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Abstract 
The long-term settlement of railway tracks is a consequence of permanent deformations taking place 
in the track granular layers and subgrade. In the ballast layer, which experiences the highest stress 
amplitudes during train passages, these permanent deformations strongly depend on the loading 
conditions, which in turn depend on several factors as the train speed and axle loads, sleeper-ballast 
initial pressure, or track geometry quality. Moreover, under the action of moving loads from trains, 
further to a very significant increase of the vertical stress, the ballast layer experiences the rotation of 
the principal stresses, which is another aspect that significantly influences the long-term structural 
behaviour. This paper numerically analyses the stress changes in the ballast due to train passages, 
aiming at showing how these stresses may vary depending on the loading conditions. A numerical 
program of dynamic simulation is used that considers the nonlinear resilient nature of the ballast and 
the three-dimensional representation of the track-ballast-soil system using the FEM. The paper shows 
that dynamic effects due to trains travelling at very high speeds can significantly influence the stress 
path followed during loading and the principal stresses rotation inside the upper layers of the track. 
The paper also shows the importance of the consideration of the ballast nonlinear behaviour in the 
rotation of the principal stresses. 
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1 Introduction 
Normally, the main contribution for the permanent settlement of railway tracks comes from the 

ballast layer (Selig & Waters, 1994). It experiences more and larger stress cycles due to train passages 
(Powrie et al., 2007) and is periodically tamped during maintenance operations. The loading 
conditions play a decisive role in the process, either in terms of the train speed, the train loads, or the 
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dynamic component due to uneven railhead profiles. As the train passes, combined with a significant 
stress increase, the track upper granular layers experience a rotation of the principal stresses, being 
another aspect that significantly influences their long-term behaviour (Gräbe & Clayton, 2009). 

Previous numerical research on this subject has considered the finite element method (FEM) to 
discretize the space domain. Powrie et al. (2007) performed static 2D and 3D FEM analyses and Yang 
et al. (2009) performed 2D dynamic simulations. These studies focused on stress changes in the 
sub-ballast and deeper layers, the ballast was considered behaving linear-elastic, and the sleepers were 
fully embedded in the ballast, by being modelled in the same finite element mesh. 

In this paper a numerical program of dynamic simulation that considers the nonlinear resilient 
nature of the track geomaterials and a three-dimensional representation of the track-ballast-soil system 
using the FEM is used. The sleepers and the ballast are coupled through interaction forces, which 
allow a more realistic estimation of the stress field inside the upper layers of the track. The resilient 
behaviour of the ballast is modelled with the K-theta model (Brown & Pell, 1967), although still using 
a continuum representation of these granular materials. The numerical study aims at analysing the 
influence of train speed and loading configuration on the stress changes in the upper layers of the 
track, including estimation of the principal stresses rotations. 

2 The Approach for the Finite Element Analyses 

2.1 General Considerations 
The Finite Element analyses were performed using a dynamic three-dimensional numerical 

program - Pegasus - developed and fully coded in MATLAB® environment (Varandas, 2013; 
Varandas et al., 2014). In this program, the vehicle, the track, and the ballast/soil layers are three 
distinct structural systems, which interact between each other by means of interaction forces. The 
interaction forces were considered only in the vertical direction, as shown in Figure 1. 

 

 
 

Figure 1: Rail track system and ballast-soil system, shown in the direction of the track  
 
In this paper, the vehicle system is considered by means of constant moving loads corresponding to 

the estimated vehicles weight. The track system and the ballast-soil system are spatially discretized 
using the Finite Element Method (FEM). The track is built with Euler-Bernoulli beam elements 
representing the rails and the sleepers. The rails are connected to the sleepers with spring-damper 
elements, representing the rail pads. The ballast-soil system is discretized with low-order eight-node 
solid hexahedral elements. The interaction forces between the sleepers and the underlying ballast are 
due to vertical contact between the sleeper’s base and the ballast, and friction between the sleeper’s 
lateral faces and the confining ballast. The definition of the interaction forces is nonlinear due to the 
on/off contact distinction. At the lateral boundaries of the model local transmitting boundaries, 
consisting of visco-elastic dampers, are placed to absorb impinging waves generated during the 

A Numerical Study on the Stress Changes in the Ballast due to Train Passages Varandas et al.

