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Abstract: This article presents an analysis of the influence of symmetrical and asymmetrical positioning of the inlet and outlet 

channels on flow pattern inside a rectangular shallow reservoir, by means of a series of experiments with clear water in the 

laboratory. The experimental facility was built in the Hydraulic Research Center (CPH) of the Federal University of Minas Gerais 

(UFMG), which consisted of a 3 m long and 2 m wide rectangular basin, whose maximum depth was 0.30 m. The inlet and outlet 

channels were 1.0 m long, 0.125 m wide, and 0.30 m deep. Three different positions were provided for the installation of inlet and 

outlet channels in their respective transverse walls: left, center, and right. Six different geometric combinations of the inlet and 

outlet channels were experimentally tested, each under three different flow rates: 0.50, 1.25, and 3.40 l/s. Considering the results 

related to the unique axis-symmetric configuration, the main jet crossed the basin from upstream to downstream, developing a 

meander-like path for the lower flow discharge. Moreover, the formation of two large eddies in opposite directions has been 

noticed, one on each side of the main jet. For the higher flow rates, however, the flow pattern was asymmetrical with the main jet 

diverting to the right and forming a large counter clockwise vortex. For all the asymmetrical configurations, the flow pattern was 

also asymmetrical, regardless of the flow rate. 

Keywords: Shallow reservoirs, sedimentation, flow pattern, physical modeling, geometric configurations, hydrodynamic behavior.  

1. Introduction 

Jirka and Uijttewall (2004) defined shallow flows as layered turbulent flows bounded by a bottom surface and by 

another surface in contact with the atmosphere (free surface), whose horizontal hydraulic characteristics, or their 

parallel and perpendicular dimensions to the flow, are significantly greater than the vertical one. 

The implantation of a shallow reservoir usually leads to the continuous deposition of sediments. Depending on its 

role, sedimentation must either be maximized (e.g., stabilization ponds in sewage systems) or minimized (e.g., 

detention basins used for flood control). As highlighted by Dufresne et al. (2010b), the prediction of sediment 

deposition in such reservoirs is not yet fully understood, as it is a complex function of the geometry of the reservoir, 

the hydraulic conditions, and the sediment characteristics.  

In recent studies, laboratory experiments and numerical simulations have been conducted to better understand, on one 

hand, the hydraulic behavior and flow patterns associated with rectangular shallow reservoirs, and on the other hand, 

the sedimentation trends (Jansons and Law 2007; Kantoush 2008; Dewals et al. 2008; Dufresne et al. 2010a,b; 

Camnasio et al. 2011; Dufresne et al. 2011; Camnasio 2012; Camnasio et al. 2013; Peltier et al. 2015; Peltier et al. 

2016; Westhoff et al. 2018; Ferrara et al. 2018). 

One of the referenced experimental studies was performed by Dufresne et al. (2010a) in the Laboratory of Engineering 

Hydraulics of the University of Liège (Belgium). Visual investigation tests were carried out in a 10.40 m long and 

0.985 m wide glass flume, using dye injection, which indicated the existence of four flow patterns (as well as an 

unstable and transitional one), as presented in Fig. 1. These observations were confirmed from Large Scale Particle 

Image Velocimetry (LSPIV) measurements. 

Four flow patterns were identified as a function of their symmetry vs. asymmetry and as a function of the number of 

circulation zones and location of reattachment points. According to the experimental observations by Dufresne et al. 

(2010a), flow pattern S0 (Fig. 1a) was observed for comparatively short reservoirs. A straight jet from upstream to 

downstream, with two symmetrical recirculation zones along either jet sides, characterized this flow pattern. 



 

 

 

Figure 1.  Schematic view of four observed flow patterns: (a) S0, (b) A1, (c) A2, and (d) A3. (Dufresne et al. 2010a) (adapted).  

If the reservoir length is increased, an asymmetrical flow field can be observed, resulting in flow pattern A1 (Fig. 1b). 

