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Abstract: The use of concrete materials in Portugal, namely reinforced concrete, began in the 19th
century. However, during the 20th century, the increase in the application of this composite material,
alongside the use of hydraulic binders, led to a disruption of traditional construction techniques
and enhanced generalized application in concrete structures, combining aesthetics with functionality.
In this paper, the authors will present and discuss several physical and mechanical characteristics of
reinforced concrete materials from 12 award-winning architectural buildings constructed between
the 1930s and the end of the 20th century in Lisbon, Portugal. These results are vital to evaluate their
durability, as those buildings have an undiscussable heritage value in the context of 20th-century
buildings’ valorization. Furthermore, the results will contribute to the knowledge of the current state
of conservation of these materials and will allow an understanding of the evolution in the application
of national regulations during this period.

Keywords: concrete; award-winning buildings; 20th century; heritage; Lisbon; durability; national
regulations

1. Introduction

Reinforced concrete elements are an essential part of the building structures of the
20th century. In the context of enhancing and preserving built heritage, it is increasingly
necessary to know the characteristics of this composite material since little is known about
the criteria of the constructive design of a significant proportion of the buildings built in
the early 20th century.

However, there has been concern about studying reinforced concrete structures in
the international context. These studies often relate construction materials to construction
methods, manufacturing processes, performance associated with applying standards, or by
approaching their context from the perspective of historical appreciation. Some of them
may be exemplified by several works [1–5].

Maintaining concrete structures to extend their service life is a mandatory condition.
For the structural integrity of the buildings, durability is a critical factor.

The durability of reinforced concrete structures depends on several factors, such as
weathering action, chemical attack, and abrasion, while maintaining its desired design
properties. It usually refers to the duration of the life span of trouble-free performance.
According to Mather [6], concrete is “durable” if, in its environment, it has provided the
desired service life without the high cost of maintenance and repair due to degradation
or deterioration.
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The evolution of construction processes during the 20th century, associated with the
massification of the use of Portland cement, forced the processes’ standardization and
the creation of national regulations. In 1918 the first Portuguese regulation on reinforced
concrete was published [7], which allowed technological and broad harmonization of the
use of this composite construction material. Until 1918, public construction was carried out
according to the French regulations published in 1906 [7]. To understand the importance
of the use of reinforced concrete at the beginning of the 20th century, more specifically
between 1903 and 1911, we must mention the publication of the first regulations in various
countries, such as Switzerland, Prussia, France, Italy, England, Austria, Russia, Denmark,
and the United States [8–21].

In 1935, the so-called reinforced concrete regulation (Regulamento do Betão Armado—
RBA 1935) [22] revoked the first published regulation. Between the publication of these two
documents, which lasted about 17 years, the research and technology applied to increase
the knowledge of this composite material have worldwide evolved enormously.

In Portugal, one of the aspects to highlight as an upgrade of regulation is the transition
from the use of smooth to ribbed rebars, which was defined by the regulation of reinforced
concrete structures published in 1967 (Regulamento de Estruturas de Betão Armado—REBA
1967) [23]. The use of plain rebars has implications for the efficiency of crack control and
the fixing length. Compared to plain rebars, the ribbed steel ones have greater efficiency
in controlling crack openings. After 1967, the Reinforced and Prestressed Concrete Struc-
tures regulations were published in 1983 (Regulamento de Estruturas de Betão Armado e
pré-esforçado—REBAP 1983) [24].

In addition to the reinforced concrete structures regulations, regulations for hydraulic
binder’s concretes were published in 1971 [25] and 1989 [26], the latter being an updated
version of the former. Hydraulic binder concretes are widely used in construction, assuming
a relevant role in structures. For that reason, their characteristics and application conditions
have a significant impact on the economy and safety of the works.

Table 1 display the concrete characteristics considered in the different regulations
published and applied during the 20th century.

Table 1. Evolution of concrete characteristics through regulations applied in Portugal during the 20th
century.

Regulations Main Characteristics

Regulation of 1918

Prescribed dosage in the regulation: 300 kg of cement, 400 L of sand, and
800 L of gravel.
There is no concept of resistance class.
Minimum compressive strength: 120 kg/cm2, at 28 days (through cubes).

RBA 1935

The dosage prescribed in the regulation (300 kg of cement, 400 L of sand,
and 800 L of gravel).
There is no concept of resistance class.
Minimum compressive strength value: 180 kg/cm2, at 28 days
(through cubes).

REBA 1967
Resistance classes B180, B225, B300, B350 and B400 (compressive strength
in kg/cm2 = numeric part).
Characteristic resistance in kg/cm2 at 28 days (through cubes).

RBLH 1971 (updated
by RBLH 1989)

Two types of concrete: B for resistance requirement and BD1, 2, and 3 for
special durability requirement.

REBAP 1983

Resistance classes from B15 to B55, with the resistance increasing by
5 MPa to each class (compressive strength in Mpa = numeric part).
Classes defined in international units (MPa).
Characteristic strength in MPa (cubic test pieces).

