
Citation: David, L.M.; Mota, T.M.

Quality Assessment of Small Urban

Catchments Stormwater Models: A

New Approach Using Old Metrics.

Hydrology 2022, 9, 87. https://

doi.org/10.3390/hydrology9050087

Academic Editors: Shirley

Gato-Trinidad and Pingping Luo

Received: 3 March 2022

Accepted: 9 May 2022

Published: 12 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

hydrology

Article

Quality Assessment of Small Urban Catchments Stormwater
Models: A New Approach Using Old Metrics
Luís Mesquita David 1,2,* and Tiago Martins Mota 1

1 LNEC—Laboratório Nacional de Engenharia Civil, 1700-066 Lisboa, Portugal; tfmartinsmota@gmail.com
2 ISEL—Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, 1959-007 Lisboa, Portugal
* Correspondence: ldavid@lnec.pt

Abstract: Small urban catchments pose challenges in applying performance metrics when comparing
measured and simulated hydrographs. Indeed, results are hampered by the short peak flows, due
to rainfall variability and measurement synchronization errors, and it can be both difficult and
inconvenient to remove base flows from the analysis, given their influence on combined sewer
overflow (CSO) performance. A new approach, based on the application of metrics to peak flows
for a selected set of different durations, is proposed and tested to support model quality assessment
and calibration. Its advantages are: avoiding inconveniences arising from lags in peak flows and
subjectivity of possible adjustments; favouring the assessment of the influence of base flow variability
and flow lamination by CSOs; promoting integrated analysis for a wide range of rainfall events;
facilitating bias identification and also guiding calibration. However, this new approach tends to
provide results (e.g., for NSE, r2 and PBIAS) closer to optimal values than when applying metrics
to compare the measured and simulated values of hydrographs, so the comparison of results with
thresholds widely used in the literature should be done with caution. The various case study examples
highlight the importance of using a judicious set of different metrics and graphical analyses.

Keywords: urban drainage; stormwater; combined sewer overflows (CSO); uncertainty; model
calibration and verification; performance ratings; Nash–Sutcliffe Efficiency (NSE); Kling-Gupta
Efficiency (KGE)

1. Introduction

Urban drainage models usually aim at supporting decisions on flooding mitigation,
pollution control, sewer system management and, increasingly, city planning and regenera-
tion [1–3]. Depending on the objectives of the work and the availability of hydrological
and asset data, the models can be either distributed and physically based or more aggre-
gated and conceptual [4–7]. The increasing implementation of decentralized measures and
nature-based solutions, i.e., solutions that seek to replicate natural phenomena across the
catchment, often requires distributed models and, in some cases, more detailed modelling
of infiltration, evapotranspiration and water quality [8,9].

Calibration requirements also depend on the objectives of the study, the availability
of data and the time and resources needed to collect data [10]. Calibration tends to be
more demanding and conservative for the variables and scales most relevant for the study
purpose. For example, in a model developed for flood risk assessment, emphasis is put
on calibrating peak flows of the most severe storms [11,12], while in a model designed
to manage combined sewer overflows (CSO), greater accuracy is required in calibrating
the volumes of hydrographs for a much wider range of events, which includes medium
and small magnitude rainfall [13–15]. In the latter case in particular, daily and seasonal
variations in dry weather flow [16] and rainfall derived infiltration and inflow (RDII) may
play a very important role [17–21].

The number of rain events recommended for calibration and verification and the
representativeness of the monitored events also depend on the objectives for which the
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model was designed [22]. However, it is common that models developed for a particular
purpose are later used for other analyses with a broader scope than the one for which they
were initially validated.

Uncertainty in hydrological modelling derives from several sources: observed data
used to force and calibrate the model (measurement); model structure, which includes
errors in the mathematical formulation that represents the hydrological phenomena; pa-
rameterization; and initial and boundary conditions. Parameterization uncertainty results
from both structural and measurement uncertainties, the need to conceptually simplify
processes, and the inability to estimate and measure the temporal and spatial variability of
the effective parameters, among others [23–27].

Several methods have been used to analyse the uncertainty of hydrological models,
although only a few have the ability to address, in an explicit and cohesive way, the three
critical aspects of uncertainty analysis: understanding, quantification and uncertainty
reduction [24]. One of the widely used methods is the generalized likelihood uncertainty
estimation (GLUE), although it depends on subjective choices and lacks a formal statistical
basis [25]. Of the various developments in formal Bayesian approaches, the most current
that has been widely used is the differential evolution adaptive metropolis (DREAM),
which merges the differential evolution algorithm with the adaptive Markov Chain Monte
Carlo (MCMC) approach [25]. Machine learning and polynomial chaos expansion are other
approaches based on data-driven uncertainty quantification that have recently experienced
increasing development [16,28–30]. These methods make it possible to quantify uncertainty,
determine error confidence intervals and, in the case of formal Bayesian approaches, reduce
the parameter uncertainty by the inclusion of prior knowledge. Despite their advantages,
these methods are complex, require expert-knowledge and a high computational effort,
some have convergence issues and others depend on subjective decisions [24,25].

For most cases, the most practical and viable way to assess uncertainty is to quantify
the goodness-of-fit or accuracy of model results in measured data, for which several
statistical and graphical techniques have been used, developed and discussed [31–43]. An
open source library with over 60 metrics recently implemented in Python and MATLAB®

is presented in [44].
In practice, only about a dozen statistical metrics have been commonly used in hy-

drology, which can be classified into three main categories [36]: dimensionless (e.g., the
widely used Nash–Sutcliffe Efficiency coefficient [31]); error index (e.g., the root mean
square error); standard regression. It is consensual that both graphical techniques and
more than one quantitative statistics should be used in model evaluation [33,36,39]. The
Nash–Sutcliffe Efficiency coefficient has been by far the most used.

The most widely applied metrics do not take into account measurement errors, al-
though modifications to some of them have been proposed to account for measurement
uncertainty [35] and, later, for both measurement and simulation uncertainties [38].

Based on results reported in the literature, from watershed-scale models and for
annual, monthly and daily temporal scales, Moriasi et al. (2007) [36] proposed thresholds
for various dimensionless performance metrics according to qualitative ratings: “Very
Good”, “Good”, “Satisfactory” and “Unsatisfactory”. These thresholds were reviewed in
Moriasi et al. (2015) [39], although the previous thresholds continue to be widely cited in
the literature.

Despite the obvious advantages of this benchmarking, some authors call the attention
to the drawbacks of the ad hoc use of aggregated efficiency metrics and to the greater need
for modellers to understand the suitability of each metric and how it should be interpreted
for the purposes of each model [45].

Obviously, in urban drainage, graphical and statistical techniques have always been
applied to model calibration and evaluation, although the generalized use of aggregated
efficiency metrics, such as the Nash–Sutcliffe coefficient and the Kling-Gupta coefficient [37],
is more recent (e.g., [46–55]).
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However, the temporal and spatial scales of urban catchments and the issues related
to wet weather discharges (from both CSO and Sanitary Sewer Overflows, SSO) pose
challenges that have not yet been sufficiently discussed, in particular when adopting
thresholds for performance ratings proposed on the basis of other realities. The variability
of the dry weather flow and the RDII can substantially contribute to the uncertainty of the
model results concerning CSO and SSO discharges (CSO structures are usually designed to
carry 3 to 6 times the average daily dry weather flow to the wastewater treatment plant).
In these cases, the traditional approach of removing base flows to calibrate or assess the
accuracy of the hydrological model becomes particularly difficult and debatable.

This article presents a brief description and discussion in the light of urban drainage of
the most used metrics for model calibration and quality assessment, which are then applied
to small urban catchment models with different levels of performance. An innovative
approach more suited to the challenges of these catchments is proposed and the results are
discussed in detail.

2. Main Metrics Used in Calibration and Assessment of Hydrological Models
2.1. Nash–Sutcliffe Efficiency Coefficient (NSE)

The Nash–Sutcliffe Efficiency coefficient (NSE, Equation (1)) [31] is probably the most
used dimensionless coefficient to evaluate the performance of hydrological models [33,35].
NSE is a normalized statistic that compares the mean squared error (MSE) with the variance
of the observed data (σo

2):

NSE = 1− ∑n
i=1(Oi − Pi)

2

∑n
i=1
(
Oi −O

)2 = 1− MSE
σo2 (1)

MSE =
∑n

i=1(Oi − Pi)
2

n
(2)

O =
∑n

i=1 Oi

n
(3)

σo
2 =

∑n
i=1
(
Oi −O

)2

n
(4)

where oi is the observed value at timestep i or at the ith preselected time “such as peaks
or troughs in the hydrograph” [31]; Pi is the predicted value at timestep i or at the ith
preselected time; O is the mean of the measured values; n is the total number of ob-
servations. In the literature, the population variance has been used instead of sample
variance (s2 =

(
∑n

i=1
(
Oi −O

)2
)

/(n− 1)), since the sample comprises all timesteps of each
hydrograph, i.e., it is equal to the population.

NSE varies between −∞ and 1, with higher values indicating a better fit of the model
to the observed data. NSE values lower than zero indicate that the model is a worse
predictor than the mean of the observations.

The NSE value has been widely interpreted as a classic skill score of models, for
various hydraulic and water quality variables [37,45]. The performance ratings proposed
by Moriasi et al. (2007) [36] for a watershed scale have been widely used in the literature.
According to [36], the model simulation can be judged as “satisfactory” for NSE > 0.50,
“Good” for NSE > 0.60 and “Very good” for NSE > 0.75. In Moriasi et al. (2015) [39], the
thresholds for the ratings of “Good” and “Very good” were raised to 0.70 and 0.80, for the
annual, monthly and daily temporal scales, respectively.

In urban catchments, important rainfall events last a few hours or even minutes,
and therefore the time step of measurement records is usually only of a few minutes.
The urban drainage literature reports NSE values from the calibration of hydrologic or
hydraulic models, normally between 0.5 and 0.9 [2], most of them being greater than
0.7 [7,10,20,22,46–48,50–53]. However, in some cases, NSE values above 0.95 are
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reported [1,53,55], while in other specific cases, usually for water quality parameters,
very low values, close to zero, are considered as acceptable [9].

