

LABORATÓRIO NACIONAL DE ENGENHARIA CIVIL

SISTEMA DE PREVISÃO E ALERTA DE INUNDAÇÕES EM ZONAS COSTEIRAS E PORTUÁRIAS

PTDC/AAC-AMB/120702/2010

ANÁLISE TEMPORAL DE REGISTOS DA ELEVAÇÃO DA SUPERFÍCIE LIVRE E DE VELOCIDADE EM ENSAIOS EXPERIMENTAIS

Lisboa, junho de 2014

Relatório HIDRALERTA 02/2014

ÍNDICE DO TEXTO

1.	INTRODUÇÃO7							
2.	2. DESCRIÇÃO DOS ENSAIOS							
2	2.1.	Con	dições experimentais	8				
2	2.2.	Equi	pamento de medição	9				
	2.2.	1.	Sondas de altura de onda, baseadas em condutividade	9				
	2.2.	2.	ADV - Vectrino	10				
ź	2.3.	Con	dições de agitação incidente1	12				
2	2.4.	Gera	ação de ondas1	13				
2	2.5.	Regi	sto de dados das sondas1	15				
2	2.6.	Proc	edimentos dos ensaios1	15				
3.	APR	ESEN	TAÇÃO DE RESULTADOS1	17				
	3.1.	Séri	e da elevação da superfície livre1	17				
	3.1.	1.	Nível de água de 18 cm 1	18				
	3.1.	2.	Nível de água de 27.8 cm 2	23				
	3.2.	Séri	es temporais da velocidade das partículas2	28				
	3.2.	1.	Nível de água de 18 cm 2	28				
	3.2.	2.	Nível de água de 27.8 cm 4	10				
4.	CON	ISIDE	RAÇÕES FINAIS	52				
5.	5. REFERÊNCIAS BIBLIOGRÁFICAS							
AN	ANEXO A							
AN	ANEXO B							

ÍNDICE DE FIGURAS

Figura 1 – Canal (à esquerda); gerador de ondas irregulares (à direita)	8
Figura 2 – Canal de ondas: Planta e perfil longitudinal.	8
Figura 3 - Características geométricas da sonda Wave-Height Sensor (WHS) mark III.	9
Figura 4 – a) Sonda junto ao batedor; b) Sonda junto ao ADV.	. 10
Figura 5 – Características geométricas do ADV Vectrino.	. 11
Figura 6 – a) Sonda do ADV; b) sonda de nível do ADV e Vectrino	. 11
Figura 7 – Posicionamento do ADV em planta	. 12
Figura 8 – Sistema de geração das ondas: a) Batedor de ondas; b) Computador de geração do sina	I
(CPU1); c) Painel de atuação do gerador	. 13
Figura 9 – Série temporal da diferença de potencial da onda gerada	. 14
Figura 10 – Onda a ser gerada pelo batedor	. 14
Figura 11 – Computador de aquisição de sinal a 25 Hz (CPU2)	. 15
Figura 12 – Ensaios em curso.	. 16
Figura 13 – Sinais da sonda de nível ao largo (a vermelho) e da sonda de nível do ADV (a branco)	. 17
Figura 14 – Elevação da superfície livre registada na sonda de nível ao largo, durante 60 segundos	,
desde o instante t=200 s até ao instante t=260 s, para uma onda gerada com T= 7.0 s e H=125 cm.	. 17
Figura 15 – Elevação de superfície livre ao longo do canal – T5H05	. 18
Figura 16 – Elevação de superfície livre ao longo do canal – T9H05	. 19
Figura 17 – Elevação de superfície livre ao longo do canal – T10H05	. 19
Figura 18 – Elevação de superfície livre ao longo do canal – T7H1_25	. 20
Figura 19 – Elevação de superfície livre ao longo do canal – T7H1_5	. 21
Figura 20 – Elevação de superfície livre ao longo do canal – T11H2	. 22
Figura 21 – Elevação de superfície livre ao longo do canal – T5H05	. 23
Figura 22 – Elevação de superfície livre ao longo do canal – T9H05	. 24
Figura 23 – Elevação de superfície livre ao longo do canal – T10H05	. 24
Figura 24 – Elevação de superfície livre ao longo do canal – T7H1_25	. 25
Figura 25 – Elevação de superfície livre ao longo do canal – T7H1_5	. 26
Figura 26 – Elevação de superfície livre ao longo do canal – T11H2	. 27
Figura 27 – Velocidade longitudinal (V _x) – T5H05	. 28
Figura 28 – Velocidade transversal (V _y) – T5H05	. 29
Figura 29 – Velocidade vertical (V _z) – T5H05	. 29
Figura 30 – Velocidade longitudinal (V _x) – T9H05	. 30
Figura 31 – Velocidade transversal (V _y) – T9H05	. 31
Figura 32 – Velocidade vertical (V _z) – T9H05	. 31
Figura 33 – Velocidade longitudinal (V _x) – T10H05	. 32
Figura 34 – Velocidade transversal (V _y) – T10H05	. 33
Figura 35 – Velocidade vertical (V _z) – T10H05	. 33
Figura 36 – Velocidade longitudinal (V _x) – T7H1_25	. 34
Figura 37 – Velocidade transversal (V _y) – T7H1_25	. 35
Figura 38 – Velocidade vertical (V _z) – T7H1_25	. 35
Figura 39 – Velocidade longitudinal (V _x) – T7H1_5	. 36

Figura 40 – Velocidade transversal (V _y) – T7H1_5	37
Figura 41 – Velocidade vertical (Vz) – T7H1_5	37
Figura 42 – Velocidade longitudinal (V _x) – T11H2	38
Figura 43 – Velocidade transversal (V _y) – T11H2	39
Figura 44 – Velocidade vertical (Vz) – T11H2	39
Figura 45 – Velocidade longitudinal (V _x) – T5H05	40
Figura 46 – Velocidade transversal (V _y) – T5H05	41
Figura 47 – Velocidade vertical (V _z) – T5H05	41
Figura 48 – Velocidade longitudinal (V _x) – T9H05	42
Figura 49 – Velocidade transversal (V _y) – T9H05	43
Figura 50 – Velocidade vertical (Vz) – T9H05	43
Figura 51 – Velocidade longitudinal (V _x) – T10H05	44
Figura 52 – Velocidade transversal (V _y) – T10H05	45
Figura 53 – Velocidade vertical (V _z) – T10H05	45
Figura 54 – Velocidade longitudinal (V _x) – T7H1_25	46
Figura 55 – Velocidade transversal (V _y) – T7H1_25	47
Figura 56 – Velocidade vertical (Vz) – T7H1_25	47
Figura 57 – Velocidade longitudinal (V _x) – T7H1_5	48
Figura 58 – Velocidade transversal (V _y) – T7H1_5	49
Figura 59 – Velocidade vertical (Vz) – T7H1_5	49
Figura 60 – Velocidade longitudinal (V _x) – T11H2	50
Figura 61 – Velocidade transversal (V _y) – T11H2	51
Figura 62 – Velocidade vertical (V _z) – T11H2	51

ÍNDICE DE QUADROS

Quadro 1 – Especificações técnicas da sonda de nível da sonda Wave-Height Sensor (WHS) r	nark III.
	10
Quadro 2 – Especificações técnicas do ADV Vectrino.	12
Quadro 3 – Combinações de períodos e alturas de onda utilizadas nos ensaios	13
Quadro 4 – Alturas de onda significativa, H _s , registadas – T5H05;T9H05;T10H05	
Quadro 5 – Alturas de onda significativa, Hs, registadas – T7H1_25	20
Quadro 6 – Alturas de onda significativa, Hs, registadas – T7H1_5	
Quadro 7 – Alturas de onda significativa, Hs, registadas – T7H1_5	22
Quadro 8 – Alturas de onda significativa, Hs, registadas – T5H05;T9H05;T10H05	23
Quadro 9 – Alturas de onda significativa, Hs, registadas – T7H1_25	25
Quadro 10 – Alturas de onda significativa, Hs, registadas – T7H1_5	
Quadro 11 – Alturas de onda significativa, Hs, registadas – T7H1_5	27
Quadro 12 – Velocidades registadas – T5H0_5	
Quadro 13 – Velocidades registadas – T9H0_5	30
Quadro 14 – Velocidades registadas – T10H0_5	32
Quadro 15 – Velocidades registadas – T7H1_25	
Quadro 16 – Velocidades registadas – T7H1_5	
Quadro 17 – Velocidades registadas – T11H2	
Quadro 18 – Velocidades registadas – T5H0_5	40
Quadro 19 – Velocidades registadas – T9H0_5	
Quadro 20 – Velocidades registadas – T10H0_5	
Quadro 21 – Velocidades registadas – T7H1_25	
Quadro 22 – Velocidades registadas – T7H1_5	
Quadro 23 – Velocidades registadas – T11H2	50

AGRADECIMENTOS

Agradece-se a Rui Reis, João Fernandes, AVaz e MCastro pela realização dos ensaios.

Agradece-se o financiamento de:

- Projeto HIDRALERTA Sistema de previsão e alerta de inundações em zonas costeiras e portuárias, financiado pela Fundação para a Ciência e a Tecnologia (contrato PTDC/AAC-AMB/120702/2010).
- Bolsa de doutoramento financiada pela Fundação para a Ciência e a Tecnologia (SFRH/BD/64497/2009).
- (Projeto EROS Erosionof Rocky Shores differences in protection promoted by sandy beaches and shoreplatforms" financiado pela Fundação para a Ciência e a Tecnologia (PTDC/CTEGIX/111230/2009).

1. INTRODUÇÃO

O presente relatório tem como objetivo a análise temporal de dados de elevação da superfície livre e de velocidade obtidos nos ensaios em modelo físico realizados no longo do canal de ondas irregulares do LNEC, para várias condições de agitação incidente regular sobre um fundo rugoso. Assim foi efetuado:

- Análise temporal da série de valores de elevação da superfície livre para cada condição de agitação e ao longo da posição em x do canal através da utilização do programa ANOIAGI (Fortes et al., 2010);
- Análise temporal da série de valores de velocidade das partículas para cada condição de agitação e ao longo da posição em x do canal através da utilização do programa ANOIAGI (Fortes et al., 2010);

Este trabalho insere-se no âmbito do Projeto HIDRALERTA - Sistema de previsão e alerta de inundações em zonas costeiras e portuárias, financiado pela Fundação para a Ciência e a Tecnologia (contrato PTDC/AAC-AMB/120702/2010), no qual a ferramenta de cálculo ANOIAGI é muito utilizada.

O projeto está a ser desenvolvido no LNEC - Laboratório Nacional de Engenharia Civil em conjunto com a Universidade Nova de Lisboa (Faculdade de Ciências e Tecnologia e Faculdade de Ciências Sociais e Humanas) e a Universidade dos Açores, e tem como principal objetivo desenvolver o Sistema de Previsão e Alerta de Inundações em Zonas Costeiras e Portuárias HIDRALERTA. Em especial, inclui as seguintes tarefas:

1. Criação de uma ferramenta, amigável com o utilizador, que permita:

- Avaliar o risco de inundação por intermédio de mapas de risco que constituam uma ferramenta de apoio à decisão pelas entidades competentes. Estes mapas são construídos com longas séries temporais de previsões da agitação marítima ou com cenários pré-definidos associados às mudanças climáticas e/ou eventos extremos
- Avaliar em tempo real situações de emergência e a emissão de alertas às entidades competentes sempre que se preveja estar em causa a segurança de pessoas, bens ou atividades desenvolvidas nessas zonas;
- 2. Desenvolvimento de um protótipo para o porto da Praia da Vitória e da zona de Lisboa-Vale do Tejo.

Este relatório é composto por 4 capítulos, em que, após esta breve introdução, no capítulo 2 apresentam-se as condições experimentais, com a descrição do canal, do sistema de geração de ondas, do equipamento de medição, das condições de agitação incidente e dos procedimentos de ensaios. No capítulo 3, apresentam-se as análises séries temporais de elevação da superfície livre e de velocidade, para os ficheiros dos ensaios realizados e no capítulo 4 apresentam-se umas breves considerações finais.

2. DESCRIÇÃO DOS ENSAIOS

2.1. Condições experimentais

Os testes experimentais foram realizados no Laboratório Nacional de Engenharia Civil (LNEC) num canal com 32 m de comprimento, com cerca de 1 m de largura e 1 m de profundidade e equipado com um gerador de ondas regulares, de acordo com o especificado na Figura 1.

Figura 1 – Canal (à esquerda); gerador de ondas irregulares (à direita).

Na Figura 2, apresenta-se uma planta do canal e o respetivo perfil de fundo adotado para os ensaios realizados.

2.2. Equipamento de medição

O equipamento de medição é constituído por uma sonda resistiva para medição da elevação da superfície livre e pelo ADV (*Acoustic Doppler Velocimeter*) para medição de velocidades das partículas. De seguida, descrevem-se cada um destes componentes.

2.2.1. Sondas de altura de onda, baseadas em condutividade

A medição da elevação da superfície da água é feita recorrendo a uma sonda resistiva e o correspondente condicionador de sinais. Foi utilizada a sonda Wave-Height Sensor (WHS) mark III, da Delft Hydraulics, com elétrodos de 50 cm. As suas características geométricas são apresentadas na Figura 3.

Figura 3 - Características geométricas da sonda Wave-Height Sensor (WHS) mark III.

