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STRUCTURAL ANALYSIS OF GRAVITY DAMS CONSIDERING NON-LINEAR
BEHAVIOR IN THE DAM-FOUNDATION INTERFACE

Development of a 3DFE code using MATLAB: DamSlide3D

Abstract

The main objective of this work is the development and presentation of a three-dimensional finite
element program, DamSlide3D, to study the behavior of gravity dams for scenarios of sliding through
the dam-foundation interface. The DamSlide3D, developed using MATLAB, includes cube-type finite
elements with 20 nodal points ("serendipity”) and finite interface elements with 16 nodal points (joint

elements).

Initially, we present the fundamental equations of Solid Mechanics, referring to the main simplified
hypotheses considered in the computationally implemented formulation, which is presented
mathematically as a problem of boundary values using a displacement formulation. For the structure
body and for the foundation, the hypothesis of isotropic materials with linear elastic behavior is
assumed and for the interfaces the hypothesis of non-linear behavior is considered using the Mohr-
Coulomb criterion.

The DamsSlide3D input data is provided in an excel file and includes structure geometry data, material
properties, support conditions and load parameters. As output, the program graphically displays the
stress field (principal stresses) and the displacement field (deformed structure).

The program was verified throughout three numerical tests with known theoretical solutions. In these
tests a simple structure was used, composed by a column discretized in 3DFE. At the contact surface
between the column and the base (horizontal surface) it was considered an interface discretized using
joint finite elements. A plane surface that crosses the column with a given slope is also considered,
discretized using the same type of joint finite elements. In the first test, the field of elastic stresses at
the base, due to self-weight (SW) and hydrostatic pressure (HP), was compared with the theoretical
results. In the second test the nonlinear column response was studied for different values of the
friction angle at the inclined interface (in this test the structure is only submitted to SW). In the third
test, for the main SW + HP loads, the stability of the column is studied for a variation of the friction
angle, and for a variation of the water level. In these three numerical tests the results were always
consistent with the theoretical solutions.

Finally, as an example of application, a gravity dam structural behavior was analyzed considering the
non-linear behavior in the dam-foundation interface. The dam was subjected to self-weight and
hydrostatic pressure. A parametric study was developed in order to study the dam stability for different

values of water level and friction angle.

Keywords: Gravity dam / 3D solid finite elements / Joint finite elements / Interface non-linear
behavior / Stress-transfer / Mohr-Coulomb failure criterion / Dam-foundation

interface friction angle
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ANALISE ESTRUTURAL DE BARRAGENS GRAVIDADE CONSIDERANDO
COMPORTAMENTO NAO LINEAR NA INTERFACE BARRAGEM-FUNDACAO

Desenvolvimento de um programa de EF3D, em MATLAB: DamSlide3D

Resumo

O principal objetivo deste trabalho é o desenvolvimento e apresentacdo de um programa de
elementos finitos tridimensionais, DamSlide3D, para estudar o comportamento de barragens
gravidade considerando o efeito de eventuais roturas ao nivel da interface barragem-fundacéo, por
tracdo e corte. Utilizou-se o MATLAB para desenvolver o pretendido programa, tendo-se adotado
elementos finitos tridimensionais tipo cubo com 20 pontos nodais (“serendipity”) e elementos finitos de
interface com 16 pontos nodais (elementos de junta).

Inicialmente, apresentam-se as equagOes fundamentais da mecanica dos solidos, referindo as
principais hipéteses simplificativas consideradas na formulagéo implementada computacionalmente, a
qual é apresentada matematicamente como um problema de valores de fronteira usando uma
formulacdo de deslocamento. Para o corpo da estrutura e para a fundagdo admite-se a hip6tese de
materiais isotrépicos com comportamento elastico linear e para as interfaces admite-se a hipétese de
comportamento nao linear considerando o critério de Mohr-Coulomb.

Relativamente ao programa desenvolvido, os dados de input sdo fornecidos num ficheiro de EXCEL e
incluem a geometria da estrutura, as propriedades dos materiais, as condi¢cdes de apoio e 0s
parédmetros de carga. Como output, o programa permite visualizar graficamente o campo de tensdes
e 0 campo de deslocamento (estrutura deformada).

O programa foi previamente verificado usando trés testes numéricos com solugdes tedricas
conhecidas. Nesses testes foi utilizada uma estrutura simples, composta por um pilar discretizado em
EF3D sobre uma base, também discretizada em EF3D, utilizando elementos de interface para
discretizar a superficie de contacto entre o pilar e a base (superficie horizontal) e também para
discretizar uma superficie plana que atravessa o pilar com uma dada inclinagdo. No primeiro teste, 0
campo de tensdes elasticas na base, devido ao peso préprio (PP) e a presséo hidrostatica (PH), foi
comparado com os resultados tedricos. No segundo teste foi estudada a resposta nao linear do pilar
para diferentes valores do angulo de atrito na interface inclinada (neste teste a estrutura é apenas
submetida ao PP). Finalmente, no terceiro teste, para as cargas principais PP+PH, a estabilidade do
pilar é estudada, inicialmente, para uma variagdo do angulo de atrito, e, posteriormente, para uma
variagcao do nivel da agua. Nestes trés testes numéricos os resultados foram sempre coerentes com
as solucdes tedricas.

Finalmente, como exemplo de aplicacdo, foi estudado o comportamento estrutural de uma barragem
gravidade tendo-se analisado, em particular, o comportamento ndo linear ao nivel da interface
barragem-fundacgédo para a combinagédo PP+PH. Foi efetuado um estudo paramétrico para analisar a
estabilidade da barragem para diferentes valores do nivel de agua e do angulo de atrito.

Palavras-chave: Barragem de gravidade / Elementos finitos solidos 3D / Elementos finitos de junta
com comportamento ndo-linear / Método de stress-transfer / Critério de rotura de

Mohr-Coulomb / Angulo de atrito na interface barragem-fundacio
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1] Introduction

“The complex elasticity problems encountered when intending to determine the stresses in
dams and shells rarely can be resolved by rigorous methods from the classic mathematical
analysis. However, there are many means to approach the problem. The first is the study in a
combined model with experimental stress determination methods (...) The second is the

numerical calculus” (Zienkiewicz, O.C., 1961)

Early on, even before the development of the computational power which propelled the Finite Element
Method (FEM), Zienkiewicz, in a LNEC memory, was emphasizing the importance of numerical
methods in the process of ascertaining a dam behavior. Likewise, Arantes e Oliveira, a reference in
numerical methods (Oliveira,E.R.A. 1964), also in a LNEC memory about structural calculus

automation, said the following:

“The difficulty in the manual resolution of these systems (from the force and displacement
methods) from a certain order always been a tremendous obstacle, so strong it was not
possible to practically accomplish the theoretical calculus schemes.” (Oliveira, E.R.A., 1964)

Therefore, the importance of having a powerful calculation tool to aid in the simulation of structural
behavior through numerical methods was something identified a long time ago. With that thought in
mind, this report main goal is to present a 3DFE program named DamSlide3D, developed in
MATLAB, for the structural analysis of gravity dams considering the non-linear behavior of the
dam-foundation interface, using joint elements. A gravity dam is adopted as a case study to show the

potential and main capabilities of the DamSlide3D.

DamSlide3D requires the use of 3DFE meshes with cubic elements of 20 nodes (for the structure and
foundation) and joint elements, with 16 nodes, for the interface. The linear elastic behavior hypothesis
is assumed for dam body and foundation, and for the interface is assumed a non-linear behavior:

opening and sliding can occur at the joint elements used in the interface discretization.

This program is intended to receive as inputs: the structure geometry, material properties, the support
conditions and the loading state to which the structure is subjected. As outputs, the program allows
the visualization of the stress field, displacement field and deformed shape using 2D and 3D

interactive graphics.

In this report, firstly, the fundamental equations of solid mechanics are described for the general case
of 3D equilibria. The displacements formulation is presented and the strong form of the Navier
equation is derived. Then, the FEM fundamentals are presented, referring the conversion of the strong
form to the weak form used in the FEM formulation. The formulation and numerical implementation
details of the cubic finite element of 20 nodes and correspondent joint element of 16 nodes (used in

the DamsSlide3D) are presented. The implementation, in DamSlide3D, of the stress-transfer

LNEC - Proc. 0402/112/2075501 1
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technique used to simulate the non-linear behavior at the interface elements, considering the Mohr-

Coulomb criterion, is also described.

The DamsSlide3D was verified using three numerical tests with known theoretical solutions. In these
tests a simple structure was used, composed by a column discretized in 3DFE. At the contact surface
between the column and the base (horizontal surface) it was considered an interface discretized using
joint finite elements. A plane surface that crosses the column with a given slope is also considered,
discretized using the same type of joint finite elements. In the first test, the field of elastic stresses at
the base, due to self-weight (SW) and hydrostatic pressure (HP), was compared with the theoretical
results. In the second test, the nonlinear column behavior was studied for different values of the
friction angle at the inclined interface (in this test the structure is only submitted to SW). Finally, in the
third test, for the main SW + HP loads, the column stability is studied for a variation of the friction
angle ¢ at the base joint, and for a water level variation.

Finally, as an example of application, the structural behavior of a gravity dam is analyzed considering
the non-linear behavior at the dam-foundation interface. The dam was subjected to the self-weight and
hydrostatic pressure. A parametric study was developed in order to study the dam stability for different
values of water level and for different values of the interface friction angle.

Finally, the main conclusions and perspectives for future studies are presented.
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2| Solid Mechanics. Fundamental Equations

2.1 Introductory considerations

The main objective of structural analysis is to obtain an approximation of the strain and stress fields of
a given structure, knowing its geometry, support conditions, material properties and applied loads. In
this chapter there will be a brief presentation of solid mechanics basic equations: the equilibrium
equations, the strain-displacements equations and the constitutive equations will be addressed as well
as the Navier's equation expressing the relationship between body forces and displacement

derivatives.