Despite NSE being widely used, there has been lengthy discussion about its limita-
tions and suitability, and, as such, several modifications and more refined criteria have
been proposed.

2.2. Kling-Gupta Efficiency Coefficient (KGE)

The Kling-Gupta Efficiency (KGE, Equation (5) or Equation (6)) [37] is one of the
criterion proposed to overcome some limitations of the NSE, which has been increasingly
used in recent years, in urban drainage also (e.g., [9,48,51,54]). The KGE results from the
decomposition of the NSE into three distinctive components representing the correlation,
the bias, and a measure of the relative variability between predicted and observed values.

KGE = 1−
√
(r− 1)2 + (α− 1)2 + (β− 1)2 (5)

KGE = 1−

√
(r− 1)2 +

(
σp

σo
− 1
)2

+

(
µp

µo
− 1
)2

(6)

where r is the linear correlation coefficient between predicted and observed values; α is the
ratio between the standard deviations of predicted and observed values (σm/σo); and β
is the ratio between the mean predicted and mean observed flows (µp/µo), representing
the bias.

Like the NSE, KGE varies between −∞ and 1, where KGE = 1 corresponds to an
absolute agreement between the model and the observations. Although KGE thresholds are
often considered the same as NSE ones in model classification, ref. [45] demonstrates that a
model is a better predictor than the mean of the observed data if KGE > 1−

√
2 = −0.41,

whereas with NSE, this only happens for NSE > 0.

2.3. Percent Bias (PBIAS)

The Percent bias, or Percent deviation (PBIAS, Equation (7)) is used to assess the aver-
age tendency of the predicted data to be smaller or greater than the observed data. Positive
values of PBIAS indicate underestimation, and negative values indicate overestimation.

PBIAS =
∑n

i=1(Oi − Pi)

∑n
i=1 Oi

·100% (7)

where the variables have the same meaning as those in Equation (1).
Other names have been given to indicators calculated in a similar manner to PBIAS [36]:

Percent streamflow volume error (PVE), prediction error (PE), and percent deviation of
streamflow volume (Dv). Absolute values of PBIAS < 10% have been usually classified
as very good [36,49]. However, in Moriasi et al. (2015) [39], the PBIAS thresholds for the
ratings of “Satisfactory”, “Good” and “Very good” were reduced to <±15%, <±10% and
<±5%, for all daily, monthly and annual scales, respectively.

2.4. Root Mean Square Error (RMSE)

Both the root mean square error (RMSE) and the Mean Absolute Error (MAE) describe
the difference between model simulations and observations in the units of the variable.
The RMSE (Equation (8)) is less intuitive than the MAE, but tends to be more used in
hydrological studies because it penalizes the largest errors more severely [32,33,35,36].
Reduced RMSE values are associated with smaller errors, with the null value corresponding
to a model that perfectly fits the measured data.

RMSE =

√
∑n

i=1(Oi − Pi)
2

n
(8)
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where the variables have the same meaning as those in Equation (1).
Another advantage of RMSE is that, by assuming that the errors are unbiased and the

error mean is zero, the RMSE is the standard deviation of the error [56]. Therefore, if the
errors are normally distributed, 68% of errors will lie within one standard deviation of the
mean, and 95% of the errors will lie within 1.96 (≈2) standard deviations of the mean [8].

Hence, the estimated interval of errors at a 95% probability (which we will call I95)
can be expressed as in Equation (9):

I95 = ±1.96·RMSE ≈ ±2·RMSE (9)

For the normalization of the RMSE to a dimensionless coefficient, different methods
are found in the literature. The most common ones consist of dividing the RMSE by the
following parameter of the observed values: mean; standard deviation; difference between
the maximum and the minimum; and interquartile range, i.e., the difference between 25th
and 75th percentile. In this work we will use the first two.

The first one is known as the Coefficient of Variation of the RMSE (CVRMSE or
CV(RMSE), Equation (10)).

CVRMSE =
RMSE

O
(10)

The second one, named by [36] as the RMSE-observations standard deviation ratio
(RSR), is expressed as in Equation (11).

RSR =
RMSE

σo
(11)

2.5. Linear Regression Coefficients and Graph

The slope, the y-intercept and the coefficient of determination (r2) of the linear re-
gression that best fits the simulation results to the observed values can provide important
information about the model’s quality. While the slope reflects the relative relationship
between observed and predicted data, the y-intercept indicates a bias [36]. The coefficient
of determination describes the amount of observed dispersion that is explained by the
regression. It varies between 0 and 1, where 1 is for perfect alignment [34].

The coefficient of determination is also one of the most recommended criteria for
calibrating and evaluating the accuracy of hydrological models. In Moriasi et al. (2015) [39],
the r2 thresholds for the ratings of “Satisfactory”, “Good” and “Very good” are, respectively,
0.60, 0.75 and 0.85, for the daily flow at catchment scale.

However, there is also a consensus on the need to carefully interpret the linear regres-
sion parameters, due to the great weight in the results of the highest values, which can be
significantly assisted by the analysis of linear regression plots. See the example in Figure 1,
in which two series of 14 dots each have the same linear regression slope (slope = 0.906),
but different behaviours: in (a), twelve values correspond to y = x and the two largest
values to y = 0.9x; in (b), the four highest values correspond to y = x, but the other ten
values correspond to y = 3x. In (a), the coefficient of determination is practically equal to
unity, showing an excellent correlation between x and y for almost all values, but the slope
of 0.9 indicates that a reduced number of intense events is underestimated by 10%. In (b),
the coefficient of determination is still quite high from a statistical point of view (r2 = 0.85)
and the model is excellent for the most intense events; however, the slope of 0.9 and a high
y-intercept value compared to the smallest events result from the model being too poor for
most events.
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Figure 1. Example of two series with the same linear regression slope and good coefficients of
determination, but with very different behaviours.

3. Challenges from Short-Duration Peak Flows in the Application of Metrics

The NSE, KGE and error statistics are commonly used to compare time series between
modelled and observed values. However, in small urban and natural catchments, including
ephemeral streams [57,58], many significant peak flows occur during very short periods
of time. The spatial variability of rainfall and small desynchronizations between rain and
flow measurement equipment can lead to delays or advances of the modelled series in
relation to the observed series of only a few minutes, but with a significant impact on the
statistical results.

Figure 2 shows the measured and modelled hydrographs of the most intense storm
monitored in the case study presented below. Table 1 compares the results of the statistics
described in the previous section for four scenarios: (a) the case represented in Figure 2;
(b) the measured flow rate advanced by 2 min; (c) the measured flow rate delayed by 4 min;
and (d) measured flow delayed by 6 min.
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Figure 2. Measured and modelled hydrographs during a rainfall event.

Table 1. Statistical results for the four scenarios of synchronization of the time series in Figure 2.

Measured Flow # Mean RMSE I95 CVRMSE RSR NSE KGE PBIAS Slope y-Interc. r2

(L/s) (L/s) (L/s) (L/s) (%) (-) (-) (%) (-) (L/s) (-)

As recorded 181 211 49 97 23% 32% 0.90 0.94 −1.2% 0.99 4.9 0.91
Advanced in 2-min 181 211 28 55 13% 18% 0.97 0.96 −1.2% 1.02 −2.2 0.97
Delayed by 4-min 181 211 111 221 52% 72% 0.48 0.75 −1.1% 0.78 49.0 0.56
Delayed by 6-min 181 211 126 251 60% 82% 0.33 0.67 −1.1% 0.70 64.9 0.46
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According to the results in Table 1, scenario (b) is the one that leads to the best results,
with values of NSE, KGE, slope and coefficient of determination very close to the unity.
However, NSE is less than 0.5 and 0.35 for scenarios (c) and (d), respectively, with only 4
and 6 min of rainfall delay. The error values also rise significantly for scenarios (c) and (d).

These results highlight the significant impact that small time deviations between
measured and simulated series can have on the results of various metrics.

4. Materials and Methods
4.1. The Proposed New Approach

In a context of an increasingly widespread adoption of decentralized and nature-based
solutions, the measures to be modelled will influence the entire urban water cycle, covering
small to heavy rainfall. Therefore, assessing the shape of hydrographs for a wide range of
rainfall events is of great importance. In order to strengthen the assessment of the shape
of hydrographs and reduce the inconveniences of the event-by-event analysis described
above, a new approach is proposed to assess the quality of hydrological models.

Rather than the performance metrics being applied to compare measured and sim-
ulated values within each hydrograph (and/or the measured and simulated peak flows
of the various hydrographs), they could be applied to compare measured and simulated
maximum flows for various durations. For each duration, the measured and simulated
maximum flow series can be easily calculated by applying a rolling-window search routine
to each hydrograph.

Hence, the assessment of model results is performed simultaneously for a pre-selected
set of durations from all hydrographs. To avoid excessive complexity in the analysis, it
is important to use a limited but representative number of durations, so we recommend
selecting five to eight durations with increasing intervals between them. For the case study
presented below, the maximum flow rates associated with the following durations will be
assessed: 2, 6, 16, 30, 60, 104 and 150 min.

Table 2 presents an example of the application of the metrics described in Section 2 to
the durations selected in the case study, according to the proposed approach. In addition to
numerical metrics, graphical techniques must also be applied, as mentioned above and will
be presented in the case study.

Table 2. Example of the application of the metrics described in Section 2 according to the proposed
new approach.

