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INTRODUCTION 
Within the BlueSafePort project an Early Warning System 
(EWS) is being developed for forecasting and alerting 
emergency situations related to ship navigation in ports, 
as well as operational constraints. Port terminals 
downtime leads to large economic losses and largely 
affects the port’s overall competitiveness. So, the goal of 
such EWS is to reduce the port’s vulnerability by 
increasing its planning capacity and efficient response to 
emergency situations. As any EWS, its usefulness 
depends greatly on its reliability and accuracy. To achieve 
more accurate predictions a new method was developed 
to optimize forecasts produced by the system. Using 
available database from buoys, pressure sensors and 
meteorological stations, neural networks were trained to 
optimize numerical models results.  
 
TEST CASE – PORT OF SINES 
The Port of Sines is a deep-water port located on the west 
coast of mainland Portugal. The port has 7 terminals, 
namely: the Liquid Bulk Terminal (TGL), the Liquified 
Natural Gas Terminal (TGN), the Petrochemical Terminal 
(TPQ), the Sines Container Terminal or Terminal XXI 
(TCS), the Sines Multipurpose Terminal (TMS), the 
Fishing Port and the Sines Marina. Given its national 
relevance, its continuous economic growth and constant 
expansion, the port of Sines has been the subject of 
several research projects. The prototype of the 
SAFEPORT EWS, for example, has been developed and 
validated for the Port of Sines. For that, SWAMS - 
Simulation of Wave Action on Moored Ships (Pinheiro et 
al. 2013) an integrated numerical tool capable of 
simulating the response of a moored ship within a harbor, 
subjected to the action of sea waves, wind and currents, 
was used to simulate the behavior of three different ships 
docked and moored at three terminals of the Port of Sines, 
namely: an oil tanker at the TGL, a general cargo ship at 
the TMS, and a container ship at the TCS (Error! 
Reference source not found.). Table 1 presents general 
geometric characteristics of the simulated ships as well as 
the mooring arrangements that are part of the EWS 
implemented and in operation. 
 

Table 1 - General geometric characteristics of the simulated 
ships. 

Ship 
Draft 
(m) 

Beam 
(m) 

Lenght 
Overall 

(m) 
Moorings 

Oil Tanker 22.0 26.5 340 8ML + 3FD 
General Cargo 10.5 30.0 220 8ML + 5FD 

Container Ship 8.0 19.0 120 10ML + 6FD 

 
EARLY WARNING SYSTEM 
The SAFEPORT EWS follows a series of EWS from the 
HIDRALERTA platform which includes three Azorean 
ports: Praia da Vitória, S. Roque do Pico and Madalena do 
Pico, (Poseiro, 2019 & Pinheiro et al., 2020), and five other 
ports in mainland: Ericeira, Costa da Caparica, Peniche, 
Faro and Quarteira.  Now an upgrade is being developed 
for the port of Sines using neural network tools for 
calibrating the wave propagation models. 
 
The system uses available forecasts of regional wind and 
sea-wave characteristics offshore, together with 
astronomical tidal data as inputs to a set of numerical 
models. These numerical models provide estimates of 
wave and wind characteristics in all domains, from regional 
scales simulated with several nested grids with SWAN 
model (Booij et al., 1996), to local scale, using a non-linear 
boussinesq-type model or a linear mild-slope model. 
Finally, the ship’s response to those wave and wind 
forcings is computed using a hydrodynamic 3D panel 
method model (Korsemeyer et al. 1988) and a motion 
equation solver. 
 
Forecasted hourly movements and mooring forces are 
compared with pre-set thresholds. Probability assessment 
of exceedance of those values results in a risk level 
assessment. Hazard levels depend on the Maximum 
Breaking Load (MBL) of the mooring lines (OCIMF, 1992). 
0 corresponds to no danger (green symbol), 1 corresponds 
to 50% of MBL (yellow symbol), 2 corresponds to 80% of 
MBL (orange symbol) and 3 corresponds to 100% of MBL 
(red symbol). Finally, based on the forecasted risk level, 
emergency situations as well as port operations’ safety can 
be foreseen in advance (72h) and the adequate warning 
alerts can be issued. 
 
All information provided by this EWS is available in a 
dedicated website and mobile application. Additionally, an 
alert bulletin is sent by email to interest parties. Thus, port 
stakeholders benefit from a decision- support tool to timely 
implement mitigation measures and prevent accidents and 
economic losses. Numerical simulations run on the Central 
Node for Grid Computing (NCG) of the Portuguese 
Infrastructure for Distributed Computing (INCD), a 64-node 
high performance computing facility. 
 
WAVE MODELLING 



The wave propagation medolling includes 3 numerical 
models for wave propagation and a finite element mesh 
generator. The numerical model SWAN is a spectral 
nonlinear model based on the wave action conservation 
equation, which simulates the propagation of irregular 
wave spectrum, transfers the wave characteristics from 
the offshore area to the harbor entrance. To transfer the 
wave characteristics from the harbor entrance area to the 
harbor’s interior the EWS uses DREAMS and BOUSS-
WMH. The numerical model DREAMS (Fortes, 2002) is a 
linear finite element model, based on the mild slope 
equation, to simulate the propagation of monochromatic 
waves model. The BOUSS-WHM model, (Pinheiro et al., 
2011) is a nonlinear finite element model, based on the 
extended Boussinesq equations deduced by Nwogu 
(1993), being able to simulate the propagation of regular 
and irregular waves.  

