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Abstract: Air entrainment is common in free surface flows in large hydraulic structures (e.g., spill-
ways, chutes, energy dissipation structures) and must be considered to assure an effective and safe
operation. Due to the large size of the prototype structures, it is infeasible to model individual
air bubbles. Therefore, using the OpenFOAM toolbox, an efficient simulation model for aerated
flows is developed for engineering purposes. The Reynolds-averaged Navier–Stokes equations and
the volume-of-fluid method are coupled with a sub-grid bubble population model that simulates
entrainment and transport. A comprehensive assessment of the effectiveness, computational cost,
and reliability is performed. Local and continuum bubble entrainment are evaluated in two distinct
flows: an impinging jet and along a spillway chute. Aeration is induced, respectively, by a shear flow
and by the thickening of the turbulent boundary layer. Moreover, a detailed sensitivity analysis of
the model’s parameters is conducted. Calibration and validation are performed against experimental
and prototype data. Among the analyzed entrainment formulations, the one depending exclusively
on the turbulent kinetic energy is the only applicable to different flow types. Good accuracy is
found, meeting engineering standards, and the additional computation cost is marginal. Results
depend primarily on the volume-of-fluid method ability to reproduce the interface. Calibration is
straightforward in self-aeration but more difficult for local aeration.

Keywords: local aeration; free-surface aeration; volume-of-fluid; sub-grid bubble equation; hydraulic
structure

1. Introduction

The numerical modelling of aerated flows in hydraulic structures is exceptionally
complex. The physical processes are not entirely understood and the most accurate models
require exorbitant computational resources. Therefore, a reliable and efficient simulation
tool for engineering purposes is of utmost importance. A solver based on the Reynolds-
averaged Navier–Stokes equations (RANS) and the volume-of-fluid method (VOF) is
coupled with a sub-grid bubble population model (SGBM). The bubbles entrainment and
transport are only simulated by the SGBM. Hence, the RANS model does not require
an extremely high spatial resolution to capture the bubbles. The sub-grid models are
conceived to simulate physical processes where the spatial resolution is not sufficient [1].
This framework is characterized by the stability and efficient free-surface tracking of
the RANS and VOF and the speed enhancement provided by the SGBM. For practical
applications, the air entrainment formulation must apply to different types of flow and the
setup of the bubble model parameters should be straightforward. Hence, proper evaluation
of this framework’s advantages and liabilities is required.

Water flows in hydraulic structures are frequently characterized by high velocity, high
turbulence and large quantities of air exchanged at the free-surface. Regions of two-phase
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air–water flows are observed in many applications, including spillways, slope channels,
weirs, impinging jets, aeration mixing tanks, energy dissipation structures and wave
breaking [2–4]. Kobus [5] declared that: “for many hydraulic structures, safe operation can
only be achieved if not only the characteristics of the water flow are considered, but due
attention is also given to the simultaneous movement of air in the system”.

Effects of aeration in hydraulic engineering include flow bulking, drag reduction,
pressure peak modification, interaction with the turbulence field, re-oxygenation and
transfer of atmospheric gases [3]. Bulking demands larger sections, and inside conduits
may cause the transition to the pressurized flow regime. The small air bubbles behave
as rigid spheres at the flow boundaries, reducing drag and increasing flow momentum.
Furthermore, air concentrations ranging from 1 to 8% reduce or suppress cavitation and
associated problems that may occur in high-velocity flows [6–9].

When in large number, bubbles enhance atmospheric gas exchanges by a substantial
enlargement of the interface area [8,10]. At large dams, self-aeration on spillways is crucial
for downstream ecology [7]. Both low and high dissolved air concentrations are harmful
to the ecosystem. Industry uses bubble plumes and jets for mixing and aeration due to
buoyancy-driven currents [2]. Bubble presence alters the turbulence levels, and thus the
energy dissipation rates. Breakup and coalescence, which depend on turbulence, also affect
the turbulent kinetic energy production [2,11,12].

Air entrainment is the incorporation of air bubbles in water [13]. Spatially, it can
be localized or continuous. Local aeration occurs at plunging jets, waves and hydraulic
jumps, particularly at the discontinuity between the impinging jet and the surrounding
waters. In continuous aeration, the air entrainment occurs at an extensive region of the air–
water interface, generally parallel to the flow direction, as observed in spillways [8]. Until
today, some of the physical mechanisms involved are not entirely understood, especially
regarding the turbulent interactions [14]. After onset, air packets with a wide range of sizes
(e.g., pockets, droplets, bubbles) are transported and suffer complicated processes such as
fragmentation, coalescence, diffusion, dissolution, pressure-induced volume change, and
buoyant degassing [2,11,15].

Aerated flows are highly complex. Hence, they have been mainly analyzed on physical
models, regardless of all the scale effects and limitations. Chanson [3] remarks that “the
modelling of aerated flows is presently restricted by the complexity of theoretical equations,
some limitations of numerical techniques, a lack of full-scale prototype data and very-
limited detailed experimental data sets suitable for sound CFD [(Computational fluid
dynamics)] model validation”. An integrated physical and numerical modelling may
mitigate the time, costs, and applicability shortcomings. The first provides unique data to
validate the CFD models. While the second allows testing of several solutions in a short
time, providing important insights before the construction of the laboratory setup and may
overcome some scale effects presented in the physical models.

Use of computational fluid dynamics (CFD) in hydraulic structures has increased over
the past two decades, supported by technological advances. However, it is not established
in practical engineering. CFD allows the rapid testing of innovative designs with significant
cost saving and provides a detailed analysis of the results. Despite many challenges, CFD
modelling has enormous potential for research and practical applications.

Numerical modelling of air–water flows is exceptionally difficult. It can be done by a
single-phase with averaged properties if the air concentration is small (<15%). Greater air
concentrations demand that air and water are treated as separate phases [2,3]. Ideally, air
entrainment, bubble formation, transport, transformations, dissolution and atmosphere
restitution should be considered. Furthermore, various critical difficulties arise: the phases
interface is usually hard to determine [16,17]; the range of length scales is huge in extent,
i.e., Kolmogorov length, bubble diameter, surface roughness, turbulence eddies and large
characteristic lengths; the coupling of the equations of the velocity, pressure, volume
fraction and turbulence of the phases is extremely difficult [2,3].
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Several methods were developed to model air–water flows. Direct Numerical Simula-
tions (DNS) demand exorbitant computational costs, and thus are restricted to applications
focused on particular bubble processes [11,17]. In the Lagrange–Lagrange method, both air
and water are represented by Lagrangian particles. In the Euler–Lagrange method, water is
solved in a Euler referential. Bubbles are represented by a discrete phase of Lagrangian par-
ticles, which is limited to a maximum concentration of approximately 15%. Both methods
require millions of particles that imply enormous computational effort [17,18]. The com-
plete two-phase Euler models are appropriate to simulate most aerated flows, especially
with high air concentrations (>10–20%). However, they demand very high computational
efforts and have complex frameworks for fluids interactions [2,18]. The mixture model
solves a continuous single-phase of volume-averaged properties of both fluids in a Eulerian
grid and has no interface tracking; therefore, it is only applied when the interaction of
phases is not clear [18]. Interface models, such as the volume-of-fluid (VOF) or level-set
(LS), are meant for two or more immiscible fluids with a precise interface and distinct den-
sities. Although each fluid has a continuity equation, the method is based on a single-phase
flow in a Eulerian grid. Only one set of the Navier–Stokes equations is solved for a mixture
phase with volume-averaged properties. Additionally, the free-surface is determined by an
efficient tracking technique, which tends to separate the fluids. The interface models are
widely applied in free-surface flows of hydraulic structures and demand low to average
computational costs. The surface tension and interface interactions are difficult to calculate,
and unrealistic cavity may occur [18,19]. In all Euler models, the reproduction of bubble
geometry requires exceptionally high mesh resolutions; hence, simulations are limited to
very reduced domains.

One approach to simulate aerated free-surface flows is to combine an interface model
for air and water with a specific model for the bubble dynamics. This provides the high
efficiency of free-surface tracking and also restricts the range of time and length scales to
be modelled. Therefore, the resolution of the interface model is optimized for the main
flow, which reduces the domain’s number of elements and the computational cost [11,18].

For instance, an interface model can be combined with a mixture or Euler model for
the bubble flow. However, both phases’ momentum equations are challenging to match,
and the determination of free surface boundary conditions is complex [17,20,21]. A second
approach proliferates in hydraulic structures: coupling an interface model with a sub-
grid bubble density model that depends on local flow properties such as turbulence and
velocity. This approach relies on accurate entrainment formulations, which may not suit the
diverse type of flows. Based on a single-phase model, they are limited to bubble volume
concentrations not exceeding 10 to 20%. Moreover, a mass transfer between the air and
bubble phases to account for free-surface exchanges should be considered, increasing the
complexity [2,18,22].

