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Abstract 
The forecast of sea waves has been analyzed, in the literature, using various methodologies. 
Currently, there are a number of techniques that have shown satisfactory results, which are 
based on empirical formulations, numerical and physical modeling. However, there is still a 
large gap for research in the use of numerical modeling, especially when the models employed 
become very complex or with a large amount of variables. Thus, the scope of this work is to 
present a neural network system of the ART (Adaptive Resonance Theory) type with Fuzzy 
Logic techniques to determine wave conditions at the Portuguese coast (Sines Port). 

 
 
1. Introduction 
Coastal zones are very attractive regions for human settlement. Associated to man’s occupation of 
these areas is the attempt to minimize the natural hazards, with structures being designed to ensure 
quality of life and safety to neighboring populations. 

Dornelles (2007) showed that protection structures such as dikes, dams, polders, jetties, 
breakwaters, spurs, etc., are always designed for a particular return period of wave or flood events, 
and for situations beyond the projected period, losses are amplified because in the "protected" 
areas the occupation is intensified due to the false perception that sea waves or flooding will never 
reach that region. 

So, the knowledge of the local wave climate is essential for a more supported coastal management. 
In order to meet these needs it is important to uprightly simulate real cases for the planning of 
current or emergency situations. Numerical hindcast and wave propagation models represent a 
powerful tool to address problems in coastal engineering and in environmental studies, such as 
water management. They give an important contribution in this context, due to their quickness, 
flexibility, and wide application range. Although these characteristics allow the easy simulation of 
several scenarios, the models are computationally demanding and have their own limitations 
because they cannot simulate all physical phenomena present in the complex process of generation, 
propagation and dissipation of waves from offshore to the coastline. Physical modeling can 
analyze these phenomena, but it is expensive, time consuming, requires very specific infrastructure 
and equipment and a high experience by those performing the tests and analyzing their results. 
Therefore, it has been demonstrated (Londhe and Deo, 2004) that techniques based on Artificial 
Neural Networks have been taken up with great approval by their users. These network tools have 
proven very useful in the practice of engineering, but still have limitations mainly related to the 
lack of generalization. 

Thus, this paper presents the application of ARTMAP Artificial Neural Networks, with Fuzzy 
Logic techniques, to try to excel the complexity of wave prediction models. 
 
2. ART Artificial Neural Networks 
Several types of ANNs have been proposed for different kinds of application. A quite popular 
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ANN in the field of pattern recognition is a multilayer network using the backpropagation learning 
algorithm. 

Simeón (2008) showed that while this model fits reasonably capabilities mentioned about the brain 
units, it presents problems related to the memory requirements as a mental faculty: incremental 
learning and the two classifications of short and long term memory. Once trained, if a new 
example is presented, on its own, to the network, previous information may be lost in the process. 
Therefore, this work will examine another type of networks, namely ART networks. 

Carpenter et al (1987) showed that the ART (Adaptive Resonance Theory) networks seem to 
satisfactorily meet these requirements. Recognition layer (Y) classifies the input, providing the 
neuron with higher value in the activation function (Figure 1). 

 

 
Figure 1. Adapted model of Fuzzy ARTMAP (CARPENTER et al., 1992). 

 
Incorporating elements of fuzzy logic in the classic ART model allowed the analog treatment of 
imprecision, characteristic of the way language represents the world. Carpenter et al (1991) 
showed that the models known as Fuzzy ART have such characteristics. The proposal to build an 
artificial entity being with memory consists, thus, in building a model of this nature. 
FAM (Fuzzy ARTMAP) model development, illustrated in Figure 1, allowed adaptation of 
ARTMAP network for using analog patterns both of input and output. The Fuzzy ARTMAP 
network is a generalization of the binary ARTMAP network. It is capable of incremental 
supervised learning, updating itself during operation without "forgetting" what has learned 
previously. The Fuzzy ARTMAP network can be used for classification and/or association of 
binary patterns and/or analog input and output with arbitrary dimension. This model consists of 
two Fuzzy ART modules, ARTa and ARTb, connected by an intermediate modulus Fab. Operations 
performed internally in the propagation of signals are changed to the operations defined by fuzzy 
logic, working with fuzzy sets and operators. 
The modules ARTa and ARTb perform the recognition of input values and of the desired output 
values, respectively. The interconnect module is used in training to map input and output. 
 
3. Study Area 
The Port of Sines is located on the Southeast of Europe, on the west coast of Portugal, 58 nautical 
miles south from Lisbon, on the cross of the main international maritime routes – East-West and 
North-South (Figure 2). 
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Figure 2. Port of Sines. 

 
Being a modern port (1978), with excellent maritime access, without restrictions, it is one of the 
major trade and economic gateways of the Iberian Peninsula so that is considered a port of great 
geographic and strategic importance to Portugal and Spain. 
It is an open deep water sea port, sheltered by two main breakwaters (the west and the east 
breakwaters), which protect five main terminals: liquid bulks, petrochemical products, 
multipurpose, LNG and container. Due to its modern specialized terminals, the port is able to 
handle the different types of cargoes, leading the Portuguese port sector in the volume of cargo 
handled (mainly bulk cargos, both liquid and solid), and offering unique natural characteristics to 
receive any type of vessels. 
The Sines Port presents a high growth potential, in order to become a reference port at an Iberian, 
European and worldwide level. In fact, the port and its support Industrial and Logistics Zone, with 
more than 2,000 ha, is already a worldwide extent logistic platform, able to receive the main 
players of port, maritime, industrial and logistic sectors. 
To characterize the wave conditions offshore the Sines Port, data from the directional wave-buoy 
“Sines 1-D” are available from Instituto Hidrográfico, Portugal. The buoy is located offshore the 
port (37º55'N and 08º55'W) at a water depth -93 m (CD). In normal conditions, the wave 
parameters, such as the significant wave height (HS), the mean wave period (TZ) and the wave 
direction (DIR), are produced every 1 hour, based on 20 minutes duration wave buoy 
measurements. To predict the wave characteristics at the coast, the wave propagation model 
SWAN (Booij et al., 1999) is forced by the buoy data. The results (HS, TZ, DIR) near the coast, 
located at a depth -40 m (CD), were obtained from May 1988 to December 2002. Table 1 presents 
an overview of both buoy data and the corresponding SWAN results. 
 