Esta sonda é constituída por duas varetas paralelas de aço inoxidável, montadas por baixo (na face inferior)? de uma pequena caixa que contém os circuitos eletrónicos para o sensor de excitação, deteção e amplificação de sinal. As varetas atuam como elétrodos através dos quais se mede a condução elétrica. É incluído um elétrodo de referência, de platina, para medir a condutividade do fluido, sendo esta usada para compensar a medição de altura de onda. Esta compensação é ótima em água doce, sendo que em água salgada existe uma diminuição da sua precisão. O sinal analógico de saída é proporcionalmente linear com o nível de água entre as varetas do sensor. Importa referir que é necessário realizar uma calibração prévia das sondas, antes da realização dos ensaios.

Para a medição dos valores da elevação da superfície livre, colocou-se, de acordo com o representado na Figura 4:

- Uma sonda junto ao batedor x=6 m, para caracterização das condições de agitação incidente. Esta sonda foi mantida nesta posição para todas as condições de agitação incidente, Figura 4a. A frequência de aquisição é de 25Hz. A função desta sonda é verificar que o batedor de ondas está a gerar a altura de onda correta.
- Uma sonda junto ao medidor de velocidades. As posições da sonda variaram entre -1000 cm até 560 cm, com um espaçamento de 100 cm no intervalo entre -1000 e 100 cm e de 10 cm entre os -100 cm e os 430 cm, Figura 4b. A frequência de aquisição é também de 25 Hz.

Figura 4 – a) Sonda junto ao batedor; b) Sonda junto ao ADV.

As especificações técnicas da sonda Wave-Height Sensor (WHS) mark III são apresentadas no Quadro 1.

Ouadro 1 -	- Especificações	técnicas da sond:	a do nívol da s	onda Waye-Height	Sensor (WHS) mark	
Quadi 0 1 -	- Especificações	techicas ua sonua	a de filver da s	onua wuve-neight.		

	Varetas de 50 cm, aço inoxidável, tipo 316		
Elétrodos do sensor	Diâmetro – 4mm; espaçamento – 2.0 cm		
	Comprimento – 580 mm		
Dimensões	Incluindo eletrónica – 649 x 34 x 150 mm		
Elétrodo de referência	Platina, 5 x 2 mm de diâmetro		
Não-linearidade	0.5% da gama de medição, linha de tendência linear ótima		
Meio líquido	Todos os líquidos compatíveis com os materiais supracitados		
Efaita condutividado	Condutividade mínima requerida – 0.08mS		
Eletto-conductividade	Sensibilidade <1% para variações entre 0.1 e 0.2 mS		
Saída	-10 até +10 VDC para gama completa, i.e. 0.4 V/cm		
	Fornecido um cabo padrão, 7 núcleos, blindado, com conectores para o		
Cabo de alimentação	sensor e o Sensor Control Box, comprimento total – 10 m		
	Comprimento máximo – 100 m		

2.2.2. ADV - Vectrino

A medição de velocidades é feita com um medidor acústico (*ADV - Acoustic Doppler Velocimeter*), marca NORTEK, modelo Vectrino, com sonda "down-looking". As suas características geométricas são apresentadas na Figura 5.

Figura 5 – Características geométricas do ADV Vectrino.

A sonda consiste em quatro transdutores recetores, cada um montado no interior do braço recetor, e um transdutor de transmissão ao centro. O Vectrino usa o efeito Doppler para medir a velocidade da água. Este transmite pares de impulsos sonoros curtos, capta os seus ecos e, finalmente, mede a variação de frequência do som que captou. O som não é refletido na água em si, mas sim, a partir de partículas em suspensão na água (zooplâncton ou sedimentos). Cada sonda tem um sensor de temperatura.

Este velocímetro fornece três componentes ortogonais da velocidade instantânea das partículas em suspensão na água, numa posição de análise (volume de medição), Figura 6a).

As posições do Vectrino ao longo do canal foram idênticas às posições da sonda resistiva que foi colocada ao seu lado. Na Figura 6b apresenta-se a montagem experimental utilizada nos ensaios.

Figura 6 – a) Sonda do ADV; b) sonda de nível do ADV e Vectrino.

O ADV foi posicionado a meio da largura do canal e mantido com a direção "x", alinhado com o eixo longitudinal do canal - ângulo 0° (representação esquemática na figura seguinte). A profundidade na posição de medição corresponde ao meio da coluna de água. A posição da sonda de nível foi ao lado do ADV. A frequência de aquisição é de 25 Hz.

Figura 7 – Posicionamento do ADV em planta.

As especificações técnicas do ADV são apresentadas no Quadro 2.

Quadro 2 – Especificações técnicas do ADV Vectrino.

	Medições de velocidade da água				
Gama	±0.01, 0.1, 0.3, 1, 2, 4 m/s				
Precisão	±0.5% do valor medido ±1 mm/s				
Taxa de amostragem	(Saída) 1–25 Hz 1–200 Hz (firmware do Vectrino)				
	Volume de amostragem				
Distância da sonda	0.05 m				
Diâmetro	6 mm				
Altura	3–15 mm (personalizável)				
	Intensidade do eco				
Frequência acústica	10 MHz				
Resolução	Escala linear				
Gama dinâmica	25 dB				
Temperatura do termistor	• Gama – 4°C até 40°C				
embutido na sonda	 Precisão/Resolução - 1°C/0.1°C 				
	• Tempo de resposta - 5 min				
	Alimentação e saída de dados				
Entrada DC	12 – 48 VDC				
Pico de corrente	2.5 A a 12 VDC (personalizável)				
Consumo máximo	200 Hz 1.5 W				
Saídas analógicas	3 canais padrão, um para cada componente da velocidade. A gama de				
	saída é 0–5 V.				
	Ambiente				
Temperatura de operação	–5°C até 45°C				
Temperatura de	–15°C até 60°C				
armazenamento					

2.3. Condições de agitação incidente

As condições de onda simuladas no canal foram limitadas pelas características do gerador de ondas. Neste caso os ensaios foram realizados para dois níveis de água, 18 e 27,8 cm, considerando as condições de agitação indicadas no quadro 3, nomeadamente com ondas cujos períodos de onda são de 5.0, 7.0, 9.0, 10.0 e 11.0 s associados a alturas de onda de 50, 125, 150 e 200 cm.

Quadro 3 – Combinações de períodos e alturas de onda utilizadas nos ensaios.

T(s) H(cm)	5.0	7.0	9.0	10.0	11.0
50	х	-	х	х	-
125	-	х	-	-	-
150	-	х	-	-	-
200	-	-	-	-	х

2.4. Geração de ondas

O sistema de geração de ondas é constituído pelo batedor de ondas e pelos equipamentos eletrónicos e informáticos indicados na Figura 8.

Figura 8 – Sistema de geração das ondas: a) Batedor de ondas; b) Computador de geração do sinal (CPU1); c) Painel de atuação do gerador.

Este sistema de geração de onda é controlado a partir de um computador portátil (CPU1), Toshiba, modelo Tecra S10, conectado via USB a um conversor digital-analógico marca National Instruments que transforma o sinal digital em analógico e o envia para a instalação elétrica do batedor de ondas.

Para a geração das ondas, foram construídos arquivos em formato ASCII correspondentes a uma duração de 370s (duração total do ensaio). Estes arquivos possuem duas colunas sendo a primeira, o tempo, com intervalo de 0.01s e, a segunda, a amplitude das ondas incidentes em voltagem. A geração destes arquivos foi efetuada com emprego de um programa escrito em ambiente LabVIEW que reproduz um sinal sinusoidal ou retilíneo, incorporando a função de transferência do sistema gerador, com as seguintes características:

- Ondas regulares com características de amplitude e período definido;
- Rampa de amplitudes de onda crescente até à estabilização dos 0 s aos 60 s
- Valor da amplitude de onda constante dos 60 s aos 300 s;
- Rampa de amplitudes de onda decrescente dos 300 s aos 360 s;
- Valor de amplitude constante e igual a zero dos 360 s aos 370 s.

Figura 10 – Onda a ser gerada pelo batedor.

2.5. Registo de dados das sondas

No computador torre (CPU2, Figura 11) efetuou-se a aquisição de sinal da sonda resistiva e do ADV. Utilizou-se o software Vectrino 1.15 para o controlo do sistema de medição das velocidades. Para visualização e aquisição das medições da elevação da superfície livre a partir da sonda resistiva e da velocidade das partículas no volume de controle definido pelo ADV, segundo os três eixos espaciais, foram utilizadas as saídas analógicas de dados dos equipamentos, através do software LabVIEW Signal Express (National Instruments).

Figura 11 – Computador de aquisição de sinal a 25 Hz (CPU2).

Os testes tiveram a duração de 380 s e efetuou-se a aquisição de dados durante todo esse período.

2.6. Procedimentos dos ensaios

Para cada condição de agitação incidente, procedeu-se à medição de:

- Elevação da superfície livre;
- Velocidade das partículas;

O procedimento de ensaios foi:

- Ligação do hardware relativo ao canal de ondas;
- Configuração do CPU1 como gerador de sinal;
- Configuração do CPU2 para aquisição de dados a 25Hz;
- Posicionamento do ADV no local em que se vai realizar o ensaio;
- Colocação de água no canal de ondas;
- Início dos ensaios, de acordo com o seguinte procedimento:
- 1. No software "LabVIEW SignalExpress", do CPU1:
 - Fazer duplo click em "Load from ASCII" e no separador "Parse file", clicar em "input file path";
 - Selecionar "All files" para que se consiga visualizar todos os ficheiros das ondas e escolher o ficheiro de onda a gerar.
- 2. Em "DAQmx Generate":
 - Clicar no "triângulo virado para baixo" e selecionar a "column 2" do ficheiro da onda que se quer gerar.
- **3.** Efetuar em simultâneo:
 - No CPU1 Clicar em "Run";
 - No CPU2 clicar em "Record" (se não estiver já, fazer check a "Voltage" na janela que aparece) e clicar em "OK".
- 4. Clicar em "Stop" quando acabar os cerca de 10 minutos de tempo reservado para o ensaio.
- 5. Gravar os dados na pasta do dia:
- Right click em "Voltage" e selecionar "Convert to ASCII";

- Selecionar a pasta do dia em que se está a fazer os ensaios dentro da pasta VecNivCan, e o nome do ficheiro tem o formato T(período)_H(altura)_(posição);
- Fazer right click no ficheiro que foi gravado no software "LabVIEW SignalExpress", no canto inferior esquerdo do ecrã e clicar em delete.
- **6.** Verificar o nível de água e corrigi-lo se for necessário.
- 7. Voltar ao ponto 1 para a onda seguinte, até se ter efetuado os ensaios para todas as condições de agitação incidente.
- 8. Calibração das duas sondas de nível;
- 9. Análise dos dados adquiridos.

O procedimento de ensaio está descrito em mais detalhe no Anexo B.

Figura 12 – Ensaios em curso.

3. APRESENTAÇÃO DE RESULTADOS

3.1. Série da elevação da superfície livre

A Figura 13 mostra os registos da sonda de nível junto ao batedor (ao largo) e da sonda de nível vinculada ao ADV.

Figura 13 – Sinais da sonda de nível ao largo (a vermelho) e da sonda de nível do ADV (a branco).

Através da Figura 14, é possível observar que a sonda de nível regista características de onda iguais às impostas pelo batedor, o que mostra que realmente as características da onda no canal, registadas através da sonda de nível, são as mesmas que foram geradas a partir do gerador de ondas.

Para cada condição de agitação incidente, obtiveram-se as séries temporais de elevação da superfície livre em vários pontos ao longo do canal. Com base nessas séries, efetuou-se a análise temporal de uma série de dados (registo), recorrendo ao programa ANOIAGI (Fortes et al., 2010). Com base nesta ferramenta de cálculo, obtêm-se, para cada registo, os valores de H_M (altura máxima), H_s (altura significativa), H_{med} (altura média), T_s (período significativo) e T_{med} (período médio).No anexo A, descreve-se o procedimento para a análise temporal de uma série de dados recorrendo ao programa ANOIAGI.

Apresentam-se de seguida as análises das séries de elevação da superfície livre, para os diferentes ensaios realizados, apresentando os valores de altura significativa, Hs, registados para a sonda junto ao batedor (sonda 13) e para a sonda junto ao ADV (sonda 14).

