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DETEÇÃO DE FALHAS EM REDES DE SENSORES BASEADA EM INOVAÇÕES 

Resumo 

As redes de sensores têm  um largo espectro de aplicações, estando algumas implementadas em 

estruturas críticas, como é o caso das redes de monitorização estrutural. Contudo os sensores, 

devido à sua natureza e às condições ambientais em que operam, estão sujeitos a falhas que em 

ultima instância podem comprometer a qualidade da informação indispensável para um controlo de 

segurança efectivo. Neste relatório é apresentado um caso-estudo relativo à deteção de falhas em 

redes de sensores baseada em inovações. É estudada a possível aplicação, num contexto de 

monitorização estrutural, da deteção de falhas baseada em modelos utilizando inovações a uma rede 

de sensores. Este relatório faz uma breve introdução à detecção e isolamento de falhas (FDI) 

baseada em modelos e uma concisa revisão do seu estado da arte. Seguidamente é introduzido o 

conceito de FDI baseado em dados no contexto da validação de sensores. Tendo-se introduzido o 

necessário contexto é descrito o método utilizado para detecção de falhas em sensores usado neste 

caso-estudo. Seguidamente são apresentados os resultados obtidos e tecidas as considerações 

finais. 

Palavras-chave: Sensor, Detecção de Falhas, Filtro de Kalman 

AN INNOVATIONS APPROACH TO FAULT DETECTION IN SENSOR NETWORKS 

Abstract 

Sensor Networks are widespread across a large spectrum of applications. Some are even deployed in 

critical infrastructures, as the case of Structure Health Monitoring networks. However the sensors, due 

to its nature and to the harsh environmental conditions that they withstand, are subject to faults that 

may compromise the information quality that is indispensable for an effective safety control. In this 

report we present an Innovations Approach to Fault Detection in Sensor Networks case study. We 

study the possible application of the model based innovations approach to fault detection in sensor 

networks in a SHM context. This report gives a brief introduction to the model-based Fault Detection 

and Isolation (FDI) and a concise review of its state of the art. Next we introduce a data based FDI 

approach in the context of sensor validation. Given the necessary background we describe the 

method for sensor fault detection used in the case study. We then present the obtained results and 

final considerations. 

Keywords: Sensor, Fault Detection, Kalman Filter 
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1. Introduction 

In the domain of Civil Engineering it is normally designated as Structure Health Monitoring (SHM) the 

set of actions aimed at the detection and diagnosis of abnormal situations during the exploration of 

major civil engineering works of art in order to ensure safety and reduce maintenance and inspection 

costs. For that purpose, it is necessary the installation of a large number of sensors in the monitored 

works of art, in a robust and autonomous way, according to the established observation plan. However 

the sensors, due to their nature and to the harsh environmental conditions in which they operate, are 

subject to faults that ultimately may compromise the quality of the information essential for an effective 

safety control. 

In this report we present an Innovations Approach to Fault Detection in Sensor Networks case study. 

We keep in mind the possible application of the model based innovations approach to fault detection 

in sensor networks studied in a SHM context. It is hoped that this study can contribute to the future 

development of innovative measurement Fault Tolerant Sensor Networks applied to Civil Engineering 

Structures; which may have potential application in the Structure Health Monitoring systems. 

In a metrological sense, the sensor is a device used in the measuring process that is directly affected 

by the mensuranda and according to a predetermined law generates a signal related to its value. In 

the context of this report a broader sense of the term sensor is used, comprising the sensor itself as 

well as all the other elements in the measuring chain. 

In this report we first make a brief description of model-based Fault Detection and Isolation (FDI) and 

a concise review of it’s state of the art. Next we introduce data based FDI approach in the context of 

sensor validation. Given the necessary background we describe the method for sensor fault detection 

used in the present case study. We then present the obtained results and make some final 

considerations. 
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2. Model based FDI 

In the context of an industrial application, a fault is perceived as a non-permitted deviation of a 

characteristic property that leads to failure of the system or manufacturing facility to fulfill the purpose 

for which it was designed [1]. Although some effort has been made by the scientific community to 

establish a common terminology ([1]-[4]), the peculiarities of the involved multidisciplinary topics often 

lead to terminologies that are not unique. 

Currently it is accepted that Model based Fault Detection and Isolation (FDI) consists of two steps 

[5],[6]: 

- Generation of residuals (Innovations); 

- Decision-making (including evaluation of the residuals).  

