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STRUCTURAL ANALYSIS OF GRAVITY DAMS CONSIDERING NON-LINEAR 
BEHAVIOR IN THE DAM-FOUNDATION INTERFACE 

Development of a 3DFE code using MATLAB: DamSlide3D 

Abstract 

The main objective of this work is the development and presentation of a three-dimensional finite 

element program, DamSlide3D, to study the behavior of gravity dams for scenarios of sliding through 

the dam-foundation interface. The DamSlide3D, developed using MATLAB, includes cube-type finite 

elements with 20 nodal points ("serendipity") and finite interface elements with 16 nodal points (joint 

elements).  

Initially, we present the fundamental equations of Solid Mechanics, referring to the main simplified 

hypotheses considered in the computationally implemented formulation, which is presented 

mathematically as a problem of boundary values using a displacement formulation. For the structure 

body and for the foundation, the hypothesis of isotropic materials with linear elastic behavior is 

assumed and for the interfaces the hypothesis of non-linear behavior is considered using the Mohr-

Coulomb criterion. 

The DamSlide3D input data is provided in an excel file and includes structure geometry data, material 

properties, support conditions and load parameters. As output, the program graphically displays the 

stress field (principal stresses) and the displacement field (deformed structure). 

The program was verified throughout three numerical tests with known theoretical solutions. In these 

tests a simple structure was used, composed by a column discretized in 3DFE. At the contact surface 

between the column and the base (horizontal surface) it was considered an interface discretized using 

joint finite elements.  A plane surface that crosses the column with a given slope is also considered, 

discretized using the same type of joint finite elements. In the first test, the field of elastic stresses at 

the base, due to self-weight (SW) and hydrostatic pressure (HP), was compared with the theoretical 

results. In the second test the nonlinear column response was studied for different values of the 

friction angle at the inclined interface (in this test the structure is only submitted to SW). In the third 

test, for the main SW + HP loads, the stability of the column is studied for a variation of the friction 

angle, and for a variation of the water level. In these three numerical tests the results were always 

consistent with the theoretical solutions. 

Finally, as an example of application, a gravity dam structural behavior was analyzed considering the 

non-linear behavior in the dam-foundation interface. The dam was subjected to self-weight and 

hydrostatic pressure. A parametric study was developed in order to study the dam stability for different 

values of water level and friction angle. 

Keywords: Gravity dam / 3D solid finite elements / Joint finite elements / Interface non-linear 

behavior / Stress-transfer / Mohr-Coulomb failure criterion / Dam-foundation 

interface friction angle 
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ANÁLISE ESTRUTURAL DE BARRAGENS GRAVIDADE CONSIDERANDO 
COMPORTAMENTO NÃO LINEAR NA INTERFACE BARRAGEM-FUNDAÇÃO 

Desenvolvimento de um programa de EF3D, em MATLAB: DamSlide3D 

Resumo 

O principal objetivo deste trabalho é o desenvolvimento e apresentação de um programa de 

elementos finitos tridimensionais, DamSlide3D, para estudar o comportamento de barragens 

gravidade considerando o efeito de eventuais roturas ao nível da interface barragem-fundação, por 

tração e corte. Utilizou-se o MATLAB para desenvolver o pretendido programa, tendo-se adotado 

elementos finitos tridimensionais tipo cubo com 20 pontos nodais (“serendipity”) e elementos finitos de 

interface com 16 pontos nodais (elementos de junta).  

Inicialmente, apresentam-se as equações fundamentais da mecânica dos sólidos, referindo as 

principais hipóteses simplificativas consideradas na formulação implementada computacionalmente, a 

qual é apresentada matematicamente como um problema de valores de fronteira usando uma 

formulação de deslocamento. Para o corpo da estrutura e para a fundação admite-se a hipótese de 

materiais isotrópicos com comportamento elástico linear e para as interfaces admite-se a hipótese de 

comportamento não linear considerando o critério de Mohr-Coulomb.  

Relativamente ao programa desenvolvido, os dados de input são fornecidos num ficheiro de EXCEL e 

incluem a geometria da estrutura, as propriedades dos materiais, as condições de apoio e os 

parâmetros de carga. Como output, o programa permite visualizar graficamente o campo de tensões 

e o campo de deslocamento (estrutura deformada).  

O programa foi previamente verificado usando três testes numéricos com soluções teóricas 

conhecidas. Nesses testes foi utilizada uma estrutura simples, composta por um pilar discretizado em 

EF3D sobre uma base, também discretizada em EF3D, utilizando elementos de interface para 

discretizar a superfície de contacto entre o pilar e a base (superfície horizontal) e também para 

discretizar uma superfície plana que atravessa o pilar com uma dada inclinação. No primeiro teste, o 

campo de tensões elásticas na base, devido ao peso próprio (PP) e à pressão hidrostática (PH), foi 

comparado com os resultados teóricos. No segundo teste foi estudada a resposta não linear do pilar 

para diferentes valores do ângulo de atrito na interface inclinada (neste teste a estrutura é apenas 

submetida ao PP). Finalmente, no terceiro teste, para as cargas principais PP+PH, a estabilidade do 

pilar é estudada, inicialmente, para uma variação do ângulo de atrito, e, posteriormente, para uma 

variação do nível da água. Nestes três testes numéricos os resultados foram sempre coerentes com 

as soluções teóricas. 

Finalmente, como exemplo de aplicação, foi estudado o comportamento estrutural de uma barragem 

gravidade tendo-se analisado, em particular, o comportamento não linear ao nível da interface 

barragem-fundação para a combinação PP+PH. Foi efetuado um estudo paramétrico para analisar a 

estabilidade da barragem para diferentes valores do nível de água e do ângulo de atrito. 

Palavras-chave: Barragem de gravidade / Elementos finitos sólidos 3D / Elementos finitos de junta 

com comportamento não-linear / Método de stress-transfer / Critério de rotura de 

Mohr-Coulomb / Ângulo de atrito na interface barragem-fundação 
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1 | Introduction 

“The complex elasticity problems encountered when intending to determine the stresses in 

dams and shells rarely can be resolved by rigorous methods from the classic mathematical 

analysis. However, there are many means to approach the problem. The first is the study in a 

combined model with experimental stress determination methods (…) The second is the 

numerical calculus” (Zienkiewicz, O.C., 1961) 

 

Early on, even before the development of the computational power which propelled the Finite Element 

Method (FEM), Zienkiewicz, in a LNEC memory, was emphasizing the importance of numerical 

methods in the process of ascertaining a dam behavior. Likewise, Arantes e Oliveira, a reference in 

numerical methods (Oliveira,E.R.A. 1964), also in a LNEC memory about structural calculus 

automation, said the following: 

“The difficulty in the manual resolution of these systems (from the force and displacement 

methods) from a certain order always been a tremendous obstacle, so strong it was not 

possible to practically accomplish the theoretical calculus schemes.” (Oliveira, E.R.A., 1964) 

Therefore, the importance of having a powerful calculation tool to aid in the simulation of structural 

behavior through numerical methods was something identified a long time ago. With that thought in 

mind, this report main goal is to present a 3DFE program named DamSlide3D, developed in 

MATLAB, for the structural analysis of gravity dams considering the non-linear behavior of the 

dam-foundation interface, using joint elements. A gravity dam is adopted as a case study to show the 

potential and main capabilities of the DamSlide3D.  

DamSlide3D requires the use of 3DFE meshes with cubic elements of 20 nodes (for the structure and 

foundation) and joint elements, with 16 nodes, for the interface. The linear elastic behavior hypothesis 

is assumed for dam body and foundation, and for the interface is assumed a non-linear behavior: 

opening and sliding can occur at the joint elements used in the interface discretization. 

This program is intended to receive as inputs: the structure geometry, material properties, the support 

conditions and the loading state to which the structure is subjected. As outputs, the program allows 

the visualization of the stress field, displacement field and deformed shape using 2D and 3D 

interactive graphics. 

In this report, firstly, the fundamental equations of solid mechanics are described for the general case 

of 3D equilibria. The displacements formulation is presented and the strong form of the Navier 

equation is derived. Then, the FEM fundamentals are presented, referring the conversion of the strong 

form to the weak form used in the FEM formulation. The formulation and numerical implementation 

details of the cubic finite element of 20 nodes and correspondent joint element of 16 nodes (used in 

the DamSlide3D) are presented. The implementation, in DamSlide3D, of the stress-transfer 
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technique used to simulate the non-linear behavior at the interface elements, considering the Mohr-

Coulomb criterion, is also described. 

The DamSlide3D was verified using three numerical tests with known theoretical solutions. In these 

tests a simple structure was used, composed by a column discretized in 3DFE. At the contact surface 

between the column and the base (horizontal surface) it was considered an interface discretized using 

joint finite elements.  A plane surface that crosses the column with a given slope is also considered, 

discretized using the same type of joint finite elements. In the first test, the field of elastic stresses at 

the base, due to self-weight (SW) and hydrostatic pressure (HP), was compared with the theoretical 

results. In the second test, the nonlinear column behavior was studied for different values of the 

friction angle at the inclined interface (in this test the structure is only submitted to SW). Finally, in the 

third test, for the main SW + HP loads, the column stability is studied for a variation of the friction 

angle  at the base joint, and for a water level variation.  

Finally, as an example of application, the structural behavior of a gravity dam is analyzed considering 

the non-linear behavior at the dam-foundation interface. The dam was subjected to the self-weight and 

hydrostatic pressure. A parametric study was developed in order to study the dam stability for different 

values of water level and for different values of the interface friction angle. 

