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ABSTRACT  
A buried plastic pipe undergoes vertical deformation after installation, which tends to stabilize 

after a period of time not exceeding two years. 

The ability of the pipe to meet the limit of deformation under constant load is measured by 

compression creep test, being important to determine the creep factor correspondent to a 

pipe deformation of 2 years, obtained by extrapolation. 

In this communication an assessment criteria for buried pipes, without pressure, based on 

the creep behavior under compression is established, taking in consideration the requests of 

the product standard and the accuracy of the experimental test results established by the 

evaluation of measurement uncertainties. Considering the non-linear behavior of the 

mathematical model adopted, measurement uncertainty estimates are obtained using a 

numerical simulation method (Monte Carlo Method). 
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1. INTRODUTION 

 
A buried plastic pipe buried undergoes deformation, immediately after installation (short-

term), as a result of the imposed loads, and during the land settlement period (mid-term) 

[CEN, 2008] and as a result of the creep of constituent materials which increases over time. 

The magnitude of this deformation depends on pipe stiffness and on compaction degree of 

the trench fill material and, to a lesser extent, on other aspects also that also affect the 

quality of the installation [TEPPFA, 2015], but it has tendency to stabilize at the end of a 

certain time not exceeding two years [TEPPFA 2015] [CEN 2007], when the maximum 

deformation is reached, being subsequently retained for its potential life time, which can be 

over a hundred years. 

There is thus an interest to determine the extrapolated creep factor at 2 years in pipes for 

buried applications, without pressure, by carrying out creep tests according to EN ISO 9967.  

The standard EN 13476-3 requests, in its Table 15, that PE and PP pipes tested according to 

EN ISO 9967 provide creep factors, extrapolated for 2 years, with a value less than or equal 

(≤) to 4. The certification bodies include this test in its approval scheme and the acceptance 

or rejection of pipe batches, for product certification purposes, may depend on their creep 

behavior. 

As the integer value "4" is not very explicit with regard to its accuracy, it is necessary to 

clearly define the acceptance threshold value, in order to clarify acceptable rounding. 

Due to several reasons, it should refers to 4,0 and it is obvious that pipes exhibiting a creep 

factor not exceeding 4,0 complies with standard requests and should be accepted. 

However, the requirement establishing a 4,0 limit value can’t be justified if the decimal digit 

was not a significant figure. Indeed, if this digit is already affected by uncertainty, any value 

between 4.0 and 4.5, considering the respective errors is acceptable. 

Thus it is very important to determine the accuracy of the test method to help a decision 

making about the criteria for acceptance or rejection of the pipes, introducing limit values for. 
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2. EXPERIMENTAL PROGRAMME 

2.1 Materials and equipment 

5 different polyethylene and 19 polypropylene sample pipes were tested, amounting to 72 

test specimens prepared from new pipes SN8 (stiffness > 8 kN/m2), each result being given 

by the average of 3 replicates [CEN 2007]. 

All experimental work has been carried out using a Universal Mechanical Testing Machine 

Instron, Model 4467, with a 30 kN load cell capacity and Class 0.5 accuracy, at 

environmental conditions of (23 ± 2) ºC and (50 ± 5) % relative humidity. The test specimens 

were conditioned, at the normal environmental conditions referred to above, in the test room 

for at least 24 h. 

Figure 1 shows the experimental installation with the equipment currently used for the creep 

tests. 

 

 

 

 

 

 

 

 

 

Fig. 1 – Typical experimental assembly for creep te sts: a) overview; b) detail of a specimen 

under test 

2.2 Creep factor extrapolated for 2 years 

The creep factor of each sample subjected to a diametrical compression test is given by the 

following expression [CEN, 2007]: 
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where γ is the creep factor,  γ0 is the value of initial deflection (t = 0 s), Y2 is the value of the 

deflection extrapolated to 2 years and di the internal diameter of the pipe (where i is the 

specimen 1, 2 or 3 , to be tested. 

2.3 Results and discussion 

Among the 24 samples tested, six had questionable values, ie with specimens showing a 

creep factor between 4.0 and 4.5, as shown in Table 1. The standard deviations indicated 

are rounded up. 