Variable Units n Mean RMSE I95 CVRMSE RSR NSE KGE PBIAS Slope y-Interc. r2

(#) (Units) (Units) (Units) (%) (%) (-) (-) (%) (-) (Units) (-)

Volume (m3) 26 2509 321 643 13% 19% 0.96 0.85 7.5% 0.87 137.7 0.99
2-min peak (L/s) 26 228 37 74 16% 58% 0.66 0.84 9.5% 0.97 −14.5 0.81
6-min peak (L/s) 26 224 34 69 15% 55% 0.70 0.85 8.2% 0.98 −13.7 0.82
16-min peak (L/s) 26 217 31 63 14% 51% 0.74 0.88 7.4% 0.94 −2.2 0.82
30-min peak (L/s) 26 209 28 56 13% 46% 0.79 0.86 7.5% 0.84 17.3 0.85
60-min peak (L/s) 25 197 29 59 15% 47% 0.78 0.76 8.5% 0.74 34.9 0.87
104-m peak (L/s) 25 182 30 60 16% 50% 0.75 0.71 9.6% 0.69 39.3 0.88
150-m peak (L/s) 24 126 26 51 20% 46% 0.79 0.72 9.3% 0.71 33.6 0.92

By evaluating peak flows for a wide range of durations, this new approach favours
the assessment of the shape of hydrographs, as well as the effect of the uncertainty of both
base flows and CSO discharges.

This new approach will be applied to assess eight different models (or modelling
conditions) of the case study.

4.2. Case Study

The study area is located at Odivelas, a 26.5 km2 municipality of the Lisbon Metropoli-
tan Area, Portugal, and is 102 ha in size. It consists of two distinct catchments: a combined
catchment, with 22 ha, of which the main sewer receives the foul flow from a 400 mm
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upstream interceptor sewer; a mixed and partially separate catchment upstream, with
about 80 ha, served by the mentioned interceptor sewer. For wet weather, the interceptor
sewer transports a mixture of wastewater and stormwater, sometimes under pressure.

The two catchments have mainly a residential occupation with some commerce. In the
downstream combined catchment, most sewers are built of concrete (Manning coefficient
of 0.014 s·m−1/3) and have a circular cross-section of 300 and 400 mm, increasing up to
1000 mm downstream. The sewer slopes are close to those of the terrain, ranging from 0.3
to 11% and with a mean and median of 2.8% and 2.3%, respectively. The percentages of
paved, roofed and green areas are 46%, 35%, and 19%, respectively. However, only about
70% of the runoff from impermeable areas drains into the sewer network, due to drainage
to backyards and the insufficient number of inlet devices.

Over a decade ago, the downstream combined catchment was modelled in detail using
the Stormwater Management Model (SWMM) [59], with 86 sub-catchments, 145 nodes and
153 sewer branches. However, the drainage system of the upstream mixed catchment is
complex and is not known in detail, so it was modelled in an aggregated way using SWMM,
considering only the two main combined sewer overflows (CSO) and two sub-catchments,
with 68 ha and 12 ha (Figure 3).
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For both catchments, the model was calibrated and verified on basis of data from a
4-month monitoring survey, in which 26 rainfall events were recorded by two rain gauges
and two flowmeters. One flow meter was installed in the interceptor sewer, a few meters
upstream of the entrance to the combined catchment (section B1-I), and the other was
installed downstream from the combined catchment (section B1-M).

The peak flow of the most intense monitored event reached 80% of the maximum
capacity of the combined system, of 1530 L/s, in a sewer downstream B1-M (and 60% of
the capacity in B1-M, which already has a maximum diameter of 1 m). Downstream B1-M,
the sewer is under pressure for return periods greater than 2–5 years and flooding occurs
for return periods greater than 5–10 years.
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As the complexity of the upstream catchment behavior did not allow us to obtain good
calibration and verification results in the section B1-I, part of the underestimation of the
flows in the interceptor sewer was compensated by some overestimation of the flows in the
downstream combined catchment, allowing us to obtain very good results in B1-M. Thus,
the model was left with a “black box” component inside, but it was quite adequate for the
purpose of the study at the time. The model was used to evaluate the CSO discharges from
the downstream catchment, both by event-by-event analyses [60,61] and using a 19-year
rainfall historical series [62,63].

Currently, the model is intended to be used to study stormwater management mea-
sures distributed within the combined catchment, with a view to reduce CSO discharges,
mitigate floods and improve the urban water cycle. Therefore, it is important to improve
the calibration of the upstream aggregated model (modelled with only the two main CSO
and two sub-catchments) and, hence, to model more accurately the flows generated in
the combined catchment downstream. Between sections B1-I and B1-M there is a small
CSO structure that shaves off the highest flows measured in B1-I, which could not be
monitored and has not been modelled in the past. This CSO adds complexity to the model
and its calibration requires a detailed quantification of the shape of the hydrographs in B1-I
and B1-M.

The variability of base flows during rainfall events also plays an important role both
in the estimation of the wet weather overflow discharges and in the calibration of this CSO
structure. Figure 4 shows the hourly variation of the average and median flow (Qav and
Qmedian) for the weekdays, as well as the 10th, 25th, 75th and 90th percentiles (Q10, Q25,
Q75 and Q90). The horizontal lines represent the same statistics for the daily flows.
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As Figure 4 shows, there is substantial variability in the daily dry weather flows,
particularly in the downstream section. This variability is attributed to three main factors:
the activities in the catchment; the groundwater infiltration into the sewers, although
there is not a sufficiently long series to make it possible to model the RDII component; as
well as to the measurement error, which significantly depends on the cleanliness and the
accumulation of debris on the submerged pressure and velocity gauges.

4.3. Model Recalibration and Verification

Nine from the 26 events were selected for the sensitivity analysis of the parameters
and for the recalibration of the models: events 1, 4, 7, 9, 13, 16, 19, 21 and 24. The selected
events include five of the eight events that led to flow rates above the discharge threshold
of the CSO structure located between sections B1-I and B1-M.

The other 17 events were used to verify the models.
The recalibration of the partially separate upstream catchment consisted mainly of

adjusting the contributing areas of the two sub-catchments and the flow capacity of the
respective CSO structures. The recalibration of the downstream catchment consisted mainly
of calibrating the discharge capacity of the CSO structure between B1-I and B1-M, adjusting
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the impermeable area and improving the shape of the hydrographs, through the slope and
width of the sub-catchments.

Calibration was carried out manually based on volumes, peak flows and the shape of
the hydrographs.

All 26 events were used to assess the quality of the models based on the proposed new
approach described in Section 4.1, given that only five calibration and three verification
events led to discharges in all CSO structures.

However, during the quality assessment of the global model in B1-M by the proposed
approach and using the 26 events, it was determined that a small correction to the shape of
the hydrographs should be done by increasing the slope and the width of the catchments
and slightly decreasing the contribution of the impervious area. Hence, the set of 26 events
was initially used to assess the quality of the model and later to enhance the calibration.

If the monitored stormwater event set were large enough that it could be split into two
representative subsets of at least 20 events each, it would be recommended to split it into
two subsets, one for model calibration and one for verification.

Performance metrics were applied to all rainfall events, but the results were substan-
tially influenced by the time lags between the measured and modelled hydrographs, as
described in Section 3. No attempt was made to synchronize the simulated and measured
hydrographs, due to the subjectivity this would introduce. These results are presented in
Tables A1 and A2 of Appendix A and will be discussed in Section 5.4.

4.4. Application of the Proposed New Approach

The new approach described in Section 4.1 was applied to eight quality assessments
of case study models.

For both monitoring sections B1-I and B1-M, three assessments were carried out, two
to evaluate the quality of the initial and recalibrated models, in which the dry weather flow
(DWF) is adjusted event by event, and the third to evaluate the accuracy of the recalibrated
model results without DWF adjustment.

For the downstream monitoring section B1-M, two additional assessments were carried
out: one with a recalibrated model of the upstream interceptor sewer catchment, but still
with the initial model of the downstream combined catchment (with adjustment of DWF);
and another with the model recalibrated downstream, but receiving from the interceptor
sewer the inflows measured in B1-I (with the DWF adjusted only in B1-M).

Table 3 lists the order in which the results of the eight assessments will be presented
and discussed in the next section.

Table 3. Assessments carried out.

Assessments in B1-I

C1 Results in B1-I of the initial model with DWF adjustment per event in B1-I

C2 Results in B1-I of the recalibrated model with DWF adjustment per event in B1-I

C3 Results in B1-I of the recalibrated model without DWF adjustment (to assess the
accuracy of the results without any measurement information)

Assessments in B1-M

C4 Results in B1-M of the initial model with DWF adjustment per event in B1-I and B1-M

C5 Results in B1-M of the initial downstream model, but with the recalibrated interceptor
sewer model (with DWF adjustment per event in B1-I and B1-M)

C6 Results in B1-M of the recalibrated model with DWF adjustment per event in B1-I
and B1-M

C7 Results in B1-M of the recalibrated model without DWF adjustment (to assess the
accuracy of the results without any measurement information)

C8 Results in B1-M of the recalibrated downstream model, but receiving from the
interceptor sewer the inflows measured in B1-I (DWF adjustment only for B1-M)
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5. Results and Discussion
5.1. Results of the Upstream Model in B1-I

Table 4 presents the results obtained in section B1-I, for the first three assessments
described in Table 3. The coefficients and statistics are those described in Section 2. The
variables analysed are the volume of the hydrograph (Volume, in m3) and the maximum
flows (ith-min peak, in L/s) associated with the following durations (ith): 2, 6, 16, 30, 60,
104 and 150 min. The 2 min duration corresponds to the recording time interval of both the
monitored data and the model results.

Table 4. Statistical results in the upstream monitoring section B1-I.

