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A B S T R A C T

Soil-rockfill mixtures (SRMs) are economical and environmentally friendly materials. Due to the absence in the
literature of constitutive models specifically developed and tested for SRMs, a new constitutive model, the
Subloading Surface Rockfill Model, is presented. This model allows the occurrence of plastic strains inside the
yield surface, inducing a smooth elastic/plastic transition. The results of experimental tests for different coarse
fractions (CF) of several SRMs performed on samples from Odelouca Dam are compared with those obtained
with this model. The model was able to reproduce reasonably well the response of SRMs considering the intrinsic
variability of the tested specimens.

1. Introduction

In the last decades, there has been a considerable increase in the use
of soil-rockfill mixtures (SRMs) in embankments of high dams and other
structures. It is an environmentally friendly material as it includes the
excavation products from the spillways, cut-off trenches, outlet works
and other appurtenant structures that would have to go to deposit and
are instead reused. It is also an economic material since a significant
part of it comes from near to the construction site, thereby reducing the
costs of transportation.

In this work, the following definition of soil-rockfill mixtures is
adopted [1]: (i) fraction retained on ¾″ (19 mm) sieve between 30%
and 70%; (ii) fraction passing No. 200 (0.074 mm) sieve between 12%
and 40%; (iii) and the maximum particle dimension (Dmax) less than 2/
3 of the embankment layer thickness after compaction and not larger
than 0.40 m.

In this study, the coarse fraction, CF, is considered the fraction of
the total sample retained on the ¾″ (19 mm) sieve and the finer frac-
tion, FF, is consider the fraction of the total sample passing the same
sieve (CF + FF = 1).

A literature review reveals the absence of constitutive models spe-
cifically developed for SRMs. Certainly this material presents a beha-
viour reflecting its two constituents – soil and rockfill. As such, the
constitutive model that best reproduces its behaviour will have to take
into account some important aspects of both materials. The main ob-
jective of this research was to developed a model, which should be as
simple as possible but still capable of reproducing well the response of
different SRMs subjected to undrained triaxial tests isotropically con-
solidated to multiple effective stresses and drained triaxial K0 tests.

In the past SRMs were treated as a “weathered rockfill” or “transi-
tion material” and the constitutive models used for this type of material
were those used for rockfill. The first models used in rockfill dams were
linear elastic. According to some authors ([2–5]) this type of models
presented good fitting to the observed results, which is not surprising
considering that almost all these analyses were back analysis based on
the monitoring results. However, soils present strain irreversibility even
at relatively low stress states and the linear elastic models can only give
a first approximation to the real mechanical behaviour.

The nonlinear elastic models were also very popular in the simu-
lation of the mechanical behaviour of rockfill. The main objective of
these models was to be able to fit the strain–stress curves of the tests.
The bilinear model, the K-G model ([6] and [7]), the EC-K0 ([8]) model
and the hyperbolic model are all examples of nonlinear elastic models.

In 1963, Konder [9] presented the hyperbolic model when he ana-
lysed strain–stress curves of soils subjected to conventional triaxial
shear tests. He noted that these curves could be approximated by a
hyperbolic function with a horizontal asymptote. Starting from this
work, several authors proposed other hyperbolic models ([10–15],
among others). Of these, Duncan and Chang model [10] has been the
most used.

Examples of numerical analysis of three dams – Borde Seco Dam,
Las Cuevas Dam and Alvito Dam, with the hyperbolic model can be
found in [16].

A comparison between two different nonlinear elastic constitutive
analytical models was presented by [17] for the predictions of the end
of construction performance of a central core rockfill dam – Beliche
Dam. The models used in these analyses were the K-G model and a
modified version of the hyperbolic model of [10]. The hyperbolic model
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gave a less stiff response than the K-G model.
The failure of soils is not normally abrupt with a sudden reduction

in stiffness. In fact, in most soils, large plastic deformations occur
without complete loss of strength. It is even possible to stabilize failure
in soil structures by removing the loading ([18]). Over the past
50 years, critical state models have been used to analyse and explain
the behaviour of several materials ([19–26], among others).

The critical state model, known as Cam Clay, was initially devel-
oped for soils, in the 50s and 60s by researchers at the University of
Cambridge ([19,27,20,28]). This model assumes that if the soil is sub-
jected to an increasing shear strain, it will reach a critical state. A cri-
tical state model was also used to model Beliche Dam with a marked
improvement over the non-linear elastic models [29].