 

Table 1 – Experimental values of dubious creep fact or of pipes tested 

Sample Polymer 
SN, 

kN/mm2 
DN, 
mm 

Extrapoladed creep factor, γ2,i Experi-
mental 

standard 
deviation 

Average 
standard 
deviation Individual values Average

y
2  Y2,1 Y2,2 Y2,3 

PE1 PE 

8 

 315 4,1 4,1 3,7 4,0 ± 0,2 ± 0,1 
PP1 

PP 

 250 3,6 4,3 4,3 4,1 ± 0,4 ± 0,2 
PP2  315 4,2 3,7 4,0 4,0 ± 0,3 ± 0,1 
PP3  400 4,2 4,4 4,4 4,3 ± 0,1 ± 0,1 
PP4  800 4,4 4,5  4,5  4,5 ± 0,1 ± 0,1 
PP5 1000 3,7 4,1 4,2 4,0 ± 0,3 ± 0,2 

  

The figure 2 illustrates a graphical representation of experimental results given by the 

deflection of a given sample pipe over time. 

 

 

 

 

 

 

 

 

 a)              b) 

Fig. 2 – Typical plot of the deformation of the pip e specimens during the creep test: a) normal 

scale; b) logarithmic scale  
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For the regression, the pipe deflection data sets selected were the points that allow a better 

correlation coefficient (i.e., closer to 1.0) [CEN 2007]. 

As the standard establishes γ2 ≤ 4 (instead of 4,0), there are doubts about the accuracy of 

the experimental results, because values below 4,5 may be rounded to the nearest whole 

number (ie, 4) [IPQ 2009]. 

Furthermore, when reporting the results of measured physical quantity, it is necessary to 

provide a quantitative indicator of the quality of results, in order to give some information 

about their reliability. Without such indication, it becomes more difficult to make an option. 

For the accuracy of measurements, there are two important contributions: the standard 

deviation associated with the heterogeneity of the sample, and the uncertainty of the test. It 

should be realized what is the importance of each contribution for the accuracy of the results. 

 

2.4 Accuracy and uncertainty analysis  

The accuracy of the digit immediately after the decimal point can be put in question, since all 

instruments used in the test are obviously affected by error, which is subjected to spread 

during the measurement chain. 

To calculate the uncertainty associated with the experimental determination of the creep 

factor, the Monte Carlo was adopted.  

Aiming the application of a Monte Carlo approach, it is needed to start identifying the type of 

distribution of each of the variables of equation 1 (two input variables and one output). 

The normality may be checked applying the methods of Anderson-Darling, Ryan-Joiner and 

Kolmogorov-Smirnov, or simply by normal probability plots and values of statistics for each 

measured variable within the 72 specimens tested, relatively to its pipe diameter. 

The normal probability plots and p-values for Y2 relative (= Y2,i/di of eq. 1, from now ahead 

identified as Y2) are presented in figure 3 

The way the data is near the straight line, the statistical values of RA and RJ and respective 

p's (greater than 0,05 and even 0,1) suggest normal, except for In the case of K-S test, 

where p-value (<0,05) leave some doubt. 
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a) b) c) 

Fig. 3 – Normal probability plots for input variabl e Y2 rel. according different methods: a) 

Anderson-darling; b) Ryan-Joiner; c) Kolmogorov-Smi rnov 

 

The normal probability plots and p-values for Y0 relative (=Y0,i/di of eq. 1, from now ahead 

identified as Y0) are presented in figure 4 
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a) b) 

Fig. 4 – Normal probability plots for input variabl e Y0 rel. according different methods: a) 

Anderson-darling; b) Kolmogorov-Smirnov 

 

The correspondent histogram (figure 5) confirms a non normality behavior for the input 

variable y0. 

The tests using 14 distributions and two variable transformations (figures 6 to 9), showed that 

the distribution that best fits the data for Y0 is the lognormal (figure 9). 
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Fig. 5 – Histogram  for  input variable Y 0 revealing a distribution skewed to the right (skew ness 

> 0) and a narrower peak than would be expected fro m a normal distribution (Kurtosis > 0).  
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Fig. 6 – Smallest extreme value, largest extreme va lue, gamma and 3-parameter gamma are no 

good distributions fits for Y 0 
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Fig. 7 – Exponential, 2-parameter exponential, Weib ull and 3 -parameter Weibull are no 

distributions good enough for fitting Y 0 
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Fig. 8 – Logistic, loglogistic, 3-parameter loglogi stic are no good distributions for fitting Y 0. 