In most publications it can be seen that the majority of the approaches are based on mathematical 

models of the system. Such models can be of two types [7]:  

- Models based on first principles models; 

- Input-output (data-driven) models.  

While the model based on first principles is obtained through differential equations that represent the 

physical behavior of the system components, the input-output (also designated as data-driven) model 

is constructed using system identification techniques [8]-[11]. 

Although in general, analytical models based on first principles allow a greater depth in diagnosis, they 

usually require a difficult and laborious modeling, especially for non-linear cases. 

Alternatively the input-output model is a powerful tool for dealing with the problem of modeling as well 

as to serve fault diagnosis [7]. In addition to the conventional techniques for identification, mainly for 

non-linear cases, methods to infer these models have been developed through: neural networks 

[12],[13];  fuzzy clustering [14]-[16]; immune networks [17]-[19]; Relevance Vector Machines (RVM) 

[20]; Pattern Recognition [21]; minimum mean square error (MMSE) [22]; and hierarchical Bayesian 

space-time (HBST) modeling [23]. 
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3. Sensor Validation 

When applied to sensors, fault detection and diagnosis (FDI) is usually designated as sensor 

validation [24]. However, although less frequently, another name is also common in the literature 

regarding this topic, and it is referred to as signal validation [21],[25]. 

Almost all the techniques of fault detection and diagnosis (FDI) described in the literature can be 

applied to sensor validation [24]. 

Although the fault detection can not usually depend on the physical redundancy of system sensors, 

due to cost and inefficiency inherent in the replication of the entire sensor system, tools can be 

designed to explore the redundancy of physical sensors in parts of the system where it exists [24]. 

As in fault detection and diagnosis (FDI) at the process level (Figure 1), in the validation of sensors 

one can compare the results of the system sensors measurements with mathematical models results 

that describe the static and dynamic relationships between the measured sensor data. This procedure 

is supported in the fault detection based on models techniques and, in the event of a fault, makes it 

possible to provide an estimate (during a finite time window) of the missing measurements [24]. 

 

Figure 1 Model Based FDI 

However, using this approach, care must be taken to distinguish between errors in the sensors and 

faults in the process or control system. Since a failure in the process may result in abnormal readings 

from the sensors, the developed algorithms may report a faulty sensor. The use of a higher layer in 

the diagnostic system must consider this situation [26]. 
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In the literature various approaches exist for performing data-based fault detection, which can be 

divided basically into three main groups [27]: 

 

- Classification-based fault detection: different system conditions representing faulty cases 

define different fault classes due to their appearance in the corresponding recorded data (fault 

patterns); also the faulty-free case represents one class; these classes are learned by training 

data and are applied whenever a new data point needs to be assigned to a class. The big 

disadvantage of this approach is that all kind of faults and their corresponding appearance in 

the data need to be known a-priori and therefore new faults cannot be detected often (only in 

the case that its pattern is luckily similar to an already known pattern of another fault). This 

disadvantage can be somewhat overturned using one class classification [28], or novelty 

detection methods [29] . 

 

- Signal-based fault detection in intelligent sensors: can be seen as a single channel check 

approach where dynamic sensor data is analyzed with respect to the occurrence of peaks, 

drifts or other unnatural behaviors in their corresponding signal curves. As commonly no 

interactions in form of redundancy or correlation analysis between other sensors are taken 

into account, no wide-spread system failures can be detected within this approach. 

 

- Model-based fault detection: multi-dimensional models or some of their parameters are trained 

from simulated, historic or online measured data and used as reference situation 

characterizing functional dependencies between measurement variables for the faulty-free 

case. The drawback for this approach is that if systematic failures occur in the training data 

(when no simulated data is available, of course), wrong models are trained, which get useless 

for fault detection. Besides, a fault isolation strategy has to be appended in order to identify 

the faulty variables amongst faulty-free ones, all integrated in complex high-dimensional 

models. 
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4. Method 

General Method 

Taking as base the general method proposed in [1] we will consider the following procedure for model-

based sensor fault detection (Figure 2). 

Development of a model 

A mathematical model is developed for the system, based on physical information and statistical data. 

