Absolute value of the trend of a linear model adjusted to the displacement observations. 
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where the absence of relative motion with respect to the reference GNSS antenna was assumed. 

This procedure also influenced the values of a priori variances of the PS displacements, as the 

displacement variance of PSref contributed to the other PSs’ displacement variances. These were 

determined through Equation (28) in section 4.2, where p was any PS considered for the 

analysis and q was PSref.    

The GNSS reference antenna was selected to be the origin of the reference system defined 

in section 4.2, which implied that coordinate L of this point was zero for all SAR scenes’ 

acquisition epochs to be analysed.  

In this research, the minimum constraint solution was considered, in which the GNSS 

reference antenna was the single point at the local reference frame. The constraint introduced 

in the network by attributing a GNSS baseline to a pair of PSs located close to the GNSS 

antennas was added. PSref and a PS close to the GNSS antenna FP2M, at the left part of the dam 

crest, were selected as the PS pair and the relative displacements between the GNSS reference 

antenna and FP2M, after being filtered by a weekly moving average and projected to SAR LOS, 

were attributed to the PS pair. 

These implementation choices were reflected in the definition of the matrices and vectors 

mentioned in section 4.2. Matrix C (Equation 26) was formed by a single row, filled with zeros, 

except for the entry corresponding to the GNSS antenna, which was set to 1. Vector d (Equation 

27) turned into a scalar value corresponding to the displacement of the GNSS reference antenna 

for the epoch being analysed in that iteration. As the point was the origin of the reference 

system, this value was zero for all epochs. The covariance matrix of the local reference frame 

(Q-1) turned into a scalar value, which corresponded to the variance of the displacement of the 

GNSS reference antenna. This value reflected the confidence the user had in the point stability. 

In this case, as the antenna was installed on a pillar purposefully built and located at a place 

considered stable by geotechnical experts, a small variance was attributed (0.01 mm2). This 

variance was also considered for determining the variances of the double-differences in which 

the GNSS reference antenna was at one of the connections’ extremities in order to build the 

covariance matrix of the observations.  

This procedure was performed iteratively for 58 SAR image acquisition epochs and enabled 

the determination of adjusted LOS displacement time series for all network vertices and their 

respective variances.  

The precision analysis of the network required the definition of a tolerance value to compare 

to the amplitude of the error interval. A tolerance of 4.0 mm was considered. A level of 

significance of 0.05 was used.        
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4.3.4 Displacement analysis 

The adjusted displacements and respective variances can be used to retrieve information on 

the dam and slope behaviour. In the case of the dam, it is usual to consider three directions of 

interest for displacement monitoring: vertical, radial (perpendicular to the dam surface) and 

tangential (tangent to the dam surface). However, a single SAR geometry like the one used in 

this study (descending pass) does not enable the determination of three-dimensional 

displacements. Therefore, a sensitivity analysis of the LOS direction with respect to the 

directions of interest for the dam monitoring may be useful in order to improve the 

interpretation of the LOS adjusted displacements. 

In this research, positive vertical displacement corresponded to upward movement, positive 

radial displacement was movement towards upstream and positive tangential displacement was 

movement from the right to the left bank. Sensitivities were determined through the partial 

derivatives of LOS displacement with respect to displacements along the directions of interest. 

Let θ be the incidence angle, αh be the satellite heading, λ be the azimuth of the direction 

perpendicular to the direction of interest on the horizontal plane, δ be the azimuth of the 

tangential direction at a certain point on the dam, dLOS be the adjusted LOS displacement, dH 

be the horizontal component of displacement along a direction of interest, dv, dr and dt be the 

vertical, radial and tangential displacement components, respectively. According to Dentz et al. 

(2006), displacement along a direction of interest at the horizontal plane can be related to 

Easting, dE, and Northing, dN, displacement components through Equations (41) and (42): 

dE = dH ∙ cos λ                                                        (41) 

dN = −dH ∙ sin λ                                                      (42) 

Replacing Equations (41) and (42) in Equation (11) from section 3.2, Equation (43) was 

achieved, assuming all horizontal displacement occurred along the direction of interest on the 

horizontal plane: 

dLOS = dv ∙ cos θ − dH ∙ sin θ ∙ cos(λ − αh)                               (43) 

If the direction of interest on the horizontal plane was the direction radial to the dam at a 

certain point in the structure, λ = δ − π and dLOS was given by Equation (44): 

dLOS = dv ∙ cos θ + dr ∙ sin θ ∙ cos(δ − αh)                               (44) 

In case the direction of interest on the horizontal plane was the direction tangent to the dam 

at a certain point in the structure, λ = δ −
𝜋

2
 and dLOS was given by Equation (45): 

dLOS = dv ∙ cos θ − dt ∙ sin θ ∙ sin(δ − αh)                               (45) 
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Therefore, from the stated above, sensitivities to the directions of interest for dam monitoring 

were determined through Equations (46 – 48): 

Sv =
∂dLOS

∂dv
= cos θ                                                      (46) 

Sr =
∂dLOS

∂dr
= sin θ ∙ cos(δ − αh)                                            (47) 

St =
∂dLOS

∂dt
= −sin θ ∙ sin(δ − αh)                                          (48) 

where Sv, Sr and St were the sensitivities of LOS direction to vertical, radial and tangential 

directions, respectively. This analysis was limited to PSs located on the dam crest, which were 

identified through their planimetric location on an optical satellite image and by applying a 

threshold on altitude. 

Regarding the slopes’ behaviour, it was assumed displacement occurred along the slope 

direction, which enabled the estimation of the displacement magnitude in that direction through 

a projection of LOS adjusted displacements. Let sun be the unit vector of the slope direction and 

lun be the unit vector of the LOS direction. Positive values of sun were in the uphill direction and 

positive values of lun were in the satellite direction. The vectors were defined as in Equations 

(49 – 50): 

sun=[–cos(ε).sin(α) –cos(ε).cos(α) sin(ε)]T                                     (49) 

lun=[–sin(θ).cos(αh) sin(θ).sin(αh) cos(θ)]T                                    (50) 

where ε was the slope inclination, α was the slope orientation, θ and αh were defined as for 

Equation (43). Slope inclination and orientation could be determined from a DEM through 

a GIS software. In this case, ArcGIS© was used to compute the slope properties from the 

EU-DEM. Similar to Chapter 3, the slope attributed to a certain pixel was the largest slope 

observed between that pixel and its neighbours. Slope orientation was provided through an 

aspect image, which indicated each pixel orientation, increasing clockwise from the north. 

Displacement along the slope direction, dslope, with positive values in the uphill direction, 

was determined through Equation (51), following Schlögel et al. (2015): 

dslope =
dLOS

sun∙lun
                                                         (51) 

where dLOS was as previously defined and the symbol (·) represented the inner product between 

two vectors. Assuming dLOS followed a normal distribution (Colesanti et al., 2003), the variance 

of displacement along the slope was determined from the variance of adjusted LOS 

displacements through the law of variance-covariance propagation, as in Equation (52): 

σdslope

2 =
σdLOS

2

(sun∙lun)2
                                                    (52) 
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with σdslope

2  being the variance of displacement along slope and σdLOS

2  being the variance of 

displacement along LOS. 

This procedure was repeated iteratively for all SAR acquisition epochs, except for the 

reference one (58 iterations), originating time series of displacement along the slope direction 

for each vertex in the network and the displacement variances. 

The number of network vertices on the slopes might be large; thus, the visual inspection of 

the slope displacement time series might be subjective and time consuming. In order to better 

identify the behaviour patterns on the reservoir banks, the slope displacement time series were 

evaluated through the RADAR interpretation method proposed in Chapter 3. The 1D version 

of the algorithm was applied to the slope displacement time series, which were clustered using 

the complete linkage aggregation method.   

4.4 Results 

This section presents the results achieved through the application of the proposed network 

analysis to integrate PSI data into the GNSS monitoring sub-system for Baixo Sabor dam and 

surrounding slopes.  

4.4.1. PSI processing enabled the detection of 24501 PSs, which resulted in a density of 125 

PSs/km2. There were gaps on the PS cover at water bodies and steep slopes, as can be observed 

in Annex A.2 Figure 157. Cumulative displacements varied from 80.2 mm away from the 

sensor to 51.3 mm towards it, with some PSs close to water reservoir presenting cumulative 

displacement in the order of centimetres. The reference point of the PSI processing was located 

3.7 km downstream of the dam, being outside the reservoir area of influence. 

4.4.2. The network analysis was restricted to a smaller region of interest, with an area of 

2 km2, which included the dam, the GNSS reference antenna and slopes facing the reservoir. 

There were 174 vertices in the network, from which 173 were PSs and one was the GNSS 

reference antenna (Figure 78). Cumulative displacement at the ROI ranged from 27.4 mm 

away from the sensor at the left bank to 33.1 mm towards it at the right one. The Delaunay 

triangulation enabled the connection of all vertices in the network, with each point 

belonging to at least three connections. A total of 508 double-differences were observed 

through this method.  
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Figure 78 – LOS cumulative displacement before the adjustment for PSs in the network. Coordinate 

grid in WGS84. 

Precision and robustness analysis were performed for the achieved network in order to verify 

if it complied with the requirements for network admissibility. The a priori LOS displacement 

variances were used to determine the L coordinate variances for each vertex, from which the 

quantile of probability 0.975 was computed for a normal distribution with zero mean and 

variance equal to the variance of the vertex L coordinate. The quantile corresponded to the 

amplitude of the error interval and it was represented for each vertex at Figure 79. The lowest 

amplitude of error interval was achieved for the GNSS reference antenna (0.1 mm) and those 

from the PSs varied from 1.9 mm to 3.3 mm. Therefore, there was a 0.95 probability of the 

displacement error being lower than 3.3 mm at all vertices. As all points presented amplitude 

of error interval below the selected tolerance of 4.0 mm, it was possible to conclude the network 

was admissible in terms of precision for that tolerance. The amplitudes of error interval for each 

vertex are in Annex A.2 Table 19.   
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Figure 79 – Amplitude of error interval for precision analysis. Coordinate grid in WGS84. 

Robustness analysis was executed based on the local redundancy numbers of each 

observation, which varied between 0.463 and 0.785. Figure 80 shows the local redundancy 

numbers were between 0.55 and 0.75, for most of the connections, with only four observations 

having local redundancy number below 0.5.   

 

Figure 80 – Local redundancy numbers for each connection / observation in the network. 

The connections with lower local redundancy numbers were located predominantly on the 

borders of the network (Figure 81), as usual in geodetic networks (Seemkooei, 2001). In case 

the observations were affected by unexpected errors, the displacement errors would probably 
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be concentrated in the vertices belonging to these connections. The average of local redundancy 

numbers was 0.66, above the threshold of 0.6, and their standard deviation was 0.05, below the 

threshold of 0.1. Therefore, the network fulfiled the robustness requirements and it was 

admissible in terms of both precision and robustness.    

 

Figure 81 – Spatial distribution of the local redundancy numbers for each connection. Coordinate grid 

in WGS84. 

As the network was robust, the quality control of the observations could be performed. The 

value of the quadratic form for each observation epoch is presented in Annex A.2 Table 20. 

The critical value considered for the analysis was the quantile of probability 0.95 of a central 

qui-squared with 335 degrees of freedom, which corresponds to 378.7. Values of the quadratic 

form were lower than the critical value at all observation epochs. Therefore, there were no gross 

errors at the observations and the network quality was assured. 

4.4.3. After the verification of the network admissibility and of the observations’ quality, the 

displacements achieved through the network adjustment were used for structure monitoring. 

There were 17 PSs on the dam crest (Figure 82). Except for a segment of approximately 100 m 

at the right side of the structure and close to the centre, there was a vertex around every 40 m. 

Cumulative displacement along LOS from original PSI technique varied between 7.2 mm away 

from the sensor and 5.7 mm towards it, with respect to PSref close to the GNSS reference antenna. 

After the network adjustment, cumulative LOS displacements presented values from 8.1 mm 

away from the sensor to 4.9 mm towards the sensor with respect to the GNSS reference antenna. 

Vertices at the dam central part tended to move away from the sensor during the two years of the 
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study, while vertices with displacements towards the sensor were mostly located close to the 

abutments. A VHR optical image from 2018 showed three vertices at the left bank abutment were 

PSs located on lamp posts; thus, the observed displacements did not reflect the structure behaviour 

and they were not further analysed.   

 

Figure 82 – Original PSI (a) and adjusted cumulative LOS displacements (b) for vertices on the dam 

crest. Coordinate grid in WGS84. 

For a better understanding of the structure behaviour, the displacement time series of the 

vertices were analysed after being grouped according to their distance to the dam centre (Figure 

83). The white rectangle represented zone 1, both yellow rectangles corresponded to zone 2 and 

both cyan rectangles presented zone 3. Vertices inside rectangles displaying the same colour were 

analysed together. The original LOS displacement time series are presented in Annex A.2 Figure 

158 and the adjusted ones in Figure 84. The comparison between the original and the adjusted 

displacement time series showed that both results were similar; however, the adjusted time series 

were slightly noisier than the original ones, possibly due to the GNSS influence. This topic will 

be further addressed in section 4.5. 

Zones 1 and 2 contained vertices presenting oscillations with annual period. The dam moved 

towards the sensor from spring to fall and away from it at the remaining part of the year. The 

amplitude of these oscillations was variable according to the vertices’ location on the structure. 

While vertices in zone 1 presented an amplitude around 10 mm, for the vertices in zone 2, this 

parameter was of 8 mm. On the other hand, the vertices in zone 3 did not present strong 

oscillations, being mostly affected by noise.  
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Figure 83 – Division of the dam crest into zones: zone 1 – white rectangle, zone 2 – yellow rectangles, 

zone 3 – cyan rectangles. Coordinate grid in WGS84.  

 

Figure 84 – Adjusted LOS displacement time series for the vertices on each zone. 

Concrete dam behaviour is usually influenced by temperature and water loads. Figure 85 

presents the evolution of air temperature and water level at the reservoir during the time interval 
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of the study. Portugal has a Mediterranean climate, with the summer being hot and dry, while 

winter is cold and wet. The highest temperatures are observed between July and September, 

while the lowest occur from December to February. At the time interval considered in this 

study, the first impoundment of the reservoir was already finished and only cyclic water level 

variations, of small amplitude, occurred. Comparing the time series from Figure 84 and Figure 

85, a relationship between the seasonal displacements of vertices in zones 1 and 2 and air 

temperature was identified. A rise in the air temperature led to displacement towards the sensor, 

while a decrease in temperature conducted to displacement away from it. However, the change 

in displacement pattern occurred around two months after the change in the air temperature, 

which is known as thermal inertia and is due to the time the structure takes to react after the 

environmental change. This delay was according to the expected behaviour of the dam and it 

was also found while using other monitoring techniques, as it will be analysed later. For this 

particular time interval, the changes in water level did not seem to influence the dam behaviour, 

possibly because only small amplitude changes occurred. 

 

Figure 85 – Weekly moving averages of air temperature (top) and water level (bottom).   
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4.4.4. The adjusted LOS displacements did not enable the determination of displacements 

along the directions of interest for dam monitoring, but the sensitivity analysis of LOS direction 

with respect to the directions of interest aided in the data interpretation. Sensitivity to vertical 

displacements was homogeneous for the whole crest, as it depended only on the incidence 

angle, which could be considered constant for the dam extension. On the other hand, 

sensitivities to radial and tangential displacements were variable along the crest due to their 

relation to the azimuth of the direction of interest (Figure 86).  

 

Figure 86 – Sensitivity of LOS adjusted displacements to displacements along the vertical (left), radial 

(centre) and tangential (right) directions of the dam. Coordinate grid in WGS84. 

Sensitivity to vertical displacement presented a constant value of 0.8, which meant 1 mm of 

uplift at the dam was detected as 0.8 mm of displacement towards the sensor. Similarly, 1 mm 

of settlement corresponded to 0.8 mm of movement away from the sensor.  

Sensitivity to radial displacement increased from the right bank to the left one. It was close 

to zero at the right bank abutment and it increased to 0.6 at the left bank abutment. The 

sensitivities were positive for the whole crest, which meant displacement in the upstream 

direction was detected as displacement towards the sensor and displacement in the downstream 

direction corresponded to displacement away from the sensor. Close to the right bank abutment, 

the sensitivity was close to zero, which meant that in case some behaviour anomaly in radial 

direction occurred at that area, this SAR geometry would not be able to detect it.  

Sensitivity to tangential displacements had the opposite behaviour than sensitivity to radial 

ones. Sensitivity increased from the left bank abutment to the right one, where it reached a 

maximum sensitivity of 0.6. Sensitivity values were positive for almost the whole dam crest, 
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with only a small segment at the left bank abutment presenting negative values. For the crest 

extension with positive sensitivities, displacement from the right to the left bank was detected 

as movement towards the sensor and displacement from the left to the right bank was seen as 

movement away from it. At the segment with negative sensitivity, the displacement directions 

would be interpreted in the opposite way; however, the sensitivity magnitude was so low that, 

in practice, LOS displacements would not be able to detect any tangential displacement at 

that segment.   

According to the performed sensitivity analysis, vertices in zones 1 and 2 were located at 

crest segments with larger sensitivity to vertical and radial displacements than to tangential 

displacements. Therefore, the seasonal behaviour presented in Figure 84, possibly influenced 

by temperature changes, might be a mixture of vertical and radial displacements. In case the 

detected displacement corresponded to vertical displacement, an increase in temperature would 

mean an uplift of the structure, while a decrease would correspond to a settlement. On the other 

hand, if the displacement occurred mainly in the radial direction, an increase in temperature 

would signify displacement towards upstream and a decrease would be movement towards 

downstream. According to the GNSS data, Baixo Sabor dam presented seasonal radial 

displacements with average amplitude around 15 mm (LNEC, 2017b), while vertical 

displacements did not show any clear pattern. Therefore, it was likely the seasonal 

displacements detected in LOS direction were mainly due to the projection of the radial 

displacements into the SAR geometry. In conclusion, the observed data were compatible to the 

dam thermal expansion.   

4.4.5. The network analysis enabled the determination of a posteriori variances for the 

adjusted LOS displacements. The a priori standard deviations of the LOS displacements at 

vertices on the dam ranged from 1.5 mm to 2.4 mm. After the network adjustment, the a 

posteriori standard deviations were between 1.6 mm and 2.5 mm (Figure 87). Despite the 

increase in standard deviation at some vertices, there were also points where a posteriori 

standard deviation became lower than a priori one. Annex A.2 Table 21 displays a priori and 

a posteriori standard deviations for the vertices on the dam. 

The displacements achieved through the network analysis were validated by comparing 

the adjusted displacements at a network vertex and the 3D GNSS displacements of a nearby 

GNSS antenna after filtered by a weekly moving average and projected to LOS (Figure 88). 