For intermediate reservoir lengths, a transition flow behavior was reported (A1/S0), oscillating between symmetrical 

(S0) and asymmetrical (A1) flow patterns (Dufresne et al. 2010a; Camnasio et al. 2011). For longer reservoirs, the 

experiments revealed an asymmetrical flow field with two reattachment points (A2, Fig. 1c). Finally, for even longer 

reservoirs, one additional recirculation zone developed in the downstream part of the reservoir (flow pattern A3, Fig. 

1d). 

In the experimental tests conducted with sediments in symmetrical reservoirs (i.e. inlet and outlet channels located 

along the reservoir centerline), the flow patterns remained similar to those observed without sediments. The location 

of the deposits was shown to strongly depend on the flow pattern (Dufresne et al. 2010b). In contrast, Kantoush (2008) 

noticed that the asymmetrical flow pattern during the clear water tests became almost symmetrical with respect to the 

centerline of the basin with the addition of sediments. 

Camnasio et al. (2013) performed the first experimental and numerical analyses available in the literature considering 

the influence of asymmetrical locations of the inlet and outlet channels. They observed different stable flow fields 

depending on the flow history, which highlighted the existence of bi-stable flow fields. In addition, under certain 

conditions, a completely different flow pattern developed during the tests with sediments compared to the tests with 

clear water. 

The purpose of this paper was to experimentally evaluate the flow patterns observed in a particular shallow rectangular 

reservoir, taking into account different geometric configurations of upstream and downstream channels positioning 

and different flow rates.  

2. Material and Methods 

Laboratory tests have been carried out in the Hydraulic Research Center of the Federal University of Minas Gerais 

(UFMG, Brazil). A 3.0 m long, 2.0 m wide, and 0.30 m deep rectangular reservoir (Fig. 2) was constructed of sheet 

metal and covered with epoxy coating in order to protect it against oxidation. 

The inlet and outlet channels shown in Fig. 2 were also constructed of sheet metal. Both channels are 1.0 m long, 

0.125 m wide, and 0.30 m deep, with the latter corresponding to the same depth of the reservoir. Since the general 

objective of the research was to evaluate the influence of the positioning of the inlet and outlet channels on the flow 

pattern, three alternative positions in each transversal wall were provided for the installation of the channels upstream 

and downstream.  



 

 

  

Figure 2.  Rectangular reservoir for experiments: (a) inlet channel positioned in the centerline of the basin, (b) outlet channel also 

positioned in the centerline. 

Each of the two channels could be installed with the use of screws in the left position with respect to the flow direction 

(L-position), in the centerline of the basin (C-position), or finally in the right position (R-position). In order to carry 

out the clear water experiments, six different geometric combinations of the positioning of the inlet and outlet channels 

were defined, as presented by Fig. 3. The established settings for the experiments were CC, with upstream and 

downstream channels installed along the longitudinal axis of the basin (Fig. 3a); LC, with the upstream channel 

positioned to the left and the downstream channel located to the center (Fig. 3b); LL, with both channels installed to 

the left in relation to the flow (Fig. 3c); LR, with the upstream channel on the left and the downstream channel on the 

right (Fig. 3d); RC, with the upstream channel on the right side and the downstream channel on the center (Fig. 3e); 

and finally CR, based on the installation of the upstream channel along the longitudinal axis of the basin and the 

downstream channel on the right side (Fig. 3f). In total, 18 tests were carried out, 3 for each geometric configuration 

and each one for a given flow and its respective water surface level, as shown further in Table 1. 

 

Figure 3.  Geometric configurations tested: (a) CC, (b) LC, (c) LL, (d) LR, (e) RC, (f) CR. 



 

 

It is important to highlight that those geometric configurations were chosen according to the different flow patterns 

expected to be obtained from all possible combinations between upstream and downstream channels positioning. 

Nevertheless, two of them were intentionally selected in a redundant way (LC- and RC-configurations) in order to 

verify if the flow pattern was indeed mirrored. 