This model can be static or dynamic, linear or non-linear, continuous or discrete and deterministic or 

stochastic. The input and the output variables of the system are clearly defined and all the relevant 

parameters are identified. The model describes the behavior of the system under normal operating 

conditions. It also specifies the statistics of the measurement noise in the output variables. 

Generation of a residual signal or the innovation process 

The residual signal or the innovation process is defined as the difference between the actual system 

output and the expected output based on the model and the previous output data. The latter is 

generated directly by the model if the system is deterministic or by a statistical filter if the system is 

stochastic, i.e. subject to random inputs and variations. This difference is called the innovation process 

since it represents the new information brought by the latest observation. Under normal conditions, the 

error signal is "small" and corresponds to random fluctuations in the output since all the systematic 

trends are eliminated by the model. However, under faulty conditions, the error signal is "large" and 

contains systematic trends due to the fact that the model no longer represents the physical system 

adequately. 

Statistics of the residual signal under normal conditions 

In deterministic systems, the random fluctuations in the residual signal are due to the measurement 

noise in the output variables. Their statistics are obtained as part of the system description in the 

model development step. In stochastic systems, the statistics of the error signal are obtained from the 

filter which is used to predict the output of the system. For linear dynamic systems with Gaussian 

random inputs, a Kalman filter [30] generates both the residual signal and its statistics. For these 

systems, it is known that under normal conditions, the residual signal or the innovation process is a 

zero mean Gaussian white noise process [31], [32]. 

Outlier Detection via limit value checking 

Given the statistics of the residual signal under normal conditions, a univariate statistical approach to 

limit sensing can be used to determine the thresholds for each generated residual; these thresholds 
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define the boundary limits, and a violation of these limits would indicate an outlier in the actual system 

output. This approach is typically employed using a Shewart control chart [33]. 

Sensor fault detection via hypothesis testing 

The problem of sensor fault detection is formulated as a Hypothesis Testing [34] problem, by 

considering as the null hypothesis, the normal operation of the system. The actual residual signal from 

the system is tested against this hypothesis at a certain level of significance. For example, if the 

system is described by a set of linear differential equations and a Kalman filter is used to generate the 

innovation process, the null hypothesis consists of testing the innovation process for zero mean, 

whiteness and a given covariance. 

Isolation of the sensor fault 

If a system fault is detected, the current model used to describe the behavior of the system may no 

longer be adequate. In order to diagnose the fault it may be necessary to develop a new model for the 

system. Since a failure in the process may result in abnormal readings from the sensors, the 

developed algorithms may report a faulty sensor. As stated before, to clarify this situation a higher 

layer in the diagnostic system must be considered. These subsequent procedures are beyond the 

scope of this report. 

Linear dynamic systems 

In this case study we are going to apply the general approach, outlined above, to a sensor network 

system describable by a set of discrete linear differential equations for sake of simplicity. The 

approach can also be used in continuous-time linear systems or carried over to nonlinear dynamic 

systems. 

We propose to extend the Mehra and Peschon [1] “Innovations approach to Fault Detection and 

Diagnosis in Dynamic Systems” method (see Annex I) by adding outlier detection via limit value 

checking procedure, and including a normality test in the sensor fault detection via an hypothesis 

testing step. 

Outlier Detection via limit value checking 

Given the statics of the Standardized Innovation ( )1+tη , generated by a Kalman Filter [30], the upper 

and lower thresholds on the Shewart Chart can be set. Therefore at the 0.27 per cent significance 

level, the measurement ( )1+tzi  is classified as outlier whenever 

( ) 31 >+tiη  (1) 
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Normality Tests 

Several methods can be applied for detecting departures from normality [36]. Using the 

frequencist’s inference framework, we opted to use the statistical hypothesis testing method. In 

this method the data is tested against the null hypothesis, that is: that the data is normally 

distributed. We propose to use the Anderson-Darling test and the Cramér–von Mises criterion. 

For details on this tests see Annex II. 

 

 

Figure 2 General Method for model-based sensor fault detection 
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5. Practical case study 

The proposed methods were applied to a real world temperature sensor reading. The measurement 

data came from a sensor network installed on a bridge (Figure 3). The measurements were sampled 

at 500 Hz (global acquisition frequency of the sensor network system). Since no previous test was 

made to this data, it is unknown if the sensor data has faults or not. 

