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Abstract: Water losses from water distribution means have a high environmental impact in terms 
of natural resource depletion (water, energy, ecosystems). This work aims to develop an optical 
airborne surveillance service for the detection of water leaks (WADI—Water-tightness Airborne 
Detection Implementation) to provide water utilities with adequate and timely information on 
leaks in water transportation mains outside urban areas. Firstly, a series of measurement cam-
paigns were performed with two hyperspectral cameras and a thermal infrared camera in order to 
select the most appropriate wavelengths and combinations thereof for best revealing high moisture 
areas, which are taken as a proxy for water leakage. The Temperature-Vegetation-Index method 
(T-VI, also known as Triangle/Trapezoid method) was found to provide the highest con-
trast-to-noise ratio. This preliminary work helped select the most appropriate onboard instru-
mentation for two types of aerial platforms, manned (MAV) and unmanned (UAV). Afterwards, a 
series of measurement campaigns were performed from 2017 to 2019 in an operational environ-
ment over two water distribution networks in France and Portugal. Artificial leaks were intro-
duced and both remote sensing platforms successfully detected them when excluding the unfa-
vorable situations of a recent rain event or high vegetation presence. With the most recent equip-
ment configuration, known and unknown real leaks in the overflown part of a water transportation 
network in Portugal have been detected. A significant number of false alarms were also observed 
which were due either to natural water flows (groundwater exfiltration, irrigation runoff and 
ponds) or to vegetation-cover variability nearby water-distribution nodes. Close interaction with 
the water utilities, and ancillary information like topographic factors (e.g., slope orientation), are 
expected to reduce the false alarm rates and improve WADI’s methodology performance. 

Keywords: remote sensing; water leak; infrared; Triangle Method; Trapezoid Method; soil mois-
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1. Introduction 
Innovation is key for coping with future water challenges in fields like water man-

agement, land use and agriculture since water has become increasingly scarce and less 
predictable [1]. In addition, the balance between competing demands for water (as fos-
tered by a growing population and increasing agricultural production) and its limited 
supply is believed to be threatened with speculation since the recent creation of the 
world’s first futures market in water [2]. Improved leak management could boost the 
network efficiency and optimize water source uses leading to significant environmental 
benefits. In Europe for example, within Member States, leakage rates vary from 7% to 
50% or more [3], 60% of European cities over-exploit their groundwater resources and 
50% of wetlands are endangered [4], which could get worse if a more efficient and sus-
tainable use of water resources is not achieved. 

Despite significant improvements over the past 20 years in understanding the eco-
nomic management of real losses on water distribution systems, little information is 
available on the actual extent of transmission mains leakage, and how best to quantify 
and manage it. Detection of water leaks in transmission systems for water supply, irri-
gation, and hydropower plays a key role in water management efforts to mitigate natural 
resource depletion, decrease the related energy consumption and help utilities to provide 
cost-effective services. At present, leaks from seals on transmission mains can go unde-
tected for years causing a significant loss of water. While leaks on large-diameter pipe-
lines are estimated to make up less than 5% of the total number of leaks, they can account 
for more than 50% of the total leak-water lost. Detection of leakages in large diameter 
underground mains is thus a key point but its timely detection faces major challenges. 

Water leakage detection has been carried out by several ground techniques that 
typically involve measurement of pressure differences between two valves, acoustic 
sounding, ground-penetrating radar or gas injection [5]. However, the use of ground 
methods is difficult and often inadequate for leak detection in water transmission mains 
[6]. Transmission main leaks are difficult to locate, generally because this type of water 
transportation infrastructure has one or more of the following characteristics: low pres-
sure; low noise frequency; large diameter; non-metallic material; and few contact points 
for acoustic monitoring. In addition, transmission mains are often located outside urban 
areas in difficult-to-access remote areas. Finally, the cost of detection, location, and repair 
of unreported bursts on transmission mains is significantly greater on a per-km basis 
than on distribution mains, often by an order of magnitude or more, which can lead util-
ities to simply exclude transmission mains from leak detection programs. In addition to 
underground transportation pipelines, the problem of water leaks also affects open ca-
nals resulting in seepage to the embankments. 

Therefore, there is a strong need for developing transmission mains surveillance 
methods that will dramatically, but also cost-effectively, speed up pipeline and canal 
monitoring. The technology and service described in this paper address all these expec-
tations, taking advantage of existing remote sensing technologies. 

Our methodology relies on several leak characteristics. In the close vicinity of a leak, 
soil moisture increases until it reaches the field capacity or possibly saturation. Thereaf-
ter, water moves through the soil pores in all directions, in particular up to the surface. 
Additionally, the water supplied by the leak in the root zone will benefit the vegetation 
already present or induce the growth of opportunistic plants nearby. Thus, underground 
leaks and canal seepage are expected to enhance water presence in the vicinity of the leak 
up to the top surface of the soil/vegetation complex. 

Remote sensing techniques that are able to detect changes in water content in soil or 
vegetation are thus, good candidates for leak detection. They provide better temporal 
and spatial coverages than ground detection methods. 

Airborne active/passive microwave sensors are suitable for mapping soil moisture 
since the received signal is sensitive to the dielectric constant of soil, hence to the mois-
ture content. However, the depth-penetration capability depends on the sensor wave-
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length. In addition, the correlations between radiation and soil moisture are degraded by 
surface roughness [7] and variability in vegetation cover [8]. 

Optical methods could be an alternative, as optical properties change with moisture 
content in soil and vegetation. A well-known observation is the darkening of the soil 
surface when water is added, which results from a decrease in its reflectance in the visible 
spectrum. The estimation of the soil moisture content from multispectral or hyperspectral 
remote sensing data strongly depends on the availability of a database that is repre-
sentative of all the soils encountered in the scanned area since the correlation between the 
moisture content and the reflectance spectrum is conditioned by, among other properties, 
the texture of the soil, and the presence of organic matter and crust [9]. In addition, these 
databases refer to bare soils, which are not the most frequent type of surfaces met in areas 
where leaks in water transportation means are sought. Notice that the penetration depth 
of optical sensors in the visible to short-wave range (i.e., [0.4–2.5 µm]) is significantly 
lower than for microwave sensors: the moisture content evaluated by the former type of 
sensor is that of the uppermost layer of the soil column. 

Finally, thermal infrared (TIR) remote sensing has long been recognized as a valua-
ble tool for evaluating soil moisture [10]. The sensed surface temperature is a strong in-
dicator of the presence of water both in soil and in plants, which can help for crop-water 
stress evaluation [11]. Temperature is a state variable that evolves during the day as a 
function of the surface radiative fluxes (both from solar radiation and from atmospheric 
and environmental infrared radiation), the atmospheric sensible and latent turbulent 
fluxes, and the heat diffusion inside the soil. A coupling also takes place with the water 
transport inside soil and plants up to the atmosphere by involving phase changes into or 
from water-vapor through evaporation, transpiration and condensation. The main gov-
erning parameters are the surface albedo, the surface emissivity, the resistance to evapo-
transpiration and soil thermal inertia (or thermal effusivity). They depend on the water 
content at the soil surface and in the upper soil layers, and, if vegetation is present, on its 
water content and possible water stress (which induce stomatal closure, hence limiting 
water losses). Despite some antagonistic effects, the consequence of the relative contri-
butions of all these parameters is that higher water content reduces the day–night tem-
perature amplitude [12]. During a sunny day, moist sites show a lower temperature as 
compared to drier sites [13–15]. After sunset and before dawn, depending on the mois-
ture levels in the sites, the temperature gap is reduced or maybe reversed [13–15]. Based 
on this interpretation several remote sensing experiments involving TIR sensors were 
conducted for assessing the moisture state at the Earth’s surface or the evaporation rate 
over vegetated lands, in particular water stress, see [10,11]. 