To describe the state of stress at a given point P in the interior of a solid (as well as the state of strain)

is necessary the resource to the concept of tensor (DolTPoMS; 2000).

Scalar fields, like temperature, are represented, in each point P, by a number. A displacement field is
a vector field that is represented, in each point, by a vector, with three components in a 3D space. A
stress field is a tensor field that is represented in each point P by a second order tensor, which, for a

given orthogonal coordinate system x;, X, and Xs, is represented by a 3x3 matrix, ¢, the stress matrix.

Similarly, the state of strain is also mathematically characterized, in each point, by a second order
tensor represented by a 3x3 matrix in a 3D space. In Figure 2.1 these main solid mechanics variables

(DoITPOMS; 2000) are schematically represented.

The state of stress at a point P is well defined if we can know the stress vector at any plane surface
passing by P. In practice, it is only necessary to know the stress vectors in three mutually orthogonal
cutting surfaces and, consequently, the state of stress at P is perfectly defined through a matrix which,
at each line, holds the components of the three referred stress vectors. Correspondingly, at any point,
the state of strain is perfectly defined by 3 vectors associated with 3 orthogonal fibers. Figure 2.1
presents graphically the abovementioned concepts (DolTPoMS; 2000).

Displacement Strain Stress
vector Tensor Tensor

u,

Figure 2.1 - Displacement components, state of stress and state of strain in a point inside a solid (adapted from
Oliveira, S., 2016)
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2.2  Structural analysis: problem statement

In structural analysis, considering the linear elastic hypothesis and static loads, a computational
solution can be achieved throughout the equilibrium equation kKu=f, where ku represents the
internal forces (e.g. elastic restitution forces) and f the external forces. In this equation, the
displacements (U) are proportional to the applied forces (f ). The matrix K represents the structure
stiffness, and is usually computed using the linear elasticity hypothesis. Figure 2.2 presents a scheme
showing that the equation ku =Tf arises from the use of Finite Element Method (FEM) to solve the

Navier's equation, a fundamental equation of solid mechanics.

— FEM T
Navier’s equation

LT(I_)I_/T’/\I) +f :9 , for the whole

structure

BOUNDARY CONDITIONS

Cku=f

Figure 2.2 - From the Navier equation to the numerical solution using FEM (adapted from Oliveira, S.; 2016)

In structural computational analysis, the main goal is to determine the displacement, strain and stress
fields which result from the action of external forces. Figure 2.3 schematically presents which variables

are involved in a solid mechanics problem.
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Boundary with applied
stresses

Problem unknowns:

U 811 011
‘ B a,; Free boundary
%: le ,§;= 833 g, = 033 .
o 2E, o Applied body forces
3 2831 CSSI . .
5. o, Boundary with imposed

. ) displacement (null)
Material properties:

E=30 GPa
v=0.2
m=2.4 x 103 kg/m3
Inputs: Outputs:
- Structural geometry - Displacement field
- Material properties - Strain field
- Body forces - Stress field

- Boundary conditions:
Hydrostatic pressure at the upstream face
Prescribed null displacements at the base

Figure 2.3 - Solid mechanics. Stablishing the problem for the general 3D case

2.3 The strain-displacement relations

The normal strain is the measure of how the displacement changes through space, which can be seen
as a displacement gradient. Physically, a hormal strain component is the unit change in length of a line
element (fiber). Figure 2.4 illustrates, for 2D case, the concept of normal strain components and shear

strain components (for small deformations we also have small angular variations so it can be assumed

o =tan(a) and B =tan(B), and we can write o =0u, / 0X,, and f=0u, /0X, ) (DES-UA; 2008).

a. b.

o = tgo

B=1tgP

Figure 2.4 - Normal strain components (on the left) and shear strain components (on the right), adapted from
(Oliveira, S.; 2016)
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Figure 2.4a. represents schematically the concept of normal strain components at a point P, only with

, - ou, ou,
fiber length variation, where €, = — and €,, = —=

OX, oX,
Figure 2.4b. represents schematically the concept of shear strain components at P, that is related with

the angl iation of perpendicul terial li beinge,, =&,, == (A +PB) ==| —+—=
e angle variation of perpendicular material lines, being e, = ¢&,, = = (a =—|—+—.
12 21 2 2 axz aXl

For the 3D case, the strain-displacement relationships are displayed in Figure 2.5.

1 ro .
_au, el fos 0"
1 aX] ELl=| 0 i 0 U,
£ = aiz 8” aXz 5 l{-
22 axz 33 O 0 6_}(3 3
— U, 28| |0 £ 2
B 0X, ) 0X, 0%, —_ L
_15iz+5i3 2E, el ()i "(E — g
5 9 \0x,  0X, 8543 - 0x, (6+1) (3x1)
2€, NLCAN G
_ L{ou,, ou, | |ax, ax, °
a2\ 0x, 0, - -
1{ou ou Differential
k 8122 -2- 3_}(2] + a_X]Z) £+ operator
(63)

Figure 2.5 - Strains-displacements relation (adapted from Oliveira, S.; 2016)

In Figure 2.5, the components of the strain tensor are arranged into a vector (the strain tensor is
symmetric). Therefore, the strain displacement relation, for the 3D case, is given by the expression

g=L U, where L is a linear differential operator (Zienkiewicz, O. C. et al., 2005).

2.4 The stress-strain relation. Constitutive equation

Considering an isotropic and homogeneous material subjected to uniaxial tensile stress, one can
expect it to extend towards the axis direction and to contract transversally. In linear elasticity, stresses
are proportional to strains, being the Young’'s Modulus (E) the proportionality constant. The proportion

of contraction relative to the normal extension is given by the Poisson ratio (v). (DES-UA, 2015)

The abovementioned relation, also known as elasticity equation or Hooke’s law, can be written as

follows
Xz

€1 = =011, &3 =8&;3 = _EGn T (1)

- O11

X3
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For a 3D equilibrium the constitutive equations are presented in Figure 2.6, where the elasticity matrix

D, for isotropic materials, is expressed in terms of E and v, and, also, in terms of the bulk modulus

E E
K, = ———— and the shear modulus G =——.
3(1-2v) 2(1+v)
. _Oi_yOa O
tE E E
) O )
=2 _y iy -1
= E E ' E e=Do
. _Os O O =
? E E E
023
2823: G Cn
O }
26- = <t €. 7 =
%33 N
Glz
265 .l,
oc=D¢
(6x1) (6x1)
[ E(1-v) Ev Ev | 7]
Ty T2y Twaay 0 0 0
E(1-v) Ev
(1+v)(1-2v)  (1+v)(1-2v) 0 0 0
= E(1-v)
(6_6) sym. (1) (1-2v) | 000
0 0 Goo
0 0 0 0 G o
0 0 0 0 0G

el [l v v
€ |E T °F
=_.v 1 v
822 E E E
el .y v 1 -
= E E E
2E.. Lo
28&., 0 o L o
v G
_2812_ L 0O 0 G
-1
D
r 4 2 2
Ky3G K;3G K56
Ki3G K36 0
4
sym. e
= ¥ Ki3G
(6 6) G
0 G
0

Figure 2.6 - Stress-Strain relation. Isotropic material (adapted from Oliveira, S.; 2016)

2.5

derivatives and body forces

Equilibrium equation. The relation between stress spatial

:q :q :q zq :q

Q

In Figure 2.7 is shown the equilibrium, in x; direction, of a 3D infinitesimal material element (cubic

element of volume dx,;dx,dxs) considering the stress spatial variation and the resultant forces at the

infinitesimal cube faces. In the figure, f, represents the body force in x; direction. It is relevant to note

that f; could represent gravitational forces as well as inertial and damping forces.
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00
G21"'6_)(21 dx;,
XE =0
' L

. G

‘ G |4 _ oo
}% ! dx, 5 G11"‘8 Hdx
X5 aG — dX;

031+8_X:1 dx dx, G

9] 0C 00
g—x“ dx, dx,dx; +a—X21 dx, dx, dx; + a—x31dx3 dx, dx, + ﬁ dx,dx, dx; = ()
1 2 3

Figure 2.7 - Normal and shear stresses along axis x1, acting on a differential element (adapted from
Oliveira, S.; 2016).

The equilibrium equation for 3D case is represented in Figure 2.8.

— ra_Gn 6_021 6_631 —
EF"I_ 0~ 0%, +6X2 " 0X, i 0

SE =0 —»]00s ,00,, 0Cu, ¢ _
_) 0x, +ax2+5x3 + 0

2FE =0 —|080:s , 00, 0O —
b o%x, = 0x,  0x, v/, =0

2 900 0 £ 21 [0 + [T] = [o
oX, OX; OX, o

0 0 0 0 0 2 f2 0

O 2x, 0 ax x| | O f 0
o 0 o) O,
0 0 = — =— O 23
OX; OX, OX, o,
| O]

o
Lo+f=0

(3x6) (6x1) (3x1) (3x1)

Figure 2.8 - Equilibrium equations. The stress-body forces relation (adapted from Oliveira, S.; 2016)

2.6 Navier’s equation

In Figure 2.9 it can be noticed that it is possible to replace ¢ by LU in the elasticity equation and that

DLuU can replace g in the equilibrium equation. So it results the Navier's equation, which is a
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fundamental equation of solid mechanics (displacement formulation)l. The Navier's equation

establishes a relation between body forces and displacement derivatives.

—  L(E$)s e [uxxy)
U= [2,(x,X,.%5)

Navier's equation
LDLu) +/=0

Displacements

u

”;(X‘_,X:.X;)

y

3 cquili.brium 6 compatibility
equations equations \

{ T i L‘I“
| Lot/ e=Lu], &)
L == i )
! 0 , f ‘."I

a, Stresses Strains g
G.. e} £..
O =|o, ~ €=lg,
G, - IE{.‘
G, = D Elo E ¢ 28
G, — I 28

Figure 2.9 - Main equations of Solid Mechanics (adapted from Oliveira, S., 2016)

For engineering structures it is not possible to solve analytically the correspondent boundary values
problem involving the Navier equation (differential equation with second order partial derivatives),

consequently, it is necessary the use of numerical methods like the FEM.

