

ANÁLISE GRANULOMÉTRICA POR DIFRAÇÃO LASER EM ENSAIOS EM CANAL ANULAR

Sedimento do Esteiro dos Frades, Ria de Aveiro

Projeto de Investigação Programada "Dinâmica Sedimentar e Gestão Ambiental de Estuários"

Lisboa · dezembro de 2013

I&D HIDRÁULICA E AMBIENTE

RELATÓRIO 405/2013 – DHA/NEC

Autoria

Luís Ivens Portela Investigador Auxiliar, Chefe do Núcleo de Estuários e Zonas Costeiras

Paula Freire Investigadora Auxiliar, Núcleo de Estuários e Zonas Costeiras

Fernando Brito Técnico Superior, Núcleo de Estuários e Zonas Costeiras Departamento de Hidráulica e Ambiente

Copyright © LABORATÓRIO NACIONAL DE ENGENHARIA CIVIL, I. P. AV DO BRASIL 101 • 1700-066 LISBOA e-mail: livraria@lnec.pt www.lnec.pt

Relatório 405/2013

DEPARTAMENTO DE HIDRÁULICA E AMBIENTE Núcleo de Estuários e Zonas Costeiras

Proc. 0604/112/17749

Análise Granulométrica por Difração Laser em Ensaios em Canal Anular. Sedimento do Esteiro dos Frades, Ria de Aveiro.

Resumo

A granulometria das partículas em suspensão foi analisada por difracção laser em ensaios em canal anular com sedimento do Esteiro dos Frades, Ria de Aveiro. Para velocidades decrescentes, verifica-se uma diminuição do diâmetro mediano (D₅₀), a par de uma diminuição da concentração de sedimento em suspensão. Para velocidades crescentes, verifica-se, pelo contrário, um aumento de D₅₀, a par de um aumento da concentração. Conclui-se que, embora o sedimento seja predominantemente silto-argiloso, o efeito da granulometria nos processos de transporte é relevante.

Palavras-chave: Sedimentos coesivos

Grain Size Analysis by Laser Diffraction in Annular Flume Experiments. Sediment from Esteiro dos Frades, Ria de Aveiro.

Abstract

The grain size of suspended particles was examined by laser diffraction in annular flume experiments with sediment from Esteiro dos Frades, Ria de Aveiro. With decreasing velocities, there is a decrease in median diameter (D_{50}) along with a decrease in suspended sediment concentration. With increasing velocities, there is, on the contrary, an increase in D_{50} , along with an increase in concentration. It is concluded that, although the sediment is predominantly muddy, the effect of grain-size on transport processes is relevant.

Keywords: Cohesive sediments

Índice

1	Introdução	.1
2	Material e métodos	.2
3	Resultados	.3
4	Discussão	.8
5	Conclusões	.9
Refer	ências Bibliográficas1	1
Anex	DS1	3
ANE>	(O I	5
Resu	Itados da análise granulométrica1	7

Índice de figuras

Figura 3.1 – Evolução do diâmetro mediano (D ₅₀). Ensaio 2	4
Figura 3.2 – Evolução dos diâmetros característicos D ₉₀ , D ₅₀ e D ₁₀ (escala logarítmica). Ensaio 2.	4
Figura 3.3 – Variação da concentração de sedimento em suspensão e do diâmetro mediano (D ₅₀) em função da velocidade (considerada negativa nas primeiras 3 horas e positiva nas últimas 4 horas). Ensaio 2.	5
Figura 3.4 – Variação da concentração de sedimento em suspensão e do diâmetro mediano (D ₅₀) em função da tensão de corte no fundo. Ensaio 2	5
Figura 3.5 – Evolução do diâmetro mediano (D ₅₀). Ensaio 3	6
Figura 3.6 – Evolução dos diâmetros característicos D ₉₀ , D ₅₀ e D ₁₀ (escala logarítmica). Ensaio 3.	6
Figura 3.7 – Variação da concentração de sedimento em suspensão e do diâmetro mediano (D ₅₀) em função da velocidade (considerada negativa nas primeiras 3 horas e positiva nas últimas 4 horas). Ensaio 3.	7
Figura 3.8 – Variação da concentração de sedimento em suspensão e do diâmetro mediano (D ₅₀) em função da tensão de corte no fundo. Ensaio 3	7