Airborne TIR has been used for water leaks and seepage detection along aqueducts, 
canals, and dikes for nearly forty years [15–23]. TIR was sometimes used independently 
by implementing infrared cameras or line scanners [15,17,21]. Out of the 39 sites detected 
as potential canal leakage sites in [15], 12 were verified through field analysis as actual 
leakage sites, giving the technique a 31% detection accuracy rate with 69% false positives. 
In addition, during the field checking process, no other leakage sites were discovered (no 
false negatives). It was concluded in [15] that, although the detection accuracy was low, 
the amount of time saved by checking this limited number of sites rather than the entire 
canal system for leakage was tremendous. Misinterpretations were commonly caused by 
dense natural vegetation, farm canals or drainage ditches adjacent to the main canal, 
smallholding ponds or low-depression areas of natural drainage. It was suggested in [15] 
to use color photography to supplement thermal imagery in order to help image inter-
pretation and reduce misinterpretation errors. More recent works often combine TIR 
with visible imagery, but also with images obtained in other spectral bands. TIR was 
used simultaneously with visible and NIR (near-infrared) cameras [20] with visible, 
multispectral and hyperspectral cameras [16], or through a multispectral sensor spanning 
from the visible to the thermal infrared range [18,23]. Aerial remote sensing data have 
also been interpreted through a combined analysis with satellite imagery like Landsat 
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TM [19] or Google Earth [23]. In [16,18–20,23], the additional visible-to-SWIR spectral 
bands were used as standalone information or were fused to provide various indicators 
like well-known vegetation indices or moisture indices (NDVI, MSAVI, CRI, SRWI, WBI, 
NIRRR, etc.). This additional information allowed for the increasing of TIR’s performance 
by reducing the number of false detections, for example by assisting in identifying sites 
that were likely to be confounded with seepage in the thermal imagery (e.g., dense veg-
etation) [20]. By simply processing a vegetation index, (namely NDVI), the NIR and red 
images could differentiate the tree and shadow from nearby seepage areas whereas the 
thermal image could not [20]. A 93% success rate was achieved for leak detection in canal 
systems based on a combined TIR and NDVI image analysis [20]. Even simple images 
from Google Earth allow rectifying the false identification of water activity provided by 
tree shades in the TIR images [23]. Moreover, Landsat TM data provided information on 
interactions of land use and vegetation with seepage zones (in that instance, using the 
MSAVI index proved to be more efficient than NDVI in case of low vegetation cover) 
[19]. 

Soil water content and crop water deficit have been evaluated with the so-called 
Triangle Method, which uses more synergistically TIR data and visible-to-NIR data [24–
28]. The principle of this method lies in the following observation. Since the relationship 
between temperature and water content is different between vegetation and bare soil, the 
mean temperature sensed by the remote TIR sensor depends not only on the water con-
tent but also on the vegetation cover-fraction in the considered pixel. For this reason, 
there is an intrinsic ambiguity in the deduction of moisture, or in the simple detection of 
leakage spots from the mean temperature as provided by a thermal sensor integrating the 
infrared radiance in mixed pixels. Independent information about the vegetation cov-
er-fraction is therefore required to eliminate the ambiguity. Introducing a vegetation in-
dex (VI) as a proxy of the vegetation cover-fraction solves the problem. Classical vegeta-
tion indexes are inferred from the visible and near-infrared (NIR) signals provided by 
one or two additional cameras. The temperature and the VI obtained over an area pre-
senting a broad diversity both in cover-fraction and in humidity provide a 2D scatterplot 
with a roughly triangular shape, which explains the name of the method: the Triangle 
Method [24–26]. Actually, the vertex of the triangle related to dense vegetation is often 
truncated, giving a trapezoidal shape, see [24–28]. The low-temperature boundary of the 
scatterplot is related to pixels/surfaces with the highest moisture and evapora-
tion/transpiration rate (“wet” edge), whereas the high-temperature boundary is related 
to pixels/surfaces with the lowest moisture and evaporation/transpiration rate (“dry” 
edge). As a consequence, a water index (or the complementary dryness index) is assigned 
to each point from its relative position with respect to the “wet” and “dry” edges of the 
triangle/trapezoid scatterplot. 

More sophisticated approaches use an SVAT model (Soil Vegetation Atmosphere 
Transfer) to define the water content from the position of the representative point (in 
temperature and VI) inside the triangular scatter [25,27–29]. More recent works consider 
additional information such as the albedo [30–32] or the CAI—Cellulose Absorption In-
dex [31,32] which intends to discriminate between green and senescent vegetation. 
Adding a third observation parameter to the classical version of the Triangle Method is 
expected to allow discrimination between areas that have different moisture contents but 
with similar coupled temperature and vegetation index values. For the crop fields ana-
lyzed in [31], the addition of the CAI proved to be more efficient than the addition of the 
albedo. 

The Triangle/Trapezoid Method has been most often applied to satellite imagery, 
hence providing soil moisture maps at low resolution (60 m–1 km), see [26,28,30]. Ap-
plications to airborne remote sensing data for getting information on moisture at a higher 
resolution (1–30 m with a plane and in the range of 10 cm or less with a UAV) are less 
common [25,27–29,31–36]. They actually reveal higher difficulties, including the surface 
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heterogeneity being exacerbated by the high-resolution sensors, which as a consequence, 
imposes a higher demand on the accuracy of the image registration process. 

Since heat transfer between atmosphere, vegetation and soil is a dynamic process, 
the temperature signatures of dry and wet surfaces evolve with time. As a consequence, 
the success of TIR leak detection depends on the time chosen in the year, on the period of 
the day, on the delay since the last precipitations [22], and more generally, on current and 
past environmental conditions. An optimum time is hard to determine, especially since 
the vegetation has a high impact (vegetation type and height, cover-fraction, water stress, 
etc.). For this reason, the post-leaf season (from late autumn to early spring) is sometimes 
recommended to obtain a relatively unobstructed view of moist and wet areas, depend-
ing on the vegetation type and height [17]. Other investigators preferred to apply TIR in 
summer to maximize the chance of seeing a dry period and thereby increase the contrast 
between leak areas and their surroundings [18]. 

The optimal time during the day for a TIR investigation is still an open issue. Ac-
cording to Jensen [14], thermal crossovers between water and other surfaces occur at 
sunset and one or two hours after sunrise. The two extrema of the temperature difference 
between water and most other objects are then observed just before sunrise and around 
the mid-point between solar noon and local sunset. This would favor performing thermal 
measurements in the period from solar noon until sunset (day-time option) or during the 
hours preceding sunrise (night-time option), as inferred in [16]. Conducting the TIR 
measurements after sundown or before sun-up prevents solar perturbations but its suc-
cess depends on the material of the water main [17–19]. A higher temperature over leaks 
during the night, as expected due to the higher thermal inertia, was not systematically 
observed [18]. Recent measurements performed during a whole day at several locations 
with wet and dry soils in a dike excavated area highlighted the fact that the contrast is at 
a maximum in the afternoon (the exact optimal time actually depends on the considered 
spot pair) and that it nearly vanishes after the sunset and before the sunrise, precluding 
the night-time option [16]. 

The H2020 WADI project (Water-tightness Airborne Detection Implementation [37]) 
aimed at developing an airborne water-leak detection surveillance service to provide 
water utilities with adequate information on leaks in water infrastructures outside urban 
areas, thus enabling prompt and cost-effective repairs and reducing losses in the water 
distribution systems. An airborne system has been chosen instead of a satellite-based one 
to obtain a finer resolution, ideally in the range of 0.5 m. WADI’s innovative concept 
consists of coupling and optimizing off-the-shelf optical remote sensing devices (multi-
spectral and infrared cameras) and applying them on two complementary aerial plat-
forms (manned and unmanned). The project also aimed to test and validate the concept 
in two real, contrasting leak detection sites. The goals of this paper are to present the 
WADI methodology and its improvement pathway, and showcase its performance in 
two contrasting sites: Provence area, France, occasionally after rainy conditions, and 
Alqueva, Portugal, under dry conditions. The range of tests comprised also a wide range 
of other environmental characteristics including soil and vegetation type. Preliminary 
achievements are described in [38–40]. 

This paper is organized as follows. Section 2 describes the design of the optical 
sensor systems after testing various spectral combinations. Section 3 presents the valida-
tion results using the selected multispectral method and instruments during a series of 
campaigns at different scales using both a manned aircraft platform and a UAV over 
several parts of the water networks of SCP (Société du Canal de Provence) in France and 
EDIA (Empresa de Desenvolvimento e Infra-estruturas do Alqueva), in Portugal. A de-
tailed performance analysis of all flights is presented in Section 4, along with a discussion 
on the WADI methodology's success. Finally, the conclusions are given in Section 5. 

