

UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA

SIMPOSIO INTERNACIONAL DE CIENCIAS DEL MAR

ASSESSMENT OF FLOOD RISK BOCA BARRANCO BEACH, CANARY ISLANDS, SPAIN

> **GUILHERME CLARINDO MARCOS¹**; GERMAN RODRIGUEZ RODRIGUEZ¹; CONCEIÇÃO JUANA FORTES²; MARIA TERESA REIS² & JAVIER SANTANA CEBALLOS¹

¹ FIMATA – Fisica Marina y Teledeteccion Aplicada - Departamento de Física – ULPGC
² LNEC / DHA – Laboratorio Nacional de Engenharia Civil – Lisboa, Portugal – Departamento de Hidraulica e Ambientes

1.INTRODUCTION 1.1 Objectives 1.2 Methodology

2. STUDY AREA

3. WAVE CLIMATE3.1 Deep waters data and propagation

4. EMPIRICAL MODELS4.1 Run-up Calculations and flood level

5. RISK ASSESSMENT4.3 Risk degree4.4 Results

6. CONCLUSION

CONTENTS

UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA

SIMPOSIO INTERNACIONAL DE CIENCIAS DEL MAR

1.INTRODUCTION

1.1 Objectives

The present study aims to evaluate the occurrence of phenomena such as floods and overtopping on beaches as well as infrastructures existing in Boca Barranco Beach.

1.2. Methodology

Inshore

Wave climate characterization

Empirical models for wave run-up

Coastal flood risk assessment

Inshore Wave climate characterization

Empirical models for wave run-up

Coastal flood risk assessment

AUTORES	RUN- UP, R	
Hunt (1959)	$R_{2\%} = \tan \beta * (H * L_0)^{0.5}$ $R_{2\%} = 3 * H$	Once the models are applied in the desired coastal area
Holman (1986)	$R_{2\%} = H_0 * (0.83 * \xi_0 + 0.20)$	flooding level (referred to the hydrographic zero)
	$R_{2\%} = H_s * (0.78 * \xi_s + 0.20)$	FL = ST + SS + Rmax
Nielsen & Hanslow	$R_{\text{out}} = L_{\text{put}} \left(-\ln(0.02) \right)^{0.5}$	Astronomical Tides + Storm Surge + Results of models
(1991)	$L_{RU} = 0.6 * \tan \beta * (H_{orms} L_0)^{0.5}$	Tide-gauge records
	$L_{RU} = 0.05 * (H_{orms} * L_0)^{0.5}$	Estado"
Stockdon <i>et al.</i> (2006)	$R_{2\%} = 0.043 * (H_0 L_0)^{0.5}$	Ruggiero et al. (2001) $R_{2\%} 0.27 * (\tan \beta * H_0 L_0)^{0.5}$
/	$R_{2\%} = 1.1 * (0.35 * \tan \beta * (H_0 L_0)^{0.5} +$	
/	$[(H_0L_0(0.563 * (\tan \beta)^{0.5} + 0.004))^{0.5}]/2)$	$R_{2\%} = 0.5 * H_0 - 0.22$
Teixeira (2009)	$R_{max.} = 0.80 * H_s + 0.62$	
/	$R_{max.} = 1.08 * H_s * \xi_0$	Guza & Thornton (1982) $R_s = 0.71 * H_0 + 0.035$

Inshore Wave climate characterization

Empirical models for wave run-up

Coastal flood risk assessment

2.STUDY AREA

ANEX

2.1 Profiles

6 PROFILES

Crossing 3 case studies

3.1 Baseline data and Wave propagation

SWAN MODEL

3.2 Results of the propagation

4.EMPIRICAL MODELS

4.1Run-up Calculations and flood level

Authors and RUN-UP models

- Wave climate in offshore zone = Hm0, Tp, Dm
- Wave climate in inshore zone = Hm0, Tp, Dm
- The slope of the beach face (profile) = β

Authors	Run- up, R
Hupt (1050)	$R_{2\%} = \tan \beta * (H * L_0)^{0.5}$
nunt (1959)	$R_{2\%} = 3 * H$
Holmon (1096)	$R_{2\%} = H_0 * (0.83 * \xi_0 + 0.20)$
Hollitati (1966)	$R_{2\%} = H_s * (0.78 * \xi_s + 0.20)$
	$R_{2\%} = L_{RU} (-\ln(0.02))^{0.5}$
Nielsen & Hanslow (1991)	$L_{RU} = 0.6 * \tan \beta * (H_{orms} L_0)^{0.5}$
	$L_{RU} = 0.05 * (H_{orms} * L_0)^{0.5}$
	$R_{2\%} = 0.043 * (H_0 L_0)^{0.5}$
Stockdon et al. (2006)	$R_{2\%} = 1.1 * (0.35 * \tan \beta * (H_0 L_0)^{0.5} +$
	$[(H_0 L_0 (0.563 * (\tan \beta)^{0.5} + 0.004))^{0.5}] / 2)$
Toivoiro (2000)	$R_{max} = 0.80 * H_s + 0.62$
	$R_{m \acute{a} x} = 1.08 * H_s * \xi_0$
Ruggiero et al. (2001)	$R_{2\%} 0.27 * (\tan \beta * H_0 L_0)^{0.5}$
Ruggiero et al. (2001)	$R_{2\%} = 0.5 * H_0 - 0.22$
Guza & Thornton (1982)	$R_s = 0.71 * H_0 + 0.035$