1170



 

 

dynamic simulations. The time integration method is the explicit integration scheme described in 
(Zhai, 1996). This method is conditionally stable, and therefore the integration time step must be less 
than a critical value for convergence of the solution. In present analyses the necessary value for Δt was 
2.50 × 10−5 s and 1.67 × 10−5 s when considering the linear model or the nonlinear model for the 
ballast, respectively. 

2.2 Track and Ballast-Soil System Models 
The case study adopted in this study is a track section on a 4.5 m high embankment that was 

opened to traffic by the end of 2010. The section is located in Portugal, near Alcácer do Sal. The track 
is a single ballasted railway line (Figure 2), with Iberian gauge (1.668 m), comprising UIC60 rails 
(vertical bending stiffness of 6380 kNm2, and mass of 60.3 kg/m), resting on concrete monoblock 
sleepers (assumed rectangular prisms of 2.6 m by 0.30 m, with equivalent height of 0.212 m, Young’s 
modulus of 30 GPa and a total mass of 322 kg), spaced 0.6m, and with fastening system Vossloh W14 
with elastomer railpads (vertical stiffness of 160 kN/mm and damping constant of 17 kNs/m). This 
line allows mixed traffic, with maximum axle loads of 25 t and maximum speeds of 220 km/h for 
tilting passenger trains (Paixão et al., 2014). 

The ballast and the sub-ballast layers were made of crushed granite aggregate. The capping layer 
was made with well-graded crushed limestone aggregate. The natural soil, classified as QS2 according 
to UIC719R, corresponds to a gypsum-clay geologic formation from the Mio-Pliocene, predominantly 
comprising sands, and also silts and clays. 

The properties of the geomaterials of the ballast-soil system are presented in Table 1. All materials 
were considered linear-elastic behaviour, except the ballast layer whose nonlinear resilient behaviour 
was considered using the nonlinear-elastic formulation of the  model (Brown & Pell, 1967), 
generally expressed by the well-known formulation , where  is the sum of the principal 
stresses and  and  are model parameters. The  model was implemented in the numerical code 
Pegasus using an adapted formulation described in detail by Varandas (2013), following the parameter 
calibration performed by Aursudkij et al. (2009), with  = 110 MPa and  = 0.6, assuming 
minimum value of  = 16 MPa and a constant Poisson’s ratio of 0.20. Here, the response obtained 
with a nonlinear model for the ballast was compared with analyses considering the linear-elastic model 
for the ballast, adopting an equivalent linear ballast modulus of 130 MPa, which was found to give 
very good approximations for the overall track behaviour in earlier studies (Varandas, 2013). 

The embankment soil modulus was defined as 60 MPa. Estimations of the deformation modulus 
Ev2, made with the portancemètre equipment continuously on top of the sub-ballast layer (Fortunato et 
al., 2012), have shown that the Ev2 modulus vary significantly along the track. The selected value of 
60 MPa is in line with observed values of the in situ Ev2 estimations, in the lower range of values.  

The three-dimensional model comprises 151 sleepers, corresponding to 90.9 m length, and 
consisting of 3618 frame elements and 3469 nodes to model the track system, and 260 864 solid 
elements and 280 098 nodes to represent the ballast-soil system using the mesh depicted in Figure 3. 

 
Young’s modulus Poisson’s ratio Damping* Density Thickness 

Geomaterials  (MPa)  (-)  (%)   (kg/m3) h (m) 
Ballast 130+ 0.20 3 1530 0.30 
Sub-ballast 200 0.30 3 1935 0.30 
Capping layer 1000 0.30 3 1935 0.20 
Embankment soils 60 0.30 3 2040 4.5 

Notes: *Damping coefficients for frequencies 2 and 100 Hz, according to the Rayleigh damping concept; + Equivalent linear 
modulus assumed for the ballast layer in the linear-elastic analyses. 

Table 1: Properties of the materials of the geomaterials (Paixão et al., 2014; Varandas et al., 2016). 
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Figure 2: Schematic track cross-section (after 

Paixão, 2014). 
Figure 3: Representation of the numerical model and 

respective FEM mesh. 