It is assumed in this chapter that the reader has some kind of knowledge about state space 

discrete-time linear dynamic systems, Kalman filters and the normality tests used (Anderson-Darling 

test , Cramér–von Mises criterion), if that is not the case it is advisable that the Annexes Section 

should be read prior to reading of the remaining text. 

For the intensities of Plant noise ( )tξ  and Measurement noise )(tθ were considered the following 

values: 

( ) 16-8.6703E=Ξ t  (2) 

( ) 8-2.729E=Θ t  (3) 

 

Figure 3 Real World Temperature sensor data 

The dynamics of the system was described by an autoregressive process model: 





+=+
+=+

)()()1(

)()()1(

ttvtv

tvtxtx

ξ
 (4) 

Where, 

( )tx  is the amplitude of the temperature signal in volts; 

( )tv  is the difference between the temperature signal in two consecutive time instants. It is 

assumed, for simplification purposes, that the sampling interval is 1 (one) second; 
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The measurement model considered was: 

)1()1()1( +++=+ ttxtZ θ  (5) 

For the initialization step of the Kalman filter was considered: 
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The calculated steady state filter gain was: 
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And the covariance matrixes: 
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 (8) 

In Figure 4 the result of the estimated output from the Kalman filter can be seen. 

 

Figure 4 kalman filter estimation 

Standardizing the innovation sequence and applying the threshold (1), 225 outliers were detected 

(Figure 5) which is within the significance level since we have 0.22 per cent outliers (105 samples). 

If we look at the histogram of the innovation sequence (Figure 6) and to the normal probability plot 

(Figure 7) we can see that the outliers appear on the tails of the distribution, i.e. the distribution seems 

normal, although with departures from normality on the tails. If the outliers are removed or substituted 

by the previous value the distribution becomes asymmetrical and the nonlinearities on the normal 

probability plot accentuate on the tails (Figure 8). 
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Figure 5 Innovation Sequence Shewart Chart 

 

Figure 6  Histogram of the Innovation Sequence 

 

Figure 7 Normal probability plot of the innovation sequence (with outliers) 
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Figure 8 Normal probability plot of the innovation sequence (without outliers) 

The null hypothesis is rejected in all of the normality tests (Table 1). The best results were obtained for 

the Cramér–von Mises criterion with the parameters estimated from the data. 

Calculating the autocorrelation for the innovation sequence for the whiteness test (Figure 9), the null 

hypothesis is also rejected. 

Table 1 - normality tests results 

NORMALITY TEST 
DATA WITH 

OUTLIERS 
DATA WITHOUT 

OUTLIERS 
NORMAL 

DISTRIBUTION 
5%  

SIGNIF. 

(Anderson-Darling)
2A  3704.9 3738 0.4825 2.492 

(modified Anderson-Darling, mean and 

variance unknown)
2∗A  

112.99 19.106 0.5477 0.787 

(modified Cramér–von Mises, mean and 

variance both known) 2
1
∗W  

566.79 570.50 0.0976 0,461 

(modified Cramér–von Mises, mean and 

variance unknown) 2
2
∗W  

16.575 2.7471 0.0438 0,126 

The Normal Distribution column represents the application of the tests to a synthetic dataset 

generated with normal distribution and the same number of samples as the tested innovation 

sequence. 

 

Figure 9 Autocorrelation of the innovation sequence 
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Mean and covariance tests assume that the innovation sequence is white. Therefore, the test 

sequence should be stopped. Analyzing the autocorrelation results, we can see that as expected short 

lags have a correlation since we are using a high sample frequency for the dynamic of the problem; 

what is unusual is the periodic pattern with a 20 ms period.  

If we look thoroughly at the frequency spectrum of the measurement data (Figure 10) we found that 

low amplitude noise peaks are present on 50Hz, 150 Hz and 250 Hz. 

 

Figure 10 Amplitude Spectrum of the measurement data 

It is suspected that the 50 Hz noise comes from a train power catenary located near the location of the 

sensor. The sensor measurements were captured immediately after the sensor network had been 

installed and at that time the section from where the data was obtained was poorly grounded. Since 

the measured noise amplitude is within the sensor accuracy ( mV3± ) this does not affect in practice 

the accuracy of the sensor measurements. 

