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Abstract. This paper describes the use of diffractive optical elements (DOEs) for metrological 

traceable geometrical testing of high focal length cameras applied in the observation of large-

scale structures. DOEs and related mathematical models are briefly explained. Laboratorial 

activities and results are described for the case of a high focal length camera used for long-

distance displacement measurement of a long-span (2278 m) suspension bridge. 

1.  Introduction 

The use of digital images for dimensional and geometrical measurements is increasing both in Science 

and Industry due to the technological developments occurred over the past decades in digital cameras 

and computers, which are now more accessible, reliable and with higher performance [1]. A camera  

permits a high quantity of information in a single image, including the dimension and geometrical 

shape of the observed object within a reduced timeframe interval, without contact, using a robust, real 

time automatized procedure. 

In order to achieve high accuracy measurements, cameras are subjected to geometrical testing in 

order to estimate their intrinsic parameters – focal length, principal point image coordinates and 

distortion coefficients – which are required to be used as input quantities in the measurement process, 

with a direct impact on the metrological quality of the measurand. 

In areas such as Photogrammetry and Computer Vision, which usually deals with reduced or 

normal focal length cameras (lower than 100 mm), this task is accomplished by conventional methods 

[2-5] supported in reference patterns or points. However, in the case of high focal length cameras, 

these methods often proved to be numerically unstable, providing unrealistic estimates for the intrinsic 

parameters. To overcome this limitation, several alternative approaches [6-7] have recently been 

proposed, e.g., the use of diffractive optical elements or DOEs. 

This paper presents an innovative approach based on the use of DOEs to establish an accurate 

metrological traceability for geometrical testing of high focal length cameras, considering that this 

method has simplified setup requirements, if compared with laboratorial testing using high accuracy 

goniometers, and is more accurate than the complex approach of field testing with reference points [6]. 

Following a brief description about the geometrical testing of cameras using DOEs, the paper presents 

its application in the characterization of a high focal length (600 mm) camera used for displacement 

measurement in a long-span (2278 m) suspension bridge: the 25
th
 of April Bridge (P25A), in Lisbon 

(Portugal). Estimates and measurement uncertainties, obtained by a Monte Carlo Method [8] in a           

non-linear, multivariable and complex optimization process, are discussed and a sensitivity analysis is 

performed to identify the main contributions for the measurement uncertainty evaluation. 
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2.  Camera geometrical testing by the DOE method 

The DOE method is supported in a collimated laser beam which passes through a DOE, creating a 

known spatial pattern of diffraction dots in the camera’s focal plane. The DOE, usually a diffraction 

grating, has a complex microstructure with two or several depth levels produced by photolithography, 

which leads to a high accuracy spatial period. 

The knowledge of the laser wavelength, the DOE spatial period and the diffraction dots image 

coordinates is used to determine the camera’s intrinsic parameters – focal length, principal point image 

coordinates and distortion coefficients – through a non-linear optimization process which aims at the 

minimization of the following function [7] 

 min𝑚 ‖[
𝑢̂ − 𝑢0

𝑣 − 𝑣0
] − 𝑓 [

𝑥
𝑦] [1 + 𝑘1 ∙ (𝑥2 + 𝑦2) + ⋯ ]‖

2

 (1) 

being the unknown variables described m given by the following vector,  

 𝑚 = [𝑓, 𝑢0, 𝑣0, 𝑘1, 𝜔, 𝜓, 𝜅, 𝛼, 𝛽] (2) 

where (𝑢,̂ 𝑣) and (𝑥, 𝑦) are, respectively, the diffraction dots distorted and ideal image coordinates, 

f is the camera’s focal length, (𝑢0, 𝑣0) are the principal point image coordinates, 𝑘1 is the first-order 

radial distortion coefficient, (𝜔, 𝜓, 𝜅) are the camera’s orientation Euler angles and (𝛼, 𝛽) are the 

DOE orientation angles with respect to the collimated laser beam coordinate system. 

This method has proven to be suitable for the geometrical characterization of reduced focal length 

cameras [7]. However, no information is available about its application to high focal length cameras, 

thus justifying this study. This type of cameras is quite relevant for long-distance observation of  

large-scale structures since they contribute to a high displacement measurement sensitivity. 

3.  Experimental setup 

Based on the main features of the tested camera (see Table 1), an experimental setup was developed in 

a laboratorial optical bench for the implementation of the DOE method, as shown in Figure 1.  

 
Table 1. Camera components 
  

Component Description 

Image sensor Visible and near-infrared CCD; 7.4 µm squared pixel; (1920 × 1080) pixels 

Frame grabber PCMCIA interface; Imperx Framelink Application 

Telephoto lens Sigma, 300 mm/2.8 APO EX DG 

Optical converter Sigma, APO 2× EX DG 

 

In a first stage, the experimental testing was made only with the 300 mm lens and in a second stage 

with the converter assembled in order to evaluate the influence of this component. Due to a manual 

infinity focus adjustment ring on the lens, additional studies were also performed – image acquisition 

with different focus positions – to determine its impact on the intrinsic parameters repeatability. 