Significant developments to the combination of interface models with sub-grid bubble
equations emerged in the last decade. High expectations were created for the future. Most
applications use Reynolds Averaged Navier–Stokes equations (RANS), a uniform-size
bubble and an entrainment formulation based on turbulence. They depend on param-
eter calibration and do not consider bubble diffusion due to turbulence. The following
works are considered the most relevant advances in hydraulic engineering. Shi et al. [11]
simulated the evolution of a multiple-size bubble population in a breaking wave event.
Entrainment is based on the strain rate, and bubble breakup and coalescence are included.
The turbulence model accounts for bubble-induced effects and is responsible for bubble
diffusion. Ma et al. [17] developed a method to predict air entrainment—based on the
turbulent kinetic energy—and the transport of uniform size bubble in a plunging jet and
a hydraulic jump. Ma et al. [23] studied a hydraulic jump with both RANS and DES
(Detached Eddy Simulation) turbulence models. Valero et al. [12] analyzed the multiphase
flow in a USBR type II stilling basin. Xiang et al. [24] framework comprises a multiple-size
bubble and is applied to hydraulic jumps. Lopes et al. [16] used an explicit term based
on Ma et al. [17] to determine air entrainment in a plunging jet. Lopes et al. [25] studied
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self-aeration in a stepped channel. The latter proposed an entrainment formulation that
does not require calibration. Moreover, a mass transfer between the air and bubble phases
is tested.

Typically, the large dimensions of hydraulic structures and the flow velocity make
a mesh that reproduces the individual air bubble and pockets unfeasible. An excessive
number of cells would be required to apply the volume-of-fluid method (VOF) properly.
The combination of a VOF with a sub-grid bubble model overcomes this limitation. This
approach requires a mesh fine enough to reproduce the free surface, yet enough coarse to
solve the entrained bubbles exclusively with the sub-grid model [19].

The state of the art research on sub-grid bubble models coupled to VOF-based solvers
generally focuses on a single flow type (e.g., plunge jet, open channel, closed conduit,
hydraulic jump). Therefore, it is necessary to identify a method that meets local and
continuous aeration. Most aforementioned works are based on numerical reproduction of
laboratory experiments at Froude’s law scale, while entrainment and bubble interactions
are strongly related to Weber and Reynolds numbers [26], which involve important scale
effects. In addition to all the technical difficulties in measuring entrained air, similarity can
only be achieved in large installations. Prototypes are the ultimate source of data; however,
collection requires devices that can withstand extreme velocities, and campaigns are very
expensive and difficult to covenant with infrastructure owners [3]. Moreover, there is no
sensitivity analysis to model parameters, possibly involving a very complex calibration
process prior to each application.

The main goal of the present work is to develop an accurate and robust numerical
model for practical applications of aerated flows, meeting a range of hydraulic engineering
purposes. The model must comply with local and continuum aeration and have a com-
putational cost similar to the interface models. Moreover, the calibration effort for each
application must be small.

Local and continuum bubble entrainment are studied with an impinging jet and a
spillway chute. Hence, two prevalent, though distinct, onset mechanisms, which are the
basis for more complex air-entrained flows are covered. In the first case, aeration is due
to the shear flow generated by a vertical jet penetrating a pool at rest. In the second, the
rise of the bottom turbulent boundary layer destabilizes the free-surface and promotes the
entrainment of air pockets. Calibration and validation are performed against laboratory
data of Chanson and Manasseh [15] and prototype-based analytical data of Chanson [27].

A sub-grid bubble population model (SGBM) is coupled with a RANS model, which
includes the VOF method, to evaluate aerated water fluxes in hydraulic structures. Based on
Shi et al. [11], the sub-grid model simulates the entrainment and transport of multiple-sized
bubbles divided into clusters. Bubbles’ diffusion is regulated by turbulence that considers
bubble-induced effects. This framework is distinguished by the efficient simulation of a
bubble population, comprising significant bubble processes, in a reliable interface model.

Three different formulations of bubble entrainment based on turbulence and strain rate
in two reference flows are evaluated. The mesh dependence and efficiency of the coupled
model are evaluated. In addition, a rare but fundamental sensitivity analysis of various
model parameters demonstrates the accuracy and robustness of practical applications.

The SGBM equations are proposed by Shi et al. [11]. The two additional entrainment
formulations follow the same equation of the previous author, but use the production fields
presented by Ma et al. [17] and Lopes et al. [25] (based on Hirt [28]). The methodology
and the numerical implementation are original and developed exclusively for this research.
Several additional methods were necessary (Appendix A). An extensive library has been
created in the open source OpenFOAM® software toolbox [29], which has a structured
code and a large user community, which favours the inclusion of new resources.

The paper is organized as follows. First, the mathematical models are presented.
Next, validation and calibration are performed in the impinging jet and the spillway chute.
Finally, the discussion and conclusions are presented.
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2. Mathematical Models
2.1. Base Model

A sub-grid bubble population model (SGBM) is combined with interFoam, a Reynolds-
Averaged Navier–Stokes (RANS) equations solver for two incompressible, isothermal and
immiscible fluids. This solver is included in the OpenFOAM® toolbox version 1906 [29].
The interface capturing is based on a volume-of-fluid (VOF) approach that incorporates an
interfacial compression flux term [25,30–32].

Mass (1) and momentum conservation (2) equations are solved for a single-phase that
includes two fluids, therefore sharing the same velocity field, water and air.

∇ · V = 0 (1)

∂ρV
∂t

+∇ · (ρVV) = −∇p∗ − gX ·∇ρ +∇ · (2(µ + µt)S) + f σ + f b (2)

where V is the RANS velocity vector, ρ is the density, t is the time, p∗ is the pseudo-dynamic
pressure, g is the gravitational acceleration, X is the position vector, µ is the molecular
dynamic viscosity, µt is the eddy viscosity coefficient (i.e., turbulent dynamic viscosity)
and S is the strain rate tensor. The surface tension force term is defined by Equation (3).

f σ = σκ∇α (3)

where σ is the surface tension, κ is the curvature of the interface and α is the water
volume fraction.

The partial coupling between the VOF and SGBM is accomplished by a bubble buoy-
ancy force term (4). This force is only applied to the water fraction, assuring that an air
pocket immersed in water is not subject to bubble buoyancy. Otherwise, these concurrent
sources would overdo the buoyancy.

f b = −ραCbg (4)

where Cb is the bubble volumetric concentration.
Particularly using the VOF technique, a single-phase scalar function (α) is used to

track the interface. α defines the fluids volume fraction in each cell and ranges from 0 to 1.
If α = 1, the cell is full of water, and when α = 0 it is full of air. Other α values identify
interface cells. This phase advection is described by Equation (5).

∂α

∂t
+∇ · Vα +∇ · vcα(1− α) = 0 (5)

vc = Cα|V |
∇α

|∇α| (6)

An artificial compression preserves a sharp interface between air and water (third term
of Equation (5)). A compression velocity (6) proportional to the velocity field magnitude
is applied perpendicular to the interface. Cα is a coefficient that triggers the interface
compression term and usually ranges from 0 to 1.

Any VOF phase property Φ (e.g., ρ, µ) is a volume-average of the intrinsic fluid
property of water and air (7).

Φ = αΦwater + (1− α)Φair (7)

2.2. Sub-Grid Bubble Model

The bubble modelling is based on Shi et al. [11] who simulated air-bubble plumes’
evolution in a breaking wave. The sub-grid bubble model (SGBM) comprises entrain-
ment, advection and turbulence-induced diffusion of a multiple-size bubble population.
Coalescence and break-up methods are included, although not used in the presented work.
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The bubble population is split into groups based on radius. ηg is the number of groups
adopted. Each group, designated by index i, is governed by one transport equation, which
includes inter-group adjustments due to break-up and coalescence. The transport equations
are written in terms of bubble number concentration, i.e., the number of bubbles of each
group per volume unit, facilitating the inter-group adjustments. A bubble buoyancy-force
term is added to the RANS momentum Equation (2), and bubble-induced effects are
considered in the turbulence model. Nonetheless, both dissolution of bubbles in water
and inter-group adjustments caused by bubble size changes due to pressure variation are
neglected. This first-stage development cannot reproduce bulking, and the volumetric
bubble concentration must not exceed 10 to 20% [2].

The implementation in OpenFOAM® requires several additional methods (see
Appendix A).

2.2.1. Bubble Entrainment

A method is developed to locate the bubble entrainment. It occurs at a single layer of
cells just below an iso-surface defined by a specified VOF fraction value (αent). The steps to
determine the entrainment layer are presented in Appendix B.

The potential bubble entrainment (8) is proportional to a production term based on
flow properties (Pr) and is only active if a threshold (Pr0) is exceeded.

EP
n,i = ab Pr Fb,i, Pr > Pr0 (8)

where ab is a coefficient to calibrate and Fb,i is the bubble number concentration distribution
factor of group i.

It is of utmost importance to find a production term accurate for both local and
continuum aeration. Hence, three approaches of the most prominent work on sub-grid
bubble models combined with an interface model (VOF, Level-Set) are evaluated. They are
based on turbulence yet on different properties and were proposed for distinct flows.