The next section briefly explains how the Navier's equation (differential equation, or strong form) can
be transformed into an integral equation, known as the weak form, used for obtaining the numerical
solution by FEM.

2.7 Weak formulation

As referred above, in order to achieve numerical solutions for Navier’s differential equation using the
FEM, it is convenient to find an integral form (weak form) of the equation I__T (DI__LJ) +f =0 , which is

a differential equation, of the general form F(x)=0, that should be verified in the domain (structure’s

! For a stress formulation the fundamental equation would be Beltrami-Mitchell’s equation.
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volume) for some predefined boundary conditions. Through the application of the Fundamental

Lemma of Calculus of Variations (FLCV), which is the basis of the weighted residual method, function

F(x) is zero in its domain if the integral of F(x) multiplied by any trial function 2> =#(X) is equal to

zero (eq.3)

F(X)=0,xeV < J. F(X)edx =0, for any trial function & =« (x) e C; (3)
\%

Consequently,

[eT.[L'(DLu)+f]dV=0, Ve cC]
\%

(4)
Boundary Conditions
Using the Green-Gauss theorem, equation 4 becomes,
[(Le)" DLUAV =[TTdV , Ve €C] (5)
\Y% \Y

There are three last notes which deserve mentioning. Firstly, it is noticeable that equation 5 is free of

second order derivatives. There are only first order partial derivatives from the unknown function U .

Secondly, it is important to remind that one can directly deduce the integral form of Navier's Equation

by applying the Principle of Virtual Works (PVW). Finally, the trial functions () correspond to the

concept of virtual displacement field used when the PVW is evoked.
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3| Finite Element Method. Solid Finite Elements and
correspondent Interface Elements

3.1 Introductory considerations

In structural analysis, the numerical solution of the boundary value problem involving the Navier's
equation is usually performed using a discretization into finite elements (FE). The structure is divided
into elements of finite volume (FE), connected with each other by nodal points. The goal is to compute

the displacement vectors at the nodal points considered.

The FEM’'s main idea is to consider that the displacement field g:g(xl,xz,x3) may be achieved
through a linear combination of interpolation functions or shape functions N . At a given point P within
a finite element, the displacement vector U, can be obtained using the values NP of the interpolation
functions in P, and the values of the element nodal displacements (U°): U, =N, lf. It should be

noticed that ge is a column vector with the displacement values at the element nodal points.

For the 3D cubic element of 20 nodes, U, becomes:

2 (6)

Considering that the virtual displacement field within a finite element can also be reached by an

expression identical to 6, it results
v =Ne* (7)

Hence, the weak form of Navier's equation can be written as follows, for a finite element of volume Ve,

considering expressions 5, 6 and 7

[IL(Ne?) ] DL(NU) AV =[ (Ne*) "V, Ve =Ne* ®)
vV, vV,

Simplifying, by elimination of zge , Wwe obtain
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[(LN) D(LN)aV u* =[ N"f dV ©)
v, vV,

Using the notation B = L N for the derivatives of the interpolation functions (Zienkiewicz et al., 2005),
we can write

[B'DBAVY =[N dV (10)
v, V,

e

or,

Kfu®=F° (12)

that is known as the equilibrium equation of a finite element, in the algebraic form, where,

K®= J. B'DB dV - stiffness matrix of a finite element
V,

e

F* = .[ N'f dV - Vector of nodal forces (equivalent to the body forces f ) of a finite element

e

u® - Vector of nodal displacements

Figure 3.1 schematically presents the use of FEM: a structure discretization in finite elements and the
introduction of the FEM’s fundamental approximation into the weak form of Navier’'s equation to obtain

the equilibrium equations in the algebraic form.
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FEM's fundamental
approximation
Uu=NuU
%?ggs Navier's equation
T HLOLY+f=0
(3x1)
T
c+f=0 =Lu
Stresses Interpolation
functions
) ‘/7 derivatives matrix
(6 x1) \ /
B=L N
c=Dg ===
L] g=LN U
c=DB
== e=B U

( The equilibrium equation for an element with finite volume can be obtained by the PVW)
Navier's equation weak form
= DB W

=W, Ve <=> |g. dvzjg}. fav, e
v Vv
\ el T

2?2 - Virtual displacements
™ ortest functions

o
v=Nv

( The virtual displacements are
also approximated by the
interpolation functions)

r [
<=> DB udv = N fav
[ 1 e [
<=> BDBdv. U = | N fqv
Jv =TT Jv = ~
A N
Ke Fe
K¢ o - F®

Figure 3.1 - Structural analysis using FEM. Introduction of FEM’s fundamental approximation in the integral form of

Navier’'s equation
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3.2 Solid finite element of cubic type with 20 nodal points

For this study, considering a 3D equilibrium analysis, it was decided the use of a 20 nodal points cubic
element (isoparametric) from the “serendipity” series. Figure 3.2 displays a 3D view of the master

element used to build the FE models studied in this work.

Figure 3.2a. presents the local axes and the position of nodal points. On the other hand, Figure 3.2b.

shows the location of Gauss points.

a b.
16 ® e e - S
O — g T ——— e ~ ¥ -
Rt e e T
| “ | |
| y3 6 ‘ ‘ ‘ | |
| 20, | | % N b o
17 Ly i ..
° v 2. 19 * ¥ +° +
| " 18 | | + *
. + |
i, S AT e mir"LJ
\‘ : == ] \ 4% . +‘ /
o + | 9P
1 ; 3 -
@ e Y
9° 2 10 T o
@

Figure 3.2 - 3D visualizations of the 20 nodal points isoparametric master element. On the left, are represented the
nodal points and the local axes. On the right, are represented the 27 Gauss Points used (red crosses)

Figure 3.3 displays a 2D top visualization of the master element. This figure illustrates the cube
dimensions, the location of the GP’s (red in the figure) and their respective influence area (for

calculate the Gauss weights).

5/9‘ 8/9 ‘5/9
T @ T I
X! X ' X
DX x o x]
3/5 | |
%»x XX e 89—
GE o
I bolx o x x|

Figure 3.3 - 2D top view of the 20 node cubic element. The Gauss points location is represented with red crosses
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The interpolation function N; (associated to node i) is equal to 1 at node i and is zero in all other nodes.

Equation 12 presents the interpolation functions of the cubic element of 20 nodes.

Ni=%a+ﬁWJa+%W9W9m+y9n+v9ﬁ—2) (i=12..,8)
N, :%(1— v A+YPy,)A+yly.) (i=10,12,14,16) .
N =3 @y 0y ) y'y,) (-9.1113,15)
N, = % A-y,)A+yPy)A+yPy,) (i=17,18,19,20)
Where,

i — Nodal point index.

f), (2” and yg) — Local coordinates of node i

Y., Y, and y, — Local coordinates of a general point inside the element

3.3 Interface finite elements

3.3.1 General considerations

The elastic properties of the interfaces (Figure 3.4) are the normal stiffness Ky and shear stiffness K,
which are defined per unit area of the joint. Joints are defined by two faces: a lower face (face 1) and
an upper face (face 2). In the finite elements discretization the faces are initially coincident and, due to
the loads, there may be relative displacements between the faces: tangential displacements u; and
normal displacements uy.

To estimate the values of Ky and Ky it can be assumed that there is a joint filling material with a given

modulus of elasticity E and a distortion modulus G and that the joint has a given thickness €; (denoted

as fictitious thickness because in numerical models is not represented - the faces of the joint are
coincident). With this hypothesis one can estimate the normal stiffness of the joint (13) based on the

formula for calculating the axial stiffness of a column of length L, which is EA / L. In this case of the
joint, L is replaced by the fictitious thickness of the joint (€, ) and the unit area (A = 1, stiffness per unit

area) is considered and thus the normal stiffness of the joint per unit area becomes:
Ky =E/e (13)
For the shear stiffness, is the same, using now the shear modulus G, being

K, =G/e, (14)
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Figure 3.4 - Interface element. Relationship between stresses and displacement differences (between interface
faces). Definition of normal stiffness, Ky, and shear stiffness, Kr, of a joint. (Oliveira, S., 2016)
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3.3.2 Interface finite elements with 8 nodes per face

The interface elements are used to simulate the behavior of discontinuities that represent the contact

surface between two materials in diaclases, cracks, construction joints in dams, etc.

The 16 nodes interface finite elements (8 nodes per face) are used to simulate the interaction between
the two faces of two 20 nodes finite elements that possess two adjacent faces. The interface element
establishes the “connection” between both faces (8 nodes per face). This kind of interface finite

element is named “2x8 interface element” (Genésio, M.L.V.P., 1993).

Figure 3.5 presents a 3D interface finite element with 2x8 nodal points and 3 Degrees of Freedom
(DoF) per node (48 DoF). The interpolation functions are identical to those used in the 8 nodes 2D

guadratic finite elements (Equations 15).

a. 3D 8x2 nodes interface element b. Interface element top view

X3

(1D

+0,5

[T}
X - o F
2 ! —
Xl NS

Y, =

Figure 3.5 - Three dimensional interface element of 2x8 nodes (48 DoF). (a.) 3D view of the interface element.
(b.) Top view of the interface element

1 i i i i -
N, = @ YOV )A+YOY )Y, + YRy, -1) (i=1,2,3,4)
_ 1 2 (i) (i) _ H-
I\Ii _E(l_yl )(1+y2 yz) (yl —O) (' —618) (15)
1 | | -
N, =2 @+ yOy)a-y,%) (9 =0) (i=57)

For every point of the interface element, named P, the constitutive relation between stresses (one
normal and two shear components in relation to the joint plane) and strains (one normal and two shear

strain components) can be written according to expression 16, considering a local tri-orthogonal
coordinates system (N, fl, fz , Figure 3.4), where one of the axes is perpendicular to the joint, and the

remaining are contained in the tangential plane to the joint, at point P.
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T, G 0 Ofy T, G 0 O Auy/e
7, |=|0 G O|y,| © |1, |[=|0 G 0| Aug,/e (16)
oy 0 0 El g, oy 0 0 E| Auy/e
g D' g
Therefore,
T, Ky O 0 (| Aug
7, |=| 0 Ky 0 ||Aug, | , K,=G/e, ,K,=E/e, (17)
N 0 0 Ky |lAuy
Dl\] Ag'
Where,

K, - Shear stiffness towards direction t;, which is contained in the joint’s tangent plane, at

point P (joint’s stiffness per area unit).