However, the classic critical state models are hardening elasto-
plastic models and as such have some limitations. This paper presents a
non-classic elastoplastic model, specifically developed for SRMs, that is
capable of representing their main aspects of behaviour based on a
large number of tests performed at LNEC on samples from Odelouca
Dam, a large dam built with these materials. In the following section
the model is described in detail. The model has also been used with
considerable success in the numerical modelling of the construction of
Odelouca Dam, which is described elsewhere [30].

In this analysis, the explicit finite difference program FLAC ([31])
was used. This is a two-dimensional program for geotechnical appli-
cations that allows the implementation of constitutive laws by the user.

In this work the usual soil mechanics convention that compressive
stresses and strains are positive is adopted. Stresses are effective unless
stated otherwise.

2. Subloading surface rockfill model

The Subloading Surface Concept ([32–34]) is a generalization of the
conventional elastoplastic models that extends the elastoplasticity
theory in such a way that the interior of the yield surface is not a purely
elastic domain anymore, instead plastic strains are induced by the stress
or strain rate inside the yield surface. So, the conventional yield surface
is renamed as the normal yield surface. This concept was developed
more deeply in [35] for rate dependent cyclic anisotropic structured
behaviour.

In this formulation, differently from the original one by Hashiguchi
[33], there is no restriction on the form of the yield surface. The yield
function gradient is not normalized and the flow rule is non-associated.

The Subloading Surface Rockfill Model (SSRM) is an extension of
the Modified Cam Clay Model (MCCM) with the Subloading Surface
Concept, tensile strength, non-associated flow rule and a curved critical
state line. Another difference is a non-circular deviatoric cross section,
which implies dependence on the invariant θ. Geometrically, the yield
surface is translated by ξpc (constant that defines the effective tensile
strength) in the negative direction of the hydrostatic axis. Despite, in
principle, tensile strength not being present in SRMs, a very small value
is useful to avoid some numerical problems such as singularity at the
origin of stress space when computing the value of the scaling factor R
and also for materials that present some tensile strength such as soils
with structure.

A “continuous plasticity” formulation such as the subloading surface
one was adopted partly because simpler hardening elastoplastic models,
such as the Cam Clay model, were incapable of reproducing the ob-
served inversion in the direction of the undrained triaxial effective
stress paths. Complexities such as cyclic behaviour, rate dependency
and anisotropy were also not considered as the model calibration for
these aspects of behaviour was not evident from the tests performed.
Several possible features of the model were investigated such as
keeping an associated flow rule while changing the shape of the yield
surface, hardening due to plastic shear strains and a volumetric strain
dependent isotropic compression constant, λ∗, to represent particle
breaking (clastic behaviour). As these particular features did not

contribute to verifiable improvements in the model they were con-
sidered unnecessary complications and were not used in the final
model.

The decreasing gradient of the critical state line is relevant for this
type of material because the best fit for a straight CSL gives rise to a
significant cohesion value. For the CSL to contain the origin of stress
space, it follows that the greatest rate of change in the gradient occurs
for small values of the mean effective stress making a curved CSL ne-
cessary. Non associativity was needed because the associative version of
the model was incapable of reproducing simultaneously conventional
triaxial compression and K0 tests.

The yield surface used by the model, describes an ellipse in (p q, )
space (as shown in Fig. 1), similar to the MCCM, and is represented by
the following equation:

⎜ ⎟= ⎛
⎝

⎞
⎠

+ − =σf
q

M θ p
p p p( )

( , )
( ) 0

c
c

2

(1)

where = +p p ξpc and the invariants p, q and θ are defined in Ap-
pendix A.

The model requires at most ten material constants: ∗λ , ∗κ , ν, cR, a, c,
d, k, ξ and pe. The constants ∗λ and ∗κ are determined so as to fit, re-
spectively, to the slope of the normal compression line and the line of
elastic unloading/reloading obtained under isotropic stress conditions
in a bi-logarithmic representation −v p(ln ln ), unlike the parameters λ, κ
of the Cam Clay Model that are obtained in a semi-logarithmic re-
presentation −v p( ln ). The advantage of this approach is that the bulk
modulus is independent of the specific volume, v, and is given by

= +
∗K p p

κ
e while in the MCCM, the bulk modulus =K vp

κ increases for
looser states of the soil which is not in agreement with observed soil
behaviour. The elastic law is isotropic nonlinear hypoelastic with the
shear modulus given by = −