Finally, the main conclusions and perspectives for future studies are presented. 
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2 | Solid Mechanics. Fundamental Equations  

2.1 Introductory considerations 

The main objective of structural analysis is to obtain an approximation of the strain and stress fields of 

a given structure, knowing its geometry, support conditions, material properties and applied loads. In 

this chapter there will be a brief presentation of solid mechanics basic equations: the equilibrium 

equations, the strain-displacements equations and the constitutive equations will be addressed as well 

as the Navier’s equation expressing the relationship between body forces and displacement 

derivatives. 

To describe the state of stress at a given point P in the interior of a solid (as well as the state of strain) 

is necessary the resource to the concept of tensor (DoITPoMS; 2000). 

Scalar fields, like temperature, are represented, in each point P, by a number. A displacement field is 

a vector field that is represented, in each point, by a vector, with three components in a 3D space. A 

stress field is a tensor field that is represented in each point P by a second order tensor, which, for a 

given orthogonal coordinate system x1, x2 and x3, is represented by a 3x3 matrix,  , the stress matrix. 

Similarly, the state of strain is also mathematically characterized, in each point, by a second order 

tensor represented by a 3x3 matrix in a 3D space. In Figure 2.1 these main solid mechanics variables 

(DoITPoMS; 2000) are schematically represented. 

The state of stress at a point P is well defined if we can know the stress vector at any plane surface 

passing by P. In practice, it is only necessary to know the stress vectors in three mutually orthogonal 

cutting surfaces and, consequently, the state of stress at P is perfectly defined through a matrix which, 

at each line, holds the components of the three referred stress vectors. Correspondingly, at any point, 

the state of strain is perfectly defined by 3 vectors associated with 3 orthogonal fibers. Figure 2.1 

presents graphically the abovementioned concepts (DoITPoMS; 2000). 

 

Figure 2.1 – Displacement components, state of stress and state of strain in a point inside a solid (adapted from 
Oliveira, S., 2016) 
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2.2 Structural analysis: problem statement 

In structural analysis, considering the linear elastic hypothesis and static loads, a computational 

solution can be achieved throughout the equilibrium equation k u f , where k u  represents the 

internal forces (e.g. elastic restitution forces) and f  the external forces. In this equation, the 

displacements ( u ) are proportional to the applied forces ( f ). The matrix k  represents the structure 

stiffness, and is usually computed using the linear elasticity hypothesis. Figure 2.2 presents a scheme 

showing that the equation k u f arises from the use of Finite Element Method (FEM) to solve the 

Navier’s equation, a fundamental equation of solid mechanics. 

 

 

Figure 2.2 – From the Navier equation to the numerical solution using FEM (adapted from Oliveira, S.; 2016) 

 

 

In structural computational analysis, the main goal is to determine the displacement, strain and stress 

fields which result from the action of external forces. Figure 2.3 schematically presents which variables 

are involved in a solid mechanics problem. 

 

 

Navier’s equation 
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Inputs: 

- Structural geometry 

- Material properties 

- Body forces 

- Boundary conditions: 

     Hydrostatic pressure at the upstream face  

                  Prescribed null displacements at the base 

Outputs: 

- Displacement field 

- Strain field 

- Stress field 

 

Figure 2.3 – Solid mechanics. Stablishing the problem for the general 3D case 

 

2.3 The strain-displacement relations 

The normal strain is the measure of how the displacement changes through space, which can be seen 

as a displacement gradient. Physically, a normal strain component is the unit change in length of a line 

element (fiber). Figure 2.4 illustrates, for 2D case, the concept of normal strain components and shear 

strain components (for small deformations we also have small angular variations so it can be assumed 

tan( )   and tan( )  , and we can write 1 2u / x    , and 2 1u / x     ) (DES-UA; 2008). 

a.                                                                                 b. 

                                

Figure 2.4 – Normal strain components (on the left) and shear strain components (on the right), adapted from 
(Oliveira, S.; 2016) 
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Figure 2.4a. represents schematically the concept of normal strain components at a point P, only with 

fiber length variation, where 
1

11

1

u

x


 


 and 

2
22

2

u

x


 


. 

Figure 2.4b. represents schematically the concept of shear strain components at P, that is related with 

the angle variation of perpendicular material lines, being
1 2

12 21

2 1

u u1 1
( )

x x2 2

  
         

. 

For the 3D case, the strain-displacement relationships are displayed in Figure 2.5. 

  

 

Figure 2.5 – Strains-displacements relation (adapted from Oliveira, S.; 2016) 

In Figure 2.5, the components of the strain tensor are arranged into a vector (the strain tensor is 

symmetric). Therefore, the strain displacement relation, for the 3D case, is given by the expression

L u  , where L  is a linear differential operator (Zienkiewicz, O. C. et al., 2005). 

2.4 The stress-strain relation. Constitutive equation 

Considering an isotropic and homogeneous material subjected to uniaxial tensile stress, one can 

expect it to extend towards the axis direction and to contract transversally. In linear elasticity, stresses 

are proportional to strains, being the Young’s Modulus (E) the proportionality constant. The proportion 

of contraction relative to the normal extension is given by the Poisson ratio (). (DES-UA, 2015) 

The abovementioned relation, also known as elasticity equation or Hooke’s law, can be written as 

follows 

11 11 22 33 11

1
,

E E


          (1) 

 

11 

x1 

x2 

x3 

11 

33 
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For a 3D equilibrium the constitutive equations are presented in Figure 2.6, where the elasticity matrix 

D , for isotropic materials, is expressed in terms of E and , and, also, in terms of the bulk modulus 

v

E
K

3(1 2 )


 
 and the shear modulus   

E
G

2(1 )



. 

 

  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 – Stress-Strain relation. Isotropic material (adapted from Oliveira, S.; 2016) 

 

2.5 Equilibrium equation. The relation between stress spatial 

derivatives and body forces 

In Figure 2.7 is shown the equilibrium, in x1 direction, of a 3D infinitesimal material element (cubic 

element of volume dx1dx2dx3) considering the stress spatial variation and the resultant forces at the 

infinitesimal cube faces. In the figure, f 1 represents the body force in x1 direction. It is relevant to note 

that f1 could represent gravitational forces as well as inertial and damping forces. 

sym. 
sym. 
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Figure 2.7 – Normal and shear stresses along axis x1, acting on a differential element (adapted from 
Oliveira, S.; 2016). 

The equilibrium equation for 3D case is represented in Figure 2.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8 – Equilibrium equations. The stress-body forces relation (adapted from Oliveira, S.; 2016) 

2.6 Navier’s equation 

In Figure 2.9 it can be noticed that it is possible to replace   by Lu  in the elasticity equation and that 

DLu  can replace   in the equilibrium equation. So it results the Navier’s equation, which is a 
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fundamental equation of solid mechanics (displacement formulation)
1
. The Navier’s equation 

establishes a relation between body forces and displacement derivatives.  

 

 

Figure 2.9 – Main equations of Solid Mechanics (adapted from Oliveira, S., 2016) 

 

For engineering structures it is not possible to solve analytically the correspondent boundary values 

problem involving the Navier equation (differential equation with second order partial derivatives), 

consequently, it is necessary the use of numerical methods like the FEM. 

The next section briefly explains how the Navier’s equation (differential equation, or strong form) can 

be transformed into an integral equation, known as the weak form, used for obtaining the numerical 

solution by FEM. 

2.7 Weak formulation 

As referred above, in order to achieve numerical solutions for Navier’s differential equation using the 

FEM, it is convenient to find an integral form (weak form) of the equation 
TL (DL ) f 0u    , which is 

a differential equation, of the general form F(x)=0, that should be verified in the domain (structure’s 

                                                           

1
 For a stress formulation the fundamental equation would be Beltrami-Mitchell’s equation. 
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volume) for some predefined boundary conditions. Through the application of the Fundamental 

Lemma of Calculus of Variations (FLCV), which is the basis of the weighted residual method, function 

F(x) is zero in its domain if the integral of F(x) multiplied by any trial function = (x)v v  is equal to 

zero (eq.3) 

(x) 0, x (x) x 0 , for any trial function = (x) C     V

V

F V F dv v v  (3) 

Consequently, 

T T
V

V

dV 0L DL f.  , C( u )

Boundary Conditions

     



v v

 (4) 

Using the Green-Gauss theorem, equation 4 becomes,  

T T

V

V V

(L ) DL dV f dVu  , C   v v v  (5) 

There are three last notes which deserve mentioning. Firstly, it is noticeable that equation 5 is free of 

second order derivatives. There are only first order partial derivatives from the unknown function u . 

Secondly, it is important to remind that one can directly deduce the integral form of Navier’s Equation 

by applying the Principle of Virtual Works (PVW). Finally, the trial functions (v ) correspond to the 

concept of virtual displacement field used when the PVW is evoked. 
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3 | Finite Element Method. Solid Finite Elements and 
correspondent Interface Elements 

3.1 Introductory considerations 

In structural analysis, the numerical solution of the boundary value problem involving the Navier’s 

equation is usually performed using a discretization into finite elements (FE). The structure is divided 

into elements of finite volume (FE), connected with each other by nodal points. The goal is to compute 

the displacement vectors at the nodal points considered. 

The FEM’s main idea is to consider that the displacement field  31 2u=u x ,x ,x  may be achieved 

through a linear combination of interpolation functions or shape functions N . At a given point P within 

a finite element, the displacement vector Pu  can be obtained using the values PN  of the interpolation 

functions in P, and the values of the element nodal displacements (
eu ):

e

P PN u  u . It should be 

noticed that 
eu  is a column vector with the displacement values at the element nodal points. 