Shi et al. [11] consider that the bubble entrainment is directly proportional to the
turbulent kinematic viscosity (νt) and the square of the magnitude of the strain rate tensor
(|S|2), which is a function of the velocity gradients, as follows:

PS
r = νt|S|2 (9)

This production term (9), defined by superscript ‘S’, is related to the production of
turbulence kinetic energy (24) and was applied to a breaking wave event.

Ma et al. [17] simulated aeration in a plunging liquid jet and a hydraulic jump and
proposed a production term directly proportional to the turbulent kinetic energy (k),
defined by superscript ‘K’, as follows:

PK
r = k/g (10)

Hirt [28] proposed a bubble onset production term which is a function of k and the
turbulent dissipation rate (ε). This approach applies the theoretical concept of turbulent
length scales to estimate the surface disturbances as a function of the turbulent eddies.
More recently, Lopes et al. [25] tested a similar approach to model aeration in a stepped
spillway. This term, defined by superscript ‘KE’, can also be proportional to νt and k,
as follows:

PKE
r = k3/2/ε ∝ νt k−1/2 (11)

In the entrainment, the bubble population size distribution must be defined. Ac-
cording to Deane and Stokes [33], this distribution is related to the Hinze scale, which is
associated to the turbulent dissipation rate and the surface tension. Chanson [8] suggests
that bubble size distributions in turbulent shear flows are best fitted by a log-normal distri-
bution, although both Gamma and Weibull distributions are also satisfactory. Shi et al. [11]
recommend that the bubble groups’ average radius be equally spaced in the logarithmic
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scale. Xiang et al. [24] found that ten equally sized spaced bubble groups are sufficient to
resolve the bubble size evolution over the entire range (0 to 10 mm).

The bubble number concentration distribution factor of each bubble group (Fb,i) rep-
resents the number of bubbles entrained from that group in respect to other groups. Fb,i
is determined according to the chosen bubble size distribution function. Furthermore, to
ensure that the volumetric onset is independent of the selected population characteristics
(number of groups and size), the Fb,i factor is normalized for a population with a total
arbitrary reference volume of one cubic meter, as follows:

∑ Fb,ivolb,i = 1 m3 (12)

where volb,i is the volume of a single bubble with the average radius of group i.
The local bubble number concentration must not exceed a maximum bubble frac-

tion (e.g., Cb,max ≤ 1). Hence, the available capacity for entrainment of each group is
determined by:

Ncapacity
b,i = max{Cb,max Fb,i − Nb,i, 0} (13)

where Nb is the bubble number concentration.
The effective entrainment equals the potential entrainment source (8), despite being

limited to assure that the local Cb,max is not surpassed, as follows:

En,i = min{EP
n,i, Ncapacity

b,i /∂t} (14)

2.2.2. Bubble Transport

A bubble transport equation is defined using the bubble number concentration
(Nb,i) (15) for each bubble group i as follows:

∂Nb,i

∂t
+∇ · (Nb,iV b,i) = ∇ · (Db∇Nb,i) + En,i + Sn,i (15)

where Sn is the source/sink term from coalescence and breakup. This equation is defined
for ηg groups.

The bubble advection velocity of a group (16) is determined by adding a vertical slip ve-
locity (17) to the base model velocity field. The slip velocity formulation of Clift et al. [34]’s
is applied considering the average group radius, as follows:

V b,i = V + ws,i K (16)

ws,i =


4474 rb,i

1.357, 0 ≤ rb,i ≤ 7× 10−4

0.23, 7× 10−4 ≤ rb,i ≤ 5.1× 10−3

4.202 rb,i
0.547, rb,i > 5.1× 10−3

(17)

where K is the unit vertical vector and rb is the bubble radius.
Bubble diffusivity (18) can be expressed as proportional to νt and inversely propor-

tional to the Schmidt number for gases in water (Sg).

Db =
νt

Sg
(18)

After solving the transport equations of the groups, the total volumetric bubble
fraction (19) is calculated by summing the volume of all bubbles.

Cb = ∑
i

Nb,i volb,i (19)

The transport equation of each bubble group (15) is solved independently. Hence,
there is a possibility that the resulting Cb exceeds the maximum threshold (Cb,max). If a cell



Water 2021, 13, 1535 8 of 27

surpasses this limit, a bubble number artificial correction is applied to all groups: Nb,i is
bounded (20) and Cb is recalculated (19).

Nbounded
b,i =

Nb,i

max
{

1, ∑i Cb,i
Cb,max

} (20)

Afterwards, bubbles are detrained (i.e., eliminated) where α is lower than a specified
threshold (αdet), which must be lower than αent.

2.3. Turbulence Models

Since two types of air entrainment processes are simulated, two different turbulent
models are used. The k–ε turbulence model is conceived for internal flows and is the most
common in RANS simulations; therefore, it is applied to the impinging jet. The k–ω SST
is used in the spillway due to its advantage for boundary flows. Both models have two
transport equations that are used to calculate the eddy viscosity: one for the turbulent
kinetic energy (k) and another for the turbulent dissipation rate (ε) or the turbulent specific
dissipation rate (ω). In interFoam these models do not include density explicitly; hence the
kinematic eddy viscosity (νt) is computed (23) instead of the dynamic form (µt) [35]. The
standard coefficients are utilized.

The standard model of Launder and Spalding [36] is the base of the k–ε model, which
is defined by Equations (21) and (22).

∂k
∂t

+∇ · (Vk) = ∇ ·
[(

ν +
νt

σk

)
∇k
]
+ G− ε + Sk,b (21)

∂ε

∂t
+∇ · (V ε) = ∇ ·

[(
ν +

νt

σε

)
∇ε

]
+ C1G

ε

k
− C2

ε2

k
+ Sε,b (22)

νt = Cµk2/ε (23)

G = 2 νt|S|2 (24)

where ν is the kinematic viscosity, G is the turbulent kinetic energy production due to the
mean velocity gradients, Sk,b and Sε,b are bubble source terms. σk = 1.0, σε = 1.3, C1 = 1.44,
C2 = 1.92 and Cµ = 0.09 are coefficients.

The k–ω SST turbulence model is based on Menter et al. [37] and follows
Equations (25) and (26).

∂k
∂t

+∇ · (Vk) = ∇ · [(ν + akνt)∇k] + Pk − β∗ωk + Sk,b (25)

∂ω

∂t
+∇ · (Vω) = ∇ · [(ν + aωνt)∇ω] + γPω − βω2 + 2(1− F1)aω2

∇k ·∇ω

ω
+ Sω,b (26)

νt = a1
k

max(a1ω, b1F23S)
(27)

Pk = min(G, c1β∗kω) (28)

Pω = min
[

G
νt

,
c1

a1
β∗ω max

(
a1ω, b1F2

√
2|S|2

)]
(29)

where Pk and Pω are production terms. Sω,b and Sω,b are bubble source terms. β∗ = 0.09,
a1 = 0.31, b1 = 1.0, c1 = 10.0, F2, F23 are coefficients. ak, aω, aω2, β and γ are a blend of
inner and outer coefficient values using the F1 coefficient.
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Bubble-induced turbulent effects are considered according to Kataoka and Serizawa [38]
approach. They proposed two source/sink terms, (30) and (31), for the k–ε model. The
term (31) is adapted to the k–ω SST model (33), assuming the relation between ω and ε (32).

Sk,b = CkCb
∇p∗ · ws

ρ
(30)

Sε,b = Cε
ε

k
Sk,b (31)

ε = β∗ωk (32)

Sω,b ≈
1

β∗k
Sε,b ≈ Cω

1
β∗k

ε

k
Sk,b ≈ Cω

ε

β∗k2 Sk,b ≈ Cω
ω

k
Sk,b (33)

where Ck = 1.0, Cε = 1.0 and Cω = 1.0 are coefficients.

3. Results
3.1. Local Aeration in a Impinging Jet

The first case is employed to assess the model in localised air entrainment, which
typically occurs due to geometry discontinuities or impinging flows that enhance velocity
gradients, turbulence and shear layer flows.

An experiment of a vertical impinging jet in a water pool at rest by Chanson and
Manasseh [15] is replicated numerically to validate the RANS and sub-grid bubble models
combination, following other authors [16,17].

Nevertheless, the sub-grid bubble model is initially de-activated to isolate the RANS
model performance under different mesh resolutions. Afterwards, with the sub-grid bubble
model (SGBM) activated, the three bubble production term formulations—(9)–(11)—are
tested. Finally, a calibration and sensibility analysis of the SGBM parameters is carried out.

3.1.1. Numerical Setup

The selected setup is defined by a circular nozzle with a 0.025 m diameter (dN) elevated
0.1 m above the pool. Water exits the nozzle with downward velocity (VN) of 3.21 m s−1.
At the impact point, the velocity (V1) is 3.5 m s−1, the diameter (d1) is 0.024 m and the jet
radius (r1) is 0.012 m.

The impinging jet is a complete tri-dimensional flow with no symmetry axis or planes.
Around the impinging point, the water surface level oscillates randomly due to the release
of entrained air. Underwater, most entrained bubbles describe a helicoidal trajectory around
the jet centerline [39,40]. Nevertheless, considering a time-averaged radial symmetry of
the flow and the need to perform numerous simulations to calibrate the bubble model
parameters, two orthogonal mesh types are used. A set of 2D axisymmetric wedge meshes
allows fast runs and a 3D mesh that reproduces the experimental setup verifies the prior
set viability (see Table 1).