- 3.1.1. Nível de água de 18 cm
- Altura de onda de 50 cm T5H05; T9H05;T10H05

T5H05				Т9Н05			T10H05				
Sonda 13		A	DV	Son	da 13	ADV		Sonda 13		ADV	
x (cm)	Hs (cm)	X (cm)	Hs (cm)	x (cm)	Hs (cm)	X (cm)	Hs (cm)	x (cm)	Hs (cm)	X (cm)	Hs (cm)
-1100	46.25	-400	54.779	-1100	48.769	-400	61.417	-1100	48.855	-400	65.307
-1100	46.194	-300	59.284	-1100	49.769	-300	64.462	-1100	49.616	-300	67.024
-1100	47.937	-200	61.472	-1100	49.397	-200	63.542	-1100	49.315	-200	66.067
-1100	45.53	-100	61.787	-1100	49.136	-100	73.38	-1100	49.3	-100	70.962
-1100	46.532	0	60.395	-1100	48.953	0	66.528	-1100	50.869	0	68.039
-1100	45.136	100	69.361	-1100	47.24	100	77.229	-1100	49.488	100	82.386
-1100	48.353	200	64.783	-1100	49.964	200	71.322	-1100	51.913	200	73.327
-1100	46.789	300	62.038	-1100	50.094	300	83.844	-1100	50.385	300	85.314
-1100	47.924	400	60.714	-1100	50.704	400	89.854	-1100	50.72	400	92.072
-1100	47.278	500	65.671	-1100	50.168	500	100.822	-1100	51.368	500	105.158
-1100	47.389	600	85.377	-1100	49.495	600	130.998	-1100	49.645	600	143.054
-1100	43.441	650	3.457	-1100	46.127	650	112.69	-1100	45.613	650	123.718

Quadro 4 – Alturas de onda significativa, H_s, registadas – T5H05;T9H05;T10H05

Figura 17 – Elevação de superfície livre ao longo do canal – T10H05

• Altura de onda de 125 cm – T7H1_25

T7H1_25						
So	nda 13		ADV			
x (cm)	Hs (cm)	X (cm)	Hs (cm)			
-1100	122.136	-400	154.214			
-1100	123.947	-300	161.825			
-1100	123.48	-200	174.835			
-1100	122.38	-100	171.361			
-1100	123.778	0	185.53			
-1100	121.463	100	208.902			
-1100	127.377	200	190.982			
-1100	124.332	300	229.935			
-1100	126.923	400	160.217			
-1100	124.721	500	112.6			
-1100	123.183	600	102.8			
-1100	117.341	650	47.302			

Quadro 5 – Alturas de onda significativa, Hs, registadas – T7H1_25

Figura 18 – Elevação de superfície livre ao longo do canal – T7H1_25

• Altura de onda de 150 cm – T7H1_5

T7H1_5							
So	nda 13		ADV				
x (cm)	Hs (cm)	X (cm)	Hs (cm)				
-1100	147.439	-400	185.03				
-1100	148.437	-300	190.636				
-1100	148.626	-200	211.175				
-1100	149.329	-100	207.774				
-1100	149.622	0	231.429				
-1100	151.6	300	229.562				
-1100	154.71	400	165.038				
-1100	136.695	500	113.491				
-1100	148.926	600	105.026				

• Altura de onda de 200 cm – T11H2

т11Н2					
So	nda 13	/	ADV		
x (cm)	Hs (cm)	X (cm)	Hs (cm)		
-1100	186.031	-400	277.956		
-1100	187.365	-300	293.784		
-1100	185.932	-100	343.813		
-1100	187.748	0	348.953		
-1100	185.2	100	339.847		
-1100	193.106	200	251.807		
-1100	189.863	300	183.839		
-1100	192.779	400	157.437		
-1100	188.729	500	130.759		
-1100	188.702	600	128.426		
-1100	180.68	650	88.661		

Quadro 7 – Alturas de onda significativa, Hs, registadas – T7H1_5

3.1.2. Nível de água de 27.8 cm

• Altura de onda de 50 cm - T5H05; T9H05;T10H05

Т5Н05					T9H	105		Т10Н05			
Sonda 13 ADV		DV	Sonda 13		ADV		Sonda 13		ADV		
x (cm)	Hs (cm)	X (cm)	Hs (cm)	x (cm)	Hs (cm)	X (cm)	Hs (cm)	x (cm)	Hs (cm)	X (cm)	Hs (cm)
-1100	50.803	-400	56.962	-1100	49.618	-400	59.372	-1100	53.368	-400	67.285
-1100	52.989	-300	68.092	-1100	49.377	-300	64.212	-1100	53.443	-300	69.467
-1100	50.824	-200	63.884	-1100	-	-200	-	-1100	-	-200	-
-1100	50.075	-100	63.721	-1100	47.43	-100	65.444	-1100	52.498	-100	74.278
-1100	50.209	0	66.833	-1100	47.643	0	69.189	-1100	51.893	0	77.041
-1100	49.149	100	65.721	-1100	45.189	100	66.75	-1100	50.527	100	71.048
-1100	51.706	200	61.035	-1100	47.768	200	68.605	-1100	52.805	200	80.222
-1100	-	300	-	-1100	47.83	300	69.294	-1100	-	300	-
-1100	51.446	400	58.203	-1100	49.841	400	68.06	-1100	53.773	400	84.575
-1100	47.439	500	58.807	-1100	49.26	500	72.685	-1100	52.017	500	81.581
-1100	50.249	600	56.004	-1100	50.548	600	72.233	-1100	53.389	600	84.781
-1100	46.93	650	60.876	-1100	47.842	650	77.082	-1100	51.974	650	93.299

Quadro 8 – Alturas de onda significativa, Hs, registadas – T5H05;T9H05;T10H05

Figura 21 – Elevação de superfície livre ao longo do canal – T5H05

Figura 23 – Elevação de superfície livre ao longo do canal – T10H05

• Altura de onda de 125 cm – T7H1_25

T7H1_25										
So	nda 13	ADV								
x (cm)	Hs (cm)	X (cm)	Hs (cm)							
-1100	122.275	-400	163.566							
-1100	126.138	-300	201.221							
-1100	124.972	-200	186.281							
-1100	121.525	-100	171.522							
-1100	120.844	0	184.324							
-1100	117.646	100	185.03							
-1100	124.598	200	182.094							
-1100	124.501	400	199.357							
-1100	122.191	500	213.056							
-1100	118.742	600	214.355							
-1100	120.997	650	198.937							

Quadro 9 – Alturas de onda significativa, Hs, registadas – T7H1_25

Figura 24 – Elevação de superfície livre ao longo do canal – T7H1_25

• Altura de onda de 150 cm – T7H1_5

T7H1_5										
So	nda 13	ADV								
x (cm)	Hs (cm)	X (cm)	Hs (cm)							
-1100	148.202	-400	198.477							
-1100	148.132	-300	191.985							
-1100	146.075	-100	207.566							
-1100	143.741	0	225.467							
-1100	141.319	100	215.223							
-1100	147.262	200	223.502							
-1100	149.881	400	253.955							
-1100	148.458	500	236.023							
-1100	150.14	600	170.31							
-1100	146.39	650	160.073							

Quadro 10 – Alturas de onda significativa, Hs, registadas – T7H1_5

• Altura de onda de 200 cm – T11H2

	T11H2										
So	nda 13	ADV									
x (cm)	Hs (cm)	X (cm)	Hs (cm)								
-1100	194.061	-400	260.038								
-1100	196.034	-300	361.448								
-1100	188.02	-100	306.874								
-1100	188.781	0	329.247								
-1100	185.597	100	341.057								
-1100	195.021	200	358.198								
-1100	193.429	300	351.317								
-1100	194.305	400	296.648								
-1100	193.037	500	212.955								
-1100	196.372	600	182.873								
-1100	175.025	650	164.436								

3.2. Séries temporais da velocidade das partículas

Para análise das séries temporais da velocidade de partículas, recorrendo ao programa ANOIAGI (Fortes et al, 2010), foi possível determinar a velocidade máxima (Vmax), mínima (Vmin) e média (VMed) para as sondas 9,10 e 11, as quais correspondem, respetivamente, às sondas que representam a velocidade longitudinal (Vx) dada pela sonda 9, a velocidade transversal (Vy), dada pela sonda 10 e a velocidade vertical (Vz) dada pela sonda 11. No Anexo A, descrevem-se os procedimentos para a análise temporal de velocidades com o ANOIAGI.

Apresentam-se de seguida as análises das séries temporais de velocidade de partículas, para os diferentes ensaios realizados, apresentando os valores de velocidades máximas, mínimas e médias, para cada sonda.

3.2.1. Nível de água de 18 cm

• T5H05

T5H05 -Velocidade longitudinal (sonda 9)				T5H05 - Velocidade transversal (sonda 10)				T5H05 - Velocidade vertical (sonda 11)			
x (cm)	Vmax	Vmin	Vmed	x (cm)	Vmax	Vmin	Vmed	x (cm)	Vmax	Vmin	Vmed
-400	2.718	-2.613	-0.001	-400	0.131	-0.128	0.000	-400	1.586	-1.569	0.000
-300	3.049	-2.788	0.001	-300	0.161	-0.164	0.000	-300	1.763	-1.84	0.000
-200	3.178	-2.963	-0.001	-200	0.128	-0.11	0.000	-200	1.641	-1.731	0.000
-100	3.346	-3.09	-0.001	-100	0.171	-0.16	0.000	-100	2.143	-1.916	0.000
0	3.656	-3.224	0.000	0	0.181	-0.176	0.000	0	2.266	-2.2	0.001
100	4.129	-3.852	-0.001	100	0.353	-0.361	0.000	100	3.478	-3.639	0.000
200	4.563	-3.831	0.000	200	0.2	-0.199	0.000	200	2.29	-1.841	0.000
300	5.05	-3.393	-0.001	300	0.201	-0.189	0.000	300	1.949	-1.739	0.000
400	6.184	-4.807	0.000	400	0.399	-0.455	0.000	400	2.401	-2.591	0.001
500	6.614	-4.776	0.001	500	0.333	-0.305	0.000	500	2.076	-2.048	0.000
600	7.291	-4.113	0.000	600	0.355	-0.319	0.000	600	2.882	-2.379	-0.001
650	10.491	-4.511	0.001	650	0.428	-0.449	0.000	650	2.482	-1.735	-0.001

Quadro 12 - Velocidades registadas - T5H0_5

Figura 27 – Velocidade longitudinal (V_x) – T5H05

Figura 28 – Velocidade transversal (V_y) – T5H05

Figura 29 – Velocidade vertical (Vz) – T5H05

• T9H05

T9H05 -Velocidade longitudinal (sonda 9)				T9H05 - Velocidade transversal (sonda 10)				T9H05 - Velocidade vertical (sonda 11)			
x (cm)	Vmax	Vmin	Vmed	x (cm)	Vmax	Vmin	Vmed	x (cm)	Vmax	Vmin	Vmed
-400	3.461	-2.995	0.001	-400	0.146	-0.143	0.000	-400	1.225	-1.085	0.000
-300	3.567	-3.026	-0.001	-300	0.176	-0.185	0.000	-300	1.802	-1.921	0.000
-200	4.203	-3.503	0.001	-200	0.145	-0.133	0.000	-200	1.5	-1.204	0.000
-100	4.312	-3.283	-0.001	-100	0.169	-0.167	0.000	-100	1.708	-1.386	0.000
0	5.167	-4.085	0.000	0.000	0.224	-0.233	0.000	0	1.92	-1.623	0.000
100	6.305	-4.113	0.001	100	0.382	-0.432	0.000	100	2.818	-3.199	0.000
200	6.69	-4.531	-0.002	200	0.291	-0.301	0.000	200	1.951	-1.105	-0.001
300	7.275	-4.51	0.001	300	0.317	-0.302	0.000	300	2.123	-1.211	0.000
400	9.003	-5.089	0.001	400	0.481	-0.516	0.000	400	2.241	-2.33	0.000
500	10.38	-5.086	0.000	500	0.368	-0.357	0.000	500	2.057	-1.95	0.000
600	10.69	-4.388	0.000	600	0.373	-0.362	0.000	600	2.479	-2.066	0.000
650	9.611	-3.923	-0.002	650	0.468	-0.454	0.000	650	2.602	-1.892	0.000

Quadro 13 – Velocidades registadas – T9H0_5

Figura 30 – Velocidade longitudinal (V_x) – T9H05

Figura 31 – Velocidade transversal (V_y) – T9H05

• T10H05

T10H05 -Velocidade longitudinal (sonda 9)				T10H05 - Velocidade transversal (sonda 10)				T10H05 - Velocidade vertical (sonda 11)			
x (cm)	Vmax	Vmin	Vmed	x (cm)	Vmax	Vmin	Vmed	x (cm)	Vmax	Vmin	Vmed
-400	3.585	-2.871	0.001	-400	0.114	-0.125	0.000	-400	1.251	-1.003	0.000
-300	4.016	-3.292	0.001	-300	0.169	-0.178	0.000	-300	1.507	-1.573	0.000
-200	4.171	-3.388	0.001	-200	0.126	-0.114	0.000	-200	1.411	-1.094	0.000
-100	4.59	-3.397	-0.001	-100	0.152	-0.164	0.000	-100	1.576	-1.265	0.000
0	5.238	-3.811	-0.001	0.000	0.283	-0.276	0.000	0	1.751	-1.302	0.000
100	6.223	-4.323	0.002	100	0.589	-0.591	0.000	100	2.75	-2.764	0.001
200	7.164	-4.75	0.002	200	0.366	-0.385	0.000	200	1.776	-1.126	0.000
300	7.637	-4.68	0.000	300	0.424	-0.404	0.000	300	1.977	-1.207	0.000
400	9.624	-5.292	-0.003	400	0.679	-0.62	0.000	400	1.978	-1.964	0.000
500	10.759	-5.366	0.000	500	0.512	-0.492	0.000	500	2.253	-2.016	0.000
600	12.41	-5.031	-0.001	600	0.385	-0.386	0.000	600	2.685	-2.067	0.000
650	12.902	-5.683	-0.005	650	0.65	-0.532	0.000	650	2.635	-2.037	0.000