 

  
Figure 1 - Port of Sines. Left: Bathymetry of the surrounding 
area and the computational SWAN domains. Right: 
Location of the terminals. 

 

 
Figure 2 - Wave and wind forecasts. ECMWF-WAM 
forecasts (right). DREAMS model results (left) 

 

NEURAL NETWORKS 
In situ monitoring of wave characteristics are used to 
validate the results produced by the numerical models, 
and the deviations between forecasts and wave 
measurements are assessed daily. Additionally, a long-
term error analysis was performed using a 40-year dataset 
(wave and wind data) from the ERA5 reanalysis model of 
the European Centre for Medium-Range Weather 
Forecasts, ECMWF (Persson, 2001), that uses WAM 
model (WAMDI Group, 1988), to initiate SWAN 
simulations exactly as they are implemented on the EWS. 
The Root Mean Square Errors (RMSE) for significant 
wave height, Hs, at the buoy location, is 0.395m (with 
SWAN’s overestimating buoy measurements) and 2.36s 
for the mean period, Tz (also overestimation). 
 
three Neural Networks were trained in order to evaluate 
the possibility of improving these forecasts accurateness. 
For the development of the NNs, Keras open-source 
neural network library, written in Python, was used. A NN 
is composed of an input layer, a number of hidden layers, 

and an output layer. Each layer has a certain number of 
nodes. Nodes in hidden layers are neurons. The neurons 
are distributed in several hidden layers which apply 
different transformations to the input data. All the neurons 
in a hidden layer are connected to every neuron in the next 
layer. The Output Layer is the last layer in the network & 
receives input from the last hidden layer.  
 
Five input layers were used for the development of these 

NN. Offshore wave parameters (Hs, Tz and ) and wind 

data (speed and ). Input nodes data consist of the 
offshore wind and sea-waves 40-years dataset are 
supplied by ECMWF, significant height (Hs), the mean 
period (Tz) and the average direction (θm) of the sea 
waves and wind speed and direction, between 1988 and 
2018. Training data consists of an available dataset of 
measured wave characteristics from the Sines 1D wave 
buoy which has been deployed since 1988 and all the 
available data until 2018 wave buoy data was used. 
 

    
Figure 3 - Offshore wave (left) and wind (center) statistics. 
Buoy measurements wave statistics (right). Data period from 
1988 to 2018. 

 
In this case three different NN were created, one for each 

wave parameter at the buoy, Hs, Tz and , so only one 
output per NN was required. 80% of the data was used to 
train the network and 20% was used to test it. The cost 
function is the mean squared error, mse, of the entire 
training set. The rectified linear unit (ReLU) activation 
function is used to introduce non-linearity to the network. 
 

 
Figure 4 – Structure of the Neural Network for the wave 
height estimation/forecast at the Sines Buoy. 

 
For the generation of a NN some parameters have to be 
defined and can influence the fit of the network to reality, 
namely, the number of neurons, the batch size (bs) and the 
number of epochs. The batch size is the number of training 
examples in one forward/backward pass. The higher the 
batch size, the more memory is needed. The number of 
epochs is the number of times that the model is exposed 
to the training dataset. 
 
The selection of the best parameters for the generation of 
the neural network was performed in 3 stages. The first 
stage varied the number of neurons (32, 64, 128) and the 
number of epochs (800, 1000, 2000) while using a fixed 



batch size of 1024 values. The best score in terms of 
reduction of the RMSE sets the neurons and epochs for 
the next stage. The second stage consists of varying the 
batch size while using fixed values for neurons and 
epochs. Finally, the third stage is essentially a new run of 
the first stage with the best batch size obtained in the 
second stage. The best fit for the Hs NN was achieved with 
batch size = 153, neurons = 32, epochs = 2000. For the Tz 
NN, the best fit was achieved with a batch size = 200, 
neurons = 32, epochs = 1000. With this NN, we could 
achieve 83% reduction of the RMSE of significant wave 
heigth and 78% reduction for the mean wave period, in 
relation with SWAN model simulations.  
 

 

 

Figure 5 – Three stages of NN parameters optimization. Top: 
H; Bottom – Tz. 

 

 
Figure 6 – Comparison of the last 100 records of the Buoy 
measurements, Neural Network output and SWAN 
numerical simulations. Top: Significant wave height; 
bottom: Mean wave period. Right: absolute error. 

 

 

 
Figure 7 – Comparison of the frequency histograms of Buoy 
measurements, Neural Network output and SWAN 
numerical simulations. Top: Significant wave height; 
bottom: Mean wave period.  

 

FINAL REMARKS 

The trained neural networks were able to produce more 
accurate estimates for the significant wave heigth and 
mean wave period, at the buoy location, deployed in front 
of the Sines Port. The use of the new NN leads to an 
overall reduction of the RMSE of around 80% compared 
with SWAN numerical model simulations. Therefore a 
better estimation of the wave charactersitics in front of the 
port can be achieved and consequently a more accurate 
estimation of the mooring forces of the ships can be 
found. The use of these NN brings more reliability and 
robustness to the EWS. 
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