2. Preliminary Analysis: Selection of Optical Spectral Bands Using Hyperspectral 
Cameras and a Thermal Infrared Camera 
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2.1. Materials and Methods 
The optical sensor systems aimed at being used onboard a plane and UAV were de-

signed by first performing a series of airborne measurements involving a thermal infra-
red camera with microbolometers (first A325 and then A655sc, FLIR, Portland, OR, USA) 
and two hyperspectral cameras Hyspex (NEO, Oslo, Norway), one in the visible to 
near-infrared spectrum (VNIR: 0.4–1 µm), and another one in the shortwave infrared 
spectrum (SWIR: 1–2.5 µm) (Figure 1). This approach helped select the best spectral 
combination by comparing the responses at different wavelengths, more precisely, by 
comparing the values of several spectral indexes expected to differentiate between dry 
and humid areas. As a consequence, this helped select simpler and cheaper cameras for 
operational applications. 

  

Figure 1. (a) VNIR1600 and SWIR320m-e HySpex hyperspectral cameras on-board left pod of mo-
tor-glider STEMME; (b) IR microbolometer camera (FLIR A325) onboard right pod. 

The image processing (orthorectification, atmosphere correction, and co-registration 
by the GeFolki software [41]) is described in [38]. 

The availability of continuous spectral data in the 0.4–2.5 µm range and thermal in-
frared data made it possible to test the effectiveness of different water indexes. 

The PWI (Plant Water Index, which is also called the WBI—Water Band Index) was 
proposed to map vegetative water content [42]: 

970900WBIPWI RR==  (1)

where RX means reflectance measured at X nm. However, it is sensitive not only to water 
content but also to the vegetation–canopy structure and viewing geometry [43]. Two in-
dexes take advantage of the liquid water absorption band centered at 1240 nm: the 
Normalized Difference Water Index 1240NDWI  [43,44]: 

( ) ( )12408581240858NDWI1240 RRRR +−=  (2)

and the Simple Ratio Water Index (SRWI) [43,45]: 

1240858SRWI RR=  (3)

Water absorption dominated bands at 1640 and 2130 nm were used to build two 
Normalized Difference Water Indexes 1640NDWI  and 2130NDWI [46]. 

( ) ( )16408581640858NDWI1640 RRRR +−=  (4)

( ) ( )21308582130858NDWI 2130 RRRR +−=  (5)

In an attempt to estimate the vegetation water content in corn fields from an opera-
tional satellite, the bands at 1640 and 2130 nm showed better results than the NIR band at 
1240 nm [46]. 
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The following four indexes were specifically designed for evaluating the soil mois-
ture content (SMC) in bare soils: WISOIL (Water Index SOIL [47,48]), NSMI (Normalized 
Soil Moisture Index [49]), NINSOL (Normalized Index of the NSWIR domain for SMC 
estimation from Linear correlation [9]) and NINSON (Normalized Index of NSWIR do-
main for SMC estimation from Non-Linear correlation [9]): 

13001450WISOIL RR=  (6)

( ) ( )2120180021201800NSMI RRRR +−=  (7)

( ) ( )2230208022302080NINSOL RRRR +−=  (8)

( ) ( )2230212022302120NINSON RRRR +−=  (9)

We chose to take the opposite of NINSOL and NINSON and termed them RNINSOL 
and RNINSON (R stands for “revised”) to create indexes that increase with moisture 
content. CAI (Cellulose Absorption Index) was proposed to discriminate senescent veg-
etation (e.g., crop residues) from soil [50,51]. It leverages the cellulose–lignin broad ab-
sorption feature at 2.1 µm: 

( )21002220020005.0CAI RRR −+=  (10)

Interestingly, this feature progressively disappears when the water content in the 
senescent vegetation increases; it is absent in fresh vegetation [51,52]. On the other hand, 
CAI is negative in bare soils and vanishes when moisture content increases. In summary, 
a CAI close to 0 suggests the presence of water, in soil or vegetation, whereas high ab-
solute values indicate the presence of either dry vegetation (CAI > 0) or dry bare soil (CAI 
< 0). This observation suggests that the absolute value of CAI, maybe normalized (i.e., 
CAIn ), could be used as a water leak indicator. 

The plant senescence reflectance index (PSRI) involves only spectral bands in the 
visible spectrum; it was proposed to determine the stage of leaf senescence through the 
increase in the ratio of carotenoids to chlorophylls [53,54]: 

( ) 750500678PSRI RRR −=  (11)

Similar to CAI or CAIn , local variations of PSRI could be an indication of leaks. 
In the Triangle/Trapezoid Method, the temperature signal is associated with a veg-

etation index (VI), which is used as a proxy for the vegetation cover-fraction. The relative 
position inside the 2D T-VI scatterplot of the representative point of a given pixel pro-
vides information on the water availability or evaporation rate at this pixel (Figure 2, [24–
36]). Due to its ease of implementation, we adopted the empirical approach proposed by 
Sandholt [26] generalized to the case of a non-isothermal “cold” (i.e., “wet”) edge. In this 
method, two edges are drawn, respectively on the “cold” side (i.e., the “wet” edge) and 
the “warm” side (i.e., the “dry” edge) of the experimental T-VI scatterplot. Then, for each 
VI-level class, a linear water-index (WI) scale is defined which spans between the points 
of the “wet” and “dry” edges at the considered VI value. Hence, the water index at a pixel 
where the temperature is measured to be AT  is obtained from (see Figure 2b): 

( ) ( )wetdryAdry TTTT −−=WI  (12)

where dryT  and wetT  are the temperatures read on the respective “dry” and “wet“ edges 
at the same VI -level as the considered pixel. Thus, the water index corresponds to the 
relative distance from point A to the “dry” edge, at iso- level of vegetation-index. 
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Figure 2. (a) Principle of the Triangle/Trapezoid Method with an interpretation of the four vertexes 
of the T-VI scatterplot (adapted with permission from [24,26]. Copyright 2022 Elsevier). The “dry” 
and “wet” edges are the “hot” and “cold” (here linear) boundaries of the scatterplot, respectively; 
they define the 0 and 1 isopleths of the water index. Three other isopleths were added, which cor-
respond to 0.25, 0.5 and 0.75 water index levels. (b) Typical 2D scatterplot of (normalized) temper-
ature and vegetation indices obtained during the first campaign. 

How to set the so-called “dry” edge and “wet” edge on both sides of the 2D scatter-
plot (Figure 2b) can receive multiple answers (e.g., [31,33,34]). Most often, these two 
edges are drawn as straight lines that should be set as close as possible to the 2D scatter-
plot, from respectively the high-temperature side, and the low-temperature side. A few 
outliers may be present at the boundary of the scatterplot which correspond, for example, 
to buildings, roads, and water surfaces, or originate from instrumental noise. These out-
liers should be rejected, which explains that a compromise has to be found between the 
proximity of the edges with the scatterplot and the number of points rejected outside the 
area between the two edges. The linear edges can be obtained by performing a linear re-
gression of minima and maxima percentiles for each VI-class [33,34]. The percentiles 
cannot be set a priori; the percentiles that best fit the in-situ data must be determined each 
time [35]. The method we applied to define the linear edges is based on an optimization 
problem. It consists in finding for each of them the slope and intercept that minimizes the 
compound distance 


∈∈

−+−=
Ri

li
Ai

li ii
TTkTTd  (13)

where A  and R  are the sets of accepted and rejected points, respectively, iT  is the 

temperature corresponding to point i , ilT  is the temperature read on the edge at the 
same VI as point i , and k  is a penalization factor amplifying the distance of rejected 
pixels. Satisfying results were obtained by setting the penalization factor k  in the range 
of 50. In some cases, this automatic adjustment of the edges led to visually unacceptable 
results; the edges were then corrected manually. 

Regarding the VI involved in the Triangle/Trapezoid Method, a classical choice is to 
use NDVI (Normalized Difference Vegetation Index) which corresponds to the normal-
ized difference between the spectral reflectances in the red and the near-infrared (typi-
cally at about 0.65 µm and 0.8 µm, i.e., on each part of the red edge related to chloro-
phyll). This index is strongly correlated with the vegetation cover-fraction: it ranges from 
about 0.1 for bare soil to values close to 0.8 for dense and green vegetation, depending on 
the wavelength choice. However, NDVI is sensitive to the soil’s spectral characteristics. 