Quadro 14 – Velocidades registadas – T10H0_5

Figura 33 – Velocidade longitudinal (V_x) – T10H05

Figura 34 – Velocidade transversal (V_y) – T10H05

• T7H1_25

T7H1_25 -Velocidade longitudinal (sonda 9)				T7H1_25 - Velocidade transversal (sonda 10)				T7H1_25 - Velocidade vertical (sonda 11)			
x (cm)	Vmax	Vmin	Vmed	x (cm)	Vmax	Vmin	Vmed	x (cm)	Vmax	Vmin	Vmed
-400	9.077	-6.515	0.001	-400	0.243	-0.222	0.000	-400	4.048	-3.403	-0.001
-300	9.91	-6.968	0.001	-300	0.269	-0.241	0.000	-300	4.094	-3.551	-0.001
-200	10.611	-7.191	0.002	-200	0.224	-0.198	0.000	-200	4.465	-3.446	0.000
-100	12.389	-7.457	-0.004	-100	0.271	-0.244	0.000	-100	5.148	-4.103	-0.001
0	12.926	-7.016	0.000	0	0.316	-0.279	0.000	0	5.77	-4.749	0.001
100	14.748	-7.6	-0.005	100	0.497	-0.538	0.000	100	5.619	-4.785	0.001
200	17.406	-8.452	0.002	200	0.675	-0.682	0.000	200	5.771	-4.103	0.001
300	17.982	-7.781	0.001	300	0.963	-0.739	0.000	300	5.499	-3.27	-0.002
400	12.047	-6.946	0.000	400	2.004	-2.06	0.000	400	3.606	-3.191	0.000
500	9.088	-6.46	0.001	500	2.127	-2.168	-0.001	500	4.187	-4.755	0.000
600	8.127	-6.305	0.001	600	2.034	-2.07	0.001	600	4.289	-4.548	0.001
650	9.074	-7.009	0.003	650	1.76	-1.676	0.000	650	3.603	-3.687	0.001

Quadro 15 – Velocidades registadas – T7H1_25

Figura 36 – Velocidade longitudinal (V_x) – T7H1_25

Figura 37 – Velocidade transversal (V_y) – T7H1_25

Figura 38 – Velocidade vertical (V_z) – T7H1_25

• T7H1_5

T7H1_	T7H1_5 -Velocidade longitudinal (sonda 9)				T7H1_5 - Velocidade transversal (sonda 10)				T7H1_5 - Velocidade vertical (sonda 11)			
x (cm)	Vmax	Vmin	Vmed	x (cm)	Vmax	Vmin	Vmed	x (cm)	Vmax	Vmin	Vmed	
-400	11.024	-7.432	0.000	-400	0.265	-0.243	0.000	-400	4.925	-4.24	0.001	
-300	11.843	-8.06	-0.002	-300	0.277	-0.235	0.000	-300	4.75	-4.343	0.002	
-200	12.824	-7.923	-0.002	-200	0.232	-0.197	0.000	-200	5.434	-4.021	0.001	
-100	14.982	-8.922	0.002	-100	0.344	-0.293	0.000	-100	0.051	-0.054	0.000	
0	15.289	-7.624	0.002	0	0.405	-0.331	0.000	0	7.484	-6.008	0.000	
100	18.163	-8.508	0.001	100	0.604	-0.603	0.000	100	7.22	-6.24	-0.002	
200	20.483	-8.828	-0.004	200	0.798	-0.905	0.000	200	7.097	-5.081	0.002	
300	18.325	-8.92	0.001	300	1.454	-1.204	0.000	300	6.002	-3.737	0.001	
400	14.55	-10.582	0.004	400	4.002	-4.528	-0.001	400	9.784	-10.751	0.000	
500	10.831	-7.47	-0.005	500	2.723	-2.805	-0.001	500	4.815	-5.833	0.000	
600	7.553	-6.473	-0.003	600	1.997	-2.013	0.000	600	0.982	-2.138	0.000	

Quadro 16 – Velocidades registadas – T7H1_5

Figura 39 – Velocidade longitudinal (V_x) – T7H1_5

Figura 40 – Velocidade transversal (V_y) – T7H1_5

Figura 41 – Velocidade vertical (V_z) – T7H1_5

• T11H2

T1:	1H2 - Velo	cidade long	gitudinal	T11F	12 - Veloci	dade transv	/ersal	T11H2 - Velocidade vertical			
	(s	onda 9)			(son	da 10)		(sonda 11)			
x (cm)	Vmax	Vmin	Vmed	x (cm)	Vmax	Vmin	Vmed	x (cm)	Vmax	Vmin	Vmed
-400	17.97	-7.482	-0.006	-400	0.626	-0.498	0.000	-400	4.48	-3.842	0.000
-300	19.905	-7.764	0.001	-300	0.525	-0.469	0.000	-300	5.169	-4.247	0.000
-200	21.343	-7.918	0.002	-200	0.508	-0.487	0.000	-200	6.276	-4.552	0.000
-100	23.532	-7.659	-0.008	-100	0.542	-0.505	0.000	-100	5.578	-4.39	-0.001
0	26.728	-7.544	0.002	0	0.59	-0.588	0.000	0	5.703	-4.363	-0.001
100	25.075	-7.792	0.001	100	1.122	-1.113	0.000	100	6.014	-4.15	0.000
200	19.06	-9.197	0.003	200	2.475	-2.452	0.001	200	5.308	-4.553	0.000
300	15.079	-10.694	-0.001	300	3.403	-3.903	0.001	300	6.805	-8.02	0.001
400	11.864	-8.151	0.003	400	3.335	-3.54	0.000	400	6.449	-6.939	0.002
500	8.75	-7.114	-0.001	500	2.292	-2.467	0.000	500	4.042	-4.823	-0.001
600	9.298	-6.862	0.002	600	2.159	-2.399	0.000	600	4.28	-4.612	-0.001
650	10.191	-8.377	0.001	650	2.104	-1.947	-0.001	650	3.921	-3.961	-0.001

Quadro 17 – Velocidades registadas – T11H2

Figura 42 – Velocidade longitudinal (V_x) – T11H2

Figura 43 – Velocidade transversal (V_y) – T11H2

Figura 44 – Velocidade vertical (V_z) – T11H2

3.2.2. Nível de água de 27.8 cm

• T5H05

T5F	105 -Veloo (s	cidade lon onda 9)	gitudinal	T5H05 - Velocidade transversal (sonda 10)				T5H05 - Velocidade vertical (sonda 11)			
x (cm)	Vmax	Vmin	Vmed	x (cm)	Vmax	Vmin	Vmed	x (cm)	Vmax	Vmin	Vmed
-300	3.116	-2.938	-0.001	-300	0.255	-0.282	0.000	-300	2.881	-2.968	0.000
-200	3.499	-3.322	-0.001	-200	0.142	-0.212	0.000	-200	-	-	-
-100	3.084	-2.853	0.000	-100	0.36	-0.338	0.000	-100	3.602	-3.584	0.000
0	2.821	-2.776	-0.001	0	0.148	-0.14	0.000	0	2.056	-1.973	0.000
100	3.205	-3.021	-0.001	100	0.171	-0.186	0.000	100	2.23	-2.193	0.000
200	3.398	-3.118	0.001	200	0.157	-0.15	0.000	200	1.482	-1.361	0.000
300	4.308	-3.618	0.000	300	0.207	-0.241	-0.001	300	2.089	-2.043	-0.001
400	4.222	-3.876	0.001	400	0.195	-0.215	-0.001	400	2.043	-1.911	0.000
500	4.584	-3.623	0.001	500	0.224	-0.245	0.000	500	1.879	-1.593	0.000
600	4.655	-3.785	-0.001	600	0.199	-0.214	0.000	600	1.679	-1.432	0.000
650	1.567	-1.389	0.000	650	0.238	-0.23	0.000	650	1.567	-1.389	0.000

Quadro 18 – Velocidades registadas – T5H0_5

Figura 45 – Velocidade longitudinal (V_x) – T5H05

Figura 46 – Velocidade transversal (V_v) – T5H05

Figura 47 – Velocidade vertical (V_z) – T5H05

• T9H05

T9H	105 -Velo	cidade lon	gitudinal	Т9Н()5 - Velocio	dade transv	ersal	T9H05 - Velocidade vertical			
	(s	ionda 9)		(sonda 10)				(sonda 11)			
x (cm)	Vmax	Vmin	Vmed	x (cm)	Vmax	Vmin	Vmed	x (cm)	Vmax	Vmin	Vmed
-300	3.615	-2.869	0.001	-300	0.279	-0.258	0.000	-300	2.162	-2.218	0.000
-200	5.342	-4.356	-0.001	-200	0.334	-0.385	0.000	-200	-	-	-
-100	4.32	-3.468	0.000	-100	0.364	-0.341	0.000	-100	2.747	-2.791	0.000
0	4.133	-3.366	-0.001	0	0.18	-0.197	0.000	0	1.507	-1.472	0.000
100	4.253	-3.372	-0.001	100	0.216	-0.229	0.000	100	1.907	-1.999	0.000
200	4.76	-3.643	0.001	200	0.159	-0.169	0.000	200	1.361	-1.011	0.000
300	5.129	-3.721	0.001	300	0.147	-0.15	0.000	300	1.211	-0.843	0.000
400	5.443	-3.572	-0.002	400	0.231	-0.209	0.000	400	2.112	-1.501	0.000
500	6.161	-4.196	0.001	500	0.296	-0.344	0.000	500	1.761	-1.126	0.000
600	6.854	-4.059	-0.001	600	0.253	-0.251	0.000	600	2.033	-1.051	-0.001
650	8.241	-4.273	0.000	650	0.318	-0.343	0.000	650	1.276	-0.975	0.000

Quadro 19 – Velocidades registadas – T9H0_5

Figura 48 – Velocidade longitudinal (V_x) – T9H05

Figura 49 – Velocidade transversal (V_y) – T9H05

Figura 50 – Velocidade vertical (V_z) – T9H05

• T10H05

T10	H05 -Velo	cidade lo	ngitudinal	T10H05 -	Velocidad	e transvers	al (sonda	T10H05	- Velocida	ade vertica	l (sonda
	(s	onda 9)		10)				11)			
x (cm)	Vmax	Vmin	Vmed	x (cm)	Vmax	Vmin	Vmed	x (cm)	Vmax	Vmin	Vmed
-300	3.817	-3.43	0.000	-300	0.295	-0.356	0.000	-300	2.306	-2.666	-0.001
-200	5.143	-3.936	0.001	-200	0.218	-0.221	0.000	-200	5.143	-3.936	0.001
-100	5.525	-3.926	-0.001	-100	0.427	-0.387	0.000	-100	3.124	-3.218	0.001
0	4.761	-3.664	0.000	0	0.221	-0.201	0.000	0	1.665	-1.565	0.000
100	5.193	-3.967	-0.002	100	0.197	-0.218	0.000	100	1.777	-1.736	0.000
200	4.857	-3.675	0.000	200	0.155	-0.158	0.000	200	1.468	-0.997	0.000
300	5.413	-4.411	0.000	300	0.296	-0.315	0.000	300	1.917	-1.217	0.000
400	6.663	-4.471	-0.002	400	0.279	-0.263	0.000	400	1.995	-1.29	-0.001
500	7.009	-4.902	0.001	500	0.285	-0.346	0.000	500	2.007	-1.241	0.000
600	8.272	-4.461	0.001	600	0.243	-0.308	0.000	600	2.026	-1.132	0.000
650	8.669	-4.666	-0.002	650	0.312	-0.318	0.000	650	1.467	-1.098	-0.001

Quadro 20 – Velocidades registadas – T10H0_5

Figura 51 – Velocidade longitudinal (V_x) – T10H05

Figura 52 – Velocidade transversal (V_y) – T10H05

• T7H1_25

T7H1	_25 -Velocio	dade longit	udinal	T7H1_	_25 - Veloc	idade trans	versal	T7H:	1_25 - Velo	cidade ve	rtical
	(sond	da 9)		(sonda 10)				(sonda 11)			
x (cm)	Vmax	Vmin	Vmed	x (cm)	Vmax	Vmin	Vmed	x (cm)	Vmax	Vmin	Vmed
-300	8.961	-7.633	0.001	-300	0.368	-0.402	0.000	-300	5.141	-4.837	-0.001
-200	12.892	-8.117	-0.004	-200	0.528	-0.413	0.000	-200	12.892	-8.117	-0.004
-100	10.531	-8.237	-0.003	-100	0.557	-0.574	0.000	-100	5.474	-5.238	0.001
0	10.234	-7.401	0.000	0	0.441	-0.411	0.000	0	4.474	-4.001	0.001
100	10.91	-7.578	-0.004	100	0.397	-0.384	0.000	100	4.642	-3.969	-0.001
200	12.759	-8.04	0.003	200	0.398	-0.414	0.000	200	4.068	-2.952	0.000
300	14.083	-8.774	-0.003	300	0.55	-0.557	0.001	300	6.924	-4.137	0.000
400	15.32	-7.361	0.001	400	0.482	-0.47	0.000	400	15.32	-7.361	0.001
500	15.846	-5.927	-0.004	500	0.666	-0.68	0.000	500	15.846	-5.927	-0.004
600	15.024	-5.905	0.001	600	1.456	-1.224	0.000	600	2.243	-1.632	0.000
650	17.24	-6.357	-0.002	650	0.882	-0.876	0.000	650	4.396	-2.805	0.001

Quadro 21 – Velocidades registadas – T7H1_25

Figura 54 – Velocidade longitudinal (V_x) – T7H1_25

Figura 55 – Velocidade transversal (V_y) – T7H1_25

Figura 56 – Velocidade vertical (V_z) – T7H1_25

• T7H1_5

Т7Н	1 5 -Velo	ridade long	vitudinal	Т7Н1	5- Veloci	dade transv	ersal	T7F	11 5 - Velo	ocidade ver	tical
	(so	onda 9)	, readinian	(sonda 10)				(sonda 11)			
x (cm)	Vmax	Vmin	Vmed	x (cm)	Vmax	Vmin	Vmed	x (cm)	Vmax	Vmin	Vmed
-300	11.958	-9.677	0.003	-300	0.919	-0.959	0.000	-300	7.881	-9.68	0.000
-200	15.401	-8.994	0.003	-200	0.487	-0.469	0.000	-200	15.401	-8.994	0.003
-100	13.924	-10.976	0.000	-100	0.925	-1.451	0.000	-100	8.056	-10.569	0.001
0	12.41	-8.062	0.002	0	0.501	-0.506	0.000	0	4.988	-5.004	-0.001
100	13.495	-8.701	0.003	100	0.452	-0.466	0.000	100	5.612	-5.372	0.000
200	15.349	-9.201	-0.003	200	0.52	-0.509	0.000	200	4.796	-3.559	-0.001
300	17.511	-9.089	0.002	300	0.626	-0.614	0.000	300	8.406	-5.262	-0.001
400	17.004	-7.63	0.002	400	0.998	-1.155	0.000	400	3.59	-2.483	0.000
500	17.445	-6.957	-0.002	500	0.851	-0.912	0.000	500	6.251	-4.055	-0.002
600	12.989	-7.353	0.001	600	2.156	-2.493	0.000	600	4.603	-4.773	0.000
650	12.033	-7.84	-0.004	650	2.603	-2.56	0.001	650	4.864	-5.247	0.000