Índice de quadros

Quadro 1.1 - Condições técnicas dos ensaios realizados	2
Quadro A.1 – Resultados da análise granulométrica para o Ensaio 2	18
Quadro A.2 – Resultados da análise granulométrica para o Ensaio 3	19

1 | Introdução

Este relatório tem como objectivo apresentar os resultados relativos à evolução granulométrica obtidos em ensaios de deposição e erosão, realizados no canal anular do LNEC, com sedimento do Esteiro dos Frades, Ria de Aveiro. A análise granulométrica foi realizada pelo método de difracção laser (Freire, 2003). Os resultados relativos à evolução da concentração de sedimento em suspensão nos mesmos ensaios foram anteriormente apresentados (Portela & Brito, 2010).

2 | Material e métodos

A amostra inicial de sedimento é constituída em cerca de 80% por silte e argila e em 20% por areia. A fração silto-argilosa, obtida após passagem por um crivo de 63 µm, tem um diâmetro mediano (D_{50}) de 18,2 µm e diâmetros característicos D_{10} e D_{90} de 2,9 e 62,9 µm, respetivamente (Portela & Freire, 2009).

O sedimento introduzido no canal anular foi passado previamente por um crivo de 1 mm, compreendendo, assim, material silto-argiloso e material arenoso.

Os ensaios em canal anular foram realizados sob diferentes condições (Portela & Brito, 2010). Para o presente trabalho, são relevantes dois ensaios de 7,5 horas, com condições comparáveis às de um ciclo de maré mas com diferentes valores máximos da velocidade do escoamento (v) e da tensão de corte no fundo estimada (τ):

- Ensaio 2 v_{max} de 0,50 m/s (τ_{max} de 0,4 Pa);
- Ensaio 3 v_{max} de 0,35 m/s (τ_{max} de 0,2 Pa).

As amostras para análise granulométrica foram colhidas de 30 em 30 minutos. Utilizou-se nesta análise o equipamento Mastersizer Micro (Malvern Instruments), com uma gama de medição de 0,31 a 301 µm. A amostra não sofreu qualquer tratamento prévio (dispersão química ou mecânica) e as condições de análise são as apresentadas no Quadro 1.1. Procedeu-se a três medições sucessivas de cada amostra, de modo a verificar a estabilidade dos resultados.

Durante os ensaios, foram também colhidas amostras para determinação da concentração de sedimento em suspensão (C_{ss}; Portela & Brito, 2010).

Modelo ótico	Mie		
Índice de refração do material (componente real)	1,53		
Índice de refração do material (componente imaginária)	1,0		
Índice de refração do meio dispersivo (água)	1,33		
Densidade do material	2,65		
Velocidade de agitação e circulação	2400 rpm		

Quadro 1.1 - Condições técnicas dos ensaios realizados

3 | Resultados

A evolução temporal dos diâmetros D_{10} , D_{50} e D_{90} e as variações de D_{50} e de C_{ss} em função da velocidade do escoamento e da tensão de corte no fundo são apresentadas nas Figs. 3.1-3.4, para o ensaio 2, e nas Figs. 3.5-3.8, para o ensaio 3, sendo as curvas granulométricas apresentadas no Anexo I.