Sensors 2022, 22, 1057 9 of 30 
 

 

OSAVI (Optimized Soil Adjusted Vegetation Index) [55] is less dependent on soil back-
ground and therefore was also used here: 

( ) ( )16.0660860660860OSAVI ++−= RRRR  (14)

More recently, a variant of the Triangle/Trapezoid Method, the Optical Trapezoid 
Method, was proposed for sensing soil moisture where the temperature is replaced by a 
transformed reflectance obtained from a single SWIR reflectance measurement, either at 
1.6 µm or 2.2 µm [56]. 

The spectral indexes and constituent spectral bands that are considered herein are 
reported in Figure 3. The objective was to compare the performances of several multi-
wavelength methods in detecting areas of abnormal moisture which could be related to 
water leaks. The use of two hyperspectral cameras allowed us to explore different 
wavelength combinations from the visible to 2.5 µm, either on a standalone basis or pos-
sibly joint to the thermal infrared signal. 

 

Figure 3. Considered spectral bands, spectral indexes and multiwavelength methods. The combi-
nations involving wavelengths in the visible to NIR range are in orange, those with wavelengths 
from the visible to SWIR range are in green, those with wavelengths in the SWIR range only are in 
red, and the T-VI method is in purple. The use of the thermal infrared signal alone was considered 
as well (blue case). 

2.2. Results 
The preliminary analysis according to the methodology described above was per-

formed in February, April and July 2017 on several sites of the water network infra-
structure belonging to SCP with variable weather conditions. In the first site, Esparron, 
which contains meadow, fallow and vineyards, a high moisture area was noticed near a 
pipe. 

The images involved in the T-VI Triangle/Trapezoid Method are shown in Figure 4. 
OSAVI was used for the vegetation index because of its higher robustness with respect to 
bare soil optical variability, but the results obtained with NDVI were very close. During 
the flight in February 2017, vegetation was either absent, senescent or still dormant. Thus, 
the OSAVI map presents quite low values, except over trees and one particular field on 
the left (Figure 4a). Interestingly, the thermal infrared image (Figure 4b) presents in the 
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top-right part a colder area of triangular shape. It corresponds to a depression running 
towards the top of the image where stalled water had occasionally been detected over the 
past years. 

  

 

Figure 4. Results obtained over the Esparron test site on 16 February 2017. (a) Map of the Vegeta-
tion Index OSAVI. (b) Thermal Infrared mosaic (TIR) (dark/clear pixels correspond to low/high 
brightness temperatures). (c) Inferred map of the water index WI according to Equation (1) (the 
underlying 2D scatterplot of the normalized brightness temperature vs. Vegetation Index is in 
Figure 2b). The pipe position is shown in red in the three images. 

The cold (blue) and warm (red) edges of the T-VI scatterplot have been positioned so 
that the trapezoid pattern contains essentially all the scatter, except for maybe a few out-
liers (Figure 2b). The inferred Water Index (WI) is in Figure 4c, where a high value of WI 
(in blue) means that the soil moisture is at the highest level for the considered VI level. 
The triangular area with a low temperature in Figure 4b is related to high WI values (WI > 
0.84). A close-up is reported in Figure 5a where the closest water pipe location has been 
added. Two areas have also been drawn to help interpret the results. The so-called “wet” 
area, which is in a meadow field, corresponds to a very humid zone located just north of 
the pipe, not far from a 90° turn, with mud and even a puddle with spurting water from the 
soil (see the picture in Figure 5b). A “dry” area (red polygon) was selected for reference in a 
well-drained field just uphill to the west that was also covered with a meadow (Figure 5b). 

  

Figure 5. (a) Close-up of the top right part of the water index map in Figure 4c, a “dry” area chosen 
for reference and a “wet” area showing surface water. (b) Picture showing the “wet” area in the 
foreground and the “dry” area (red polygon) in the background (picture taken on 12 June 2017). 
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The blue polygon in Figure 5b refers to a soil depression where it is believed that water spurting 
from the soil in the “wet” area may runoff, hence leading to high WI values. 

The WI was analyzed in the “wet” and “dry” areas to produce average values and 
standard deviations. Therefrom, a contrast-to-noise ratio (C/N) was calculated (the con-
trast between “wet” and “dry” areas divided by the mean standard deviation). The same 
was performed with the other spectral indexes listed in Figure 3 and with the radiance 
temperature alone, i.e., the raw thermal infrared signal; the results are summarized in 
Figure 6. 

 
Figure 6. Contrast-to-noise (C/N) ratio when comparing the signal over the “wet” area and the 
reference “dry” area. The information is extracted from index maps based on optical signals (re-
flectance) in the VNIR spectrum (orange bars), in the VNIR + SWIR spectra (green bars), in the 
SWIR spectrum alone (red bars), or from the raw thermal infrared signal (TIR) radiance tempera-
ture (blue bar), or by combining VNIR + TIR spectra as in the T-VI Triangle/Trapezoid Method 
(purple bars). Same colors as in Figure 3. 

Indexes based on VNIR signals alone led to very poor results (orange bars): the 
signal variability (standard deviation) in the dry” and “wet” areas was actually higher 
than the mean difference (contrast), which gave a contrast-to-noise ratio lower than 1. 
The contrast seen in the PWI image was even negative, however, this has little signifi-
cance since the PWI values on the “dry” and “wet” areas were close to one another, 
namely 1.09 and 1.07, but presented a correspondingly high standard deviation of resp. 
0.06 and 0.08. Better results were obtained when combining VNIR with SWIR (green 
bars) or when using SWIR signals alone (red bars). For example, a C/N higher than 3 was 
obtained with the following indexes: NSMI, RNINSOL, RNINSON, CAI, or with the 
“Optical Trapezoid Method” described in [56]. However, the best results (i.e., C/N > 5.5) 
were obtained with the thermal infrared data, either by considering the raw radiance 
temperature image alone (C/N = 5.6) or, a little better, through the Triangle/Trapezoid 
Method by combining it with NDVI (C/N = 6.1) or OSAVI (C/N = 6). In summary, the 
strongest signature of soil moisture was in the TIR image. The Triangle Method still im-
proved the results slightly, however, using OSAVI or NDVI for the T-VI scatterplot was 
quite equivalent. 

The pipe in the Esparron area was finally checked for leaks in June with ultrasound 
sensors. The soil was dug in several places before and after the 90° turn in order to put 
the microphone directly on the pipe, but no leak was found. The conclusion is that the 
water seen in the “wet” area must have a natural origin (groundwater exfiltration). 
Nevertheless, the consequence on the soil is of the same nature (i.e., moisture increase 
and runoff) as with a pipe leak; the quantitative results obtained by processing the hy-
perspectral and infrared thermal data (Figure 6) are thus thought to be representative of 
the performance expected for leak detection. 
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In the second test site, Le Tholonet, an artificial leak was introduced by connecting 
to the existing pipe (grey cast iron DN 80), at a depth of about one meter, a pipe of 
high-density polyethylene DN 50. This new pipe apparatus included a valve, a flow me-
ter, a recorder and a pressure regulator. A hole 10 mm in diameter was drilled on the side 
of the additional pipe, 5 m from the connection, yielding a 180 l/h water flow (Figure 7a). 
A reference zone with a similar dig-work but without any buried pipe was added about 
15 m away (in the eastern direction) to discriminate between dig-work effects and leak 
effects. 

  

Figure 7. (a) Picture (directed southward) of the Le Tholonet test site (spring-wheat field) where an 
artificial leak was introduced. To the main pipe running east–west, an additional pipe was con-
nected (see the connection box) in the south direction. The added pipe had a 10 mm hole, 5 m south 
of the connection (as indicated by the stick and the arrow in the gap downhill). (b) 2D scatterplot of 
temperature and vegetation index as obtained during a flight on 21 April 2017. 