Quadro 22 – Velocidades registadas – T7H1_5

Figura 57 – Velocidade longitudinal (V_x) – T7H1_5

Figura 58 – Velocidade transversal (V_y) – T7H1_5

Figura 59 – Velocidade vertical (V_z) – T7H1_5

• T11H2

T11	H2 -Veloci	dade longit	udinal	T11F	12 - Veloci	dade transv	versal	T11	H2 - Velo	cidade ver	T11H2 - Velocidade vertical			
	(so	nda 9)		(sonda 10)				(sonda 11)						
x (cm)	Vmax	Vmin	Vmed	x (cm)	Vmax	Vmin	Vmed	x (cm)	Vmax	Vmin	Vmed			
-300	22.027	-12.356	0.003	-300	1.927	-1.858	0.000	-300	11.27	-11.82	0.001			
-200	18.808	-7.747	0.002	-200	0.721	-0.614	0.000	-200	3.409	-2.302	0.000			
-100	20.855	-9.294	-0.007	-100	0.539	-0.577	0.000	-100	4.61	-4.397	0.001			
0	22.523	-8.659	0.002	0	0.761	-0.758	0.000	0	7.746	-6.844	0.000			
100	22.476	-8.715	-0.005	100	0.545	-0.626	0.000	100	5.341	-4.764	-0.003			
200	25.122	-10.209	0.002	200	0.493	-0.496	0.000	200	5.197	-3.307	0.000			
300	27.261	-8.98	0.003	300	0.827	-0.947	0.000	300	7.945	-4.463	-0.001			
400	21.663	-9.829	0.004	400	1.299	-1.205	0.000	400	5.512	-3.371	0.000			
500	15.699	-9.952	-0.001	500	3.317	-3.206	0.000	500	6.894	-7.256	-0.002			
600	12.707	-8.446	-0.002	600	3.021	-3.304	-0.001	600	5.962	-6.517	0.004			
650	11.193	-8.423	0.002	650	2.895	-2.803	0.000	650	4.944	-5.355	-0.001			

Quadro 23 – Velocidades registadas – T11H2

Figura 60 – Velocidade longitudinal (V_x) – T11H2

Figura 61 – Velocidade transversal (V_y) – T11H2

Figura 62 – Velocidade vertical (V_z) – T11H2

4. CONSIDERAÇÕES FINAIS

Neste relatório descreveu-se o tratamento realizado aos dados de elevação da superfície livre e de velocidade obtidos no COI3 para o estudo da propagação de ondas regulares sobre um fundo rugoso.

Este trabalho consistiu essencialmente em :

- Análise temporal das séries de valores de elevação da superfície livre para cada condição de agitação com o programa ANOIAGI (Fortes et al, 2010);
- Análise temporal da série de valores de velocidade das partículas para cada condição de agitação com o programa ANOIAGI (Fortes et al, 2010);

5. REFERÊNCIAS BIBLIOGRÁFICAS

- Fortes, C.J.E.M.; Pinheiro, L.; Santos, J.A. (2010). Análise temporal, espectral e de erros no pacote SOPRO. Aplicações. Proc. 10º Congresso da Água, Alvor.
- Gil, J. (2006) Programa de análise espectral utilizando a transformada discreta de Fourier: Spegil.f, FORTAN.
- Pinheiro, L.V.; Fortes, C.J.E.M.; Santos, J.A.; Neves, M.G. (2006). Caracterização de regimes de agitação marítima utilizando a ferramenta SOPRO, Proc. 8º Congresso da Água, Figueira da Foz, 13 a 17 de março de 2006.

Reis, R. (2010) - Relatório de Estágio - LNEC - 6 de setembro a 18 de outubro, LNEC

DEPARTAMENTO DE HIDRÁULICA E AMBIENTE NÚCLEO DE PORTOS E ESTRUTURAS MARÍTIMAS

Autores:

Juli Zant

André Ramos

Bolseiro de Experimentação

Sehne Gamel

Selma Gabriel Bolseira de Doutoramento

yoona Simal

Joana Simão Bolseiro de Experimentação

dassaulto

Ana Cristina Passarinho Bolseiro de Experimentação

Reate feeld

Rute Lemos Técnico Superior

Conceição to

Conceição Juana Fortes Investigadora Principal

ANEXO A

Procedimentos para análise de dados de elevação da superfície livre e velocidades com o Anoiagi

Apresentam-se de seguida os procedimentos, para realizar a análise de dados de elevação da superfície livre, e de velocidades, recorrendo ao Anoiagi.

Passo 1 – Para abrir o Anoiagi, é necessário abrir o ficheiro "anoiagi_28abril2014", que está dentro da pasta do programa.

Droanize * A Open * Share with *	Burn. New folder		855	• 53	6
A drage A drage	Sum New folder Name Avance Avance Avance Avance Avance Avance Avance Avance Avance Avance Avance Avance Avance Avance Avance Avance Avance Avance Avance Avance Ava	Date modified 19/05/2014 17-39 19/05/2014 17-39 19/05/2014 17-42 19/05/2014 17-42 19/05/2014 17-62 19/05/2014 17-62 19/05/2014 16-95 23/05/2014 16-9	Type File folder File folder File folder File folder File folder File folder DAT File Windows Batch File DAT File Application	 Size 7 K 3 K 4 K 629 K 	BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
Inec (\\crater) (P:) dha (\\crater) (S:)	📄 anoiagi_5	23/05/2014 12:02	RES File	25 K	В
Su Network	anoiagi_28abri2014	27/05/2014 17:36	Microsoft Access	5,340 K	В
	≥ collections ⊇ collections ⊇ DADOS ⊥ denoil ☑ escolections ☑ escolections ☑ escolections ☑ escolections	14/04/2014 10:40 14/04/2014 10:47 27/05/2014 16:42 13/04/2014 21:53 14/05/2014 12:45 27/05/2014 16:42 23/05/2014 16:49	Text Document DAD File H File DAD File Windows Batch File Application	1 K 1 K 1 K 1 K 1 K 4 K 605 K	BBBBB

Fig. A.1 – Ficheiro para correr o Anoiagi

Passo 2 – O ficheiro depois de aberto, dá acesso a um programa cuja interface é a representada na figura A.2. Para fazer uma análise com este programa, é necessário escolher a opção "Abre_Proj".

A	anoiagi_23Junho_calibra	icao : Database (Access 2000 f	ile format) - Microsoft Access	
File Home Create External D	ata Database Tools			۵ ۵
View Paste Format Painter Views Clipboard G	Ascending ♥ Selection ~ Al Descending ♥ Selection ~ Al Descending ♥ Selection ~ Advanced ~ Advanced ~ Sort & Filter	Refresh All - Records	Find Birth Office States	▼ ▼ 三 三 B I I I 译 译 M · 三 A · 物 · 例 · 三 三 三 三 Text Formatting
All Tables 💿 «				
Projecto 2				
Abro Brojecto - Table	7			
- ADIC_FIO				
ANOL_casos				
ANOI_casos : Table				
Unrelated Objects				
Module_Dados_Projectos				
Module_get_file				
Module_Global				
Module utils				
Module utils Dialog				
A Module2				
Ready				

Fig. A.2 – Interface Anoiagi – Abre_Proj

Passo 3 – Após o passo anterior, escolhendo a opção "Abre_Proj", surge um quadro onde se escolhe "New project".

Fig. A.3 – Interface Anoiagi - escolha de novo projeto

Passo 4 – Após fazer "New project", seleciona-se o ficheiro criado, cujo nome é "Novo projeto" (o qual é dado por defeito pelo programa), e clica-se em "Open project".

A 🛃 4) - (4 - -		Microsoft Access		
File Home Create External Data	Database Tools			۵ ۵
Views Clipboard 5	Ascending 😵 Selection - Descending 🎦 Advanced - Remove Sort 😵 Toggle Filter Sort & Filter	Refresh All + → Delete + → Records	Find Let The Supervised States of Supervised States	・ ・ : <th:< th=""> : <th:< th=""> <th:< th=""></th:<></th:<></th:<>
All Tables 💿 «				
Projecto Projecto : Table		ANOI - Edit Projects		
Abre_Proj		BRO IECTS		
Projecto ANOJ casos ANOJ casos		Record, Service, 117 Protect 1175 Train 11755 Train 11755 Train 11755 Tra	TIT HO Soc TIT HO Soc TIT HO Soc Oper Delet	r project n project : database
Form View				

Fig. A.4 – Interface Anoiagi - abertura do projeto criado

Passo 5 – Após fazer "Open project", surge um quadro de acordo com o representado na figura A.5, onde se identifica o projeto e onde se define o nome a dar ao projeto.

File Home Create External Data Image: State of the	Database Tools Ascending Selection * Descending Advanced * Remove Sort Toggle Filter Sort & Filter Refersh Refords	∑ Totals ⁽¹⁾ Spelling ⁽¹⁾ More - ⁽¹⁾ Find ⁽¹⁾ Kareta ⁽¹⁾	→ · · · · · · · · · · · · · · · · · · ·
All Tables	Project Date Run ANDI Time Analysis Specifial Project Carification Project Carification Project Name Project Decorption / Connents / Notes	Andyin 352 Projeto Tote	
985 mounts	Project Nickname		

Fig. A.5 – Interface Anoiagi - Identificação do projeto

NOTA 1 – O campo "Project Identification" normalmente deixa-se o valor que o programa coloca por defeito. Neste caso deu-se o nome de "Projeto Teste".

Passo 6 – Após identificação do projeto, passamos para o quadro "Data", no qual vamos definir quais os dados que vamos analisar, surgindo um quadro de acordo com a figura A.6

l 🗐 +7 - (x - Kanka 🛛 Leak	Patter/Rha Blage Allesando	MichighthAccess Bilghingsas	Window Percelo Perc	Zeen	
Home Create External D Home C	Ata Database 15015 2↓ Ascending ♥ Selection * X↓ Descending ♥ Advanced * Ascenders Soft ♥ Toggle Pitter Soft & Filter Reco	∑ Totals ♥ Spelling * ■ More * Hods *	Size to Switch Fit Form Windows - A - 1 Window	- <u>U</u> 伊 伊 + + - 単 ジ・☆ - 美 美 美 Text Formatting	
All Tables 💌 « Projecto 🏦 Projecto : Table	PROJECTO Project Data Fun ANDI Time Analysi	1 Spectral Analysis			
Abre_Proj Projecto ANOL_casos	Acquisition data	Gauge data			
ANOL_casos : Table Unrelated Objects			incal line (1) final line (s) Calbraton constant - K	Import calibration constants
Al Modula, Christ, Projectos Bi Modula, grind Modula, Shali Modula, Shali Modula, Shali Modula, Jinit Modula, Jinit Modula, Jinit Modula, Jinit Modula, Jinit Modula, Jinit	N geographic analogi Held Gauge Acquisition Repurpt (H2) Scale 1: H geographical	1 Gauge E2 1 Gauge E2 25 Gauge E3 13 Gauge E3 14 Gauge E3 15 Gauge E3 16 Gauge E3 17 Gauge E3 18 Gauge E3 19 Gauge E3 11 Gauge E3 12 Gauge E3 13 Gauge E3 14 Gauge E3 15 Gauge E3 16 Gauge E3 17 Gauge E3	70 230 70 2300		
	×				J,

Fig. A.6 - Interface Anoiagi - Quadro "Data"

Neste caso, no quadro "Acquisition data" é onde definimos quais as sondas a analisar, assim como a frequência de aquisição de dados e ainda a escala do modelo. Para o presente caso, analisam-se 14 sondas, logo "*N. gauges* : 14", "Initial Gauge: 1". A frequência de aquisição é 25 Hz, logo "Acquisition frequency (Hz): 25" e, como a escala é 1:13, define-se "Scale 1:13".

No quadro "Gauge data", é onde se definem os dados da sonda, nomeadamente o coeficiente de calibração, e o período que vamos analisar os dados. Neste caso, tal como referido anteriormente, analisou-se o intervalo de tempo entre os 70 e os 290s, contabilizando um total de 220s. O coeficiente de calibração da sonda é o resultante da calibração de cada sonda. Estes valores podem ser preenchidos automaticamente, clicando em "Import calibration coeficiente" escolhendo o ficheiro onde estão as constantes de calibração das sondas, ou preenchendo diretamente os campos para cada sonda.

Passo 7 – Após definição dos dados, passamos para o quadro *"Run ANOI"*, no qual vamos escolher os ficheiros que vão ser analisados, surgindo um quadro de acordo com a figura A.7. Nesse quadro escolhe-se a diretoria onde vamos buscar os ficheiros a analisar, e de seguida os respetivos ficheiros. Escolhendo a diretoria, surge uma lista onde devem ser selecionados os ficheiros que vão ser analisados.