The DOE selected for this study was a diffraction grating (Holoeye, model DE-R-241, 8 mm 

diameter and a thickness of 1.2 mm) capable of producing a 21 × 21 dots matrix pattern, with a total 

diffraction angle of 4.8º and a spatial period estimate equal to 152.4 µm. This grating is optimized for 

a laser wavelength of 635 nm, which results in the lowest intensity increase (about 0.3%) of the central 

(zero order) diffraction spot. Since the total diffraction angle produced by the diffraction grating was 

higher than the camera’s field of view, not all of the diffraction orders were observed, as shown in 

Figures 2 and 3. 

The main operational concerns were related to laser beam attenuation by the use of a neutral filter 

(to avoid saturation and sensor damage) and the optical alignment which has a direct impact on the  
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profile quality of the diffraction orders irradiance (absence of unwanted effects such as defocusing, 

reflections, diffraction fringes, non-collimated and non-Gaussian beam). 

 

 
 
Figure 1. Experimental setup for the laboratorial implementation of the DOE method. 

 

 

 

 

Figure 2. Observed diffraction pattern for the 

telephoto lens (without converter assembly). 

 Figure 3. Observed diffraction pattern for the 

telephoto lens and converter assembly. 

 

The obtained images were subjected to digital processing – thresholding for binary conversion, 

followed by opening morphological operation with a disk as the structuring element and Gaussian 

adjustment – aiming at the determination of the dots image coordinates. The obtained estimates were 

used as input quantities, as well as the laser wavelength and the diffraction grating spatial period 

estimates, in a non-linear optimization process. 

This calculation task was supported in the Nelder-Mead simplex algorithm [9] dedicated to 

multivariable functions, such as equations (1) and (2), using a direct search method in which the 

calculation of numerical or analytical gradients are not required. Initial values for the unknown 

variables were defined based on nominal or approximated values, and were kept constant for both the 

two studied cases (300 mm or 600 mm focal length assemblies). A 10
-6

 pixel
2
 stopping criterion was 

defined for the objective function given by equations (1) and (2). 

1 – Laser (λ = 633 nm) 

2 – Neutral filter 
3 – Mirror 

4 – Spatial filter 

5 – Reference lens 
6 – Aperture 

7 – Diffraction grating 

8 – Mirror 
9 – Tested camera 

10 – Computer 

11 – Camera support 
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4.  Results and discussion 

Tables 2 and 3 summarize the obtained results – average values and experimental standard 

deviations – for the camera’s intrinsic parameters, noticing that a total of five images of the diffraction 

pattern were acquired for each infinity focus position. With respect to the lens distortion, only the  

first-order radial distortion coefficient was accounted in equations (1) and (2), since this type of optical 

aberration is known to be reduced for the case of high focal length lenses. 

 
Table 2. Focal length and first-order radial distortion coefficient. 

    

Intrinsic 

parameter 

f 

/ mm 

k1 

/ 10
-6

 m
-2

 

∞ focus 

position 
Lens 

Lens & 

converter 
Lens 

Lens & 

converter 

A 300.1±1.4 590.9±2.2 110±32 -102±51 

B 300.9±0.5 604.8±4.9 69±9 76±32 

C 301.7±0.2 597.0±2.1 80±11 9±17 

 
Table 3. Principal point image coordinates. 

    

Intrinsic 

parameter 

u0 

/ pixel 

v0 

/ pixel 

∞ focus 

position 
Lens 

Lens & 

converter 
Lens 

Lens & 

converter 

A 532.6±2.4 566.2±2.1 996.5±2.9 954.2±3.7 

B 536.3±0.8 533.8±1.7 1012.7±1.1 965.4±2.5 

C 534.5±1.0 546.9±2.2 1012.5±1.3 963.3±4.4 

 

The results obtained for the focal length parameter are closer to the expected nominal values, 

however, in the case where the converter is used, the deviation to the 600 mm nominal value and the 

corresponding experimental standard deviations are higher. This is justified by the reduced number of 

observed diffraction dots and by the mechanical assembly of the two optical components. The 

influence of the infinity focus position is also more noticed when the converter is mounted on the lens, 

namely, for position B.    

Regarding the first-order radial distortion coefficient, estimates varied between -102×10
-6 

m
-2

 and 

110×10
-6

 m
-2

 with experimental standard deviations ranging from 9×10
-6 

m
-2

 up to 51×10
-6 

m
-2

. 

Although having a wide variation interval, the estimates magnitude is insufficient to affect the 

accuracy of the diffraction dot’s image coordinates (lower than 0.01 pixel). This result confirms the 

reduced effect of radial distortion in high focal length lenses and allows the removal of this strongly 

non-linear component from the optimization processes (intrinsic parameterization and displacement 

measurement), thus increasing its numerical stability. Radial distortion differences between the two 

tested assemblies are mainly noticed in the extreme focus positions (A and C), with a reduced impact 

on the image coordinates accuracy. 