The points from both techniques showed similar seasonal behaviour. A Welch t test20, which 

                                                 
20 As Welch t test is extensively used in Chapter 5, it is further described there. 
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compares sample averages for samples with distinct variances, was used to compare the 

original PSI and the adjusted displacements to the GNSS data (Welch, 1938). The null 

hypothesis for this test was H0: “The average value of the adjusted displacements was 

equivalent to the average value of the GNSS displacements” and was tested against the 

alternative hypothesis HA: “The average value of the adjusted displacements was different 

from the average value of the GNSS displacements”, to a level of significance of 0.05. The 

test statistic took the value of -0.0651 and it was compared to the critical value achieved from 

a t-Student with 59 degrees of freedom and a level of significance of 0.05, which presented 

the value 2.0010 and led to an acceptance region between -2.0010 and +2.0010. Threfore, as 

the test statistic was inside the acceptance region, the null hypothesis could be accepted and 

it was concluded that the average of the adjusted displacements could be considered equal to 

the average of the GNSS ones, to a level of significance of 0.05. The same test was executed 

to compare the original PSI displacements (after being referred to PS ref) to the GNSS ones, 

where the test statistic took the value -3.0411. The acceptance region for the test was the same 

interval as in the previous test; thus, the test statistic was outside of it, leading to the rejection 

of the null hypothesis and acceptance of the alternative one. Therefore, the average value of 

the original PSI displacements cannot be considered equal to the average value of the GNSS 

displacements, to a level of significance of 0.05.  

 

Figure 87 – A priori (a) and a posteriori (b) standard deviations of LOS displacements for vertices on 

the dam crest. Coordinate grid in WGS84. 

The a posteriori standard deviation of the analysed network vertex was 2.0 mm. For the 

particular case of this dam, GNSS had an uncertainty of 0.4 mm at both radial and tangential 

directions and 7 mm at the vertical direction for daily solutions (LNEC, 2017b). The large 

magnitude of the vertical error of GNSS might be due to the altitude difference between the 
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reference antenna and the antennas on the dam crest (around 270 m), which corresponded to 

distinct atmospheric conditions at both points that perhaps were not correctly modelled by the 

commercial software used for the GNSS processing. The vertical error was then propagated to 

the LOS direction, resulting in an uncertainty of 5.5 mm.   

 

Figure 88 – LOS displacement time series of the original PSI, adjusted and GNSS LOS displacements. 

GNSS was filtered with a weekly moving average. 

4.4.6. Regarding the slope monitoring, the network contained 157 vertices on the slopes 

inside the ROI, from which one was the GNSS reference antenna that formed the local reference 

frame. There were 83 vertices on the right bank and 74 on the left one. At the left bank, there 

was a gap in the point cover of the slope, due to the inexistence of PSs on that area, possibly 

because it might be in the shadow of the SAR signal.The original PSI displacements on the 

slope vertices ranged from 27.4 mm away from the sensor to 33.1 mm towards it. Despite these 

extreme values, occurred at single points, the remaining PSs presented cumulative 

displacements between 6.4 mm away from the sensor and 10.6 mm towards it. After the 

proposed network adjustment, the adjusted displacements varied from 27.9 mm away from the 

sensor and 32.8 mm towards it, with most points with adjusted cumulative LOS displacement 

between 7.1 mm away from the sensor and 10.0 mm towards it (Figure 89).  

 

Figure 89 – A priori (a) and a posteriori (b) cumulative LOS displacement at vertices on the slopes. 

Coordinate grid in WGS84. 
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A posteriori variances for all vertices were also determined, which are presented in Annex 

A.2 Table 22. While the a priori  standard deviations were equally distributed on the ROI, the 

a posteriori ones increased with the distance to the GNSS reference antenna until a maximum 

of 2.8 mm (Figure 90), similar to traditional geodetic monitoring systems when there is only 

one point in the local reference frame. This resulted in larger standard deviations at the left bank 

than at the right one.   

 

Figure 90 – A priori (a) and a posteriori (b) standard deviation of LOS displacements at network 

vertices on the slopes. Coordinate grid in WGS84. 

Adjusted LOS displacements and the corresponding a posteriori variances were projected 

and propagated, respectively, into the slope direction of each vertex (Figure 91). The 

cumulative displacement along slope apparently ranged from 558.2 mm downhill to 918.6 

mm uphill, with the largest values achieved for the right bank. Unlike the standard deviations 

of adjusted LOS displacements, standard deviations of displacements along the slope 

direction were larger at the right bank than at the left one and varyed between 0.3 mm and 

479.8 mm (Figure 91). The large displacements along slope and respective standard 

deviations at the right bank resulted from the relationship between the LOS direction and the 

slope configuration at the points, as some combinations of slope inclination and orientation 

led to sun·lun values close to zero (Equations 51 and 52 in section 4.3.4), as seen in Figure 92. 

All points at the left bank presented values of sun·lun above 0.5, while points at the right bank 

tended to have negative values, with a few of them being close to zero. In order to avoid 

division by zero, a threshold was used to select the points to be further analysed. Only those 

presenting absolute value of sun·lun above 0.25 were considered for slope monitoring. This 

criterium led to the selection of 98 vertices located at both banks (Annex A.2 Figure 159).    
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Figure 91 – Cumulative displacement along the slope direction (a) and standard deviation of 

displacement along the slope direction (b). Coordinate grid in WGS84. 

 

Figure 92 – Values of sun·lun (factor) as a function of slope inclination (ᵒ) and slope orientation (ᵒ). 
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The time series of displacement along the slope direction of the selected points were 

analysed through the RADAR interpretation method proposed in Chapter 3, using the 

parameters in Annex A.2 Table 23. The automatic solution provided by the algorithm consisted 

on two clusters, where one of them was composed by a single point. In order to identify distinct 

behaviour at the ROI, the scale of the analysis was increased and a solution with four clusters was 

manually selected.  

Cluster 1 contained 80% of the points, which were spread throughout both banks (Figure 

93). These points presented a stable behaviour during the time interval of the analysis, not 

showing large magnitude displacements (Figure 94). Therefore, a separated analysis for each 

bank was not performed.  

 

Figure 93 – Spatial distribution of the four clusters on the slopes. Coordinate grid in WGS84. 

Cluster 2 was formed by 18% of the points and it was also represented at both banks. The 

representative time series presented downhill displacement during the first two months (around 

5 mm) and it was inspected whether distinct behaviour occurred at each bank (Figure 95). The 

points at the left bank moved downhill until mid-July and then they stabilised around 4 mm 

away from the original position. On the other hand, the points at the right bank moved downhill 

around 10 mm by the end of September and then they stabilised. The average time series for 

the points at the right bank was noisier than for those at the left bank, possibly due to the smaller 

absolute values of sun·lun at that bank. 
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Figure 94 – Time series of displacement along the slope representative of each cluster; crosses are the 

average time series plus and minus one standard deviation.   

 

Figure 95 – Average displacement along the slope direction for points in cluster 2 at each bank.  

Cluster 3 was an isolated point at the right bank, located far from the reservoir. This point 

presented downhill displacement between November 2016 and February 2017 with a 
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magnitude of 11 cm and then stabilized. The large achieved displacement might result from 

the small sun·lun value at the point’s location (0.27), which was close to the selected threshold. 

Nevertheless, the method was able to identify a point with distinct behaviour and to isolate it 

for further analysis. 

Cluster 4 was also composed by a single point. The point was located at the left bank and 

close to the reservoir. It moved downhill around 36 mm between August and December 2017 

and then it stabilised until the end of the time interval of the study. 

Clusters 2, 3 and 4 presented downhill displacements. Comparing the representative time 

series of the three clusters with the variation of the water level at the reservoir (Figure 85), it 

was verified the largest displacements occurred at periods when the water level was stable or 

decreasing. The fast decrease of the water level may pose a threat for the stability of low 

permeability slopes (Paronuzzi et al., 2013), such as those composed of granite. Clusters 2 and 

4 presented downhill displacements during the drawdown of the water level, with cluster 4 

being the one with the largest probability of being affected by the load decrease, due to its 

proximity to the reservoir. The downhill movement of cluster 3 occurred during a period of 

very small variations on the water level and, as the cluster is far from the reservoir, it was not 

probable that the changes in water level were the cause for the displacements. By the end of the 

study time interval, in May 2018, the four analysed clusters presented stable behaviour.    

4.5 Discussion 

The present Chapter proposed a method for the integration of PSI observations on a geodetic 

monitoring sub-system based on GNSS and applied it to a concrete dam and the slopes around 

its water reservoir. 

4.5.1. PSI and GNSS measurements were combined through a network, which was verified 

to be admissible in terms of precision and robustness. The network was admissible to precision 

for a tolerance of 4.0 mm and a level of significance of 0.05, which meant there was a 

probability of 0.95 that the displacement error at each point was below that tolerance. Regarding 

the robustness, the Delaunay network enabled enough redundancy to fulfil the requirements. 

This allowed the execution of the quality control of the observations, where it was verified that 

there were not unexpected errors.  

The usage of double-differences between PSI and GNSS measurements as observations 

allowed the method to be performed fully remotely. Besides, it also enabled the mitigation or 

even the elimination of atmospheric residuals or of the reference point effect. The introduction 
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of GNSS double-differences into the network allowed the determination of adjusted LOS 

displacements, which proved to be closer to the GNSS measurements, considered as reference, 

than the original PSI observations. However, this strategy added some noise to the adjusted 

displacements, as, in this particular case study, the GNSS displacements along LOS direction 

presented more noise than the PSI measurements. 

4.5.2. The local reference frame was defined using the minimum constraint solution, which 

consisted on the usage of a single point – the GNSS reference antenna. This led to the increase 

of a posteriori variance with the distance to the reference point. This limitation could be 

overcome recurring to a redundant local reference frame, with more than one reference point 

constraining the vertices’ displacements. Those reference points should be installed at stable 

locations of the ROI (based on geotechnical experts’ advice) and distributed in order to 

minimise a posteriori variances. This could be achieved by installing the benchmarks at the 

locations where larger a posteriori variances were obtained when using the minimum 

constraint solution.  

These benchmarks may be any points with known LOS displacements that fulfil the 

previously mentioned requirements. GNSS antennas may be used, if available. However, the 

large costs associated and their difficult deployment can limit their usability. Artificial 

reflectors to SAR signal, either passive or active, may be acceptable alternatives. Passive 

reflectors are low cost and do not require electrical power. Their main limitations are the large 

dimensions, which may turn them difficult to install on difficult access locations, and their 

exposure to vandalism. The only additional equipment required would be a well-founded 

concrete block to be used as a support and to assure the stability of the installation. Maintenance 

would be required in order to remove leaves or other dirt. This question will be further 

addressed on Chapter 5. On the other hand, active reflectors, such as CAT, are small and easy 

to transport (Mahapatra, 2015). They require electrical power, which can be provided by a 

battery. Maintenance operations include battery recharge and verification of electrical 

components of the device. While a GNSS system cost several thousand euros, the expenses 

associated to artificial reflectors are in the order of hundreds of euros.   

4.5.3. The proposed method enabled the determination of a posteriori variances for the 

displacements along LOS direction. In traditional geodetic techniques, a priori variances of the 

observations are based on indications from the equipment manufacturer. However, systematic 

and random errors during the observation procedure (related to the equipment, to environmental 

conditions or to the operator) affect the observations’ quality (LNEC, 2001). Therefore, 

operating procedures that help to minimise the errors are designed. Redundant measurements 
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enable the determination of corrected observations and their corresponding a posteriori 

variances, which are then propagated to the parameters to be determined (the displacements), 

allowing the computation of their variances, as well.  

In this study, a priori variances of the observations reflected the user confidence regarding 

the GNSS antenna stability, in case of points occupied by GNSS devices. For points 

corresponding to PSs, a priori variances depended on the PS temporal coherence. The 

redundant observation of each vertex at the network and the usage of double-differences as 

observations enabled the mitigation of some errors (atmospheric and reference point effects) 

and the determination of adjusted displacements and their respective variances.  

4.5.4. The fact that the observations were performed exclusively along LOS was a limitation 

of the proposed method, especially relevant for eventual applications to SHM, where the 

directions of interest for the monitoring depend on the structure orientation. In the particular 

case study analysed in this Chapter, this limitation was attenuated by the execution of sensitivity 

analysis or the projection of the LOS displacements into probable movement directions.  

The presence of noise in the data was another limitation of the method, as the noise might 

mask possible signs of behaviour anomalies. The configuration of the four GNSS antennas 

contributed to noise presence in the data. The large altitude difference between the reference 

antenna and the ones on the crest hindered the determination of the displacement vertical 

component due to atmospheric differences. This might not be a problem for the usual dam 

monitoring using this technique, as only horizontal displacements were sought (being 

determined with sub-millimetric precision). However, the GNSS observations projected 

into LOS direction were affected by the uncertainty on the vertical displacement component. 

As LOS double-differences were used to constrain the network adjustment, the noise in the 

data propagated throughout the network, affecting the adjusted displacements. This problem 

might be mitigated during GNSS processing, by using a software capable of dealing with 

the atmospheric differences at distinct altitudes or by post-processing the data through low-

pass filters.  

Gaps in the network cover of the slopes were identified on the left bank, probably being 

located on the shadow of the SAR signal, leading to the absence of PSs. The used SAR images 

were acquired from a descending pass of the satellite; thus, slopes facing northwest and with 

large inclinations were likely to be affected by shadows. This might be a recurrent problem to 

the application of the method to reservoir banks. Adding GNSS stations or artificial reflectors 

would not solve the problem, as the steep slopes might reduce the amount of visible GNSS 

satellites to insufficient numbers and SAR artificial reflectors obviously would not be able to 
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receive the signal at a shadow area. A possible solution might be the usage of SAR images from 

distinct acquisition geometries, even from a different sensor, as long as the analysed slope was 

not in the shadow area of the new geometry. The projection of LOS displacements into slope 

direction would allow the direct comparison of data achieved through different datasets, 

increasing the spatial resolution of the measurements.  

The presence of vegetation on the slopes might have avoided PS detection on the slopes, 

which could be minimised by the usage of SAR images acquired in L-band, as in Chapter 3. 

A PS gap also occurred on the dam crest. The lacunae might be due to the fact that the 

segment of the crest without PSs was almost parallel to the projection of LOS into the horizontal 

plane, which may have led to a small reflection of the SAR signal back to the sensor; thus, not 

originating PSs. This hypothesis was reinforced by the low reflectivity of that area of the dam 

in the reflectivity map (Figure 96).  

 

Figure 96 – Reflectivity map of the dam from the descending pass acquisition geometry; red 

circumference highlights the zone in the dam crest with gaps in PS acquisition and low reflectivity. 

4.5.5. The proposed strategy enabled the displacement analysis at several points on the dam 

crest. Seasonal behaviour compatible to the response of concrete arch dams to thermal 

expansion in the radial direction was detected, as well as a delay in that response, compatible 

with thermal inertia. A decrease in displacement magnitude was found from the dam centre 

towards the banks, which also met the structure expected behaviour. The displacement time 

series were noisy, which hindered the detection of possible small magnitude anomalies. Linear 

trends or ageing effects were not detected; however, the time interval considered in the study 

was too short for an effective trend evaluation. The displacement time series should be updated 
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in order to analyse a longer interval with more recent observations. Displacements were 

computed along LOS with a posteriori standard deviations between 1.6 mm and 2.5 mm. These 

standard deviations were lower than those achieved through GNSS (5.5 mm along LOS). 

Therefore, the proposed method enabled displacement measurement with lower uncertainty (for 

this case study), at a larger number of points and with lower cost than using additional GNSS 

equipment. Therefore, despite being unable to determine three-dimensional displacements, the 

proposed method may be useful to complement the data from other techniques.  

Regarding the slope stability, the method followed to project the LOS displacements into 

slope direction (Schlögel et al., 2015) provided acceptable results for the points at the left bank, 

due to the relative geometry between LOS and slope configuration. However, many points at 

the right bank were located on slopes whose configuration was approximately orthogonal with 

respect to LOS, which resulted into enhanced magnitude displacement values and uncertainties. 

The points located on slopes with these characteristics were identified and excluded from the 

analysis. Four distinct behaviour were identified, with two sets of points presenting movement 

possibly related to the decrease of the reservoir water level. Nevertheless, signs of slope 

instability were not detected by the end of the study time interval. 

Regarding the computational performance of the proposed algorithm, the case study 

evaluated in this Chapter took 2.6 minutes to process in a laptop with 2.40 GHz CPU and 8 GB 

of RAM. 

4.6 Conclusions 

In conclusion, the proposed method enabled structure monitoring at both a concrete dam and 

at slopes around the water reservoir through combined data from InSAR and GNSS. The GNSS 

monitoring sub-system was expanded through PSs, resulting in a larger number of points on the 

dam crest and on the slopes available for analysis. The method enabled lower displacement 

uncertainty than the GNSS (for this particular case study and when projected to LOS). 

Therefore, the application of this method may be advantageous to complement existing 

structure monitoring systems. 

The expansion of the monitoring system through this method was cost-effective, as the 

GNSS equipment was already installed and the added points did not require materialisation, 

since they naturally existed in the terrain. The used SAR images and EU-DEM were freely 

distributed through Copernicus program; however, the software for GNSS and PSI processing 
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had costs associated, as well as the electrical power and Wi-Fi connections required for the 

GNSS system. 

The major limitations of the method were: 

 The determination of displacements only along the LOS direction; 

 The lack of points at some regions, such as shadow of the SAR signal, vegetation 

cover or low reflectivity zones; 

 The noise in the displacement time series. 

For future research, the inclusion of more points in the local reference frame will be an 

important step to improve the adjusted displacements and to achieve a more homogeneous 

spatial distribution of a posteriori variances. Additional GNSS antennas or artificial reflectors 

to SAR signal can be used for that purpose. 

The analysis of the achieved displacements did not detect signs of behaviour anomalies 

neither on the dam nor on the slopes.    
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Chapter 5. Uncertainty assessment for 

InSAR displacements 

This chapter proposes a new model of artificial passive reflector to the SAR signals from 

the sensors on board of Sentinel-1A/B, capable of providing observations for both 

ascending and descending geometries at the same point. The new CR is visible at SAR 

amplitude images from both geometries and keeps its reflective behaviour stable during 

the executed tests, originating PSs and enabling displacement measurements. The CR is 

used to perform InSAR displacement validation and uncertainty assessment through the 

comparison between PSI-derived displacements and measurements from reference 

techniques, such as geometric levelling and GNSS. Uncertainties around 2 mm are 

achieved for PSI-derived displacements along LOS, vertical and east – west directions.  

 

5.1 Introduction 

According to Marinkovic et al. (2007), it is not easy to assess the uncertainty of InSAR 

displacements, as the exact point in the object in which the signal is reflected is not known, 

there is no redundancy in the observations and phase ambiguities are not known neither.  

Many studies have used artificial reflectors to evaluate the quality of InSAR displacements. 

These devices keep their reflective properties stable, so that they behave as PSs. Besides, their 

design assures that their reflective centre is known; therefore, their displacements can be 

measured through reference techniques, more precise than InSAR, and used to validate the 

InSAR displacements and to assess their uncertainty. 

There are two types of artificial reflectors: passive and active. Passive artificial reflectors are 

metallic corners, oriented towards the sensor, which reflect the signal every time a new image 
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is acquired. Their reflective behaviour is affected by the accumulation of water, snow or dirt, 

requiring frequent maintenance. Their dimension is often seen as a limitation and they are prone 

to be subjected to vandalism.  