KT2 - Shear stiffness towards direction t,, perpendicular to t; and contained in the joint’s

tangent plane, at point P (joint’s stiffness per area unit).
Ky - Normal stiffness towards the perpendicular direction of the joint's tangent plane, at point
P.

Generally, K11=K»>=Kj5 (this hypothesis is valid for an isotropic joint filling material).

Consequently, for every point P of the joint, the relation between stresses and displacement

differences (between faces), can be expressed as follows
o', =D" AU, (18)

Where the symbol is used to distinguish the coordinate system at use, which, in this case, is the

tri-orthogonal t, t, and t3 (the t; direction coincides with the direction of vector n, Figure 3.4).

Using the interpolation method, vector AU', can be written in order to the terms of the displacement

differences at each interface element node. The bidimensional 8 nodes quadratic shape functions are
used and the result is the following
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AU, N, 0 O Ny, O
Au'=| Au,, 0 N, O 0 N,
Au o 0 0 N, 0 0

Equivalently, the equation can be written in the following form.

o

Z o

©

-
u?rgz _uilz
usy —usy
-
2 —utt
usl® —u?

AUy,
AQI: Aug, | =
3x1 AUN .
-N, 0 0 —N, 0 0 N, 0 0 N, 0
= 0 -N, 0 0 —Ng 0 0 1 0 Ng
0 -N,; 0 0 —N, 0 N, 0 0
Np
3x48
or
AU, =N, u'*
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3.3.3 Coordinates transformation. From the local coordinates system to the global
coordinates system

To obtain the interface element stiffness matrix, referred to the global axes, it should be used a
transformation matrix (T ), in each of the Gauss points. This transformation matrix is composed by the

local axes direction cosines relatively to the global axes (X1, X, and X3). The axes t; and t, are coplanar

with the plane tangent to the joint’s plane and t; is perpendicular to t; and t,, at each Gauss point
(Figure 3.6).

Vectors t, t, and t, calculation:

t1' unit vector tangent to y; (jacobian

matrix first column at point P);

X, f3— normal unit vector (the jacobian matrix

two columns vector product);

t, - unit vector perpendicular to both, fl
and t, (vector product t xt,). This

vector might not be coincident with y,.

Figure 3.6 - 3D interface element with 2x8 nodes (48 degrees of freedom). Representation of the three coordinate
systems used: i) global coordinate system (tri-orthogonal); ii) local coordinate system, y1 and y2 (possibly curved
and not orthogonal axes) towards the interface element surface; and iii) tri-orthogonal coordinate system defined at
each point P of the interface elements, in which is established the joint’s constitutive relation through the diagonal

elasticity matrix D, (Figure 3.4)

The transformation matrix T should be determined for each Gauss point of the interface element.
This process starts with the calculation of the Jacobian matrix (for each Gauss point). The Jacobian
matrix contains the directions of the local axes (y; and y,) of the tangent plane to the joint, at each
Gauss point. The result is the following 3x2 matrix

Global coordinates for

the joint's nodal points. % %
‘]11 le Xfl ng ayl ayz
Jor =|dn I = Xgl ng ; ; (22)
@23y Iy | X$ o x| | ONg  ON,
32 IR I e A
(8x2) ’

The interpolation functions N; and the corresponding derivatives 8Ni/6yj, are equal to those used in

the 8 nodes quadratic 2D elements. An interface element is formed by two faces of the 3D elements
(with 8 nodes each). Figure 3.7 displays the local coordinates of nodal points and Gauss points of the

presented interface element, as well as the Gauss weights.
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a b.
? Y, Local nodal coordinates
59 | 89 | 59 N
NG | Node (i) y1® yold
e ; e ; e I 1 1 1
N3 | | N2 -
o X X | X|%sp9
1 I ] 2 1 1
\J3/5 : : 3 1 1
e X | X—Xe g89-=
| N7 ‘ ‘ N5 . 4 1 -1
1S ] s 1 0
X X X 519 6 0 1
‘ Il ' Il ' v
N4 ‘ N8 ‘ N1 7 1 0
8 0 1
\3/5 |3/5
1 1
c. Gauss points local coordinates and Gauss weights
W1=5/9 W2=8/9 a=/3/5
GP Type yi y2  Aep GP Type yi oy Acp GP Type yi  y2  Acp
1 a a 5 a 0
2 a a 6 0 a
—— Comer ———— Wy? —— Side ———— WiW: 9 Center 0 0 W2
3 -a a 7 -a 0
4 -a a 8 0 -

Figure 3.7 - Interface element. (a.) Numbering of nodal points and Gauss points local coordinates (b.) Nodal points
local coordinates. Gauss points local coordinates and corresponding influence area (weight) used on the stiffness
matrix numerical integration

This way, the Jacobian matrix, for a given Gauss point, is displayed in equation 23

Jy Iy
J PG J21 ‘]22 (23)
Jy I

Considering the above Jacobian matrix, one can determine a tri-orthogonal coordinate system, with

Versors 'T'l, 'T'Z and T’B (unit vectors), using the following three equations.

-ITl _ (‘]11’ o1, ‘]31) (24)
\/‘Juz + ‘]212 + ‘]312

.t —

" :HtT?)H ’ ty = (11,9200 931) X (312, 3200 30) @)
3

T -
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Therefore, the transformation matrix T can be assembled for each Gauss point, being

E T11 le T13
IGP = Tz = T21 T22 T23 (27)
T3 o T31 T32 T33 cp

So, at any Py point of the joint (P,’s belonging to face k=1, P,’s belonging to face k=2, ...), the relation
between displacement components in axes, t;, t, and t;, and in global axes, x;, X, and Xs, is given by

the following equation

Uy T11 le T13 U

Ur, = T21 Tzz T23 P (28)
p p

Uy facek T31 T32 T33 p Us facek

(ty.t5,t3) (X1, %2,%3)
In a more abbreviated notation, the abovementioned equation, takes the following form

u's = T, U (29)
(ty.t5,13) (X1.X2,X3)

Thus, in local axes t, t, and ts, the displacement differences at any P joint section (being P a point

belonging to the mean surface and P; and P, points belonging to each face) can be related with the

nodal displacements associated with the global axes through the following interpolation formula

e
ust
udt
us®
ueB
Aug, T, T, Ts|[-N, 0 o0 -N, O 0 | N 0 0 N, 0 O %
Aup, =T, T, Tul| O -N, 0 0 -N, 0 | 0 N O 0 N, 0=
u
Au,, Ty T Tl 0 -N, 0 -N; | 0 N, 0 Ny|| & (30)
- = u;
31 p (3x48) e9
u3
u;jlﬁ
ugle
Lus” |
(48x1)
In an abbreviated notation, the abovementioned equation, takes the following form
Au', =T, N; ge (31)

The joint’s elasticity equation in its local coordinate system is represented by the following equation
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c'=D, AU’ (32)

(1) (33) (3)
Taking the last two equations into account, it is possible to reach the following equation for global axes

=D, T N u (33)

(31)  (3x3) (3x3) (3x48) (48x1)

Finally, the integral expression corresponding to the stiffness matrix of the joint element can be
obtained by introducing the above interpolation formulas into the weak (or integral) form of the Navier

equation which, as is known, can be obtained by applying the PVW to the joint finite element. Thus,
taking into account that the work of the internal forces associated with the virtual deformations €, is
given by
W, = [£.To'dV = e [, Tg'dA (34)
\ A,
and that §u'= Agu'/ €;, then, by introducing in this integral expression the above interpolation

formulas of the FEM, we obtain the expression (35) for the stiffness matrix of the joint element

ki =[N"T'D,T N dA (35)

(48<48) A, (48:3)  (3v3)  (3x48)

In the aforementioned equation is noticeable that the joint thickness is not present anymore explicitly.

By integrating into the local axes y;, y, we obtain

Iﬁi = NT ITDJ I N (I)J dyldyz (36)
(48><48) AJ (48><3) (3)(3) (3><48)

where (|)J = ||Jil><Ji2|| (area of the parallelogram defined by the vectors corresponding to the two
columns of the Jacobian matrix).

Using the Gauss method to perform the integration numerically, it is obtained the usual summation

(37) extended to the 9 Gauss points of the joint element, which is currently used in the structural FEM

programs
Ngp=0

Kj = Z N.TLTD TN o A (37)
(48x48) i=1

Finally, it should be noted that in most structural analysis programs available on the market, the elastic
properties of the joint elements that users are required to enter are only K and K;
( KN: E/ef , KT= G /ef) , and it is not required to specify the value of the joint thickness €, , hence

the usual designation of fictitious thickness.
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3.3.4 Interface element non-linear behavior

The non-linear behavior of the joint’s materials is characterized not only by its elastic properties, which
are the normal and shear stiffness, Ky and Ky, respectively, but also by its strength properties, which
are the cohesion c, and the friction angle ¢. With this strength parameters we are able to evaluate the

admissibility of the state of stress installed in the interface elements

Ty
ey =D, INU. = 7, (38)

O

To study the admissibility of a state of stress at a given point is useful its representation by a Mohr’s
circle (Figure 3.8).