2.3 Loads Applied on the Track-Ballast-Soil System 
Nonlinear analyses, where the system properties depend on the actual stresses among components, 

require that the initial stress state is calculated prior to the passing vehicles. To this effect, the initial 
stress state in the ballast/soil layers was computed assuming an in situ earth pressure coefficient K0 set 
to 0.5 (corresponding to normally consolidated conditions). It was considered the weight of the track 
system and of the ballast, sub-ballast and capping layers. The weights of the crib and shoulder ballast, 
which are components of the railway system not represented in the finite element model, are 
considered as a constant surface pressure around the sleepers’ locations. 

In the analyses it was considered the loading of the Alfa Pendular passenger tilting train, which 
was applied by means of four constant moving loads of 132 kN, relative to four consecutive axles 
belonging to two adjacent bogies as depicted in Figure 4. Therefore, The influence of the vehicle’s 
inertial forces was neglected, which is only significant when the uneven track profile and/or railhead 
irregularities are taken in consideration. 

 

 
Figure 4: Schematic representation of the axle arrangement (in m) of the Alfa Pendular. 

2.4 Track Critical Speed 
The displacements in the track and foundation increase with the speed of the train until a certain 

given train speed – the track critical speed – where the dynamic amplification in the track and ballast-
soil system reaches a maximum. The value of this critical velocity basically depends on the stiffness of 
the track support system, being less influenced by the properties of the track system itself (Mezher et 
al., 2015). For the track-foundation system described above, the track critical velocity was estimated 
to be 405 km/h. As expected, this value is closely related to the Rayleigh wave velocity of a 
homogeneous half-space made with the embankment soil, which is 355 km/h. 

The following analyses will consider three possible train velocities: 220 km/h, 320 km/h and 
350 km/h. Given the track critical speed of 405 km/h, these train velocities correspond to around 54%, 
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79% and 86% of the critical speed. The analyses in this paper therefore aim at showing if and how the 
dynamic aspect influences the stresses variations inside the ballast layer, in sub-critical regime. The 
length of the numerical model of 151 sleepers was therefore necessary to assure a steady-state 
condition at the section of study, given the considered high-speed of the train. 

Figure 5 shows the dynamic displacements of the rail (relative to the initial equilibrium position), 
considering the passage of the Alfa Pendular train model at 220, 320 and 350 km/h. The figure also 
compares results obtained considering the ballast material as linear-elastic or as nonlinear-elastic. 

 
Figure 5: Time history of dynamic rail displacements at different speeds, obtained considering the linear-elastic 

behaviour of ballast (black lines) and the nonlinear-elastic behaviour of ballast (red lines). 
 
It can be seen that for the speed of 220 km/h, corresponding to 54% of the critical speed, the 

dynamic component is small (quasi-symmetrical displacement field), and results obtained with the 
ballast linear and nonlinear model are almost coincident. For the speed of 320 km/h (79% of critical 
speed), it can be seen that some dynamic amplification is already taking place, showing higher 
downward displacements compared to the first case, and non-negligible upward displacements. Also, 
at this speed, some differences between linear and nonlinear results are now noticeable. Finally, for the 
highest considered velocity (86% of critical speed) the dynamic component assumes evident 
importance and the differences between linear and nonlinear results are significant. In view of this, it 
can be argued that the influence of dynamic/inertial effects in the track-ballast-soil system will only be 
significant when the speed of the train closely approaches the track critical speed. 

3 Dynamic Stresses inside the Ballast Layer 
The stresses inside the track upper layers were determined at the finite elements under a central 

sleeper of the model, at the locations in the transversal (y-z) plane identified in Figure 6. For example, 
Figure 7 shows the variation of the six components of stress in ballast element A, corresponding to the 
location with higher compressions, for a train speed of 220 km/h and determined with the linear model 
or the nonlinear model for the ballast. It can be seen that the distribution of stresses significantly alters 
by considering the nonlinear model: the vertical stress is significantly higher than in the linear case 
and the tensile stress in x direction ( x) is negligible compared to the linear case.  

The shear stress variation in terms of its three components is associated with a three-dimensional 
rotation of the principal stresses. Figure 8 graphically defines angle x and y, being the angles that 
the major principal direction (associated with the vertical compression) makes with the vertical axis, 
measured in the x-z plane and in the y-z plane, respectively. 
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Figure 6: Location of the selected elements. Figure 7: Time history of stresses in element A for the train at 

220 km/h: (a) linear ballast; (b) nonlinear ballast. 
 