However, after Johnson transformation (function 7,1 2379 + 1,15662 * Ln( Y 0 - 0,0125307)) the 

transformed  Y 0 follows a normal distribution (showing only one ou tlier). 
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Fig. 9 – Normal and lognormal or even Y 0 after Box-Cox transformation are no good 

distributions for fitting Y 0. However, a 3-parameter lognormal fits well a stra ight line for Y 0. 

 

Using the Monte Carlo method, a set of 200000 data points, following the selected 

distributions were simulated. The input variable Y2 were simulated for a normal distribution, 

based on original average value (0,0578) and standard deviation (0,0096), and Y0 with 

lognormal 3 parameters location, scale and threshold determined on best fit (figure 9) with 

values -6,04001, 0,64691 and 0,01234 respectively. The normal probability plots of the input 

variables with the simulated values and summary graphs of the results of the Monte Carlo 

simulation are shown in figures 10 and 11. 

 

 

a) b) 

Fig. 10 – Monte Carlo simulation of Y 0: a) normal probability plot (lognormal); b) summar y 

statistics 
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a) b) 

Fig. 11 – Monte Carlo simulation of Y 2: a) normal probability plot (normal); b) summary 

statistics 

 

Finally, applying the formula of Eq. 1, 200000 Y output data points are calculated from the 

Monte Carlo simulated input variables (Y0 MC and Y2 MC). The normal probability plot of the 

simulated output variable and respective summary graph statistics are presented in figure 12.  

 

 

 

 

 

 

 

 

a) b) 

Fig. 12 – Monte Carlo simulation of Y: a) normal pr obability plot (lognormal); b) summary 

statistics (y ≈ 3,6 ± 0,7) 
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3. Conclusions 

It is shown that uncertainty of Monte Carlo simulated creep factor is very significant 

(approximately 0,7).  

The uncertainty of the creep factor, determined by GUM approach showed a value of 0,4 

[Real, 2016], a little different from that was obtained by Monte Carlo approach. 

Although these differences, requiring further analysis, it should be assumed that the decimal 

digit of the calculated creep factor is not a significant digit, because it is probably affected by 

uncertainty. 

In short, for acceptance and rejection of pipe lots based on values determined for the creep 

factor extrapolated to 2 years, it is proposed the following expeditious criteria: 

 Pipe samples that have a creep factor with a value no greater than 4,0 in all specimens 

and an average value also not higher than 4,0, should be accepted. 

 Pipe samples whose creep factor (value given by the average of values obtained in 

several test specimens) is not greater than 4,0 but at least one of the sample specimens 

presents a creep factor exceeding the allowable limit for immediate acceptance (4,0), 

require a repeated testing in 3 new samples taken from the same batch. If it gets a similar 

result, thus the sample should be rejected. 

 Pipe samples having a creep factor with a value greater than 4,5, should be immediately 

rejected, without further analysis.  

 Pipe samples showing a creep factor with a calculated average value between 4,1 and 

4,5, should not be immediately rejected without further analysis. In such cases, the test 

should be repeated on three new samples taken from the same batch, the acceptance 

criterion being dependent on new results. The decision of acceptance or rejection of 

values in the limit zone, can be supplemented with the analysis of the standard deviation 

and eventually of the uncertainty, and the criteria established can be modified 

accordingly1. 

The conclusions of this work, which proposes an evaluation criterion for acceptance and 

rejection of pipes, are illustrated in the schematic flow diagram shown in Figure 14. 

                                                           
1
 : For example, the decision maker may consider that a pipe having a creep factor greater than 4,5, accounted for the 

positive values of the experimental standard deviation and uncertainty of the test, must be rejected as non-compliant. 
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Fig. 14 - Schematic flow chart of the evaluation cr iteria for acceptance and rejection of buried 
polyolefin pipes based on creep factor 
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