The 2D scatterplot of normalized radiance temperature vs. vegetation index (OSA-
VI) based on a flight performed on 21 April 2017 is reported in Figure 7b and the inferred 
WI map is in Figure 8a. The test site is located in a peri-urban area with scattered tall 
vegetation (trees) responsible for the high heterogeneity of the WI image. A very small 
number of outliers are observed with negative values of OSAVI. This can be explained by 
the combined effect of high heterogeneity in surface type (thus in terms of visible and 
near-infrared reflectances), and slight errors (i.e., pixel-size) in image registration, which 
makes the OSAVI calculation able to involve the visible reflectance of one spot and the 
near-infrared reflectance a neighbor spot instead of, theoretically, the reflectances of a 
single spot. Care has to be taken not to mistake trees and their shadows for leak signa-
tures. Nevertheless, the artificial leak introduced in the north edge of a spring-wheat field 
(in the middle of the red rectangle in Figure 8a) generates a significant contrast as high-
lighted in the close-up, as shown in Figure 8b,c. The FDR probe indicated a soil moisture 
of 30%, 48%, 45% and 34% at, respectively, +3, +1, −1 and −3 m in the northward direction 
from the leak (the connection to the main pipe is at +5 m); while the moisture is only 6% 
at 1 m, west of the connection. Although the WI scale is only loosely related to the real 
moisture content, these results are coherent with the distribution of the WI contrast in the 
leak area. 
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Figure 8. Water Index over the Le Tholonet area obtained on 21 April 2017. (a) General view cor-
responding to a single flight line. (b) Close-up of the WI map showing the artificial leak in a wheat 
field, south of the road in white. (c) Still closer view of the WI map showing two strips of bare soil, 
one over the leaking pipe (on the left) and the other one acting as reference (bare soil in the wheat 
field, without leak). The Water Index reaches highest values in an area surrounding the leak and 
diffuses east to the reference area (dark-blue half-disk). 

Overall, the methodology was proven to be useful for leak detection and the wave-
lengths were determined for the selection of the multispectral cameras to be used in op-
erational leak detection. 

3. Development of an Operational Service Based on MAV and UAV 
3.1. Materials and Methods 

After the preliminary assessment analysis, the objective was then to validate the 
T-VI (Temperature–Vegetation Index) method at different scales by using two platforms: 
a manned air vehicle (MAV) and an unmanned air vehicle (UAV). 

The aircraft (MAV) was a Tecnam P2006T (Figure 9a) instrumented with a Spectro-
cam (Pixelteq, Largo, FL, USA) VNIR multispectral camera with a filter-wheel (filters at 
660 nm and 832.5 nm) and a Noxcam 640L (Noxant, Palaiseau, France) thermal infrared 
(TIR) cooled camera (7.7–9.3 µm), all on a rigid camera platform. The flights with the 
manned platform were performed at a typical altitude of 800 m which led to a spatial 
resolution of 0.30 m for the VNIR camera and 0.48 m for the TIR camera. 

  

Figure 9. (a) Airplane platform (MAV) and (b) UAV platform equipped with two specific multi-
spectral sensor systems. 
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The UAV was a custom-designed multicopter (Figure 9b) instrumented with a 
RedEdge 3 (Micasense, Seattle, WA, USA) VNIR multispectral camera (with five bands: 
475; 560; 668; 717; and 840 nm) and a microbolometer uncooled Vue Pro R (FLIR, Port-
land, OR, USA) TIR camera (7.5–13.5 µm). The flights with the unmanned platform were 
performed at a typical altitude of 50 m which led to a spatial resolution of 3.4 cm for the 
Micasense camera and 6.5 cm for the FLIR camera. 

Three bands were used in both platforms: 660 nm (red), 832.5 nm (NIR) and TIR for 
manned aircraft, and 668 nm (red), 840 nm (NIR) and TIR for UAV. A radiometric cali-
bration based on a Spectralon target was applied as part of the radiometric calibration 
carried out by Pix4D in the case of the red and NIR bands of the UAV acquired data to get 
spectral reflectances. On the other hand, the multispectral aircraft data were uncalibrated 
raw data. In addition, although the aircraft and the UAV TIR cameras were both radio-
metrically calibrated, no correction was applied to extract the true temperature from the 
brightness temperature (as obtained by setting the emissivity parameter to 1 and apply-
ing no atmospheric compensation). Actually, since the Triangle/Trapezoid Method is 
founded on a normalized temperature (namely a ratio of temperature differences) and 
the main role of the vegetation index is to be a discriminating factor accommodating a 
linear bias, negligible differences were observed in the resulting wetness index whether 
using calibrated or uncalibrated remote sensing data (nonetheless, the use of OSAVI re-
quires access to reflectance values as opposed to NDVI which, to first approximation, 
accommodates uncalibrated spectral data). 

The images from both platforms were pre-processed with the photogrammetric 
software Pix4D to obtain spectral orthomosaics, which were then co-registered by 
Wadileaks, the custom processing software developed in the frame of the WADI project 
[57]. The selected photogrammetric software Pix4D makes the co-registration of the two 
bands from the multispectral camera on the UAV flawless. However, when applied on 
orthomosaics obtained with the cameras used on the MAV, the co-registration did not 
achieve the same success. Gefolki software [41] had to be implemented to solve the 
co-registration errors. In both cases, the co-registration was done by taking as master the 
TIR image, which is the image with lowest resolution; for this purpose, the VNIR images 
were resampled with a bi-cubic spline interpolation algorithm. 

3.2. Results of a First Leakage-Detection Campaign with MAV and UAV (France) 
Data were first acquired in October 2018 over several water network districts oper-

ated by SCP in France. The scheduled flights took place four days after a rainy period. In 
addition, the sky was often cloudy during the intermediate days, reducing the evapora-
tion and transpiration of the accumulated water. Most likely the soil still contained quite 
a lot of water on the day of the flight, reducing the difference between soil moisture in-
duced by leaks (natural or artificial) and soil moisture in the surroundings. Indeed, in 
some test fields, water puddles were spotted as remnants of the recent rain. 

In the Vauvenargues test area, a new pipe of high-density polyethylene was con-
nected to the existing (steel) pipe and buried at a depth of about 1 m, more than one year 
before the flights. The connection with the existing pipe was equipped with a valve, a 
flow meter, a recorder and a pressure regulator. Four calibrated holes were drilled in this 
new pipe to generate leakages. They were at 5 m (10 mm diam.), 20 m (10 mm diam.), 35 
m (5 mm diam.) and 50 m (5 mm diam.) from the connection box (Figure 10a). 

On the day of the flight (22 October 2018), the soil moisture content was measured 
with a portable IMKO TDR probe with 16 cm rods. Moisture content in the field was in 
the range of 30–38% which is quite high. It increased significantly in the close vicinity of 
leaks n°1 and n°2 to reach 60% and more. Two small puddles (about 50 cm wide) could 
even be seen under the high grass. No moisture increase was however observed above 
the simulated leaks n°3 and n°4 which is partly due to a reduction of the hole diameter. In 
conclusion, the areas presenting increased moisture have a quite limited extent and were 
restricted around leaks n°1 and n°2. In addition, since the surrounding soil had a quite 



Sensors 2022, 22, 1057 15 of 30 
 

 

high moisture (between 30 and 40%), it was expected that the thermal contrast between 
the leak areas and the non-leak areas would be much lower than if the nominal soil was 
drier, as in summer or at least long after the last rain event. 

  

 

Figure 10. (a) Picture of the Vauvenargues test area with artificial leaks. Picture taken towards the 
east from leak n°4 (stick in the bottom right of the image) with the connection box in the back-
ground, in front of the trees. The leaking pipe (red line) is running from background to foreground 
at the limit between the high-grass area in the south and the low-grass area in the north. (b) WI 
map in the Vauvenargues test area obtained on 22 October 2018 with the MAV. The leaking pipe is 
along the long axis of the red ellipse; (c) same with the UAV. Spots with faint contrast close to the 
leaking pipe are shown with red arrows. 

The WI maps obtained with the MAV and UAV do not reveal a significant contrast 
along the leaking pipe, except in some faint spots, not exactly corresponding with the 
actual leaks n°1 and n°2 (Figure 10b,c). These results suggest that for successful leak de-
tection it is necessary to select a time of year when the difference in evaporation flux 
between a leak area and its surroundings is maximized. 

A rigid camera platform was used onboard the MAV for the airborne campaigns in 
France; later, for the campaigns performed in Portugal, it was replaced by a 2-axis gyro-
stabilized platform which contributed to obtaining images of better quality. 