The architectural quality of Lisbon buildings awarded with the Valmor Prize for
Architecture [27–29], which is the object of this study, is of great patrimonial interest.
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Thus, studying their construction materials is essential to support future conservation
and restoration actions. This work does not intend to represent ordinary buildings but to
understand and evaluate the advances achieved in each period of construction in Portugal
during the 20th century, based on buildings of unquestionable architectural value, which,
in general, were built using edge technology of their time. It is crucial to characterize the
properties of the employed concretes using a methodology that allows us to provide a set of
data regarding their physical and mechanical characteristics. These characteristics should
be related to the existing regulations at the construction time and will allow us to infer the
quality of the concretes applied.

Different authors have published several studies [30–32] demonstrating the impor-
tance of preserving reinforced concrete heritage since the beginning of the 20th century
and applying appropriate methodologies to its investigation. A proper assessment of the
properties of old concrete is needed to ensure the extended working life and the safe use
of old facilities [30]. The study of physical and mechanical characteristics is critical to
evaluating the performance of old structures, as demonstrated by Ambroziak et al. [30]
in a study on the durability of a 95-year-old concrete built-in bridge. Sena-Cruz et al. [2]
studied the physical and chemical characteristics of a reinforced concrete bridge built in
1907. Ambroziak et al. [31] studied the durability and strength of the reinforced concrete
properties of a 70-year-old concrete structure in an office building. Sohail et al. [32] investi-
gated the outcomes of concrete degradation in structural concrete elements in the harsh
climates of the Arabian Gulf between the 1960s and the 1980s.

This work is part of a more extensive study comprising chemical, mineralogical, and
microstructural characterization, whose data will complement the results presented here.
The results will allow establishing criteria for maintenance and conservation of this heritage,
contributing to its safeguard. The data obtained will also contribute to the knowledge of
the evolution of materials in the built heritage of the 20th century, which is attracting more
and more interest.

2. Materials and Methods
2.1. Case Studies and Sampling

Twelve buildings were studied (Table 2). The first award-winning building was
prized in 1938, and the last one was prized in 2002. These buildings’ main architectural
and constructive characteristics can be found elsewhere [33–46]. The studied buildings
do not present degradation signs that may affect their structural integrity, nor are they
continuously monitored.

Concrete sampling was carried out in places that did not compromise the build-
ing’s safety or aesthetics [47]. Samples were mainly taken from architectural and non-
architectural reinforced concrete columns and walls using a diamond core driller equipped
with a 75 mm diameter core bit (Figure 1). Due to technical constraints, sometimes core sam-
ples were collected at half the diameter, in which case, no mechanical tests were performed.
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Table 2. Case studies, sampling zones and samples collected.

Case Study
(Award Year)

Name Image of the Case Study Construction Year
(Completion)

Sampling Zones
(Interior/Exterior)

Structural
Element

Number of Samples Type of
Coatings/Samples’

Distance to the Surface
Architectural

Concrete
Non-Architectural

Concrete

IRF (1938)
Nossa Senhora do
Rosário de Fátima

Church
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Table 2. Cont.

Case Study
(Award Year)

Name Image of the Case Study Construction Year
(Completion)

Sampling Zones
(Interior/Exterior)

Structural
Element

Number of Samples Type of
Coatings/Samples’

Distance to the Surface
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Table 2. Cont.
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Rectory of the New 

University of Lisbon  

 

2002 

Air treatment unit. 
1st-floor (interior) 

Walls 
n.a. 2 Plasters/up to 30 mm 

Ground floor 
storage (interior) 

1 n.a. No coatings/0 mm 

Garage.  
−1 floor (interior) Earth supporting 

walls 

1 n.a. No coatings/0 mm 

Garage.  
−2 floor (interior) 

2 n.a. No coatings/0 mm 

Notation: n.a.—not applicable. 
 

2002

Air treatment unit.
1st-floor (interior)

Walls
n.a. 2 Plasters/up to 30 mm

Ground floor storage
(interior) 1 n.a. No coatings/0 mm

Garage.
−1 floor (interior)

Earth
supporting

walls

1 n.a. No coatings/0 mm

Garage.
−2 floor (interior) 2 n.a. No coatings/0 mm

Notation: n.a.—not applicable.
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Figure 1. Images of concrete sampling campaign: (a) IRF (1938); (b) FRAN (1971); (c) JRP (1987);
(d) PCV (1998).

2.2. Characterization Methodology

The characterization methodology included observing samples to record the evolution
of the dimension of the largest crushed aggregates over time. This evolution is essential to
relate it to physical characteristics, such as the compacity, which is also assessed through
ultrasonic pulse velocity tests and water absorption by capillary rising, open porosity, and
bulk density tests. Carbonation depth was directly measured in core samples so that it
can be correlated to the mechanical and physical properties. The mechanical behavior was
evaluated through compressive strength and dynamic modulus of elasticity in compression
tests to determine their evolution over the analyzed period. Finally, to evaluate the quality
of the concrete, the compressive strength results were used to estimate by modelling,
through the application of Eurocode 2 [48], the corresponding compressive strengths at
28 days.