+G Kν
ν

3(1 2 )
2(1 ) . The Poisson’s ratio, ν, is con-

stant. The material constant cR is determined to adjust the evolution of
stiffness with strain in the transition from elastic to elastoplastic be-
haviour. The constant ξ defines the effective tensile strength. pe is a
constant defined to make sure that the bulk modulus K( ) is not zero
even when the mean stress p is zero. The constant a defines the non-
associativity degree with the associated model being recovered for

=a 1. The constants c and d define the curved critical state in triaxial
compression as

=q cp .d (2)

When =d 1, =c M and =ξ 0 the straight critical state line is re-
covered. In general <d 1 as the critical state tangent friction angle
decreases with the increase of p. The MCCM with the constants ∗λ and

∗κ , instead of the usual λ and κ, is obtained for a very large value of cR,
=a 1, =d 1, =ξ 0, =p 0e and =k 1. The constant k is given by

Fig. 1. SSRM yield subloading, plastic potential surfaces and critical state line.
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where Mc and Me are the ratios of the longitudinal (triaxial) sections
elipse semi-axes in compression and extension, Mcand Me are the slopes
of the secant Critical State Line (CSL) in triaxial compression and ex-
tension. The slope of the secant CSL is related to the ellipse semi-axes
ratio by
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The longitudinal ellipse semi-axes ratio, M, varies with θ and pc
according to =M θ p M p h θ( , ) ( ) ( )c c c and = −M p ξ p( ) [( ) ]c c

c
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defines
the flattening of the yield surface ellipse in triaxial compression. This
results in a yield surface composed of elliptic sections with a rounded
triangular shape as shown in Fig. 2. If =k 1 then =h θ( ) 1 and the trace
of =f 0 on a deviatoric plane is a circle. h θ( ) is given in Appendix A.

The subloading surface where the stress point must be at all times, is
homothetic to the yield surface with scaling factor R. The image point
in the yield surface =σ σy R

1 with ⩽R 1. The subloading surface is de-
fined as

= ==σ σf f( ) ( )| 0.σ σy
R
1

y (5)

The value R, which is found by solving equation (5), is given in
Appendix A. Fig. 3 represents the yield surface in 3D principal stress
space together with the subloading surface.

The consistency condition, implying that the stress point must re-
main on the subloading surface during plastic loading, is given by
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is the elastic law. The plastic potential function is defined by
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and the subloading plastic potential function is given by
= =σ σg g( ) ( )|σ σy y R

1 . Both are represented in Fig. 1.
The isotropic hardening law is given by:
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and the subloading hardening law is described by
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adopted for this model with the constant cR defining the smoothness of
the transition from elastic to elastoplastic behaviour. From the con-
sistency condition the plastic multiplier, dγ , is determined as
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Fig. 2. Yield function cross section in the deviatoric plane.

Fig. 3. SSRM yield and subloading surfaces in principal stress space.
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The expressions for the gradients are presented in Appendix A.
The plastic loading condition under strain control is given by
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In contrast to conventional elastoplastic models it is possible for
plastic loading to occur at any point inside the yield surface depending
on the direction of loading, εd , so the stress point is always on the
subloading surface.

3. Modelling soil-rockfill mixtures with SSRM

The SSRM was implemented in the program FLAC in order to re-
produce a set of tests on several samples: 30%CF, 40%CF, 50%CF and
70%CF. It was also applied to the pure soil and rockfill samples. The
grain size distribution for all SRMs tested are presented in Fig. 4. Ac-
cording with the Unified Soil Classification System, the fines of the SRM
used in the studies is classified as SM – silty sand with gravel. Both
rockfill and soil result from weathered schist and greywacke obtained
by quarrying. This material came from Odelouca Dam, which is an
earth dam with 76 m height constructed in the south of Portugal using
SRMs. Almost all the samples were constituted by three specimens of
undrained triaxial compression tests consolidated isotropically to 200,
400 and 800 kPa of effective mean stress and a K0 consolidation test.
The sample with 40%CF had another triaxial compression test con-
solidated isotropically to 1000 kPa and the soil sample included an
additional specimen consolidated isotropically to 1600 kPa. The spe-
cimen dimensions used in the triaxial apparatus are about 230 mm in
diameter and 450 mm in height. Each specimen is prepared by the vi-
brating compaction of about eight layers at the optimum point of
standard Proctor test. More information about the experimental tests
can be found in [30]. The experimental curves were chosen from a large
number of SRM tests so that they were representative of average re-
sponse.