One of the objectives of the tests carried out in this study consisted of evaluating which of the flow patterns mapped 

by Kantoush (2008), Dufresne et al. (2010a), and Camnasio et al. (2011) was/were reproduced in the experimental 

facility constructed in the UFMG laboratory. For this purpose, it was possible to compare the results of the literature, 

taking into account only the reference condition, related to the installation of the inlet and outlet channels in the 

centerline of the main basin (CC-configuration). The other configurations have not yet been classified in the literature. 

Each geometric configuration was tested with three different flow rates (0.50 l/s, 1.25 l/s, and 3.40 l/s) under steady 

flow and with clear water. In each test the water depth was measured downstream of the basin, on the initial cross 

section of the outlet channel, with the aid of a millimeter ruler. In order to control the water level within the rectangular 

reservoir, a sill with a thickness of 2 mm was installed at the end of the outlet channel and adjusted according to the 

required water depth. The inlet flow was calibrated during the experiments by means of volumetric measurements and 

by using a frequency inverter that allowed regulating the rotational speed of the motor-pump assembly. 

Table 1 presents the values corresponding to the flows and water depths tested for each geometric configuration. 

Table 1. Geometric configurations tested with their respective water depths and flows. 

Test 

number 

Geometric 

Configuration 

Water depth 

H [m] 
Q [l/s] 

1 

CC 

0.05 0.50 

2 0.10 1.25 

3 0.20 3.40 

4 

LC 

0.05 0.50 

5 0.10 1.25 

6 0.20 3.40 

7 

LL 

0.05 0.50 

8 0.10 1.25 

9 0.20 3.40 

10 

LR 

0.05 0.50 

11 0.10 1.25 

12 0.20 3.40 

13 

RC 

0.05 0.50 

14 0.10 1.25 

15 0.20 3.40 

16 

CR 

0.05 0.50 

17 0.10 1.25 

18 0.20 3.40 

 

All experiments were filmed (usually during 8 to 12 minutes) for subsequent capture and processing of photos for the 

determination of surface velocities based on the LSPIV (Large Scale Particle Image Velocimetry) technique. For this 

purpose, a Logitech webcam C920 model was coupled with a 4.0 m high metallic stand, positioned over the test basin 

to record high-resolution (HD) videos with up to 1080 pixels. The software FUDAA-LSPIV (Jodeau et al. 2013) has 

been employed to transform the images into surface velocity vectors. Plastic tracer particles were continuously and 

uniformly released along the upstream channel during recording. 



 

 

3. Results and Discussion 

3.1. Flow Patterns and Surface Velocities 

Table 2 synthesizes the results of all 18 experiments from the same number of figures representing the surface velocity 

vectors obtained through FUDAA-LSPIV.  

Table 2. Distribution of the mean velocity vectors for the 18 experiments performed. 

Geometric 

Config. 

Flow rate Q 

0.50 l/s 1.25 l/s 3.40 l/s 

CC 

   

LC 

   

LL 

   

LR 

   

RC 

   

CR 

   
 

It should be noted that it is only possible to analyze Table 2 in a qualitative way and complement its interpretation 

with the corresponding values of maximum surface velocities indicated further in Table 3. This table also includes the 

flow discharge, the upstream channel Froude and Reynolds numbers, the diversion of the main jet, and the direction 

of rotation of the largest vortex. 

With regard to the quality of the flow field results (Table 2), it should be emphasized that it could be significantly 

improved if a larger amount of plastic tracer particles were used. A uniform distribution of such tracers along the 

entire upstream wall would also be preferable rather than their insertion only within the upstream channel. This would 

possibly result in a dense velocity vector mapping. 



 

 

The flow regime in the final portion of the upstream channel was subcritical in all experiments, with Froude number 

values between 0.09 and 0.12. In addition, the Reynolds number in the same channel was verified to range between 

2100 and 2500 for the flow rate of 0.50 l/s, between 3800 and 4100 for the flow rate of 1.25 l/s, and between 6300 

and 7000 for the flow rate of 3.40 l/s. Therefore, these values indicated turbulent flow in all cases. All the obtained 

values for Froude and Reynolds numbers can be found in Table 3. 

Table 3. Main variables observed experimentally in the tests with clear water at UFMG, Brazil. 