Compact Active Transponders (CATs) are active artificial reflectors, i.e. they are electronic 

devices that receive the signal from the sensor, amplify it, and send it back. These equipment 

are light weighted and easy to install; however, either they have large cost associated, or less 

expensive versions are not able to keep their phase stable (Mahapatra, 2015), which is critical 

to InSAR. 

Passive artificial CR have been widely used for quality control experiments of InSAR 

displacements. Marinkovic et al. (2007) performed a controlled experiment with CR to assess 

the precision of the measurements. They observed five reflectors for almost five years and 

compared their displacements with those of precise levelling. A functional model was defined 

considering that vertical double-differences from InSAR and levelling should be equal (the 

observations from both techniques were obtained within 24 hours). A stochastic model was also 

used, enabling the estimation of a posteriori precision of the InSAR vertical displacements: 2.8 

mm for ERS-2 and 1.6 mm for EnviSat data. 

Yu et al. (2013) proposed the usage of trihedral CR to increase the density of the scatterers 

for subsidence monitoring with TerraSAR-X images in a rural area (Figure 97). Both fixed and 

portable21 CR were used, with displacement uncertainty being similar for both types of devices. 

The differences between InSAR and levelling displacements ranged between 5.4 mm away 

from the sensor and 3.6 mm towards it. 

 

Figure 97 – CR of the model used in Yu et al. (2013). 

                                                 
21 CR that can be uninstalled and reinstalled at other epochs. 
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Qin and Perissin (2015) presented the monitoring of a subsiding area in Hong Kong using 

four CR for TerraSAR-X data. For validation purposes, vertical displacements were imposed 

on three of them, while the fourth was used as reference. Levelling observations were compared 

to the InSAR displacements and a linear correlation was verified between the results from the 

two techniques (R2 = 0.999). The achieved RMSE was of 0.67 mm. 

Besides the quality control tests, CR can also be used to increase the scatterer density in 

vegetated areas. Ye et al. (2004) did an attempt to monitor a landslide and an unstable surface 

near the Three Gorges region, in China, through DInSAR, due to the concern that the rise in the 

water level could be the trigger for ground instability. However, they were not successful as 

there was not enough coherence in their area of interest. To overcome the problem, they 

installed a set of 10 CRs. Instead of analysing the whole low coherence area, the processing 

was focused only on the pixels with the CR (CRInSAR). Small anomalies were observed, which 

might be caused by atmospheric changes or noise, leading to the conclusion that both areas 

were stable. Results were validated by imposing vertical displacements to two of the devices, 

which were then detected by InSAR with errors of 0.1 mm and 0.4 mm. 

Some authors used bidirectional CRs, which consisted on two CRs pointing to different LOS 

and that enabled the combination of images from ascending and descending geometries for the 

same object point. Ferretti, Savio, et al. (2007) presented an experiment for assessing the 

precision of vertical and horizontal (east – west direction) displacements determined from two 

acquisition geometries obtained at a bidirectional CR. Their CR was composed by two 

dihedrals, each of them pointing to different acquisition geometries (ascending and 

descending). A compromise in the orientation was applied to assure the CR were visible in both 

EnviSat and Radarsat images. Two of these devices were installed on a roof, with one of them 

being the reference and the second one having a mechanism to impose pre-defined 

displacements. Vertical displacements for the moving reflector were also observed through 

GPS at the beginning and end of the experiment. The standard deviation of the differences 

between the InSAR and the known imposed displacements was computed to assess the InSAR 

precision: 0.75 mm in the vertical direction and 0.58 mm in the east – west one. 

Quin and Loreaux (2013) also presented a bidirectional CR system named MUSE – 

MUltipass Scattering Equipment, developed for TerraSAR-X images. The reflectors were 

formed by two triangular trihedrals oriented towards different directions. An experiment using 

four MUSE was deployed, with one of the devices being used as a reference and installed on 

the ground, while the other three were located on tables with a mechanism to move them in the 

vertical and east – west direction with constant velocities. This study only presented the results 
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obtained in one direction (LOS), not benefitting yet of the bidirectionality of the CR. An 

uncertainty of 0.48 mm was achieved for the displacements. 

Dheenathayalan et al. (2017) proposed a small dimension bidirectional CR (28.2 cm x 14.5 

cm) for X-band sensors (Figure 98). The backscatter of this reflector was so small that the 

authors recommended the installation of a set of them forming a pattern (like an arrow, for 

example) in order to enable their identification in the images. Signal processing techniques were 

applied to improve the signal quality. The standard deviation of the obtained displacements was 

1.3 mm in the vertical component and 2.1 mm in the east – west one.  

 

Figure 98 – Small bidirectional CR (Dheenathayalan et al., 2017). 

Bányai et al. (2020) did an attempt to reduce the dimension of corner reflectors, by truncating 

triangular trihedrals along their axis in order to remove the part of the structure that was not 

involved in the SAR signal reflection. The authors deployed two truncated CRs, one for the 

ascending and another one for the descending geometry of Sentinel-1, on the same base and 

facing each other, in order to reduce the base dimension (Figure 99). The device was also 

prepared to have a GNSS antenna installed between the two CRs. Signal interference between 

the pair of reflectors did not occur and displacement error along LOS varied between 0.2 mm 

and 0.4 mm, determined based on signal-to-clutter (SCR) ratios at a landslide area. 

Quality control tests have also been performed using low-cost CAT (Figure 100). Mahapatra 

et al. (2014) designed an experiment with CATs and CRs in a calibration field. They computed 

the double-differences between each pair of equipment and determined their standard deviation, 

which varied between 1.8 mm and 4.6 mm. The same quality control test performed with CR 

led to values between 1.5 mm and 2.6 mm, showing that CAT and CR displacements have 

similar precisions. 
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Figure 99 – Truncated twin corner reflectors (Bányai et al., 2020). 

 

Figure 100 – Example of CAT device (Mahapatra, 2015). 

Park et al. (2014) presented a different model of CAT. It was designed to work with 

KOMPSAT-5 images in the X-band and requirements in the isolation between the receiving 

and the transmitting antennas forced it to have large dimensions (around 2 m height). However, 

this device had a system to introduce a delay in the signal that created a virtual CAT in a low 

backscatter area, enabling a larger contrast with background than in its real location. Evaluation 

of displacement measurement quality was not provided in the study. 

Table 10 summarizes the studies presented above. 
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Table 10 – Comparison of studies that used artificial reflectors to assess InSAR measurements 

uncertainty. 

Study 

Type of 

artificial 

reflector 

Problem 
Quality control 

Vertical East – west LOS 

Ye et al. (2004) 

Passive; 

triangular 

trihedral 

Landslide 

and unstable 

surface near 

dam 

0.1 – 0.4 mm *1   

  

Ferretti, Savio, 

et al. (2007) 

Passive; 

bidirectional; 

dihedral 

Quality 

control 

experiment 

0.75 mm *2 0.58 mm *2 

  

Marinkovic et 

al. (2007) 

Passive; 

unknown 

Quality 

control 

experiment 

1.6 – 2.8 mm *3   

  

Quin and 

Loreaux (2013) 

Passive; 

bidirectional; 

triangular 

trihedral 

Quality 

control 

experiment 

    0.48 mm *2 

Yu et al. (2013) 

Passive; 

triangular 

trihedral 

Subsidence 
–5.4 – +3.6 mm 

*4 
    

Mahapatra et al. 

(2014) 
Active; CAT 

Quality 

control 

experiment 

    
1.8 – 4.6 mm 

*2 

Qin and Perissin 

(2015) 

Passive; 

rectangular 

trihedral 

Subsidence 0.67 mm *5     

Dheenathayalan 

et al. (2017) 

Passive; 

bidirectional; 

triangular 

trihedral 

Quality 

control 

experiment 

1.3 mm *6 2.1 mm *6   

Bányai et al. 

(2020) 

Passive; 

bidirectional; 

triangular 

trihedral 

Quality 

control 

experiment 

and landslide 

  
0.2 – 0.4 mm 

*7 

 

*1Absolute error *5 RMSE 

*2 Standard deviation of errors *6 Displacement standard deviation 

*3 A posteriori precision *7 Error based on SCR 

*4 Difference range  
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5.2 Methods 

In this Chapter, a new model of bidirectional corner reflector for Sentinel-1 is proposed, 

whose goal is the validation of InSAR measurements and the assessment of InSAR 

displacement uncertainty.  

The proposed CR has the capability of reflecting the SAR signal from both ascending and 

descending passes of the satellite, allowing the determination of vertical and horizontal (east – 

west) displacement components. InSAR displacements are validated through comparison to 

GNSS and geometric levelling data. Besides, a moving device enables the imposition of known 

displacements along different directions to validate displacements and to assess measurement 

uncertainty in distinct conditions. The performance of the proposed CR is also compared to that 

of traditional CRs found in the literature. The present section exposes the strategy followed to 

deploy and install the CR and to perform the displacement validation and uncertainty assessment. 

The CR proposed in this thesis is inspired in those presented in Qin et al. (2013),  which is 

an individual CR of the rectangular trihedral model. Three metallic plates, orthogonal to each 

other, form this type of CR. Two of the plates have rectangular shape, united by their longest 

edge, which is placed in the vertical direction. The third plate is a square, with the size having 

the same length as the shortest edges of the rectangular plates and it is united to the rectangular 

dihedral as a horizontal base (Figure 101).  

 

Figure 101 – Example of rectangular corner reflector, from Qin et al. (2013). 
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Unlike triangular trihedrals or square trihedrals, this model of CR is only oriented towards 

the LOS in azimuth, not being required to steer the structure in elevation, which reduces the 

chances of orientation error. According to Li et al. (2012), who used physical optics concepts 

to determine CR reflective properties as a function of its shape and orientation error, 

rectangular trihedrals reach larger reflective capability than triangular trihedrals. However, 

they are more sensitive to orientation error. Reflectivity is evaluated through the CR RADAR 

Cross Section (RCS), which is the strength of the signal reflected by the target in the direction 

of the sensor (Li et al., 2012). RCS for rectangular trihedrals is determined through Equation 

(53), in square metres, where RCSRT is the RCS of a rectangular trihedral CR, a and b are the 

sizes of the edges of the rectangular plates and λ is the RADAR signal wavelength, as adapted 

from Qin et al. (2013). 

RCSRT =
12πa2b2

λ2                                                      (53)  

The dimension of an individual rectangular trihedral CR must be defined in order to assure 

a minimum SCR of 100 or 20 dB (Qin et al., 2013; Bányai et al., 2020), where SCR is defined 

as in Equation (54): 

SCR =
RCSRT

RCSbg
                                                          (54) 

with RCSbg being the RCS of the background area where the CR will be installed. The average 

RCS of the background, in dBm2, is determined through Equation (55): 

RCSbg = σ0 ∙ A                                                         (55) 

where σ0 is the backscatter coefficient, or sigma nought, which measures the brightness of a 

distributed target and A is the area of an image pixel projected on the ground (Garthwaite, 

2017). The backscatter coefficient is computed from SAR amplitude images, following a 

procedure that depends on the sensor (SkyWatch Space Applications Inc., 2019). The area of 

the image pixel projected on the ground is determined through Equation (56): 

A =
pr∙pa

sinθ
                                                             (56) 

where pr and pa are spatial resolution in range and azimuth directions, respectively, and θ is 

the incidence angle (Garthwaite, 2017).   

In order to decrease the resistence of the CR with respect to the wind, to avoid rainwater 

accumulation and to decrease the structure weight, perforated metallic plates are used to build 

the CR, which leads to a loss of RCS due to transmittivity through the holes. The loss of RCS 

is determined through Equation (58): 

T = 20 ∙ log (
3∙a∙b∙λ

2π∙d3∙cosθ
) +

32∙t

d
                                        (58) 
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where T is the RCS loss in dBm2, a is the horizontal distance between two adjacent 

holes’centres, b is the vertical distance between two adjacent holes’centres, d is the hole 

diameter, λ is the wavelength, θ is the incidence angle and t is the plate thickness (Qin et al., 

2013). The final SCR (SCRfinal) of each CR is assessed through Equation (59): 

SCRfinal =
RCSRT−T

RCSbg
                                                  (59) 

SCR influences the dispersion of the LOS displacements achieved at the CR, following 

Equation (60): 

σdLOS =
λ

4π
∙ √

1

2∙SCRfinal
                                                 (60) 

where σdLOS  is the standard deviation of LOS displacements (Qin et al., 2013). Equation (60) 

is used to verify if the SCR is large enough to assure sub-millimetre displacement dispersion at 

the CR. 

In the scope of the present research, two rectangular trihedrals of the same dimension were 

built using perforated metallic plates, whose dimensions enabled sub-millimetric LOS 

displacement dispersion at the location selected for installation (this will be explained in detail 

in section 5.3). The two CRs were welded by their vertical edges to a common vertical metallic 

rod, assuring the reflective centre from both individual structures was the same. However, 

instead of joining the two CRs in a way that all the vertical plates would form 90º angles, they 

were oriented in order to assure that each individual reflector was aligned towards one pass of 

the satellite (Figure 102). The simpler orthogonal configuration would lead to orientation errors, 

which are critical to rectangular trihedral CRs (Li et al., 2012). As the projection of LOS onto 

the horizontal plane has, approximately, the direction west-northwest – east-southeast for the 

descending pass and the direction east-northeast – west-southwest for the ascending one, the 

individual CRs were oriented in a way that the angle separating them facing south was smaller 

than the angle facing north. Let us consider the angle between the projection of the LOS onto 

the horizontal plane and the east – west direction, β, as defined in Equation (14) in Chapter 3. 

The angle between the closest horizontal edges from both individual reflectors facing south, 

εsouth, is given by Equation (61): 

εsouth =
π

2
+ 2 ∙ β                                                        (61) 

while the angle between the closest horizontal edges from both individual reflectors facing 

north, εnorth, is given by Equation (62). 

εnorth =
π

2
− 2 ∙ β                                                        (62) 
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Figure 102 – Proposed model for the bidirectional CR: green faces are the horizontal square bases and 

grey faces are the vertical rectangular plates. 

The bidirectional CR presented some features to allow displacement measurement through 

techniques other than InSAR. The vertical rod, where the individual CRs were welded, 

contained a screw thread at its top to allow the installation of a GNSS antenna. Besides, the 

bidirectional CR was installed on a metallic base, which contained a stair-like structure, 

authored by a team of LNEC’s Scientific Instrumentation Centre, which enabled the 

bidirectional reflector to be moved along pre-defined directions by steps of fixed length. These 

features will be further explained in section 5.3. 

The performed tests were complemented by the usage of two CRs of the triangular trihedral 

model, built in aluminium, which belong to the Faculty of Sciences of the University of Lisbon. 

The main idea was to compare the performance of the new proposed model with that of the CRs 

frequently found in the literature. As will be further discussed in section 5.3, one of these CRs 

was fixed, i.e., it was not equipped with the stair-like structure, while the other one was 

equipped with it and was subjected to the same tests as the bidirectional CR. 

The InSAR displacements at the CRs were validated through comparison to other 

displacement measurement techniques: geometric levelling and continuous GNSS. Levelling 

was used for vertical displacement measurements at all CRs with respect to benchmarks 

considered fixed and located in the CRs’ neighbourhood. GNSS was used only for the 

bidirectional CR to determine 3D displacements with respect to a reference GNSS antenna 
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installed nearby. For the comparison among distinct geodetic techniques, InSAR measurements 

from ascending and descending passes at the bidirectional CR were combined into vertical and 

horizontal displacements in the east – west direction, according to Equations (18) and (19) from 

Chapter 3. InSAR-derived vertical displacements were compared to the levelling and to the 

vertical GNSS measurements, while the east – west ones were compared to the GNSS east – 

west data. For individual CRs, both triangular and rectangular, the InSAR measurements were 

compared to the step lengths of the stair-like structure determined in laboratory.  

5.3 Application to case study 

5.3.1 Bidirectional corner reflector 

The bidirectional corner reflector was installed at LNEC campus, in Lisbon, Portugal, in 

October 2017. The deployment of this CR comprehended two steps: 

i. The selection of the installation place; 

ii. The design of the CR in order to assure sub-millimeteric displacement dispersion at 

the selected location. 

The location of the CR installation needed to have good visibility for both ascending and 

descending passes of the satellite, without any barriers, e.g., buildings or tall trees, which might 

block the signal between the CR and the sensor. A ground field with an area of, approximately, 

200 m2 and covered with grass was selected for the installation. The area was bordered at the 

north by a three storey building, there were two tall trees at opposite ends of the area and a 

small one, which did not block satellite visibility (Figure 103).  

A concrete block with a base area of 1.30 m x 1.30 m and 0.60 m high was used for the CR 

installation. It was placed at the centre of the grass area, around 20 m away from the building, 

in order to avoid interference on the CR reflected signal caused by reflections on the building. 

The concrete block was installed in June 2016, several months before the CR, to allow it to 

settle due to its own weight before the beginning of the tests.  

Two Sentinel-1A images from IW acquisition mode and level-1 Ground Range Detected 

(GRD) type were used to determine the average backscatter coefficient at the location for CR 

installation, for both the ascending and descending passes. The images’ digital numbers were 

converted to backscatter coefficient values at Sentinel-1 toolbox, in SNAP software, freely 

provided by ESA. The conversion was based on a Look-Up-Table (LUT) provided with the 
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image metadata. Range-Doppler Terrain Correction was used to orthorectify the image22, with 

3” Shuttle RADAR Topography Mission (SRTM) DEM, from which resulted a spatial 

resolution of 7.9 m x 9.9 m projected on the ground for both ascending and descending passes. 

The average backscatter coefficient for the selected location was 0.2, in both passes, which led 

to a RCSbg of, approximately, 16 dBm2. 

 

Figure 103 – Grass field and building (blue ellipse) where the experiment with the bidirectional CR 

was performed. Coordinate grid in WGS84.  

The CR was constructed in aluminium, using perforated sheets. The used plates had a 

thickness of 1.5 mm, with holes having a diameter of 5 mm and organized in a staggered format 

forming angles of 60º. The horizontal distance between holes was 8 mm and the vertical 

distance was 7 mm. These plate properties led to a transmittivity of 33.4 dBm2 for the ascending 

pass and of 32.8 dBm2 for the descending one. The size of the vertical edge of the CR was fixed 

in 1 m and the size of the horizontal edge was determined in order to assure an SCR greater 

than 100, given the RCSbg and the transmittivity T. The minimum size for the horizontal edge 

to allow the fulfilment of the mentioned requirements was 0.55 m, for both passes. In order to 

compensate eventual additional losses, e.g., due to plate undulation or non-orthogonality of the 

plates in each individual CR, the horizontal edge was set to a length of 0.60 m, which led to an 

                                                 
22 Image distortions were corrected based on a DEM to approximate the image to the terrain geometry (ESA, 

2020).  
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SCR of 147 for the ascending pass and of 164 for the descending one. The achieved SCRs led 

to a displacement dispersion σdLOS  of 0.3 mm for the ascending pass and of 0.2 mm for the 

descending one. The cause for the distinct values was the difference of almost 5º in the 

incidence angle between the two passes, which induced a larger loss of signal for the ascending 

geometry. Both reflectors fulfiled the requirement of enabling sub-millimetre precision 

measurements. 