A genetic algorithm (GA) was used in order to find out the model
constants and initial values of variables that give the best fit to the
laboratory test curves of the material. This type of algorithm is essential
to determine the constants of complex constitutive models when mul-
tiple simultaneous experimental curves need to be fitted.

The genetic algorithms use concepts such as selection, inheritance
and crossover in order to find a global optimal solution. In this algo-
rithm an initial population is randomly generated, which is then used to
simulate the tests using FLAC. After that, a fitness evaluation is carried
out. A Hill Climbing procedure which is a local search optimisation
technique that tries to improve the initial solution by changing its
parameters is also performed. After, 25% of the best individuals are

selected, another 25% of new individuals are randomly generated, the
remaining 50% of the individuals are generated by crossover and a new
step is initialized with this new population. More details of this genetic
algorithm can be found in [36].

A population with 128 individuals was used for all the samples
modelled, the number of steps and the error for each sample are pre-
sented in Table 1. This error is obtained by a discrete version of Fréchet
Distance [37]. This distance is a measure of similarity between curves
that takes into account the location and ordering of the points along the
curves. For each individual, the Discrete Fréchet Distance is computed
between each experimental data curve and the corresponding model
curve, and summed for all curve pairs. The main objective of the genetic
algorithm is to minimise this distance.

Table 1 presents the number of curve pairs (test and model) that the
algorithm had to compare at each step for each individual of the po-
pulation in order to minimize the total error and also the average error
per curve pair for each sample.

The model constants and initial values were assumed to be the same
for each SRM CF value.

Despite always following the same preparation process which aims
to obtain a sample having the maximum density from the Proctor test
for a given SRM it is not possible to obtain perfectly uniform samples
with precisely the same grading, particle composition, void ratio and
water content, besides other aspects. Thus, the samples tested are as-
sumed to be affected by a stochastic variation in properties that is
implicitly considered when finding the set of material constants and
initial values that best fits the measured response from different reali-
zations of the same sample preparation process. In order to illustrate
the material variability, the response of two 40%CF samples having
almost the same void ratio is represented in Fig. 5. Contrary to what
would be expected if the response were solely dependent on the void
ratio, the marginally denser sample has lower strength and stiffness.

The samples that presented the larger error per curve pair were the

Fig. 4. Particle size distribution of the SRMs used.

Table 1
Genetic algorithm data results.

Material #steps Error #curve pairs Error per curve pair

Soil 76 1.6444 10 0.16
30% CF 236 0.600 6 0.10
40% CF 118 1.695 10 0.17
50% CF 256 0.492 6 0.08
70% CF 79 1.545 8 0.19
70% CF* 143 0.863 6 0.14
Rockfill 260 0.744 6 0.12

* Sample constituted only with the three triaxial specimens.
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soils’, the 40% CF and the 70% CF. However, these were also the
samples with more curves to fit. Each one of the soil and 40% CF
samples had eight curves for the triaxial tests and another two for the K0

consolidation test. The 70% CF sample had six curves for the triaxial
tests and another two for the K0 consolidation test.

Because the SSRM induces plastic strains and hardening inside the
yield surface, it is important to model the isotropic consolidation stage,
where the initial values of the mean effective stress, p0, and the yield
stress, pc0, have an important effect in the response of the model. As a
result, they are also model parameters to be determined. p0 represents
the effective stress due to capillarity as the material is not saturated
when compacted. pc0 represents the yield stress of the material due to
the compaction procedure. They influence the subsequent behaviour of
the material, and, as such, are expected to have a determinant effect on
the stability and stress–strain response of the dam during construction.

The number of steps was quite variable and ranged between 76 (for
the soil sample) and 260 (for the rockfill sample). The samples with
fewer curve pairs needed more steps to converge to a solution. The
smaller errors were obtained for the samples with a lower number of
curves. This is to be expected as the model had to accommodate the
specimen’s variability. A large number of experimental curve pairs,
each obtained from a different subsample of a larger given CF sample,
can only be fitted in a least squares sense. Additionally, some tests can
deviate more than others from the idealized conditions assumed when
numerically modelling them. As an example, the samples are assumed
to be in a homogeneous state of stress and strain. If this is clearly not the
case the model might have difficulty in reproducing the results.

Table 2 shows the constants and initial values obtained for all the
samples modelled. Some of these constants were fixed: =p 1.0e kPa,

=ξ 0.001 (both to avoid numerical problems), =k 0.71 because all tests
are in triaxial compression and as such the value does not influence the
results and =ν 0.35 for the soil and the SRM. Also the ∗κ value used was
the one found out from the isotropic compression tests. As such, the
genetic algorithm only had to determine seven constants and two initial
values except for the rockfill, where the value of the ∗κ and the Pois-
son’s ratio had also to be determined.