Figure 3.8 — Mohr’s circle representation

If it is found that at a given Gauss point of the joint element the normal stress exceeds the uniaxial
tensile strength, f, (if c=0 we will have f=0) or the shear stress exceeds the shear strength, t,, a joint

local failure will occur, and it will be necessary to redistribute the unbalanced stresses

2 2
T= *ffu +7, (39)

t — CXZCO-—S(q)) (40)
1+sin(d)
T, =C+0o, xtan() (41)

In the developed program DamSlide3D, criteria were established for the determination of the
maximum uniaxial compression strength (f.) and for the maximum uniaxial tension strength (f,). This

values can be related with cohesion c and friction angle ¢ (Figure 3.9).
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1)
. 1-
¢ = arcsin
1+m
1+si
g L I
2.cosd
(m=f /f)
¢ - Internal friction angle
¢ - Cohesion
f; - Uniaxial tension resistance g
f. - Uniaxial compression resistance
|
S
h -
fe 0 fi c

Figure 3.9 - Relation between the strength parameters c, ¢, f: and fc (adapted from S. Oliveira, 1991)

In nonlinear structural analysis with joint elements, the redistribution of stresses higher than the
admissible (verification to be performed at the Gauss points of the joint elements) is achieved by a
process that transforms the non-admissible stresses into forces to be applied in the nodes of the joint

element. In this way, a vector of unbalanced forces is built for every joint element (42)

9
EUnb :Z NpT ITQ-unb¢J WGP,J (42)
1

The vectors of unbalanced forces in a joint element are then assembled into the global vector of
unbalanced forces Y. The unbalanced forces are re-applied iteratively. This non-linear calculus

methodology is named stress-transfer. The following equation summarizes the process

KoUu=FE,+vy (43)

With the internal forces redistribution, two scenarios can occur:

- The applied loads are compatible with the global strength of the structure. In this scenario,

the stress-transfer process converges.

- The applied loads are not compatible with the global strength of the structure. In this

scenario, the stress-transfer process diverges.

Figure 3.10 shows, graphically, the iterative stress-transfer process whether it reaches a solution
(3.10a), and whether it is not able to reach a solution (3.10b), which is the case of a divergent

stress-transfer process.
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ISO lil = Lap + \lj
a b.
Convergent Divergent
F F
Ays
Ay,
Ay,
— v /
Ay, Fap )
Ay ;L
Fap
Ko Ko
1 1
d dne d dp d

Figure 3.10 — Stress transfer. Schematic representation of a convergent (a) and divergent scenario (b)

As it is depicted in Figure 3.10a, when the stress transfer method converges to the solution, it does so
with a resulting decreasing difference between displacements, between two consecutive iterations.
This difference, when approaching the solution, tends to zero. It is necessary to stablish a
convergence criteria which stops the iterative process when the obtained displacement values are
sufficiently close to the solution. The following two equations display the criteria adopted to interrupt
the iteration process. When the difference between the results from the first iteration displacements (

U,) and the elastic displacements (U, ) is equal to zero, Norm; will be equal to zero and, therefore,
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lesser than a predefined tolerance (Tol), hence, the iteration process finishes. When the difference
U, —U, is not zero and the difference U, —U, ; decreases betwee n consecutive iterations,

the process will stop when

u. —u.
= = ~"1| x100 is below the admitted tolerance
U, -y
U —Uy|
BL=2,100, |y, —u,|>0
Norm, =1 [u; —Uy| o
0 ] |gl - lLIeI | = 0
Norm, <Tol 4

For a divergent process, the difference U; —U,, does not decrease in consecutive iterations and,

consequently Norm; is always higher than Tol. In this case, it is necessary to define a limit value for the

number of iterations in order, once again, to stop the process.
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4| The DamSlide3D program

To achieve the objectives of this work, it was developed a computational FEM program, using
MATLAB, named DamSlide3D. As explained in chapter 3, this program uses the 20 nodal point’s

cubic element and the correspondent 16 nodal point’s joint elements.

The input data for DamSlide3D include the structure geometry (its FE mesh: nodal coordinates and
elements definition), the material properties, the support conditions and the loads. As outputs we can
obtain information about the convergence method and 3D and 2D graphics with stress field and

displacement field detailed information.

Figure 4.1 summarily addresses how the element and global stiffness matrix are computed and the
script for the stress transfer iterative process is presented in Figure 4.2. In this figure it can be seen
that the stress-transfer algorithm recalculate the global displacements vector, through a redistribution
of unbalanced stresses (considering that they exist, if not, the non-linear threshold was not met and
the stress-transfer routine is not executed). This unbalanced stresses come from the linear elastic
calculus and corresponds to the difference between the acting and strength stresses at the interface
elements (which is the non-linear domain for this model). Consequently, with known unbalanced
stresses is possible to determine the unbalanced nodal forces vector (Figure 4.2 red code section),
which, added to the global nodal forces vector determines the global displacements vector of the
structure® (Figure 4.2 green code section). If the difference from the norm of two consecutive
displacement vectors is infinitesimal (Figure 4.2 blue code section), then, the iterative process stops
(Figure 3.10 convergence), if not, the calculation cycle restarts. Additionally, if the unbalanced
stresses are too high and do not redistribute themselves across the joint, then the iterative process is
unable to converge and the cycle will continue until the predefined maximum iterations number is

achieved (Figure 3.10 divergence).

It is important to mention that, in Figure 4.1 scheme, the restrained DoF’s (at the supports) were not
removed from the element and global stiffness matrices; therefore, after the global stiffness matrix
assembly, in the diagonal elements of that matrix, associated with those restrained DoF’s, an

extremely high stiffness value was added. That value is equal to 1e'® for each DoF restrained.

2 s important to highlight the fact that the global displacement vector is recalculated without the need to
recalculate the stiffness matrix, which is exactly the advantage of this method.
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For each finite element ( for n=1:NE )

Calculate

X
(3%20)

€ €

Xl Xl
e €.
X5 X3
e e
X3 XZ

For each Gauss Point (

€20
Xl

€20
X 2

€20
X3

, element n, nodes coordinates matrix

) with the local coordinates presented in Table 3.1

Calculate the Interpolation Function (IF) values (equation 12) and corresponding partial derivatives in
respect to the local coordinates (in GP iPG):

N, N,, ...

! N27

Calculate the Jacobian matrix:

RPN
Q: ‘]21 ‘]22 ‘]23 <
Jy e Iy
XXy
o= X3 x¥

X3 ooXxg

N, N, Ny
6yllayll.”’ayl
ayjl ayz ayB
o7l ON,  ONg AN,
Z oy, 0y, 0y,
X372
N, 0N, N,
L 0y, 0y, 0Y; |

Assemble matrix B (5 =LN , ¢=B ge)

oN, 0 0
0%,
0 on, 0
0X,
0 0 on,
B 00X,
- 0 ON, 0N,
0X;  0X,
ON,; 0 ON,
0X, 0X,
ON, ON, 0
| 0%, 0%

ON, 0
0%,
0 ON,
0X,
0 0
0 ON,
0X,
ON, 0
0X,
ON, ON,
0X, 0%,

0

oN,

00X,

oN,

0X,

oN,

0X,

N, oN,

o, oy,

N,
%Y,

N, ON,
oy, oy,

ON,,

%

Calculate the IF partial derivatives in respect to the
global coordinates:

[ON, ON, 0N, [ON, 0N, 0N, |
%, 0X, 0X, % Y, JYs
ON, ON, 0N, ON, 0N, 0N,
0X, 0X, 00X, oy, 0y, 0Y, 1
" =PG
ON,, ON,, 0N, ON,, ON,, ON,,
L 6X1 aXZ aX3 a L ayl ayZ ay3 _cp
Calculate the matrix corresponding
_ to the following matrix product:
Ny 0
0%,
o MNa
0X,
ON,,
° Y % B'D B
o Nz 0Ny
0X,  0X,
Ny o 0Ny
0X, 0X,
ONy Ny
0X, 0%, ]

The numerical integration through the Gauss method for matrix B'D B over the finite element volume

(split in 27 cubes associated to the Gauss Points) is equal to the sum of matix B'D B |Q|AmaSter

computed each Gauss Point (Gauss sum to obtain Iﬁe)

end

Ke

(60x60)

=(8'D BJajAT"), +(B"D B lAT")

PG2

+ ... +(B'D B |3|AR™)

PG

PG27

“Spreading” of the element matrices K into the global stiffness matrix K (assembly)

Figure 4.1 - MATLAB programming script scheme for the element stiffness matrix calculus and subsequent
assembly of the global stiffness matrix, considering a cubic “serendipity” element of 20 nodes
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o

(LINEAR ELASTIC CALCULUS)

o

o°
o°
5

————————————— Stress-Transfer Beginning cooooooooooos G
% 'while' cycle to the iteration number of interface elements
while (Norm > Tol) && (niter < MNITER)
niter=niter+l; FDes (1:NGL,1)=0;