C1. Initial Upstream Model with Dry Weather Flow Adjustment per Event

Variable Units n Mean RMSE I95 CVRMSE RSR NSE KGE PBIAS Slope y-Interc. r2

in B1-I (#) (units) (units) (units) (%) (%) (-) (-) (%) (-) (units) (-)

Volume (m3) 26 2509 321 643 13% 19% 0.96 0.85 7.5% 0.87 137.7 0.99
2-min peak (L/s) 26 228 37 74 16% 58% 0.66 0.84 9.5% 0.97 −14.5 0.81
6-min peak (L/s) 26 224 34 69 15% 55% 0.70 0.85 8.2% 0.98 −13.7 0.82
16-min peak (L/s) 26 217 31 63 14% 51% 0.74 0.88 7.4% 0.94 −2.2 0.82
30-min peak (L/s) 26 209 28 56 13% 46% 0.79 0.86 7.5% 0.84 17.3 0.85
60-min peak (L/s) 25 197 29 59 15% 47% 0.78 0.76 8.5% 0.74 34.9 0.87
104-m peak (L/s) 25 182 30 60 16% 50% 0.75 0.71 9.6% 0.69 39.3 0.88
150-m peak (L/s) 24 126 26 51 20% 46% 0.79 0.72 9.3% 0.71 33.6 0.92

C2. Recalibrated upstream model with dry weather flow adjustment per event

Variable Units n Mean RMSE I95 CVRMSE RSR NSE KGE PBIAS Slope y-Interc. r2

in B1-I (#) (units) (units) (units) (%) (%) (-) (-) (%) (-) (units) (-)
Volume (m3) 26 2509 214 427 9% 13% 0.98 0.91 4.0% 0.92 104.6 0.99

2-min peak (L/s) 26 228 32 64 14% 51% 0.74 0.84 5.3% 1.02 −15.6 0.82
6-min peak (L/s) 26 224 30 60 14% 48% 0.77 0.84 3.7% 1.03 −15.4 0.83
16-min peak (L/s) 26 217 28 55 13% 45% 0.80 0.85 1.8% 1.04 −12.0 0.85
30-min peak (L/s) 26 209 25 49 12% 40% 0.84 0.89 0.8% 1.00 −1.8 0.86
60-min peak (L/s) 25 197 23 46 12% 37% 0.87 0.93 1.6% 0.93 11.0 0.87
104-m peak (L/s) 25 182 21 42 12% 35% 0.88 0.92 3.2% 0.90 12.9 0.89
150-m peak (L/s) 24 126 17 35 14% 31% 0.90 0.91 4.1% 0.89 12.0 0.92

C3. Recalibrated upstream model without dry weather flow adjustment

Variable Units n Mean RMSE I95 CVRMSE RSR NSE KGE PBIAS Slope y-Interc. r2

in B1-I (#) (units) (units) (units) (%) (%) (-) (-) (%) (-) (units) (-)
Volume (m3) 26 2509 294 589 12% 18% 0.97 0.93 2.5% 0.92 125.1 0.97

2-min peak (L/s) 26 228 37 74 16% 59% 0.65 0.81 4.2% 0.96 −0.5 0.74
6-min peak (L/s) 26 224 36 71 16% 57% 0.67 0.81 2.6% 0.98 −0.6 0.75
16-min peak (L/s) 26 217 34 67 15% 54% 0.70 0.83 0.8% 0.98 3.2 0.76
30-min peak (L/s) 26 209 31 61 15% 50% 0.75 0.87 0.0% 0.94 12.5 0.78
60-min peak (L/s) 25 197 29 58 15% 46% 0.79 0.89 0.8% 0.88 22.9 0.80
104-m peak (L/s) 25 182 28 55 15% 46% 0.79 0.87 2.6% 0.83 25.4 0.80
150-m peak (L/s) 24 126 24 48 19% 43% 0.82 0.86 3.4% 0.82 24.3 0.83

value Value better than that of the previous analysis
value Value worse than that of the previous analysis

Figure 5 presents two graphs for each of the assessments carried out in B1-I. The graphs
compare the measured and modelled values and show the relative errors of the “volume”
and “6-min peak flow” variables, for each of the 26 rainfalls arranged by descending order
of the volume.
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5.1.1. Initial Upstream Model with Dry Weather Flow Adjustment per Event (C1)

As written in the description of the case study in Section 4.2, the initial model signifi-
cantly underestimates the results in section B1-I, in particular for some events. Based on a
qualitative appreciation of hydrographs in B1-I, the authors of this work would classify
the initial model as providing a useful but limited and underestimated approximation.
However, in a blind evaluation using the thresholds from Moriasi et al. (2007) [36] and
Moriasi et al. (2015) [39], the model would be classified as “good” and “very good” for all
PBIAS, NSE and r2.

On closer analysis to Table 4, the model’s shortcomings are mainly reflected on:

• In accordance with the model’s underestimation, the PBIAS values are positive for
all durations. However, given that the interceptor capacity on B1-I is limited to
about 320 L/s and that CSO discharges occur upstream, the variation in flows at the
interceptor sewer is limited when compared to the base flows and, therefore, PBIAS
values do not exceed 9.6%.
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• RSR error indicators are greater than 46% for all peak flow durations, reaching 58%
for the shortest duration. However, RSR is only 19% for the volume variable, probably
because the duration of events is variable, causing the average of measured volumes
to be much higher than the model errors for the smallest events.

• Linear regression slopes are less than 0.84 for durations greater than 30 min, reflecting
an increasing underestimation bias with the hydrograph duration. For the volume,
the linear slope increases to 0.87 (with r2 of 0.99) probably due to the greater influence
of base flows and to the explanation given above.

• The coefficients of determination are less than 0.9 for almost all durations, although
they increase with duration and reach 0.99 for the volume. They are close to 0.8 for the
shortest durations, showing some dispersion of results. This dispersion is attributed
to the difficulty in the aggregated model covering the variety of situations that occur
in the partially separate upstream system. Although these values have good statistical
significance and are also well classified according to Moriasi et al. (2015) [39], they
should be interpreted with caution due to the great weight of base flows relative to
wet weather flows.

• Except for the volume, where NSE is 0.96, the NSE values are below 0.8 for all dura-
tions, reaching 0.70 and 0.66 for, respectively, 6 and 2 min peak flows. Although these
NSE values are classified as “good” according to [39] (except NSE = 0.66), they reflect
the influence of the base flow and they are much lower than those obtained in the
downstream section (B1-M), as will be seen below. These results indicate that within
the scope of this new approach, in which NSE is not used to analyze errors in each
hydrograph, but errors in pre-selected parts of the various hydrographs, NSE values
below 0.8 should not be considered as “good”, but simply as “satisfactory”.

• KGE values are between 0.71 and 0.88. Unlike the NSE, the lowest KGE values occur
for the shortest durations.

5.1.2. Recalibrated Upstream Model with Dry Weather Flow Adjustment per Event (C2)

In Table 4, the results from the recalibrated model that are better than the results from
the original model are shaded in green. The results that are worse are shaded in orange.
The recalibrated model provides better results on B1-I than the initial model in virtually all
statistics and for all durations. A substantial improvement stands out in the less satisfactory
statistics of the initial model.

However, the recalibrated model continues to show an underestimation trend due to:

• The increase in the base flow occurring during and after major rainfall events, which is
attributed to the groundwater infiltration into the sewer network. Although the model
acceptably represents the tail of some hydrographs, there are not enough events to
model the RDII component.

• The interceptor sewer capacity being limited to roughly 320 L/s, and, therefore, the
model deviations for the most intense peak flows also tend to be limited (they can be
slightly positive only in the cases where the model results extend over time with this
threshold value) (see Figure 5).

Based on a qualitative assessment of the hydrographs in B1-I, the authors would
classify the recalibrated model as providing results that tend to be good, but with deviations
and limitations for some events.

A more detailed analysis of the results included in Table 4 shows that:

• The PBIAS values are less than 4% for all durations, except for the 2 min one (which
is 5.3%), evidencing the much smaller underestimation of the model. However, the
PBIAS values provided by this new approach cannot be compared with the thresholds
in [39] (where the rating would be “very good”), because the underestimation of the
largest events is quite muffled in the set of all events.

• For durations of up to 30 min, the slopes of the regression line are between 1.00 and
1.04 and the interceptions remain reduced. For the maximum flows over 60 min and
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for the volume, the slope became greater than 0.9, reflecting improvements over the
initial model.

• The coefficients of determination improved only slightly compared to the initial model,
remaining below 0.9 for almost all durations and increasing with duration.

• RSR error indicators remain relatively high, but significantly lower than for the initial
model, particularly for longer durations.

• Only for the 2 and 6 min durations did the NSE values remain below 0.8. For the
volume variable, the NSE increased to 0.98. However, based on the hydrograph
analysis, it would be abusive to classify these results as “very good” according to [39].

• KGE values have increased to the range between 0.84 and 0.93. While in the initial
model the lowest KGE values occurred for the longest durations, in the recalibrated
model, KGE values above 0.9 occurred for the longest durations, highlighting the
effects of the model recalibration. However, it is for longer durations that the model
continues to behave worse (due to not modelling the RDII component), which high-
lights some limitations of these aggregate metrics and the misinterpretation that can
result if they are used alone.

5.1.3. Recalibrated Upstream Model without Dry Weather Flow Adjustment (C3)

The use of the model without base flow adjustment corresponds to the standard
situation of its use and, therefore, it is the situation for which the precision of the results
should be quantified.

As might be expected, not adjusting the dry weather flows leads to worsening of
virtually all statistics (shaded in orange in Table 4), with great significance for some. Except
for the volume variable, almost all NSE values are now less than 0.8, with some being
less than 0.7, and almost all coefficients of determination are less than 0.8. For durations
greater than 60 min, the slopes of the regression line are less than 0.9. Interestingly, PBIAS
improves slightly for all durations, indicating a lower underestimation.

The CVRMSE values are between 15% and 19% for all durations and are 12% for the
volume. As the estimated interval of errors at a 95% probability is I95 ≈ 2·RMSE, this
means that I95 is between 30% and 38% of the mean of the flows associated with each
duration and is 24% of the mean of the measured volumes.

A significant increase in the RMSE (and I95) values is noteworthy, in relation to the
model with base flow adjustments. For the Volume variable, RMSE rises from 214 m3 to
294 m3, corresponding to a 38% increase in the error. The relative error of RMSE increases
with the duration of the hydrograph tip, increasing from 16% for the 2 min duration (from
32 L/s to 37 L/s) to 41% for the 150 min duration (from 17 L/s to 24 L/s).