Table 1. Impinging jet—meshes.

Name Type Minimum Edge Length (mm) Total Cells

W8 2D wedge dN/8 ≈ 3.13 28,474
W16 2D wedge dN/16 ≈ 1.56 41,449
W32 2D wedge dN/32 ≈ 0.78 57,730
W64 2D wedge dN/64 ≈ 0.39 74,741
CS32 3D dN/32 ≈ 0.78 9,916,128

Both mesh sets have an air layer with 0.4 m height over a 1.8 m depth water pool
(Figure 1). The 2D axisymmetric meshes have a 5° wedge angle and are 0.4 m wide. The
3D mesh has 0.30 m in the y-axis direction (towards side-walls) and 0.80 m in the x-axis
direction (towards outflow boundaries).
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(a) (b)

Figure 1. Impinging jet—mesh 2D and 3D average edge length (le): (a) W64. (b) CS32 (x > 0 and
y > 0).

The same Cartesian xyz coordinate system is used in all meshes. The axis origin is at
the point where the jet axis intersects the water surface at rest. The z-axis is pointing in the
opposite direction of the gravitational acceleration vector and the injector velocity.

Different cell size zones are implemented, increasing the resolution where the jet
impacts the pool and air entrainment occurs. These zones are kept between 2D meshes: a
higher resolution mesh is built from the previous with additional refinement. Mesh W32
mimics the 3D mesh (see Table 1). The maximum edge length is 25 mm for all meshes.

Regarding boundary conditions, both mesh sets share top, bottom and outflow defi-
nitions. The nozzle inlet has a downward velocity (VN) of 3.21 m s−1. At the top, a total
pressure is combined with a binary velocity condition: zero gradient for outflow and
pressure-driven normal inflow. Bottom and channel side-walls are considered walls with
slip tangent velocity. At outflow boundaries, which are localized at x = 0.4 m (and also
x = −0.4 m in 3D meshes), a shallow wave absorption boundary condition maintains
the water level (z = 0 m) and absorbs the surface waves with success [41]. Consequently,
the numerical domain is reduced significantly, avoiding the entire length of the labora-
tory channel.

The following numerical schemes are used: Crank–Nicolson time derivative; linear-
upwind for the divergence of velocity, k and ε; van Leer for the divergence of Nb; interface
compression based on a generic limited scheme for the divergence of α. The interface
compression coefficient (Cα) is 1.0.

Data sampling is performed after a warm-up period where semi-steady flow condi-
tions are reached and approximate time-independence is attained for local fields and global
properties, i.e., kinetic energy, turbulent kinetic energy, water level, maximum velocity,
and volumetric bubble concentration. The samples are collected in each time-step and
time-averaged. Using the RANS model exclusively, the sampling interval is 20 s. For the
SGBM calibration, 5.0 s are sampled.

Computing the wedge mesh (W32) in an HPC cluster with an Intel Xeon E5-2680
(2.70 GHz) processor using all 16 cores, each run execution time is approximately 0.4 h
per second of simulation time. A 3D mesh (CS32) run employing 16 processors (256 cores)
needs 5 h per second of simulation time. When using the SGBM, calculation time increases
less than 5%.
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3.1.2. Impinging Jet Base Flow

Initially, with the sub-grid bubble model de-activated, the RANS model is assessed
regarding the impinging jet’s simulation under the different mesh resolutions. Jet diffusion
is critical to select the optimal mesh. Thus, the following factors are helpful: the velocity
profiles, the centerline velocity decay, and the bubble penetration depth.

Flow fields are analyzed at horizontal profiles (z = {−0.02 m,−0.03 m,−0.05 m})
that show approximately the same behavior. Hence, the intermediate profile is presented
in Figure 2. The profiles of meshes W16, W32 and W64 are proximate and have the same
shape, increasing sharpness with more resolution. Apart from all the other, mesh W8
exhibits an evident incapacity to define the fields, overestimating νt and k.
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Figure 2. Impinging jet—mesh dependency. Profiles at z = −0.03 m: (a) α. (b) Vz. (c) νt. (d) |S|2.
(e) k.

The water volume fraction field (α) is analyzed qualitatively at time instants because
time-average can dilute the pockets and the interface shape (Figure 3). Meshes W16,
W32 and W64 display a similar behavior: the jet shear layer is thin and intermittent, and
the entrained air pockets ascend to the surface 5 to 15 (r1) away from the jet centerline.
However, in the higher resolution meshes (W32 and W64), the pockets are smaller and reach
deeper. Mesh W8 shows a very wide and deep cavity in the jet shear layer zone, where
most of the entrained air also exits. Furthermore, the interface thickness is exaggerated,
and large surface perturbations are found in the impact point’s vicinity. At the shear layer,
the non-realistic entrainment of oversized air pockets is due to applying the VOF method
in a mesh with an insufficient resolution to reproduce the individual bubble. According
to Andersson et al. [42], in proper VOF modelling, two drawbacks arise: it requires an
extraordinary mesh resolution, generally 20 cells per bubble diameter, and the surface
tension forces may be overdone if the interface curvature is high. Hence, bubble and
pockets tend to become spherical, and their size to be a function of the mesh resolution.
Meticulous tuning of the VOF settings may suppress these pockets that perturb the flow
patterns, primarily due to the buoyancy forces being overgrown.
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(a) (b) (c) (d)
Figure 3. Impinging jet—2D mesh interface. VOF fraction field at t = 60 s. α = 0.5 (blue), α = 0.1
(red). Mesh: (a) W8. (b) W16. (c) W32. (d) W64.

The jet centerline velocity decay is directly related to momentum diffusion. Hence,
particular characteristics of the three regions are analyzed (Figure 4). First, the developing
flow region length: includes the zone between the impact point and a depth where the
downward velocity of the jet core is smaller than V1. Chanson [8] estimates it ranges
between “5 to 10d1 for circular jets discharging in a fluid at rest” . As shown in Figure 4,
this feature is approximately matched by meshes W32 and W64. Secondly, the centerline
velocity ratio in the submerged region is analyzed. The water jet in the experiment is
described as “extremely smooth and transparent”; therefore, the McKeogh and Ervine [43]
expression for smooth plunging jets (34) is used. Though the submerged jet region of mesh
W8 follows Equation (34), a segment with a similar slope is found in other meshes.

V/V1 = 3.3
(
d1/lj

)1.1 (34)

where lj is the jet centreline distance from the impinging point in the direction of the
gravitational acceleration.

Third, Bin [44] proposed an expression to estimate the bubble penetration depth (35).
Considering a bubble with rb = 0.5 mm, according to (17) ws = 0.23 m s−1 and ws/V1 = 0.066.

hp = 2.1 V1
0.775 d1

0.67 (35)

With d1 = 0.024 m and V1 = 3.5 m s−1, the result is hp = 0.456 m ≈ 19d1.

jet centerline velocity
time average: 20s  

0.066

0.1

1

 0.8  1.2    2    4    8   16   32

U
z 

/ 
U

1

lj / d1

k-epsilon 

W8
W16
W32
CS32
W64
Hp=19 d1 (Bin, 1984)

McKeogh and Ervine (1981)

Figure 4. Impinging jet—mesh dependency: centerline velocity decay.

As shown in Figure 4, the coarsest mesh (W8) results are discrepant regarding the
more refined meshes. With mesh W16, the air pockets in the jet shear layer zone are
considered exaggerated, thus perturbing the flow patterns significantly, and the centerline
velocity decay is excessive. Despite the higher resolution, mesh W64 has a good agreement
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at the developing flow region length. However the penetration depth is ≈26d1, which
surpasses the result of Equation (35). Even the highest resolution mesh cannot reproduce
the tiny bubbles generated in the shear layer that the jet momentum diffusion induced.
This fact shows one of the limitations of the VOF technique in these types of problems.
Another consequence is that the exaggerated large air pockets can block part of the lateral
transfer of the jet momentum. Further investigation is needed to clarify this issue and to
determine the influence in bubble modelling with the VOF technique.

Overall, the 2D wedge mesh W32 (minimum cell edge length of dN/32) is considered
appropriate for the sub-grid bubble model calibration. Moreover, a good agreement with
the 3D mesh CS32 is found at the horizontal profiles (Figure 2) and the centerline (hp ≈ 20d1,
Figure 4), thus validating the bi-dimensional approach. This resolution implies a very
small solving time-step (≈1× 10−4 s), demanding considerable computational efforts.

3.1.3. Sub-Grid Bubble Model Calibration

The sub-grid bubble model (SGBM) calibration evaluates the accuracy and sensitivity
to the parameters. It is performed for three production term formulations: ‘S’ is based on
νt and |S|2 (9), ‘K’ is based on k (10), and ‘KE’ is based on k and ε (11).

At this stage and as a first approximation, the focus is on the bubble entrainment prox-
imities. Hence, inter-group transfers are neglected, and a single group bubble population
(rb = 0.5 mm) is modelled.