For the 3D cubic element of 20 nodes, Pu  becomes: 

e 1

1

e 1

2

e 1

3

e 2

1

1 1 2 20 e 2

e 2

P P 2 1 2 20 e 2

3

1 2 203 PP

e 20

1

e 20

2

e 20

3

u

u

u

u
N 0 0 N 0 0 N 0 0

u
N u 0 N 0 0 N 0 0 N 0

u
0 0 N 0 0 N 0 0 N

u

u

u

 
 
 
 
 
 

     
       
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 
 
 
  

,

,

,

,

,

,

,

,

,

u ...

u u ...

...u

 (6) 

Considering that the virtual displacement field within a finite element can also be reached by an 

expression identical to 6, it results 

eNv v  (7) 

Hence, the weak form of Navier’s equation can be written as follows, for a finite element of volume Ve, 

considering expressions 5, 6 and 7 

e e

T e e T ee

V V

DL(Nu )dV (N ) f dV NL(N )        , v v vv  (8) 

Simplifying, by elimination of
e

v , we obtain 



STRUCTURAL ANALYSIS OF GRAVITY DAMS CONSIDERING NON-LINEAR BEHAVIOR IN THE DAM-FOUNDATION INTERFACE 

Development of a 3DFE code using MATLAB: DamSlide3D 

12 LNEC - Proc. 0402/112/2075501 

 
e e

T e T

V V

D(LN)dV u N f dVLN    (9) 

Using the notation B LN for the derivatives of the interpolation functions (Zienkiewicz et al., 2005), 

we can write  

e e

T e T

V V

B DB dVu N f dV   (10) 

or, 

e e eK u F  (11) 

that is known as the equilibrium equation of a finite element, in the algebraic form, where, 

e

e T

V

K B DB dV   - Stiffness matrix of a finite element 

e

e T

V

F N f dV   - Vector of nodal forces (equivalent to the body forces f ) of a finite element 

eu         -    Vector of nodal displacements 

Figure 3.1 schematically presents the use of FEM: a structure discretization in finite elements and the 

introduction of the FEM’s fundamental approximation into the weak form of Navier’s equation to obtain 

the equilibrium equations in the algebraic form.  
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Figure 3.1 – Structural analysis using FEM. Introduction of FEM’s fundamental approximation in the integral form of 
Navier’s equation 
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3.2 Solid finite element of cubic type with 20 nodal points 

For this study, considering a 3D equilibrium analysis, it was decided the use of a 20 nodal points cubic 

element (isoparametric) from the “serendipity” series. Figure 3.2 displays a 3D view of the master 

element used to build the FE models studied in this work.  

Figure 3.2a. presents the local axes and the position of nodal points. On the other hand, Figure 3.2b. 

shows the location of Gauss points.  

 

            a. 

 

             b. 

 

Figure 3.2 – 3D visualizations of the 20 nodal points isoparametric master element. On the left, are represented the 
nodal points and the local axes. On the right, are represented the 27 Gauss Points used (red crosses) 

 

Figure 3.3 displays a 2D top visualization of the master element. This figure illustrates the cube 

dimensions, the location of the GP’s (red in the figure) and their respective influence area (for 

calculate the Gauss weights). 

 
 

Figure 3.3 – 2D top view of the 20 node cubic element. The Gauss points location is represented with red crosses 
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The interpolation function Ni (associated to node i) is equal to 1 at node i and is zero in all other nodes. 

Equation 12 presents the interpolation functions of the cubic element of 20 nodes. 

(i) (i) (i) (i) (i)

i 1 1 3 3 1 1 2 2 3 3

2 (i) (i)

i 1 2 2 3 3

2 (i) (i)

i 2 3 3 1

1
N (1 y y )(1 y y )(y y y y y y 2) (i 1,2,...,8)

8

1
N (1 y )(1 y y )(1 y y ) (i 10,12,14,16)

4

1
N (1 y )(1 y y )(1 y

4

        

     

    1

2 (i) (i)

i 3 1 1 2 2

y ) (i 9,11,13,15)

1
N (1 y )(1 y y )(1 y y ) (i 17,18,19,20)

4







   


      


 (12) 

Where, 

i – Nodal point index. 

(i) (i) (i)

1 2 3y , y and y  – Local coordinates of node i 

1 2 3y , y and y  – Local coordinates of a general point inside the element 

3.3 Interface finite elements 

3.3.1 General considerations 

The elastic properties of the interfaces (Figure 3.4) are the normal stiffness KN and shear stiffness KT, 

which are defined per unit area of the joint. Joints are defined by two faces: a lower face (face 1) and 

an upper face (face 2). In the finite elements discretization the faces are initially coincident and, due to 

the loads, there may be relative displacements between the faces: tangential displacements uT and 

normal displacements uN. 

To estimate the values of KN and KT it can be assumed that there is a joint filling material with a given 

modulus of elasticity E and a distortion modulus G and that the joint has a given thickness fe (denoted 

as fictitious thickness because in numerical models is not represented - the faces of the joint are 

coincident). With this hypothesis one can estimate the normal stiffness of the joint (13) based on the 

formula for calculating the axial stiffness of a column of length L, which is EA / L. In this case of the 

joint, L is replaced by the fictitious thickness of the joint ( fe ) and the unit area (A = 1, stiffness per unit 

area) is considered and thus the normal stiffness of the joint per unit area becomes: 

N fK E e  (13) 

For the shear stiffness, is the same, using now the shear modulus G, being 

T fK G e  (14) 
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                                                                 FEM discretization 

 

                                                       

 

 

Figure 3.4 – Interface element. Relationship between stresses and displacement differences (between interface 
faces). Definition of normal stiffness, KN, and shear stiffness, KT, of a joint. (Oliveira, S., 2016) 
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3.3.2 Interface finite elements with 8 nodes per face 

The interface elements are used to simulate the behavior of discontinuities that represent the contact 

surface between two materials in diaclases, cracks, construction joints in dams, etc. 

The 16 nodes interface finite elements (8 nodes per face) are used to simulate the interaction between 

the two faces of two 20 nodes finite elements that possess two adjacent faces. The interface element 

establishes the “connection” between both faces (8 nodes per face). This kind of interface finite 

element is named “2x8 interface element” (Genésio, M.L.V.P., 1993). 

Figure 3.5 presents a 3D interface finite element with 2x8 nodal points and 3 Degrees of Freedom 

(DoF) per node (48 DoF). The interpolation functions are identical to those used in the 8 nodes 2D 

quadratic finite elements (Equations 15). 

       a. 3D 8x2 nodes interface element                                                 b. Interface element top view 

             

Figure 3.5 – Three dimensional interface element of 2x8 nodes (48 DoF). (a.) 3D view of the interface element. 
(b.) Top view of the interface element 
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 (15) 

 

For every point of the interface element, named P, the constitutive relation between stresses (one 

normal and two shear components in relation to the joint plane) and strains (one normal and two shear 

strain components) can be written according to expression 16, considering a local tri-orthogonal 

coordinates system (
1 2n, t , t  , Figure 3.4), where one of the axes is perpendicular to the joint, and the 

remaining are contained in the tangential plane to the joint, at point P. 
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1 1 1 T1 i

2 2 2 T2 i

N N N N i

D'' '

u eG 0 0 G 0 0

0 G 0 0 G 0 u e

0 0 E 0 0 E u e

 

             
          
      
          
                       

 (16) 

Therefore, 

1 T1T1

2 T2 T2 T i N i

NN N

JD' u'

uK 0 0

0 K 0 u , K G e ,K E e

0 0 K u



     
    
    
    
         

 (17) 

Where, 

T1K  - Shear stiffness towards direction t1, which is contained in the joint’s tangent plane, at 

point P (joint’s stiffness per area unit). 

T2K  - Shear stiffness towards direction t2, perpendicular to t1 and contained in the joint’s 

tangent plane, at point P (joint’s stiffness per area unit). 

NK  - Normal stiffness towards the perpendicular direction of the joint’s tangent plane, at point 

P. 

Generally, KT1=KT2=KT (this hypothesis is valid for an isotropic joint filling material). 

Consequently, for every point P of the joint, the relation between stresses and displacement 

differences (between faces), can be expressed as follows 

P J P' D' u '    (18) 

Where the symbol “ '  ” is used to distinguish the coordinate system at use, which, in this case, is the 

tri-orthogonal t1, t2 and t3 (the t3 direction coincides with the direction of vector n, Figure 3.4). 

Using the interpolation method, vector Pu '  can be written in order to the terms of the displacement 

differences at each interface element node. The bidimensional 8 nodes quadratic shape functions are 

used and the result is the following 
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 (19) 

Equivalently, the equation can be written in the following form.  
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(20) 

or 

e

P Pu ' N u '   (21) 

  



STRUCTURAL ANALYSIS OF GRAVITY DAMS CONSIDERING NON-LINEAR BEHAVIOR IN THE DAM-FOUNDATION INTERFACE 

Development of a 3DFE code using MATLAB: DamSlide3D 

20 LNEC - Proc. 0402/112/2075501 

3.3.3 Coordinates transformation. From the local coordinates system to the global 

coordinates system 

To obtain the interface element stiffness matrix, referred to the global axes, it should be used a 

transformation matrix ( T ), in each of the Gauss points. This transformation matrix is composed by the 

local axes direction cosines relatively to the global axes (x1, x2 and x3). The axes t1 and t2 are coplanar 

with the plane tangent to the joint’s plane and t3 is perpendicular to t1 and t2, at each Gauss point 

(Figure 3.6). 

 

 

  Vectors 
1 2 3t , t and t  calculation: 

1
t - unit vector tangent to y1 (jacobian 

matrix first column at point P); 

3
t - normal unit vector (the jacobian matrix 

two columns vector product); 

2t - unit vector perpendicular to both, 
1t

and 
3t  (vector product 

1 3t t ). This 

vector might not be coincident with y2. 