Geometric 

Configuration 

Q 

[l/s] 
Fru

* Reu
** 

Diversion of the 

main jet 

Direction of rotation of 

the largest vortex 

Maximum surface 

velocity [m/s] 

CC 

0.50 0.10 2365 Nonexistent - 0.05 

1.25 0.09 4093 Right Counter-clockwise 0.10 

3.40 0.09 7026 Right Counter-clockwise 0.14 

LC 

0.50 0.11 2337 Left Clockwise 0.05 

1.25 0.10 4101 Left Clockwise 0.08 

3.40 0.10 6793 Left Clockwise 0.15 

LL 

0.50 0.12 2482 Left Clockwise 0.05 

1.25 0.10 4027 Left Clockwise 0.09 

3.40 0.10 6819 Left Clockwise 0.14 

LR 

0.50 0.10 2302 Left Clockwise 0.04 

1.25 0.10 3986 Left Clockwise 0.06 

3.40 0.09 6633 Left Clockwise 0.14 

RC 

0.50 0.09 2175 Right Counter-clockwise 0.03 

1.25 0.09 3796 Right Counter-clockwise 0.06 

3.40 0.09 6354 Right Counter-clockwise 0.13 

CR 

0.50 0.09 2219 Right Counter-clockwise 0.06 

1.25 0.09 3853 Right Counter-clockwise 0.06 

3.40 0.09 6309 Right Counter-clockwise 0.13 
*Upstream channel Froude number  
**Upstream channel Reynolds number 

In relation to the flow pattern characteristic of each experiment, according to Table 2, the flow symmetry condition 

was observed only for the flow rate of 0.50 l/s of the geometric configuration CC. Moreover, it was noticed that the 

main jet crossed the basin from upstream to downstream, developing a meander-like path. For the same configuration 

and discharges Q equal to 1.25 l/s and 3.40 l/s, the observed flow pattern was asymmetrical. Such hydrodynamic 

asymmetry was observed for all other tests performed, regardless of the flow rate and the positioning of upstream and 

downstream channels. 

It is also important to reiterate that all the experiments were stationary, meaning that the flow remained constant 

throughout each test. According to Jirka and Uijttewall (2004) and Kolyshkin and Nazarovs (2005), the instabilities 

identified during the experiments, corresponding to the formation of flow recirculation zones (vorticity), are 

characteristic of turbulent flows. Therefore, in this aspect, there is a great coherence between the bibliographical 

references and the hydrodynamic behavior observed in these experiments. 

Furthermore, in this study, the shape parameter (L/ΔB0.60b0.40), proposed by Dufresne et al. (2010a) as a combination 

of dimensionless length (L/ΔB) and lateral expansion ratio (ΔB/b), was 7.16. In this case, the length L of the reservoir 

was 3.0 m, its lateral expansion width ΔB was equal to 0.938 m, and the length b of the upstream channel was 0.125 

m. As pointed out in the studies by Dufresne et al. (2010a), the flow pattern is symmetric if the shape parameter is 

less than 6.2 and asymmetric if the shape parameter is greater than 6.8. Moreover, there is a transition zone between 

6.2 and 6.8 resulting in an unstable flow pattern. In all the tests of those authors, the Froude number was kept constant 

and equal to 0.20 and the flow was also classified as turbulent. Both parameters were also determined along the 

upstream channel. Confronting the experimental observations of the present research with the experience of the 

aforementioned study, there seems to be an incongruence with the results obtained for the flow of 0.50 l/s and a 

convergence of results for flows of 1.25 l/s and 3.40 l/s. Supposedly, the flow pattern would be asymmetrical for all 

flows. On the other hand, it should be considered that the established shape parameter was proposed based on high 

dimensionless flow depths and Froude number equal to 0.20, which is not the case of the study presented here. 

Dufresne et al. (2010a) also analyzed the influence of the water depth and the Froude number of the hydraulic 



 

 

conditions. However, the validity limits of the sensitivity analysis of these two parameters are not applicable to the 

present study. 