The simulated bubble volume-fraction data (M) are compared with Chanson and
Manasseh [15] laboratory reference data (R) at three horizontal profiles along x-axis:
z = {−0.02 m,−0.03 m,−0.05 m}. The experimental profiles at both sides of the jet
are averaged to compare against the single side 2D wedge mesh.

At each profile and to measure the capability of the model in capturing air entrainment,
the integrated and the maximum bubble volume-fraction are evaluated, respectively, by a
relative trapezoidal integral (TI) error (36) and a relative maximum error (37).

Integralerr =
MTI − RTI

RTI
(36)

Maxerr =
max M−max R

max R
(37)

The previous errors are combined in a single value to find a good agreement in all
profiles and simplify the calibration process. Hence, the accuracy criterium is the lowest
value of the IMerr error, which averages the absolute value of both error functions in the
three profiles, as follows:

IMerr =
1
6

3

∑
i=1

(|Integralerr
zi |+ |Maxerr

zi |),

z = {−0.02 m, − 0.03 m, − 0.05 m}
(38)

The calibration process focus on the more relevant parameters:

• ab—bubble onset coefficient (8);
• Pr0—threshold for bubble onset production term (8);
• Sg—Schmidt number for gases in water (18);
• αent—water volume fraction value that defines the entrainment surface (A1).

The remaining two parameters are fixed: Cb,max = 1 (maximum bubble volume
fraction); αdet = 0.0001 (VOF volume fraction lower-limit that triggers bubble detrainment).

More than one thousand parameter quadruplets are tested to determine the optimal
combination for each production term formulation, presented in Table 2. Afterwards, the
model sensitivity to each parameter is evaluated. An expeditious method avoids the trial
of a tremendous number of combinations:
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1. Preliminary tests point out approximate parameters ranges and roles.
2. Fixating Pr0 to a reference value, which confines the entrainment to the impinging

point vicinity and αent = 0.25, multiple combinations of ab and Sg are tested. Hence,
a candidate to the best quadruplet is found.

3. Finally, a variation of all four parameters ab, Pr0, αent, and Sg is performed centered on
the candidate to best match. If a better quadruplet is found, this step is repeated or, go
back to step 2 if the deviation is excessive. Otherwise, the best quadruplet (‘*’ index)
is found.

The approximate number of quadruplets tested for each production term formulation
is presented next. Step 1 involved the testing of more than one hundred quadruplets of
multiple combinations of the four parameters. In step 2, which be could repeated, one
hundred quadruplets are tested, originating from combining the ten values of both ab and
Sg. In step 3, fifty quadruplets are tested and the step is performed one to three times.

Figure 5 shows the numerical model predictions for the bubble volumetric concentra-
tion (Cb) at different water depths, which are compared against Chanson and Manasseh [15]
measurements. Entrainment formulations ‘S’ and ‘K’ have a very similar performance
(Figure 5) and good accuracy with a IMerr near 15% (Table 2). These two formulations
perfectly reproduce profile z = −0.03 m. Cb ,max at profiles z = −0.02 m and z = −0.05 m
is, respectively, under and over-estimated. At the deepest profile, the maximum is slightly
inward; therefore, jet diffusion is lacking. Particularly in the α, νt, |S|2 and k horizontal pro-
files, the peak distance to the jet centerline is inversely proportional to the mesh resolution
(Figure 2). This behavior exposes the VOF and turbulent models limitations to reproduce
the shear region. Furthermore, this numerical setup is unable to produce acceptable results
with entrainment formulation ‘KE’. No parameter combination confines the bubble onset to
the jet vicinity, and the air entrainment is faultily triggered at the remaining water surface.

Table 2. Impinging jet—calibration of sub-grid models formulations: best parameter quadruplet.

Formulation ab
∗ Pr0

∗ Sg
∗ αent

∗ IMerr

S 1.47× 10−2 100 70 0.25 0.13
K 25 0.006 80 0.25 0.16

KE 5250 0 80 0.25 n/a

Case 1: ../0_shiNext/40x12_sens/ca_0.0147_100_70_0.25

Case 2: ../0_shiNext/40x12_sens/ca_0.0147_100_70_0.25

Case 3: ../0_shiNext/40x12_sens/ca_0.0147_100_70_0.25
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Figure 5. Impinging jet—bubble volume fraction prediction for entrainment formulations S, K and
KE: (a) z = −0.02 m. (b) z = −0.03 m. (c) z = −0.05 m.
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The sensitivity of the SGBM parameters ab, Pr0, Sg, and αent are analyzed regarding
the two entrainment formulations with accurate performance: ‘S’ and ‘K’ (see (9) and (10)).
Centered on the best quadruplet (Table 2), the IMerr error resulting from a variation of each
parameter is evaluated and presented in Figure 6.
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Figure 6. Impinging jet—sub-grid model sensitivity to parameters: (a) ab. (b) Pr0. (c) Sg. (d) αent.

Both entrainment formulations present similar results. Concerning ab, IMerr < 0.2 if
the variation is inferior to ±20%. However, a shift of ±50% conducts to an unsatisfactory
IMerr ≈ 0.5.

Pr0 variations do not change the model accuracy significantly. An apparent improve-
ment is found at the high end of formulation ‘S’, although the entrainment becomes focused
on very few cells, which is non-realistic.

Sg dependence is approximately constant between 20 and 100, with a slight enhance-
ment at the higher values. Nonetheless, for Sg > 20, the results are proximate.

Identical and proper IMerr is found in both entrainment formulations if 0.1 < αent < 0.4.
At larger values, the sensitivity to this parameter is extreme for formulation ‘S’, yet mild
for ‘K’.

Using the SGBM entrainment formulation ‘K’ best parameters, a single group bub-
ble population (rb,i = 0.5 mm) is preliminarily compared with a ten-group population
(rb,i = {0.25; 0.34; 0.40; 0.47; 0.55; 0.65; 0.76; 0.89; 1.05; 6.0} mm) that includes all slip ve-
locities of (17). The bubble volume fraction profiles are almost identical. The ten group
population shows a slight increase in the maximum value at all profiles and a calculation
time 30% larger.

A preliminary test of the bubble population number of groups is conducted in the
impinging jet. Figure 7 shows similar behavior for a single group or ten groups with
distinct bubble size, though computational time increases by 30%. This result is expected
because, in the SGBM, the number of groups and their characteristic radius does not
influence the volumetric bubble onset (12). Furthermore, bubble size only controls the
bubble slip velocity (16) [34], which is small when compared to the flow mean velocity at
the entrainment region vicinity (ws ≈ V1/10). However, once the bubble coalescence and
break-up are integrated, the number of groups and bubble size are expected to have the
most impact on the transport, break-up and coalescence processes.



Water 2021, 13, 1535 16 of 27

Case 1: ../1_shiPrMa/40x10a_1bin/ca_25_0.006_80_0.25

Case 2: ../1_shiPrMa/40x10a_1bin/ca_25_0.006_80_0.25

Case 3: ../1_shiPrMa/40x10a_1bin/ca_25_0.006_80_0.25

best CFD nBins vs Laboratory
bubble volumetric concentration

0.00

0.05

0.10

0.15

0.20

   0  0.5    1  1.5    2
C

b

x/r1

Horizontal profile: z=-20mm
time average from 61to66s

Chanson and Manasseh (2003)
K-1 group
K-10 groups

0.00

0.05

0.10

0.15

0.20

   0  0.5    1  1.5    2

C
b

x/r1

Horizontal profile: z=-30mm
time average from 61to66s

Chanson and Manasseh (2003)
K-1 group
K-10 groups

0.00

0.05

0.10

0.15

0.20

   0  0.5    1  1.5    2

C
b

x/r1

Horizontal profile: z=-50mm
time average from 61to66s

Chanson and Manasseh (2003)
K-1 group
K-10 groups

(a)

Case 1: ../1_shiPrMa/40x10a_1bin/ca_25_0.006_80_0.25

Case 2: ../1_shiPrMa/40x10a_1bin/ca_25_0.006_80_0.25

Case 3: ../1_shiPrMa/40x10a_1bin/ca_25_0.006_80_0.25

best CFD nBins vs Laboratory
bubble volumetric concentration

0.00

0.05

0.10

0.15

0.20

   0  0.5    1  1.5    2

C
b

x/r1

Horizontal profile: z=-20mm
time average from 61to66s

Chanson and Manasseh (2003)
K-1 group
K-10 groups

0.00

0.05

0.10

0.15

0.20

   0  0.5    1  1.5    2

C
b

x/r1

Horizontal profile: z=-30mm
time average from 61to66s

Chanson and Manasseh (2003)
K-1 group
K-10 groups

0.00

0.05

0.10

0.15

0.20

   0  0.5    1  1.5    2

C
b

x/r1

Horizontal profile: z=-50mm
time average from 61to66s

Chanson and Manasseh (2003)
K-1 group
K-10 groups

(b)

Case 1: ../1_shiPrMa/40x10a_1bin/ca_25_0.006_80_0.25

Case 2: ../1_shiPrMa/40x10a_1bin/ca_25_0.006_80_0.25

Case 3: ../1_shiPrMa/40x10a_1bin/ca_25_0.006_80_0.25

best CFD nBins vs Laboratory
bubble volumetric concentration

0.00

0.05

0.10

0.15

0.20

   0  0.5    1  1.5    2

C
b

x/r1

Horizontal profile: z=-20mm
time average from 61to66s

Chanson and Manasseh (2003)
K-1 group
K-10 groups

0.00

0.05

0.10

0.15

0.20

   0  0.5    1  1.5    2

C
b

x/r1

Horizontal profile: z=-30mm
time average from 61to66s

Chanson and Manasseh (2003)
K-1 group
K-10 groups

0.00

0.05

0.10

0.15

0.20

   0  0.5    1  1.5    2

C
b

x/r1

Horizontal profile: z=-50mm
time average from 61to66s

Chanson and Manasseh (2003)
K-1 group
K-10 groups

(c)
Figure 7. Impinging jet—bubble volume fraction prediction for entrainment formulations K with 1
and 10 bubble groups: : (a) z = −0.02 m. (b) z = −0.03 m. (c) z = −0.05 m.