These results indicate that an important component of the uncertainty of the model
results in B1-I comes from the variability of the base flows.

5.2. Results of the Global Model in B1-M

Table 5 presents the statistical results obtained for section B1-M, for the assessments
C4 to C8 described in Table 3.

Figure 6 compares the measured and modelled values for both the volume and the
6 min peak flow, for the 26 precipitation events of the recalibrated model. Results are
presented for both assessments with and without dry weather flow adjustment (C6 and
C8). The graphs of the other assessments are not presented as they do not add value to
this discussion.
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Table 5. Statistical results in the downstream monitoring section B1-M.

C4. Initial Global Model with Dry Weather Flow Adjustment per Event

Variable Units n Mean RMSE I95 CVRMSE RSR NSE KGE PBIAS Slope y-Interc. r2

in B1-M (#) (units) (units) (units) (%) (%) (-) (-) (%) (-) (units) (-)

Volume (m3) 26 3350 251 503 8% 12% 0.99 0.93 1.7% 0.93 171.6 0.99
2-min peak (L/s) 26 383 42 83 11% 16% 0.98 0.98 1.5% 0.98 2.7 0.98
6-min peak (L/s) 26 362 33 65 9% 13% 0.98 0.98 −0.6% 0.97 12.6 0.98
16-min peak (L/s) 26 327 27 55 8% 15% 0.98 0.96 −1.7% 1.02 −1.0 0.98
30-min peak (L/s) 26 301 24 48 8% 17% 0.97 0.96 −1.7% 1.03 −2.5 0.98
60-min peak (L/s) 26 268 21 41 8% 19% 0.96 0.95 −2.0% 1.03 −3.5 0.97
104-m peak (L/s) 26 238 16 31 7% 19% 0.97 0.97 −0.7% 1.01 0.2 0.97
150-m peak (L/s) 25 165 13 26 8% 17% 0.97 0.98 −0.2% 0.97 7.2 0.97

C5. Initial downstream model, but with the recalibrated interceptor sewer model (with DWF adjustment)

Variable Units n Mean RMSE I95 CVRMSE RSR NSE KGE PBIAS Slope y-Interc. r2

in B1-M (#) (units) (units) (units) (%) (%) (-) (-) (%) (-) (units) (-)
Volume (m3) 26 3350 238 477 7% 11% 0.99 0.97 −0.9% 0.96 148.9 0.99

2-min peak (L/s) 26 383 43 87 11% 16% 0.97 0.97 −0.2% 0.96 14.7 0.97
6-min peak (L/s) 26 362 37 75 10% 15% 0.98 0.96 −2.5% 0.96 24.2 0.98
16-min peak (L/s) 26 327 34 67 10% 18% 0.97 0.95 −4.3% 1.02 8.3 0.97
30-min peak (L/s) 26 301 32 64 11% 22% 0.95 0.92 −5.1% 1.05 1.7 0.97
60-min peak (L/s) 26 268 31 62 12% 29% 0.92 0.86 −6.4% 1.11 −11.4 0.96
104-m peak (L/s) 26 238 24 48 10% 28% 0.92 0.84 −5.3% 1.13 −17.9 0.97
150-m peak (L/s) 25 165 18 36 11% 23% 0.95 0.89 −4.2% 1.09 −9.7 0.97

C6. Recalibrated global model with dry weather flow adjustment per event

Variable Units n Mean RMSE I95 CVRMSE RSR NSE KGE PBIAS Slope y-Interc. r2

in B1-M (#) (units) (units) (units) (%) (%) (-) (-) (%) (-) (units) (-)
Volume (m3) 26 3350 228 456 7% 11% 0.99 0.95 0.2% 0.94 184.1 0.99

2-min peak (L/s) 26 383 55 109 14% 20% 0.96 0.94 −3.4% 1.03 2.2 0.96
6-min peak (L/s) 26 362 40 79 11% 16% 0.97 0.96 −4.3% 0.99 20.2 0.98
16-min peak (L/s) 26 327 34 68 10% 19% 0.97 0.95 −4.0% 1.00 13.3 0.97
30-min peak (L/s) 26 301 29 58 10% 21% 0.96 0.96 −3.0% 0.97 19.4 0.96
60-min peak (L/s) 26 268 25 50 9% 23% 0.95 0.96 −3.3% 0.96 18.9 0.95
104-m peak (L/s) 26 238 18 36 8% 22% 0.95 0.97 −2.5% 0.97 13.0 0.96
150-m peak (L/s) 25 165 15 30 9% 19% 0.96 0.96 −2.0% 0.95 15.0 0.97

C7. Recalibrated global model without dry weather flow adjustment

Variable Units n Mean RMSE I95 CVRMSE RSR NSE KGE PBIAS Slope y-Interc. r2

in B1-M (#) (units) (units) (units) (%) (%) (-) (-) (%) (-) (units) (-)
Volume (m3) 26 3350 421 842 13% 20% 0.96 0.95 −2.7% 0.95 273.8 0.96

2-min peak (L/s) 26 383 59 119 16% 22% 0.95 0.93 −4.8% 1.02 10.0 0.96
6-min peak (L/s) 26 362 46 92 13% 19% 0.96 0.94 −5.7% 0.98 27.5 0.97
16-min peak (L/s) 26 327 40 80 12% 22% 0.95 0.94 −5.5% 0.99 21.4 0.96
30-min peak (L/s) 26 301 35 71 12% 25% 0.94 0.94 −4.7% 0.95 27.8 0.95
60-min peak (L/s) 26 268 31 62 12% 29% 0.92 0.94 −5.2% 0.95 26.9 0.93
104-m peak (L/s) 26 238 26 51 11% 30% 0.91 0.94 −4.6% 0.96 21.2 0.93
150-m peak (L/s) 25 165 23 47 14% 30% 0.91 0.94 −4.2% 0.93 23.6 0.92

C8. Recalibrated downstream model, but receiving the inflows measured in B1-I (DWF adjustment in B1-M)

Variable Units n Mean RMSE I95 CVRMSE RSR NSE KGE PBIAS Slope y-Interc. r2

in B1-M (#) (units) (units) (units) (%) (%) (-) (-) (%) (-) (units) (-)
Volume (m3) 26 3350 175 351 5% 8% 0.99 0.98 −2.0% 0.99 85.6 0.99

2-min peak (L/s) 26 383 53 106 14% 20% 0.96 0.94 −5.7% 1.01 18.5 0.97
6-min peak (L/s) 26 362 38 77 11% 16% 0.98 0.93 −6.6% 0.97 36.4 0.99
16-min peak (L/s) 26 327 34 68 10% 19% 0.97 0.93 −6.6% 0.97 30.0 0.98
30-min peak (L/s) 26 301 26 53 9% 19% 0.97 0.93 −4.8% 0.94 32.1 0.98
60-min peak (L/s) 26 268 18 37 7% 17% 0.97 0.95 −3.6% 0.95 22.5 0.98
104-m peak (L/s) 26 238 15 29 6% 17% 0.97 0.96 −3.1% 0.97 14.9 0.98
150-m peak (L/s) 25 165 13 27 8% 17% 0.97 0.96 −3.1% 0.96 14.7 0.98

value For C5, C6 and C7, the value is better than that of the previous analysis.
For C8, the value is better than that of C6.

value For C5, C6 and C7, the value is worse than that of the previous analysis.
For C8, the value is worse than that of C6.

value For C6, the value is better than that of the initial model
value For C6, the value is worse than that of the initial model
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5.2.1. Initial Global Model with Dry Weather Flow Adjustment per Event (C4)

Based on a qualitative but in-depth appreciation of the hydrographs in B1-M, the
authors of this work would classify the initial model as providing very good results. The
modelled flows are fairly coincident with the measured flows for many events and show
minor deviations in smaller events. Most deviations result from the RDII component in the
upstream catchment not being modelled.

The quality of the results of this model is confirmed by the very good values of
all statistics for all durations: NSE between 0.96 and 0.99, KGE between 0.95 and 0.98,
PBIAS from −1.7% to 2.0%, linear regression slope between 0.97 and 1.03, coefficients of
determination not less than 0.97 and CVRMSE values between 8% and 11% (corresponding
to I95 between 13% and 21% of the means).

For the volume variable, NSE is 0.99, although KGE is “only” 0.93. PBIAS is only 1.7%,
but the slope of the linear regression is 0.93 (with r2 = 0.99), reflecting the underestimation
due to the RDII component not being modelled.

Both slope and KGE for volume are the only metrics that point to a slight bias that
would not allow classifying the model as excellent and the volume is the only variable
accumulated over different durations. This result seems to show the advantages of the
new approach in including a variable that accumulates over the different durations of
the events.

These results also call attention to the importance of the modeler’s knowledge in
assessing the model quality. Despite having more than 100 nodes and providing very
accurate results in B1-M, the initial model has some usability limitations due to the black
box component left during calibration (it provides underestimated results for the upstream
catchment and compensates most of this deviation in the downstream combined catchment,
as described in Section 4.2).
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It is important to note that the proximity of the values of NSE, KGE and r2 to optimal
values is higher than in most cases in the literature and may derive from the approach
applied in this work. As mentioned in Section 2.1, most of the NSE values reported in the
calibration of hydrological or hydraulic urban drainage models range from 0.5 to 0.9, with
most being greater than 0.7 [2,7,10,20,22,46–48,50–53]. However, NSE values above 0.95 are
also reported [1,53,55].

5.2.2. Initial Downstream Model, but with the Recalibrated Interceptor Sewer Model (with
DWF Adjustment) (C5)

With the recalibration of the upstream catchment, the accuracy of the initial model in
the downstream section B1-M is significantly impaired (shaded in orange in the results
of the C5 analysis of Table 5), except for the volume variable (shaded in green) due to the
increase in the upstream flows.