I S Veetor Fbeg ealeuliy —=—=========
for nj=1:NEJ % Cycle to the interface elements
knormal=KN (imatJ (nj)); ktangencial=KT (imatJ(nj)) ;
DJ=[ktangencial 0 0; 0 ktangencial 0; 0 O knormal]l;
Coesao=Coesaov (imatJ (nj)); Phi=Phiv (imatJd(nj));
% Interface element n x1 x2 and x3 nodal coordinates matrix
for in=1:2*NPFJ; for ik=1:NGLNO
e ((in-1) *NGLNO+ik,1l)=u((elemJ(nj,in)-1) *NGLNO+ik,1); end; end;
for i=1:3; for j=1:NPFJ; cej(i,]j)=coord(elemd(nj,j),1i); end; end
FDesJ=zeros (2*NPFJ*NGLNO, 1) ;
for iPG=1:NPGJunta % Cycle to the GP of each interface element
y1=YGJ (iPG, 1) ; y2=YGJ(iPG,2); % Local coordinates of PGauss 1iPG
dNdy = Deriv¥2D(yl,y2); % IF's derivatives in order to the local axes
N= N2D(yl,y2); NN=[-N N]; % IF's values
% Jacobian matrix (3x2) calculus at GP iPG of interface element n
J=cej*dNdy; DETT=norm(J(:,1))*norm(J(:,2));
T1=J(:,1)/norm(J(:,1));
t3=[J(2,1)*J(3,2)-J(3,1)*3(2,2); —-(J(1,1)*J(3,2)-3(3,1)*J(1,2));...
J(1,1)*J3(2,2)-3(2,1)*J3(1,2)1;
T3=t3/norm(t3) ;
T2=[T3(2) *T1(3)-T3(3)*T1(2);
T3 (1) *T1(2)-T3(2)*T1(1)];
T=[T1'; T2'; T3'];
sPGJ=DJ*T*NN*ue; % "sigma = D.B.ue" interface referential stresses
)"2) i

SigmaT=sqgrt (sPGJ (1) "2+sPGJ (2) "2) % Shear stress (absolute value)
SigmaN=sPGJ (3) ;

% Interface element uniaxial tension resistance calculus
ft=Coesao* (2*cos (Phi*pi/180))/ (1+sin(Phi*pi/180)) ;
if SigmaN > ft % Erases normal tension stresses

SigmaN_ Des=SigmaN-ft; SigmaN=ft; else SigmaN_ Des=0;
end % End of if SigmaN > ft
tau resist=Coesaotabs (SigmaN) *tan (Phi*pi/180) ;

)

if SigmaT > tau resist % Mohr-Coulomb shear verification
% Difference between acting and resistant shear stresses
SigmaT Des=(SigmaT-tau_resist*sign(SigmaT));
SigmaTl Des=SigmaT Des*cos (atan2 (sPGJ(2),sPGJ(1)));
SigmaT2 Des=SigmaT Des*cos (atan2 (sPGJ(1l),sPGJ(2)))
else SigmaTl Des=0; SigmaT2 Des=0; end % end of if SigmaT > tau resist
% Unbalanced stresses vector at the interface referential
S_Des=[SigmaTl_ Des; SigmaT2_Des; SigmaN_Des];
FDesiPGJ=NN'*T'*S Des*DETT*WPGJ (iPG); % Unbalanced stresses integration
FDesJ=FDesJ+FDesiPGJ; % Nodal forces vector equivalent to the
% unbalanced stresses at the interface element i (FDesJ is 48x1)
end; % Cycle for i=1:NPGJunta end
% Nodal forces 'Spreading' at the interface
% Unbalance forces global vector assembly (FDes is NGLx1)

for i=1:2*NPFJ; for ik=1:NGLNO % 2 cycles to scan K(i,7) lines [1=1:NGL,j=1:NGL]J

=(T3(1)*T1(3)-T3(3)*T1(1));...

noGi=elemJ(nj,i); % Global node (lines,i): nj element , i th node
GLGi=(noGi - 1) *NGLNO + ik; % Global DoF (lines,i) - varies from 1 to NGL
GLEi=(i-1) *NGLNO+ik; % Interface Element DoF (lines,i) - varies from 1 to 48
FDes (GLGi,1) = FDes (GLGi, 1)+ FDesJ(GLEi); end; end
end; % Cycle for nj=1:NEJ end
% oommoeeees End of vector FDes calculus ————————————
Iu=Kinv*(F+FDes); % [m] (if the inputs are in meters) I
if niter==1; NormO=norm(u bak-u); end;

if Norm0O >0; Norm=norm(u bak-u)/Norm0*100; else Norm=0; end % End of if Norm0 >0
u_bak=u; ITER(niter)=niter; VALNORMA (niter)=Norm;
end % Cycle while (Norm > Tol) && (niter < 500) end

clear Kinv;
%%% ——m—————————— Stress-Transfer End e $5%5%

Figure 4.2 - Stress-transfer MATLAB script. Routine executed after the linear elastic calculus. The red rectangle
highlights the unbalanced global forces vector calculation. The green rectangle highlights the global displacements
vector calculation. The blue rectangle highlights the convergence verification
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5| Numerical tests

5.1 Test structure presentation

In order to verify and validate the program DamsSlide3D, three tests were carried out. These tests
involved the simulation of the behavior of a simple structural system. It was considered a column, and
its base, subjected to the self-weight and to the hydrostatic pressure (Figure 5.1). Horizontal joint
elements are considered at the contact between the base and the column and inclined joint elements

are also considered in the column as indicated in figure 5.1.

In Figure 5.2 it is shown the diagram correspondent to the equilibrium of forces at the base of the

column and in Figure 5.3 is shown the adopted FE mesh.

- - -‘"’.“.
= - . - "\‘F <P
| Y
l
w2 ‘
f 1
~Joints | 4 w ,%M il
o N
= ‘
- 'j : —a -t
- o ‘ﬁt
[T,
- .
9 - 12 HP Oc
\\ A RN Oc
Figure 5.1 - Test structure Figure 5.2 - Linear (gray) and non-linear Figure 5.3 - 3D finite element
characterization and loads stress distribution (red) in the horizontal mesh
(Hydrostatic pressure and joint at the column base

self-weight y=24 kN/m?3)

5.2 Joint behavior. Linear elastic test

In Figure 5.2 is represented, in black, the resulting linear distribution of stresses across the interface

column-base (46) as well as the resultant bending moment M and axial force N, being

G_N+M.y
=—t+—Z

o= MY ol A (0
A _N_My
A

This analytical result can be used to the verification of the DamSlide3D.
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Considering the structure geometry and loading (HP and SW), for a water height of 12 m, through

equation (46), the resulting maximum compression stress and maximum tension stress are

G.=1560 kPa and G;=600 kPa, respectively.

Figure 5.4 displays the Gauss points considered in the computation. Figure 5.5 presents the program

outputs for the stress distribution across the interface column-base.

\ Corte A-A

A' T oX X XexX X XX X XX X X¢

|
{

Figure 5.4 - Gauss points considered (red crosses) for the analysis of the stress distribution at the interface
column-base

Figure 5.5 presents the elastic stresses variation across the interface dam-foundation and, as

expected, the shear elastic stresses are constant and the normal elastic stresses vary linearly.

The maximum stress values computed numerically are, from Figure 5.5, G.=1602.6 kPa and
G:=629.6 kPa and the analytical values (eq.46) are, respectively, G.=1560 kPa and G=600 kPa,

showing a good agreement between numerical and analytical results.
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Figure 5.5 - Elastic behavior of the test structure. Displacements field and stress distribution at the interface
column-base
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5.3 Joint behavior. Non-linear tests

5.3.1 Inclined joint

In this section is studied the non-linear behavior of the 30° inclined joint (see Figure 5.1 and Figure
5.6), for self-weight loading, considering different values for the friction angle. If the friction angle of the

inclined joint is equal or greater than the inclination of the joint no sliding is expected (the shear

resistant force in Figure 5.6 is greater than the acting shear component 7T of the weight).

Figure 5.6 - Schematic representation of the forces equilibrium at the inclined joint

The shear resistant stress T, , which depends on the normal stress &,, and on the friction angle ¢ can

be evaluated as follows

g =0y.tan¢ (47)

On the other hand, from the balance of forces displayed on Figure 5.6 we can determine the acting

shear stress T

. t=P.sing
t=P.sing oy .
= o, =>T=—>sing=1t=0,tange (48)
o, =P.coso P= Cos¢
CoS @

Sliding will occur when 1> T, . So, for values of the friction angle ¢ greater or equal to those of the
joint inclination angle @=30°, there is no sliding.
Figure 5.7 shows the numerical results of DamSlide3D for two different scenarios:

i) the test structure with a (p=30° inclined joint is submitted to its self-weight and the friction
angle is ¢=30.01° (slightly higher than the joint inclination angle ¢=30°); and

ii) the friction angle is ¢$=29.99° (slightly lower than the joint inclination angle (¢=30°);
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a. Friction angle at the inclined joint: $=30.01° b. Friction angle at the inclined joint: ¢$=29.99°

Displacement Field Displacement Field
mm
0.1 0.15
0.09 0.12
° 30.00° 0.09
30.00 0.06
0.06
0.04
0.02 0.03
0 0
Convergence Convergence
150 150
—~ S
S 100f £ 100
E g 15 .
s | 2 Divergent
5 ;@ 50
2 50( \
0 L ]
0 | 0 1 2 3
0 200 400 800 Number of iterations ><;]05
Number of iterations
Concrete: Inclined joint (no cohesion, ¢=0):
E=50 GPa Kn=2.5%108 kN/m
v=0.2 Kr=1.0%x108 kN/m

Figure 5.7 - Numerical study of sliding across the inclined joint (¢p = 30°) on a concrete column under the
self-weight load. (a.) Results for friction angle ¢$=30.01°, slightly higher than the joint inclination angle; a convergent
solution was obtained: no sliding, as expected. (b.) Results for friction angle $=29.99°, slightly lower than the joint
inclination angle; divergent process, meaning that a sliding occurred

As expected, it is possible to verify numerically with DamSlide3D that for $=30.01°, higher than the
joint inclination angle (¢=30°), no slide occur. For ¢=29.99°, lower than the joint inclination angle,
sliding is numerically identified. Actually, from the convergence process analysis displayed in the
graphics, for ¢=30.01°, the iteration process converged (stopped around the 400th iteration for the

given tolerance). For $=29.99°, the iterative process diverges (structural collapse by sliding).
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5.3.2 Analysis of the base joint behavior considering hydrostatic pressure.
Parametric study on the influence of friction angle (constant water height
H=12 m)

In this section, is considered the non-linear behavior of the horizontal joint at the column base. For the
inclined joint it was assumed a linear behavior with high stiffness and strength. In what concern the
loads, is assumed that the structure is subjected to the combination SW + HP (water height H=12 m).