The angles between the horizontal edges of the individual CRs were determined. The angle 

between the projection of the LOS onto the horizontal plane and the east – west direction, β, 

for the CR latitude and Sentinel-1A orbit was found to be -10.5º, which resulted in a εsouth of 

69º and a εnorth of 111º. The orientation of the bidirectional reflector was aided by a magnetic 

compass, with the individual CR for the descending pass being aligned with its respective LOS. 

The CR construction requirements assured the correct orientation of the individual CR of the 

ascending pass towards its LOS, after the orientation of the descending one. The descending 

pass individual CR was oriented with respect to the geographic north. In order to allow the 

correct orientation of the CR using the magnetic compass, the difference between the 

geographic and the magnetic norths was considered. A topographic map at the scale 1:25000 

from 2009 by the Centre of Geospatial Information of the Army was used to determine the 

angle between magnetic and geographic norths, which in 2017 when the CR was installed, was 

of 2º. Therefore, the individual CR for the descending pass was aligned with the direction 

forming an angle of 102.5º with respect to the magnetic north. The error comitted in the 

orientation with the magnetic compass was 2º, which corresponded to the smallest division in 

the measuring scale. Figure 104 shows the proposed bidirectional CR after installation. 

The base of the CR contained three stair-like structures, which supported the CR and along 

which it was displaced. Ascending and descending pass images at the ROI were acquired with 

a difference of six days. The bidirectional CR was left at the same step of the stair-like structure 

until one image from each geometry was acquired. After that, the CR was moved into the 

following step. In this particular application, the CR was moved during the time interval 

between the acquisition of the descending pass at 6:43 am and the acquisition of the ascending 

pass at 6:35 pm six days later. Thus, for each CR position on the stair, there was an image with 

ascending geometry and another from the descending one. The stair-like structure had an 

inclination that assured the CR was displaced along a direction that formed an angle to the 

vertical equal to the incidence angle of the LOS of the descending pass. The stair-like structure 

could be rotated around the vertical axis in order to allow the displacement of the CR to occur 

in other directions.  
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Figure 104 – Bidirectional corner reflector proposed in this study. 

Three displacement tests were designed: one set of displacements along the descending pass 

LOS, another set along the east – west direction and a final set along east-northeast, such that 

the angle between this direction and east – west was the same angle between LOS and east – 

west. The idea behind the rotations was to verify and quantify the eventual loss of measurement 

precision when the movement occurred along different directions. Although the stair-like 

structure was rotated, the CR design assured each individual CR kept oriented towards the 

respective LOS. The stair was composed of 14 steps, of 12 mm each (Figure 105). 

  
(a) (b) 

Figure 105 – Stair-like structure to move the bidirectional CR with the handle at the central part of the 

structure allowing the rotation of the stairs around the vertical axis (a) and installation of the stair-like 

structure on the concrete block (b). 
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5.3.2 Triangular trihedral corner reflectors 

The installation of the triangular trihedral CRs followed the opposite logic of that of the 

bidirectional one. As the CRs were already built, it was necessary to select a location at LNEC 

campus where CRs with their characteristics would enable displacement determination with 

sub-millimetric precision. The CRs are formed by three isosceles triangles, with the edge that 

contains the CR vertex having a length of 1 m. RCS of triangular trihedral CR is determined 

from Equation (63) instead of Equation (53):  

RCSTT =
4πa4

3λ2
                                                            (63) 

where RCSTT is the RCS for a triangular trihedral CR, a is the edge length and λ is the 

wavelength (Qin et al., 2013). This resulted in a RCS of 31 dBm2. In order to achieve an SCR 

above 100, RCSbg had to be lower than 11 dBm2, which corresponded to a backscatter 

coefficient of 0.15. The final SCR was of 106. Sentinel-1A images from IW acquisition mode 

and level-1 GRD type, used at section 5.3.1 for the bidirectional CR, were used to identify the 

locations where the backscatter coefficient criterion was met. Besides the backscatter 

coefficient, other information was considered in the selection, such as a grass background, 

unobstructed view to the satellite and the feasibility of transporting and installing the concrete 

blocks used as bases. The two CRs were installed around 80 m apart from each other and 400 

m away from the bidirectional CR (Figure 106).  

 

Figure 106 – Location of the three CRs at LNEC campus. Coordinate grid in WGS84. 
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One of the triangular trihedrals was oriented towards the ascending pass and the other to the 

descending. The CR for the ascending pass was installed in December 2016. It was fixed during 

the whole testing time, as it was not equipped with the movable device. The CR was oriented 

using the magnetic compass, towards the ascending geometry LOS. The angle between the LOS 

projection onto the horizontal plane and the magnetic north was 261.7º. The magnetic 

declination used to correct the difference between the geographic and magnetic norths was 

refered to the year 2016, as this CR was installed earlier than the bidirectional one. This CR 

also had to be oriented at the vertical plane, being aligned to the ascending pass LOS.  

The CR oriented towards the descending pass was installed in March 2017. It was equipped 

with a moving device equal to that of the bidirectional CR, which enabled its movement along 

14 steps of 12 mm each. The shape of the stair-like structure and the rotation mechanism were 

equal to those of the bidirectional CR, in order to compare the performance of each model under 

the same conditions. The horizontal orientation was executed in the same way of the previous 

CRs, aligning the device with the same azimuthal direction of the bidirectional CR. This 

triangular trihedral device was tilted around a horizontal axis, similar to the one oriented 

towards the ascending pass, until it became aligned with the descending pass LOS (Figure 107).  

 

Figure 107 – Individual CR of the triangular trihedral model oriented towards the LOS of the 

descending pass. 
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5.3.3 Validation and uncertainty assessment tests 

The CRs were prepared to be subjected to four validation and uncertainty assessment tests: 

one static and three sequences of imposed displacements. However, due to a failure in one of 

the CRs that reduced the time available for the tests, only the static and two of the sequences of 

imposed displacement were executed. The installation of the CR infrastructure was completed 

in October 2017 and InSAR, levelling and GNSS data started to be collected.  

5.3.3.1. The first performed test was the static one. The three CRs were left static during the 

whole test, levelling was performed every two weeks and GNSS data was continuously 

acquired. Sentinel-1A/B images were used, with a new image acquisition every six days.  

On March 2018, strong wind damaged the base of the bidirectional CR, causing vibrations 

in the structure. The device had to be uninstalled, repaired and reinstalled. Although there were 

not gaps in the image acquisition and the design of the CR assured the recuperation of the 

original orientation, the GNSS data revealed the failure occurred a few days before its detection 

and images had been acquired with the damaged CR. Therefore, the previous measurements 

were discarded and March 2018 became the reference epoch for the analysis. The test was 

executed between March and December 2018.  

During the tests, it was verified the concrete block of the bidirectional CR was tilting towards 

west. The concrete block was installed at a small slope facing south (to assure enough distance 

with respect to the nearby building) and it was levelled placing stone blocks under it. The burial 

of some of the blocks due to the concrete block weight might have caused the tilting. In order 

not to change the CR orientation during the tests, the concrete block was levelled, in September 

2019, between the first and the second sequences of imposed displacements, by placing 

additional stone blocks. Besides the mentioned tilting of the concrete block for the bidirectional 

CR, all concrete blocks settled during the first months after installation and after that they 

presented seasonal displacements, with an amplitude of, approximately, 2 mm, showing uplift 

in winter and settlement in summer, compatible to displacements caused by seasonal variations 

of moisture on the ground. After the damage in March 2018, the bidirectional CR did not show 

signs of ageing until the end of the tests. On the other hand, the individual triangular trihedral 

CRs displayed signs of progressive degradation throughout the tests, such as increasing 

vibration or screw loss.  

5.3.3.2. The second test was the first sequence of imposed displacements, in which the 

bidirectional CR and the individual triangular trihedral CR oriented towards the descending 

pass were moved along the LOS direction of the descending pass. This test was executed 
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between January and June 2019. The CRs were moved between the acquisition times of a 

descending and the following ascending images. Only Sentinel-1A images were utilized, with 

a new image every 12 days, to enable the conciliation of this work with the other tasks of the 

levelling team. GNSS data was acquired continuously. The levelling operation was performed 

at the days the CRs were lifted. The levelling of the centre of the individual triangular trihedral 

oriented towards the descending pass was interrupted on the 8th position of the stair-like 

structure, as due to the terrain configuration, CR inclination and direction of movement, the 

levelling rod was obstructed by the CR wall. As the vertical distance between the steps in the 

stair-like structure was known with a precision of one tenth of millimetre (measured at 

laboratory) and vertical displacements of the corners of the concrete block were known from 

levelling, the vertical displacement of the CR centre was estimated by adding the concrete block 

and the step vertical displacements, assuming the remaining metallic structure did not 

contribute to the vertical displacements. 

5.3.3.3. The third test was the second sequence of imposed displacements, with the 

bidirectional CR and the individual triangular trihedral CR oriented towards the descending 

pass being moved along the east – west direction. The test was executed between September 

2019 and February 2020. Only Sentinel-1A images were used, with a new acquisition every 12 

days. Levelling kept being performed on the days the CRs were lifted. Due to team 

unavailability, it was not possible to execute one of the moving operations. On the following 

lifting of the CRs, the devices were moved two steps instead of one to compensate the missing 

observation and to keep the simulation of linear displacement. Besides, the double step enabled 

the evaluation of the capability of InSAR to deal with displacement steps of larger magnitude 

than those being tested in this experiment. Due to the difference in the CR displacement 

direction with respect to the previous test, it was possible to level the centre of the individual 

triangular trihedral CR oriented towards the descending pass for all epochs. However, one of 

the corners of its concrete block was excluded from the levelling operation, as it was obstructed 

by the moving device. The ascending and descending images corresponding to the missing step 

were not included in the InSAR processing. In December 2019, one of the levelling benchmarks 

was vandalised and a new point was materialised. This rematerialisation was not a problem, as 

the levelling line included a second benchmark. Therefore, for this test, only the second 

benchmark was used. GNSS was continuously acquired and processed into daily solutions.  

5.3.3.4. InSAR displacement validation was performed through comparison of double-

differences from InSAR and from one of the in situ techniques, where displacements between 

two epochs (differencing in time) for both techniques were referred to the displacements of the 
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benchmarks of those techniques (differencing in space), on the assumption that there were no 

relative displacements between the two benchmarks. In some cases, the length of the stair-like 

structure steps, measured in laboratory, was also used for validation.  

This evaluation was executed through a hypothesis test. Let us assume the double-

differences achieved through InSAR or one of the validation in situ geodetic techniques were 

samples from a random variable with normal distribution. The test evaluated if the average 

values of the populations of double-differences from each pair of techniques could be 

considered equivalent for a certain level of significance. As each technique had distinct 

precision levels associated, it was considered that the sample variances were different; 

therefore, the Welch t test for unequal variances was executed (Welch, 1938; Hayes and Li, 

2007). The test statistic, v, was as in Equation (64): 

v =
dInSAR
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ −dreference

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

√
SInSAR

2

nInSAR
+

Sreference
2

nreference

                                                     (64) 

where dInSAR
̅̅ ̅̅ ̅̅ ̅̅  was the average double-difference achieved through InSAR for a certain CR for 

all observation epochs, dreference
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  was the average double-difference achieved through one of 

the reference techniques for the same CR for all observation epochs, SInSAR
2 was the sample 

variance of the InSAR double-differences, Sreference
2 was the sample variance of the reference 

double-differences, nInSAR was the sample size of InSAR double-differences and nreference was 

the sample size of reference technique double-differences. Test statistic v could be 

approximated by a t distribution with degrees of freedom f as in Equation (65), rounded to the 

closest integer, adapted from Welch (1938): 
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(
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2
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2
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4

nInSAR
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4
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                                       (65) 

with the same variable meanings as in Equation (64).  

The null hypothesis for the test H0 was the average double-differences from both techniques 

were equal, against the alternative hypothesis HA – the average double-differences from both 

techniques were different. The test statistic v was compared to a t distribution with f degrees of 

freedom, tf, for a level of significance of 0.05. A two-tail test was performed using Excel t-Test: 

Two-Sample Assuming Unequal Variances algorithm. The acceptance region for H0 was the 

interval between –tf and +tf; therefore, if the test statistic was inside the acceptance region, H0 

was accepted, meaning both techniques measured the same average double-differences. If the 
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test statistic was outside the acceptance region, H0 was rejected and the average double-

differences from both techniques were considered to be different from each other. 

The method used for uncertainty evaluation was that proposed in Ferretti, Savio, et al. 

(2007), which determined the measurements’ precision based on the standard deviation of the 

differences between the two techniques. The method was identified on Table 10 with the 

symbol *2.  

5.3.4 PSI processing 

The InSAR technique whose uncertainty was evaluated in this thesis was the PSI method 

implemented in SARPROZ© software (Perissin et al., 2011). The PSI method used for this 

evaluation was not the one used in the previous Chapters, though. As only a small 

neighbourhood of each CR was analysed, APS estimation was not required, because, due to the 

proximity between the PS on the CR and the reference PS, both points were subjected to the 

same atmospheric conditions and when the double-differences were computed, the atmospheric 

component was cancelled. Therefore, the small areas module implemented in the software was 

used instead of the main PSI algorithm. This module is appropriate to perform local analyses, 

e.g., for individual structures, instead of the analysis at regional scale common in PSI.  

For each executed test, a distinct dataset of SAR images was used and the several datasets 

were processed independently of each other. The pre-processing steps for the usual PSI method 

and the one applied in this Chapter were the same. For each dataset, an area of 16 km x 16 km 

was selected for the pre-processing steps of the analysis. A master image was selected in order 

to minimise the temporal and normal baselines and the remaining images were coregistred with 

respect to its geometry. A GCP was manually selected to align the SAR data with the EU-DEM, 

which was used together with the orbits to remove flat terrain and topographic components of 

phase. Instead of progressing to APS estimation after this step, the analysis was continued in 

the small areas module, where an area corresponding to LNEC campus was selected on the 

reflectivity map. A selection of points to analyse was performed, based on their reflectivity 

values, for which residual height and average velocity were estimated. Unlike the research in 

previous Chapters, a linear displacement model was used for all tests, as that was the type of 

movement imposed on the CRs. Only the PSs on the CRs and the benchmark PSs were 

considered for analysis.  

The images used in this research were from Sentinel-1A/B satellites, from IW imaging 

mode, TOPSAR acquisition mode and provided in SLC format, similar to the Sentinel-1 data 
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used in previous Chapters. The orbits also presented an accuracy of 2 cm to 3 cm at radial 

and cross-track directions, respectively, and of 5 cm at along-track direction (Sandwell et al., 

2016). Spatial resolution was of 20 m in azimuth and 5 m in slant range. The wavelength of 

the signal emitted by the SAR-C sensor on Sentinel-1A was 55 mm.   

The first test (the static test) used Sentinel-1A/B images acquired between March and 

December 2018, every six days. The images from the ascending pass were from relative orbit 

45 and subswath 2. Forty-eight images were available from both satellites. Scenes from 

Sentinel-1A were from March 21, 2018 to December 22, 2018 and those from Sentinel-1B were 

from March 27, 2018 to December 28, 2018. The image from July 31, 2018 was automatically 

selected as master, originating maximum temporal baselines of five months and normal 

baselines lower than 110 m (Figure 108).  

 

Figure 108 – Distribution of normal and temporal baselines for the ascending pass at the first test. 

The images from the descending pass were from relative orbit 125 and subswath 1. This 

dataset was also composed by 48 images from the sensors on both satellites, with scenes from 

Sentinel-1A acquired between March 27, 2018 to December 28, 2018 and those from Sentinel-
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1B between March 21, 2018 to December 22, 2018. The master image was from August 12, 

2018. Temporal baselines reached five months and normal baselines were also lower than 110 

m (Figure 109). 

 

Figure 109 – Distribution of normal and temporal baselines for the descending pass for the first test. 

The second test (first sequence of imposed displacements) was performed with Sentinel-1A 

images, acquired every 12 days. The same relative orbits of the static test were used (orbit 45 

for ascending pass and 125 for the descending). The test was performed between January and 

June 2019 and 14 images of each geometry were considered: one for each step of the stair-like 

structure. Ascending images were from January 3, 2019 to June 8, 2019, with master in April 

9, 2014.Descending images were from January 9 to June 14, 2019 and the master was from 

March 22, 2019. Temporal baselines reached three months in maximum at both geometries. 

However, descending pass presented larger normal baselines: while for the ascending pass the 

baselines were lower than 100 m, for the descending one they reached 180 m (Figure 110).  

The third test (second sequence of imposed displacements) also used images only from 

Sentinel-1A images, with a revisit period of 12 days. The same relative orbits and subswaths 

from the previous tests were used and the analysis was executed between September 2019 and 

February 2020. The ascending pass included only 12 images instead of the planned 14: one was 
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purposefully removed due to the missing lift of the reflector (section 5.3.3) and the other was 

an acquisition gap from the sensor. The images were acquired between September 24, 2019 and 

February 15, 2020, with master image from November 23, 2019. For the descending pass, there 

was only one gap in the image time series, which corresponded to the excluded image. Thus, 

13 scenes were used. The data were acquired between September 18, 2019 and February 21, 

2020, with master image from November 29, 2019. Both datasets presented maximum temporal 

baselines of three months. Normal baselines were lower than 150 m for the ascending pass and 

lower than 180 m for the descending one. 

  

(a)                                                                          (b) 

   Figure 110 – Distribution of normal and temporal baselines for the ascending pass (a) and for the 

descending pass (b) for the second test.     

5.3.5 In situ measurements 

Two in situ geodetic techniques were used to validate the PSI measurements at the CRs: 

geometric levelling and GNSS (Figure 111). Geometric levelling allowed the measurement of 

vertical displacements with a precision of one tenth of the millimetre. It was executed using an 

optical precision level Wild NA2 with an optical micrometre GPM3 and a levelling rod with an 

invar scale. The level was installed at the middle of the two object points whose height 

difference was intended to be determined. The levelling rod was placed on each object point 

and the height difference between them corresponded to the difference between the readings at 

the levelling rod. The surveys were performed by the topographic team of LNEC’s AGU. For 

each CR, vertically stable points in the neighbourhood were identified and selected as 

benchmarks for the operation. These points were located on small walls and were materialised 
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through nails in order to not damage the wall and to not attract attention, trying to prevent 

vandalism. Two levelling lines were built at LNEC. The line for the bidirectional reflector was 

formed by eight points: two benchmarks and six object points. One of the benchmarks was 

located on a wall east of the CR, while the other one was located on the floor, next to a traffic 

signal, west of the CR. This last benchmark was included because it was verified on PSI 

processing that there was a PS at that location, which was needed to perform the validation. 

The object points were the four corners of the concrete block used as base, which were observed 

to evaluate the stability of the block where the CR was deployed, and two nails at the CR, one 

in each individual reflector. The selected nails were the closest to the CR reflective centre.  

 

Figure 111 – Location of CRs, pass points (except concrete block corners) and benchmarks for 

levelling and GNSS. Coordinate grid in WGS84. 