As shown in the C5 results of Table 5, the worst results occur for the 60 and 104 min
durations (with NSE of 0.92, KGE of 0.86 and 0.84, linear regression slopes greater than
1.11, and negative PBIES values with absolute values greater than 5%). The overestimation
for these durations results from the model not taking into account that, during some events,
part of the flows from the interceptor sewer is overflowed between B1-I and B1-M.

In fact, downstream of B1-I, there is a by-pass (in a manhole of the interceptor sewer)
that allows overflowing to the stream when the interceptor sewer is under pressure. In fact,
a detailed analysis of the linear slope and PBIAS results of the initial model (C4) already
indicates a slight overestimation of the peak flows with durations between 16 and 60 min,
in relation to the other durations.

Figure 7 compares the hydrographs in B1-M of two rainfall events for the following
three cases, all with dry weather flow adjustment: C4) the initial model; C5) the initial
model downstream, but with the upstream catchment recalibrated; C6) model with the
new CSO in the interceptor sewer downstream B1-I and recalibrated. The hydrographs in
Figure 7 highlight the excess of inflows to B1-M in the C5 case and the good results of the
C6 case, after shaving the excess flow in the new CSO between B1-I and B1-M.

Hydrology 2022, 9, x FOR PEER REVIEW 19 of 29 
 

 

Case Event 19 Event 21 

C4 

C5 

C6 

Figure 7. Hydrographs of two rainfall events for assessments C4, C5 and C6. 

5.2.3. Recalibrated Global Model with Dry Weather Flow Adjustment per Event (C6) 
Based on the slopes of the interceptor sewer downstream B1-I and considering the 

Manning–Strickler coefficient for concrete 𝐾𝑠 = 1/0.014 = 71 m1/3·s−1, the flow capacity 
of the interceptor sewer downstream B1-I was estimated to be about 220 L/s (about 100 
L/s less than in B1-I). The downstream model was then recalibrated, obtaining less 
accurate results than the initial model, but also quite good. 

In the C6 results of Table 5 (recalibrated model with dry weather flow adjustment), 
the results that are better than the C5 results (initial model downstream, but with the 
upstream catchment recalibrated) are shaded in green. The worst results are shaded in 
orange. 

The new CSO structure and the recalibration of the downstream model led to a 
significant improvement in virtually all the statistics for both the volume and the flows 
lasting longer than 30 min. The slope has also improved for the 2, 6 and 16 min peak flows, 
but the other statistics are now worse for these durations. This is because a detailed 
analysis of the scatterplots between the measured and modelled values led to the decision 
to slightly increase the 6 min peak flow, compared to the initial model. 

Figure 8 shows the scattergraphs and linear regression lines for the 6 and 150 min 
maximum flows, for both the initial model and the recalibrated model. For the 6 min peak 
flows, in the initial model the regression line has a slope of 0.97 and a slight 
underestimation of the highest values is observed. In the recalibrated model, the slight 
increase in the highest values of the 6 min peak flow is confirmed and the slope of the 
linear regression increased to 0.99. The y-intercept increased slightly to 20 L/s, mostly due 
to a slight overestimation of some lower magnitude 6 min peak flows. 

  

Figure 7. Hydrographs of two rainfall events for assessments C4, C5 and C6.



Hydrology 2022, 9, 87 18 of 28

5.2.3. Recalibrated Global Model with Dry Weather Flow Adjustment per Event (C6)

Based on the slopes of the interceptor sewer downstream B1-I and considering the
Manning–Strickler coefficient for concrete Ks = 1/0.014 = 71 m1/3·s−1, the flow capacity
of the interceptor sewer downstream B1-I was estimated to be about 220 L/s (about 100 L/s
less than in B1-I). The downstream model was then recalibrated, obtaining less accurate
results than the initial model, but also quite good.

In the C6 results of Table 5 (recalibrated model with dry weather flow adjustment), the
results that are better than the C5 results (initial model downstream, but with the upstream
catchment recalibrated) are shaded in green. The worst results are shaded in orange.

The new CSO structure and the recalibration of the downstream model led to a
significant improvement in virtually all the statistics for both the volume and the flows
lasting longer than 30 min. The slope has also improved for the 2, 6 and 16 min peak
flows, but the other statistics are now worse for these durations. This is because a detailed
analysis of the scatterplots between the measured and modelled values led to the decision
to slightly increase the 6 min peak flow, compared to the initial model.

Figure 8 shows the scattergraphs and linear regression lines for the 6 and 150 min
maximum flows, for both the initial model and the recalibrated model. For the 6 min peak
flows, in the initial model the regression line has a slope of 0.97 and a slight underestimation
of the highest values is observed. In the recalibrated model, the slight increase in the highest
values of the 6 min peak flow is confirmed and the slope of the linear regression increased
to 0.99. The y-intercept increased slightly to 20 L/s, mostly due to a slight overestimation
of some lower magnitude 6 min peak flows.
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In Table 5, the results of C6 written in purple are worse than those of the initial model
and the results written in bold are better than those of the initial model. Except for most of
the volume variable values and the 6 min and 16 min peak flow slopes, almost all other
statistics in the recalibrated model are worse (albeit slightly) than the initial model. This
results from the increase in determinism, and consequent uncertainty, introduced by the
CSO structure in the recalibrated model.

5.2.4. Recalibrated Global Model without Dry Weather Flow Adjustment (C7)

As expected, the lack of adjustment of the dry weather flow leads to a worsening
of virtually all C7 results (shaded in orange in Table 5), with some significance for some.
However, all statistics maintain values that should be classified as good. (All NSE values
are greater than 0.91, decreasing with duration, KGE is between 0.93 and 0.95, slopes are
equal to or greater than 0.95 (except for 150 min) and the regression coefficients range from
0.92 to 0.97. PBIAS values are between −2.7% and −5.7%.)

The CVRMSE values are between 11% and 16% for all variables, which means that
I95 ≈ 2·RMSE is between 22% and 32% of the mean of the measured values for all variables.

A significant increase in the values of RMSE (and I95) is noteworthy in relation to the
model with the base flow adjustments. For the volume variable, RMSE rises from 228 m3 to
421 m3, corresponding to an 85% increase in the error. The relative error of RMSE increases
with the duration of peak flow, growing from 7% for the 2-min duration (from 55 L/s to
59 L/s) to 53% for the 150-min duration (from 15 L/s to 23 L/s).

These results show that a significant percentage of the errors in B1-M result from the
variability in the base flows.

In spite of the values of several metrics decreasing with some significance in relation
to assessment C6, the values of NSE, KGE, r2 and probably the PBIAS remain relatively
close to optimal values, being above most of the values in the literature.

The analysis of the set of results from Tables 4 and 5 and from Tables A1 and A2 of
Appendix A shows the potential of the proposed approach, but indicates that it delivers
results closer to optimal values than when applying metrics to each rainfall event.

5.2.5. Recalibrated Downstream Model, but Receiving the Inflows Measured in B1-I (DWF
Adjustment in B1-M) (C8)

If the measurement errors in B1-I and B1-M were null, the results of the C8 analysis
would deliver the errors of the downstream model, and the differences in relation to the
C6 case (recalibrated model with DWF adjustment) would reflect the effect of the errors of
the upstream catchment model on B1-M. In Table 5, the results of the C8 analysis that are
better and worse than the results of C6 are shaded, respectively, in green and orange.

The results tend to be slightly better than the C6 ones for most statistics. However, they
are worse for PBIAS, showing an overestimation trend for all durations of the downstream
recalibrated model. As such, both the slope and the y-intercept are worse for practically all
durations, except for 150 min and for volume, which benefit from the contribution of the
infiltration flows and the RDII component. The coefficients of determination are 0.98 and
0.99 (except for the 2-min duration only, which is 0.97).

Similarly, KGE values are also better for volume, in principle due to the RDII component,
and are worse for practically all durations, due to the model’s tendency to overestimation.

Table 6 compares the RMSE values obtained for all variables between assessment C6
(recalibrated model with DWF adjustment) and the following two cases: C7 (model without
DWF adjustment); C8 (model using the values measured in B1-I and adjusting the DWF
only for B1-M).
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Table 6. RMSE values in B1-M for assessment C6 and relative variations of RMSE for both assessment
C7 and assessment C8.

Parameter in B1-M Units Mean RMSE for C6 RMSE for C7 RMSE for C8

(Units) (Units) (Units) (%) (Units) (%)
Volume (m3) 3350 228 421 (+85%) 175 (−23%)

2-min peak (L/s) 383 55 59 (+7%) 53 (−4%)
6-min peak (L/s) 362 40 46 (+15%) 38 (−5%)
16-min peak (L/s) 327 34 40 (+18%) 34 (0%)
30-min peak (L/s) 301 29 35 (+21%) 26 (−10%)
60-min peak (L/s) 268 25 31 (+24%) 18 (−28%)
104-m peak (L/s) 238 18 26 (+44%) 15 (−17%)
150-m peak (L/s) 165 15 23 (+53%) 13 (−13%)

As expected, the RMSE values for C8 are very close to those obtained for C6 for the
shortest durations (2, 6 and 16 min) and are smaller for the other durations. The RMSE
reduction is maximum for the 60-min duration (28%), probably due to the combined effect
of the RDII component and the improvement in the permeable areas infiltration component
throughout the event.

However, the RMSE reductions in assessment C8 are much smaller than the RMSE
increases when the dry weather flow adjustment is not carried out (C7). These results
highlight the role of the base flow variability in model errors.

Part of the variability of the base flows, as well as the errors obtained in C8, results from
measurement errors in B1-I and B1-M. Nor can it be excluded that part of the overestimation
trend of the downstream model results from some overestimation of the average DWF of the
combined catchment in relation to the average DWF coming from the upstream catchment.