Considering the proposed characterization methodology, most of the samples collected
are over 150 mm long. As the availability of samples was limited, the core samples were
cut in half, and the ends rectified to reach a flat surface and regular dimension. In these
cases, capillary water absorption, open porosity and bulk density tests were performed
on one of the specimens. Ultrasonic pulse velocity and compressive strength tests were
performed in the other specimen, with a length/height equal to the diameter. The dynamic
modulus of elasticity in compression was performed on other samples with 150 mm in
length, also with the rectified ends.

Figure 2 refer to the main apparatus and testing machines used during the testing
campaign. Figure 2a show a tray filled with samples during the water absorption by the
capillary rise test. Figure 2b display a weighing apparatus used to estimate the hydrostatic
mass during the evaluation of open porosity and bulk density. Figure 2c show a portable
ultrasonic pulse velocity tester, and Figure 2d,e exhibit, respectively, the compressive
strength and dynamic elastic modulus test machines.
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Figure 2. Apparatus for concrete testing: (a) capillary water absorption test; (b) open porosity and
bulk density; (c) ultrasonic pulse test; (d) compressive strength test; (e) dynamic elastic modulus test.

2.2.1. Macroscopic Observation of Cores and Carbonation Depth Assessment

After sampling, the cores were photographed and macroscopically observed to register
some characteristics, such as the type of coarse aggregates, presence of cracks, gels, and
deposits. The size of the largest coarse aggregates was measured with a digital caliper, and
the concrete carbonation depth was measured by applying a phenolphthalein alcoholic
solution directly to the core samples [49], whose results have already been published
elsewhere [46].

2.2.2. Capillary Water Absorption Test

The water absorption by capillary rise was determined according to LNEC Specifi-
cation E393 [50]. The test protocol consists of drying a concrete sample, placing it in an
oven at a temperature of 40 ± 5 ◦C for 14 days, and weighing the initial mass (M0). Then,
the sample is placed inside a tray, filling it carefully with water until the level reaches
5 ± 1 mm above the lower face of the sample, avoiding wetting the other faces.

The tray and the samples were covered with a hood to keep the water level constant
during the entire test. The measurements (Mi) are made at regular time intervals. To cal-
culate the capillary absorption at a given time, divide the mass increase (Mi-M0) by the
sample area in contact with the water.

2.2.3. Open Porosity and Bulk Density Test

The open porosity corresponds to the water absorption by immersion under a vacuum.
The water absorption test [51] was performed after drying the samples at a temperature of
105 ◦C until a constant mass was obtained (Md). The samples were placed in a receptacle in
a vacuum chamber in which the air pressure was brought down to an absolute value of
not more than 1 kN/m2 and held in a vacuum for 24 h. Water was then slowly introduced
into the chamber so that the samples were completely immersed, maintaining the 0 for
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24 h. The samples were kept immersed for another 24 h at atmospheric pressure and then
weighed in water to obtain the hydrostatic mass (Mh). Finally, the samples were removed
from the water, and their surface was dried rapidly with an absorbent cloth or a natural
sponge to remove all surface water to be weighed (Ms) to obtain the mass of the saturated
samples in a vacuum.

The open porosity (P0) was then calculated according to the following Equation (1)

P0 =
Ms − Md
Ms − Mh

× 100 (1)

The bulk density (Pb) was calculated according to the following Equation (2).

Pb =
Md

Ms − Mh
× ρ (2)

ρ is the water volumetric mass density at room temperature.

2.2.4. Ultrasonic Pulse Velocity Test

The ultrasonic pulse velocity test was carried out according to EN 12504-4 [52]. Ul-
trasonic pulse velocity (V) was determined directly using a PUNDIT 6 portable ultrasonic
non-destructive tests of CNS electronics, with a measurement range from 0.1 µs to 9999 µs,
which has two transducers working in a 54 kHz frequency, placed at the ends of the sample.
The velocity of propagation is calculated by the following Equation (3).

V =
L
T

(3)

where L is the path length, and T is the time it takes for the ultrasonic pulse to traverse the
path length.

The samples were previously rectified by grinding to obtain flat end surfaces. As the
grinding was carried out with a water aid, the samples were dried in an oven at 40 ◦C for
72 h before the test.

2.2.5. Compressive Strength and Dynamic Modulus of Elasticity in Compression

The compressive strength test was performed according to the EN 12390-3 [53] pro-
cedure in a FORM+TEST STM 3000 S testing machine featuring a maximum test load of
3000 kN.