	1.INTRODUCTIO	N - 2. STUDY AREA - 3. WAVE CLIN	1ATE - 4.		- 5. RISK ASSESSMENT - 6.	CONCLUSION
E	MPIRICAL MO	DELS RESULTS		Expected as Hur waterproof base	nt formulated his sca e and regular waves.	ale model tank with a
	R _{max} PO	Mean	M	aximum	Minimum	
	Hunt (1959)	2 205		12.61	0.5	2 1 1 2
	Holman (1986)	1.162		The developing e	mpirical formulas ta er. the beach does n	ke into account the type ot meet the conditions of
	Stockdon et al.	3.258	а	pplication.		
	(2006)					001 06 08
	Nielsen et al.	1.180		3.465	0.313	
	(1991)					These models were
	Ruggiero et al.	1.001		3.643	0.271	rejected to calculate the flood level.
	(2001)					
	Guza et al. (1982)	1.246		7.771	0.219	6 empirical models to
	Teixeira 1 (2009)	1.504		6.341	0.743	test the noou level.
	Teixeira 2 (2009)	1.220		3.434	0.33	

C

FLOOD LEVEL CALCULATION IN THE BEACH

PROFILE 0 TO EXAMPLE

Flooding level (referred to the hydrographic zero)

FL =	ST	+	SS	+	Rmax	
Astro	nomical 1	ides + S	Storm Sur	ge +	Results of moc	lel

.INTRODUCTION - 2. STU	JDY AREA - 3. WAVE CLIMATE - 4. IMPIRICAL MODELS - 5. RISI	K ASSESSMENT - 6. CON	CLUSION
	P1	C.I	Number of ouents
Número de eventos		47452	Number of events
Número de eventos o	que ultrapassam - 3m (zona ocio) - caso 1	16374	
Número de eventos o	que ultrapassam - 3.4m – (Poca Vegetación) - caso 2	8258	
Número de eventos o	que ultrapassam - 14.8 (Infra-estructuras) - caso 3	0-	Exceeding values
Probabilidad de ocur	rencia (%) - caso 1	34.51	
Probabilidad de ocurr	rencia (%) - caso 2	17.40	
Probabilidad de ocuri	rencia (%) - caso 3	0	5.1 Probability of
Grado de probabilida	d de ocurrencia - caso 1		occurrence
Grado de probabilida	d de ocurrencia - caso 2	3	
Grado de probabilida	d de ocurrencia - caso 3		
Description	Probability of Occurrence (22 years)	Degree	
UNLIKELY	0 – 3%	1	Probability of occurrence
RARE	3 – 15%	2	degree
OCCASIONAL	15 – 35%	3	
PROBABLE	35 – 60%	4	
FREQUENT	> 60%	5	FACULTAD DECIENCIAS DEL MAR
	Raposeiro, P. D., & Feri	reira, J. C. (2011)	SIMPOSIO INTERNACIONAL DE CIENCIAS DEL MAR

5.2 CONSEQUENCES

	Description	Consequence (Indicative script)	Degree
		Stable geological, natural sand beach, busy casual leisure premises and	
C	INSIGNIFICANT	reduced ecological value.	1
		Weak geological features, or possessing any shrub vegetation, areas of	
	CONSIDERABLE	frequent leisure type.	2
		Coastal protection infrastructure; relevant economic activities; very	
	VERY SERIOUS	weak and unstable geological vegetation.	5
		Permanent human occupation (urban areas); natural elements of great	
	SEVERE	ecological value that are difficult to recover.	10
		Permanent human occupation; absolutely unique areas with a great	
		historical / natural value where the loss is irretrievable; beach-dune	
	CATASTROPHIC	system.	25
		Raposeiro, P. D., & Ferreira, J.	C. (2011)