Table 1. Statistical wave parameters at “Sines 1-D” wave buoy and at near coast. 
Local \ 
Parameters Maximum Average Minimum 

Standard 
Deviation More frequent  

Buoy 
HS (m) 7.35 1.60 0.27 0.899 [1.0 - 2.0] (48.05%) 
TP (s) 19.8 8.8 4.2 2.325 [6.0 - 7.0] (17.78%) 
DIR (º) 358 299 5 18.609 [300 - 310] (32.68%) 

P 
HS (m) 11.09 1.54 0.07 0.93 [1.0 - 2.0] (48.26%) 
TP (s) 18.90 8.86 4.17 2.26 [9.0 - 10.0] (22.27%) 
DIR (º) 352.7 302.8 71.79 24.7 [310 - 320] (32.34%) 

 
 

 
4. Methodology 
A Fuzzy ARTMAP algorithm was developed with graphical treatment in Microsoft ExcelR. The 
gaps in the database were eliminated (missing data). The processor used was an Intel Core i7 2.2 
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GHz - 8 GB RAM. The network parameters adopted were: β = 1.0 (fast training rate), α = 0.1 
(category choice parameter), ρa = ρab = 0.95 (monitoring parameter – ARTa and InterARTab 
Module), ρb = 1.0 (monitoring parameter ARTb), ε = 0.001 (increase in the monitoring parameter 
ARTa). The offshore wave height and period from the wave buoy were used as input values, 
whereas the output values were the wave height and period, respectively, determined at the coast 
(Point P) by using the SWAN model. The network was trained with a data period of one year 
(2010), approximately 3,000 values. Subsequently, a test was performed for a few random months 
included in the spring, summer, autumn and winter. With the same training, a random test was 
carried out for the two weeks of 10/05/2010 to 16/05/2010 and 10/11/2010 to 16/11/2010, and for 
a day (09/07/2010). The results are shown in the next section. 

 
5. Results 
This section presents, in graphical form (Figures 3 to 9), the results obtained for each studied case, 
for the 2010 training year. The training time was 1,112.13 s. 
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Figure 3. Comparison of Fuzzy ARTMAP predictions with the SWAN results at the coast: SPRING (period 
chosen: 20/04 to 20/05). 
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Figure 4. Comparison of Fuzzy ARTMAP predictions with the SWAN results at the coast: SUMMER 
(period chosen: 20/07 to 20/08). 
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Figure 5. Comparison of Fuzzy ARTMAP predictions with the SWAN results at the coast: AUTUMN 
(period chosen: 20/10 to 20/11). 
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Figure 6. Comparison of Fuzzy ARTMAP predictions with the SWAN results at the coast: WINTER (period 
chosen: 20/01 to 20/02). 
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Figure 7. Comparison of Fuzzy ARTMAP predictions with the SWAN results at the coast: WEEK 1 (10/05 
to 16/05). 
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Figure 8. Comparison of Fuzzy ARTMAP predictions with the SWAN results at the coast: WEEK 2 (10/11 
to 16/11). 
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Figure 9. Comparison of Fuzzy ARTMAP predictions with the SWAN results at the coast: 09/07/2010. 
 
Next, Table 2 contains, for each studied case, the calculated values of the mean absolute percentage 
errors (MAPE) and of the maximum errors (E). 
 

Table 2. Mapping errors and computational time for each studied case.

CASE 
MAPE  

(%) 
MAXIMUM ERROR (%) 

COMPUTATIONAL 

TIME (s) 

SPRING 7.8 36.9 0.42 

SUMMER 13.2 45.5 0.44 

AUTUMN 9.6 42.9 0.52 

WINTER 10.6 52.1 0.47 

WEEK 1 9.0 36.2 0.10 

WEEK 2 13.7 30.0 0.10 

DAY 09/07 18.9 27.6 0.04  
 
 
6. Discussion and Conclusions 
In terms of results, we observed that:  

• the ARTMAP results presented in all cases appear to be slightly overestimating the SWAN 
results (on the safe side);  
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• the training time with approximately 3,000 data points (a full year) is very low (less than 
20 minutes), which favors a future real time treatment;  

• the computational time for each case is even lower (less than 1 second);  
• the predictions provided by the network in all cases follow the trend of the wave heights at 

the coast, showing a good fit to the SWAN results.  
Future developments of the ARTMAP network will encompass a broader sensitivity analysis 
of its parameters. The network will also be trained using a 10-year buoy wave data period 
(instead of solely the 2010 data) followed by an analysis of its results for different years from 
those already trained. Finally, this work is in its early stage and it is expected that, with further 
developments to the ARTMAP network, it will be possible to use it embedded in a real time 
warning system, including the analysis of other variables. 
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