The modulus of elasticity in compression was carried out according to E397-1993 [54]
in a FORM+TEST Alpha 20–600 testing machine. The test equipment applies and maintains
the required load with an accuracy of not less than 1%. The instruments for measuring
changes in length (the strain transducers) were placed at equal distances from the ends
of the test piece and at least 1/4 of the height from the ends. The measuring instruments
enabled the length to be determined with an accuracy of not less than 5 × 10−6.

A constant load speed within the range of 0.6 ± 0.2 MPa/s was applied. The load was
increased continuously, starting from 0.5 MPa until it reached 1/3 of the rupture strain,
which was known after the compressive strength test was carried out in other samples of
the same building. Six loading cycles were carried out for each test.

2.2.6. Quality Evaluation of the Hardened Concrete

The standard CEN EN 1992: Eurocode 2 [48] was applied to calculate the compres-
sive strength that concrete would have at 28 days of age, considering the concrete class
prescribed in the construction design project for each case study [46] and thus evaluating
the quality of construction at the time of concrete application.

For this calculation, Equation (4) was used. It was deduced from Equations (5) and
(6) of the CEN EN 1992: Eurocode 2, where fck(28d) is the characteristic value of the
compressive strength applied in structures and fcm(28d) is the value obtained by applying
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Equation (5) takes into account a standard deviation of 4 MPa, which was considered
current in older concrete productions.

fck (28d) = fcm(28d)− (1.64 × 4) (4)

fcm = fcm(t) βcc(t)−1 (5)

with

βcc(t) = exp

{
s

[
1 −

(
28
t

)1/2
]}

(6)

where fcm is the mean compressive strength at 28 days and fcm(t) is the compressive
strength obtained by the test, with t being the buildings’ age expressed in days. βcc(t) is the
coefficient that depends on the age of the concrete t, and s is the coefficient that depends on
the type of cement. Since the type of cement used in the production of the concrete is not
known, a coefficient s = 0.20 was adopted, according to the CEN EN 1992 standard [41], as
older cement presented slower strength increases compared to nowadays.

For both IRF (1938), DN (1940), and LIP (1958) case studies, the presented results of
compressive strength at 28 days equals fcm (the mean value). Since the concrete class was
prescribed in the construction, the design was defined according to the 1935 regulation [22].
For the definition of the strength limits to be applied, this regulation refers only to minimum
values of compressive strength, while in later regulations [23,24], which were applied in the
remaining case studies, strength classes are defined using the criterion of the characteristic
strength value fck.

3. Results and Discussion
3.1. Macroscopic Observation of Cores and Carbonation Depth

The macroscopic observation of the concrete cores showed large coarse aggregates
composed of white limestone, sometimes fossiliferous, and rarely clayey (Figure 3). The first
case study, IRF (1938), exhibited coarse volcanic aggregates, and the second one, DN (1940),
also had chert aggregates. Most of these aggregates are compatible with the lithotypes
explored to the north of the Lisbon region. No gels, deposits, or cracks were detected in
the samples.

Constr. Mater. 2022, 3, FOR PEER REVIEW 12 
 

 

 
Figure 3. Sample cores from the following case studies: (a) IRF (1938); (b) DN (1940)—coated with 
plasters ; (c) LIP (1958)8; (d) EUA53 (1970)—coated with plasters; (e) FRAN (1971); (f) JRP (1987); 
(g) PCV (1998)—white concrete; (h) PCV (1998); (i) C8 (2000); (j) AS (2001)—white concrete; (k) AS 
(2001); (l) UNL (2002). 

Table 3. Dimension of the largest aggregate. 

Parameter
s Gray Concrete 

White 
Concrete 

Case study 
IRF 

(1938) 
DN 

(1940) 
LIP 

(1958) 
EUA53 
(1970) 

FRAN 
(1971) 

ISCJ 
(1975) 

FCG 
(1975) 

JRP 
(1987) 

PCV 
(1998) 

C8 
(2000) 

AS 
(2001) 

UNL 
(2002) 

PCV 
(1998) 

AS 
(2001) 

Average 
dimension 

(mm) 
50.0 42.5 60.3 50.0 46.0 45.0 30.6 32.9 30.0 24.7 22.7 22.5 11.7 22.5 

S.D. (σ) 8.2 2.9 17.4 14.1 17.2 2.5 3.5 11.0 6.3 4.5 2.6 5.2 2.6 3.5 
Notation: S.D.—standard deviation. 

 
Figure 4. Evolution of the largest aggregate dimension over the period analyzed. 