Fig. A.7 – Interface Anoiagi - Escolha dos ficheiros a analisar

Passo 8 – Após escolha dos ficheiros, para realizar a análise da elevação de superfície livre, é necessário clicar no botão "Write data file for ANOI" e de seguida, após aguardar uns momentos, clica-se no botão "RUN ANOI".

Fig. A.8 – Interface Anoiagi - Execução do programa – Análise de elevação de superfície livre

Após correr o programa, surge uma caixa de texto que significa que o programa foi executado. É necessário ter em conta que pode ocorrer um erro nesta fase. O erro que pode ocorrer encontra-se representado a figura A.9.

for velocidades".

2º - Clicar no botão "RUN VELO"

Fig. A.9 – Erro que pode ocorrer no ANOIAGI

Caso não dê nenhum erro, surge a mesma janela, mas em que não aparece nenhum erro do tipo "The syntax of the command is incorrect".

Quando não ocorre erro, na pasta onde está o programa, é criada uma diretoria, com a identificação do projeto e o nome, onde vão ser guardados os resultados para os ficheiros analisados.

Passo 9 - Para fazer a análise da velocidade, o processo é idêntico ao que se realiza para a análise de elevação de superfície livre, no entanto, é necessário clicar no botão "Write data file for velocidades" e de seguida, após aguardar uns momentos, clica-se no botão "RUN VELO".

Fig. A.10 - Interface Anoiagi - Execução do programa - Análise de velocidades

Análise de registos da elevação da superfície livre e velocidades em ensaios experimentais

ANEXO B

Procedimentos para ensaios com o ADV

Equipamento:

Na Observation box:

- CPU 1 (TOSHIBA portátil)
- Geração de ondas (Labview)

Junto ao canal:

- CPU2 (Torre)
- Recolha de dados (Vectrino & Signal express National instruments)

Hardware

- Placa da National Instruments
- Transferência de dados analógicos para digital

Password's dos CPU's:

- CPU1 Inec1700
- CPU2 Apenas carregar em ok (Sem password) (Atenção carregar F1 para iniciar computador, acertar sempre a hora deste computador!)

Na caixa junto ao canal:

- **1.** Ligar a alimentação na tomada que está no chão
- 2. Ligar o botão superior direito (Master Switch botão preto)
- 3. Ligar à esquerda o botão no sistema de geração (botão National Instruments) (automaticamente liga a luz amarela, e depois liga a luz verde quando está pronto e desaparece ficando ligado amarelo no "Ready" (quando a geração está a ser feita a luz passa a acender no "Ative")

Na caixa por trás do canal:

- 1. Ligar o interruptor 1 (está ao lado da ficha)
- 2. Esperar que apareça o código "bb" no display
- 3. Ligar o interruptor 2 (mais à esquerda)
- **4.** Acende uma luz vermelha a piscar e aparece na luz de código "**Ab**" no display (este é um sinal de segurança para não sobreaquecer o quadro)
- **5.** Ligar o interruptor 3
- 6. Acende uma luz com o código "AF" no display
- 7. Para desligar o quadro fazer o percurso inverso à ligação do quadro

<u>CPU1:</u>

1. Ligar o computador – a password é "Inec1700"

- 2. Ligar o cabo USB azul ao computador, só quando este já tiver iniciado totalmente.
 - Deve evitar-se utilizar a porta USB do meio dado que tem apresentado problemas ao se ligar os equipamentos.

Ligações junto ao CPU2:

1. Verificar a se todos os instrumentos estão ligados na extensão que está colocada no chão (instrumentos: box, placa da National Instruments, monitor, computador, Vectrino) (figura abaixo)

2. Verificar se estão os instrumentos ligados na extensão (ficha tripla na figura abaixo):

3. Verificar se as sondas 1 (de nível ao largo) e sonda 2 (de nível junto ao ADV) estão ligadas na box de acordo com a figura abaixo:

4. Verificar se os fios das sondas de nível 1 e 2 que saem da box estão ligados à placa da National Instruments (a sonda 1 corresponde ao canal 6 e a sonda 2 corresponde ao canal 5 da placa da National Instruments) (figura abaixo).

5. Verificar as ligações do ADV para a placa da National Instruments (no ADV: x(1) no canal 1 da placa, y(2) no canal 2 da placa, z1(3) no canal 3 da placa, z2(4) no canal 4 da placa e ground (5) no negativo da placa (terra) juntamente com o negativo das sondas de nível e dos canais do ADV) (figuras abaixo)

6. Verificar as ligações USB atrás do CPU2, uma da placa da National Instruments (fio azul) e a outra do ADV, como na figura abaixo! Não trocar o local porque senão muda a porta de ligação ao Vectrino!

<u>CPU 2:</u>

1. Verificar mais uma vez se está tudo ligado e pronto a iniciar o computador

Passo 2 - Configuração do CPU1 como gerador de sinal:

- Quando se liga o cabo USB azul, o software "LabVIEW SignalExpress" inicia automaticamente. (Se este não ligar clicar em "Start" -> "Programs" -> "National Instruments" -> "LabVIEW SignalExpress" -> "LabVIEW SignalExpress")
- 2. Clicar na entrada analógica (aquela que tem o circulo vermelho na figura abaixo)
- **3.** Depois da entrada ficar highlighted (verde) clicar em OK para o LabVIEW entrar

Primeira vez:

No LabVIEW:

- 1. NÃO ESQUECER, clicar em "STOP" na barra de ferramentas
- 2. Right click no "DAQmx Acquire" e fazer delete (Quando se inicia o programa através do menu iniciar não é necessário este passo)

- 3. Tem que se colocar o software "LabVIEW SignalExpress" sem projetos
- 4. Fazer right click à esquerda (o mesmo que clicar em "add step")
 - Clicar em "Create Signals" -> "Create analog signal"
 - No separador "Configuration", em "Signal type", escolher "DC signal" e selecionar 0.0000 de Offset(v)

	ém én fine (s)	
Configuration Execution Control Signal Calculation Setup Signal type Sine Wave V Sine Wave Triangle Wave	Repeated signal	Sampling Conditions Sample rate (5(s) 100.000k
Square Wave Savtoch Wave OC Signal Noise Signal Multi-tone		Optional Outputs Disport control values

- 5. Fazer right click à esquerda (o mesmo que clicar em "add step")
 - Clicar em "Load/Save Signals" -> "Analog Signals" -> "Load from ASCII"

Untitled 1 *	LabViEW Signat	quess		A DESCRIPTION OF
Het an ASCI	dota file	dan juda		
Look re	a texamen		0300	
MyRecard	erputs events			
Documents				
Deriktop				
Discoverse .				
1				
My Computer				
Mar Rietharph	File save Edec of 50%		-	Of Carps
Ide				

- **6.** Escolher o ficheiro da onda a gerar em "Import file path" e selecionar "All files" para que se consiga visualizar todos os ficheiros das ondas
 - Escolher, por exemplo, o ficheiro T25H18_V472_novo.dat (Atenção! Os dados de entrada aqui devem ser voltagens!)

rale			Amported Signal
5_40 🕶			500+
lect on ASCI	data file	2 🛚	Party and a second seco
Lookin	To rout:	. 0101.	
	B TTHE YES	120405-4335	· · · · · · · · · · ·
3	T11H03-V041	128429-945	Agentie particul
My Record	T11H05-V113	129402,000	Impost for path
	t11H15-V230	T2940940934041.01	
1	115402_004	T25HED-K281	Te preser
Desktop	119409-1144	129415-V015901.54 129415-V412	
(A)	T19H15-V247	T29400-4510	
Mu Decoments	T19H20-V338		
My Data	120403-9074		180
1	120H00-V109		
My Computer	E Lance in		
~		120H06-V189 Carcel	
•	File Dable	Al Files C.1	
		300- 00 100- 100 154. 208. Parve F46 Import Sgrads There (s) Deport file path (c: Loncoursets and Satting's adviniblesticp(14/adviniblesti	and 35 and 46 50 Paramong Settings Calculate Table and the settings Calculate Table and the settings Calculate and the settings Calcula
		3 0.02 0.000044	(dot) 💌

- 7. No separador "Import Signals":
 - Fazer "check" à "Column 2"
 - Em "Input x value" e selecionar a "Column 1"

- 8. Fazer right click à esquerda (o mesmo que clicar em "add step")
 - Clicar em "Generate Signal" -> "DAQmx Generate" -> "Analog Output" -> "Voltage"

Generate Signals	DAQmx Generate Analog Output
Create Signals Load/Save Signals	IVI Generate Counter Output Generate Counter Output Generate Digital Output
Processing Analysis Execution Control	Wi-FGEN Standard Function Wi-FGEN Arbitrary Waveform Mi-FGEN Arbitrary Waveform Wi-HSDDO Generate Wi-HSDDO Standus/Response
System Identification Run LabVIEW VI	-11- 6:36:24.660 16:36:24.860 16:36:25.060

9. Vai aparecer uma janela – escolher o canal "ao0" e clicar em "ok"

Add Channels To Task	
Physical	
Supported Physical Chames	
IE (DAQUMER) IN REST	~
act	
803	

10. No separador "Configuration"

- Clicar em "Generate Mode"
- Selecionar "Continuous Sample"

11. No separador "Advanced Timing"

- Clicar em "Regenerate Mode"
- Selecionar "Do not allow regeneration"

12. Verificar se os menus estão pela seguinte ordem:

- 13. Para começar a geração da onda clicar em "DAQmx Generate"
 - Clicar no "triângulo virado para baixo" e selecionar a "Column 2" da onda a gerar

Próximas vezes:

No LabVIEW:

- 1. Selecionar "File" -> "Open Project"
 - Ir à pasta "VecNivCan" e abrir o ficheiro "gerador.seproj"
- 2. Clicar duplamente em "DAQmx Generate" para visualizar a onda a ser gerada

- 1. Ligar o CPU2
- 2. Clicar F1 se apresentar mensagem de erro ao inciar
- 3. Quando pedir a password clicar em "ok" (não tem password)

Log On to V	lindows	
Convergence in 1985 Microsoft Congress	Windows NP Professional	
User name:	tomaconta	
Password:	1	
	OK Canot	Option

- **4.** Colocar hora e data certas
- 5. Na pasta VecNivCan, criar uma nova pasta onde os ficheiros de registo vão ser guardados, tendo um nome com o formato DDMMAAAA

6. Atualizar o ficheiro "Diário dos ensaios ADV.doc", que se encontra na pasta VecNivCan, com todos os dados do dia em que se está a efetuar o ensaio.

7. Clicar no icon do software Vectrino, que se encontra no Desktop

8. Clicar em "Communication", na barra de ferramentas

9. Clicar em "Serial port" e verificar se os valores estão como na figura abaixo (deve funcionar tudo bem com os valores que estão na figura abaixo, caso contrario tem que se experimentar vários valores)

0.00	0.00 0.00 0.00 Sample no: 0.0 0.0 0.0 Temp (dgC):	0.00	Seria Probe
0.0	Communication	? 🛛	Firme
0.0	Serial port: COM3 Timeout (s): 1 Baud rate:	OK Cancel	Frequ
	57600 V Search Upgrade baud rate: 115200 V	3	

10. Clicar em "Communication", na barra de ferramentas

- Clicar "terminal emulator"
- E no menu em "send break" para verificar se o ADV está a comunicar bem com o CPU2 (se estiver a comunicar bem, no ecrã vai aparecer algo do género Nortek qualquer coisa como na figura abaixo)

SSSSSSSSSS VECTRINO NORTEK AS 2008				?
Version 1.29 Command mode				
	I			
				[Sent]
Command file	Command			2end
Send Break Log file] Binary mode	Hex commands	Done

11. Clicar em "Data collection"

• Depois em "Edit configuration" (também pode ser icon que tem o desenho de uma mão com uma folha e colocar as opções da configuração como na figura abaixo

Untitled: 1	Vectrino			
File Communicat	ion Data collection Filter View Upgra	ide Help		- 0
	Configuration	1. #1 #1 #		
Velocity (cm/	Standard			A State
St.Dev. (cm/ Amplitude (cc SNR (dB): Correlation (2	Setup Sampling rate (Hz): 25 Nominal velocity range (m/s): ±1.00 Field probe	Speed of sound Measured Salinity (ppt): 0 Fixed (m/s): 1525 Output Sync	Configuration Vertical vel. range (m/s): 0.54 Horiz. vel. range (m/s): 1.88 Data output (Byte/s): 550 Data recording	
× 0 -20 20 > 0 -20 -20 -20 -20 -20 -20 -20 -2	Transmit length (mm): 1.8 Sampling vol. (mm): 7.0 Power levet: HIGH Coordinate system: XYZ	 for Vectrino for other sensor Master Input Sync Start on sync Sample on sync 	Max 60 tamplet Cteate new file Append Stop recording Mark	
Velocity	Start Update	OK () Time (s) Velocity Header	Cancel Apply Help TT	10 10 00 - 1s

- 12. Seguidamente clicar em "Apply" e depois em "Update"
- **13.** Seguidamente iniciar a visualização dos valores do ADV com o Vectrino, clicar no icon com a seta azul para baixo (para desligar clicar no icon da seta vermelha para cima)

Velocity (cm/s): SLDev. (cm/s): Amplitude (counts): SNR (dB): Correlation (2):	ta collection Filter View View View View X Y View 0.00 0.00 View	Help Help 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Image: Constraint of the second sec	00:00:00.000 0 0.00 0.00 0.00 0.0	Status: Serial no: Probe no: Firmware: Frequency.	
20-		Vela	ocity (cm/s)			
×						-