Figure 3.6 – 3D interface element with 2x8 nodes (48 degrees of freedom). Representation of the three coordinate 
systems used: i) global coordinate system (tri-orthogonal); ii) local coordinate system, y1 and y2 (possibly curved 

and not orthogonal axes) towards the interface element surface; and iii) tri-orthogonal coordinate system defined at 
each point P of the interface elements, in which is established the joint’s constitutive relation through the diagonal 

elasticity matrix JD  (Figure 3.4) 

The transformation matrix T  should be determined for each Gauss point of the interface element. 

This process starts with the calculation of the Jacobian matrix (for each Gauss point). The Jacobian 

matrix contains the directions of the local axes (y1 and y2) of the tangent plane to the joint, at each 

Gauss point. The result is the following 3x2 matrix  

Global coordinates for
the joint's nodal points.  

1 1

e1 e8

1 211 12 1 1

e1 e8
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e1 e8(3x2)
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     
   
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    P

(8 2)

 (22) 

The interpolation functions Ni and the corresponding derivatives i jN / y  , are equal to those used in 

the 8 nodes quadratic 2D elements. An interface element is formed by two faces of the 3D elements 

(with 8 nodes each). Figure 3.7 displays the local coordinates of nodal points and Gauss points of the 

presented interface element, as well as the Gauss weights. 
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                a. 

 

     b. 

Local nodal coordinates 

 

Node (i) y1
(i) y2

(i) 

1 1 -1 

2 1 1 

3 -1 1 

4 -1 -1 

5 1 0 

6 0 1 

7 -1 0 

8 0 -1 
 

c. Gauss points local coordinates and Gauss weights 

W1=5/9  W2=8/9  a = 3 5  

GP Type y1 y2 AGP  GP Type y1 y2 AGP  GP Type y1 y2 AGP 

1 

Corner 

a -a 

W1
2 

 5 

Side 

a 0 

W1.W2 

 

9 Center 0 0 W2
2 

2 a a  6 0 a  

3 -a a  7 -a 0  

4 -a -a  8 0 -a  
 

 

Figure 3.7 – Interface element. (a.) Numbering of nodal points and Gauss points local coordinates (b.) Nodal points 
local coordinates. Gauss points local coordinates and corresponding influence area (weight) used on the stiffness 

matrix numerical integration  

This way, the Jacobian matrix, for a given Gauss point, is displayed in equation 23 

11 12

PG 21 22

31 32

J J

J J J

J J

 
 


 
  

 (23) 

Considering the above Jacobian matrix, one can determine a tri-orthogonal coordinate system, with 

versors 1 2 3T , T and T   (unit vectors), using the following three equations. 

11 21 31
1

2 2 2

11 21 31

(J , J , J )
T

J J J


 
 (24) 

3
3 3 11 21 31 12 22 32

3

t
T t (J , J , J ) (J , J , J )

t
 ,    (25) 

2 3 1T T T   (26) 

N3 N2

N1N4 N8

N5

N6

N7 y
1

y
2

1 1

v3/5 v3/5

1

1

v3/5

v3/5

8/9 5/95/9

5/9

8/9

5/9

3 / 5

  

3 / 5

  

3 / 5

  

3 / 5

  



STRUCTURAL ANALYSIS OF GRAVITY DAMS CONSIDERING NON-LINEAR BEHAVIOR IN THE DAM-FOUNDATION INTERFACE 

Development of a 3DFE code using MATLAB: DamSlide3D 

22 LNEC - Proc. 0402/112/2075501 

Therefore, the transformation matrix T  can be assembled for each Gauss point, being 

1 11 12 13

GP 2 21 22 23

31 32 33 GP3
GP

T T T T

T T T T T

T T TT

   
   

    
      

 (27) 

So, at any Pk point of the joint (P1’s belonging to face k=1, P2’s belonging to face k=2, …), the relation 

between displacement components in axes, t1, t2 and t3, and in global axes, x1, x2 and x3, is given by 

the following equation 

1 2 3 1 2 3

T1 111 12 13

T2 21 22 23 2

P P
31 32 33N 3Pfacek facek

(t ,t ,t ) (x ,x ,x )

u uT T T

u T T T . u

T T Tu u
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
    
        

 (28) 

In a more abbreviated notation, the abovementioned equation, takes the following form 

1 2 3 1 2 3

P P P
(t ,t ,t ) (x ,x ,x )

u ' T u  (29) 

Thus, in local axes t1, t2 and t3, the displacement differences at any P joint section (being P a point 

belonging to the mean surface and P1 and P2 points belonging to each face) can be related with the 

nodal displacements associated with the global axes through the following interpolation formula 
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 (30) 

In an abbreviated notation, the abovementioned equation, takes the following form 

e

P P Pu ' T N u   (31) 

 

The joint’s elasticity equation in its local coordinate system is represented by the following equation 
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J
(3 1) (3 1)(3 3)

' D u '
 

    (32) 

Taking the last two equations into account, it is possible to reach the following equation for global axes 

 

e

J
(3 3) 3 48(3 1) (48 1)(3 3)

' D T N u
  

   (33) 

Finally, the integral expression corresponding to the stiffness matrix of the joint element can be 

obtained by introducing the above interpolation formulas into the weak (or integral) form of the Navier 

equation which, as is known, can be obtained by applying the PVW to the joint finite element. Thus, 

taking into account that the work of the internal forces associated with the virtual deformations 'v  is 

given by 

J J

T T
int f

V A

W ' 'dV e ' 'dA      v v
 (34) 

and that f' u '/ e  v v , then, by introducing in this integral expression the above interpolation 

formulas of the FEM, we obtain the expression (35) for the stiffness matrix of the joint element 

J

T Te

JJ
(48 48) A (48 3) (3 48)(3 3)

k N T D  T N  dA


 

   (35) 

In the aforementioned equation is noticeable that the joint thickness is not present anymore explicitly. 

By integrating into the local axes y1, y2 we obtain 

J

T Te

JJ J 1 2
(48 48) A (48 3) (3 48)(3 3)

k N T D  T N  dy dy


 

   (36) 

where J i1 i2J J    (area of the parallelogram defined by the vectors corresponding to the two 

columns of the Jacobian matrix). 

Using the Gauss method to perform the integration numerically, it is obtained the usual summation 

(37) extended to the 9 Gauss points of the joint element, which is currently used in the structural FEM 

programs 

GPN 9
e T T

J i ii i Ji i
(48 48) i 1

k N T D T  N   A


 

   (37) 

Finally, it should be noted that in most structural analysis programs available on the market, the elastic 

properties of the joint elements that users are required to enter are only N TK and K

N f T f( K E /e , K G /e )  , and it is not required to specify the value of the joint thickness fe , hence 

the usual designation of fictitious thickness. 
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3.3.4 Interface element non-linear behavior 

The non-linear behavior of the joint’s materials is characterized not only by its elastic properties, which 

are the normal and shear stiffness, KN and KT, respectively, but also by its strength properties, which 

are the cohesion c, and the friction angle . With this strength parameters we are able to evaluate the 

admissibility of the state of stress installed in the interface elements 

t1

JGP,J p e 2 = D TN u t

n

 
 


 
  



 



 (38) 

To study the admissibility of a state of stress at a given point is useful its representation by a Mohr’s 

circle (Figure 3.8). 

 

Figure 3.8 – Mohr’s circle representation 

If it is found that at a given Gauss point of the joint element the normal stress exceeds the uniaxial 

tensile strength, ft, (if c=0 we will have ft=0) or the shear stress exceeds the shear strength, r, a joint 

local failure will occur, and it will be necessary to redistribute the unbalanced stresses 

2 2

t1 t2     (39) 

2cos( )

1 sin( )
tf c


 

 
 (40) 

n tan( )   r c  (41) 

 

In the developed program DamSlide3D, criteria were established for the determination of the 

maximum uniaxial compression strength (fc) and for the maximum uniaxial tension strength (ft). This 

values can be related with cohesion c and friction angle  (Figure 3.9). 
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Figure 3.9 – Relation between the strength parameters c , ,  ft and fc (adapted from S. Oliveira, 1991) 

 

In nonlinear structural analysis with joint elements, the redistribution of stresses higher than the 

admissible (verification to be performed at the Gauss points of the joint elements) is achieved by a 

process that transforms the non-admissible stresses into forces to be applied in the nodes of the joint 

element. In this way, a vector of unbalanced forces is built for every joint element (42) 

9
T T

pUnb unb GP,J

1

F = N T W J   (42) 

The vectors of unbalanced forces in a joint element are then assembled into the global vector of 

unbalanced forces  . The unbalanced forces are re-applied iteratively. This non-linear calculus 

methodology is named stress-transfer. The following equation summarizes the process 

0 apK u F   (43) 

With the internal forces redistribution, two scenarios can occur: 

– The applied loads are compatible with the global strength of the structure. In this scenario, 

the stress-transfer process converges. 

– The applied loads are not compatible with the global strength of the structure. In this 

scenario, the stress-transfer process diverges. 

Figure 3.10 shows, graphically, the iterative stress-transfer process whether it reaches a solution 

(3.10a), and whether it is not able to reach a solution (3.10b), which is the case of a divergent 

stress-transfer process. 
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0 apK u F   

a.                                                                                                       b. 

       Convergent                                                                                          Divergent      

 

Figure 3.10 – Stress transfer. Schematic representation of a convergent (a) and divergent scenario (b) 

 

As it is depicted in Figure 3.10a, when the stress transfer method converges to the solution, it does so 

with a resulting decreasing difference between displacements, between two consecutive iterations. 