Figure 9 shows the principal stresses rotation (PSR) at elements D and F for the Alfa Pendular 

passage at 220 km/h. The figure also compares equivalent results obtained with the ballast linear and 
nonlinear model. First observation from Figure 9 is that the consideration of the ballast nonlinear 
model has again a significant effect on the estimation of the PSR inside the ballast layer. This is 
particularly evident for PSR in element F, where the variation in terms of x reduces by a factor two 
when considering the ballast nonlinear behaviour. The figure also shows that the dominant component 
of rotation in element D is angle y, and that in element F the dominant angle is x, because this 
element is very close to the track central symmetry axis, where angle y is theoretically zero. 

Figure 10 shows the stress paths (p-q) in elements A, B and C in the ballast, for the passage of the 
Alfa Pendular at 220, 320 and 350 km/h, and considering the ballast nonlinear response. It can be seen 
that increasing the speed of the train the mean normal pressure p increases but the deviatoric shear 
stress q decreases. Also, as expected, the stresses decrease from the tip of the sleeper to its centre. 

 

 
Figure 8: Definition of angle x and y in 

transverse and longitudinal views. 
Figure 9: Time history of principal stresses rotation (PSR) in 

elements D and F (according to Figure 6). 
 

 
Figure 10: Stress paths p-q, in elements A, B and C, for the passage of the train at several speeds. 
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Figure 11 presents time histories of the six stress components in element A, for train speeds of 220 
and 350 km/h. It is interesting to note that the vertical stresses decrease slightly with speed but the 
horizontal stresses are amplified. This aspect will be discussed in the following section. 

The rotation of the principal stresses, in terms of x and y, are shown in Figure 12 in elements D, 
E and F for the train model at 220, 320 and 350 km/h. The abscissas values represent a normalized 
relative position of the train along the model, in order to synchronize results obtained at different 
velocities. These results show that higher train velocities lead to higher PSR inside the ballast layer, 
mainly in terms of the angle measured in the x-z plane x. 

 

 
Figure 11: Time history of stresses in element A for the train at: (a) 220 km/h; (b) 350 km/h. 

 

 
Figure 12: Variation of PSR in ballast elements D, F and E, for the passage of the train at several speeds. 

4 Discussion and Conclusions 
The paper showed that the consideration of a ballast nonlinear model significantly changed the 

distribution of stresses during train loading. In particular, unrealistic tensile stresses that may occur in 
the upper elements if considering the linear model, almost vanish in the equivalent nonlinear results. 
Also, the PSR decrease in the nonlinear results, because in this case the elements under the loaded 
sleeper are stiffer than those located between the sleepers, inducing a more vertical stress transmission, 
and therefore reducing the PSR effect. 

The analyses also showed that when the train speed approaches the track critical velocity, further 
to an increase of the overall track response, the stress paths and the PSR are significantly affected. For 
example Figure 10 showed that the maximum deviatoric shear stress decreases with the train speed, 
which according to Figure 11 is due to an increase of the horizontal confining pressure, not followed 
by an increase of the vertical stress. The justification for the alteration of the stress distribution from 
the quasi-static regime to the near critical regime, being the same external loading applied at different 
speeds, lies in dynamic inertial effects in the soil induced by the passing vehicle when travelling at 
speeds close to the Rayleigh wave velocity in the ground. 
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The consideration of a classical continuum mechanics approach with a nonlinear constitutive law, 
although not allowing for microstructural analyses, such as particle orientation, orientation of contacts 
or distribution of inter-particle contact forces, has given adequate estimations of the average stresses 
induced in the ballast, that may be used to calibrate experimental tests performed in triaxial or hollow 
cylinder equipment. Of course, this study as focused on a particular vehicle, railway track and 
ballast/soil model, and therefore further analyses are recommended to strengthen the conclusions 
derived from this numerical study, in what concerns the influence of the train speed in the induced 
stresses inside the ballast. Moreover, aspects that may play an important role in realistic scenarios that 
were not analysed include the track geometrical quality, the existence of unsupported sleepers, the 
train-track interaction, or railway transition scenarios. 
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