  

Figure 3. Sample cores from the following case studies: (a) IRF (1938); (b) DN (1940)—coated with
plasters; (c) LIP (1958)8; (d) EUA53 (1970)—coated with plasters; (e) FRAN (1971); (f) JRP (1987);
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The average dimension of the largest aggregate (Table 3) showed a reduction during
the analyzed period, as displayed in Figure 4. The maximum values were recorded in
LIP (1958) concretes. Their reduction started in the late 1960s, as exemplified by the FCG
(1975), following the regulations [23,25]. The 1935 regulation [22] limited the maximum
size to 40 mm, except for significant elements and massive structures where the coarse
aggregates could be larger. The subsequent national regulation to recommend aggregates’
dimension criteria was published in 1971 [25]. It mentioned using a maximum dimension
of 38.1 mm, should the dimension be lower when the reinforcement would be dense. After
these two decrees, further regulation [24] established dimension criteria depending on the
reinforcement design.

Table 3. Dimension of the largest aggregate.

Parameters Gray Concrete White
Concrete

Case study IRF
(1938)

DN
(1940)

LIP
(1958)

EUA53
(1970)

FRAN
(1971)

ISCJ
(1975)

FCG
(1975)

JRP
(1987)

PCV
(1998)

C8
(2000)

AS
(2001)

UNL
(2002)

PCV
(1998)

AS
(2001)

Average
dimension

(mm)
50.0 42.5 60.3 50.0 46.0 45.0 30.6 32.9 30.0 24.7 22.7 22.5 11.7 22.5

S.D. (σ) 8.2 2.9 17.4 14.1 17.2 2.5 3.5 11.0 6.3 4.5 2.6 5.2 2.6 3.5

Notation: S.D.—standard deviation.
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The carbonation depth (Table 4 and Figure 5) of architectural and non-architectural
concrete shows a decreasing trend over time, which is expected with concrete ageing.

Table 4. Carbonation depth in the architectural and non-architectural concrete samples.

Parameters Non-Architectural Concrete Architectural Concrete

Case study IRF
(1938)

DN
(1940)

LIP
(1958)

EUA53
(1970)

FCG
(1975)

JRP
(1987)

PCV
(1998)

C8
(2000)

UNL
(2002)

FRAN
(1971)

ISCJ
(1975)

PCV
(1998)

AS
(2001)

UNL
(2002)

Carbonation
depth (mm) 26.9 10.5 15.3 1.2 1.5 12.2 15.8 6.1 16.8 11.4 10.7 2.5 2.6 15.2

S.D. (σ) 10.4 10.2 9.4 1.2 0.5 8.3 9.9 4.2 8.7 6.6 5.1 2.1 1.8 5.7

Notation: S.D.—standard deviation.

The size reduction of crushed coarse aggregate over time is a consequence of the
standardization and the optimization of the mixing control. The coarse aggregate plays a
vital role in determining the mechanical behavior of concrete as it occupies about 70% of
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the concrete volume [55,56]. The mechanical properties of concrete from older case studies
may be conditioned by the volume occupied by these aggregates and, consequently, by
the interfacial zone (ITZ) area, which might evolve to the formation and propagation of
microcracks. Similarly, the carbonation depth, which also tends to decrease towards the
end of the analyzed period, may be favored by the development of microcracking in the
dependence on the ITZ. Concretes from the oldest case study, IRF (1938), have a higher
carbonation depth than any other, which is understandable, presumably due to the more
prolonged exposure to CO2. The carbonation depths of other concretes are quite variable
due to the protection provided by the coatings. The coatings, whose typology, thickness
(Table 1), and the related physical and chemical properties provided different types of
protection, conditioned the penetration of CO2 and the moisture transport capability.
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3.2. Physical Characterization

Table 5 show the results of the physical characterization obtained for the open porosity,
the ultrasonic pulse velocity, and water absorption by capillary tests.

Table 5. Average results of physical properties of concrete samples.

Parameters Gray Concrete White Concrete

Case
study

IRF
(1938)

DN
(1940)

LIP
(1958)

EUA53
(1970)

FRAN
(1971)

FCG
(1975)

ISCJ
(1975)

JRP
(1987)

PCV
(1998)

C8
(2000)

AS
(2001)

UNL
(2002)

PCV
(1998)

AS
(2001)

P0 (%) 13.78 13.38 10.82 11.60 13.02 13.64 n.a. 20.02 14.86 14.21 15.54 15.75 13.77 13.30
S.D. (σ) 1.51 2.14 1.61 n.a. 2.04 0.67 n.a. 2.60 1.30 0.53 0.41 0.78 n.a. n.a.