The SGBM volumetric bubble concentration prediction for the impinging jet is very
satisfactory. Both entrainment formulations ‘K’ (10) and ‘S’ (9) achieve an accuracy of about
15%. The bubble production term threshold (Pr0) is easily predicted with ‘K’; formulation
‘S’ is less dependent on turbulence yet more sensitive to the entrainment surface location.
No acceptable results are found with the formulation ‘KE’ (11), hence it is not evaluated.
Regarding the model parameters, a high dependence is found for the entrainment coeffi-
cient ab, whilst the accuracy is equal if Sg > 20. Therefore, in the vicinity of the impinging
point, bubble advection is more critical than diffusion.

3.2. Continuum Aeration in a Spillway Chute

The second case study is continuum aeration in a spillway chute. Free-surface aeration,
or self-aeration, is a natural process at an extensive region of the free-surface of high-velocity
flows where air bubbles are entrained, and water droplets are formed [45]. Although the
physical mechanisms are not entirely understood, the primary cause is the rise of the
turbulent kinetic energy generated at the boundaries [14]. Self-aeration occurs when the
turbulence at the free-surface is enough to overcome surface tension and bubble buoyancy.
The point of inception (PI) is where this phenomenon initiates [46].

Three main aspects of free-surface aeration differ from the local aeration in the im-
pinging jet previously analyzed. First, this process extends over several meters, initiates
downstream of the PI and usually continues until the end of the chute. Second, for a
fixed spillway discharge, the phenomenon may be considered steady-state spatially and
temporally. Third, the energy source for bubble entrainment transport is generated at a
boundary. Thus, it may be classified as a boundary layer flow rather than an internal shear
flow, such as the impinging jet that has no significant wall effect.

The present section evaluates the combination of the RANS and VOF models with
the SGBM to simulate self-aeration and bubble transport at a usual spillway solution: a
WES weir [47] followed by a straight chute with a constant slope. Generally, hydraulic
structures with such slope and length imply extremely high-velocity flows.

The PI location and the depth-averaged volumetric bubble concentration are evaluated.

3.2.1. Numerical Setup

The continuous air entrainment study is focused on the chute flow, specifically the
section that includes the PI and the free-surface aeration. Nevertheless, a WES weir is
implemented to reproduce the velocity profile at the beginning of the chute (Figure 8).
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The chute is 125 m long with a constant slope of 1:1.5 (θ ≈ 33.7°), which stays between
the typical values for ogee (60°) and side-channel (5–10°) spillways. A sand-grain roughness
(ks) of 0.001 m is adopted to simulate concrete roughness. The WES weir design head is
5 m, the upstream platform level is 10 m below the crest, and the resultant linear discharge
(q) is 24 m2s−1. The inlet is 40 m upstream of the crest, and the top boundary is 60 m above
the bottom. lc is the distance to the weir crest along the spillway invert and lPI is the point
of inception distance to the weir crest along the spillway invert. h is the water depth and Y
is the distance from the bottom measured perpendicular to the spillway invert.

A hexahedral 2D mesh is used due to the hundreds of simulations needed to calibrate
the SGBM. The resolution is not uniform. The characteristic edge length ranges from 0.8 m
at the top boundary to 0.05 m at the chute. Approximately 30 cells per water depth are
found at the point of inception. The mesh contains 199,493 cells. This configuration lacks
the typical guidance walls, enhancing the approximation velocities upstream of the weir.
Still, no significant effect is reflected in self-aeration.

Regarding boundary conditions, the inlet has a fixed water flowrate; hence, it adjusts
the velocity according to the water level on the inside. Additionally, smooth transitions
are applied to the inlet velocity profile at the bottom and air–water interface. At the top,
a total pressure is combined with a binary velocity condition: zero gradient for outflow
and pressure-driven inflow with an absolute angle of −45°. Bottom tangent velocity is null
and combined with a turbulence-based roughness wall function. At the end of the chute,
inflow is not allowed, and outflow velocity has zero gradient.

Considering the flow is dominated by the boundary layer, the k–ω SST turbulence
model is applied due to its better performance near the walls when compared to the k–
ε model. The numerical schemes used are: Euler time derivative; limited-linear for the
divergence of velocity; linear-upwind for the divergence of k and ω; van Leer for the
divergence of Nb; linear for the divergence of α. The interface compression coefficient (Cα)
is 0.1. An additional correction is employed to account for mesh non-orthogonality.

Data sampling is performed after a warm-up period where semi-steady flow condi-
tions are reached and approximate time-independence is attained for local fields and global
properties, i.e., kinetic energy, turbulent kinetic energy, water level, maximum velocity,
and volumetric bubble concentration. The samples are collected in each time-step and
time-averaged. Using the RANS model exclusively, the sampling interval is 20 s. For the
SGBM calibration, 2.0 s are sampled.

Computing the 2D mesh in an HPC cluster with an Intel Xeon E5-2680 (2.70 GHz)
processor using all 16 cores, each run execution time is approximately 1 h per 7 s of
simulation time. Applying the SGBM, calculation time increases by less than 5%.

3.2.2. Spillway Chute Base Flow

The spillway flow is characterized by practically straight streamlines, though signifi-
cant contractions are presented immediately upstream of the crest (Figure 8). At the inlet,
the crest, and the end of the chute, the depth-averaged velocity is, respectively, 1.6 m s−1,
6.5 m s−1 and 32.0 m s−1 and the depth is 14.80 m, 3.68 m and 0.75 m. At the end of the
chute, the flow is still far from the uniform regime.

Air velocity is globally below 0.5 m s−1. The water flow drags air at the chute,
developing an interface boundary layer with an average thickness of 0.5 m. Upstream
of the crest, low water velocity magnitude and gradients inhibit significant turbulence
production. Along the chute, bottom friction generates a turbulent boundary layer.
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Figure 8. Spillway—longitudinal profile: velocity and water surface (yellow line).

The bubble production terms (Pr) of formulations ‘K’ and ‘S’ are compared. Three
profiles perpendicular to the invert – before, near and after the PI (Figure 9)—evidence νt
and k similarities. However, |S|2 very large gradients at the air–water interface emphasize
PS

r sensitivity to the entrainment surface location, defined by αent.
After the PI, PK

r grows approximately linear at the water surface until the end of the
chute (Figure 10). This term is exclusively proportional to k, which is generated at the
bottom, and increases continuously before the uniform regime is attained. Contrarily, PS

r
reaches a maximum after 15 m and decreases downstream. Formulation ‘S’ behavior at the
water surface is considered incoherent with the arise of the bottom turbulent boundary
layer. Therefore, it is classified as inadequate and is not applied on the spillway chute case.
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Figure 9. Spillway chute—profiles at lc = {60, 100, 120}m: (a) V. (b) νt. (c) |S|2. (d) PS
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3.2.3. Sub-Grid Bubble Model Calibration

The SGBM calibration evaluates the model’s accuracy and its sensibility to the param-
eters. It is only performed for the production term formulation ‘K’, based on k (10), due to
the lack of successful results obtained in the previous section.

Considering that the bubble inter-group transfers are neglected to focus on the en-
trainment process analysis and that the volumetric bubble onset is independent of the
population characteristics (8), a single bubble group is modelled. Cain [48] states that the
average bubble diameter is larger than 10 mm near the free-surface and decreases towards
the bottom to less than 1 mm. Hence, an arbitrary bubble radius (rb) of 10 mm is modelled.

The depth-averaged volumetric bubble concentration (39) along the chute is compared
with the analytical solution of Chanson [27], (40). The equation is proposed for a constant
slope channel in the gradually varied flow region, with the origin at the PI, as follows:

Cb,mean =
1

Y90

∫ Y=Y90

Y=0
Cb dY (39)

1

(1− Cb,e)
2 ln

(
1− Cb,mean

Cb,e − Cb,mean

)
− 1
(1− Cb,e)(1− Cb,mean)

= k′ s′ + Ko

(40)

where

Ko =
1

1− Cb,e

(
1

1− Cb,e
ln
(

1
Cb,e

)
− 1
)

k′ =
ws hPI cos θ

q

s′ = (lc − lPI)/hPI

Y90 is the characteristic depth where the air concentration is 90%, hPI is the water depth at
the point of inception and Cb,e is the depth-averaged bubble volumetric concentration in
uniform equilibrium flow (41).