The second levelling line included the two individual triangular trihedral CRs. There were 

14 points at the line: one benchmark, three passing points and 10 object points. The benchmark 

was located on a small wall and it was materialised by a nail. The passing points were used to 

transport the height values from one CR to the other and were located at the base of a lamp post 

and on sidewalks. The object points were the four corners of each concrete block and the centres 

of the CRs. It was not possible to assure multitemporal measurements exactly at the same point 

at the triangular trihedrals’ corners, due to the difficulty in placing the levelling rod univocally 

at all epochs. Therefore, a metallic piece was placed at the CR corner in order to allow the 

placing of the levelling rod without being obstructed by the CR walls (Figure 112). As the base 
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of the levelling rod was flat, this strategy assured the highest point in the metallic piece was the 

observed point at all epochs. 

 

Figure 112 – Levelling rod at the centre of triangular trihedral with the aid of a metallic piece.  

The levelling operation was composed by two parts: levelling and counter-levelling. During 

the levelling, all points were observed following a certain order. The points were then observed 

in reverse order (counter-levelling) and the height differences between the same points from 

levelling and counter-levelling were compared. Whenever the difference between the 

observations was larger than the tolerance 0.35 mm, the measurements were repeated. The 

average value of the height differences of both observations was considered to transport the 

height information for all the points in the levelling line. Levelling operation was executed on 

the days the CRs were moved along the stair-like structure. Thus, for each step of the stair, there 

was always a levelling measurement and a PSI observation at ascending and descending passes. 

The other technique used for validation was GNSS. Two sets of equipment were used 

for displacement measurement. The receivers were Topcon GB-1000, which enabled a 

precision measurement for horizontal displacement of 3 mm + 0.5 ppm of the baseline 

length and 5 mm + 0.5 ppm of the baseline length for vertical displacement in static mode 

(UNAVCO, 2020b). Choke ring antennas were used combined with those receivers to 

reduce multipath effects. The two sets of equipment were deployed to enable the 

observation in relative mode. One of the antennas was installed at the screw thread at the 

top of the vertical rod of the bidirectional CR. The antenna was connected to the receiver 

through a 30 m long cable, as the receiver was installed at the basement of the nearby 

building to enable its connection to electrical power. The second antenna was installed at 
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the roof of the building and it was connected to the receiver installed inside the building. 

This was the reference antenna and the displacements of the antenna on the CR were 

determined with respect to this one. Data from both GPS and GLONASS (GLObal 

NAvigation Satellite System, a Russian system) were used in the calculations, which were 

performed through Topcon Pinnacle® commercial software. Thanks to the small distance 

between the two antennas (around 38 m), only L1 observations were used and a mask for 

rejecting satellites observed at less than 10º above the horizon was applied. The Goad-

Goodman model was used to model atmospheric effects, which considered the atmosphere 

divided into two parts (Goad and Goodman, 1974 as cited in Şanlioğlu and Zeybek, 2012). 

Both antennas were installed permanently and were continuously registering data. 

Whenever precise orbital data were not available, they were downloaded from NASA23. 

Daily solutions were computed for all days since the beginning of the experiment and 

noise reduction techniques such as low pass filters were not applied.  

5.4 Results 

5.4.1 Amplitude analysis 

This section presents the results achieved for the tests performed at the CR infrastructure. 

The first quality verification of the CRs’ deployment was their representation on the SAR 

amplitude images. Figure 113 presents a backscatter coefficient image acquired after the CRs 

installation from an ascending geometry. Both bidirectional and individual triangular trihedral 

CRs were represented by a bright pixel in the image, meaning their reflectivity was high. The 

backscatter coefficient of the bidirectional CR (1.7) was larger than that of the individual 

triangular trihedral (1.2). The CRs’ reflectivities also influenced neighbour pixels of those 

corresponding to the CRs, maybe due to signal saturation. The backscatter coefficients of the 

bidirectional and of the individual triangular trihedral corner reflector oriented towards the 

descending pass were also high in the corresponding image (Figure 114). The difference 

between CR reflectivities was even more evident in this case, with the bidirectional CR 

presenting a value of 2.6 and the individual trihedral of 0.8. Thus, for both geometries, the 

bidirectional CR proposed in this thesis achieved a larger reflectivity than those from the 

traditional model.  

                                                 
23 ftp://cddis.nasa.gov/gnss/products/ 

ftp://cddis.nasa.gov/gnss/products/


181 

 

 

Figure 113 – CRs oriented towards the ascending pass represented on a backscatter coefficient image 

from October 30, 2019. Coordinate grid in WGS84. 

 

Figure 114 – CRs oriented towards the descending pass represented on a backscatter coefficient image 

from November 5, 2019. Coordinate grid in WGS84. 

The larger reflectivity of the bidirectional CR with respect to those of the traditional model 

might be due to the better reflective performance of rectangular trihedrals with respect to 
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triangular ones. Table 11 presents the RCS for each CR tested in this research, following 

Equations (53) and (63). Each rectangular trihedral from the bidirectional CR was considered 

as an individual CR. Both rectangular CRs presented larger RCS than the triangular ones. 

Besides, the larger backscatter coefficient of the rectangular trihedral for the descending pass 

with respect to the ascending one might also be explained by the differences in RCS, as the 

rectangular CR for the descending pass had a larger RCS due to the smaller transmittivity, when 

compared to that of the ascending pass.   

Table 11 – RCS of rectangular and triangular trihedrals with the properties tested in this experiment. 

Corner reflector RCS (m2) 

Rectangular 
Ascending 2297 

Descending 2572 

Triangular 
Ascending 1385 

Descending 1385 

 

The CRs’ amplitudes were evaluated during the static test. All models presented relatively 

stable amplitude during the nine months of the evaluation (Figure 115). The rectangular 

trihedrals had larger amplitude than the triangular ones from the corresponding geometries. 

Instabilities in the amplitude time series, more evident at the triangular trihedral CRs, might be 

due to the presence of water or dirt during image acquisitions. For comparison purposes, the 

amplitude time series of a natural PS is presented in Annex A.3 Figure 160, where the larger 

variability along the time series and the lower amplitude values of the PS with respect to the 

CRs are visible.   
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 115 – Amplitude (equalised and non-calibrated values) time series achieved for the CRs during 

the static test: (a) rectangular trihedral for ascending pass, (b) rectangular trihedral for descending 

pass, (c) triangular trihedral for ascending pass and (d) triangular trihedral for descending pass. 
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5.4.2 Displacement analysis – static test 

The second quality assessment of the CRs performance was the displacement validation and 

uncertainty determination. The first proposed test was the static one, in which all CRs were 

fixed during the whole experiment. The execution of the static test was hindered by a 

meteorologic event. In October 2018, Lisbon was hit by hurricane Leslie, which was 

characterised by strong winds and caused some damage at LNEC campus, namely the fall of 

tree branches. At that time, displacement anomalies were found in some of the analysed data 

that suggested the elements behaving as PSs that were being used as benchmarks for PSI had 

been displaced during the hurricane (Annex A.3 Figure 161). Therefore, the conditions assumed 

for the tests execution were not met and those tests were excluded from the analysis.  

Performance evaluation was executed for individual rectangular and triangular trihedrals 

through comparison of PSI, GNSS and levelling double-differences along LOS, which 

corresponded to the CR displacements with respect to a benchmark. In the following text, the 

words double-difference and displacement are used with the same meaning. 

The used measurements have associated uncertainties. In the case of PSI double-differences, 

they resulted from the propagation of the displacement dispersions of the PS in the CR and of 

the PS used as reference to the double-difference between the two PSs, following Equation 

(28) in Chapter 4. In this case, point p in Equation (28) was the PS on the CR and point q was 

the reference PS. The displacement dispersion of each PS depended on the point temporal 

coherence and it was computable from Equation (20) in section 3.4.1. The uncertainty of the 

levelling measurements was considered to be of 0.3 mm, corresponding to the tolerance value 

to the difference between levelling and counter-levelling observations projected to LOS. The 

uncertainty of the GNSS measurements was assessed during the data processing. The standard 

deviation of the three dimensional double-differences reached a maximum of 0.4 mm for both 

horizontal components and a maximum of 1.0 mm for the vertical one24, which resulted in a 

standard deviation of 0.8 mm for double-differences along LOS.  

The performance of the individual rectangular and triangular CRs oriented towards the 

ascending pass was evaluated by comparison of PSI to levelling. For the rectangular trihedral, 

only the benchmark to the west of the CR was considered (Figure 116). From May 2 to May 

14, 2018, there was a discontinuity at PSI double-differences time series, with the CR seeming 

to have moved 6 mm away from the sensor. As the levelling showed the CR did not present 

                                                 
24 The baseline had a length of 38 m, the baseline component in north – south direction was 32 m, in the east – 

west direction was 18 m and in the vertical direction was 11 m. 
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that behaviour, it was likely that the observed anomaly occurred at the reference PS, which 

might be a traffic sign on the sidewalk.  

  

Figure 116 – LOS displacement from PSI and levelling for the rectangular trihedral CR for the 

ascending pass in the static test, for the reference PS to the west of the CR; error bars are the 

uncertainty of double-differences. 

For the triangular trihedral CR (Figure 117), PSI reference was considered to be the closest 

PS to the levelling benchmark and the double-differences from both techniques were similar. 

  

Figure 117 – LOS displacement from PSI and levelling for the triangular trihedral CR for the 

ascending pass in the static test; error bars are the uncertainty of double-differences. 

Table 12 presents the coherence of PSs on the CRs oriented towards the ascending pass and 

of the respective PSs used as references, for the tested CR models. All PSs on the CRs presented 

temporal coherences greater or equal to 0.90. In this test, the rectangular trihedral led to a 

temporal coherence greater than that of the triangular model. The dispersion of double-

differences from both CRs was equal, which meant the quality of PSI measurements was equal 

for both CRs. However, a smaller uncertainty was achieved for the triangular trihedral than for 

the rectangular one. The standard deviation of differences between the double-differences from 
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both techniques was at the millimetre level at the rectangular trihedral, while it was sub-

millimetric for the triangular one.  

Table 12 – Temporal coherence for the PSs used at each validation, double-difference dispersion, 

standard deviation of differences for each validation, f – degrees of freedom for Welch t test, v – test 

statistic for Welch t test and tf – critical value (for a level of significance of 0.05) at individual CRs 

oriented towards the ascending pass, for different CR models for the static test. 

Type of CR 
In situ 

technique 

Coherence 

PS on CR 

Coherence 

reference 

PS 

Double-

difference 

dispersion 

(mm) 

Standard 

deviation 

of 

differences 

(mm) 

f v tf 

Rectangular Levelling 0.97 0.89 2.4 2.1 33 -0.87 2.03 

Triangular Levelling 0.90 0.96 2.4 0.7 28 -2.69 2.03 

 

The Welch t test of equal averages with differing variances showed that the null hypothesis 

could only be accepted for the results achieved at the rectangular trihedral, for a level of 

significance of 0.05. As for the triangular trihedral, the PSI double-differences could not be 

considered equivalent to the levelling ones, to a level of significance of 0.05. Figure 117 shows 

PSI measurements overestimated the levelling data (PSI presented larger displacement away 

from the sensor), which might be due to relative displacement between the benchmarks from 

the two techniques. The results of the Welch t test for the ascending oriented CRs are presented 

in Annex A.3 Table 24 and 25. 

The same analysis was performed for the individual CRs oriented towards the descending 

pass. For the rectangular trihedral, the benchmark to the west of the bidirectional CR was used 

as reference and the double-differences from PSI and levelling presented similar behaviour, 

with movement away from the sensor that became stable after some months. (Figure 118).  

The test at the triangular trihedral also showed similarities between PSI and levelling double-

differences. The CR presented an oscillatory behaviour similar in PSI and levelling data, despite 

the amplitude of those displacements being larger for PSI than for the in situ technique. A few 

discontinuities at isolated epochs were present at the PSI time series, more likely to correspond 

to changes at the reference PS than at the CR (Figure 119).  

Large temporal coherences were achieved for both CRs, but the smaller temporal coherence 

of the reference PS of the triangular trihedral led to a larger double-difference dispersion for 

that CR. Nevertheless, the standard deviation of dfferences between techniques was similar for 

both models, being at the millimetre level (Table 13). The measurements at both CR models 

led to the acceptance of the null hypothesis of the Welch t test; thus, the average LOS 
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displacements from PSI and levelling could be considered equal at both CRs, for a level of 

significance of 0.05. Details from the Welch t test are presented in Annex A.3 Table 26 and 27.    

 

Figure 118 – LOS displacement from PSI and levelling for the rectangular trihedral CR for the 

descending pass in the static test, for the reference PS to the west of the CR; error bars are the 

uncertainty of double-differences. 

 

Figure 119 – LOS displacement from PSI and levelling for the triangular trihedral CR for the 

descending pass in the static test; error bars are the uncertainty of double-differences. 

Table 13 – Temporal coherence for the PSs used at each validation, double-difference dispersion, 

standard deviation of differences for each validation, f – degrees of freedom for Welch t test, v – test 

statistic for Welch t test and tf – critical value (for a level of significance of 0.05) at individual CRs 

oriented towards the descending pass, for different CR models for the static test. 

Type of CR 
In situ 

technique 

Coherence 

PS on CR 

Coherence 

reference 

PS 

Double-

difference 

dispersion 

(mm) 

Standard 

deviation 

of 

differences 

(mm) 

f v tf 

Rectangular Levelling 0.97 0.96 1.6 1.4 36 -0.85 2.03 

Triangular Levelling 0.98 0.88 2.4 1.5 59 0.90 2.00 
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From Table 12 and 14, it seemed to exist a relationship between the temporal coherence of 

the reference PSs and the standard deviation of differences between PSI and levelling, with 

lower coherence values corresponding to larger uncertainties. The relationship was explored in 

Figure 120, which shows both variables were linearly correlated, with a coefficient of 

determination of 0.94. This analysis considered the whole set of executed tests, including those 

excluded from the previous evaluations, in order to utilise a larger range of coherence values. 

 

Figure 120 – Relationship between temporal coherence of reference PSs and the standard deviation of 

diferences from PSI and levelling. 

5.4.2 Displacement analysis – first sequence of imposed 

displacements  

The second displacement analysis test was the first sequence of imposed displacements, 

in which the bidirectional CR and the triangular trihedral oriented towards the descending 

pass were moved along the descending pass LOS direction by steps of 12 mm. It must be 

noted that the PSs achieved in this test were not the same as in the previous one, as a new set 

of SAR images led to a new set of stable reflective targets (PSs). As the triangular trihedral 

oriented towards the ascending pass remained fixed, it was not analysed in this section. 

The rectangular trihedral oriented towards the ascending pass was subjected to the imposed 

displacements along the descending pass LOS and the double-differences were determined with 

respect to the reference PS to the west of the bidirectional CR. The imposed displacements had 

both vertical and horizontal components; therefore, ascending LOS measurements and levelling 
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data projected to LOS, which considered only vertical displacements, were not directly 

comparable. In order to assess the quality measurement at this geometry, the theoretically 

expected displacement to be detected by the ascending pass was determined by projecting the 

descending LOS displacement to the ascending LOS direction. The descending LOS 

displacements were determined at laboratory through the measurement of the length of the steps 

at the stair-like structure and have an error of a few tens of millimetre. Figure 121 shows both 

datasets presented similar values until the seventh step. From March 2019 on, PSI 

underestimated the expected displacements.  

 

Figure 121 – LOS displacement from PSI and laboratory measurements for the rectangular trihedral 

CR for the ascending pass in the first sequence of imposed displacements test; error bars are the 

uncertainty of double-differences. 

The vertical displacements of the corners of the concrete block used as base for the 

bidirectional CR determined by levelling showed the tilting of the concrete block 

accelerated in March 2019 (Figure 122), with the northwest and the southwest corners 

settling at a larger rate than the northeast and southeast ones. This suggested the tilting of 

the concrete block base might be the cause for the discrepancy between the observed and 

the expected double-differences.      

The rectangular and triangular trihedrals oriented towards the descending pass were also 

moved along vertical and horizontal directions. As levelling only measures vertical 

displacement and GNSS was not available for the triangular trihedral CR, the results evaluation 

was performed again through comparison to the step lengths determined at the laboratory.  

Similar behaviour was detected from the two techniques at the rectangular trihedral (Figure 

123), with PSI slightly underestimating the expected values at the last four epochs. The smaller 

influence of the concrete block tilting on the double-differences observed in this geometry 

suggested the rotation axis of the concrete block might be closer to the reflective centre of the 
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CR for the descending pass than to that of the ascending one. This occurred as the two reflective 

centres were separated by a few centimetres due to the diameter of the vertical rod that held the 

GNSS antenna. 

 

Figure 122 – Levelling vertical double-differences for the corners of the concrete block used as base 

for the bidirectional CR, with respect to the benchmark to the east of the CR. NE was the northeast 

corner, SE was the southeast corner, SW was the southwest corner and NW was the northwest corner.  

 

Figure 123 – LOS displacement from PSI and laboratory measurements for the rectangular trihedral 

CR for the descending pass in the first sequence of imposed displacements test. Error bars are not 

visible at this scale. 

Similar observations between the two datasets were achieved also for the triangular trihedral 

CR (Figure 124). Discrepancies of a few millimetres (around 6 mm) were observed at some 

epochs; however, the levelling at the concrete block corners showed that there was only a small 

magnitude tilting towards north (0.5 mm), unable to cause the differences. Perhaps these might 

be due to the seasonal behaviour of the concrete block (of larger magnitude than the tilting), 

which also affected the CR displacements, but not the laboratory measurements.   
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Figure 124 – LOS displacement from PSI and laboratory measurements for the triangular trihedral CR 

for the descending pass in the first sequence of imposed displacements test. Error bars are not visible 

at this scale. 

All CRs provided PSs with large temporal coherence. The rectangular trihedral CRs showed 

smaller double-difference dispersion than the triangular trihedral one, due to the larger 

coherence of reference PSs used for the first CRs. Nevertheless, the larger observation precision 

at the rectangular CRs did not correspond to a smaller standard deviation of differences between 

techniques, as the rectangular trihedral oriented towards the ascending pass presented the 

largest value of this variable. This might be due to the discrepancy between the two datasets 

after the seventh step of the imposed displacements. Despite the observed differences between 

PSI and the reference technique, all the tests led to the acceptance of the null hypothesis of the 

Welch t test, for a level of significance of 0.05. Therefore, the average of PSI double-differences 

could be considered equal to the average of the reference data for the three tests (Table 14 and 

Annex A.3 Table 28 to 30).  

The bidirectional CR performance was also evaluated regarding the measurement of 

vertical and east – west double-differences. Figure 125 shows the vertical double-differences 

determined from PSI and from levelling for the bidirectional CR. PSI vertical double-

differences were achieved through Equation (18) from Chapter 3, considering the double-

differences of the PSs identified on both ascending and descending parts of the CR with 

respect to the corresponding reference PSs located to the west of the device. The vertical 

double-differences from levelling were determined from the average of the readings at the 

ascending- and descending-oriented parts of the CR with respect to the levelling benchmark 

located to its west. Data from both techniques were similar until March 2019, when PSI 

started to underestimate the levelling measurements.  
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Table 14 – Temporal coherence for the PSs used at each validation, double-difference dispersion, 

standard deviation of differences for each validation, f – degrees of freedom for Welch t test, v – test 

statistic for Welch t test and tf – critical value (for a level of significance of 0.05) at individual CRs, 

for different CR models, for the first sequence of imposed displacements test. 