Figs. 4–11 show the comparison between the results from the un-
drained triaxial tests and the K0 consolidation test and those computed
with the SSRM, respectively, for the soil, 30% CF, 40%CF, 50% CF, 70%
CF and rockfill samples. The figures show the deviatoric stress invariant
versus the axial strain, and the effective stress paths.

By comparing the results, the constant a presented higher values for
the soil sample and for the 40% CF and 70% CF samples. These samples
are the ones which had also to adjust the results of the K0 consolidation
tests. Non associativity was introduced precisely because without it the
model was incapable of reproducing both conventional triaxial com-
pression and K0 tests.

The sample that presented the best fitting, and so the lowest error
per curve, was the 50% CF. This sample only had six curves to ap-
proximate and, as shown in Fig. 7, the three specimens had the same
type of curve progress, showing that this was probably the SRM sample
which presented less variability.

The worst fitting was obtained for the 70% CF sample with an error
per curve of 0.19. The constants that better fit the experimental results

Fig. 5. (a) deviatoric stress invariant vs axial strain and (b) effective stress paths from undrained triaxial tests isotropically consolidated to 800 kPa, for two 40%CF samples.

Table 2
Constants and initial values for the tested SRM using SSRM.

Material ν ∗λ ∗κ pe (kPa) cR a ξ c d p0 (kPa) pc0 (kPa) k

Soil 0.35 0.0341 0.024 1.0 28.91 1.866 0.01 3.569 0.818 136.57 223.35 0.71
30% CF 0.35 0.070 0.006 1.0 12.37 0.503 0.01 4.554 0.808 138.98 399.56 0.71
40% CF 0.35 0.030 0.006 1.0 2.81 1.219 0.01 3.758 0.875 306.62 658.40 0.71
50% CF 0.35 0.047 0.002 1.0 11.71 0.317 0.01 5.420 0.806 16.65 199.34 0.71
70% CF 0.35 0.042 0.005 1.0 531.92 2.952 0.01 6.037 0.784 218.38 679.62 0.71
70% CF* 0.35 0.017 0.005 1.0 682.22 0.781 0.01 3.191 0.864 26.331 754.08 0.71
Rockfill 0.21 0.102 0.008 1.0 328.05 0.883 0.01 4.371 0.796 83.22 402.85 0.71

* Sample constituted only with the three triaxial specimens.
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cause a sudden transition between elastic and plastic behaviour with
the highest value of cR. This was possibly the sample with the most
variability between subsamples. Variability of response in SRM samples
can be significant as can be inferred from the large number of test re-
sults presented in [30].

In an attempt to improve the results for the 70% CF sample, a new
analysis was performed considering only the three triaxial tests speci-
mens. The results obtained are presented in Fig. 12.

Tables 1 and 2 also present the results for the 70% CF sample
considering only the triaxial results. As can be seen, the results sig-
nificantly improve from an error per curve pair of 0.19–0.14. Clearly,

the K0 test curves were the most difficult to reproduce.
Table 3 presents a comparison between the values of the c and d

constants of the equation (3) obtained directly from the triaxial tests
assuming that a critical state was approximately attained in all the tests
and fitting the final stress path points to a curve of the form =q cpcs cs

d

and those obtained with the genetic algorithm.
Some of the constants c and d that best fit all the curves for each

sample obtained with the genetic algorithm were somewhat different
from those obtained directly from the triaxial tests. This could, in part,
be explained by the assumption used in directly computing the values
from the tests, that a critical state was achieved or due to strain
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Fig. 6. Soil sample. Undrained triaxial tests with 190, 376, 760 and 1520 kPa isotropic consolidation, and the K0 test representation for the experimental results and for SSRM: (a)
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localization. Also, this might occur with complicated constitutive
models because it’s often difficult to isolate the specific effect of a
constant or to associate certain values to a specific mechanical and
hydraulic material behaviour. For more sophisticated constitutive
models, the constants and initial values usually are closely inter-
connected and interfere with each other. This is why it is so important,
when using complicated constitutive models, to use genetic algorithms
or some similar tool in order to find out the best constants and initial
values for each case.

It was also not possible to relate these constants and initial values
obtained numerically with the coarse fraction present in the mixture.