This difference, when approaching the solution, tends to zero. It is necessary to stablish a 

convergence criteria which stops the iterative process when the obtained displacement values are 

sufficiently close to the solution. The following two equations display the criteria adopted to interrupt 

the iteration process. When the difference between the results from the first iteration displacements (

1u ) and the elastic displacements ( elu ) is equal to zero, Normi  will be equal to zero and, therefore, 
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lesser than a predefined tolerance (Tol), hence, the iteration process finishes. When the difference 

1 elu u  is not zero and the difference    1i iu u    decreases   betwee n  consecutive    iterations,    

the  process  will   stop   when 

1

1

100
i i

el

u u

u u







 is below the admitted tolerance 

1

1

1

1

100 , 0

0 , 0

i i

el

eli

el

u u
u u

u uNorm

u u




 
 

 


 

 (44) 

 

iNorm Tol  (45) 

 

For a divergent process, the difference 1i iu u   does not decrease in consecutive iterations and, 

consequently Normi is always higher than Tol. In this case, it is necessary to define a limit value for the 

number of iterations in order, once again, to stop the process. 
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4 | The DamSlide3D program 

To achieve the objectives of this work, it was developed a computational FEM program, using 

MATLAB, named DamSlide3D. As explained in chapter 3, this program uses the 20 nodal point’s 

cubic element and the correspondent 16 nodal point’s joint elements. 

The input data for DamSlide3D include the structure geometry (its FE mesh: nodal coordinates and 

elements definition), the material properties, the support conditions and the loads. As outputs we can 

obtain information about the convergence method and 3D and 2D graphics with stress field and 

displacement field detailed information. 

Figure 4.1 summarily addresses how the element and global stiffness matrix are computed and the 

script for the stress transfer iterative process is presented in Figure 4.2. In this figure it can be seen 

that the stress-transfer algorithm recalculate the global displacements vector, through a redistribution 

of unbalanced stresses (considering that they exist, if not, the non-linear threshold was not met and 

the stress-transfer routine is not executed). This unbalanced stresses come from the linear elastic 

calculus and corresponds to the difference between the acting and strength stresses at the interface 

elements (which is the non-linear domain for this model). Consequently, with known unbalanced 

stresses is possible to determine the unbalanced nodal forces vector (Figure 4.2 red code section), 

which, added to the global nodal forces vector determines the global displacements vector of the 

structure
2
 (Figure 4.2 green code section). If the difference from the norm of two consecutive 

displacement vectors is infinitesimal (Figure 4.2 blue code section), then, the iterative process stops 

(Figure 3.10 convergence), if not, the calculation cycle restarts. Additionally, if the unbalanced 

stresses are too high and do not redistribute themselves across the joint, then the iterative process is 

unable to converge and the cycle will continue until the predefined maximum iterations number is 

achieved (Figure 3.10 divergence).   

It is important to mention that, in Figure 4.1 scheme, the restrained DoF’s (at the supports) were not 

removed from the element and global stiffness matrices; therefore, after the global stiffness matrix 

assembly, in the diagonal elements of that matrix, associated with those restrained DoF’s, an 

extremely high stiffness value was added. That value is equal to 1e
15

 for each DoF restrained. 

 

 

 

 

 

 

                                                           

2
 Is important to highlight the fact that the global displacement vector is recalculated without the need to 

recalculate the stiffness matrix, which is exactly the advantage of this method. 
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For each finite element ( for n=1:NE  ) 

Calculate 
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 , element n, nodes coordinates matrix 

For each Gauss Point ( for  iPG = 1: 27  ) with the local coordinates presented in Table 3.1 

Calculate the Interpolation Function (IF) values (equation 12) and corresponding partial derivatives in 
respect to the local coordinates (in GP iPG): 
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Calculate the Jacobian matrix: 
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Calculate the IF partial derivatives in respect to the 
global coordinates: 
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Calculate the matrix corresponding 
to the following matrix product:   

 

 

 

 
T

B D B  

 

 

The numerical integration through the Gauss method for matrix 
T

B D B  over the finite element volume 

(split in 27 cubes associated to the Gauss Points) is equal to the sum of matrix 
T master

PGB D B J A

computed each Gauss Point (Gauss sum to obtain 
eK ) 

         T T Te master master master

PG PG PG
PG1 PG2 PG27(60 60)

K B D B J A B D B J A B D B J A


     

end 

“Spreading” of the element matrices 
e

K  into the global stiffness matrix  K  (assembly) 

end 
Figure 4.1 – MATLAB programming script scheme for the element stiffness matrix calculus and subsequent 

assembly of the global stiffness matrix, considering a cubic “serendipity” element of 20 nodes 
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Figure 4.2 – Stress-transfer MATLAB script. Routine executed after the linear elastic calculus. The red rectangle 
highlights the unbalanced global forces vector calculation. The green rectangle highlights the global displacements 

vector calculation. The blue rectangle highlights the convergence verification 

      %                     (LINEAR ELASTIC CALCULUS) 

      %                                … 

      %%% -------------    Stress-Transfer Beginning   ------------- %%% 

% 'while' cycle to the iteration number of interface elements 

while (Norm > Tol) && (niter < MNITER) 

    niter=niter+1; FDes(1:NGL,1)=0; 

 

              % ----------  Vector FDes calculus ------------ 

for nj=1:NEJ % Cycle to the interface elements 

      knormal=KN(imatJ(nj)); ktangencial=KT(imatJ(nj)); 

      DJ=[ktangencial 0 0; 0 ktangencial 0; 0 0 knormal]; 

      Coesao=Coesaov(imatJ(nj)); Phi=Phiv(imatJ(nj)); 

  % Interface element n x1 x2 and x3 nodal coordinates matrix    

  for in=1:2*NPFJ; for ik=1:NGLNO 

      ue((in-1)*NGLNO+ik,1)=u((elemJ(nj,in)-1)*NGLNO+ik,1); end; end; 

  for i=1:3; for j=1:NPFJ; cej(i,j)=coord(elemJ(nj,j),i); end; end 

  FDesJ=zeros(2*NPFJ*NGLNO,1); 

  for iPG=1:NPGJunta % Cycle to the GP of each interface element 

      y1=YGJ(iPG,1); y2=YGJ(iPG,2); % Local coordinates of PGauss iPG 

      dNdy = DerivY2D(y1,y2); % IF's derivatives in order to the local axes 

      N= N2D(y1,y2); NN=[-N N]; % IF's values 

      % Jacobian matrix (3x2) calculus at GP iPG of interface element n 

      J=cej*dNdy; DETT=norm(J(:,1))*norm(J(:,2)); 

      T1=J(:,1)/norm(J(:,1)); 

      t3=[J(2,1)*J(3,2)-J(3,1)*J(2,2); -(J(1,1)*J(3,2)-J(3,1)*J(1,2));... 

          J(1,1)*J(2,2)-J(2,1)*J(1,2)]; 

      T3=t3/norm(t3); 

      T2=[T3(2)*T1(3)-T3(3)*T1(2); -(T3(1)*T1(3)-T3(3)*T1(1));... 

          T3(1)*T1(2)-T3(2)*T1(1)]; 

      T=[T1'; T2'; T3']; 

      sPGJ=DJ*T*NN*ue; % "sigma = D.B.ue" interface referential stresses 

      SigmaT=sqrt(sPGJ(1)^2+sPGJ(2)^2); % Shear stress (absolute value) 

      SigmaN=sPGJ(3); 

      % Interface element uniaxial tension resistance calculus 

      ft=Coesao*(2*cos(Phi*pi/180))/(1+sin(Phi*pi/180)); 

      if SigmaN > ft % Erases normal tension stresses 

        SigmaN_Des=SigmaN-ft; SigmaN=ft; else SigmaN_Des=0;  

      end % End of if SigmaN > ft          

      tau_resist=Coesao+abs(SigmaN)*tan(Phi*pi/180); 

      if SigmaT > tau_resist % Mohr-Coulomb shear verification 

        % Difference between acting and resistant shear stresses  

        SigmaT_Des=(SigmaT-tau_resist*sign(SigmaT)); 

        SigmaT1_Des=SigmaT_Des*cos(atan2(sPGJ(2),sPGJ(1))); 

        SigmaT2_Des=SigmaT_Des*cos(atan2(sPGJ(1),sPGJ(2))); 

      else SigmaT1_Des=0; SigmaT2_Des=0; end % end of if SigmaT > tau_resist 

      % Unbalanced stresses vector at the interface referential  

      S_Des=[SigmaT1_Des; SigmaT2_Des; SigmaN_Des]; 

      FDesiPGJ=NN'*T'*S_Des*DETT*WPGJ(iPG); % Unbalanced stresses integration 

      FDesJ=FDesJ+FDesiPGJ; % Nodal forces vector equivalent to the 

      % unbalanced stresses at the interface element i (FDesJ is 48x1) 

  end; % Cycle for i=1:NPGJunta end 

 % Nodal forces 'Spreading' at the interface 

 % Unbalance forces global vector assembly (FDes is NGLx1) 

 for i=1:2*NPFJ; for ik=1:NGLNO % 2 cycles to scan K(i,j) lines [i=1:NGL,j=1:NGL] 

  noGi=elemJ(nj,i); % Global node (lines,i): nj element , i_th node 

  GLGi=(noGi - 1)*NGLNO + ik; % Global DoF (lines,i) - varies from 1 to NGL 

  GLEi=(i-1)*NGLNO+ik; % Interface Element DoF (lines,i) - varies from 1 to 48  

  FDes(GLGi,1) = FDes(GLGi,1)+ FDesJ(GLEi); end; end  

end; % Cycle for nj=1:NEJ end 

          % ---------- End of vector FDes calculus ------------ 

 

u=Kinv*(F+FDes);  % [m] (if the inputs are in meters) 

 

if niter==1; Norm0=norm(u_bak-u); end; 

if Norm0 >0; Norm=norm(u_bak-u)/Norm0*100; else Norm=0; end % End of if Norm0 >0 

u_bak=u; ITER(niter)=niter; VALNORMA(niter)=Norm; 

end % Cycle while (Norm > Tol) && (niter < 500) end 

 

clear Kinv; 

       %%% -------------    Stress-Transfer End    ------------- %%% 
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5 | Numerical tests 

5.1 Test structure presentation 

In order to verify and validate the program DamSlide3D, three tests were carried out. These tests 

involved the simulation of the behavior of a simple structural system. It was considered a column, and 

its base, subjected to the self-weight and to the hydrostatic pressure (Figure 5.1). Horizontal joint 

elements are considered at the contact between the base and the column and inclined joint elements 

are also considered in the column as indicated in figure 5.1. 