3.3. Results of a Second Series of Leakage-Detection Campaigns with the MAV and UAV 
(Portugal) 

Two airborne campaigns were performed in May and September 2019 over a series 
of water network districts operated by EDIA in Portugal. The objective was to validate 
the findings obtained during the campaigns in France, to assess the qualitative gain of the 
images provided by the gyrostabilized platform, and to improve the leak-detection re-
sults by selecting more appropriate meteorological conditions. The first campaign was 
over the Monte Novo block, near Sao Manços, while both the Vale de Gaio and Ferreira 
do Alentejo areas were added into the second campaign. Artificial leaks were built with 
different scenarios: surface or underground leaks, single or repeated events, surfaces 
with bare soil, and low- or high-grass areas. Furthermore, areas with known water-flow 
events were included in the MAV/UAV flight zones of the two campaigns to help inter-
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pret the origin of these flows. Additionally, an acoustic campaign was performed prior to 
the flights in Monte Novo to detect and locate any current leaks. A large amount (93%) of 
the 130 km Monte Novo pipe network is made of concrete or high-density polyethylene 
(PEAD) whereas about 6% is ductile iron and less than 0.5% is steel (classic sound-based 
methods are less efficient on concrete and plastic pipes than on metallic pipes). 

Three artificial leaks were produced at hydrants H5.6, H10 and H11 (Figure 11). 
Virtual leaks were essentially produced by simply opening the vane of the hydrant for 
several periods ranging from 10 min to 1 h during the three days of the flight campaign. 

   

Figure 11. Pictures in May 2019 of (a) hydrant H5.6, (b) hydrant H10, (c) hydrant H11 and the cor-
responding environment, respectively, a meadow with high grass, a meadow with short dry grass, 
and bare soil. The picture in (a) was taken while the valve was open to simulate a leak. 

The MAV flights in May and September were performed at 1200 m altitude, leading 
to a Ground Sample Distance (GSD) of 0.42 m and 0.73 m for the multispectral and 
thermal infrared cameras, respectively. The flight lines during the 16 May operation and 
the resulting Water Index map can be seen in Figure 12a. The village of São Manços can 
be seen in the central part of the image; the remaining surface is essentially rural with 
several fields having central pivot irrigation. A local increase of the water index can be 
seen in the region of the artificial leaks H5.6, H10 and H11, precisely in the direction of 
each water jet (Figure 12a,b). 

Significant contrasts were also obtained with the UAV (Figures 13–15a). Thanks to a 
higher spatial resolution due to the lower flight height (resolution was 7 to 9 times better 
than with the MAV), the UAV cameras could even make the distinction between a recent 
leak event and former leak events that occurred in the three previous days (Figure 14). 
The upper arrow in Figure 14b indicates a small area of high moisture resulting from the 
vane opening on the same day. The lower arrow indicates an area of larger extent, turn-
ing south and encompassing the former area, and showing lower moisture values (but 
still higher than the rest of the field); this is the result of former vane openings performed 
during the previous three days. With regards to the question of whether the WI contrast 
resulted from a temperature contrast or a VI contrast, we can state that in the case of bare 
soil conditions (H11), a contrast related to water presence was revealed in both OSAVI 
and TIR images (although with higher strength in the TIR image), whereas, in the pres-
ence of vegetation (H5.6, H10), a contrast was observed essentially in the TIR image alone 
(not shown here). 



Sensors 2022, 22, 1057 17 of 30 
 

 

 
Figure 12. (a) WI map obtained on 16 May 2019 with the MAV over the Monte Novo district 
around São Manços, Portugal. The covered area is about 2 km × 10 km. (b) Detail of the WI image 
overlaid with the water network (in red) showing hydrants H10 and H11. (c) Same with hydrant 
H5.6. The three vanes were opened for periods from 10 to 60 min during the previous three days to 
simulate leaks. 

 
 

Figure 13. WI images obtained with the UAV on 14 May 2019 over the test field containing hydrant 
H11, (a) before and (b) after the vane was opened to simulate a leak; (c) is a close-up over the hy-
drant area. The WI images are in greyscale (white for wet and black for dry), the water network is 
overlaid in red and Goggle Earth data (in color) fill the surrounding area. Covered area is about 130 
m × 240 m. The contrast between wet and dry soil is very high. 
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Figure 14. (a) WI obtained with the UAV on 16 May 2019 in the test field containing hydrant H10. 
The WI image is in greyscale (white for wet and black for dry), the water network is overlaid in red 
and Google Earth data (in color) fill the surrounding area. (b) Close-up of the WI image with ar-
rows indicating two contrasted areas (see text). 

  

Figure 15. (a) WI images obtained with the UAV on 16 May 2019, over the test field containing 
hydrant H5.6. The WI images are with greyscale (white for wet and black for dry), the water net-
work is overlaid in red and Goggle Earth data (in color) fill the surrounding area. (b) Excerpt of the 
WI map obtained on 16 May 2019 with the MAV in the vicinity of a small leak at hydrant H16.3 that 
was previously detected by the acoustic method. 

The optical data complied with moisture measurements. At the time of the May 2019 
flights, soil moisture content near hydrant H10 showed a sharp decrease from 70% at 1 m 
distance to 41% at 6 m distance and then 34% at 11 m distance. Similarly, soil moisture 
was 38%, 35% and 31% at distances of, respectively, 1 m, 6 m, and 30 m from hydrant 
H5.6 in a narrow strip in the direction of the water jet (elsewhere the soil was too dry to 
use the TDR moisture probe). Around hydrant H11, before opening the vane, the soil 
moisture was in the range of 5–8%. At the time of flight, i.e., 2.5 h after the leak event 
(vane opened for 30 min) moisture was in the range 34–36% up to 8 m distance from the 
hydrant and then dropped to 10% at 13 m and 7% at 18 m. 

In the immediate vicinity of H16.3 (where the acoustic campaign detected a small 
superficial leak in a tube on the hydrant), the WI image obtained with the MAV reveals a 
slight moisture contrast (Figure 15b). However, this signal is quite faint and could be 
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confused with the signal originating from the changes in vegetation type and height 
commonly observed close to the hydrants. 

Over 160 soil moisture measurements were performed with hand-held probes in the 
test fields discussed in this paper. The purpose was essentially to help monitor the artifi-
cial leak flow and interpret the UAV and MAV results. The leaks had a quite small spatial 
extent, nevertheless, thanks to the high spatial resolution of UAV data, a quantitative 
analysis of the interplay between soil moisture and Water Index could be performed, 
based on the remote sensing results obtained around the leaks introduced at hydrants 
H10, H11 and H5.6 (Figure 16). Although the data in Figure 16 present an important 
scatter, which is partly explained by the measurement error of the TDR probe and by the 
soil moisture variability at the decimeter scale, the positive correlation between soil 
moisture and WI is confirmed. The coefficient of correlation (r2) reaches 0.56. 

 
Figure 16. Correlation between the local Water Index inferred from the multispectral images ob-
tained with the UAV and the soil moisture measured with a TDR probe at distances ranging from 0 
to 30 m from the artificial leaks at hydrants H10, H11 and H5.6 (Figures 11–14 and 15a). 

The acoustic campaign in Monte Novo located another leak by sonic correlation at 
26 m from an air valve. Close to it, the WI image showed a significant contrast over an 
elongated area starting from the air valve and extending downhill in the southeast di-
rection (yellow ellipse in Figure 17a). A similar pattern, yet shorter, was observed in the 
same field (blue ellipse in Figure 17a). During the next flight on 11 September 2019, the 
first pattern shrunk whereas the second one appeared more elongated (Figure 17b). The 
second anomaly was ruled out as a leak because its location was mainly north, i.e., uphill, 
of the pipeline (Figure 17a). A ground-truth measurement on 10 September 2019, showed 
that the mean moisture level was about 13% along the first WI-anomaly while reaching 
up to 23% locally (yellow ellipse in Figure 17b), whereas it was only about 7% a few me-
ters away. Sparse green vegetation (short grass) could be seen along the WI anomaly, as 
opposed to dry vegetation away from it (Figure 17c). 
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Figure 17. Excerpts of the WI maps obtained with the MAV (a) on 16 May 2019, (b) on 11 Septem-
ber 2019 in the vicinity of a real leak previously detected by sonic correlation, 26 m south of air 
valve VS13.1VS9. (c) Picture taken on 10 September 2019 from the air valve, in the southeast direc-
tion; the WI anomaly in the yellow ellipse in (b) corresponds to the green grass area extending 
downhill from the air valve (located in the concrete block in the foreground). 