Estimates for the principal point image coordinate in the x-direction are close to the expected 540 

pixel nominal value, for both tested assemblies, and the magnitude of the corresponding experimental 

standard deviations is also similar for the studied infinity focus positions. A minimum dispersion value 

is always obtained for the intermediate focus position (B) for both principal point image coordinates 

(u0, v0).  

Significant differences were found between the two tested assemblies in the estimates of the 

principal point image coordinate in the y-direction (v0), noticing that the lens and converter assembly 
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presents results close to the 960 pixel nominal value. This can be justified by incorrect centering of the 

observed diffraction pattern in the y-direction of the camera without the converter, as seen in Figure 2, 

where the zero-order diffraction dot is not correctly centered in the middle of the image acquired. 

Due to the non-linear nature of the optimization process, a Monte Carlo method [8] was applied for 

the determination of the measurement uncertainty of the estimated intrinsic parameters. This 

computational algorithm was developed in Matlab using validated functions and the Mersenne Twister 

pseudorandom number generator [10]. For each simulation, a total of 10
4
 trials were performed in 

order to obtain convergent solutions. For this case, an iterative procedure was implemented and 

convergent solutions were obtained considering that the result of a Monte Carlo simulation updated 

the initial values of the following non-linear optimization. 

The standard uncertainties related to the diffraction dot’s image coordinates (ranging from ¼ up to 

¾ of a pixel) and to the diffraction grating spatial period (0.15 µm) were propagated to the output 

quantities (the laser wavelength quantity was considered constant). The 95% expanded uncertainty of 

the focal length parameter was found between 0.75 mm and 1.9 mm. Regarding the principal point 

coordinates, the 95% expanded uncertainty ranged between 0.06 pixel and 0.21 pixel. Correlation 

effects were noticed between intrinsic parameters (correlation coefficients between -0.35 and -0.25). 

The performed sensitivity analysis revealed the diffraction dot’s image coordinates as the major 

contribution (close to 75%) for the output measurement uncertainty, reflecting the impact of input 

uncertainties components related to digital image processing and laser beam collimation quality. 

The studied camera (with the 300 mm lens and converter assembly) was later applied in the 

measurement of the displacement of the main span central section of the P25A Bridge (Fig. 4 and 5). 

 

 

In this approach, the camera was rigidly connected to the lower region of the stiffness beam and 

orientated towards the tower foundation, establishing an estimated observation distance of 510 m. A 

geometric referential composed by four active targets, with known world coordinates, was placed in a 

bridge tower foundation (Figure 4), visible for the camera range in the main span central section. 

In this condition, changes of the camera’s projection center world coordinates are considered 

representative of the bridge displacement and can be determined by non-linear optimization using as 

input quantities the targets image and world coordinates (obtained from digital image processing and 

previous laboratory dimensional testing, respectively) and the camera’s intrinsic parameters (by 

previous laboratory testing, as described in this paper).  

Maximum vertical and transverse displacements of 1.62 m and 0.29 m were measured with a 95% 

expanded uncertainty comprised between 4 mm and 7 mm, for the observed environmental conditions 

(Summer and Winter measurement campaigns). For this case, the performed sensitivity analysis 

revealed that the contribution of the intrinsic parameters (focal length and principal point image 

coordinates) ranged from 15% up to 24% of displacement measurement uncertainty. 

 

 

 

Figure 4.  P25A suspension bridge in Lisbon 

(Portugal). 

 Figure 5.  Camera installed in the P25A suspension 

bridge main span central section. 

Targets 

Camera 
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5.  Conclusions 

This study enabled the conclusion that the DOE method is suitable for metrological traceable 

geometrical testing of high focal length cameras, at least, up to 600 mm, without any numerical 

instability in the optimization process, as it often occurs when conventional methods are applied. 

Radial distortion revealed to be negligible not affecting significantly the image coordinates accuracy. 

This in turn permitted the removal of this strongly non-linear component from the optimization, 

therefore, contributing for the achieved numerical stability of the parameterization and measurement 

processes. 

The camera with the 600 mm focal length assembly was used in the structural observation of the 

P25A Bridge. Although the obtained estimates and measurement uncertainties of the camera’s 

intrinsic parameters contributed for about 15% to 24% of the final displacement accuracy, other input 

quantities of the mathematical model such as the targets image coordinates (55% - 58%) and target 

world coordinates (18% - 30%) coordinates showed higher contributions to the output uncertainty. 

The DOE method can now be used to identify the occurrence of any damage or drift effect in the 

camera, namely, in permanent observation scenarios, due to the long-term exposure of the camera to 

an aggressive dynamic environment. 
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