14. Verificar os parâmetros da correlação (próximos dos 90), distância ao fundo (se os valores fazem sentido), SNR (próximo dos 15-20) e qualidade (maior possivel)

ile Communication Da	ta collection	Filter View	Upgrade	Help				
			Į.			?	¥?	
	×	Y	Z1	72		1 Part Pares	THE REAL PROPERTY	State State
Velocity (cm/s):	-0.17	0.25	-0.99	-1.03	Time: [10:37:14.578	Status:	OK
St.Dev. (cm/s):	0.65	0.34	0.14	0.17	Sample no:	36911	Serial no:	VNO 0820
A REAL PROPERTY OF THE REAL PR	115.8	123.9	110.1	178.9	Temp (dgC):	21.72	Probe no:	VCN 7917
Amplitude (counts):	Concernance of the second seco			Contraction of the local division of the loc				And Distant Street of Concession, or other
Amplitude (counts): SNR (dB):	17.6	18.2	16.1	20.9	Dist (cm):	34.5	Firmware:	1.29

- **15.** Na janela principal do vectrino clicar sobre o eixo y de qualquer um dos gráficos e colocar a escala de +100 a -100
- **16.** Clicar em "Start" -> "Programs" -> "National Instruments" -> "LabVIEW SignalExpress" -> "LabVIEW SignalExpress")
- 17. Com o botão direito do rato clicar na janela branca do lado esquerdo e, como na figura abaixo, clicar em "Aquire Signals" -> "DAQmx Acquire" -> "Analog Input" -> "Voltage"

18. Selecionar os canais de 0 a 5 e clicar em "ok"

	Physical			
Su	oported Physical Char	nnels		
E	cDAQ1Mod1 (N	I 9205)		
	ai0			
	ail			
	ai2			
	ald			
	al9			
	J.			
	aī7			
	ai8			
	ai9			
	ai10			
	ai11			
	ai12			-
4	ai13			-
	Etrl> or <shift> dick)</shift>	to select multiple	channels.	
- Lo	cation To Add Channe	els		
Er	nd of the scan		×	

19. Colocar as settings na janela como na figura abaixo (Samples to read: 25; Rate: 25Hz)

Configuration Triggering Advanced Tim	ing Execution	Control		
Channel Settings	Voltage Inpu	ut Setup Calibration Range 10 -10	a aled Units Volts	
		Custor	al Configuration Differential n Scaling <no scale=""></no>	•
	L			
Acquisition Mode Continuous Samples	Samples	to Read 25	Rate (Hz)	25
			The second second	

20. Clicar no separador Data View

- Clicar com o botão direito do rato na janela escura e escolher Data View -> Add Display Below
- Na janela superior, clicar com o botão direito do rato na janela superior do data view e selecionar "Signals" -> "Add Signals" e adicionar desde o sinal "Voltage – cDAQ1Mod1_a0" até ao "Voltage – cDAQ1Mod1_a3"

21. Na janela inferior, clicar com o botão direito do rato na janela superior do Data View e selecionar
 "Signals" -> "Add Signals" e adicionar o sinal "Voltage – cDAQ1Mod1_a4" e "Voltage – cDAQ1Mod1_a5"

Próximas vezes:

- 1. Ligar o CPU2
- 2. Clicar F1 se apresentar mensagem de erro ao iniciar
- 3. Quando pedir a password clicar em "ok" (não tem password)
- 4. Colocar hora e data certas
- **5.** Na pasta VecNivCan, criar uma nova pasta onde os ficheiros de registo vão ser guardados, tendo um nome com o formato DDMMAAAA

07092010	
08092010	
09092010	
10092010	
13092010	
🛅 Julho 2010	

6. Atualizar o ficheiro "Diário dos ensaios ADV.doc", que se encontra na pasta VecNivCan, com todos os dados do dia em que se está a efetuar o ensaio.

T251114 m80 tar T251116 m80 tar T251118 m80 tar T251118 m80 tar
Dia 13 de Setembro de 2010
Posição 22: Posição desde a pá são 6 metros = <u>-</u> 70 cm Posição do <u>ADV(vectrino</u>) = 8.7 cm
T11H12_m70.txt T11H14_m70.txt (há componente segundo Y, talvez seja uma questão da rebentação se dar logo a seguir à pá)) T11H16_m70.txt (há componente segundo Y)
T15H12_m70.txt T15H14_m70.txt T15H16_m70.txt T15H18_m70.txt (existe ligeira componente Y)
T20H12_m70.txt T20H14_m70.txt T20H16_m70.txt T20H18_m70.txt T20H18_m70.txt
T25H12_m70.txt T25H14_m70.txt T25H16_m70.txt T25H18_m70.txt
Express (Fr

No software Vectrino:

- **1.** Selecionar "File" -> "Open configuration"
 - Ir à pasta "VecNivCan" e abrir o ficheiro "Configuração vectrino.dep"
- 2. Clicar na barra de ferramentas onde diz comunication
 - Clicar "terminal emulator"
 - E no menu em "send break" para verificar se o ADV está a comunicar bem com o CPU2 (se estiver a comunicar bem, no ecrã vai aparecer algo do género Nortek qualquer coisa como na figura abaixo)

- 3. Clicar em "Data collection"
 - Depois em "Edit configuration" (também pode ser icon que tem o desenho de uma mão com uma folha e colocar as opções da configuração como na figura abaixo
- 4. Seguidamente clicar em "Apply" e depois em "Update"
- 5. Seguidamente iniciar a visualização dos valores do ADV com o Vectrino, clicar no icon com a seta azul para baixo (para desligar clicar no icon da seta vermelha para cima)
- **6.** Seguidamente iniciar a visualização dos valores do ADV com o Vectrino, clicar no icon com a seta azul para baixo (para desligar clicar no icon da seta vermelha para cima)

Velocity (cm/s): St.Dev. (cm/s): Amplitude (counts): SNR (dB): Correlation (%):	COD COD X Y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	1 72 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0	Time: Sample no: Temp (dgC): Dist (cm): Quality:	00:00:00.000 00:00:00.000 0.00 0.00 0.0	Status: Serial no: Probe no: Firmware: Frequency:	
20		Vel	ocity (cm/s)			

7. Verificar os parâmetros da correlação (próximos dos 90), distância ao fundo (se os valores fazem sentido), SNR (próximo dos 15-20) e qualidade (maior possível)

Untitled:1 - Vecto	rino		
File Communication Da	ata collection Filter View Upgrade Help		
	8 9 @ ! it E		K?
	X Y Z1 Z2	THE PERSON A	The second second second second
Velocity (cm/s):	-0.17 0.25 -0.99 -1.03	Time: 10:37:14.578	Status: OK
St.Dev. (cm/s):	0.65 0.34 0.14 0.17	Sample no: 36911	Serial no: VNO 0820
Amplitude (counts):	115.8 123.9 110.1 178.9	Temp (dgC): 21.72	Probe no: VCN 7917
SNR (dB):	17.6 18.2 16.1 20.9	Dist (cm): 34.5	Firmware: 1.29
Correlation (%):	97.4 98.2 95.3 98.0	Quality: 775	Frequency: 10 MHz

 Na janela principal do vectrino clicar sobre o eixo y de qualquer um dos gráficos e colocar a escala de +100 a –100

No software LabVIEW SignalExpress:

- **1.** Selecionar "File" -> "Open Project"
 - Ir à pasta "VecNivCan" e abrir o ficheiro "gravador.seproj"

<u>Passo 4 – Colocação do ADV na posição</u> <u>correta</u>

1. Ainda com o canal sem água, colocar o ADV na posição do canal em que se vai efetuar os ensaios.

• Este tem que estar centrado com o canal e ao meio da coluna de água. Para isso utiliza-se uma fita métrica para o colocar na posição correta.

• Também se tem que utilizar um nível para verificar a sua verticalidade, e corrigi-la se necessário.

<u>Passo 5 – Encher o canal com água do</u> <u>reservatório</u>

1. Abrir a válvula de entrada e saída de água do canal

2. Verificar se as válvulas estão fechadas

3. Verificar se a válvula de retorno está fechada

- 4. Bombear a água do local onde está a bomba de modo a que não entre na correia
 - Ligar a ficha que está no chão junto ao reservatório

• Desligar a ficha quando se começa a ouvir o ar a entrar na bomba

5. Carregar no botão verde para encher o canal

6. Quando o canal estiver com o nível de água correto, carregar no botão vermelho para parar de bombear água para o canal

- 7. Fechar a válvula de entrada e saída do canal
- 8. Para retirar a água do canal, abrir a válvula de entrada do canal e a de retorno

Passo 6 – Ensaios

Notas:

- <u>Poderá ser necessário</u> gerar uma ou duas ondas de grande período e altura com o Vectrino ligado para que o ADV comece a detetar bem as partículas em suspensão na água. Escolher, por exemplo a onda T25H18. (Normalmente, se for água do reservatório, não é preciso, mas se for água da rede, talvez seja melhor).
- <u>Nunca se deve interromper o ensaio quando este já começou, evitando assim que a pá fique fora da posição zero inicial.</u>
- <u>Verificar periodicamente se o motor do batedor está a aquecer demasiado!</u> Se ao meter a mão no motor, este queimar, tem que se parar um pouco para deixar o motor aquecer.

- Caso o motor sobreaqueça, o sistema desliga-se automaticamente para evitar que sejam causados danos no hardware. Nesse caso, aparecerá a mensagem "F219" no display, na caixa atrás do canal.
 <u>Para resolver este problema, tem que se recorrer às soluções apresentadas no final do relatório de procedimentos e esperar que o motor alcance arrefeça</u>.
- <u>Verificar sempre se a sonda de nível junto ao ADV está a registar as voltagens corretas</u> (observar na janela inferior do Data View do CPU2 se não existem retas quando estão a ser geradas ondas)

Procedimento para cada geração de onda:

- 1. No software "LabVIEW SignalExpress", do CPU1, fazer duplo click em "Load from ASCII" e no separador "Parse file", clicar em "input file path"
 - Selecionar "All files" para que se consiga visualizar todos os ficheiros das ondas e escolher o ficheiro de onda a gerar

- 2. Em "DAQmx Generate"
 - Clicar no "triangulo virado para baixo" e selecionar a "column 2" do ficheiro da onda que se quer gerar
- 3. Em simultâneo:
 - No CPU1 Clicar em "Run"
 - No CPU2 clicar em "Record" (se não estiver já, fazer check a "Voltage" na janela que aparece) e clicar em "OK"
- 4. Clicar em "Stop" quando acabarem os 10 minutos de ensaio
- 5. Gravar os dados na pasta do dia:
 - Right click em "Voltage" e selecionar "Convert to ASCII"

🥼 start 🛛 🛛	0000	McAfee AutoU	pdate	Untitled 1 *	- LabVIE
<			100m	200m	30Ôr
	Open in DIAdem	-111-16-			
I	Export to Micros	oft Excel			
	Convert to ASCI	II 6-			
6) Open Folder	6-			
Snapshot:	Show alarms	6-			
	Properties	6-			
E - 19/04/2	010 17:33:39	-10.76 -			
		-10.76 -			
Idle		-10.76 -			

- Selecionar a pasta do dia em que se está a fazer os ensaios dentro da pasta VecNivCan, e o nome do ficheiro tem o formato T(período)H(altura)_(posição)
- Fazer right click no ficheiro que foi gravado no LabVIEW SignalExpress no canto inferior esquerdo do ecrã e clicar em delete
- 6. Verificar o nível de água e corrigi-lo se for necessário
- 7. Repetir o processo para a onda seguinte

- 1. Quando todos os ensaios do dia estiverem concluídos, abrir o ficheiro "calibracao diogo endres.xls", que se encontra na pasta VecNivCan, no CPU2
- 2. Criar um novo registo para o dia, copiando o do dia anterior (para que as fórmulas de cálculo das constantes de calibração se mantenham nas células corretas) e apagar os valores correspondentes aos níveis do dia anterior

740					
741	10 de setemb	010			
742	sonda 1	largo		sonda 2	
743	altura	tensão		altura	tensão
744	(cm)	(volts)		(cm)	(volts)
745	60	-2.2		30	-7.53
746	50	-5.55		20	-10.75
747					
748					
749					
750	A	В		A	В
751	2.9851	76.57		3,1056	53.39
752					
752 753					
752 753 754	13 de setemb	ro			
752 753 754 755	13 de setemb sonda 1	iro largo		sonda 2	
752 753 754 755 756	13 de setemb sonda 1 altura	ro largo tensão		sonda 2 altura	tensão
752 753 754 755 756 757	13 de setemb sonda 1 altura (cm)	ro largo tensão (volts)		sonda 2 altura (cm)	tensão (volts)
752 753 754 755 756 757 758	13 de setemb sonda 1 altura (cm) 60	ro largo tensão (volts)		sonda 2 altura (cm) 30	tensão (volts)
752 753 754 755 756 756 757 758 759	13 de setemb sonda 1 altura (cm) 60 50	ro largo tensão (volts)		sonda 2 altura (cm) 30 20	tensão (volts)
752 753 754 755 756 757 757 758 759 760	13 de setemb sonda 1 altura (cm) 60 50	largo tensão (volts)		sonda 2 altura (cm) 30 20	tensão (volts)
752 753 754 755 756 757 758 759 760 760 761	13 de setemb sonda 1 altura (cm) 60 50	ro largo tensão (volts)		sonda 2 altura (cm) 30 20	tensão (volts)
752 753 754 755 756 757 758 759 760 761 762 762	13 de setemb sonda 1 altura (cm) 60 50	ro largo tensão (volts)		sonda 2 altura (cm) 30 20	tensão (volts)
752 753 754 755 756 757 758 759 760 761 762 763	13 de setemb sonda 1 altura (cm) 60 50	largo tensão (volts) B		sonda 2 altura (cm) 30 20	tensão (volts) B
	740 742 743 744 745 746 746 746 747 748 749 750 750 751	740 741 10 de setembra 742 sonda 1 743 altura 744 (cm) 745 60 746 50 747 748 749 A 750 A 751 2.9851	740 10 de setembro 742 sonda 1 largo 743 altura tensão 744 (cm) (volts) 745 60 -2.2 746 50 -5.55 747 - - 748 - - 749 - - 750 A B 751 2.9851 76.57	740 10 de setembro 742 sonda 1 largo 743 altura tensão 744 (cm) (volts) 745 60 -2.2 746 50 -5.55 747 748 749 750 A B 751 2.9851 76.57	740 Image: sector s