Is assumed null cohesion for the base joint, meaning that no tension stresses are supported.

In Figure 5.2, is represented, in red, the non-linear distribution of the compression normal stresses in
the horizontal joint at the column base, for a bending moment M and for a normal force N. Assuming

that no tensile stresses can be supported by the joint (null cohesion), the equilibrium is obtained with

high compression normal stresses G, that can be calculated analytically as follows

N==3 S(N—'h—M] (49)
h a = 2
M=n[D_2
5-3) Ja-3(uy)
N2

being h the section height at the column base and a the length under compression.

In this sub-section the joint behavior is studied for different values of the friction angle: the numerical
results are presented from Figure 5.8 to Figure 5.15, being, respectively, for ¢ = 35°, 30°, 25°, 24°,
230, 22°, 21° 20° The analytical values of . and a (from eq.49) will be compared with the

correspondent numerical values from DamSlide3D.
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Figure 5.8 - Column-base structural behavior for $=35°. On top left, dam’s displacement field; on top right,

“stress-transfer” convergence, on the middle, elastic and non-linear, normal and shear, stresses across the center

section of the interface column-base; on the bottom, the dam’s principal stresses throughout the interface

column-base
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Displacement field Stress-transfer. Displacements norm
versus number of iterations
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Figure 5.9 - Column-base structural behavior for $=30°. On top left, dam’s displacement field; on top right,
“stress-transfer” convergence, on the middle, elastic and non-linear, normal and shear, stresses across the center
section of the interface column-base; on the bottom, the dam’s principal stresses throughout the interface

column-bhase
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Figure 5.10 - Column-base structural behavior for ¢=25°. On top left, dam’s displacement field; on top right,
“stress-transfer” convergence, on the middle, elastic and non-linear, normal and shear, stresses across the center
section of the interface column-base; on the bottom, the dam’s principal stresses throughout the interface

column-base
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Figure 5.11 — Column-base structural behavior for ¢=24°. On top left, dam’s displacement field; on top right,
“stress-transfer” convergence, on the middle, elastic and non-linear, normal and shear, stresses across the center
section of the interface column-base; on the bottom, the dam’s principal stresses throughout the interface

column-base
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Figure 5.12 - Column-base structural behavior for $=23°. On top left, dam’s displacement field; on top right,

“stress-transfer” convergence, on the middle, elastic and non-linear, normal and shear, stresses across the center

section of the interface column-base; on the bottom, the dam’s principal stresses throughout the interface

column-base
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Figure 5.13 - Column-base structural behavior for $=22°. On top left, dam’s displacement field; on top right,
“stress-transfer” convergence, on the middle, elastic and non-linear, normal and shear, stresses across the center
section of the interface column-base; on the bottom, the dam’s principal stresses throughout the interface

column-base
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Figure 5.14 - Column-base structural behavior for $=21°. On top left, dam’s displacement field; on top right,
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Figure 5.15 — Stress-transfer divergence for $=20°

From figures 5.8 to 5.14, one can verify, as expected, that the non-linear distribution of the normal
stresses (numerically computed) is the same for the different values of the friction angle ¢
(compressions along the length a=1.5 m, with maximum value of G.= 2560 MPa). As the friction
angle decreases (from 35° to 20°, in this study) there is a decrease in the resistant shear stress
distribution (along the length a), that means there is a decrease in the resistant shear stress capacity.
In order to have no sliding, the resultant acting shear force should be lower than the resistant shear
force correspondent to the resistant shear stress capacity: this equilibrium condition is numerically
attained for values of the friction angle ¢ higher than 20°. So, with DamSlide3D, it was found,
numerically, that sliding along the horizontal base joint only occurs for ¢ < 200 (in Figure 5.15 is

shown, graphically, the iterative stress-transfer divergence in terms of the used displacements norm).

5.3.3 Analysis of the base joint behavior considering hydrostatic pressure.

Parametric study on the influence of water height (constant friction angle

$=30°)

In this sub-section the joint behavior of the horizontal base joint is studied for different values of water
height (h,), considering a constant value for the friction angle ¢ = 30°. The numerical results are
presented in Figure 5.9 (for h,, = 12 m) and in Figure 5.16 to Figure 5.19, for, respectively, h,, = 12.25,
12.30, 12.35 and 12.40 m. The analytical values of . and a (eq.49) are compared with the

correspondent numerical values from DamSlide3D.
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Figure 5.16 — Column-base structural behavior for hwater= 12.25 m. On top left, dam’s displacement field; on top right,
“stress-transfer” convergence, on the middle, elastic and non-linear, normal and shear, stresses across the center
section of the interface column-base; on the bottom, the dam’s principal stresses throughout the interface
column-bhase
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Figure 5.17 — Column-base structural behavior for hwater= 12.30 m. On top left, dam’s displacement field; on top right,
“stress-transfer” convergence, on the middle, elastic and non-linear, normal and shear, stresses across the center
section of the interface column-base; on the bottom, the dam’s principal stresses throughout the interface
column-bhase
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Figure 5.18 — Column-base structural behavior for hwater= 12.35 m. On top left, dam’s displacement field; on top right,
“stress-transfer” convergence, on the middle, elastic and non-linear, normal and shear, stresses across the center
section of the interface column-base; on the bottom, the dam’s principal stresses throughout the interface

column-base
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Figure 5.20 — Stress-transfer divergence for hwater=12.45 m

For this scenario of water level increase, one can verify, from figure 5.8 and figures 5.16 to 5.19, that,
as expected, the non-linear distribution of the normal and shear stresses (numerically computed)
increase with water level increase. The maximum value of G. increases from 2560 MPa for h,=12 m,
until 4000 MPa for h,=12.40 m. With DamSlide3D, it was found, numerically, that sliding along the
horizontal base joint only occurs for hy, > 12.45m (in 5.19 is shown, graphically, the iterative stress-

transfer divergence in terms of the used displacements norm).
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6| Case Study: Gravity Dam

6.1 Dam presentation

The case study presented in this work is a gravity dam (Figure 6.1) located in the Vouga river, that

was built for energy production, flood control, and water supply for consumption and irrigation.
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Figure 6.1 - Gravity dam. (a.) Downstream view (photo). (b.) Cross section (block 7, B7). (c.) The site plan.
(d.) Downstream view
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The dam studied is a gravity concrete dam (Figure 6.1), with a small curvature in plan, founded in a
rock massif mainly composed by granite. The structure has a maximum height above foundation of
83.0 m. The crest is 9.0 m thick with its axis following an arc of a circle with 240 m radius which

extends itself along approximately 264 m.

The structure is composed by 17 blocks, separated by contraction joints defined by vertical planes
perpendicular to the dam reference surface. The cross section is defined by a triangle whose top
vertice is 4.5 m upstream of the crest axis elevation, furthermore, the upstream and downstream faces
are inclined 0.05 h:v and 0.70 h:v, respectively. For the crest, one can overlap a rectangle with 9 m of

width.

6.2 Dam sliding scenario. Analysis of dam-foundation interface

non-linear behavior

In order to study the dam sliding scenario along the dam-foundation interface, using DamSlide3D, it
was developed a 3DFEM model, only considering the dam central block. In Figure 6.2 is presented the
adopted 3D finite element discretization, using cubic “serendipity” elements of 20 nodes, and the

correspondent joint elements of 16 nodes at the dam-foundation interface.
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Concrete and Foundation: Interface dam-foundation:
Ec=E=30GPa  vc=vi=0.2 Kn= 2.50x106 KNmt Kr=1.25%106 KNm'  prer=35.0° ¢=0

Figure 6.2 - Finite element mesh adopted to study the dam sliding along the dam-foundation interface
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The dam is subjected to the usual load combination SW+HP (full reservoir, h,, = 76 m). The cohesion

at the interface dam-foundation is assumed, conservatively, to be null (c = 0). The reference value of

the interface friction angle is ¢ = 35°.

6.2.1 Parametric study on the influence of friction angle (full reservoir)

In this sub-section the joint behavior at the interface dam-foundation is studied for different values of
the friction angle: the numerical results are presented from Figure 6.3 to Figure 6.7, being,
respectively, for ¢ = 35°, 30°, 27°, 26.5°, 26°.