This can happen because of multiple reasons. A possible one is the in-
trinsic variability of the specimens. Another is that some of the samples
had to approximate more curves and also different types of loading,
such as triaxial and K0 consolidation tests, while others only had to
approximate triaxial tests.

Some simpler models were also used to try to represent the beha-
viour of SRMs, such as MCCM but they represented the experimental
SRMs curves very poorly. MCCM is an elastoplastic model and it ex-
hibits a sharp transition in stiffness when going from elastic to elasto-
plastic behaviour. This proved to be a limitation of the model for the
SRMs since they show a more gradual transition. Also, the SRMs tested
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Fig. 8. 40%CF sample. Undrained triaxial tests with 200, 400, 800 and 1000 kPa isotropic consolidation, and the K0 test representation for the experimental results and for SSRM: (a)
deviatoric stress invariant vs axial strain and (b) effective stress paths.
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presented an effective stress path with an inversion in direction which
the MCCM was clearly unable to reproduce. The model was, as well,
unable to reproduce the K0 consolidation test. These results can be
found in [30].

4. Conclusions

This paper presents a new model specifically developed for soil-
rockfill mixtures, the Subloading Surface Rockfill Model (SSRM). This
model is an extension of the MCCM with the Subloading Surface

Concept (which enables the occurrence of plastic strains inside the yield
surface), tensile strength, non-associated flow rule and a curved critical
state line. Another difference is a non-circular deviatoric cross section
to account for reduced shear strength in triaxial extension. The tensile
strength is useful to avoid some numerical problems and also for ma-
terials that present some actual tensile strength such as structured soils.

The model described was able to reproduce reasonably well the
response of SRMs considering the intrinsic variability of the tested
specimens and the number of experimental curves reproduced for each
SRM. Some simpler models were used to try to represent the behaviour
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Fig. 10. 70% CF sample. Undrained triaxial tests with 200, 400 and 800 kPa isotropic consolidation, and the K0 test representation for the experimental results and for SSRM: (a)
deviatoric stress invariant vs axial strain and (b) effective stress paths.
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of SRMs, such as MCCM but they represented the experimental SRMs
curves very poorly. The experimental curves were chosen from a large
number of SRM tests so that they were representative of average re-
sponse. Also, the model constants and initial values were assumed to be

the same for each SRM CF value.
In future developments, with additional experimental work, the

model could be made easier to use if the possible dependency of the
model’s constants (and initial values of internal variables) on the void
ratio were determined, but, as it is, the model is capable of reproducing
well the irreversible volumetric strains, and as such the variation of the
void ratio in drained conditions, as illustrated by the fitting of the un-
drained effective stress paths.
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Appendix A. Appendix A

The invariants of the yield function defined as

= σp 1
3

tr , (A.1)

= s sq 3
2

:
(A.2)

with

=s σdev (A.3)

and the Lode’s angle
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In this work, the formulation of Willam and Warnke [38] is adopted, so h θ( ) becomes
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Fig. 12. 70% CF sample. Undrained triaxial tests with 200, 400 and 800 kPa isotropic consolidation for the experimental results and for SSRM: (a) deviatoric stress invariant vs axial strain
and (b) effective stress paths.

Table 3
Comparison of the c and d constants obtained directly from tests and with the genetic
algorithm.

Material Directly from tests Genetic Algorithm

c d c d

Soil 1.904 0.908 3.569 0.818
30% CF 2.715 0.903 4.554 0.808
40% CF 4.355 0.833 3.758 0.875
50% CF 4.812 0.817 5.420 0.806
70% CF 6.315 0.779 6.037 0.784
70% CF* 3.191 0.864
Rockfill 2.256 0.966 4.371 0.796

* Sample constituted only with the three triaxial specimens.
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This describes an elliptic arc such that ′ = ′ − =h π h π( /6) ( /6) 0, i.e. the curve has no corners (see Fig. 2). It depicts a smooth monotone transition
between ′ − =h π k( /6) and ′ =h π( /6) 1.The derivatives of the subloading surface and the subloading plastic potential function are given by
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At the triaxial extension plane the gradient is given by = −θ π
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The value of the subloading surface scaling factor R is given by
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which for =ξ 0 becomes
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In this case the value of R is not defined at = =p q 0 making a case of using a very small value of ξ even for materials with no tensile strength.
Close to the hydrostatic axis it may be assumed that =h θ( ) 1 and ′ =h θ( ) 0, that is to say that h becomes independent of θ. So, =∂
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with = =β γ 0.
Considering =h θ( ) u

v , where
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