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NUMERICAL SIMULATION OF THE BEHAVIOUR OF A MOORED SHIP INSIDE AN 
OPEN COAST HARBOUR. 
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Abstract 
A set of procedures to evaluate the time series of the diffraction forces on a moored ship inside 
a harbor basin is presented. Nonlinear wave propagation is obtained using a Boussinesq finite 
element numerical model, BOUSS-WMH. Determination of hydrodynamic forces acting on the 
ship is achieved using a modified version of the WAMIT model. Finally, time series of the wave 
forces on the ship and of the inherent moored ship motions are obtained using BAS numerical 
model. The main focuses of this work are: the coupling of these three models and the 
modification of the method used in WAMIT to determine diffraction forces. Some simple and 
practical applications of this procedure are presented as well. 

 
1. Introduction 
Sea waves inside a sheltered basin can cause excessive movement of a ship at its berth which can 
lead not only to interruption of loading and unloading operations but also to collisions with other 
ships or port infrastructures with significant economic losses. 

Coupling numerical models for wave propagation and behavior of moored ships subjected to the 
wave action can identify potentially adverse sea states and help planning safe harbor activities. 

A numerical tool called SWAMS has been developed. The great advantage of such a tool is the 
ability to provide time series of ship’s movements, as well as of forces and extensions in the 
mooring elements once the sea-wave characteristics offshore are known. This information can be 
derived from buoys measurements or prediction models, making this a very useful tool, for both 
design of port infrastructures and planning of port activities. 

For sea-wave propagation SWAMS may use a linear model based upon the mild slope equation, 
DREAMS (Fortes, 1993), that is able to simulate the propagation of monochromatic waves into 
sheltered areas taking into account refraction, diffraction and reflection or a more complex model, 
BOUSS-WMH (Boussinesq Wave Model for Harbours, Pinheiro (2007)), that is capable of a more 
accurate description of sea states evolution into varying-depth sheltered regions by taking into 
account refraction, diffraction, partial reflection and nonlinear interactions as well as energy 
dissipation due to bottom friction and wave breaking. 

To simulate moored ship behaviour, SWAMS uses the numerical package MOORNAV (Santos, 
1994) which resorts to the frequency domain results of the WAMIT model (Korsemeyer et al. 1988) 
for the radiation and diffraction problems of a free floating body to get the hydrodynamic forces 
necessary to BAS model (Mynett et al. 1985). This latter model assembles and solves, in the time 
domain, the moored ship motion equations taking into account the incident sea waves and the 
geometry and constitutive relations of the mooring system elements. 

WAMIT was developed at the former Department of Ocean Engineering of Massachusetts Institute 
of Technology to evaluate the wave-induced stresses on floating structures deployed offshore. 
Within a harbor basin sea-waves are diffracted by the harbor structures which invalidates the use 
of WAMIT model unless one considers several floating bodies, some of them immobile and 
occupying the whole liquid column. However, this implies the solution of a huge system of linear 
equations. A possible alternative is to use the relations established by Haskind (1957) involving the 
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potential flow associated with the waves radiated by the ship and the potential of incident waves at 
the position where the ship is placed and which can be used to calculate the waves forces on the 
immobilized ship. 

In this paper we describe: the components of SWAMS package, the application of this package to 
evaluate moored ship motions in a very special condition in which the model can be used directly 
with WAMIT; the new implemented procedures based on Haskind relations and the first test 
results obtained with these procedures. The paper ends with the presentation of final remarks on 
the work. 
 
2. SWAMS NUMERICAL TOOL 
SWAMS - Simulation of Wave Action on Moored Ships - is an integrated tool for numerical 
modeling of wave propagation and of the behavior of moored ships inside ports to help in the 
decision making process for planning port operations. 

It consists of a graphical user interface and a set of modules for running numerical models. The 
user interface enables the storage and manipulation of data, executes the numerical models and 
enables the graphical visualization of results. Each model corresponds to a module to which are 
attached the databases that bring together all the project information. With this application one 
may conduct studies with little or no knowledge on the operation of the underlying numerical 
models. So this application allows one to store and to manipulate data easily, to run the numerical 
models, to get the results and to perform the corresponding graphical representation of sea wave 
propagation as well as of ship response to incident sea waves in harbor basins. 