In Figure 5.2 it is shown the diagram correspondent to the equilibrium of forces at the base of the 

column and in Figure 5.3 is shown the adopted FE mesh.  

  

 

 

Figure 5.1 – Test structure 
characterization and loads 
(Hydrostatic pressure and 

self-weight =24 kN/m3) 

Figure 5.2 – Linear (gray) and non-linear 
stress distribution (red) in the horizontal 

joint at the column base 

Figure 5.3 – 3D finite element 
mesh 

5.2 Joint behavior. Linear elastic test 

In Figure 5.2 is represented, in black, the resulting linear distribution of stresses across the interface 

column-base (46) as well as the resultant bending moment M and axial force N, being 

t

c

N M.y

N M.y A I

N M.yA I

A I


  

    
  


 (46) 

This analytical result can be used to the verification of the DamSlide3D. 



STRUCTURAL ANALYSIS OF GRAVITY DAMS CONSIDERING NON-LINEAR BEHAVIOR IN THE DAM-FOUNDATION INTERFACE 

Development of a 3DFE code using MATLAB: DamSlide3D 

32 LNEC - Proc. 0402/112/2075501 

Considering the structure geometry and loading (HP and SW), for a water height of 12 m, through 

equation (46), the resulting maximum compression stress and maximum tension stress are 

c=1560 kPa and t=600 kPa, respectively. 

Figure 5.4 displays the Gauss points considered in the computation. Figure 5.5 presents the program 

outputs for the stress distribution across the interface column-base.  

 

 

Figure 5.4 – Gauss points considered (red crosses) for the analysis of the stress distribution at the interface 
column-base 

 

Figure 5.5 presents the elastic stresses variation across the interface dam-foundation and, as 

expected, the shear elastic stresses are constant and the normal elastic stresses vary linearly. 

The maximum stress values computed numerically are, from Figure 5.5, c = 1602.6 kPa and 

t = 629.6 kPa and the analytical values (eq.46) are, respectively, c=1560 kPa and t=600 kPa, 

showing a good agreement between numerical and analytical results. 
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                                               Displacements 

 

 

 

Stresses at the column base (interface elements) 

 

Column and base: 

Ec=Eb= 50 GPa 

c=b= 0.2 

Interface column-base: 

KN=2.5×106 kNm-1 
KT=1.0×106 kNm-1 

Loads: 

Self-weight (c=24 kN/m3) 

Hydrostatic pressure (w=10 kN/m3) 
 

Figure 5.5 – Elastic behavior of the test structure. Displacements field and stress distribution at the interface 
column-base  

h  =12.00 mw

Elastic normal stresses 

Elastic shear stresses 
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5.3 Joint behavior. Non-linear tests 

5.3.1 Inclined joint 

In this section is studied the non-linear behavior of the 30º inclined joint (see Figure 5.1 and Figure 

5.6), for self-weight loading, considering different values for the friction angle. If the friction angle of the 

inclined joint is equal or greater than the inclination of the joint no sliding is expected (the shear 

resistant force in Figure 5.6 is greater than the acting shear component  of the weight). 

 

Figure 5.6 – Schematic representation of the forces equilibrium at the inclined joint 

The shear resistant stress R , which depends on the normal stress N and on the friction angle  can 

be evaluated as follows 

R N.tan     (47) 

On the other hand, from the balance of forces displayed on Figure 5.6 we can determine the acting 

shear stress  

N
NN

N

P.sin
P.sin

sin tan
PP.cos cos

cos

  
   

         
     

 (48) 

Sliding will occur when R   . So, for values of the friction angle  greater or equal to those of the 

joint inclination angle =30º, there is no sliding. 

Figure 5.7 shows the numerical results of DamSlide3D for two different scenarios:  

i) the test structure with a =30º inclined joint is submitted to its self-weight and the friction 

angle is =30.01º (slightly higher than the joint inclination angle =30º); and 

ii) the friction angle is  =29.99º (slightly lower than the joint inclination angle =30º); 
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a. Friction angle at the inclined joint: =30.01º 

Displacement Field 

 

 

b. Friction angle at the inclined joint: =29.99º 

Displacement Field 

 

Convergence 

 

Convergence 

 

Concrete: 
 

  E = 50 GPa 

   = 0.2 

Inclined joint (no cohesion, c=0): 
 

   KN=2.5×108 kN/m 

   KT=1.0×108 kN/m 

Figure 5.7 – Numerical study of sliding across the inclined joint ( = 30º) on a concrete column under the 

self-weight load. (a.) Results for friction angle =30.01º, slightly higher than the joint inclination angle; a convergent 

solution was obtained: no sliding, as expected. (b.) Results for friction angle =29.99º, slightly lower than the joint 
inclination angle; divergent process, meaning that a sliding occurred 

 

As expected, it is possible to verify numerically with DamSlide3D that for =30.01º, higher than the 

joint inclination angle (=30º), no slide occur. For =29.99º, lower than the joint inclination angle, 

sliding is numerically identified. Actually, from the convergence process analysis displayed in the 

graphics, for =30.01º, the iteration process converged (stopped around the 400th iteration for the 

given tolerance). For =29.99º, the iterative process diverges (structural collapse by sliding). 

30.00 º 30.00 º 

Divergent 
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5.3.2 Analysis of the base joint behavior considering hydrostatic pressure. 

Parametric study on the influence of friction angle (constant water height 

H=12 m) 

In this section, is considered the non-linear behavior of the horizontal joint at the column base. For the 

inclined joint it was assumed a linear behavior with high stiffness and strength. In what concern the 

loads, is assumed that the structure is subjected to the combination SW + HP (water height H=12 m). 

Is assumed null cohesion for the base joint, meaning that no tension stresses are supported. 

 

In Figure 5.2, is represented, in red, the non-linear distribution of the compression normal stresses in 

the horizontal joint at the column base, for a bending moment M and for a normal force N. Assuming 

that no tensile stresses can be supported by the joint (null cohesion), the equilibrium is obtained with 

high compression normal stresses c, that can be calculated analytically as follows 

2

c c

2N
.

N N.
3 M2

2

M N. 3 N.
M2 3

N 2


         

   
      

      
 

a
h

h a
h

a

 (49) 

being h the section height at the column base and a the length under compression. 

In this sub-section the joint behavior is studied for different values of the friction angle: the numerical 

results are presented from Figure 5.8 to Figure 5.15, being, respectively, for  = 35º, 30º, 25º, 24º, 

23º, 22º, 21º, 20º. The analytical values of c and a (from eq.49) will be compared with the 

correspondent numerical values from DamSlide3D. 
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Stresses across the interface column-base 

 

Interface column-base. Principal stresses 

 

Figure 5.8 – Column-base structural behavior for =35º. On top left, dam’s displacement field; on top right, 
“stress-transfer” convergence, on the middle, elastic and non-linear, normal and shear, stresses across the center 

section of the interface column-base; on the bottom, the dam’s principal stresses throughout the interface 
column-base 

 
hwater = 12.00 m 
 
Column and base: 
Ec=Eb = 50 GPa 

c=b = 0.2 
 
Interface column-base: 
KN=2.5×106 kNm-1 
KT=1.0×106 kNm-1 

=35º 
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Stresses across the interface column-base 

 

Interface column-base. Principal stresses 

 

Figure 5.9 – Column-base structural behavior for =30º. On top left, dam’s displacement field; on top right, 

“stress-transfer” convergence, on the middle, elastic and non-linear, normal and shear, stresses across the center 

section of the interface column-base; on the bottom, the dam’s principal stresses throughout the interface 

column-base 
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Stresses across the interface column-base 

 

Interface column-base. Principal stresses 

 

Figure 5.10 – Column-base structural behavior for =25º. On top left, dam’s displacement field; on top right, 

“stress-transfer” convergence, on the middle, elastic and non-linear, normal and shear, stresses across the center 

section of the interface column-base; on the bottom, the dam’s principal stresses throughout the interface 

column-base 
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Stresses across the interface column-base 

 

Interface column-base. Principal stresses 

 

Figure 5.11 – Column-base structural behavior for =24º. On top left, dam’s displacement field; on top right, 

“stress-transfer” convergence, on the middle, elastic and non-linear, normal and shear, stresses across the center 

section of the interface column-base; on the bottom, the dam’s principal stresses throughout the interface 

column-base 
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Stresses across the interface column-base 

 

Interface column-base. Principal stresses 

 

Figure 5.12 – Column-base structural behavior for =23º. On top left, dam’s displacement field; on top right, 

“stress-transfer” convergence, on the middle, elastic and non-linear, normal and shear, stresses across the center 

section of the interface column-base; on the bottom, the dam’s principal stresses throughout the interface 

column-base 
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Stresses across the interface column-base 

 

Interface column-base. Principal stresses 

 

Figure 5.13 – Column-base structural behavior for =22º. On top left, dam’s displacement field; on top right, 
“stress-transfer” convergence, on the middle, elastic and non-linear, normal and shear, stresses across the center 

section of the interface column-base; on the bottom, the dam’s principal stresses throughout the interface 
column-base 
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Stresses across the interface column-base 

 

Interface column-base. Principal stresses 

 

Figure 5.14 – Column-base structural behavior for =21º. On top left, dam’s displacement field; on top right, 

“stress-transfer” convergence, on the middle, elastic and non-linear, normal and shear, stresses across the center 

section of the interface column-base; on the bottom, the dam’s principal stresses throughout the interface 

column-base 
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hwater=12.00 m 
 
Column and base: 
Ec=Eb = 50 GPa 

c=b = 0.2 
 
Interface column-base: 
KN=2.5×106 kNm-1 
KT=1.0×106 kNm-1 

=20º 
c= 0 

Stress-transfer. Displacements norm versus number of 
iterations 

 

Figure 5.15 – Stress-transfer divergence for =20º 

 

From figures 5.8 to 5.14, one can verify, as expected, that the non-linear distribution of the normal 

stresses (numerically computed) is the same for the different values of the friction angle  

(compressions along the length a=1.5 m, with maximum value of  c  2560 MPa). As the friction 

angle decreases (from 35º to 20º, in this study) there is a decrease in the resistant shear stress 

distribution (along the length a), that means there is a decrease in the resistant shear stress capacity. 