Pb
(kg/m3) 2302.27 2286.01 2379.81 2363.18 2306.50 2279.22 n.a. 2110.31 2258.08 2267.04 2220.48 2229.24 2262.81 2300.23

S.D. (σ) 49.72 66.74 42.37 n.a. 61.87 22.99 n.a. 74.70 35.55 13.31 16.50 23.65 n.a. n.a.
V (m/s) 4103.20 4093.41 4652.52 4512.94 4816.02 4853.85 n.a. 3792.04 4555.49 4415.99 4512.20 4862.32 4684.49 4406.98
S.D. (σ) 805.37 270.77 169.43 n.a 297.55 180.46 n.a. 456.72 124.04 207.92 102.79 191.88 n.a. n.a.
W.A. at
15 min

(Kg/m2)
1.18 1.27 1.16 0.41 0.61 0.46 n.a. 1.45 0.51 0.68 0.58 0.40 0.55 0.45

S.D. (σ) 0.01 0.93 0.47 n.a. 0.18 0.14 n.a. 0.49 0.10 0.16 0.15 0.08 n.a. n.a.
W.A. at
60 min

(Kg/m2)
1.88 1.97 1.80 0.74 0.93 0.76 n.a. 2.52 0.84 1.15 0.97 0.61 0.90 0.91

S.D. (σ) 0.05 1.36 0.55 n.a. 0.24 0.21 n.a. 0.84 0.18 0.29 0.18 0.12 n.a. n.a.
W.A. at

1440 min
= 24h

(Kg/m2)

5.41 4.45 3.63 3.15 2.64 2.09 n.a. 9.13 2.48 4.19 3.47 1.61 2.71 3.33

S.D. (σ) 1.29 1.40 0.52 n.a. 0.67 0.49 n.a. 2.35 0.60 1.11 0.58 0.42 n.a. n.a.

Notation: P0—open porosity; S.D.—standard deviation; Pb—bulk density; V—ultrasonic pulse velocity; W.A.—
water absorption by capillary rising; n.a.—not available.
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The combined results show that the average of the open porosity values varies between
10.82% and 20.02%. The slight increasing trend over the period under analysis is shown in
Figure 6.
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W.A. at 15 
min (Kg/m2) 

1.18 1.27 1.16 0.41 0.61 0.46 n.a. 1.45 0.51 0.68 0.58 0.40 0.55 0.45 

S.D. (σ) 0.01 0.93 0.47 n.a. 0.18 0.14 n.a. 0.49 0.10 0.16 0.15 0.08 n.a. n.a. 
W.A. at 60 

min (Kg/m2) 
1.88 1.97 1.80 0.74 0.93 0.76 n.a. 2.52 0.84 1.15 0.97 0.61 0.90 0.91 

S.D. (σ) 0.05 1.36 0.55 n.a. 0.24 0.21 n.a. 0.84 0.18 0.29 0.18 0.12 n.a. n.a. 
W.A. at 1440 

min = 24h 
(Kg/m2) 

5.41 4.45 3.63 3.15 2.64 2.09 n.a. 9.13 2.48 4.19 3.47 1.61 2.71 3.33 

S.D. (σ) 1.29 1.40 0.52 n.a. 0.67 0.49 n.a. 2.35 0.60 1.11 0.58 0.42 n.a. n.a. 
Notation: P0—open porosity; S.D.—standard deviation; Pb—bulk density; V—ultrasonic pulse 
velocity; W.A.—water absorption by capillary rising; n.a.—not available. 
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Regarding the average ultrasonic pulse velocity, the results point to the quality of
concrete material in a range between good and excellent, considering the classification
of Whitehurst, 1951 [57]. The most significant variations in the results were observed in
the case studies IRF (1938) and JRP (1987), as shown in Figure 7. In the first case, coarser
aggregates may explain such variations. In contrast, in the second case, the higher open
porosity influences the obtained result, resulting in the lower value of ultrasonic pulse
velocity and, therefore, the compacity.
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The water absorption results by capillarity also show a reduction trend along the
period under analysis (Figures 8 and 9). The concrete of the case study JRP (1987) shows the
highest values of capillary absorption, corroborating the results of the high open porosity
and the lowest values of bulk density and ultrasonic pulse velocity. Regarding white
concretes, the values of capillary absorption are similar between samples of the two case
studies analyzed (Figure 9): PCV (1998) and AS (2001).
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The results of physical characterization show a tendency to reduce water absorption
over time and, consequently, an increase in the compacity of the concrete, as proven by the
results of the ultrasonic pulse velocity. The increase in ultrasonic pulse velocity is indicative
of the reduction of the total porosity of the tested medium. However, the results obtained
for the open porosity show an opposite trend, i.e., an increase over time, albeit slight. The
reduction of the maximum size of the crushed aggregates and the greater homogeneity of
the concrete favored the increase of compacity. On the other hand, there are exceptions,
and the lowest values of open porosity were recorded in older concretes, which have coarse
aggregates of larger dimensions. Variations in porosity and water absorption may be linked
to cement type and dosage, as well to the volume occupied by the aggregates, namely the
coarse aggregates, as it occurred in buildings constructed until the 1960s. The size-effect
and the volume occupied by large aggregates in the tested specimens may be at the origin
of this trend since the inherent porosity of these aggregates may significantly influence the
results. It should be noted that limestones from the north region of Lisbon, one of the most
extensive exploration centres in Portugal, present values of open porosity not exceeding
1.2% [58]. Nevertheless, a reduction in cement fineness is assumed over time [59,60]. It
is observed that concretes with larger aggregates, more precisely those from buildings
awarded up to 1998, usually show lower open porosities than concretes with smaller coarse
aggregates. Hence, it can be assumed that the open porosity is influenced by the volume
occupied by the coarse aggregates and their inherent low porosity.
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From the point of view of the material’s durability, the reduction in water absorption is
a favorable outcome since it increases the resistance to sulphate attack [61] and may avoid
the water ingress into concrete.