SWAMS was developed in Microsoft Access™, which has the advantage of including the event-
driven object programming language Visual Basic for Applications (VBA). An advantage of this 
language is the possibility to use and handle different Microsoft Windows applications. 

The SWAMS ensemble includes: 
• SWAN module corresponding to the spectral model with the same name, SWAN, Booij et al. 

(1996), which is based on the equation of conservation of wave action and it is capable of 
modeling the non-linear propagation of sea waves; 

• DREAMS module, corresponding to the numerical model DREAMS (Fortes, 1993), which is 
based on the mild-slope equation; 

• BOUSS-WMH module, based on the nonlinear finite element model BOUSS-WMH, Pinheiro 
(2007), which solves the nonlinear Boussinesq equations derived by Nwogu (1993); 

• MOORNAV module, Santos (1994) that assembles and solves the moored ship motion 
equations assuming the linearity of the floating body / waves system, as proposed by 
Cummins (1962). 

• SWAMS databases are MS Access ™ databases, corresponding to numerical model modules, 
which contain all the project information together with several folders where all the created 
files are stored. 

The graphical representation of data and results in SWAMS is made with Golden Software 
Surfer™ (for SWAN module), with Tecplot™ (for DREAMS module) and with MS Excel ™ (for 
WAMIT and BAS modules) and with Autocad (for WAMITmodule). All these graphical 
visualization programs are invoked by event-driven macros that automate the entire process of 
creating maps and graphs. 

In the following subsections one describes only the wave propagation and the model for the 
response ships moored inside ports that are used in the case studies presented in this 
communication. 
 
2.1 DREAMS model 
The incident sea wave field at the site where the ship will be placed is provided by the numerical 
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model DREAMS (Fortes, 1993). It is a model for calculating the propagation and deformation of 
regular waves in coastal areas and it can be applied to study short sea wave propagation into a port 
as well as marina resonance excited by incident long-period waves. It is based on the two-
dimensional mild slope equation given by: 

 ( ) 0. 2 =η+η∇∇ gg cckcc  (1) 

where η is the free-surface elevation, which is a function of the (x, y) coordinates, kc /ω=  is the 
phase velocity or wave speed, dkdcg /ω=  is the group velocity, and ω  is the wave angular 

frequency that relates to k, the wave number, through the dispersion relation ( )khgk tanh2 =ω . 

The mild-slope equation takes into account the combined effects of refraction, diffraction and 
reflection and describes the propagation of small amplitude monochromatic sea waves across 
regions of mild-slope bottom as happens in harbors, bays and other coastal areas.  

The numerical method used to solve the mild-slope equation is the Finite Element Method. 
Boundary conditions implemented in the model are the radiation condition, the combined 
radiation-generation condition and the (total or partial) reflection. The model calculates wave 
height indexes, the ratio between the wave height at the point in the calculation domain, H, and the 
wave height at the entrance of the same domain, Ho, as well as the directions of wave propagation. 
The horizontal velocity field at the free surface and the wave crests are optional results. 

 
2.2 BOUSS-WMH model 
BOUSS-WMH (Walkley and Berzins 2002, Pinheiro 2007) solves the extended Boussinesq 
equations derived by Nwogu (1993), which are valid from shallow water up to intermediate water 
depths. It is a model suitable for the propagation and deformation of nonlinear and dispersive 
waves in areas of variable bathymetry since it reproduces the some of the most important 
phenomena in coastal regions of low to medium depth: wave diffraction, refraction, reflection, 
shoaling, as well as energy dispersion for other harmonics. 

For the vertical integration of the velocity profile, the velocity at a selected value of the vertical 
coordinate is used. The model uses the SPRINT package (Berzins et al. 1984) for the temporal 
integration and the Galerkin method with an unstructured finite-element mesh for spatial 
discretization. For the generation of sea waves in the computational domain a source function is 
used following the Wei et al. (1999) procedure. This condition allows not only to generate waves, 
but also to absorb the waves reflected by the physical boundaries of the domain and which 
propagate towards the source, thus avoiding their permanence in the computational domain and 
subsequent change of the wave characteristics there. 