In order to have no sliding, the resultant acting shear force should be lower than the resistant shear 

force correspondent to the resistant shear stress capacity: this equilibrium condition is numerically 

attained for values of the friction angle  higher than 20º. So, with DamSlide3D, it was found, 

numerically, that sliding along the horizontal base joint only occurs for     20º (in Figure 5.15 is 

shown, graphically, the iterative stress-transfer divergence in terms of the used displacements norm). 

 

 

5.3.3 Analysis of the base joint behavior considering hydrostatic pressure. 

Parametric study on the influence of water height (constant friction angle 

=30º) 

 

In this sub-section the joint behavior of the horizontal base joint is studied for different values of water 

height (hw), considering a constant value for the friction angle  = 30º. The numerical results are 

presented in Figure 5.9 (for hw = 12 m) and in Figure 5.16 to Figure 5.19, for, respectively, hw = 12.25, 

12.30, 12.35 and 12.40 m. The analytical values of c and a (eq.49) are compared with the 

correspondent numerical values from DamSlide3D. 
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Stresses across the interface column-base 

 

Interface column-base. Principal stresses 

 

Figure 5.16 – Column-base structural behavior for hwater= 12.25 m. On top left, dam’s displacement field; on top right, 

“stress-transfer” convergence, on the middle, elastic and non-linear, normal and shear, stresses across the center 

section of the interface column-base; on the bottom, the dam’s principal stresses throughout the interface 

column-base 
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Stresses across the interface column-base 

 

Interface column-base. Principal stresses 

 

Figure 5.17 – Column-base structural behavior for hwater= 12.30 m. On top left, dam’s displacement field; on top right, 

“stress-transfer” convergence, on the middle, elastic and non-linear, normal and shear, stresses across the center 

section of the interface column-base; on the bottom, the dam’s principal stresses throughout the interface 

column-base  
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Stresses across the interface column-base 

 

Interface column-base. Principal stresses 

 

Figure 5.18 – Column-base structural behavior for hwater= 12.35 m. On top left, dam’s displacement field; on top right, 

“stress-transfer” convergence, on the middle, elastic and non-linear, normal and shear, stresses across the center 

section of the interface column-base; on the bottom, the dam’s principal stresses throughout the interface 

column-base 
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Stresses across the interface column-base 

 

Interface column-base. Principal stresses 

 

Figure 5.19 – Column-base structural behavior for hwater= 12.40 m. On top left, dam’s displacement field; on top right, 

“stress-transfer” convergence, on the middle, elastic and non-linear, normal and shear, stresses across the center 

section of the interface column-base; on the bottom, the dam’s principal stresses throughout the interface 

column-base 
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hwater=12.45 m 
 
Column and base: 
Ec=Eb = 50 GPa 

c=b = 0.2 
 
Interface column-base: 
KN=2.5×106 kNm-1 
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=30º 
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Stress-transfer. Displacements norm versus number of 
iterations 

 

Figure 5.20 – Stress-transfer divergence for hwater=12.45 m 

 

For this scenario of water level increase, one can verify, from figure 5.8 and figures 5.16 to 5.19, that, 

as expected, the non-linear distribution of the normal and shear stresses (numerically computed) 

increase with water level increase. The maximum value of  c increases from 2560 MPa for hw=12 m, 

until 4000 MPa for hw=12.40 m. With DamSlide3D, it was found, numerically, that sliding along the 

horizontal base joint only occurs for hw   12.45 m (in 5.19 is shown, graphically, the iterative stress-

transfer divergence in terms of the used displacements norm). 
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6 | Case Study: Gravity Dam 

6.1 Dam presentation 

The case study presented in this work is a gravity dam (Figure 6.1) located in the Vouga river, that 

was built for energy production, flood control, and water supply for consumption and irrigation. 

 

a. 

 

b. 

 

                               c.      

  
                               
d. 

 

Figure 6.1 – Gravity dam. (a.) Downstream view (photo). (b.) Cross section (block 7, B7). (c.) The site plan. 
(d.) Downstream view 
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 The dam studied is a gravity concrete dam (Figure 6.1), with a small curvature in plan, founded in a 

rock massif mainly composed by granite. The structure has a maximum height above foundation of 

83.0 m. The crest is 9.0 m thick with its axis following an arc of a circle with 240 m radius which 

extends itself along approximately 264 m. 

The structure is composed by 17 blocks, separated by contraction joints defined by vertical planes 

perpendicular to the dam reference surface. The cross section is defined by a triangle whose top 

vertice is 4.5 m upstream of the crest axis elevation, furthermore, the upstream and downstream faces 

are inclined 0.05 h:v and 0.70 h:v, respectively. For the crest, one can overlap a rectangle with 9 m of 

width. 

6.2 Dam sliding scenario. Analysis of dam-foundation interface 

non-linear behavior  

In order to study the dam sliding scenario along the dam-foundation interface, using DamSlide3D, it 

was developed a 3DFEM model, only considering the dam central block. In Figure 6.2 is presented the 

adopted 3D finite element discretization, using cubic “serendipity” elements of 20 nodes, and the 

correspondent joint elements of 16 nodes at the dam-foundation interface. 

 

 
 

Figure 6.2 – Finite element mesh adopted to study the dam sliding along the dam-foundation interface 

 

Concrete and Foundation: 

Ec = Ef = 30 GPa      c=f = 0.2 

Interface dam-foundation: 

KN=  2.50×106 kNm-1   KT = 1.25×106 kNm-1       ref = 35.0º   c= 0 

Cubic “serendipity” 

elements of 20 nodes Joint elements of 16 

nodes at the dam-

foundation interface 
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The dam is subjected to the usual load combination SW+HP (full reservoir, hw = 76 m). The cohesion 

at the interface dam-foundation is assumed, conservatively, to be null (c = 0). The reference value of 

the interface friction angle is  = 35º. 

 

6.2.1 Parametric study on the influence of friction angle (full reservoir) 

In this sub-section the joint behavior at the interface dam-foundation is studied for different values of 

the friction angle: the numerical results are presented from Figure 6.3 to Figure 6.7, being, 

respectively, for  = 35º, 30º, 27º, 26.5º, 26º.  

 

From Figure 6.3 to Figure 6.7, one can verify, as expected, that as the friction angle decreases (from 

35º to 26º) there is a decrease in the resistant shear stress distribution, which means there is a 

decrease in the resistant shear stress capacity at the dam base. In order to have no sliding, the 

resultant acting shear force should be lower than the resistant shear force correspondent to the 

resistant shear stress capacity: this equilibrium condition is numerically attained for values of the 

friction angle  higher than 26º. So, with DamSlide3D, it was found, numerically, that sliding along the 

dam-foundation base joint only occurs for     26º (in Figure 6.8 is shown, graphically, the iterative 

stress-transfer divergence in terms of the displacements norm). 
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Displacement field    Stress-transfer. Displacements norm 

                                                                                                  versus number of iterations 

              

Stresses across the interface dam-foundation 

 

Interface dam-foundation. Principal stresses 

 

Figure 6.3 – Dam structural behavior for =35º. On top left, displacement field; on top right, stress-transfer 

convergence, in the middle, stresses across the center section of the interface dam-foundation; on the bottom, the 

dam’s principal stresses throughout the interface dam-foundation 

Concrete and Foundation: 

Ec=Ef = 30 GPa      c=f = 0.2 

Interface dam-foundation: 

KN=2.50×106  KT=1.25×106 kNm-1     =35.0º     c= 0 

hw=76.00 m 
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Displacement field                     Stress-transfer. Displacements norm 

                                                                              versus number of iterations 

                   

Stresses across the interface dam-foundation 

 

Interface dam-foundation. Principal stresses 

 

Figure 6.4 – Dam structural behavior for =30º. On top left, displacement field; on top right, stress-transfer 

convergence, in the middle, stresses across the center section of the interface dam-foundation; on the bottom, the 

dam’s principal stresses throughout the interface dam-foundation 

Concrete and Foundation: 

Ec=Ef = 30 GPa      c=f = 0.2 

Interface dam-foundation: 

KN=2.50×106  KT=1.25×106 kNm-1     =30.0º     c= 0 

hw=76.00 m 
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     Displacements                                          Stress-transfer. Displacements norm 

                                                                                                   versus number of iterations 

                   

Stresses across the interface dam-foundation 

 

Interface dam-foundation. Principal stresses 

 