White cement should have identical behavior to its gray counterparts of the same
type and strength class. As for physical characteristics, there are two differences directly
related to each other: fineness and the beginning of the setting. White cement is generally
thinner and has a greater specific surface. With greater cement fineness comes greater
mechanical resistance, particularly at younger ages. On the other hand, as the cement is
made of smaller particles, the amount of water required to achieve certain workability
is higher, leading to an increase in porosity [42]. However, there was no open porosity
increase compared to gray cement concrete for the same buildings.

3.3. Mechanical Characterization

The mechanical characterization results (Table 6) show a trend toward an increase
in compressive strength and dynamic modulus of elasticity in compression throughout
the period under analysis, as displayed in Figures 10 and 11. This trend is shown in any
concrete, regardless of the structural element considered.

Table 6. Average results of mechanical tests of reinforced concrete samples.

Parameters
Gray Concrete White

Concrete

Superstructure S.W. Superstructure

Case
study

IRF
(1938)

DN
(1940)

LIP
(1958)

EUA53
(1970)

FRAN
(1971)

FCG
(1975)

ISCJ
(1975)

JRP
(1987)

PCV
(1998)

C8
(2000)

AS
(2001)

UNL
(2002)

UNL
(2002)

PCV
(1998)

AS
(2001)

fc (MPa) 28.30 32.10 35.80 n.a 60.43 69.58 n.a 27.17 57.13 60.20 61.90 67.47 76.10 65.00 n.a
S.D. (σ) 4.81 n.a 7.39 n.a 9.46 14.90 n.a 13.32 7.03 14.45 2.26 4.42 n.a n.a n.a
Ec (GPa) 18.50 17.30 28.60 n.a 33.80 37.20 n.a 17.55 34.37 28.10 31.63 37.50 n.a 35.50 n.a
S.D. (σ) n.a n.a 0.71 n.a 1.70 1.57 n.a 9.40 1.96 n.a. 0.81 0.00 n.a n.a n.a

Notation: S.W.—supporting walls; fc—compressive strength; S.D.—standard deviation; Ec—dynamic modulus of
elasticity; n.a.—not available.
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The maximum values of the mechanical characteristics were obtained in the UNL (2002)
case study, followed by FCG (1975), respectively, 76.10 MPa and 69.58 MPa—compressive
strength values. Dynamic modulus of elasticity values for both case studies are, respectively,
37.50 GPa and 37.2. The case study JRP (1987), on the contrary, presents the lowest values
of these characteristics, registering 27.17 MPa and 17.55 GPa, respectively, for compressive
strength and the dynamic modulus of elasticity.

It is reported that the compressive strength of concrete increases with the increase of
the coarse aggregate size [56]. This relationship was not verified in this study since one or
more types of concrete with different characteristics and strength classes were employed in
each case study. However, the increasing trend of the compressive strength throughout
the period under study accompanies the increase in compacity and the decrease in water
absorption. All these properties are pore size structure-dependent, whereas an increase in
the fineness of the cement or a decrease in the water to cement ratio (w/c) are expected
to occur throughout the 20th century [1]. An evolutive correlation between compressive
strength and open porosity shows no clear relationship (Figure 12).

The most relevant source of porosity refers to w/c. When this ratio becomes higher, the
porosity of the cement paste in the concrete also upsurges, and the compressive strength
reduces as the porosity increases. It is not possible to state a cause–effect relationship
between porosity and compressive strength of the concretes up to the 1960s case studies.
The concretes of the award-buildings until the 1960s have the larger crushed aggregates.
The porosity should be influenced by the coarse aggregate’s porosity, resulting in a decrease
in the open porosity of the concrete. On the contrary, this relationship is observed in the
concrete of the building JRP (1987).
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3.4. Quality Evaluation of the Hardened Concrete

The compressive strength was estimated for 28 days of curing, as described in
Section 2.2.6, to assess the applied concrete materials’ quality at the time of construction
and their initial performance.

The results obtained indicate that most of the case studies would have a compressive
strength higher than the prescribed at the construction time, as shown in Table 7 and
Figure 13. Only two cases exhibited an estimated compressive strength lower than the
prescribed: AS (2001) and JRP (1987). A difference of about 3 MPa was registered in the
first case study, and the second revealed a difference of 9.5 MPa.

Table 7. Average results of mechanical properties of reinforced concrete samples.