Total reflection or absorption are the boundary conditions available in the model. The condition of 
total absorption is achieved by placing a sponge layer. To simulate wave interaction with physical 
boundaries (such as breakwaters, jetties, cliffs, etc.) a total reflection boundary condition is 
imposed. This model was developed for one and two dimensional (in plan view) problems and its 
results are the free surface elevation and the horizontal velocity (representative) at each point of 
the computational domain. 

 
2.3 MOORNAV numerical package 
In LNEC, the evaluation of the ship motions while moored at a berth and subjected to incident sea 
waves is carried out using the numerical package MOORNAV (Santos 1994). This is essentially 
two numerical models: 
• WAMIT (Korsemeyer et al. 1988) that solves, in the frequency domain, the radiation and 

diffraction problems associated to the interaction between incident waves and a free-floating 
body; 

• BAS (Mynett et al. 1985) that assembles and solves, in the time domain, the motion equations 
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of a moored ship at berth taking into account the time series of the wave forces on the ship, 
the impulse response functions of the ship and the constitutive relations of the mooring 
system elements (mooring lines and fenders); 

to which an interface between the two models is added, since the WAMIT results are not the 
quantities needed for the BAS model operation and because it is necessary to provide BAS with 
the time series of the forces exerted by the incident sea waves in addition to the stationary wind 
and current forces. 

 
2.3.1 Moored ship equations 
The ability to model the forces on the ship hull due to her interaction with the waves is critical to 
establish the motion equations for a moored ship. 

Assuming small amplitude of the ship movements along each of her six degrees of freedom, it is 
easy to define the part corresponding to the quasi-static variation of submerged hull form. This 
leads to the hydrostatic restoring matrix kjC  whose coefficients are the force along mode k due to a 

unit change, in still water, of the ship position along mode j. 

The same assumption of small amplitude ship movements leads to the linearity of the interaction 
between the hull and incident sea waves. Such linearity allows the decomposition of that problem 
into two simple problems, Cummins (1962): The radiation problem in which one determines the 
forces along each degree of freedom that are needed for an arbitrary hull movement in otherwise 
calm water, and the diffraction problem in which one determines the force dkF  along each degree 
of freedom k that is exerted by the incident sea waves on the motionless ship hull. 

From the above the equation of motion for the moored ship can be written as 
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where kjM  is the mass matrix of the ship and )(tF m
k  and )(tF f

k  are the instantaneous values of the 

forces due to mooring lines and fenders. Strictly speaking, this is a set of six equations whose 
solutions are the time series of the ship movements along each of her six degrees of freedom as 
well as of the efforts in the mooring lines and fenders. 

In the equation above mass and hydrostatic restoring matrices depend only on the ship geometry 
and on the mass distribution therein. The forces due to mooring lines and the fenders can be 
determined from the constitutive relations of these elements of the mooring system and from the 
changes in the distance between their ends (in the case of fenders one has account for the no-length 
variation associated to the absence of contact between the ship and the fender). 

The numerical model BAS (Mynett et al. 1985) assembles and solves, in the time domain, these 
equations of motion taking into account the time series of forces due to waves incident on the ship, 
the impulse response functions of the ship and the constitutive relations of the mooring system 
elements (mooring lines and fenders). It uses a θ method to discretize the time variations in those 
equations and it solves the resulting set of nonlinear algebraic equations using the Newton-
Raphson method, the first estimate of the velocity at instant n +1 needed to apply that method 
being provided by first order Adams-Bashforth method. 

 
2.3.2 WAMIT model 
The impulse response function, the infinite-frequency added mass matrix and the excitation forces 
due to waves that arise in equation (2) depend on the hull shape and on the disturbance caused by 
the motionless hull in the wave propagation flow or on flow generated by the hull movement in 
otherwise calm water. 