Cb,e = 0.9 sin θ (41)

The slip velocity is calculated: ws(rb = 10 mm) = 0.34 m s−1 (17).
Additionally, after calibration, the simulated PI location is compared against

Chanson [49] for smooth chutes (42), expressed as:

lPI = 13.6 ks(sin θ)0.0796(F∗)
0.713 (42)

F∗ = q/
(

g sin θ ks
3
)1/2

The Cb,mean and lPI calculation accuracy is evaluated by a mean absolute relative
error (43), which, respectively, adopts the ‘Cb,mean’ and ‘PI’ superscripts.

meanerr =
1
N

N

∑
i=1

∣∣∣∣M− R
R

∣∣∣∣ (43)

where N is the data series number of samples.
The numerically obtained point of inception (PI) is a function of the flow properties,

numerical setup and the parameters Pr0 and αent that are not calibrated. Chanson [8]
suggests that free-aeration triggers if the turbulent velocity (v′) exceeds 0.1 to 0.3 m s−1 at
the surface.
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The numerical point of inception location for v′ = 0.1, 0.2 and 0.3 m s−1 is 103.2, 103.5
and 104.9 m, which corresponds to an error meanerr

PI of 0.8, 1.0 and 2.4%. All the errors are
acceptable in practical engineering. The intermediate value is chosen because it corresponds
to the best value for the Pr0 parameter found in the impinging jet for formulation ‘K’. The
strategy is to reduce the differences in the adopted parameters for different flow types.

Hence, in the spillway chute, the adopted criteria to locate the inception point (PI)
are v′(lc = lPI) = 0.2 m s−1, which correspond to k(lc = lPI) = 0.06 m2s−2 and Pr0

K(lc =
lPI) = 0.006 m. The PI location is 103.5 m, matching Equation (42)’s prediction of 102.4 m

accurately, with an error meanerr
PI of 1.0%. At the PI, the water depth (hPI) is 0.83 m , the

average velocity is 28.9 m s−1 and the maximum velocity is 34.4 m s−1.
Nevertheless, the VOF interface thickness affects the PI location. Therefore, the Cα

parameter of the compression term (6) may play an important role.
In the spillway chute case, the following four parameters are kept constant: Pr0

K(v′ =
0.2 m s−1) = 0.006 m (8); αent = 0.5; Cb,max = 1; αdet = 0.0001.

The calibration process focused on the remaining and most relevant parameters:

• ab—bubble onset coefficient (8);
• Sg—Schmidt number for gases in water (18).

Five hundred combinations of ab and Sg are tested, and the resultant meanerr
Cb,mean

is used to find the optimal parameter combination (‘*’ index), presented in Table 3. The
SGBMcalibration process is similar to the one adopted for the impinging jet, described in
Section 3.1.3. The main difference is that only two parameters are calibrated; therefore,
step 1 is not performed. Step 2 and 3 implied, respectively, two hundred and thirty and
three hundred quadruplet tests.

The best performance shows a good agreement with Chanson [27], presenting a
meanerr

Cb,mean error of 8.5%, which is completely appropriate in the analysis of hydraulic
structures. Therefore, the entrainment formulation ‘K’ proves its ability to model self-
aeration in spillway chutes. The bubble volumetric concentration at a chute stretch con-
taining the point of inception and downstream is shown in Figure 11. The bubble mean
volumetric concentration downstream of the PI is plotted against the analytical solution of
Chanson [27] (40) in Figure 12. The two curve discontinuities are due to the discrete en-
trainment surface concept (see Appendix B). In other words, entrainment occurs at a single
layer of cells that follows the water surface. However, the water surface slope is not entirely
aligned with the mesh cell faces, resulting in occasional steps in this entrainment layer.

Table 3. Spillway—calibration of sub-grid model: best parameters. Entrainment formulation ‘K’.

ab
∗ Pr0

∗ Sg
∗ αent

∗ meanerr
Cb,mean

700 0.006 1.5 0.5 0.085

Figure 11. Spillway chute—bubble volumetric concentration. Black line is k = 0.06 m2s−2.
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Figure 12. Spillway chute—bubble mean volumetric concentration against Chanson [27] analyti-
cal solution.

Finally, the sub-grid bubble model sensibility to the parameters ab and Sg (shown in
Figure 13) is analyzed regarding meanerr

Cb,mean (40).
Concerning ab, meanerr

Cb,mean < 0.2 in the range [0.65 ab
∗, 1.5 ab

∗]. Furthermore, a
positive shift does not increase the error significantly. Sg dependence is considerable. A
satisfactory meanerr

Cb,mean < 0.2 is found between 1.1 and 2. Unlike the impinging jet, in
the spillway, the SGBM sensitivity is higher to Sg than ab. Hence, suggesting that the
phenomenon is dominated by bubble diffusion and that the entrainment layer cells are at
the maximum bubble fraction capacity.
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Figure 13. Impinging jet—sub-grid model sensitivity to parameters: (a) ab. (b) Sg.

4. Discussion
4.1. RANS Model Constraints

The sub-grid bubble model SGBM performance is first and foremost conditioned by
the RANS model capacity to replicate the flow.

Despite the spillway chute being correctly simulated, difficulties arise in the reproduc-
tion of the submerged shear layer and momentum diffusion in the impinging jet. When
applying the VOF method, the mesh should be fine enough to reproduce the individ-
ual bubbles [42], which is unfeasible for the vast majority of hydraulic structures due to
their dimensions.

Furthermore, in the VOF method, the air–water interface is not entirely defined.
Instead, it is a region with a thickness that heavily depends on the mesh resolution and the
numerical settings. Therefore, some uncertainty rises on the water surface exact position,
which significantly impacts the calculation of the air entrainment.

Turbulence modelling is also critical to the entrainment process, especially at the
interface and submerged shear layer. Different turbulence model and numerical setup may
alter the outcome significantly. However, validation is problematic because laboratory or
prototype data are practically inexistent [3].

4.2. Air Entrainment Formulations Performance

The volumetric bubble concentration prediction of the entrainment formulation ‘K’
(10) [17], based on the turbulent kinetic energy (k), is very good for local and continuum
aeration. Moreover, the threshold to initiate the bubble onset (Pr0) is easily predicted,
related to v′ or k. Along with other authors [40,45,50,51], Ma et al. [17] consider that,
for lower jet velocities (inferior to 4 to 6 ms−1), the leading cause of entrainment is jet
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roughness. The latest author also assumes that the jet roughness is proportional to k. In
spillway chute self-aeration, a similar hypothesis is adopted: the rate of air entrainment is
proportional to the size of surface perturbations caused by the rise of the turbulent kinetic
energy (k) from the bottom.

The entrainment production term formulation ‘S’ (9) [11], based on νt and |S|2, is
effective in shear flows and less dependent on turbulence than formulation ‘K’. However,
it does not comply with self-aeration. This term is related to k production (21). Therefore, it
may be useful if the inflow has minor surface perturbations and large velocity gradients at
the impinging point (e.g., plunging waves). Yet, this formulation fails if the inflow turbulent
kinetic energy (k) is dominant. Furthermore, the threshold (Pr0) foresee is intricate.

No acceptable results are found with the entrainment formulation ‘KE’ (11), based on k
and ε [28], applied to the impinging jet. Hence, it is not evaluated in the spillway. Whatever
parameter combination set, aeration is not confined to jet vicinity. This approach applies
the theoretical concept of turbulent length scales to estimate the surface disturbances
as a function of the turbulent eddies. A hypothesis is that this formulation does not
comprise the vast range of time and length scales involved. However, the conducted
study is insufficient to conclude its efficiency. Moreover, this approach is more sensitive to
turbulence modelling because it depends on k and ε. The mathematical model equations
and the numerical implementation are also essential. The adopted modelling framework
may not be adequate for this approach. Further investigation is recommended, considering
Lopes et al. [25] achieved good results in a stepped spillway.

4.3. Sensibility to Parameters

The sub-grid bubble model calibration classifies ab and Sg as the most relevant param-
eters, followed by Pr0 and αent.

The optimal bubble onset coefficient (ab) for the spillway is approximately thirty times
larger than for the impinging jet, respectively, 700 and 25. Similarly, in their numerical
study, Ma et al. [17] found an ab for a hydraulic jump six times larger than for the impinging
jet. Further investigation is needed to scrutinize this behavior.