Parameters
Gray Concrete White

Concrete

Superstructure S.W. Superstru
cture

Case study IRF
(1938)

DN
(1940)

LIP
(1958)

FRAN
(1971)

FCG
(1975)

ISCJ
(1975)

JRP
(1987)

PCV
(1998)

C8
(2000)

AS
(2001)

UNL
(2002)

UNL
(2002)

PCV
(1998)

t (days) * 30,295 29,565 23,360 18,980 18,980 18,615 12,410 8395 7665 8760 6935 6935 8395
Prescribed

concrete class (a) (a) (a) B300 B300 B300 B225 n.a. B30 B40 B30 B25 B35

βcc 1.214 1.214 1.213 1.212 1.212 1.212 1.210 1.207 1.207 1.208 1.206 1.206 1.207
Prescribed

compressive
strength
(MPa)

17.65 17.65 17.65 29.42 29.42 29.42 22.06 n.a. 30.00 40.00 30.00 25.00 35.00

fcm (t) **
(MPa) 28.30 32.10 35.80 60.43 69.58 n.a. 27.17 57.13 60.20 61.90 67.47 76.10 65.00

fcm (28d)
(MPa) 19.81 22.48 25.09 42.36 48.81 n.a. 9.11 (b) 42.40 43.57 53.64 47.58 45.76

fck (28d)
(MPa) (c) (c) (c) 35.80 42.25 n.a. 12.55 (b) 35.84 37.01 47.08 41.02 39.20

Notation: S.W.—supporting walls; * building’s age by the end of the year 2021 (considering the completion year
of construction); n.a.—not available; ** tested compressive strength = fc values in Table 6; (a) according to 1935
regulation [22]; (b) no result; (c) The regulation does not mention the characteristic value of the compressive
strength, only the minimum value, which implies considering fcm (28d) instead of fck (28d).
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The concrete of the supporting walls of UNL (2002) presented the best performance,
with a difference of 16.2 MPa between the prescribed and the calculated strength, followed
by FCG (1975) with a difference of 12.8 MPa.

The evaluation of the concrete quality by estimating the compressive strength at
28 days of curing showed that the project design was followed up successfully. It demon-
strates the great care taken during the construction process. It also highlights the actual
condition of the structures, which enhances their durability. Although the AS (2001) case
study shows a slight difference between the prescribed concrete compressive strength and
the estimated one for 28 days of curing (<5 MPa), this difference is not as striking as in the
JRP (1987) case study. All the physical and mechanical results obtained for JRP (1987) reveal
a worse condition, as its performance is doubly different, which implies a questionable
quality of the materials applied, corroborating the ultrasonic pulse velocity results whose
dispersion of results places it in the range between the generally good to questionable
quality class (Figure 7).

4. Conclusions

The present study made it possible to assess concrete’s main physical and mechanical
characteristics from a set of 20th-century award-winning architecture buildings in Lisbon.
This study is a pioneer one on buildings that have an awarded architectural quality. The
systematic studies on this kind of construction materials in Portugal are still scarce.

The results obtained point to an evolution in the characteristics over the period under
analysis, which embodies the application of the national regulations. The physical and
mechanical properties of the analyzed concrete materials reproduce an evolution towards
the safety and durability requirements imposed by the national regulations on account of
the advancement in the knowledge of structural performance and the scientific knowledge
acquired throughout the 20th century.

The evolution of the physical and mechanical characteristics studied can be listed
as follows:

1. The crushed coarse aggregate, mainly composed of limestone, had its maximum
size reduced, having decreased from the late 1960s onwards, as exemplified by the
case study FCG (1975), as set out in current Portuguese regulation by the time of
construction.
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2. The carbonation depth shows a decreasing trend, which is expected with concrete age-
ing. Although it is quite variable as the presence of coatings may play an important role.

3. The open porosity and bulk density values did not show very significant variations.
A slight tendency towards a reduction in bulk density and increase in porosity may
be related to the variation in the maximum size of the largest aggregate, which varies
in the same direction as compacity.

4. Water absorption by capillary rising for all types of concrete studied (white and gray)
does not show a consistent trend in the same direction as the open porosity.

5. Open porosity slightly increases towards the end of the analyzed period, implying
that this is not exclusively due to the characteristics of the binder but to the whole
composite material itself.

6. The mechanical characteristics, except for the building awarded in 1987, show a clear
trend towards an increase in the values of the compressive strength and the dynamic
modulus of elasticity.

7. Except for the building awarded in 1987, the estimation of the compressive strength
at 28 days of curing showed that the project design had been accomplished.

The results allow us to conclude that, in general, the materials show a good durability
condition, as far as the physical and mechanical characteristics point out to a good perfor-
mance, not indicating degradation, considering the age of the buildings and that they are
still in use. However, the 1987 award-winning building demonstrated that its overall perfor-
mance could compromise durability, requiring monitoring actions to prevent degradation.

This study, being part of a more significant characterization underway, contributes to
the necessary in-depth knowledge of the physical and mechanical characteristics to apply
in conservation and restoration actions over the built heritage in the 20th century.
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