The UAV was operated on the same site on 10 September 2019 for a multitemporal 
analysis. WI images were obtained at 16:01 h, 18:11 h, and at 20:00 h, just after sunset 
(Figure 18). 

   

Figure 18. WI images obtained on 10 September 2019 with the UAV, of a field in the Monte Novo 
area having shown a “water anomaly” in the MAV images recorded during the April and Sep-
tember 2019 campaigns (Figure 17). The WI anomaly is delineated with a yellow ellipse in Figure 
17b. WI images were obtained at (a) 16:01 h, (b) 18:11 h, and (c) 20:00 h, just after sunset. 

During the late afternoon, the temperature of moist and dry areas decreases differ-
ently, which makes the contrast over the WI anomaly appear at a maximum in the 18:11 h 
image (Figure 18b). Nevertheless, at such a late time in the day, one faces adverse effects 
like tree shadows (notice the left-to-right, i.e., west-to-east, bright strips emanating from 
each olive tree in Figure 18b). The present observation regarding the time evolution of the 
WI cannot be generalized since the area considered by the UAV was too small for 
building a well-populated scatterplot as required in the Triangle/Trapezoid Method. 

Soil was later dug out to find out if the apparent increase of soil moisture could be 
related to a water leak stemming from the nearby pipe or air valve. Deep soil was how-
ever found to be dry. The WI anomalies in Figures 17 and 18 were finally attributed to an 
excess of irrigation in the uphill field thus leading to recurring runoff into the downhill 
field. 

The Barras water reservoir is located in the district of Vale do Gaio and three wa-
ter-flow anomalies west, east and northeast of the reservoir had been suspected to be 
leaks. These anomalies have modified the vegetation cover and hence the surface optical 
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properties (short green grass and small puddles as compared to dry grass or dry bare soil 
elsewhere). The MAV and UAV flights were performed over the reservoir zone to assess 
the detection performances. Indeed the MAV optical system detected the three wa-
ter-flows west, east, and northeast of the reservoir, as well as the spillway (Figure 19). 

 
Figure 19. WI image obtained with the MAV on 11 September 2019, in the Vale do Gaio district, 
Portugal, with the Barras water reservoir. The spillway of the reservoir can be seen in the southeast, 
together with three “water anomalies” which, after ground inspection, were actually explained as 
natural water flows. Other WI positive signatures originate from trees (scattered small circles) and 
two irrigated fields (large white disks in the northeast of the image). 

The UAV optical system provided WI images with an improved spatial resolution in 
smaller sensed areas (compare Figure 20a,b). 

  

  

Figure 20. (a) Close-up of the WI image in Figure 19 over the northeast “water anomaly”. (b) WI 
image obtained in the same area as the UAV on 11 September. (FOV: 83 m × 67 m). Water is flowing 
in northwest direction from the concrete block containing an air valve and splits in two arms (light 
grey marks in the yellow ellipse). The two arms run under the road and join downstream before 
reaching a field with central pivot irrigation in the north. 

After the airborne campaign, EDIA dug the soil close to the air valve northeast of the 
reservoir, at the origin of the surface water flow shown in Figure 20. The water flow was 
not attributed to a leak of the pipe running nearby. Water was found in the hole that 
EDIA dug. Then, for two weeks EDIA emptied the adductor and the reservoir but the 
water did not disappear in the hole, it kept the same level. A few days later, it rained and 
the level increased in the hole. The final interpretation is that the observed water is 
originating from the water table downhill of the reservoir. The same interpretation was 
given for the western and eastern water-flow anomalies. The eastern water-flow anomaly 
is a natural stream ending in a pond (see Figure 19). 
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In the EDIA network infrastructure near Ferreira do Alentejo, underground artificial 
leaks were created at hydrants H9.7 and H16 by connecting to the existing pipe a plastic 
pipe with a hole and burying it (Figure 21). The MAV and UAV were flown on 12 Sep-
tember 2019 over this area. Figure 22a provides a WI map of the area that was covered by 
the MAV flight lines. After zooming in on hydrant H9.7 we get the representation in 
Figure 22b, which can be compared with the WI image obtained with the UAV system in 
Figure 22c. The same for the artificial leak at hydrant H16 is provided in Figure 23. 

  

Figure 21. Artificial leaks in Ferreira district at (a) hydrant H9.7 (essentially bare soil) and (b) hy-
drant H16 (dry grass). 

 

  

Figure 22. (a) WI image obtained with the MAV on 12 September 2019, over Ferreira district, Por-
tugal, overlaid with the water distribution network (in red). (b) Detail of the WI image showing 
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hydrant H9.7 and its artificial leak as obtained with the MAV. (c) WI image obtained with the UAV 
overlaid on a Google Earth image (in color). 

  

Figure 23. WI images (in greyscale) showing the artificial leak at hydrant H16 as obtained on 12 
September 2019 with (a) the MAV (excerpt from Figure 22a) and (b) the UAV. The water distribu-
tion network is overlaid in red. 

In all cases, the increased soil moisture induced by the artificial leak was clearly re-
vealed in the WI image, although with higher contrast at H9.7 than at H16. This can be 
explained by the fact that the leak at H9.7 was under bare soil whereas at H16 the soil was 
covered with senescent grass. Moisture was in the range of 37% to 52% in the leak areas; 
it led to a temperature decrease as confirmed in-situ with an IR temperature sensor. At 
hydrant H9.7 the radiance temperature was 24 °C in the center of the moist area whereas 
it was in the range 40–44 °C far from the leak. At hydrant H16, the radiance temperature 
was up to 48 °C on bare soil, 44 °C on dry grass, 33 °C on green vegetation, and down to 
30 °C on the moist senescent grass covering the leak area. In addition to the thermal ef-
fect, the leaks also had a consequence on the optical reflectance as could even be seen by 
the naked eye (see in Figure 21a,b). 

A series of 16 anomalies (in addition to the two artificial leaks) can be identified in 
the WI image in Figure 22a by looking for local variations along every pipe and at each 
distribution node of the water network. They show a water index level substantially 
higher than the surroundings, which could be related to real leaks in the network. 
Among them, thirteen were observed on network parts accessible for in-situ evaluation. 
A first visit was made on 16 April 2020. The weather conditions were good, however, it 
rained around 30 mm during the previous 24 h. This rain event together with the long 
delay between the flights in September 2019 and the in-situ observation made it so that 
the actual soil occupation and soil moisture were totally different. In addition, due to the 
recent rainfall, water accumulation was found close to a number of hydrants because of 
their low position, hence precluding any unambiguous assessment. Another field visit 
was made on 25 June 2020 during a period of warm and dry weather. 

Nine suspicious areas were discarded because no water accumulation was found 
around the considered hydrant or network structure. The explanation for the WI contrast 
nonetheless observed in September 2019 is that, due to previous rains and irrigation se-
quences, water was available for weeds, especially if the hydrant is at a lower point, and, 
due to the absence of herbicides or harrowing of the soil, vegetation inevitably took ad-
vantage of the situation, giving rise to a spot with reflectance variations and possibly a 
local increase in evaporation, which ultimately induced a WI increase. In the future, to 
avoid this type of false alarm, the WI threshold used for warning should be increased 
correspondingly. 
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One detected spot actually corresponded to a soil depression close to a hydrant that 
was recurrently filled with water to water the cattle. Two other WI anomalies were at-
tributed to a leak from the connection between the hydrant and the farmer’s infrastruc-
ture. Finally, a clear WI anomaly was observed at hydrant H9.18 (Figure 24a), where the 
first inspection on 16 April 2020 revealed a large puddle (Figure 25a). As the hydrant was 
used during the summer irrigation campaign, the detected WI anomaly might be ex-
plained by a leak from the connections between the hydrant and the farmer’s infra-
structure. In addition, the hydrant is located at a low topography point which could have 
led to water accumulation at this spot, either from irrigation water before the remote 
sensing campaign in September 2019, or from rain, before the visit in April 2020. The next 
visit, in June 2020, showed again a large puddle around the hydrant (Figure 25b), yet the 
weather had been dry for a long time and the hydrant was not used for irrigation at this 
time. In addition, water leaking inside the hydrant’s concrete structure was clearly heard, 
definitely confirming that the WI anomaly revealed a leak. 