Type of CR 
In situ 

technique 

Coherence 

PS on CR 

Coherence 

reference 

PS 

Double-

difference 

dispersion 

(mm) 

Standard 

deviation 

of 

differences 

(mm) 

f v tf 

Rectangular25 Levelling 0.98 0.93 1.9 3.6 25 -0.61 2.06 

Rectangular26 Levelling 0.96 0.99 1.4 2.7 26 0.12 2.06 

Triangular Levelling 0.99 0.86 2.5 2.9 26 0.20 2.06 

 

 

Figure 125 – Vertical double-differences from PSI and levelling for the bidirectional CR in the first 

sequence of imposed displacements test. 

The same evaluation was performed with GNSS. In this case, the reference PS was located 

at the roof of the building where the reference GNSS antenna was installed and it likely was 

originated by the reflection of the SAR signal on the fragile tiles that cover the roof. Similar 

to the previous results, similar displacements were observed until March 2019, when the 

double-differences from both techniques started diverging (Figure 126). 

East – west displacements were computed from ascending and descending geometries’ data, 

using Equation (19) in Chapter 3. Discrepancies between the double-differences of the two 

techniques were found for a few epochs, almost all at the same time of the concrete block tilting 

acceleration (Figure 127). The tilting of the concrete block influenced the measurements 

performed along the ascending geometry, which were reflected on both vertical and east – west 

double-differences. 

                                                 
25 Ascending pass. 
26 Descending pass. 
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The three-dimensional GNSS double-differences were projected to the descending pass LOS 

and used for validation / uncertainty assessment of the PSI data along this direction. The data 

from both sources were similar to each other for almost all epochs, with the largest difference 

being observed at the ninth step (Figure 128).  

  

Figure 126 – Vertical double-differences from GNSS and PSI for the bidirectional CR in the first 

sequence of imposed displacements test. 

 

Figure 127 – East – west double-differences from GNSS and PSI for the bidirectional CR in the first 

sequence of imposed displacements test. 

The dispersion of double-differences along the vertical, east – west and LOS directions were 

similar. That similarity was also found for the standard deviations of the differences between 

PSI and the reference in situ techniques, where values close to 2.0 mm were achieved for all 

directions. The Welch t test indicated the average PSI measurements could be considered equal 

to the average double-differences achieved from the reference geodetic methods for all tested 

situations (Table 15 and Annex A.3 Table 31 to 34).  
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Figure 128 – LOS double-differences from GNSS and PSI for the bidirectional CR in the first 

sequence of imposed displacements test. 

Table 15 – Double-difference dispersion for vertical, east – west and LOS double-differences, 

standard deviation of differences, f – degrees of freedom for Welch t test, v – test statistic for Welch t 

test and tf – critical value (for a level of significance of 0.05) at the bidirectional CR, for the first 

sequence of imposed displacements test. 

Type of CR 
In situ 

technique 

Dispersion of 

double-difference 

along direction of 

interest (mm) 

Standard 

deviation of 

differences 

(mm) 

f v tf 

Bidirectional Levelling 1.5 1.9 25 0.14 2.06 

Bidirectional GNSS27 1.4 2.1 15 -0.32 2.13 

Bidirectional GNSS28 1.8 1.9 15 -0.41 2.13 

Bidirectional GNSS29 1.9 1.8 15 -0.18 2.13 

 

5.4.3 Displacement analysis – second sequence of imposed 

displacements 

At the second sequence of imposed displacements, the bidirectional CR and the triangular 

trihedral oriented towards the descending pass were moved along a sequence of pre-defined 

displacements at the vertical plane containing the east – west direction and along a direction 

whose angle with the vertical was equal to the incidence angle of the descending pass. Only 

the results achieved for vertical and east – west double-differences at the bidirectional CR 

were evaluated. 

                                                 
27 Vertical double-differences. 
28 East – west double-differences. 
29 LOS double-differences. 
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The vertical displacements measured through PSI and levelling at the bidirectional CR 

during the second sequence of imposed displacements were almost coincident for all epochs 

(Figure 129), with the difference between the two techniques being of 0.0 mm for the first eight 

epochs and of 0.1 mm for the last four. This resulted in a standard deviation of differences of 

0.0 mm. On the other hand, the same vertical PSI double-differences presented some differences 

with respect to the GNSS data (Figure 130). A possible cause for these discrepancies might be 

the differences in their observation times. While PSI measurements corresponded to an 

observation of short duration, GNSS double-differences were achieved from observation 

sessions with the duration of 24 hours. The same effect might be the cause for the observed 

discrepancies at the east – west double-differences (Figure 131).  

 

Figure 129 – Vertical double-differences from PSI and levelling for the bidirectional CR in the second 

sequence of imposed displacements test. 

 

Figure 130 – Vertical double-differences from GNSS and PSI for the bidirectional CR in the second 

sequence of imposed displacements test. 
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Figure 131 – East-west double-difference from GNSS and PSI for the bidirectional CR in the second 

sequence of imposed displacements test. 

Similar dispersion of double-differences were achieved for the three tests. The standard 

deviation of differences led to distinct results according to the reference in situ techniques. A 

value of 0.0 mm was achieved for levelling, while values close to 2.0 mm were achieved again 

at the comparison to GNSS (Table 16). The Welch t test confirmed the three PSI average 

double-differences could be considered equal to those from the reference techniques, for a level 

of significance of 0.05 (Annex A.3 Table 35 to 37). 

Table 16 – Double-difference dispersion for vertical and east – west displacements, standard deviation 

of differences, f – degrees of freedom for Welch t test, v – test statistic for Welch t test and tf – critical 

value (for a level of significance of 0.05) at the bidirectional CR, for the second sequence of imposed 

displacements test. 

Type of CR 
In situ 

technique 

Dispersion of 

double-differences 

along direction of 

interest (mm) 

Standard 

deviation of 

differences 

(mm) 

f v tf 

Bidirectional Levelling 1.7 0.0 23 0.06 2.07 

Bidirectional GNSS30 1.3 1.7 12 1.98 2.18 

Bidirectional GNSS31 1.8 2.1 12 1.99 2.18 
 

 

 

 

                                                 
30 Vertical displacements. 
31 East-west displacements. 
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5.5 Discussion 

In this Chapter, a new model of artificial passive reflector to SAR signal was proposed (the 

bidirectional CR) and its performance was evaluated and compared to that of a model frequently 

found in the literature (triangular trihedral). 

5.5.1. Both CR models were visible as bright pixels at Sentinel-1 amplitude images, for 

ascending and descending passes, which indicated both types of structures had potential to 

behave as PSs. CRs of the rectangular trihedral model led to larger amplitude values and to 

more stable amplitude time series. Their amplitude stability might have been influenced by the 

usage of perforated aluminium, which avoided water accumulation during precipitation events. 

The triangular trihedrals were found to be obstructed by water a few times, which might 

correspond to the discontinuities observed at the amplitude time series.  

The CRs’ potential to behave as PSs was confirmed, as all the tested devices kept their 

reflective behaviour stable during the three executed tests, generating PSs. All CR models led 

to PSs with temporal coherence above 0.90. Except for the triangular trihedral oriented towards 

the ascending pass during the static test, which presented a temporal coherence of 0.90, 

temporal coherences greater or equal to 0.96 were achieved at all other experiments.  

5.5.2. Regarding displacement validation, all CR models allowed PSI measurements whose 

averages could be considered equal to those from the reference in situ techniques, to a level of 

significance of 0.05; except for the triangular trihedral CR oriented towards the ascending pass 

during the static test. In that case, the PSI double-differences overestimated the reference data, 

perhaps due to relative displacements between the benchmarks of PSI and levelling.  

The absence of relative displacement between benchmarks could be guaranteed by using a 

CR as a common benchmark for all techniques. Nevertheless, the usage of natural PSs as 

benchmarks in this experiment led to the conclusion that the PS temporal coherence is a critical 

factor for the PSI displacement uncertainty, which must be considered at monitoring tasks 

performed using natural PSs, such as those presented in Chapters 3 and 4.   

5.5.3. PSI measurement uncertainty was evaluated through the standard deviation of 

differences between PSI and in situ techniques.  

The comparison between the performance of triangular and rectangular individual CRs was 

assessed at the static and at the first sequence of imposed displacements tests. The evaluation 

of the CRs oriented towards the descending pass showed similar uncertainties for both CR 

models, with the rectangular CR presenting slightly smaller values. Nevertheless, for the 

ascending geometry, the triangular CR led to a smaller uncertainty than the rectangular one 
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during the static test, being the only experiment where sub-millimetric accuracy was achieved. 

This CR was the only one without the stair-like structure, which suggested this equipment might 

have caused some instability at the remaining CRs.  

In these experiments, an uncertainty of 1.8 mm was obtained for double-differences along 

the LOS direction, which was comparable to Quin and Loreaux (2013)’s 0.48 mm and to the 

range 1.8 mm – 4.6 mm achieved by Mahapatra et al. (2014) using CATs. For vertical 

displacements, values ranging from 0.0 mm to 1.9 mm were achieved against 0.75 mm by 

Ferretti, Savio, et al. (2007). For east – west displacements, the values in these experiments 

varied from 1.9 mm to 2.1 mm, while Ferretti, Savio, et al. (2007) achieved 0.58 mm. The larger 

uncertainties at some of the presented tests might be due to the usage of natural PSs as 

benchmarks and to the duration of the GNSS sessions. In this research, daily GNSS 

observations were considered instead of hourly ones, due to the higher precision level of daily 

data. In future research, the usage of hourly GNSS observations post-processed with low pass 

filters might be considered. The larger temporal resolution of this solution would enable 

displacement measurements at epochs similar to those of the SAR image acquisitions, 

decreasing the differences of the environmental conditions between the two acquisitions. Post-

processing of the data should be applied in order to achieve precisions similar to those of the 

daily observations (LNEC, 2018).     

For vertical double-differences, lower uncertainty was achieved at the second sequence of 

imposed displacements, while for horizontal double-differences lower uncertainty was obtained 

at the first sequence. In order to interpret these results, the theoretical standard deviations 

expected for vertical and east – west displacement components for two hypothetical PSs were 

determined. Those PSs were originated from SAR images with the properties of those used in 

this study, both with temporal coherence 0.90 (corresponding to a LOS displacement standard 

deviation of 2.0 mm), at the location of the bidirectional CR and varying the horizontal 

displacement direction of 360º (Figure 132).  

The displayed standard deviation resulted from the propagation of the LOS displacements’ 

standard deviations (determined through temporal coherence) from each of those hypothetical 

PSs to vertical and east – west displacement components. The direction displayed at x-axis in 

the figure is the direction perpendicular to the direction of movement; therefore, displacement 

towards north corresponds to an azimuth of 270º in the chart, displacement towards east 

corresponds to an azimuth of 0º, displacement towards south corresponds to an azimuth of 90º 

and displacement towards west corresponds to an azimuth of 180º. It was assumed horizontal 

displacement occurred only along the considered direction.  
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Figure 132 – Standard deviations for vertical (dV) and east – west (dE-W) displacements for different 

movement directions. 

The standard deviation of vertical displacement was lower than that of the east – west 

component, for any displacement direction. It was verified that standard deviations of both 

vertical and east – west displacements depended on the direction along which the displacement 

horizontal component occurred. Both displacement components presented the largest 

uncertainties when displacement was along the north – south direction and the lowest when it 

was along east – west. For vertical displacements, it was only possible to achieve uncertainties 

below 2.0 mm when displacement direction was more than 20º away from the north – south 

direction. The maximum standard deviation for east – west displacement occurred when 

displacement horizontal component was along the north – south direction and the minimum 

was verified when it was along the east – west direction, similar to vertical displacements. 

Displacement direction outside the buffer of 20º around the north – south direction enabled east 

– west displacement uncertainty lower than 7.1 mm.  

In the presented experiments, the azimuth difference between the two tested directions was 

of 12.6º. The expected differences between standard deviations when displacements occur 

along east – west and along a direction 12.6º away from it are of 0.1 mm in east – west 

displacement component and 0.0 mm in the vertical component. This might be the reason for 

the small differences achieved at the experiments for the standard deviation of differences for 

both displacement components when horizontal displacement occurred along the two 

directions.  

5.5.4. At the experiment of the second sequence of imposed displacements, there was a jump 

over one of the positions on the stair-like structure, which led to a displacement of 24 mm, 

instead of 12 mm, between two SAR images. Nevertheless, the PSI technique was successful 

at measuring that larger displacement value, as the displacement rate was kept.   
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5.6 Conclusions 

In this Chapter, a method for PSI displacement validation and uncertainty assessment was 

designed, which consisted on the execution of a series of comparisons between double-

differences from PSI and from in situ techniques (levelling, GNSS and laboratory 

measurements) at an infrastructure of artificial passive corner reflectors to the signal from 

Sentinel-1A/B SAR-C sensor. Besides traditional CR models shaped as triangular trihedrals, a 

new model of CR, composed by the union of two rectangular trihedrals with a common vertical 

axis, was proposed and its performance was compared to those of the traditional models. Three 

types of tests were performed: static CRs and two sequences of imposed displacements along 

pre-defined directions.  

The experiments performed enabled PSI displacement validation and its uncertainty 

assessment for distinct situations. For all but one of the tests, average PSI double-differences 

were considered equal to those of the in situ techniques, for a level of significance of 0.05. The 

experiment in which equality was not achieved was suspected to be affected by relative motion 

between the benchmarks of the compared techniques. The obtained uncertainties, quantified by 

the standard deviation of differences between techniques, were similar to those found in the 

literature. Standard deviation of differences of 1.8 mm was achieved for LOS displacements, 

0.0 mm – 2.1 mm for vertical and 1.9 mm – 2.1 mm for east – west displacement components.  

The new CR model proposed in this research showed larger reflectivity capability than the 

traditional CRs and a similar measurement uncertainty level.  

The experiments showed PS temporal coherence is of the utmost importance on the 

measurement uncertainty, which is especially relevant for monitoring activities using natural PSs. 

The main limitations identified for this type of experiments were the exposure to 

meteorological events that may cause damage to the CRs and affect the measurement quality, 

ground instability at the device installation site and relative motion between benchmarks for 

different geodetic techniques. 

For future research, there are still some uncertainty assessment experiments that can be 

performed using the CR infrastructure. Both bidirectional CR and the triangular trihedral 

oriented towards the descending pass are prepared to perform a third sequence of imposed 

displacements, rotating the stair-like structure around the vertical axis counterclockwise of 

12.6º from the east – west direction. The uncertainty associated to other PSI algorithms could 

be evaluated as well. PSI using non-linear displacement model (as used in Chapters 3 and 4) 

could be analysed by simulating oscillations at the CRs’ displacements by moving the 
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equipment forward and backward along the stair-like structure. Techniques using partially 

coherent targets, such as Quasi-permanent scatterers (Perissin and Wang, 2012), could be 

studied by covering the CR during the acquisition of some of the images.  
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Chapter 6. Discussion 

In this Chapter, a discussion on the contributions of the methods developed in the previous 

Chapters to promote the usage of InSAR data for SHM is presented. This research 

addressed some of the issues reported in the literature that limit the application of InSAR 

for displacement measurement to be used for SHM.  

 

6.1. The microwave band used for the SAR image acquisition had an important role in the 

field of SHM. In the present research, C- and L-band data were both used for displacement 

measurement at vegetated slopes: L-band at Odelouca, in Chapter 3, and C-band at Baixo Sabor, 

in Chapter 4. A density of 346 PSs/km2 was achieved with L-band, while, through C-band, the 

obtained density was 125 PSs/km2. This result led to the conclusion that L-band allowed the 

identification of a larger number of object points than C-band, confirming reports found in the 

literature, e.g. in Shi et al. (2019). The larger point density was achieved with L-band, despite 

the lower quality of the SAR image dataset, which was composed of a small number of images 

and presented many gaps in the acquisition time series. That lack of quality in the dataset might 

be the reason for the unwrapping errors identified during the analysis with the tool for 

inspection of InSAR displacement time series. This result showed the importance of having a 

regular acquisition frequency of SAR images. Although ESA assumed the compromise of 

keeping a regular frequency acquisition for Sentinel-1 data at global level, other space agencies 

only provide regular data for some regions.  

X-band data was not used in this research, but according to the literature (Roque et al., 2016; 

Giardina et al., 2019), it would be interesting to use high resolution image to analyse Lisbon 

Downtown in an attempt to achieve more than one PS per building. This would enable the 

analysis of differential displacements at building-level instead of building-block level, which 
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would be much more informative. Besides the large costs associated to that type of images, they 

are available only for a limited number of large cities.  

Although C-band images are not optimal neither for urban nor for vegetated areas’ 

applications when compared to X- or L-bands, respectively, they provide a compromise 

solution, allowing the monitoring of both types of regions of interest.  

6.2. Shadow, foreshortening and layover effects resulted from the side-looking geometry of 

LOS and caused gaps of PSs in the monitored areas. Although layover can be overcome through 

techniques such as TomoSAR, it is not possible to obtain measurements at shadow areas. The 

usage of data acquired in distinct geometries, either an ascending or descending pass, or even a 

parallel orbit with a distinct incidence angle, may help to fill the observation gaps, allowing PS 

detection at the areas not illuminated by the first SAR geometry. The method proposed for slope 

monitoring in Chapter 4 considered the displacements projected into the slope direction. Such 

strategy would enable the simultaneous analysis of results from different acquisition geometries 

(even from different sensors), resulting in an increased number of PSs. 

6.3. In this research, reference points to PSI technique far from the structures being 

monitored were selected, in order to minimise eventual movement of the benchmark caused by 

the influence of the structure (e.g., the influence on the slopes of the weight of the water 

reservoir for dam monitoring). Strategies to minimise or even to remove the reference point 

behaviour reflected on the displacements of the other points were applied, by averaging the 

displacement time series of points considered stable (Chapter 3) or by using double-difference 

observations (Chapter 4).  

An alternative strategy to overcome the problem of reference point movement would be to 

use a CR, following the model proposed in Chapter 5, as a reference point. The CR would 

behave as a PS for acquisition geometries from ascending and descending passes that would be 

identified at PSI processing. The GNSS observations would enable the determination of the CR 

movement with respect to a national geodetic reference frame and that movement could then 

be removed from all PSs being analysed. This strategy would enable the determination of 

displacements at tens of thousands of points with respect to the national geodetic reference 

frame with a revisit period of a few days.    

6.4. A national network of bidirectional CRs following the model proposed in this study 

could be an interesting geodetic infrastructure, as it would allow available reference points with 

known displacements for PSI processing at any area in the country. The network would also be 

valuable in case of interest to build an InSAR-based deformation map at national scale, as many 

countries are pursuing (Ferretti et al., 2015; Novellino et al., 2017). In case of spatial proximity, 
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those CRs could be integrated in the local reference frames of PS / GNSS networks like those 

proposed for structure monitoring in Chapter 4.  