Kantoush's (2008) experiments were consistent with what was observed in the scope of this study, with only the flow 

rate of 1.25 l/s being comparable, since the author did not evaluate flows equivalent to those of 0.50 l/s and 3.40 l/s. 

It is pertinent to mention that the experimental apparatus of the UFMG hydraulic laboratory corresponds, for reasons 

of convenience for comparison of results, to scale 1:2 of the Kantoush’s one. Therefore, the UFMG results, only those 

related to the CC-configuration, and Kantoush’s (2008) experiments have an identical L/ΔB ratio. The aforementioned 

author found that there is an asymmetrical flow along the basin characterized by the existence of a large vortex formed 

from the diversion of the main jet and small vortices in the opposite direction of the larger vortex on the upstream 

sides of the basin.  

When the 18 experiments are analyzed observing the main jet deflection, a direct relationship between this 

characteristic and the direction of rotation of the largest vortex is verified. The present finding is evident, since this 

recirculation zone is derived from the main jet deviation and therefore depends on the side at which the deflection of 

the flow occurs. As previously described by Shapira et al. (1990) and Dewals et al. (2008), the diversion of the main 

jet is a result of the increase in velocity on one side of this jet, the closest to a side wall, with consequent decrease in 

local pressure, amplification of flow deflection, and flow asymmetry. This behavior is known as the Coanda effect, 

which is the main reason for the predominantly observed hydrodynamic instability. 

Briefly, the experiments allowed to identify two characteristic behaviors for all hydrodynamically asymmetrical 

scenarios, as shown in Table 3: (1) when the upstream channel was positioned to the left of the longitudinal axis of 

the reservoir (L-position), the main jet deviation was always to the left and the larger vortex formed clockwise, 

regardless of the flow and the positioning of the downstream channel; (2) on the other hand, when the upstream 

channel was installed in the central position or to the right of the longitudinal axis of the basin (C- and R-positions), 

the main jet deviation occurred towards the right lateral wall. In addition, the main vortex followed counterclockwise 

trajectory, except for the 0.50 l/s discharge of the CC-configuration and, in general, regardless of the positioning of 

the downstream channel. 

It is relevant to highlight that, in some experiments, namely those in which the upstream channel was installed in the 

central position (CC- and CR-configurations), it was possible to identify the formation of a small vortex in the right 

side of the upstream portion of the reservoir (see Table 2). Its direction of rotation was clockwise, that is, opposite to 

the main vortex. The only exception was the flow rate of 0.50 l/s for the geometric configuration CC, whose flow 

pattern is symmetrical. 

Concerning the maximum surface velocities identified for each experiment (see Table 3), it does not appear to be a 

comparable variable among these scenarios, with a view to establishing some kind of influence, per se, on the flow 

patterns. Therefore, such information is merely illustrative. 

3.2. Threshold Between Symmetrical and Asymmetrical Patterns  

In order to investigate precisely from which flow rate the flow pattern referring to the geometric configuration CC 

changes from symmetrical to asymmetrical, three complementary experimental tests were carried out. In this sense, 

the flow rate was varied in a range between 0.80 l/s and 1.25 l/s, as shown in Table 4, without, however, changing the 

height of the sill installed in the final section of the downstream channel. That is, an attempt was made to evaluate the 

sensitivity only of the inflow rate on the flow pattern, despite the small variation of the depth in the reservoir naturally 

provoked by the variation of the flow discharge. 

Table 4. Additional tests referring to the geometric configuration CC for flow rates between 0.80 and 1.25 l/s. 

Q [l/s] d [m] Fru Flow type Reu Flow type 

0.80 0.059 0.14 Subcritical 3659 Turbulent 

1.00 0.063 0.16 Subcritical 4428 Turbulent 

1.25 0.066 0.19 Subcritical 5406 Turbulent 

 



 

 

According to the interpretation of Table 4, there was a gradual increase of the water depth with the increase of the 

flow rate from one experiment to another, with a difference of 0.7 cm between the flow rates of 0.80 l/s and 1.25 l/s. 