Assuming that any sea state that acts on the ship can be decomposed into sine waves of known 
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period and direction, the diffraction force associated with this sea state can be obtained from the 
superposition of the stationary diffraction forces due to each of these sinusoidal components. That 
is, results from the diffraction problem in the frequency domain are used to get a time domain 
result. 

Also the impulse response functions and the infinite-frequency added masses can be determined 
from results obtained in the frequency domain, in this case for the radiation problem: 
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where )(ωkjb  is the damping coefficient for the frequency ω  and )(ωkja  the added mass coefficient 

for the same frequency. From equation (4) it becomes clear the designation of kjm  as the infinite-

frequency added mass coefficient since as the frequency ω goes to infinity the second value in the 
sum in (4) tends to zero and )(∞= kjkj am . The added mass and damping coefficients result from the 

decomposition of the stationary force associated to the radiation problem corresponding to 
sinusoidal movement of frequency ω into a part that is in phase with the speed of the body motion 
(the damping coefficient) and a part in phase with the body acceleration (the added mass 
coefficient). 

The use of frequency-domain results to generate data for a problem in the time domain is due to 
the great availability of numerical models to solve, in the frequency domain, the interaction 
problem of a floating body with the sea waves. 

The WAMIT (Korsemeyer et al. 1988) is one of these models. It was developed at the former 
Department of Oceanic Engineering of the Massachusetts Institute of Technology and it uses a 
panel method to solve in the frequency domain the diffraction and radiation problems of a free 
floating body. This model is based on the Green’s second equality to determine the intensity of the 
source and dipole distributions over the panels used in discretization of the hull wetted surface. 
With such distributions it is possible to generate the harmonic potentials associated with the 
radiation and diffraction problems of a free ship placed in a constant-depth zone not limited 
horizontally. 

 
2.3.3 Haskind relations 
The WAMIT model contemplates the existence of several floating bodies, some of which can be 
held immobile and occupy the whole liquid column. This would enable the direct use of this model 
to solve the radiation and diffraction problems of a ship within a sheltered basin where the sea 
waves acting on the ship may have been diffracted by the harbor structures. This detail of a 
possible crest curvature of the incident waves on the ship is especially important for the diffraction 
problem. In fact for the radiation problem it is unlikely that ship-radiated waves once reflected by 
the harbor basin contour are able to return to the ship with non-negligible amplitude. 

Although it is possible to study with the WAMIT model the diffraction problem of a ship within a 
harbor basin, the number of equations that would be required to solve in this situation is 
exaggerated for most of the currently available computers. An alternative to solve such a 
diffraction problem is to use the relations established by Haskind (1957). These relations allow one 
to determine D

kF , the diffraction force along coordinate k, by combining kϕ  the radiation potential 
associated with ship oscillations along the same k  coordinate, with 0ϕ  the potential of the incident 
wave in the ship position. 
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Assuming valid the mild-slope hypothesis, to determine the functions needed to implement the 
Haskind relations one has to know: 
• period of the incident wave; 
• the potentials radiation problems for the ship inside the harbour basin at each panel of wetted 

hull discretization; 
• the normal derivatives of the same potentials in the same panels; 
• the coordinates of points where one wishes to determine those functions (in each panel, the 

coordinates of the four points of the Gaussian quadrature formula used); 
• the normal vector components at each panel; 
• the water depth at the vertical of each of the previous points; 
• the complex amplitudes of the free-surface elevation and the horizontal components of the 

flow velocity induced by the passing waves. 

The first five requirements are satisfied by the WAMIT output files, the first two are in radiation 
problem results set while the last three are in the problem geometry files. The last two 
requirements are satisfied with the results from the model for wave propagation into the harbor 
basin when the ship is not there. The program that implements the Haskind relations combining 
the WAMIT results for the radiation problem with incident wave field at the ship position, only 
has to manage this information and make an area integral with a Gauss-quadrature formula. 

 
3. APPLICATIONS 
Two examples of use of the SWAMS package are presented: 
• an isolated free floating body (to illustrate the first results of the tests already carried out with 

the implementation of the procedure to calculate the diffraction forces with the Haskind 
relations). 