The Schmidt number for gases in water (Sg) typically ranges from 0.4 to 0.9 in
hydraulic structures [52,53]. However, in the impinging jet, good results are found if
20 < Sg < 100. In a similar impinging jet setup, Shi et al. [54] estimated Sg between 30 and
40 at z = −0.14 m in the turbulent shear layer vicinity. The author suggests that inertial
forces, enhanced by gravity, dominate the high-velocity region, which can justify such a
high value. Gualtieri et al. [53] pointed out that Sg may not be constant in the whole domain
of non-isotropic flows, which is the case of the impinging jet. Furthermore, in this region, a
hypothetical over-estimation of the turbulent viscosity by the k–ε turbulence model can
force the Sg to increase to compensate for it (see Equation (18)). Detailed turbulence data
are needed to address this issue properly. In self-aeration, Chanson [45] indicates that Sg
increases with larger Reynolds numbers, and depends on the mean air concentration. In
the spillway chute, good results are found if 1.1 < Sg < 2, which is within the literature
values presented by Chanson [49].

The threshold of the bubble onset production term (Pr0) is essential to locate the
entrainment, especially in self-aeration. Chanson [8] turbulent velocity criteria (0.1 < v′ <
0.3 m s−1) proved to be effective.

The entrainment surface layer location is defined by αent, which refers to a water
volume fraction value. In the spillway chute, the standard VOF interface value of 0.5
delivers accurate results. However, the impinging jet is more sensitive. Good results are
found if 0.1 < αent < 0.4. Lopes et al. [19] suggest αent = 0.3. Additionally, this author
warns that αent may significantly affect the bubble onset location and intensity, although
the entrainment surface shape does not change considerably. These facts are confirmed.
Therefore, αent is entirely dependent on the numerical setup. Special attention must be
given when there is a rupture of the water surface, e.g., plunging flows.
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In local aeration, a higher dependence is found for ab than for Sg. Hence, in the vicinity
of the impinging jet, bubble advection is predominant over diffusion. Oppositely, contin-
uum aeration shows a diminished sensitivity to ab yet very high to Sg. Therefore, diffusion
prevails upon entrainment quantity. The physical processes confirm these conclusions.

4.4. Overall Appreciation

Incorporating the sub-grid bubble model (SGBM) provides a breakthrough improve-
ment over the RANS model results. It allows prediction of previously non-detected aeration
with good accuracy, exempting the tremendous computational resources necessary to rep-
resent an individual bubble.

Additionally, from the three entrainment formulations tested in the present mathemat-
ical model, the entrainment formulation depending exclusively on the turbulent kinetic
energy, based on the approach of Ma et al. [17], is the only one found to be appropriate for
local and continuum aeration. The range of flow applications of the presented framework
is extended to local aeration due to an impinging jet and self-aeration in chutes, which
adds to the breaking waves studied by Shi et al. [11].

Moreover, the unprecedented sensitivity analysis of the SGBM parameters exposes
the reliability of this framework to two different flows. Calibration is straightforward in
self-aeration but more difficult for local aeration. The discrepancy is primarily due to the
RANS model ability to reproduce the water flow, which is not as good in the impinging jet
as in the spillway chute.

The air entrainment process is very complex in both cases, involving an extended
range of flow structures and bubble sizes. The presented framework cannot replicate these
phenomena because it requires an extremely high mesh resolution and more advanced
Navier–Stokes equation solving procedures than RANS. In the spillway chute, the exact
shape of the water surface instabilities is not reproduced, nor the foam structures or air–
water projections present in highly-aerated flows, which constitute a complex multiphase
region [45]. In the impinging jet, for slightly higher velocities than considered in the present
study (V1 > 4 to 12 ms−1), the dominant air entrainment mechanism is the formation of an
elongated air cavity and its subsequent breakup [51], which are not reproducible due to
the time and length scale involved.

Another particular aspect is turbulence isotropy. Despite being common to use RANS
with two-equation turbulence models (e.g., k–ε, k–ω SST), both analyzed flows are consid-
ered anisotropic. At the chute water surface, the predominant vortexes axes are aligned
with the transversal direction, and the entrainment is mainly due to the velocity fluctua-
tions perpendicular to the surface [14]. On the other hand, in the impinging jet helicoidal
trajectories of small bubbles are observed around the jet centerline [39,40], and the transport
of bubbles away from the shear zone by large vortices with main axis perpendicular to
the jet direction [45,51]. Especially in the jet, a turbulence model that complies with high
degrees of anisotropy, such as the Reynolds stress equation turbulence model(RSM), could
improve the bubble dispersion simulation [55].

The presented coupling of the RANS and VOF models with a SGBM implies three
limitations to be considered when selecting an application. First, bulking is not modelled,
which is particularly relevant in heavy aerated flows. Second, the volumetric bubble
concentration must stay below 20%, although a few cells can exceed this value without
compromising the solution. Third, air may entrain from concurrent sources (air pockets
from the RANS model and bubble from the SGBM), overdoing the flow buoyancy. In
addition, the break-up of large air pockets into bubbles is not possible. Thus, the modelling
of strong impinging flows such as intense wave-breaking is excluded.

5. Conclusions

A sub-grid bubble model is coupled with a RANS model, which includes the VOF
method, to predict the entrainment of an air bubble population in two different hydraulic
structures flows: an impinging jet and along a spillway chute. Previously non-detected
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entrained air is now simulated with good accuracy, and the additional computation cost is
marginal. Therefore, the framework, based on Shi et al. [11] approach is considered valuable
and efficient for simulating local and continuum aeration, matching engineering standards.

Three distinct air entrainment formulations are evaluated, yet only the one depending
exclusively on the turbulent kinetic energy [17] proved to apply to different types of flow.
The framework reliability is exposed by an unprecedented sensitivity analysis of four
parameters defined by the user. The sensitivity to the bubble onset threshold (Pr0) and the
entrainment surface water volume fraction (αent) is considered low, and both are easily
predicted. The bubble onset coefficient (ab) must be calibrated according to the flow type.
The Schmidt number for gases in water (Sg), which is fundamental for bubble diffusion,
may be difficult to foresee in the impinging jet shear layer.

The simulated impinging jet volumetric bubble concentration matches the laboratory
data profiles of Chanson and Manasseh [15] with a combined relative error of 16%. The
continuum entrainment at the spillway chute achieves a relative error of 9% against the
prototype-based analytical solution of Chanson [27] for the depth-averaged volumetric bub-
ble concentration. Moreover, the inception point corresponds to Chanson [49] expression
for smooth chutes with a relative error of 1%.

Local entrainment is restrained by the RANS model ability to reproduce impinging
water flows. Furthermore, it is more susceptible to the sub-grid bubble model parameters.
Continuum aeration prediction is more reliable.

The application of the presented framework is limited to flows where the volumetric
bubble concentration does not exceed 20%, and without significant bulking or the break-up
of large air pockets into bubbles. Moreover, turbulence modelling is critical to the bubble
onset calculation.

Further development and evaluation in different flows are crucial to validate this tool
for hydraulic structures engineering purposes.
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Abbreviations
The following abbreviations are used in this manuscript:

CFD Computational Fluid Dynamics
DNS Direct Numerical Simulations
DES Detached Eddy Simulation
ES Entrainment surface
HPC High-performance computing
LS Level-Set method
PI Point of inception
RANS Reynolds-average Navier–Stokes equations
SGBM Sub-grid bubble model
SST Shear Stress Transport
TL Top layer
USBR United States Bureau of Reclamation
VOF Volume-of-fluid method
WES Waterways Experiment Station, United States Army Corps of Engineers

Appendix A. Numerical Implementation

The sub-grid bubble model (SGBM) is encompassed in an OpenFOAM® library that
compiles separately. The base solver (interFoam) code had minor changes: a bubble buoy-
ancy term is added to the RANS momentum Equation (2), and two calls initiate and
re-calculate the SGBM. All data and calculations are comprised in a ‘bubble model’ class
object created according to the parameters and settings of an input file.

At each time-step, a set of operations is performed sequentially:

(i) identify the entrainment surface cells (A4);
(ii) inter-group transfers;
(iii) bubble entrainment (14);
(iv) bubble transport (15);
(v) turbulence;
(vi) momentum Equation (2).

Appendix B. Air-Bubble Entrainment Surface Detection

A new method locates bubble entrainment at a layer of cells defined by a VOF fraction
value (αent). Relying only on fields operations instead of geometric calculations, it proves
to be effective and very fast. Bubble entrainment occurs at a single layer of cells—named
top layer (TL)—just below an iso-surface (ES) defined by a specified VOF fraction value
(αent). The following steps determine the entrainment layer:

1. create a αent comparative binary function (A1) for all domains.

ψcell =

{
0, α < αent (above ES)
1, α ≥ αent (below ES)

(A1)

2. Linear interpolate ψcell to the faces (ψ f ace) and calculate the face area-weighted average
for each cell (A2). A f is the cell face area. A second binary function arises (A3) that
selects the top layer (TL) of cells below ES.

ψcell
f =

∑
f aces
f ψ f ace

f A f

∑
f aces
f A f

(A2)

ψcell
TL =

0, ψcell
f
≥ 1 (below TL)

1, ψcell
f

< 1 (TL and above)
(A3)
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3. Finally, a domain mask (A4) is found, which identifies the single layer of cells where
bubble entrainment takes place.

maskcell
E = ψcell ψcell

TL =

{
0 (not entrainment layer cells)
1 (entrainment layer cells)

(A4)
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