Relativamente ao ensaio 2, refira-se o seguinte:

- O valor de D₅₀ mais elevado (15,5 μm) é obtido para a velocidade máxima inicial (0,50 m/s) e o valor de D₅₀ mais baixo (9,1 μm) ocorre para condições próximas da "estofa da maré", com um desfasamento de 30 minutos;
- Embora a evolução geral de D₁₀ e D₉₀ seja semelhante à de D₅₀, os valores de D₉₀ distinguem-se por apresentarem uma variação mais ampla (o valor mais elevado de D₉₀ é 3,7 vezes superior ao valor mais baixo);
- A variação de D₅₀ e a variação de C_{ss} estão diretamente relacionadas, sendo o coeficiente de determinação da regressão linear muito elevado (r² = 0,95). A relação entre D₅₀ e o módulo da velocidade é também elevada (r² = 0,86);
- O efeito de histerese (i.e. diferença de comportamento para v decrescentes vs. v crescentes) é menos bem definido para D₅₀ do que para C_{ss}, apenas se afigurando significativo para a velocidade de 0,25 m/s.

Relativamente ao ensaio 3, refira-se o seguinte:

- Os valores de D₅₀ neste ensaio (13,9 a 8,5 μm) são ligeiramente inferiores aos do ensaio 2. Embora os valores de D₅₀ sejam tendencialmente mais elevados para as maiores velocidades, a evolução é menos regular;
- Os valores de D₉₀ continuam a apresentar uma variação mais ampla do que os valores de D₁₀ e D₅₀;
- Em resultado da evolução menos regular de D₅₀, o coeficiente de determinação da regressão linear de D₅₀ e C_{ss} é menor (r² = 0,74). A relação entre D₅₀ e o módulo da velocidade é também menor (r² = 0,51);
- Dada a evolução menos regular do D₅₀, a apreciação de eventuais efeitos de histerese não é significativa.

Figura 3.1 – Evolução do diâmetro mediano (D₅₀). Ensaio 2.

Figura 3.2 – Evolução dos diâmetros característicos D₉₀, D₅₀ e D₁₀ (escala logarítmica). Ensaio 2.

Figura 3.3 – Variação da concentração de sedimento em suspensão e do diâmetro mediano (D₅₀) em função da velocidade (considerada negativa nas primeiras 3 horas e positiva nas últimas 4 horas). Ensaio 2.

Figura 3.4 – Variação da concentração de sedimento em suspensão e do diâmetro mediano (D₅₀) em função da tensão de corte no fundo. Ensaio 2.

Figura 3.5 – Evolução do diâmetro mediano (D₅₀). Ensaio 3.

Figura 3.6 – Evolução dos diâmetros característicos D₉₀, D₅₀ e D₁₀ (escala logarítmica). Ensaio 3.

Figura 3.7 – Variação da concentração de sedimento em suspensão e do diâmetro mediano (D₅₀) em função da velocidade (considerada negativa nas primeiras 3 horas e positiva nas últimas 4 horas). Ensaio 3.

Figura 3.8 – Variação da concentração de sedimento em suspensão e do diâmetro mediano (D₅₀) em função da tensão de corte no fundo. Ensaio 3.

4 | Discussão

Os resultados do estudo mostram existir uma relação entre a velocidade (e a tensão de corte no fundo) e, não apenas a concentração de sedimento em suspensão, mas também a sua granulometria. Do ensaio 2 para o ensaio 3, a diminuição de D_{50} e principalmente de D_{90} é coerente com a diminuição das velocidades de ensaio.

Os resultados indicam que a diminuição de C_{ss} para velocidades decrescentes envolve predominantemente a deposição de partículas de dimensão superior à mediana. Da mesma forma, o aumento de C_{ss} para velocidades crescentes envolve a ressuspensão de partículas de dimensão superior à mediana.

As observações feitas neste estudo estão de acordo com as de Kuijper *et al.* (1990), no que se refere à acentuada diminuição do valor de D₉₀ na fase de deposição.

Comparando os ensaios 2 e 3, observa-se uma evolução menos regular dos resultados do ensaio 3, que poderá ter diversas causas. Um dos aspectos a considerar é o facto de, neste ensaio, um número mais elevado de amostras ter sido analisado com obscuração inferior ao valor mínimo recomendado de 10%, por limitação da quantidade de amostra disponível.

5 | Conclusões

Analisaram-se pelo método de difracção laser amostras de água colhidas em ensaios em canal anular com sedimento do Esteiro dos Frades, Ria de Aveiro.