From Figure 6.3 to Figure 6.7, one can verify, as expected, that as the friction angle decreases (from
35° to 26°) there is a decrease in the resistant shear stress distribution, which means there is a
decrease in the resistant shear stress capacity at the dam base. In order to have no sliding, the
resultant acting shear force should be lower than the resistant shear force correspondent to the
resistant shear stress capacity: this equilibrium condition is numerically attained for values of the
friction angle ¢ higher than 26°. So, with DamSlide3D, it was found, numerically, that sliding along the
dam-foundation base joint only occurs for ¢ < 26° (in Figure 6.8 is shown, graphically, the iterative

stress-transfer divergence in terms of the displacements norm).
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Figure 6.3 — Dam structural behavior for $=35°. On top left, displacement field; on top right, stress-transfer
convergence, in the middle, stresses across the center section of the interface dam-foundation; on the bottom, the

dam’s principal stresses throughout the interface dam-foundation

LNEC - Proc. 0402/112/2075501

53



STRUCTURAL ANALYSIS OF GRAVITY DAMS CONSIDERING NON-LINEAR BEHAVIOR IN THE DAM-FOUNDATION INTERFACE
Development of a 3DFE code using MATLAB: DamSlide3D

Displacement field Stress-transfer. Displacements norm

versus number of iterations
hw=76.00 m

p—
—

mm .
8.49 100

Disp. norm (%)

6.8 8or
60/ °
5.1
- L0l
3.4 : .
20t -
17
0 . DDDDDr\nnm &
0 0 10 20 30

40

Number of iterations
Concrete and Foundation: Interface dam-foundation:
Ec=Ei=30GPa vc=vi=0.2 Kn=2.50%106 Kr=1.25%x106 kNm' ¢=30.0° c=0
Stresses across the interface dam-foundation
1500
1000
sool //,—;7*_—/
/_
0
©
o -500-
x
-1000 -
15001 Elastic shear stesses
——Shear resistant stesses
——Shear stresses (non-linear)
-2000 - Elastic normal stresses
——Normal stresses (non-linear)
-2500 | | | | | | |
0 10 20 30 40 50 60 70
(m)
Interface dam-foundation. Principal stresses
S N NN N NN
| | N\ N\ kPa
| . Sl N N '-\\ \ \\_\ 789.15
| | l“". . \
"I? x x x I‘. % N \ \ \\ \ \\\
NN A R Y Y N NA 222.77
‘-‘ \,\‘\ % \"I\ \ W ‘«.“ N \ \\__\ N\ \/
IJI+ x \TT \\%ﬁ H.\ \ \\‘\ \ \\ \\ x\ \
‘.‘+ . :: \ \‘|\ N \‘.\\ N \\\ N \\\ NONN N \“\ \ \\ -343.6
[~ R \\‘\\ LAY\ WY \\‘\ AN \\‘}\ \
[x % xnN \\‘\ \ \"\I\ \ \"‘-\\ \ \“\\ NN N \\\‘\ N\
AR RN -909.98
[ N N A S A N L U U A A U U N A R N\
— [~ \‘ ;\ A W 1 N N W N W W O O . W N WA ¥ N
‘ R Y R N Y \‘\ NN X T -1476.36
‘. L T NV U A W W W U U 0 N W Y O N N N ~
-2042.74

| '\u\\\\\\\\\v\\\‘\\\\\\\\\\\

Figure 6.4 - Dam structural behavior for $=30°. On top left, displacement field; on top right, stress-transfer
convergence, in the middle, stresses across the center section of the interface dam-foundation; on the bottom, the

dam'’s principal stresses throughout the interface dam-foundation
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Figure 6.5 - Dam structural behavior for $=27°. On top left, displacement field; on top right, stress-transfer
convergence, in the middle, stresses across the center section of the interface dam-foundation; on the bottom, the

dam’s principal stresses throughout the interface dam-foundation
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Figure 6.6 — Dam structural behavior for $=26.5°. On top left, displacement field; on top right, stress-transfer
convergence, in the middle, stresses across the center section of the interface dam-foundation; on the bottom, the
dam’s principal stresses throughout the interface dam-foundation
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Figure 6.7 - Stress-transfer convergence for $=26.0°

6.2.2 Parametric study on the influence of water level (friction angle ¢=30°)

In this sub-section the joint behavior of the dam-foundation interface is studied for different values of
water height (h,), simulating a overtopping scenario. Is assumed a constant value for the friction
angle ¢ = 30°. The numerical results are presented in Figure 6.4 (for h,, = 76 m) and in Figure 6.8 to

Figure 6.13, for, respectively, h,, = 77.0, 78.0, 79.0, 80.0, 81.0 and 82.0 m.

For this scenario of water level increase (overtopping), one can verify, that, as expected, the non-
linear distribution of the normal and shear stresses (humerically computed) increase with water level
increase. The maximum value of compression normal stresses increases from ~1300 MPa for h,=76
m, until ~1500 MPa for h,=82.0 m. The maximum value of shear stresses increases from ~750 MPa
for h,=76 m, until ~900 MPa for h,=82.0 m.

With DamSlide3D, it was found, numerically, that sliding along the dam-foundation joint only occurs
for h,, = 83 m (in Figure 6.14 is shown, graphically, the iterative stress-transfer divergence in terms

of the used displacements norm).
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Figure 6.8 - Dam structural behavior for hwater=77 m. On top left, displacement field; on top right, stress-transfer
convergence, in the middle, stresses across the center section of the interface dam-foundation; on the bottom, the
dam'’s principal stresses throughout the interface dam-foundation
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Figure 6.9 — Dam structural behavior for hwater=78 m. On top left, displacement field; on top right, stress-transfer
convergence, in the middle, stresses across the center section of the interface dam-foundation; on the bottom, the
dam’s principal stresses throughout the interface dam-foundation

LNEC - Proc. 0402/112/2075501

59



STRUCTURAL ANALYSIS OF GRAVITY DAMS CONSIDERING NON-LINEAR BEHAVIOR IN THE DAM-FOUNDATION INTERFACE
Development of a 3DFE code using MATLAB: DamSlide3D

Displacement field Stress-transfer. Displacements norm
versus number of iterations

100 =

hw-79 00m
10.29

8.23 |
6.18 )
4.12 : v
2.06
0 L DUDDD nnnnn o i
0 0 10 20 30 40
Number of iterations

Concrete and Foundation: Interface dam-foundation:
Ec=Ei=30GPa vc=vi=0.2 Kn=2.50%106 Kr=1.25%x106 kNm"' ¢=30° c=0

& D o
o (@] o

Disp. norm (%)

XS]
o
a

Stresses across the interface dam-foundation

1500 —

1000

500 - //27’/
—

-500

(kPa)

-1000 —

Elastic shear stesses
——S8hear resistant stesses
——Shear stresses (non-linear)
-2000 - Elastic normal stresses
——Normal stresses (non-linear)

-2500 | | | | | |
0 10 20 30 40 50 60 70

-1500 —

‘. \ \ kPa
W\ 813.16

204.45

-404.26

-1012.98

S [ -1621.69

-2230.4

Figure 6.10 - Dam structural behavior for hwer=79 m. On top left, displacement field; on top right, stress-transfer
convergence, in the middle, stresses across the center section of the interface dam-foundation; on the bottom, the
dam’s principal stresses throughout the interface dam-foundation
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Figure 6.11 - Dam structural behavior for hwater=80 m. On top left, displacement field; on top right, stress-transfer
convergence, in the middle, stresses across the center section of the interface dam-foundation; on the bottom, the
dam’s principal stresses throughout the interface dam-foundation
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Figure 6.12 - Dam structural behavior for hwater=81 m. On top left, displacement field; on top right, stress-transfer
convergence, in the middle, stresses across the center section of the interface dam-foundation; on the bottom, the
dam’s principal stresses throughout the interface dam-foundation
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Figure 6.13 — Dam structural behavior for hwater=82 m. On top left, displacement field; on top right, stress-transfer
convergence, in the middle, stresses across the center section of the interface dam-foundation; on the bottom, the
dam’s principal stresses throughout the interface dam-foundation
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Figure 6.14 - Stress-transfer divergence for hwater=83.00 m
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7| Conclusions

The main objective of this work was the development and presentation of a three-dimensional finite
element program, DamSlide3D, to study the behavior of gravity dams considering scenarios of sliding
in the dam-foundation interface. The DamSlide3D, developed using MATLAB, includes cube-type
finite elements with 20 nodal points ("serendipity") and the correspondent interface finite elements with
16 nodal points (joint elements).

Initially, it were presented the fundamental equations of the solids mechanics, referring to the main
simplified hypotheses considered in the computationally implemented formulation, which is presented
mathematically as a problem of boundary values using a displacement formulation. For the structure
body and for the foundation, the hypothesis of isotropic materials with linear elastic behavior was
assumed and for the interfaces the hypothesis of non-linear behavior was considered (Mohr-Coulomb
criterion).

For DamSlide3D input data is provided in an excel file and includes structure geometry data, material
properties, support conditions and load parameters. As output, the program graphically displays the
stress field (principal stresses) and the displacement field (deformed structure).

The program was verified using three numerical tests with known theoretical solutions. In these tests a
simple structure was used, composed by a column discretized in 3DFE, on a base, also discretized in
3DFE. At the contact surface between the column and the base (horizontal surface) it was considered
an interface discretized using joint finite elements. A plane surface plane that crosses the column with
a given slope is also considered, discretized using the same type of joint finite elements. In the first
test, the field of elastic stresses at the base, due to dead weight (DW) and hydrostatic pressure (HP),
was compared with the theoretical results. In the second test the nonlinear column response was
studied for different values of the friction angle at the inclined interface (in this test the structure is only
submitted to DW). In the third test, for the main DW + HP loads, the stability of the column is initially
studied for a variation of ¢, and later for a variation of the water level. In these three numerical tests

the results were always consistent with the theoretical solutions.

Finally, as an example of application, a gravity dam structural behavior was analyzed considering the
non-linear behavior in the dam-foundation interface. The dam was subjected to self-weight and
hydrostatic pressure. A parametric study was developed in order to study the dam stability for different

values of water level (h,) and for different values of ¢.
As a perspective for future studies, considering the results obtained with the use of the 20 nodes

“serendipity” quadratic master element, it would be interesting to compare these results with the ones
considering a different master element, this time, a 27 nodes Lagrangian quadratic element.
Therefore, it would be interesting to verify if the extra calculus effort is offset by the outputs quality
gain. Additionally, since the program outputs prove to be satisfactory, it would be interesting to model
the behavior of he studied gravity dam, considering a complete 3D dam FE model. Also, it would be

interesting to apply a different iteration process (convergence) on the program, for example the

LNEC - Proc. 0402/112/2075501 65



STRUCTURAL ANALYSIS OF GRAVITY DAMS CONSIDERING NON-LINEAR BEHAVIOR IN THE DAM-FOUNDATION INTERFACE
Development of a 3DFE code using MATLAB: DamSlide3D

Newton-Raphson method (which implies that, at each iteration, the stiffness matrix is recalculated)
and compare the results of both methods (Newton-Raphson and stress-transfer). Finally, it would also
be interesting to expand the domain of the non-linear application, from the joint elements to the dam

body (solid elements) using, e.g., a damage model.
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