3. Ajustar as sondas de nível ao largo e do ADV, às posições em que se vai efetuar a leitura dos valores de voltagem (o valor do nível é lido numa chapa como a da figura abaixo)

4. Registar os valores médios de voltagem das sondas de nível, indicados no software "LabVIEW SignalExpress", no ficheiro "calibracao diogo endres.xls"

 Se tudo correu bem, os valores das constantes, dados pelas células com fundo verde, serão à volta de 3

0 40					
741	10 de setemb	010			
742	sonda 1	largo	sonda 2		
743	altura	tensão	altura	tensão	
744	(cm)	(volts)	(cm)	(volts)	
745	60	-2.2	30	-7.53	
746	50	-5.55	20	-10.75	
747					
748					
749					
750	A	В	A	В	
751	2.9851	76.57	3.1056	53.39	
752					
753					
754	13 de setemb	010			
755	sonda 1	largo	sonda 2		
756	altura	tensão	altura	tensão	
757	(cm)	(volts)	(cm)	(volts)	
758	60	-2.6	30	-7.95	
759	50	-5.95	 22	-10.55	
760					-
761					
762					
763	A	В	A	В	
764	2.9851	77.76	3.0769	54.46	
1766					

Programas para análise dos resultados

- 🔁 xyz1z2etaVetaL.vi Front Panel Edi View Project Operate Tools Window Help File \$ 🛑 🔢 15pt Application Font 💌 💷 🕮 🥨 1 s\Coiote\Desktop\VecNivCan\13072010\T20H14_m1000.txt Cursors: X Cursor 0 355.854 u X v q<mark>C:\U</mark> \otimes STOP uХи D duração(s) delta t (s) 15.0 ELEVACÕES 120 240 0.04 10.0 5.0· 0.0 Keta -5.0 Bv -100 K etalargo 3.0075 TIONA -15 240 220 340 140 160 200 320 40.0 -20.0/ = 0.0 10.0 20.0 30.0 40.0 120 180 260 280 300 360 Tempo(s) LabVIEW Evaluation Softwa Evaluation <
- 1. Abrir o programa "xyz1z2etaVetaL.vi" em LabVIEW

- 2. Clicar na "seta" em cima para correr o programa
- 3. Abrir o ficheiro de dados extraído das sondas (este ficheiro tem 6 colunas)
- 4. Colocar os parâmetros de calibração das duas sondas de nível. Estes valores mudam todos os dias.

5. Escolher o início a 120s e a duração a 240s.

6. Clicar "pressione para gravar"

\otimes	Pressione p/ gravar	STOP	

7. Gravar o ficheiro de resultados com o nome original do ficheiro dos dados de origem e adicionar "_VHT" ao nome do ficheiro de resultados

Save in:	3072010	(° +	🌀 🤌 📂 🛄 🔻	
C.	Name	*	Date modified	Туре
Recent Places	T20H12	_m1000.txt _m1000_VHT.txt	13-07-2010 10:51 19-07-2010 14:38	Text Doc Text Doc
	T20H14		13-07-2010 11:10	Text Doc
Desktop	T20H16	_m1000.txt	13-07-2010 11:32	Text Doc Text Doc
	T25H12	_m1000.txt _m1000.txt	13-07-2010 12:03 13-07-2010 14:24	Text Doc Text Doc
Libraries	T25H16		13-07-2010 14:41 13-07-2010 14:53	Text Doc Text Doc
Computer				
	•	Ш		•
Network	File name:	T20H14_m1000_VHT[bt	•	ОК
	Save as type:	All Files (*.*)		Cancel

- 8. Abrir o programa "MinMedMax.vi" em Labview
- 9. Clicar na seta para correr o programa e abrir o ficheiro "VHT" criado no programa anterior (xyz1z2etaVetaL.vi)

Edit	View <u>P</u> roject <u>Op</u>	erate <u>T</u> ools	Window	<u>H</u> elp	-								1
Vx [cm/s]	20	AAAAAAAAA TTTTTTTTT	(11) 	********), (), (), () (), (), (), ()	111111 	00808 		1141444 		parte úti	
	0 10 20	30 40 50	60	70 80	90 100	110 120 Tempo [130 140 s]	150	160 170	180 190	200	210 220	230 240
	0.04	DEK	M	1ÉDIA [DE VEI	OCID	ADES	MÁXI	MAS E	E MÍNI	IMAS	5	
	Critérie de			20				Deriode	s X Altura	 Histoa 	rama		
cruzi de	amento por zero	Pr Fi	é-tratame dos dado azer nada	ento os v		STOP		se a	25.0 -		interva	alos no his	tograma .0
cruzz de 6000	amento por zero escendente 4 nº pontos do arqu	Pr Fi Resultado: ^{in P} mínimo	é-tratame dos dado azer nada s das méd média	ento ps lias calculada máximo	s Valo	STOP res a descar	tar	I de valores	25.0 -		intervi	alos no his	tograma
cruza de 6000 240	amento por zero escendente 4 nº pontos do arqu duração total	Pr Fi Pm(nimo -41.242 valori m(nir	é-tratame dos dado azer nada s das méd média 2.986 es nos	ias calculada máximo 28.599 valores máximos	s Valo	STOP res a descar nício n	tar o final	do total de valores	25.0 - 20.0 - 5.0 -		interva	alos no his	tograma
cruza de 6000 240 237.48	escendente 4 nº pontos do arqu duração total duração útil	Pr Fi Pmínimo -41.242 valori mínir 90 -42.3	é-tratame dos dado azer nada s das méd média 2.986 és nos 991	ento Is Talias calculada máximo 28,599 valores máximos 30,495	s Valo	STOP res a descar nício n 0 r que mai	tar o final ior que	% do total de valores	25.0 - 20.0 - 5.0 - 0.0 - 5.0 -		interva	alos no his	tograma
6000 240 237.48 95	nº pontos do arqu duração total duração total	Pr Fi Pmfnimo -41.242 valor minir \$0 -42.9 -43.2 -43.2 -43.2	é-tratame dos dado azer nada s das méd média 2.986 es nos 991 \$0 888 451	ias calculada máximo 28,599 valores máximos 30,495 29,403 28,614	S Valo no i Valo 0 meno Valo	stop res a descar nício n 0 r que mai	tar o final ior que	% do total de valores	25.0 - 20.0 - 5.0 - 0.0 - 5.0 - , 5.0 -	20.0 FI	interva	alos no his C	

10. Fazer "print screen" dos resultados do MinMedMax.vi e gravar ficheiro na pasta do dia que se está a utilizar

11. Em seguida, ir à pasta "ANOIAGI" que está dentro da pasta VecNivCan e abrir "anoiagi.mdb"

12. Com o Access aberto, clicar duplamente em "Abre_Proj"

- **13.** Clicar duplamente em New Project
- 14. Clicar em "Sim" no aviso que aparecer
- 15. Escolher "Novo Projeto" de entre a lista de projetos (normalmente está sempre no fim da lista)
- 16. Clicar em Open Project

ANOI - Edit Projects	
PROJECTS 10maio 10maio_a0 18maio_a0 18maio_a0 19maio_a0 19maio_a0 20maio_a0 20maio_a0 20maio_a0 ADV_14julho ADV_13Julho Novo projecto	New project Open project Delete project
Ambriente	CLOSE database

 Em "Project", inserir no nome do projeto com o formato ADV_DDNomeDoMês (na figura abaixo está "ADV_12julho")

-8	B PROJECTO						
	Project Data Run ANOI Time Analysis Spectr	ral Analysis					
	Project Identification	291					
	Project Name	ADV_12Julho					
	Project Description / Comments / Notes						

18. Em "Data", verificar que todos os valores estão conforme a figura em seguinte

Project Data Run ANOI Time Analysis Spectral Ar	alysis			
Acquisition data	Gauge data			
	Initia	al Time (s)	Final Time (s)	Calibration constant - k
N. gauges	Gauge #1	0	240	1
	Gauge #2	0	240	1
Initial Gauge 1	Gauge #3	0	240	1
Acquisition frequency (Hz) 25	Gauge #4	0	240	1
	Gauge #5	0	240	1
Scale 1: 1	Gauge #6	0	0	0
	Gauge #7	0	0	0
	Gauge #8	0	0	0
	Gauge #9	0	0	0
	Gauge #10	0	0	0
				Import calibration constants

19. Em "Run ANOI"

- a) Definir a pasta em que estão os ficheiros a processar
- b) Selecionar todos os ficheiros "qualquercoisa_VHT.txt"
- c) Clicar em "Write data file for ANOI"
- d) Clicar em "Run ANOI"

B PROJECTO								
Project Data Run ANOI Time Analysis Spectral Analysis								
Read files from this folder:								
C) C) Ularra' Cainta' Dasktap') (antiliu Cary) 12072010								
Files:								
T11H12 m1000.txt								
O T11H12_m1000_VHT.txt								
T11H12_m1000_VH1_mmm.jpg								
T11H14_m1000_VHT.txt C ANOI								
T11H14_m1000_VHT_mmm.jpg								
T11H16_m1000_VHT_mmm.jpg								
T15H12_m1000.txt T15H12_m1000_VHT.txt								
T15H12_m1000_VHT_mmm.jpg								
<u>115H14_m1000.txt</u> ▼								

20. Deixar correr o ANOIAGI.exe na linha de comandos e premir uma tecla quando terminar

21. Por fim, os dados que se querem estão no ficheiro "Resultados_Totais.res", que se encontra na pasta ANOIAGI\AN_qualquercoisa (neste caso será a pasta AN_291_ADV_12julho)

Organize 👻 🧾 Open 👻 Share with 👻	Burn New folder
 VecNivCan 07072010 09072010 12072010 13072010 14072010 15072010 16062010 16072010 	Name
 22062010 ANOIAGI AN_288_ADV_14julho AN_289_ADV_13Julho AN_291_ADV_12Julho Resultados 	T15H14_m1000_VHT.txt T15H14_m1000_VHT.txt.res T15H16_m1000_VHT.txt T15H16_m1000_VHT.txt.res T15H18_m1000_VHT.txt.res

Em caso do batedor parar na posição errada

Notas:

• <u>Nunca desligar o quadro quando a pá parar fora do zero inicial. Só mesmo em caso das seguintes</u> soluções não resolverem o problema.

Solução nº 1:

- 1. Ir à caixa atrás do canal e colocar o display em "Ab"
- 2. Se este não passar automaticamente para "Ab", clicar no interruptor "S1" para fazer reset à mensagem de erro

3. No CPU1, selecionar "DC signal", em "DAQmx Generate"

- 4. Clicar em "Run", esperar 2 ou 3 segundos e clicar em "Stop"
- 5. Ir à caixa atrás do canal e colocar o display em "AF".
- 6. Caso tudo corra bem, a pá deve voltar à posição inicial. Caso contrário, tem que se recorrer à solução nº 2

Solução nº 2:

- 1. Ir à caixa atrás do canal desligar tudo
- 2. Esperar 15 segundos e voltar a ligar os interruptores 1 e 2 até aparecer "Ab" no display na caixa atrás do canal
- 3. No CPU1, selecionar "DC signal", em "DAQmx Generate"
- 4. Clicar em "Run", esperar 2 ou 3 segundos e clicar em "Stop"
- 5. Voltar à Box atrás do canal e desligar tudo
- 6. Em seguida, ligar tudo até aparecer "AF" no display na caixa atrás do canal
- 7. No CPU1, ir à pasta "Desktop\COI3\Recover_Position_Lost_Zero_Memory.vi"
- 8. Clicar em "Run"

🔁 Re	ecove	er_Po	sition_	Lost_	Zero	_Men	10r			×
Eile	<u>E</u> dit	⊻iew	Project	Oper	ate	<u>T</u> ools	<u>W</u> indow	, ∏e		
		\$}₽		13p	it App	olication	n Font	-	~	
										^
	sto	p (F)		SENSC	ם סר	osition	(50.37m)			
	<	D		0	лк <u>_</u> г	USICION	(00.0711	(qv)		=
	9	econd:	s	COMM	IAND	_Positio	on (16.6m	nm/V)		
		0		0						
										~
<				Ш					>	.;

- 9. Esperar que o programa pare automaticamente e ler valores, que têm que estar entre 0.04 e 0.06
- 10. Voltar a desligar todos os interruptores na caixa atrás do canal
- **11.** Esperar 15 segundos e voltar a ligar os interruptores 1 e 2 até aparecer "**Ab**" no display na caixa atrás do canal
- 12. No CPU1, selecionar "DC signal", em "DAQmx Generate"
- 13. Clicar em "Run", esperar 2 ou 3 segundos e clicar em "Stop"
- 14. Voltar à Box atrás do canal e desligar tudo
- 15. Em seguida, ligar tudo até aparecer "AF" no display na caixa atrás do canal
- 16. Agora o problema deve estar resolvido e a pá na sua posição inicial