The latitude range in Portugal mainland might require the readjustment of some of the design 

parameters of the CR, namely the angles between the individual rectangular trihedral CRs 

oriented towards south and north, εsouth and εnorth, respectively, as in Equations (61) and (62). 

The differences in latitude would originate a difference of 0.9º between the angles β (Equation 

14 in section 3.2) for a location at the north and another at the south of the country. This would 

result in a difference of 1.6º for both εsouth and εnorth for points at the country’s extreme 

locations. For a bidirectional CR at the north of the country, εsouth would be 1.6º smaller than 

for a bidirectional CR at the south (Figure 133). Consequently, εnorth would be 1.6º larger. The 

magnitude of this correction would be lower than the orientation error commited with the 

magnetic compass (2º in Chapter 5). Therefore, the values proposed in this study for εsouth and 

εnorth could be used in the whole country. Another advantage of the CR model presented in 

this thesis would be that it would not need to be steered in the vertical direction, being 

independent of the incidence angle. In conclusion, the bidirectional CR proposed in Chapter 5 

could be installed at any location of Portugal mainland without major changes in its design. 

Eventual adjustments in its size might be required depending on the reflectivity to SAR signal 

of the installation area.   

 

Figure 133 – Identification of εsouth and εnorth at a sketch of the bidirectional CR base.  

6.5. The three topics developed in this research can be interconnected in order to form a 

structure monitoring protocol, applicable to any type of structure. The first step is to select 

the SAR images to use, given the characteristics of the structure to monitor (e.g., the type of 

structure, orientation, expected displacement rate), the time interval of interest and the 

available budget.  
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In case back-analysis is not required, the deployment of CRs following the model of those 

proposed in Chapter 5 can be considered for locations of interest. After selecting the places for 

installation, the dimensions and geometric configuration must be determined for each CR, being 

recommended that perforated aluminium is used to build it.Their installation must be carefully 

executed, ensuring the place stability and correct orientation.  

The PSs / GNSS antennas on the CRs can integrate the local reference frame of the structure 

monitoring system (which may already have some points or not). PSI processing must be 

performed using the selected SAR dataset, in order to achieve PSs on the structure being 

monitored, which can then form a network together with the points of the local reference frame. 

The network analysis proposed in Chapter 4 can be applied to determine adjusted LOS 

displacements and a posteriori variances for the achieved PSs.  

The RADAR interpretation method proposed in Chapter 3 can then be used to explore space-

time structure behaviour patterns through the analysis of the adjusted displacement time series, 

providing the experts on structural behaviour with displacements at a large number of points, 

observation frequency of a cycle every few days and millimetric uncertainty. The proposed 

strategy may be useful to the early detection of behaviour anomalies and to aid the planning of 

other monitoring activities through more precise techniques. 
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Chapter 7. Conclusions 

This chapter presents the main conclusions resulting from the research presented in the 

previous chapters and indicates suggestions for future work. 

 

7.1 Main conclusions 

The main objective of this thesis was to evaluate the potential and limitations of InSAR 

displacements to be used for SHM and to develop strategies to overcome some of the identified 

difficulties. Three research fields were identified in this study that needed improvement in order 

to promote the operationalisation of the usage of InSAR data for SHM.  

Regarding the first research field, a RADAR interpretation method to deal with the big data 

problem of extracting information from a large number of InSAR displacement time series was 

developed. The method is applicable to any type of structure and does not require prior 

information, as it only relies on the displacement time series. A computer tool was developed 

that can aid civil engineers to detect space-time patterns in the InSAR data, to identify eventual 

structural behaviour anomalies and to plan in situ monitoring activities.  

To fulfil the second research field, InSAR and GNSS data were combined in order to 

extend an existing GNSS monitoring sub-system to the structure and its surroundings, 

increasing the number of object points. For the particular case of the presented case study, 

lower uncertainties were achieved for displacements resulting from the techniques’ 

combination than from the GNSS alone. A computer tool was also developed to apply the 

proposed method to any case study.  

Considering the third research field, an infrastructure of artificial passive CRs to the SAR 

signal from Sentinel-1 was designed, implemented and operated at LNEC campus. A new 

model of CR was proposed and tested against a model frequently found in the literature. The 



208 
 

new model of CR presented larger reflective capability and similar displacement uncertainty 

when compared to the traditional model. InSAR average displacements were verified to be 

equal to those from more precise in situ techniques, except at one situation, in which relative 

motion between benchmarks is suspected. Displacement uncertainty was evaluated for LOS, 

vertical and east – west displacement components when the CRs were static and when 

displacement occurred along two distinct directions. Millimetre-level uncertainty was achieved 

for all situations, except for two cases, in which sub-millimetre was obtained. 

Satellite-based InSAR enables displacement measurement at a large number of points, 

spread throughout a wide area, with a revisit period of a few days and millimetric uncertainty. 

This information is relevant for SHM problems, as it allows behaviour analysis at the structure 

and its surroundings, which are not monitored as often as the structure itself. The research in 

this thesis showed that InSAR may have other roles to aid SHM, namely in the planning of in 

situ monitoring systems. InSAR displacements are referred to a reference point selected among 

the most stable points in the monitored area, which is often located far from the area of influence 

of the structure; thus, providing confidence on the point stability. This was observed at Chapters 

3 and 4 for the case studies of Odelouca and Baixo Sabor slopes, respectively, where the 

reference points were a few kilometres away from the water reservoirs. An InSAR displacement 

analysis may inform geodetic, geotechnical and structural experts on the stability of the 

structure surroundings, aiding to identify optimal locations for benchmarks to in situ monitoring 

systems. Therefore, InSAR may contribute to improve the in situ measurements. 

It was verified that InSAR is able to detect structural responses to many loads applied on the 

structures. Odelouca and Baixo Sabor slopes were found to settle or to move downhill, possibly 

due to the influence on the slopes of changes in the reservoirs’ water levels. Baixo Sabor 

concrete dam showed seasonal behaviour compatible to thermal expansion and thermal inertia. 

Buildings at Lisbon Downtown revealed tilting, perhaps due to ground instability, and thermal 

expansion. However, not all loads can be detected by the technique. It is the case of tidal 

loading, known to affect the Downtwon area, whose effect on the buildings was not identified. 

This is a consequence of the periodicity of the SAR image acquisition, unable to detect 

structural responses with diurnal and semidiurnal periods. The technique performs well both on 

civil and geotechnical structures.  

The technique is also able to detect differential displacements on a structure or set of 

structures, as performed for Lisbon Downtown. Differential displacements may correspond to 

structural damages and structural experts may use their identification as warnings. This data 

provide information on the possible damage location, extension and its evolution in time, which 
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is useful information for SHM and may aid the planning of other monitoring activities, such as 

visual inspections. 

The experimental part of this thesis (Chapter 5) revealed that InSAR displacement 

uncertainty is related to two factors: temporal coherence and displacement direction. Given the 

availability of worldwide SAR datasets, acquired at a regular frequency and with good orbital 

parameters, such as those freely provided by Copernicus programme, large temporal coherence 

may be achievable from good quality SAR datasets for most type of structures. The main 

limitation in this topic may be to achieve PSs on the locations of interest; however, it was 

verified that artificial corner reflectors like those used in this research generate PSs with 

temporal coherence above 0.90, which is enough to provide displacement measurements with 

millimetric uncertainty. If some specific conditions are fulfilled, namely the reference PS is 

close enough to the PSs on the structure to mitigate orbital inaccuracies and atmospheric effects 

and the PSs have good reflective properties, sub-millimetric uncertainty might be achieved. 

The performed experiments enabled the analysis of the influence of displacement direction 

when data from different geometries are combined or projected in order to achieve 

displacements along a direction of interest. Whenever displacement direction is approximately 

orthogonal to LOS direction, the computed displacements have high uncertainties associated. 

It is well-known it occurs when displacements are approximately along the north – south 

direction. However, that is not the only displacement geometry along which high uncertainties 

are achieved. It can also be observed for situations where the horizontal component of 

displacement is parallel to LOS, like in the right bank of Baixo Sabor reservoir in Chapter 4. 

Some regions at the surface of the right bank were almost orthogonal to the descending pass 

LOS used for monitoring. This problem was not verified at the left bank, as the west-facing 

slope led to displacements along directions approximately parallel to LOS. As performed on 

this thesis, a threshold on the values of the inner product between the LOS and the slope unit 

vectors can assist the identification of the points with enough quality for the slope (or other 

structure) monitoring. 

InSAR, through the application of PSI technique to Sentinel-1 images, provided 

displacements with uncertainties around 2 mm for LOS, vertical and east – west displacement 

components. This value is larger than the uncertainties achieved through some in situ 

techniques, which measure displacements at the sub-millimetre level (e.g. geometric levelling). 

However, there are also other displacement measurement techniques, commonly used for SHM, 

such as triangulations or traverses, with uncertainties similar to those from InSAR. Therefore, 
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InSAR is an interesting option to complement existing structure monitoring systems, by adding 

new object points and providing an observation period of a few days. 

In conclusion, InSAR is an applied geodetic technique with potential to inform structure 

monitoring systems. Although it is not as precise as some of the in situ techniques used to 

acquire data for SHM, its cost-effective capability to increase the number of object points and 

to be operated remotely make InSAR an interesting option to complement existing structure 

monitoring systems or to create new ones at cases where the implementation of the traditional 

systems is not viable. 

The objectives proposed in the beginning of this research were fulfilled.  

7.2 Future research 

The research presented in this thesis can be further developed in order to contribute to the 

increasing usability of InSAR data in SHM. 

In the field of slope monitoring, the combination of InSAR displacements from different 

geometries, either ascending and descending passes or different sensors, should be explored, in 

an attempt to increase the number of object points on the slopes and to fill the PS cover gaps 

obtained from a single geometry. The conversion of LOS displacements from distinct 

geometries to slope direction would enable the simultaneous application of the proposed 

RADAR interpretation method and the analysis of all the data from different sources. The 

identification of the PSs’ physical nature should be researched in order to improve the data 

interpretation, as PSs often correspond to elements that do not reflect the slope behaviour, such 

as lamp posts or fences. Water level and rainfall data should be considered to aid in the 

displacement interpretation as well.   

Concrete dam monitoring could also benefit from the integration of displacements from 

different geometries. Besides filling eventual PS gaps on the structure, in the case of common 

targets for distinct geometries, displacement combination would allow the determination of 

displacement components along two directions of interest. For example, at Baixo Sabor, vertical 

and radial displacements could be separated. The improvement of the extended GNSS / InSAR 

sub-monitoring system would also be beneficial for the analysis, namely regarding noise 

mitigation and a more homogeneous spatial distribution of a posteriori variances. Besides the 

noise originally present in the InSAR displacements, the integration of GNSS data into the 

network analysis added even more noise. Therefore, the level of noise in the GNSS data should 

be reduced, either by applying low-pass filters or by reprocessing the data in order to mitigate 



211 

 

the atmospheric differences that contribute to the noise level. An improved spatial distribution 

of a posteriori variances could be achieved by adding points into the local reference frame. 

Those additional points may be GNSS antennas, if available, or more economic solutions as 

artificial reflectors. The resulting adjusted displacements can be compared to structural 

behaviour models in order to assess whether the structure fulfils safety requirements. An 

important improvement would be the adaptation of this method in order to retrieve three-

dimensional displacements instead of LOS alone.  

Regarding urban areas monitoring, the developed RADAR interpretation method should be 

subjected to some improvements, namely the partition of the displacement time series into 

smaller segments, in order to increase the sensitivity of the algorithm to detect early behaviour 

changes. In the particular case of Lisbon Downtown, it would be interesting to perform in situ 

monitoring activities at the building-blocks presenting differential displacements, in an attempt 

to detect possible damages. Another interesting analysis would be to remove the PSs in the 

clusters with centimetre-level displacements from the dataset and to execute the clustering 

operation to the remaining points, in order to identify new structural behaviour patterns of 

smaller magnitude and to cross those results to known settlements, such as those monitored by 

LNEC’s AGU at Praça do Comércio. 

Concerning the experimental part of the study, the bidirectional CR may be used for InSAR 

displacement uncertainty assessment at other situations, e.g. when displacements occur along 

other directions, for different displacement models (non-linear displacements) or other InSAR 

techniques besides PSI. The CR installed at LNEC campus may be used as a reference point 

with displacements known with respect to the national geodetic reference frame for any PSI 

processings at the city of Lisbon, for both ascending and descending passes of Sentinel-1. 

Furthermore, it could also be included in an eventual future CR network at national scale.  
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Annex A.1 – RADAR interpretation 
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This Annex contains figures and tables that complement the research in Chapter 3.  

 

 

Table 17 – Parameters for cluster analysis for Odelouca case study; the symbol “/” separates the 

options selected at different tests. 

Parametre Value 

Number of clusters Automatic / 7 

Coordinates of rectangular ROI (WGS84)   

Lower latitude 37.2586 

Higher latitude 37.3685 

Lower longitude -8.4988 

Higher longitude -8.3455 

Coherence threshold 0.9 

Number of images 20 

EPSG32 code of additional raster 3763 

Year of the beginning of time series 2006 

Sample number of first image in the beginning year 8 

Year of the ending of time series 2011 

Sample number of last image in the ending year 3 

Cluster method Ward / Complete / Single 

Additional data in raster format Slope, Curvature  

 

 

 

(a) 

 

(b) 

Figure 134 – LOS displacement time series for all PSs considered stable for (a) the ascending pass and 

(b) the descending one, at Lisbon Downtown. 

                                                 
32 EPSG: European Petroleum Survey Group, who publishes a database of coordinate systems represented by 

codes. 
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Table 18 – Parameters for cluster analysis for Lisbon Downtown case study; the symbol “/” separates 

the options selected at different tests. 

Parametre Value 

Number of clusters Automatic / 10 

Coordinates of rectangular ROI (WGS84)   

Lower latitude 38.7032 

Higher latitude 38.7166 

Lower longitude -9.1440 

Higher longitude -9.1292 

Coherence threshold 0.9 

Number of images ascending pass 89 

Number of images descending pass 86 

Incidence angle ascending pass 40.6º 

Incidence angle descending pass 35.7º 

Satellite orbit inclination ascending pass 98.18º 

Satellite orbit inclination descending pass 98.18º 

Azimuth of direction perpendicular to displacement 0º 

EPSG code of additional raster 3763 

Year of the beginning of time series 2015 

Sample number of first image in the beginning year 6 

Year of the ending of time series 2018 

Sample number of last image in the ending year 5 

Cluster method Complete 

Time series to cluster 2D 

Additional data in raster format 

Slope, Curvature, Distance 

to faults, Distance to 

subway, Distance to river 

 

 

 



241 

 

 

Figure 135 – Boxplots of slope inclination for the clustering solution using Ward method at Odelouca. 

 

Figure 136 – Boxplots of slope curvature for the clustering solution using Ward method at Odelouca. 
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Figure 137 – Residual height centroids for the manual seven-cluster solution with complete linkage at 

Odelouca slopes; red ovals identify the clusters with outlier residual height centroids, which may 

correspond to unwrapping errors. 

 

 

 

 

Figure 138 – Cumulative displacement map for Lisbon city (ascending pass); background image from 

Sentinel-2 acquired in May 2020. Coordinate grid in WGS84. 
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Figure 139 – Cumulative displacement map for Lisbon city (descending pass); background image 

from Sentinel-2 acquired in May 2020. Coordinate grid in WGS84. 

 

 

 

Figure 140 – Centroids for distance variables at Lisbon Downtown. 
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Figure 141 – Decomposition of representative horizontal displacement time series for cluster 1 from 

10 cluster solution at Lisbon Downtown. 

 

Figure 142 – Decomposition of representative vertical displacement time series for cluster 2 from 10 

cluster solution at Lisbon Downtown. 
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Figure 143 – Decomposition of representative horizontal displacement time series for cluster 2 from 

10 cluster solution at Lisbon Downtown. 

 

Figure 144 – Decomposition of representative vertical displacement time series for cluster 3 from 10 

cluster solution at Lisbon Downtown. 
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Figure 145 – Decomposition of representative horizontal displacement time series for cluster 3 from 

10 cluster solution at Lisbon Downtown. 

 

Figure 146 – Decomposition of representative vertical displacement time series for cluster 5 from 10 

cluster solution at Lisbon Downtown. 
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Figure 147 – Decomposition of representative horizontal displacement time series for cluster 5 from 

10 cluster solution at Lisbon Downtown. 

 

Figure 148 – Decomposition of representative vertical displacement time series for cluster 6 from 10 

cluster solution at Lisbon Downtown. 
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Figure 149 – Decomposition of representative horizontal displacement time series for cluster 6 from 

10 cluster solution at Lisbon Downtown. 

 

Figure 150 – Decomposition of representative vertical displacement time series for cluster 7 from 10 

cluster solution at Lisbon Downtown. 
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Figure 151 – Decomposition of representative horizontal displacement time series for cluster 7 from 

10 cluster solution at Lisbon Downtown. 

 

Figure 152 – Decomposition of representative vertical displacement time series for cluster 8 from 10 

cluster solution at Lisbon Downtown. 
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Figure 153 – Decomposition of representative horizontal displacement time series for cluster 8 from 

10 cluster solution at Lisbon Downtown. 

 

Figure 154 – Decomposition of representative horizontal displacement time series for cluster 9 from 

10 cluster solution at Lisbon Downtown. 
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Figure 155 – Vertical (top) and horizontal (bottom) displacement time series for all PSs at Lisbon 

Downtown. 
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Figure 156 – Vertical (left) and horizontal (right) displacement time series of all PSs in each cluster, at 

Lisbon Downtown. 
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Annex A.2 – Integration on structure 

monitoring systems 
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This Annex contains figures and tables that complement the research in Chapter 4.  

 

Figure 157 – LOS cumulative displacement map around Baixo Sabor dam. Background image is 

Sentinel-2 from February 2019. Coordinate grid in WGS84. 

 

Table 19 – Amplitude of error interval for the precision analysis, at each vertex in the network. 