5.3. Quality of Monitored Data

Figure 9 shows the dry weather flow adjustments considered for each event in sections
B1-I and B1-M, as well as the adjustment difference between the two sections. Although
the flow adjustments vary with some significance for some events (between ±40 L/s, i.e.,
around 50% and 40% of the dry weather average flow in B1-I and B1-M, respectively),
the adjustment difference between sections B1-I and B1-M is relatively constant for all
events: this difference is null until event 11; and ranges from −15 L/s to −10 L/s between
events 15 and 26 (except for event 18, where it is 5 L/s, probably due to the accumulation
of debris or grease on the sensors). The difference in results between these two different
periods indicates a systematic error in measurements. This error is between 9 and 14% of
the average dry weather flow in B1-M.

This systematic error was initially attributed to the fact of the ring that fixed the
pressure, ultrasonic and velocity sensors to the sewer in B1-I being dragged by the flow
during event 14, forcing it to be reinstalled under possibly slightly different conditions.
However, the analysis of the records of water depth, pressure, velocity and flow in section
B1-I, as well as the scattergraphs between these variables, did not allow identifying any
bias between those two time periods. On the contrary, the analysis of the scattergraphs
at B1-M suggests that the systematic error is likely due to some changes in measurement
conditions at B1-M.

The new approach described above could also be used to assess the influence of
systematic errors in measurements on the accuracy of the model results. This analysis is
not presented to avoid overloading.
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5.4. Results of the Metrics Applied to Each Rainfall Event

Appendix A presents two tables containing the results of the performance metrics
applied event by event to four cases. Table A1 presents and compares the results for
all events in B1-I, for both the initial and the recalibrated model, the two with DWF
adjustment (C1 and C2 analysis). Table A2 compares the results for all events in B1-M for
the recalibrated model, with and without DWF adjustment (C6 and C7 assessments).

As described in Section 3, in small urban catchments, these results depend significantly
on both time lags between rainfall and flow measurements and the temporal and spatial
variability of rainfall within the catchment. The values presented in Tables A1 and A2
were not the subject of any attempt to synchronize the times between rainfall and flow
measurements, although a short 2–4-min adjustment could significantly improve the results
for some events. In cases like Figure 4, the lack of synchronism seems obvious, but in other
cases this attempt at synchronization would be subjective and debatable due to the intrinsic
variability in rainfall.

The qualitative ratings proposed by Moriasi et al. (2015) [39] are represented in the
color of the NSE, PBIAS and r2 results in Tables A1 and A2. Both B1-I and B1-M have a
very wide range of results for most metrics, with many events rated as “very good” and
many as “unsatisfactory”.

However, the analysis of the hydrographs shows that the events classified as “unsatis-
factory” usually correspond to small rainfalls, in which small errors of the flow or even of
the base flow lead to significant relative errors. Despite such unsatisfactory results in an
event-by-event analysis, the model even has a reasonable performance for the complexity
and non-linearity of the simulated phenomena and associated uncertainty, as can be ob-
served in Figure 10. This Figure compares the measured and the simulated hydrographs of
the two events with the worst metrics (events 26 and 4). While in Table A2 these events
make the analysis confusing and even biased or erroneous, in the proposed new approach
they are all taken into account, but with the due importance (see Figures 6 and 8).
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Figure 10. Measured and simulated hydrographs of the two events with the worst metrics.

From the predominance of green shading in Table A1, we can see that the recalibrated
model is better than the initial model in B1-I, but interestingly, there are more events
classified as “unsatisfactory” for NSE with the recalibrated model (10 events) than with
the initial one (8 events). The results in Table A1 hardly guide the modeler on how to
improve the model during calibration, contrary to the new approach presented here using
the same metrics.

From the predominance of orange shading in Table A2, we can also see that the non-
adjustment of the base flow impairs the quality of the results in B1-M. However, the results
are scattered and do not allow us to give a quantitative or even qualitative idea of how much
the quality is impaired, contrary to the proposed approach (see Sections 5.2.4 and 5.2.5).

6. Conclusions

Small urban catchments pose challenges in applying performance metrics when com-
paring measured and simulated hydrographs. Indeed, results are hampered by the short
peak flows, due to rainfall variability and measurement synchronization errors, and it
can be both difficult and inconvenient to remove base flows from the analysis, given their
influence on the performance of CSO structures. In addition, base flows are an important
source of uncertainty in modelling small rainfall events, which must be taken into account
when assessing the quality of the models.

A new approach was proposed and tested to assess the quality of models of small
combined catchments, which proved to be quite suitable not only for the assessment of the
quality of the models, but also to support calibration. In the proposed approach, rather
than the performance metrics being applied to compare the measured and simulated values
within each hydrograph and/or the measured and simulated peak flows of the various
events, they are applied to compare measured and simulated maximum flows for a set of
different durations. For each duration, the measured and simulated maximum flow series
can be easily calculated by applying a rolling-window search routine to each hydrograph.
To keep the assessment simple, five to eight different durations with increasing intervals
should be analysed.

This new approach presents the following advantages: (a) being simple; (b) avoiding
the inconveniences arising from the time lags of very short peaks (described in Section 3)
and the subjectivity of possible adjustments; (c) favouring the assessment of the influence
of base flow and RDII variability (see assessments C2, C3 and C7) and the influence of
peak flow shaving by upstream CSOs (assessment C5); (d) promoting and facilitating an
integrated analysis for a wide range of rainfall events; (e) avoiding subjectivity in interpret-
ing different results for the various events; and (f) making it possible to identify biases in
simulated hydrographs that would otherwise be difficult to detect, also guiding calibration.



Hydrology 2022, 9, 87 23 of 28

However, it has the disadvantage of requiring a sufficiently large and representative
set of rainfall events to ensure statistical significance, which, in principle, should not be
less than 20 events for evaluating the quality of model results or twice that number for a
complete model calibration and verification.

In addition, the results delivered by this new approach should not be compared with
the thresholds proposed in Moriasi et al. (2015) [39] without careful consideration, as the
values of NSE, r2 and PBIAS tend to be closer to optimal values than when applying metrics
to compare measured and simulated values within each hydrograph.

This recommendation is extended to all modelers who apply performance metrics to
peak flows in urban drainage systems.

In the application of the described new approach to a model classified as providing
a useful but limited and underestimated approximation (assessment C1), the NSE values
were below 0.8 for all durations and, for some, below 0.7. KGE values ranged from 0.7 to
0.85. PBIAS values were less than ±10%. For the recalibrated model, providing results that
tend to be good but with deviations and limitations for some events (assessment C2), the
NSE values tended to be greater than 0.8, the KGE values tended to approach 0.9 and PBIAS
were within ±5%. Finally, for models of which the simulated and measured hydrographs
are very coincident for some events and show small deviations in other events (assessments
C4 and C6), both the NSE and the KGE values were higher than 0.95 for all durations,
reaching 0.98 and 0.99 in some cases.

During normal use of the model, base flows are unknown. Without adjusting base
flows (assessments C3 and C7), NSE values tended to fall by up to 0.1, depending on
duration, while KGE values tended to vary much less. For the “very good” quality model
(assessments C7 compared with C6), the RMSE values increased between 20% and 50% as
the analysed duration increased to 150 min, due to the influence of the unmodelled RDII.

The various examples of the case study highlight the importance of using different
metrics and graphical analyses and the pertinence of the proposed approach.
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Appendix A

Table A1. Statistical results for all events in B1-I, for the initial and the recalibrated models, both with
DWF adjustment.

C1. Initial Model with Dry Weather Flow Adjustment per Event at B1-I
Event n Mean Peak RMSE I95 CVRMSE RSR NSE KGE PBIAS Slope y-Interc. r2

in B1-I (#) (L/s) (L/s) (L/s) (L/s) (%) (%) (-) (-) (%) (-) (L/s) (-)

8 481 130 232 18 36 14% 40% 0.84 0.89 10% 0.97 −8 0.92
13 286 161 312 30 59 18% 41% 0.83 0.82 9% 0.81 17 0.87
9 271 169 312 30 61 18% 43% 0.82 0.78 12% 0.79 15 0.92

21 114 303 335 62 124 21% 211% −3.43 0.52 18% 0.90 −26 0.47
20 211 145 312 23 45 16% 32% 0.90 0.85 2% 0.82 23 0.91
19 181 168 327 32 63 19% 42% 0.82 0.79 12% 0.79 15 0.91
17 264 110 289 30 60 27% 36% 0.87 0.69 13% 0.70 19 0.98
24 166 157 313 41 82 26% 52% 0.73 0.65 16% 0.66 27 0.90
25 181 134 206 25 50 19% 89% 0.21 0.40 6% 0.34 81 0.29
18 241 91 168 10 20 11% 34% 0.89 0.92 2% 0.89 8 0.89
1 166 121 191 20 40 17% 69% 0.53 0.77 10% 1.04 −18 0.79

23 166 121 179 15 30 12% 52% 0.73 0.87 −4% 0.86 21 0.76
11 121 144 172 18 37 13% 58% 0.66 0.74 1% 0.66 46 0.66
12 121 129 172 12 24 9% 78% 0.39 0.55 5% 0.48 60 0.63
3 106 140 196 12 25 9% 48% 0.77 0.89 0% 0.90 13 0.79

16 136 99 189 9 18 9% 29% 0.92 0.91 3% 0.89 8 0.93
22 76 156 268 30 59 19% 78% 0.39 0.55 −1% 0.47 85 0.40
7 106 105 210 15 29 14% 50% 0.75 0.81 4% 0.76 21 0.77
5 91 120 151 12 24 10% 61% 0.63 0.87 6% 0.89 6 0.78

26 76 137 227 42 85 31% 110% −0.22 0.22 22% 0.23 76 0.70
6 91 112 173 17 35 16% 61% 0.62 0.63 −10% 1.29 −22 0.92

15 83 119 167 24 48 20% 91% 0.17 0.32 11% 0.28 73 0.59
2 76 109 157 9 19 9% 28% 0.92 0.88 −1% 1.08 −8 0.94

10 76 101 149 27 54 27% 138% −0.91 0.37 −13% 0.80 34 0.31
4 54 133 208 13 26 10% 34% 0.88 0.92 −5% 1.00 6 0.92