1.INTRO	DUCTION - 2. ST	UDY AREA - 3. WAVE CLIMATE - 4. IMPIRICAL M	ODELS - 5. RISK ASSESS	MENT - 6. CONCLUSION
	F	1	C.I	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Número de eventos			47452	
Nún	o			\cdot
Nún	Stable geo	logical, natural sand beach, b	usy casual leisi	are premises and
Nún INSIGNIFICANT		reduced ecologic	al value.	
Probabilidad de ocurrenci	a (%) - caso 1		34.51	
Probabilidad de ocurrenti	- /0/) 2		17.40	
Probabilidad de oc		Coastal protection infrastruct	ure; relevant e	economic activities; very
Grado de probabili VERY	SERIOUS	weak and unstable geological	system and in	nportant vegetation.
Grado de probabilidad de	ocurrencia - o	caso 2	3	ų e – 13
Grado de probabilidad de	ocurrencia - o	aso 3	1	
Grado de consecuencia - c	aso 1		1	
Grado de consecuencia - caso 2			5	
Grado de consecuencia - o	aso 3		5	
Grado de Riesgo - caso 1 (Grado de la F	robabilidad x Grado de Consecuencia)	3	
Grado de Riesgo - caso 2 (Grado de la F	robabilidad x Grado de Consecuencia)	15	
Grado de Riesgo - caso 3 (Grado de la F	robabilidad x Grado de Consecuencia)	5	
Aceptabilidad - caso 1			Insignificante	EACUITAD
Aceptabilidad - caso 2			Indeseable	DE CENCAS DEL MAR
Aceptabilidad - caso 3			Reducido	

1.INTRODUCTION - 2. STUDY AREA - 3. WA	WE CLIMATE - 4.	IMF	PIRICAL MODELS - 5.	RISK ASS	ESSMEN	T - 6. CONC	LUSION		
P1	C.I					C	onsequ	iences	
Número de eventos	47452		Dick Dograa						
Número de eventos que ultrapassam - 3m (zona ocio) - caso 1	16374		KISK DEGI	ee		2	5	10	25
Número de eventos que ultrapassam - 3.4m – (Poca Vegetación) - caso 2	8258			1	1	2	5	10	25
Número de eventos que ultrapassam - 14.8 (Infra-estructuras) - caso 3	0								
Probabilidad de ocurrencia (%) - caso 1	34.51			2	2	4	10	20	50
Probabilidad de ocurrencia (%) - caso 2	17.40		Probability	\bigcirc					
Probabilidad de ocurrencia (%) - caso 3	-0		of	3	3	6	15	30	75
Grado de probabilidad de ocurrencia - caso 1	3		occurrence	4	4	8	20	40	100
Grado de probabilidad de ocurrencia - caso 2	3			·		Ŭ			
Grado de probabilidad de ocurrencia - caso 3	1			5	5	10	25	50	125
Grado de consecuencia - caso 1	1	<u>)</u>							
Grado de consecuencia - caso 2	5								
Grado de consecuencia - caso 3	5			Inte	rsect	ion ma	atrix		
Grado de Riesgo - caso 1 (Grado de la Probabilidad x Grado de Consecuencia)	3) • F	Risk Degree =	Probab	ility of	foccurre	ence X	Consequ	lences
Grado de Riesgo - caso 2 (Grado de la Probabilidad x Grado de Consecuencia)	13								
Grado de Riesgo - caso 3 (Grado de la Probabilidad x Grado de Consecuencia)	5								
Aceptabilidad - caso 1	Insignificante								
Aceptabilidad - caso 2	Indeseable								
Aceptabilidad - caso 3	Reducido								

Acceptability

Risk Degree	Description	Risk Control		
1-3	Insignificant	Negligible risk; not necessary to carry out risk control measures.		
4-10	Reduced	кізк can be considered acceptable / tolerable if you select a set of measures to control the possible damage in a small zone.		
15-30	Undesirable	Risk to be avoided if reasonably practical; requires detailed research and cost- benefit analysis; monitoring is essential.		
40-125	Unacceptable	Intolerable risk; control of risk required (eg Remove the source of risks, alter the probability of occurrence or consequences, risk transfer, etc.).		

RESULTS

Prepare risk maps to improve management

Zone 1 : Insignificant 3 and reduced 3 Zone 2 : Unacceptable 3 and Reduced 2 Zone 3: Undesirable 1 and Reduced 5

Profiles	Zone	Risk Dregree	Acceptability
	1	3	insignificant
PO			-
	3	5	reduced
	1	3	insignificant
P1	2	30	undesirable
	3	5	reduced
	1	3	insignificant
P2	2	10	reduced
	3	5	reduced
	1	4	reduced
Р3	2	50	unacceptable
	3	5	reduced
	1	5	reduced
P4	2	50	unacceptable
	3	5	reduced
	1	5	reduced
P5	2	50	unacceptable
	3	25	undesirable

Risk Maps

6. CONCLUSION

The study identified:

- Zone 1 is occasionally flooded. Risk is insignificant or reduced.
 - The most frequently flooded area is the beach zone (1), which does not present any risk.
- Zone 2 is occasionally flooded. Risk is reduced for profiles 1 and 2.
 - 3, 4, and 5 is occasionally flooded and risk is unacceptable.
- Zone 3 is unlikely flooded and risk is reduced for profiles 0, 1, 2, and 3.
- Zone 3 is unlikely flooded and risk is undesirable for profiles 4 and 5.
 - The area with lower probability of inundation is zone 3, but risk level is undesirable in the area including infrastructures.
- As a result of this, overtopping is not shown in the structures.

THANK YOU VERY MUCH