We assumed for the model of the system that the measurement noise was white Gaussian noise, 

what in the end did not hold true. If the system ground can not be improved to eliminate this 

interference in the sensor readings, the model should be updated and colored measurement noise 

should be considered. To transform the colored sensor noise into the standard formulation of the 

Kalman filter the concept of prewhitening must be considered. Using this concept the colored sensor 

noise is represented as the output of a fictitious linear time variant dynamic system driven by pure 

white noise. System identification techniques can be used to identify the correct model for the fictitious 

prewhitening system. System states must be augmented to use the standard formulation of the 

Kalman filter [35]. The subsequent procedures are beyond the scope of this report. 
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6. Conclusion 

A method for detecting faults in sensor networks based in the innovation sequence of a Kalman filter 

was tested. The tested method was applied to a real world data measurement with successful results, 

since it could identify that the tested signal sensor data had a (unknown) fault resulting from the 

interference of a 50 Hz non linear noise. Although the detected noise amplitude was inside the sensor 

measurement accuracy, the sensor Gaussian white noise assumption for the system did not hold true. 

Care must be taken in the cleaning (or substitution) of the outliers since that operation can impair the 

sensor sample probability distribution as showed in chapter 5. 

The normality test steps that were added to the method gave an early warning that a fault was present 

on the system, although the most informative hint for the identification of the fault did came from the 

autocorrelation test. 

Subsequent work should consider multivariate statistical tests. 
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ANNEX I 
Fault Detection in Linear Dynamic Sensor Network Systems 
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Fault Detection in Linear Dynamic Sensor Network Sy stems 

We describe in this annex the application of Mehra and Peschon “Innovations approach to Fault 

Detection and Diagnosis in Dynamic Systems” method [1] to a sensor network system that can be 

describable by a set of linear difference equations. Continuous-time sensor network linear systems 

can be treated in the same way (See Fig. 1). Static systems can be regarded as special cases of the 

dynamic systems. The approach can also be carried over to nonlinear dynamic systems.  

 

Consider a discrete-time linear dynamic system whose model is: 

 

State Dynamics: 

( ) ( ) ( ) ( ) ( )ttLtxtAtx ξ+=+1  (1) 

Measurements: 

( ) ( ) )1(11)1( ++++=+ ttxtCtz θ  (2) 

 

With time index ,...2,1,0=t  

 

Where 

( )tx is a nℜ state vector (stochastic sequence non-white) 

)(tz  is a rℜ measurement vector 

( )tξ  is a pℜ white plant noise 

)(tθ  is a rℜ white measurement noise 

( )tA  is as nn×ℜ state-transition matrix 

( )tL  is as pn×ℜ noise distribution matrix 

 

and 

 

( )tC  is a nr×ℜ output matrix. 



 

22 LNEC - Proc. 0903/112/17808 

 

Figure 1 Innovation approach to sensor fault detection 

 

Plant noise ( )tξ  and Measurement noise )(tθ  are Gaussian discrete white noise, with mean and 

covariance: 

 

[ ] 0)( =Ε tξ ,  ( ) ( )[ ] ( ) τδτξξ ttt Ξ=;cov  (3) 

( ) ( ) 0≥Ξ=Ξ tt T

 (4) 

[ ] 0)( =Ε tθ ,  
( ) ( )[ ] ( ) τδτθθ ttt Θ=;cov

 (5) 

( ) ( ) 0>Θ=Θ tt T

 (6) 

( ) ( )[ ] 0;cov =τξθ t  (7) 

Where τδ t denotes the Kronecker delta 





≠
=

=
τ
τ

δ τ t

t
t ,0

,1
 

and [ ]⋅Ε denotes the expectation operator , and [ ]⋅⋅;cov  the covariance operator. 

The initial state ( )0x  is also assumed to be random. The distribution of the state variables is Gaussian 

with mean and covariance: 

[ ] )0()0( xx =Ε ,  ( ) ( )[ ] 00;0cov Σ=xx  (8) 

000 ≥Σ=Σ T  (9) 
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( ) ( )[ ] 0;0cov =tx ξ ,  ( ) ( )[ ] 0;0cov =tx θ  (10) 

The more general case of correlated plant noise and correlated measurement noise can be reduced to 

the above case by augmenting the state vector ( )tx [5]. 

The sensor validation method is performed as follows: 

1. Development of the model 
This consists of identifying matrices ( )tA , ( )tL , )(tΞ , ( )tC , )(tΘ  and the order n of the system 

under normal operating conditions. This identification is mostly done by using a combination of 

physical information and statistical data on the system. The various methods for system identification 

and model validation are useful at this stage. 