14 15 270 312 42 84 16% 120% −0.43 −0.08 −3% 1.98 −255 0.90

C2. Recalibrated model with dry weather flow adjustment per event at B1-I
Event n Mean Peak RMSE I95 CVRMSE RSR NSE KGE PBIAS Slope y-Interc. r2

in B1-I (#) (L/s) (L/s) (L/s) (L/s) (%) (%) (-) (-) (%) (-) (L/s) (-)
V 8 481 130 232 18 35 14% 39% 0.85 0.87 8% 1.05 −16 0.92

Cal 13 286 161 312 24 48 15% 33% 0.89 0.93 4% 0.97 −2 0.90
Cal 9 271 169 312 24 48 14% 34% 0.89 0.91 7% 0.95 −4 0.92
Cal 21 114 303 335 33 66 11% 111% −0.23 0.64 8% 1.04 −37 0.65
V 20 211 145 312 20 41 14% 28% 0.92 0.92 −4% 1.03 2 0.94

Cal 19 181 168 327 22 45 13% 30% 0.91 0.92 6% 0.93 1 0.93
V 17 264 110 289 16 32 15% 19% 0.96 0.88 5% 0.88 8 0.98

Cal 24 166 157 313 30 60 19% 38% 0.86 0.82 11% 0.83 9 0.91
V 25 181 134 206 25 49 18% 87% 0.24 0.45 6% 0.38 76 0.32
V 18 241 91 168 9 17 10% 30% 0.91 0.93 1% 0.91 7 0.91

Cal 1 166 121 191 20 41 17% 70% 0.51 0.70 9% 1.13 −26 0.79
V 23 166 121 179 14 29 12% 50% 0.75 0.88 −4% 0.90 17 0.79
V 11 121 144 172 19 38 13% 61% 0.63 0.74 1% 0.66 47 0.63
V 12 121 129 172 11 23 9% 74% 0.45 0.59 5% 0.52 55 0.68
V 3 106 140 196 14 29 10% 55% 0.69 0.82 −1% 0.98 4 0.76

Cal 16 136 99 189 8 17 8% 26% 0.93 0.94 3% 0.94 3 0.94
V 22 76 156 268 29 57 18% 75% 0.43 0.63 −2% 0.55 73 0.46

Cal 7 106 105 210 14 29 14% 48% 0.77 0.86 4% 0.83 14 0.78
V 5 91 120 151 12 24 10% 60% 0.64 0.85 6% 0.95 −1 0.79
V 26 76 137 227 42 84 31% 110% −0.21 0.24 22% 0.24 74 0.70
V 6 91 112 173 33 65 29% 115% −0.33 0.19 −17% 1.66 −55 0.87
V 15 83 119 167 23 45 19% 87% 0.25 0.36 11% 0.32 69 0.65
V 2 76 109 157 8 16 8% 25% 0.94 0.86 −1% 1.11 −11 0.96
V 10 76 101 149 27 54 27% 138% −0.89 0.38 −14% 0.87 27 0.36

Cal 4 54 133 208 29 58 22% 77% 0.41 0.58 −16% 1.33 −23 0.92
V 14 15 270 312 40 80 15% 114% −0.29 −0.02 −3% 1.92 −240 0.90

Cal = recalibration event; V = verification event Peak = measured 2-min peak flow Event duration = 2.n minutes
Better than in C1 Very Good Good Satisfactory Not satisfactory

Worsen than in C1 according to [39] according to [39] according to [39] according to [39]
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Table A2. Statistical results for all events in B1-M, for the recalibrated model with and without
DWF adjustment.

C6. Recalibrated Global Model with Dry Weather Flow Adjustment
Event n Mean Peak RMSE I95 CVRMSE RSR NSE KGE PBIAS Slope y-Interc. r2

in B1-M (#) (L/s) (L/s) (L/s) (L/s) (%) (%) (-) (-) (%) (-) (L/s) (-)

V 8 481 171 299 24 49 14% 45% 0.79 0.74 4% 1.19 −38.7 0.90
Cal 9 271 233 532 35 71 15% 34% 0.88 0.87 10% 0.90 −1.1 0.94
Cal 13 286 212 692 28 56 13% 29% 0.91 0.92 3% 1.03 −12.0 0.93
Cal 21 114 384 887 61 122 16% 51% 0.74 0.85 2% 0.81 66.0 0.75
V 20 211 184 550 27 55 15% 26% 0.93 0.90 −7% 1.04 6.1 0.95

Cal 19 181 211 1167 45 91 22% 30% 0.91 0.91 −4% 1.03 1.6 0.93
V 14 129 281 1053 47 95 17% 29% 0.92 0.94 1% 1.01 −5.3 0.92
V 17 264 133 376 12 25 9% 13% 0.98 0.96 −1% 1.03 −2.3 0.99
V 18 241 123 223 10 20 8% 27% 0.93 0.96 −1% 0.95 6.5 0.93
V 25 181 157 226 21 43 14% 69% 0.53 0.77 −4% 0.73 48.9 0.61

Cal 24 166 169 367 23 47 14% 29% 0.92 0.89 0% 1.07 −11.9 0.94
Cal 1 166 150 259 24 48 16% 60% 0.64 0.66 0% 1.20 −29.9 0.82
V 23 166 134 198 25 51 19% 70% 0.51 0.82 −17% 1.01 21.3 0.92
V 11 121 182 221 22 44 12% 57% 0.67 0.82 −3% 0.77 46.9 0.70
V 3 106 198 260 24 48 12% 79% 0.37 0.63 −1% 1.04 −6.3 0.64
V 12 121 167 206 12 23 7% 72% 0.48 0.69 3% 0.61 59.9 0.59

Cal 7 106 155 259 21 43 14% 53% 0.72 0.82 7% 1.05 −19.6 0.85
Cal 16 136 117 199 14 28 12% 41% 0.83 0.72 −3% 1.24 −23.9 0.94
V 6 91 172 282 34 67 19% 71% 0.49 0.44 −9% 1.51 −71.2 0.95
V 5 91 166 207 16 32 10% 59% 0.65 0.76 6% 1.15 −34.8 0.88
V 22 76 177 343 32 64 18% 66% 0.56 0.80 −8% 0.92 28.0 0.71
V 26 76 160 233 37 74 23% 106% −0.12 0.41 16% 0.36 76.1 0.48
V 15 83 136 181 21 42 15% 76% 0.43 0.45 −1% 0.37 87.5 0.44
V 10 76 138 214 21 41 15% 66% 0.56 0.80 −7% 0.95 16.7 0.73
V 2 76 138 208 14 29 10% 30% 0.91 0.91 −5% 0.90 20.2 0.93

Cal 4 54 195 310 40 79 20% 74% 0.46 0.46 −11% 1.48 −72.9 0.94

C7. Recalibrated global model without dry weather flow adjustment
Event n Mean Peak RMSE I95 CVRMSE RSR NSE KGE PBIAS Slope y-Interc. r2

in B1-M (#) (L/s) (L/s) (L/s) (L/s) (%) (%) (-) (-) (%) (-) (L/s) (-)
8 481 171 299 23 46 13% 43% 0.81 0.75 −2% 1.18 −27.4 0.90
9 271 233 532 38 76 16% 37% 0.86 0.86 12% 0.91 −7.7 0.94

13 286 212 692 39 77 18% 41% 0.84 0.83 12% 1.07 −40.5 0.93
21 114 384 887 60 120 16% 50% 0.75 0.85 0% 0.81 74.9 0.75
20 211 184 550 35 69 19% 33% 0.89 0.85 −14% 1.04 18.3 0.95
19 181 211 1167 51 103 24% 34% 0.89 0.86 −13% 1.02 22.4 0.93
14 129 281 1053 53 106 19% 32% 0.90 0.89 7% 1.03 −28.5 0.92
17 264 133 376 27 54 20% 28% 0.92 0.82 −18% 0.98 26.6 0.98
18 241 123 223 10 20 8% 28% 0.92 0.95 3% 0.95 2.5 0.93
25 181 157 226 30 59 19% 95% 0.10 0.74 −14% 0.74 62.3 0.61
24 166 169 367 25 49 15% 30% 0.91 0.86 −1% 1.10 −15.1 0.94
1 166 150 259 24 48 16% 60% 0.64 0.66 0% 1.20 −29.9 0.82

23 166 134 198 34 68 25% 94% 0.12 0.75 −24% 1.03 28.3 0.93
11 121 182 221 22 44 12% 57% 0.67 0.82 −3% 0.78 45.7 0.70
3 106 198 260 27 54 13% 88% 0.22 0.63 −6% 1.05 3.1 0.64

12 121 167 206 22 45 13% 138% −0.91 0.66 12% 0.60 46.1 0.61
7 106 155 259 18 37 12% 46% 0.79 0.84 1% 1.05 −8.5 0.84

16 136 117 199 46 91 39% 132% −0.75 0.53 −37% 1.24 15.4 0.94
6 91 172 282 43 85 25% 91% 0.17 0.48 −19% 1.43 −41.5 0.94
5 91 166 207 12 25 7% 46% 0.79 0.76 0% 1.15 −24.7 0.87

22 76 177 343 31 62 18% 64% 0.59 0.81 8% 0.93 −1.9 0.73
26 76 160 233 37 74 23% 106% −0.11 0.40 16% 0.35 77.8 0.46
15 83 136 181 29 59 22% 106% −0.13 0.45 −16% 0.40 103.3 0.46
10 76 138 214 19 37 13% 60% 0.64 0.81 −4% 0.95 11.5 0.73
2 76 138 208 21 42 15% 44% 0.80 0.86 −12% 0.91 28.5 0.93
4 54 195 310 47 93 24% 87% 0.25 0.48 −17% 1.43 −50.7 0.92

Cal = recalibration event; V = verification event Peak = measured 2-min peak flow Event duration = 2.n
minutes

Better than in C6 Very Good Good Satisfactory Not satisfactory
Worse than in C6 according to [39] according to [39] according to [39] according to [39]
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