In all three complementary scenarios, the flow was subcritical (Froude numbers between 0.14 and 0.19) and turbulent 

(Reynolds numbers between 3659 and 5406). Table 5 summarizes these results. 

Furthermore, Table 5 elucidated that the flow pattern remained symmetrical for the flow rate Q = 0.80 l/s, as for the 

CC-configuration and for the flow rate of 0.50 l/s (Table 2). The only noticeable differences with respect to the flow 

pattern were a slight increase in the maximum surface velocity (0.05 to 0.06 m/s) with increasing discharge and a 

slight shortening of the two vortices near the upstream portion of the basin. Concerning the flow rate of 1.00 l/s, the 

flow pattern remained practically symmetrical even though the vortex to the right of the main jet has not been well 

represented by the software, probably due to the insufficient quantity of plastic tracer particles used in the experiment. 

Possibly, it is a transition flow between the two flow patterns, that is, from symmetrical to asymmetrical. 

It was also verified that the flow pattern became asymmetrical with increase of the flow rate to 1.25 l/s, with deviation 

of the main jet to the right side. In addition, the formation of a large vortex in a counterclockwise direction, similar to 

that observed in Table 2 (CC-configuration, flow rate of 1.25 l/s), but with smaller velocities, no higher than 0.08 m/s 

against 0.10 m/s of that scenario.  

Therefore, it was concluded that the change of the flow pattern from symmetrical to asymmetrical, specifically for 

CC-configuration, occurred for flow between 1.00 and 1.25 l/s, associated to the water depth of around 6 cm. 

Table 5. Distribution of the mean surface velocity vectors for the additional tests (CC-configuration). 

Q [l/s] Mean surface velocity vectors 

0.80 

 

1.00 

 



 

 

1.25 

 
 

4. Conclusions and Perspectives 

Regarding the geometrically symmetrical configuration CC of the reservoir, the experimental tests indicated the 

existence of hydrodynamic symmetry, corresponding to the development of two vortices of similar proportions and in 

opposite directions of rotation, for flow rates up to about 1.00 l/s. It was also observed a change on flow pattern from 

symmetrical to asymmetrical for flow rate between 1.00 and 1.25 l/s. For the larger flows (1.25 l/s and 3.40 l/s), it was 

observed that the flow pattern was asymmetrical, with the formation of a large anti-clockwise vortex originated from 

the diversion of the main jet to the right side of the rectangular reservoir. 

For the other geometric configurations tested (LC, LL, LR, RC, and CR), it was concluded that the hydrodynamic 

behavior within the reservoir was also asymmetrical, independent of the flow rate and the positioning of upstream and 

downstream channels. 

In general, concerning the positioning of upstream and downstream channels, it has been noticed that the main jet is 

diverted to the left if the upstream channel is in the left position and to the right if it is positioned to the center or right 

positions. It consists of an important perspective to be investigated to physically understand the reason of the 

“preference” of the main jet to the right side of the basin when the upstream channel is positioned symmetrically with 

respect to the longitudinal axis of the reservoir. A hypothesis herein formulated may be related to the fact that it would 

be representative of the hydrodynamic configuration of maximum dissipation in the shear layer between the jet and 

the recirculation zones, as recently published in the literature by Westhoff et al. (2018). According to the authors, this 

condition could justify the change from the symmetrical to the asymmetrical flow pattern. However, it seems that their 

conclusions related to energy dissipation at the interface between the jet and the recirculation zone would not yet be 

valid for long reservoirs, as is the case of the present study. 

Another important aspect to be studied concerns the establishment of a complementary classification of flow patterns 

for asymmetrical geometries, since the literature has been restricted to symmetrical configurations until now. 

In regard to the expected hydrodynamic behavior for the geometric configurations LC and RC, it was verified that the 

flow pattern in these cases is effectively mirrored. In other words, while for the LC-configuration there is a deviation 

of the main jet towards the left lateral wall, resulting in the formation of a large vortex clockwise, for the RC-

configuration, the behavior is similar, however, with inverted senses. 
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