  
Figure 24. (a) WI image showing hydrant H9.18 as obtained with the MAV (excerpt from Figure 
22a). (b) Google Earth image of the same area. 

  

Figure 25. Pictures of hydrant H9.18 and surrounding vegetated ground taken on (a) 16 April 2020 
and (b) 25 June 2020. 

Figure 24 also shows that just southwest of hydrant H9.18 is an olive tree with a WI 
even higher than that at the leaking hydrant. Since this tree is very close to the pipeline, 
the risk is high to mistake it with a leak in the pipe. Increasing the WI warning threshold 
above the contrast level at the tree has the deleterious consequence of missing the real 
leak at hydrant H9.18. This shows that not only the WI-distribution analysis should focus 
on the pipelines of the networks and the associated distribution structures (e.g., hy-
drants) but an in-situ inspection is mandatory to eliminate the unavoidable false alarms 
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that appear if the WI warning threshold is maintained at a reasonable level chosen to not 
miss the most important leaks. 

4. Performance Analysis and Discussion 
A formal evaluation of the WADI service application is necessary to identify the 

conditions in which the proposed T-VI multispectral system will potentially have a 
greater chance of success in detecting water leaks. The performance of the T-VI multi-
spectral system was thus analyzed based on 60 events from the flight campaigns per-
formed in France and Portugal. The analysis was conducted using the processed images 
from UAV and MAV flights on both sites that were subject to ground-leak detection 
campaigns to identify potential water leak events. The analyzed leak events were: real 
leaks (23%), artificial leaks (30%), natural water flows (42%), or no leaks nor natural water 
flow (5%). 

The performance matrix analysis was based on the classification of these 60 events as 
true positive/true negative/false positive/false negative events (see Figure 26), and on the 
influence of the parameters considered most relevant, namely, the technology used 
(UAV/MAV, see Figure 27a), the environmental conditions such as precipitation in the 
previous 10 days before the flight (Figure 27b), vegetation type (Figure 28a), and soil type 
(Figure 28b). 

 
Figure 26. Distribution of the classified potential leak events (total number of events: 60). 

  

Figure 27. Relationship between event classification and (a) the platform used for the flights or (b) 
the occurrence of precipitation in the 10 days prior to the flights. 
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Figure 28. Relation between the event classification and (a) the type of vegetation or (b) the type of 
soil. 

Overall, the T-VI multispectral system was able to successfully identify true events 
in approximately 50% of the occasions. There is a significant improvement in the per-
formance of the method from the implementation (France) to the validation (Portugal) 
phases, with a 65% rate of correct detections (Figure 26). The implementation of the gy-
rostabilized platform in the MAV, and advances in the image processing workflow were 
the main responsible factors for that improvement. 

Environmental conditions were also found to be important in the enhanced per-
formance of the Portugal tests. Indeed, the analysis of the impact of the precipitation in 
the last ten days for both campaigns shows that 65% of the events were correctly detected 
under no precipitation conditions (Figure 27b). 

Leaks in clay soils were found to be better detected than in sandy soils, although a 
mixed type (sandy clay soil) also performs well, as opposed to a silt–clay soils (Figure 
28b). The analysis on the type of vegetation showed that the WADI service is not ade-
quate for forested areas or their proximity, due to the smaller sensitivity of the thermal 
signal to the soil moisture and to the artefacts introduced by the shading caused by the 
trees, which complicates the interpretation of the images and is liable to generate false 
alarms. Agricultural zones characterized by bare soils, crops (at the early stage of de-
velopment), and mixed areas are thus the most adequate places where WADI technology 
has the greatest capacity for success in detecting leaks (Figure 28a). 

The type of flight technology used appears to perform equally well in leak detection 
(Figure 27a). Indeed, UAV and MAV platforms provide approximately the same fraction 
of true event classifications (true positives and true negatives). The main differences 
between the two choices are of course in terms of spatial coverage, spatial resolution, and 
exploitation cost, for which a compromise should be found. The MAV should thus be 
used in the first place for global analysis and in the pinpointing of the most relevant leak 
areas, letting UAVs operate for closer inspections of suspect areas that are difficult to 
access. 

5. Conclusions 
The Triangle/Trapezoid Method is a multispectral optical remote sensing method 

that is well known to be efficient for mapping evapotranspiration and soil moisture at the 
landscape (>1km) and field scales (>100m) from satellite images. Downscaling by using 
airplanes to get finer resolution information (e.g., better than 1 m) is still scarce and its 
application to water leak detection is indeed a pioneering approach. The application is 
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innovative in this field since it is intended to provide raster information in a short time 
over water networks that span over large areas. At the same time, when changing from 
plane to drone, we can obtain images with a still better resolution (in the range of 5 cm) 
and concentrate on suspicious areas that do not allow easy access. 

The principle of the method is based on the fact that leaks expose the soil to more 
intense evaporation because of its higher moisture, thus leading to a lower surface tem-
perature. A temperature decrease is observed for vegetation as well, the reason is here an 
increase in leaf transpiration. The temperature is mapped from the air by a thermal in-
frared camera. However, the thermal response of vegetation is different from bare soil, 
thus making it difficult to obtain an unequivocal answer in terms of moisture content in 
the case of a pixel that is fully or partially covered with vegetation. The Triangle Method 
allows the empirical building of a scale between apparent temperature and soil moisture 
that varies continuously with the vegetation cover-fraction. The information on cov-
er-fraction is obtained via a vegetation index, for example NDVI or OSAVI, which is 
computed from the relative difference in optical reflectance measured in the red and 
near-infrared spectral bands. These data are provided by a second camera providing 
images of the area in these two specific spectral bands. In the end, combining the three 
optical signals (red, near-infrared and thermal infrared) allows mapping of the so-called 
Water-Index. By construction, the constraints on the calibration of the signals are greatly 
relaxed. Any anomaly in the WI image which manifests as high values in the immediate 
vicinity of a network line is an indication of the existence of a potential leak. 

A series of remote sensing campaigns with a motor-glider, an airplane, and a drone 
were performed from 2017 to 2019 over the SCP (France) and EDIA (Portugal) water 
transportation networks, first for defining the multispectral system aimed at detecting 
water leaks and then for validating it in operational conditions. In several sites, both ar-
tificial and natural leaks were present. 

Hyperspectral and thermal cameras were first operated to get spectral images en-
compassing the VNIR, SWIR and TIR spectral bands. The best results were obtained by 
applying the Triangle Method by combining the thermal infrared image with a vegeta-
tion-index image built from two VNIR images. The contrasts obtained with the 
SWIR-based indexes and with the so-called Optical Trapezoid Method were lower. 
Spectrally optimized optical sensors were then operated onboard a small plane and a 
UAV to reach complementary performances regarding field scale and resolution. A pre-
liminary multitemporal analysis showed that the identification of the leak signature 
could be optimized by carefully choosing the time of flight with respect to sun radiance 
history. 

Possible false alarms come from high vegetation and variations in soil/vegetation 
optical properties that are not filtered out enough by the Triangle Method. Other sources 
of misinterpretation are vegetation shadows and infrastructures. Close interaction with 
the water utilities allows reducing the false alarm rate. Ancillary information can also 
help reject false alarms, for example, if the terrain is sloping and if the WI-anomaly ex-
tends from the nearby pipe in the uphill direction (beyond what simple water diffusion 
could induce). In order to ease the validation of the remote sensing results by on-site 
observation, the time between the flights and the in-situ checking should be short so that 
conditions are as equal as possible at both moments, at least with no rain event in be-
tween, which was not always the case during the present campaigns. This analysis 
should be reviewed and updated, whenever new flights can be made and new events are 
detected. 

The performance of the leak detection method was satisfactory with a 50% 
event-detection accuracy. Several site characteristics contribute to success such as agri-
cultural zones characterized by bare soils, crops (at the early stage of development) and 
mixed areas. The type of flight technology used appears to be equally well-suited for 
performing leak detections. 
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