2. Generation of the innovation sequence 
The innovation sequence ( )1+tr  is defined as: 

( ) ( ) ( )ttztztr |1ˆ11 +−+=+  (11) 

where ( )ttz |1ˆ +  denotes the unbiased minimum variance estimate of ( )1+tz  given the sequence of 

past measurements up to ( )t , i.e. based on the set ( ) ( ) ( ){ }tzzz ,...,2,1 . If it is assumed that all the 

system parameters and statistics are known exactly, the innovation sequence can be generated by a 

Kalman filter of the following form [1]: 

Off-line Calculations 

Initialization (t=0): 

( ) [ ])0();0(cov0|0 xx=Σ  (12) 

Predict Cycle: 

( ) ( ) ( ) ( ) ( )tLttLtAtttAtt TT Ξ+Σ=+Σ )|()(|1  (13) 

Update Cycle: 

( ) ( ) ( ) ( ) ( )[ ]
( ) )|1(1

11)|1(11)|1()|1(1|1
1

tttC

ttCtttCtCtttttt TT

+Σ+⋅
⋅+Θ+++Σ+++Σ−+Σ=++Σ −

 (14) 

where  

( )τ|tΣ  is the error covariance of  ( )τ|ˆ tx ;  

( )τ|ˆ tx  is the unbiased minimum variance estimate of ( )tx̂  given the measurements up to time τ . 

Filter Gain Matrix 

( ) ( ) ( ) )1(11|11 1 +Θ+++Σ=+ − ttCtttH T  (15) 
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where 

 ( )1+tH  is rn×ℜ Kalman gain matrix 

On-Line Calculations 

Initialization (t=0): 

( ) ( )[ ]00|0ˆ xx Ε=  (16) 

Predict Cycle: 

( ) ( ) ( )ttxtAttx |ˆ|1ˆ =+  (17) 

Update Cycle: 

( ) ( ) ( ) ( )ttxtCtztr |1ˆ111 ++−+=+  (18) 

( ) ( ) )1()1(|1ˆ1|1ˆ ++++=++ trtHttxttx  (19) 

3. Statistics of the innovation sequence 
It is well known that the innovation sequence ( )1+tr  is a zero mean Gaussian white noise sequence 

( )[ ] 01 =+Ε tr  (20) 

with covariance 

( ) ( ) ( )[ ]
( ) ( ) ( )11)|1(1

1;1cov1

+Θ+++Σ+=
++≡+

ttCtttC

trtrtS
T

 (21) 

( ) ( )[ ] ( ) τδτ ttSrtr =;cov  (22) 

For testing purposes, it is more convenient to consider the Standardized Innovation Sequence: 

( ) ( ) ( ) ( )( ) ( )111)|1(11 2

1

++Θ+++Σ+=+ −
trttCtttCt Tη  (23) 

where  ( ) 2
1−⋅ denotes the square root of the inverse of a matrix. Then  

( ) ( )[ ] ( ) ( )[ ] τδτηητηη t
T Itt =Ε=;cov  (24) 

where I denotes the identity matrix. 

4. Sensor fault detection via hypothesis testing 
Different kinds of faults can develop in the system. Some of these are: 

- bias errors in instruments, 

- noisy instruments, 

- change in system parameters, 

- change in level of input noise, 
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- change in the structure of the system, etc.  

All these faults make the standardized innovation ( )1+tη , depart from their zero mean, unit variance 

and whiteness properties. Therefore it is useful to perform the following statistical tests: 

4.1. Tests of whiteness 
The most important property of the innovation sequence is whiteness or independence at different 

time instants. Most of the tests of independence are based on the autocorrelation function kc  of a 

stationary process for lag k = 1, 2, … as follows: 

( )( )[ ]T
kiikc ηηηη −−Ε= −  (24) 

where η denotes the mean of iη . 

kc  is often estimated as 

( )( )∑
=

− −−=
N

ki

T

kiik N
c ηηηη ˆˆ1
ˆ  (25) 

where η̂ denotes the sample mean 

∑
=

=
N

i
iN 1

1ˆ ηη  (26) 

It can be shown the kĉ  is an asymptotically unbiased and consistent estimate of kc  [3]. Under the null 

hypothesis, kĉ , k=l, 2, … are asymptotically independent and normal with zero mean and covariance 

of I/N. Thus they can be regarded as samples from the same normal distribution and must lie in the 

band n96.1±  more than 95 per cent of the times for the null hypothesis [3]. 