Apresentam-se as seguintes conclusões:

- O diâmetro mediano (D₅₀) das partículas em suspensão varia em relação direta com a velocidade do escoamento. A variação de D₉₀ com a velocidade do escoamento, comparada com a de D₁₀ e D₅₀, é particularmente acentuada.
- Verifica-se também uma relação direta entre o valor de D₅₀ e a concentração de sedimento em suspensão.
- Conclui-se que, embora o sedimento seja predominantemente silto-argiloso, o efeito da granulometria nos processos de transporte é relevante.

Lisboa, LNEC, dezembro de 2013

VISTOS

O Chefe do Núcleo de Estuários e Zonas Costeiras

pusticus the

Luís Ivens Portela

AUTORIA

Decomental

Luís Ivens Portela Investigador Auxiliar

A Diretora do Departamento de Hidráulica e Ambiente

Refach a Selder Nevo

Rafaela de Saldanha Matos

taul MS.

Paula Freire Investigadora Auxiliar

fluancelbit

Fernando Brito Técnico Superior

Referências Bibliográficas

- [1] FREIRE, P.; 2003 Análise granulométrica por difracção laser de sedimentos silto-argilosos. Procedimento de ensaio. Relatório 239/03-NEC, LNEC, Lisboa.
- [2] KUIJPER, C.; CORNELISSE, J.M.; WINTERWERP, J.C.; 1990 Erosion and deposition characteristics of natural muds. Sediments from the Westerschelde (near Breskens). Report 29, Rijkswaterstaat, Delft Hydraulics.
- [3] PORTELA, L.I.; BRITO, F.; 2010 Canal anular. Deposição e erosão de sedimentos do Esteiro dos Frades, Ria de Aveiro. Relatório 350/2010-NEC, LNEC, Lisboa.
- [4] PORTELA, L.I.; FREIRE, P.; 2009 Caracterização hidrodinâmica e sedimentar do Esteiro dos Frades, Ria de Aveiro. Observações em 2009. Relatório 388/2009-NEC, LNEC, Lisboa.

Anexos

ANEXO I

Resultados da análise granulométrica

Figura A-1 – Curvas granulométricas.

Amostro	Obscuração (%)	Percentis (µm)		
Amostra		D10	D50	D90
A1	9,77	3,17	15,50	87,56
A2	11,37	3,35	14,18	67,13
A3	10,50	3,17	14,84	77,27
A4	11,17	2,66	11,99	49,47
A5	10,30	2,88	11,06	38,48
A6	9,63	2,21	9,05	29,04
A7	9,70	2,59	9,27	27,35
A8	10,70	2,38	8,99	23,97
A9	8,50	2,52	9,06	28,30
A10	10,83	2,72	11,61	42,06
A11	11,73	3,29	14,53	76,52
A12	11,03	3,66	15,06	68,54
A13	10,50	3,30	15,22	79,55
A14	10,53	3,17	14,64	72,77
A15	10,83	3,56	14,88	63,57

Quadro A.1 – Resultados da análise granulométrica para o Ensaio 2

Amostra	Obscuração (%)	Percentis (µm)		
		D10	D50	D90
A1a	10,87	3,09	12,27	44,33
A2	9,43	3,58	13,92	51,64
A3	10,40	3,38	13,70	54,84
A4	9,83	2,64	9,97	34,32
A5	11,60	2,39	9,77	27,03
A6	10,03	2,93	10,67	32,32
A7	9,40	2,59	9,43	25,73
A8	6,70	2,74	9,43	23,82
A9	7,20	2,95	9,64	24,75
A10	8,50	2,30	8,45	24,11
A11	8,13	3,00	11,00	41,78
A12	10,63	3,14	12,55	50,80
A13	11,40	3,11	12,85	52,57
A14	11,60	2,90	12,22	49,80
A15	10,97	3,13	11,88	42,69

Quadro A.2 – Resultados da análise granulométrica para o Ensaio 3

Divisão de Divulgação Científica e Técnica - LNEC