Figure 6.5 – Dam structural behavior for =27º. On top left, displacement field; on top right, stress-transfer 

convergence, in the middle, stresses across the center section of the interface dam-foundation; on the bottom, the 

dam’s principal stresses throughout the interface dam-foundation 

Concrete and Foundation: 

Ec=Ef = 30 GPa      c=f = 0.2 

Interface dam-foundation: 

KN=2.50×106  KT=1.25×106 kNm-1     =27.0º     c= 0 

hw=76.00 m 
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Displacement field                             Stress-transfer. Displacements norm 

                                                                                                   versus number of iterations 

                   

Stresses across the interface dam-foundation 

 

Interface dam-foundation. Principal stresses 

 

Figure 6.6 – Dam structural behavior for =26.5º. On top left, displacement field; on top right, stress-transfer 

convergence, in the middle, stresses across the center section of the interface dam-foundation; on the bottom, the 

dam’s principal stresses throughout the interface dam-foundation  

Concrete and Foundation: 

Ec=Ef = 30 GPa      c=f = 0.2 

Interface dam-foundation: 

KN=2.50×106  KT=1.25×106 kNm-1     =26.5º     c= 0 

hw=76.00 m 
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hwater=76.00 m 
 
Concrete and foundation: 
Ec=Ef = 30 GPa 

c=f = 0.2 
 
Interface column-base: 
KN=2.50×106 kNm-1 
KT=1.25×106 kNm-1 

=26º 
c= 0 

Stress-transfer. Displacements norm 

                                     versus number of iterations 

 

Figure 6.7 – Stress-transfer convergence for =26.0º 

 

 

6.2.2 Parametric study on the influence of water level (friction angle =30º) 

In this sub-section the joint behavior of the dam-foundation interface is studied for different values of 

water height (hw), simulating a overtopping scenario.  Is assumed a constant value for the friction 

angle  = 30º. The numerical results are presented in Figure 6.4 (for hw = 76 m) and in Figure 6.8 to 

Figure 6.13, for, respectively, hw = 77.0, 78.0, 79.0, 80.0, 81.0 and 82.0  m.  

For this scenario of water level increase (overtopping), one can verify, that, as expected, the non-

linear distribution of the normal and shear stresses (numerically computed) increase with water level 

increase. The maximum value of compression normal stresses increases from ~1300 MPa for hw=76 

m, until ~1500 MPa for hw=82.0 m. The maximum value of shear stresses increases from ~750 MPa 

for hw=76 m, until ~900 MPa for hw=82.0 m. 

With DamSlide3D, it was found, numerically, that sliding along the dam-foundation joint only occurs 

for hw   83 m (in Figure 6.14 is shown, graphically, the iterative stress-transfer divergence in terms 

of the used displacements norm). 

  

Divergent 
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                       Displacement field                  Stress-transfer. Displacements norm 

                                                                                                   versus number of iterations 

                   

Stresses across the interface dam-foundation 

 

Interface dam-foundation. Principal stresses 

 

Figure 6.8 – Dam structural behavior for hwater=77 m. On top left, displacement field; on top right, stress-transfer 
convergence, in the middle, stresses across the center section of the interface dam-foundation; on the bottom, the 

dam’s principal stresses throughout the interface dam-foundation 

Concrete and Foundation: 

Ec=Ef = 30 GPa      c=f = 0.2 

Interface dam-foundation: 

KN=2.50×106  KT=1.25×106 kNm-1     =30º     c= 0 

hw=77.00 m 
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Stresses across the interface dam-foundation 

 

Interface dam-foundation. Principal stresses 

 

Figure 6.9 – Dam structural behavior for hwater=78 m. On top left, displacement field; on top right, stress-transfer 
convergence, in the middle, stresses across the center section of the interface dam-foundation; on the bottom, the 

dam’s principal stresses throughout the interface dam-foundation 

Concrete and Foundation: 

Ec=Ef = 30 GPa      c=f = 0.2 

Interface dam-foundation: 

KN=2.50×106  KT=1.25×106 kNm-1     =30º     c= 0 

hw=78.00 m 
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Interface dam-foundation. Principal stresses 

 

Figure 6.10 – Dam structural behavior for hwter=79 m. On top left, displacement field; on top right, stress-transfer 
convergence, in the middle, stresses across the center section of the interface dam-foundation; on the bottom, the 

dam’s principal stresses throughout the interface dam-foundation 

Concrete and Foundation: 

Ec=Ef = 30 GPa      c=f = 0.2 

Interface dam-foundation: 

KN=2.50×106  KT=1.25×106 kNm-1     =30º     c= 0 

hw=79.00 m 
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Interface dam-foundation. Principal stresses 

 

Figure 6.11 – Dam structural behavior for hwater=80 m. On top left, displacement field; on top right, stress-transfer 

convergence, in the middle, stresses across the center section of the interface dam-foundation; on the bottom, the 

dam’s principal stresses throughout the interface dam-foundation 

Concrete and Foundation: 

Ec=Ef = 30 GPa      c=f = 0.2 

Interface dam-foundation: 

KN=2.50×106  KT=1.25×106 kNm-1     =30º     c= 0 

hw=80.00 m 
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                       Displacement field     Stress-transfer. Displacements norm 

                                                                                                   versus number of iterations 

                  

     Stresses across the interface dam-foundation 

 

Interface dam-foundation. Principal stresses 

 

Figure 6.12 – Dam structural behavior for hwater=81 m. On top left, displacement field; on top right, stress-transfer 
convergence, in the middle, stresses across the center section of the interface dam-foundation; on the bottom, the 

dam’s principal stresses throughout the interface dam-foundation 

Concrete and Foundation: 

Ec=Ef = 30 GPa      c=f = 0.2 

Interface dam-foundation: 

KN=2.50×10
6
  KT=1.25×10

6
 kNm

-1
     =30º     c= 0 

hw=81.00 m 
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Interface dam-foundation. Principal stresses 

 

Figure 6.13 – Dam structural behavior for hwater=82 m. On top left, displacement field; on top right, stress-transfer 
convergence, in the middle, stresses across the center section of the interface dam-foundation; on the bottom, the 

dam’s principal stresses throughout the interface dam-foundation 

Concrete and Foundation: 

Ec=Ef = 30 GPa      c=f = 0.2 

Interface dam-foundation: 

KN=2.50×106  KT=1.25×106 kNm-1     =30º     c= 0 

hw=82.00 m 
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hwater=83.00 m 
 
Concrete and foundation: 
Ec=Ef = 30 GPa 

c=f = 0.2 
 
Interface column-base: 
KN=2.50×106 kNm-1 
KT=1.25×106 kNm-1 

=30º 
c= 0 

Stress-transfer. Displacements norm                                                                                                          

versus number of iterations 

 

Figure 6.14 – Stress-transfer divergence for hwater=83.00 m 

Divergent 
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7 | Conclusions 

The main objective of this work was the development and presentation of a three-dimensional finite 

element program, DamSlide3D, to study the behavior of gravity dams considering scenarios of sliding 

in the dam-foundation interface. The DamSlide3D, developed using MATLAB, includes cube-type 

finite elements with 20 nodal points ("serendipity") and the correspondent interface finite elements with 

16 nodal points (joint elements).  

Initially, it were presented the fundamental equations of the solids mechanics, referring to the main 

simplified hypotheses considered in the computationally implemented formulation, which is presented 

mathematically as a problem of boundary values using a displacement formulation. For the structure 

body and for the foundation, the hypothesis of isotropic materials with linear elastic behavior was 

assumed and for the interfaces the hypothesis of non-linear behavior was considered (Mohr-Coulomb 

criterion). 

For DamSlide3D input data is provided in an excel file and includes structure geometry data, material 

properties, support conditions and load parameters. As output, the program graphically displays the 

stress field (principal stresses) and the displacement field (deformed structure). 

The program was verified using three numerical tests with known theoretical solutions. In these tests a 

simple structure was used, composed by a column discretized in 3DFE, on a base, also discretized in 

3DFE. At the contact surface between the column and the base (horizontal surface) it was considered 

an interface discretized using joint finite elements.  A plane surface plane that crosses the column with 

a given slope is also considered, discretized using the same type of joint finite elements. In the first 

test, the field of elastic stresses at the base, due to dead weight (DW) and hydrostatic pressure (HP), 

was compared with the theoretical results. In the second test the nonlinear column response was 

studied for different values of the friction angle at the inclined interface (in this test the structure is only 

submitted to DW). In the third test, for the main DW + HP loads, the stability of the column is initially 

studied for a variation of , and later for a variation of the water level. In these three numerical tests 

the results were always consistent with the theoretical solutions. 

Finally, as an example of application, a gravity dam structural behavior was analyzed considering the 

non-linear behavior in the dam-foundation interface. The dam was subjected to self-weight and 

hydrostatic pressure. A parametric study was developed in order to study the dam stability for different 

values of water level (hw) and for different values of . 

As a perspective for future studies, considering the results obtained with the use of the 20 nodes 

“serendipity” quadratic master element, it would be interesting to compare these results with the ones 

considering a different master element, this time, a 27 nodes Lagrangian quadratic element. 

Therefore, it would be interesting to verify if the extra calculus effort is offset by the outputs quality 

gain. Additionally, since the program outputs prove to be satisfactory, it would be interesting to model 

the behavior of he studied gravity dam, considering a complete 3D dam FE model. Also, it would be 

interesting to apply a different iteration process (convergence) on the program, for example the 
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Newton-Raphson method (which implies that, at each iteration, the stiffness matrix is recalculated) 

and compare the results of both methods (Newton-Raphson and stress-transfer). Finally, it would also 

be interesting to expand the domain of the non-linear application, from the joint elements to the dam 

body (solid elements) using, e.g., a damage model. 
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