4.2. Tests of mean 
These tests check whether the observed innovation sequence is zero mean or not. The mean of the 

innovation sequence is estimated by (26). Under the null hypothesis, η̂  has a Gaussian distribution 

with zero mean and covariance 

[ ] NIT =Ε ηη ˆˆ  (27) 

Therefore at the 5 per cent significance level, the null hypothesis is rejected whenever 

NI96.1ˆ >η  (28) 

4.3. Tests of covariance 
The covariance of the innovation sequence is estimated as 

( )( )∑
=

−−=
N

i

T

iiN
c

1
0

ˆˆ1
ˆ ηηηη  (29) 
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Under the the null hypothesis, 0ĉ  has a WISHART Distribution [4]. The trace of  0ĉ  has a Chi-Square 

distribution with (N-l)r degrees of freedom. Thus 0ĉ  can be tested for its null hypothesis with 

covariance equal to an identity matrix. 

Both the tests of mean and covariance assume that the innovation sequence is white. Therefore, it is 

important to test the innovation sequence for whiteness first, especially using tests which are invariant 

with respect to the mean and covariance of the distribution. 
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Normality Tests 

We describe in this annex two implementations of the statistical hypothesis testing method (wich is 

included in the frequencist inference framework): the Anderson-Darling test and the Cramér–von 

Mises criterion. The data is tested in this method against the null hypothesis, that is: that it’s normally 

distributed. 

1. Anderson-Darling test 
The A2 Empirical distribution function statistics may be used with small sample sizes 5 ≤ n ≤ 25 [1]. 

Large sample sizes may reject the assumption of normality with only slight imperfection. The 

computation differs based on what is known about the distribution. For the proposed test, two of the 

four possible cases are considered:  

- Case 1: The mean and the variance are both known. 

- Case 2: Both the mean and the variance are unknown. 

Although the parameters are known, the second case is considered because in [1] it is claimed that 

the test becomes better when the parameters are computed from the data, even if they are known.  

In Case 2 the parameters can be estimated as 

∑
=

=
N

i
irN

r
1

1ˆ   (1) 

( )( )∑
=

−−
−

=
N

i

T

iiiir rrrr
N

c
1

ˆˆ
1

1
ˆ

0
 (2) 

where r̂  denotes the innovation sample mean, 0ĉ the innovation sample covariance, and the i index 

corresponds to the equivalent t+1 value. The values of the innovation sequence are then standardized 

according to the estimated parameters 

( ) ( )( )rtrct r
ˆ1ˆ1ˆ 2

1

0
−+=+ −η  (3) 

The standardized Innovation Sequence ( )1+tη   in case 1 or ( )1ˆ +tη  in case 2 is then sorted from 

low to high. 

A2 is then calculated by 

( ) ( )( )
( )( ) ( )( )∑

=









Φ−+−⋅
⋅+Φ−

−−=
N

i i

i

iN

i

N
NA

1

2

1ln12

)(ln121

η
η

 (4) 

where ( )⋅Φ  is the standard normal cumulative distribution function. 

A modified statistic is calculated for Case 2: 
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






 −+=∗
2

22 254
1

NN
AA  (5) 

At the 5 per cent significance level, the null hypothesis is rejected whenever 

492.22 >A  (6) 

787.02 >∗A  (7) 

2. Cramér–von Mises criterion 
As in the Anderson-Darling test the two cases of known and unknown parameters are considered. The 

test also follows the same procedure for the standardization using (1), (2), (3) and then performing the 

calculations on the sorted standardized Innovation Sequence. 

W2 is then calculated by 

( )∑
=








 −−Φ+=
N

i
i N

i

N
W

1

2

2

2

12

12

1 η  (8) 

A modified statistic is then calculated for Case 1 








 +






 +−=∗

NNN
WW

0.1
0.1

6.04.0
2

22
1  (9) 

and Case 2 








 +=∗

N
WW

5.0
122

2  (10) 

Then, at the 5 per cent significance level, the null hypothesis is rejected whenever 

461.02
1 >∗W  (11) 

126.02
2 >∗W  (12) 
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