Vertex ID Error interval (mm) 

1 2.6 

2 3.2 

3 2.6 

4 3.3 

5 2.9 

6 3.2 

7 2.5 

8 2.7 

9 2.3 

10 3.0 

11 2.7 

12 2.7 

13 2.9 

14 2.7 

15 1.9 

16 2.7 

17 2.3 

18 3.0 

19 3.3 
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Vertex ID Error interval (mm) 

20 2.9 

21 2.5 

22 2.7 

23 2.7 

24 3.2 

25 3.3 

26 2.9 

27 2.6 

28 3.2 

29 2.6 

30 3.0 

31 3.3 

32 2.3 

33 2.6 

34 2.5 

35 3.2 

36 2.1 

37 2.9 

38 3.3 

39 2.7 

40 2.3 

41 2.5 

42 2.3 

43 2.3 

44 2.6 

45 2.9 

46 2.9 

47 2.1 

48 3.0 

49 2.6 

50 3.2 

51 2.3 

52 2.9 

53 3.3 

54 2.6 

55 2.9 

56 2.5 

57 3.3 

58 2.5 

59 2.7 

60 3.0 

61 2.7 

62 3.3 

63 3.0 

64 2.6 
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Vertex ID Error interval (mm) 

65 2.6 

66 3.0 

67 2.9 

68 2.9 

69 3.3 

70 3.2 

71 2.6 

72 3.3 

73 3.3 

74 2.7 

75 2.6 

76 2.7 

77 3.2 

78 2.5 

79 3.0 

80 3.0 

81 2.5 

82 2.6 

83 3.3 

84 3.3 

85 2.7 

86 3.3 

87 3.0 

88 2.5 

89 3.3 

90 3.3 

91 3.0 

92 3.0 

93 3.2 

94 3.2 

95 3.0 

96 2.6 

97 3.3 

98 3.3 

99 2.6 

100 3.2 

101 2.6 

102 3.3 

103 3.0 

104 3.2 

105 2.9 

106 2.9 

107 2.6 

108 3.3 

109 2.3 
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Vertex ID Error interval (mm) 

110 3.3 

111 3.2 

112 3.3 

113 3.3 

114 2.7 

115 2.3 

116 3.0 

117 2.7 

118 2.7 

119 2.7 

120 3.2 

121 2.5 

122 2.9 

123 2.6 

124 2.3 

125 2.9 

126 3.2 

127 2.9 

128 2.5 

129 3.2 

130 2.3 

131 2.6 

132 3.2 

133 2.5 

134 3.3 

135 3.0 

136 2.9 

137 2.5 

138 3.3 

139 3.3 

140 2.5 

141 3.0 

142 3.2 

143 3.2 

144 3.0 

145 3.0 

146 2.5 

147 2.7 

148 2.6 

149 2.1 

150 3.0 

151 2.6 

152 2.7 

153 2.7 

154 2.1 
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Vertex ID Error interval (mm) 

155 2.9 

156 3.0 

157 2.7 

158 2.6 

159 3.2 

160 2.7 

161 2.9 

162 2.3 

163 2.1 

164 2.5 

165 2.9 

166 3.3 

167 2.5 

168 2.7 

169 2.6 

170 3.3 

171 2.9 

172 2.7 

173 2.6 

174 0.1 
 

Table 20 – Quadratic form of the residuals for the observations quality control, for each 

observation epoch. 

Date Quadratic form 

June 12, 2016 0.000 

July 6, 2016 0.061 

July 18, 2016 2.598 

July 30, 2016 2.215 

August 11, 2016 6.466 

August 23, 2016 2.344 

September 4, 2016 1.834 

September 16, 2016 0.691 

September 28, 2016 0.009 

October 10, 2016 0.020 

October 22, 2016 0.221 

November 3, 2016 0.180 

November 15, 2016 1.457 

November 27, 2016 3.960 

December 9, 2016 0.241 

December 21, 2016 0.007 

January 2, 2017 0.712 

January 14, 2017 0.794 

January 26, 2017 1.568 
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Date Quadratic form 

February 7, 2017 2.042 

February 19, 2017 2.202 

March 3, 2017 0.016 

March 15, 2017 2.032 

March 27, 2017 1.055 

April 8, 2017 2.110 

April 20, 2017 7.826 

May 2, 2017 0.462 

May 14, 2017 0.218 

May 26, 2017 2.807 

June 7, 2017 6.584 

June 19, 2017 2.302 

July 1, 2017 0.010 

July 13, 2017 0.016 

July 25, 2017 6.257 

August 6, 2017 2.301 

August 18, 2017 0.515 

August 30, 2017 6.936 

September 11, 2017 1.210 

September 23, 2017 0.566 

October 5, 2017 0.695 

October 17, 2017 1.695 

October 29, 2017 0.349 

November 10, 2017 0.134 

November 22, 2017 4.626 

December 4, 2017 2.391 

December 16, 2017 1.309 

December 28, 2017 0.075 

January 9, 2018 0.518 

January 21, 2018 2.226 

February 2, 2018 8.205 

February 14, 2018 5.815 

February 26, 2018 6.323 

March 10, 2018 8.738 

March 22, 2018 3.318 

April 3, 2018 0.985 

April 15, 2018 0.006 

April 27, 2018 11.761 

May 9, 2018 0.075 

May 21, 2018 0.887 
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Figure 158 – Original LOS displacement time series for the vertices on each zone. 
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Table 21 – A priori and a posteriori standard deviations for LOS displacements at vertices on the dam. 

 Standard deviation 

Vertex ID a priori a posteriori 

1 2.0 2.0 

2 1.9 1.8 

3 2.3 2.2 

4 2.0 2.1 

5 2.1 2.3 

6 1.7 2.0 

7 1.5 2.0 

8 1.8 2.1 

9 2.1 1.9 

10 2.4 1.9 

11 1.8 2.1 

12 2.0 2.0 

13 1.9 1.8 

14 2.4 2.5 

15 2.1 1.6 

16 2.0 1.9 

17 1.9 2.0 

 

Table 22 – A priori and a posteriori standard deviations for LOS displacements at vertices on 

the slopes. 

 Standard deviation 

Vertex ID a priori a posteriori 

1 1.9 2.0 

2 2.3 1.6 

3 1.9 2.0 

4 2.4 2.1 

5 2.1 2.3 

6 2.3 2.2 

7 1.8 2.1 

8 2.0 2.2 

9 1.7 2.3 

10 2.2 2.0 

11 2.0 2.0 

12 2.0 2.0 

13 2.1 2.2 

14 2.0 2.2 

15 1.4 2.4 

16 2.0 2.1 

17 1.7 2.1 

18 2.2 1.9 

19 2.4 2.2 
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 Standard deviation 

Vertex ID a priori a posteriori 

20 2.1 2.4 

21 1.8 2.1 

22 2.0 2.6 

23 2.0 2.5 

24 2.3 2.6 

25 2.4 2.4 

26 2.1 2.2 

27 1.9 2.2 

28 2.3 2.2 

29 1.9 2.0 

30 2.2 2.4 

31 2.4 2.2 

32 1.7 2.1 

33 1.9 2.1 

34 1.8 2.2 

35 2.3 2.2 

36 1.5 2.3 

37 2.1 2.2 

38 2.4 2.0 

39 2.0 2.2 

40 1.7 2.1 

41 1.8 2.4 

42 1.7 2.1 

43 1.7 2.1 

44 1.9 2.2 

45 2.1 2.1 

46 2.1 1.9 

47 1.5 2.0 

48 2.2 2.0 

49 1.9 2.1 

50 2.3 2.2 

51 1.7 2.1 

52 2.1 1.9 

53 2.4 1.9 

54 1.9 2.0 

55 2.1 2.1 

56 1.8 1.6 

57 2.4 2.3 

58 1.8 1.7 

59 2.0 1.3 

60 2.2 2.3 

61 2.0 1.9 

62 2.4 2.5 

63 2.2 1.9 
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 Standard deviation 

Vertex ID a priori a posteriori 

64 1.9 1.9 

65 1.9 1.9 

66 2.2 2.2 

67 2.1 2.0 

68 2.1 1.6 

69 2.4 2.2 

70 2.3 1.7 

71 1.9 2.3 

72 2.4 1.9 

73 2.4 2.3 

74 2.0 2.2 

75 1.9 1.7 

76 2.0 2.3 

77 2.3 1.5 

78 1.8 2.4 

79 2.2 2.0 

80 2.2 2.5 

81 1.8 1.9 

82 1.9 1.2 

83 2.4 2.5 

84 2.4 1.7 

85 2.0 1.8 

86 2.4 1.6 

87 2.2 1.5 

88 1.8 1.3 

89 2.4 1.5 

90 2.4 2.5 

91 2.2 2.3 

92 2.2 1.9 

93 2.3 2.3 

94 2.3 1.4 

95 2.2 2.8 

96 1.9 2.2 

97 2.4 1.6 

98 2.4 2.7 

99 1.9 2.2 

100 2.3 2.3 

101 1.9 1.8 

102 2.4 1.8 

103 2.2 2.6 

104 2.3 2.4 

105 2.1 2.6 

106 2.1 2.3 

107 1.9 2.6 
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 Standard deviation 

Vertex ID a priori a posteriori 

108 2.4 2.1 

109 1.7 1.7 

110 2.4 2.5 

111 2.3 2.5 

112 2.4 2.5 

113 2.4 2.4 

114 2.0 2.2 

115 1.7 1.9 

116 2.2 2.0 

117 2.0 1.5 

118 2.0 2.3 

119 2.0 2.4 

120 2.3 2.5 

121 1.8 2.5 

122 2.1 2.4 

123 1.9 2.2 

124 1.7 2.4 

125 2.1 2.2 

126 2.3 2.2 

127 2.1 2.3 

128 1.8 2.2 

129 2.3 1.8 

130 1.7 2.3 

131 1.9 2.4 

132 2.3 2.5 

133 1.8 2.2 

134 2.4 2.4 

135 2.2 2.3 

136 2.1 2.4 

137 1.8 2.4 

138 2.4 2.5 

139 2.4 2.4 

140 1.8 2.4 

141 2.2 2.4 

142 2.3 2.7 

143 2.3 2.0 

144 2.2 2.4 

145 2.2 2.5 

146 1.8 2.5 

147 2.0 2.3 

148 1.9 2.3 

149 1.5 2.5 

150 2.2 2.3 

151 1.9 2.2 
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 Standard deviation 

Vertex ID a priori a posteriori 

152 2.0 2.5 

153 2.0 2.4 

154 1.5 2.2 

155 2.1 2.6 

156 2.2 2.1 

157 2.0 2.0 

 

 

 

 

 

 

 

 

Figure 159 – Cumulative displacement along the slope direction (a) and standard deviation of 

displacement along the slope direction (b) for the vertices selected for slope monitoring. Coordinate 

grid in WGS84. 
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Table 23 – Parameters for cluster analysis at Baixo Sabor slopes; the symbol “/” separates the options 

selected at different tests. 

Parametre Value 

Number of clusters Automatic / 4 

Coordinates of rectangular ROI (WGS84)   

Lower latitude 41.2194 

Higher latitude 41.2452 

Lower longitude -7.0265 

Higher longitude -7.0049 

Coherence threshold 0.9 

Number of images 59 

EPSG code of additional raster 3763 

Year of the beginning of time series 2016 

Sample number of first image in the beginning year 13 

Year of the ending of time series 2018 

Sample number of last image in the ending year 13 

Cluster method Complete 

Additional data in raster format 
Distance to river, slope, 

aspect  
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Annex A.3 – Uncertainty assessment 
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This Annex contains figures and tables that complement the research in Chapter 5.  

 

Figure 160 – Amplitude time series for a natural PS. 

   

Figure 161 – LOS displacement from PSI and GNSS for the rectangular trihedral CR for the ascending 

pass in the static test; error bars are the uncertainty of double-differences. 

 

Table 24 – Welch t test for PSI and levelling double-differences at rectangular trihedral CR oriented 

towards the ascending pass using the reference PS to the west of the CR, for the static test. 

t-Test: Two-Sample Assuming Unequal Variances 

   
  Variable 1 Variable 2 

Mean -2.8327083 -2.4194472 

Variance 4.753318 1.6256869 

Observations 48 13 

Hypothesized Mean Difference 0  
df 33  
t Stat -0.873017  
P(T<=t) one-tail 0.1944812  
t Critical one-tail 1.6923603  
P(T<=t) two-tail 0.3889623  
t Critical two-tail 2.0345153   
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Table 25 – Welch t test for PSI and levelling double-differences at triangular trihedral CR oriented 

towards the ascending pass, for the static test. 

 

t-Test: Two-Sample Assuming Unequal Variances 

   
  Variable 1 Variable 2 

Mean -2.3508333 -1.3988114 

Variance 2.2639865 1.0129692 

Observations 48 13 

Hypothesized Mean Difference 0  
df 28  
t Stat -2.6917872  
P(T<=t) one-tail 0.0059286  
t Critical one-tail 1.7011309  
P(T<=t) two-tail 0.0118573  
t Critical two-tail 2.0484071   

 

 

 

 

 

Table 26 – Welch t test for PSI and levelling double-differences at rectangular trihedral CR oriented 

towards the descending pass using the reference PS to the west of the CR, for the static test. 

t-Test: Two-Sample Assuming Unequal Variances 

   
  Variable 1 Variable 2 

Mean -2.44 -2.0692513 

Variance 4.3266085 1.3009927 

Observations 48 13 

Hypothesized Mean Difference 0  
df 36  
t Stat -0.8500772  
P(T<=t) one-tail 0.2004503  
t Critical one-tail 1.6882977  
P(T<=t) two-tail 0.4009006  
t Critical two-tail 2.028094   
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Table 27 – Welch t test for PSI and levelling double-differences at triangular trihedral CR oriented 

towards the descending pass, for the static test. 

 

t-Test: Two-Sample Assuming Unequal Variances 

   
  Variable 1 Variable 2 

Mean -0.96 -1.2680997 

Variance 4.3903915 0.3174856 

Observations 48 13 

Hypothesized Mean Difference 0  
df 59  
t Stat 0.905047  
P(T<=t) one-tail 0.1845608  
t Critical one-tail 1.671093  
P(T<=t) two-tail 0.3691215  
t Critical two-tail 2.0009954   

 

 

 

 

Table 28 – Welch t test for PSI and theoretically expected double-differences at rectangular trihedral 

CR oriented towards the ascending pass, for the first sequence of imposed displacements test. 

 

t-Test: Two-Sample Assuming Unequal Variances 

   

  Variable 1 Variable 2 

Mean 20.61428571 23.801676 

Variance 146.7228571 235.67191 

Observations 14 14 

Hypothesized Mean Difference 0  
df 25  
t Stat -0.60987846  
P(T<=t) one-tail 0.273723125  
t Critical one-tail 1.708140761  
P(T<=t) two-tail 0.54744625  
t Critical two-tail 2.059538553   
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Table 29 – Welch t test for PSI and laboratory measured displacement double-differences at 

rectangular trihedral CR oriented towards the descending pass, for the first sequence of imposed 

displacements test. 

 

t-Test: Two-Sample Assuming Unequal Variances 

   

  Variable 1 Variable 2 

Mean 79.02656567 76.80714286 

Variance 2597.998842 2357.957637 

Observations 14 14 

Hypothesized Mean Difference 0  
df 26  
t Stat 0.11796151  
P(T<=t) one-tail 0.453502377  
t Critical one-tail 1.70561792  
P(T<=t) two-tail 0.907004755  
t Critical two-tail 2.055529439   

 

 

 

 

Table 30 – Welch t test for PSI and laboratory measured displacement double-differences at triangular 

trihedral CR oriented towards the descending pass, for the first sequence of imposed displacements 

test. 

t-Test: Two-Sample Assuming Unequal Variances 

   

  Variable 1 Variable 2 

Mean 79.02656567 75.23571429 

Variance 2597.998842 2442.727088 

Observations 14 14 

Hypothesized Mean Difference 0  
df 26  
t Stat 0.199781024  
P(T<=t) one-tail 0.421603081  
t Critical one-tail 1.70561792  
P(T<=t) two-tail 0.843206162  
t Critical two-tail 2.055529439   
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Table 31 – Welch t test for PSI and levelling vertical double-differences at bidirectional CR, for the 

first sequence of imposed displacements test. 

 

t-Test: Two-Sample Assuming Unequal Variances 

   
  Variable 1 Variable 2 

Mean 62.6737187 60.52308 

Variance 1520.88877 1619.609 

Observations 14 13 

Hypothesized Mean Difference 0  
df 25  
t Stat 0.14082668  
P(T<=t) one-tail 0.44456772  
t Critical one-tail 1.70814076  
P(T<=t) two-tail 0.88913545  
t Critical two-tail 2.05953855   

 

 

 

 

 

 

 

  
 

Table 32 – Welch t test for PSI and GNSS vertical double-differences at bidirectional CR, for the first 

sequence of imposed displacements test. 

 

t-Test: Two-Sample Assuming Unequal Variances 

   
  Variable 1 Variable 2 

Mean 59.884408 63.298726 

Variance 1459.7863 1454.4469 

Observations 14 157 

Hypothesized Mean Difference 0  
df 15  
t Stat -0.3204352  
P(T<=t) one-tail 0.3765295  
t Critical one-tail 1.7530504  
P(T<=t) two-tail 0.753059  
t Critical two-tail 2.1314495   
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Table 33 – Welch t test for PSI and GNSS east – west double-differences at bidirectional CR, for the 

first sequence of imposed displacements test. 

 

t-Test: Two-Sample Assuming Unequal Variances 

   
  Variable 1 Variable 2 

Mean 44.22254 47.508917 

Variance 819.37427 757.81518 

Observations 14 157 

Hypothesized Mean Difference 0  
df 15  
t Stat -0.4128875  
P(T<=t) one-tail 0.3427652  
t Critical one-tail 1.7530504  
P(T<=t) two-tail 0.6855305  
t Critical two-tail 2.1314495   

 

 

 

 

Table 34 – Welch t test for PSI and GNSS LOS double-differences at bidirectional CR, for the first 

sequence of imposed displacements test. 

 

t-Test: Two-Sample Assuming Unequal Variances 

   

  Variable 1 Variable 2 

Mean 74.957143 77.385973 

Variance 2310.058 2116.5888 

Observations 14 157 

Hypothesized Mean Difference 0  
df 15  
t Stat -0.1818007  
P(T<=t) one-tail 0.4290866  
t Critical one-tail 1.7530504  
P(T<=t) two-tail 0.8581731  
t Critical two-tail 2.1314495   
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Table 35 – Welch t test for PSI and levelling vertical double-differences at bidirectional CR, for the 

second sequence of imposed displacements test. 

 

t-Test: Two-Sample Assuming Unequal Variances 

   
  Variable 1 Variable 2 

Mean 63.9708 62.93077 

Variance 1955.68 1809.601 

Observations 12 13 

Hypothesized Mean Difference 0  
df 23  
t Stat 0.05983  
P(T<=t) one-tail 0.476404  
t Critical one-tail 1.713872  
P(T<=t) two-tail 0.952808  
t Critical two-tail 2.068658   

 

 

 

 

Table 36 – Welch t test for PSI and GNSS vertical double-differences at bidirectional CR, for the 

second sequence of imposed displacements test. 

 

t-Test: Two-Sample Assuming Unequal Variances 

   
  Variable 1 Variable 2 

Mean 62.16382 36.974468 

Variance 1868.0814 500.67827 

Observations 12 94 

Hypothesized Mean Difference 0  
df 12  
t Stat 1.9852001  
P(T<=t) one-tail 0.0352296  
t Critical one-tail 1.7822876  
P(T<=t) two-tail 0.0704592  
t Critical two-tail 2.1788128   
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Table 37 – Welch t test for PSI and GNSS east – west double-differences at bidirectional CR, for the 

second sequence of imposed displacements test. 

 

t-Test: Two-Sample Assuming Unequal Variances 

   
  Variable 1 Variable 2 

Mean 47.496925 28.332979 

Variance 1078.636 284.90912 

Observations 12 94 

Hypothesized Mean Difference 0  
df 12  
t Stat 1.988093  
P(T<=t) one-tail 0.0350516  
t Critical one-tail 1.7822876  
P(T<=t) two-tail 0.0701031  
t Critical two-tail 2.1788128   

 