• a ship moored inside a schematic harbor where the incident waves on the ship are not 
diffracted by the breakwater protecting the harbor (which allows one to use the WAMIT 
model in its simplest form to solve the diffraction problem) 

 
3.1 Free floating ship 
The wetted hull surface was divided into 1200 panels. Figure 1 shows a perspective of that panel 
distribution. Radiation and diffraction problems for the free-floating ship were solved by the 
WAMIT numerical model for 16 periods between 4s and 300s. 

 

           
Figure 1. DREAMS computational domain. Ship hull discretization into panels and finite element mesh. 

 

The computational domain is a square 1000m wide with open boundaries, the ship being placed in 
the center of the domain. The finite element mesh has 226,152 nodes and 113,717 triangular 
elements. The mesh topology is optimized and 97.88% of it has optimal valence, ie each node is 
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linked to six other, resulting in optimal-geometry elements, eg equilateral triangles. 

16 different incident wave conditions (4 directions and 7 periods) were simulated with the 
DREAMS model. Figure 2 presents a 3D view of the velocity potentials at the points that define 
the ship panels. Note that the potentials are complex quantities and so those graphics represent 
only the real part of this variable. 

   
Figure 2. Velocity potentials calculated by WAMIT and by DREAMS for T = 10s and θ = 0 °,                      

at the points that define the ship panels. 
 

Using the velocity potentials velocity computed by the DREAMS model in the Haskind relations 
one gets the forces exerted by wave action on the ship along each of her six degrees of freedom. 
Figure 3 compares these forces (green line) to the WAMIT computed forces both by the diffraction 
problem (blue line) and by using the WAMIT own Haskind relations (red line). From this figure 
one may conclude that the agreement between those results is high and it increases with the 
incident wave period. In all cases the errors calculated in relation to the WAMIT original Haskind 
method are of the order of 5% or less. 
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Figure 3. Forces due to incident waves (θ = 30°). 

 
3.2 Moored ship in a schematic harbor 
This section presents one application of the numerical package for the evaluation of the behavior 
of a ship moored inside a schematic harbor basin and subjected to given sea state whose 
characteristics outside that basin are known. This numerical application serves to illustrate the 
functioning of SWAMS, i.e., of the set of models BOUSS-WMH, WAMIT, and BAS and to draw 
attention to the modifications needed for a more widespread application. 
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The methodology is as follows: 
1. Using the BOUSS-WMH model, one determines the wave characteristics at the position 

within the harbour basin to be occupied by ship held motionless; 
2. Using the WAMIT the model, one gets the potentials for the radiation and diffraction 

problems for a range of periods in which the periods of the incident sea state are contained; 
3. Then the impulse response functions for the free-floating ship and the time series of the forces 

exerted on the ship by the incident sea waves; 
4. Using the BAS model, one solves in the time domain, the equations of motion of a moored 

ship at berth taking into account the time series of wave forces on the ship, the ship impulse 
response functions and the constitutive relations of the mooring system elements. 

The wave propagation calculations were performed on a LINUX CORVUS workstation with four 
AMD Opteron ™ 265, 2GHz and 8GB of RAM, while the calculations of the behavior of the ship 
are made on a personal computer Intel Quad Core ™ Q6600 2.4Ghz and with 1.97GB of RAM. 

 
3.2.1 Incident waves 
The computational domain is 2000 m wide and 4000 m long. The schematic port located on the 
right hand side of the domain and consists of two breakwaters: the North breakwater with two 
stretches, one horizontal and the other vertical of 750 meters and 1000 meters in length, 
respectively and the South Breakwater with one horizontal stretch, 400 m long, defining a 
quadrangular basin whose side length is approximately 700m, Figure 4. 

 

 
Figure 4. Calculation domain. Regular waves with a period of 10s and amplitude 0.6 m from South       

(North coincides with the direction of the y axis). 

 

The finite element mesh of the harbor domain was generated having a minimum of 8 points per 
wavelength, the depth in the whole area is 17 m and the incident regular waves had a period of 10s 
and an amplitude of 0.6 m, resulting in a mesh with 185 599 elements, 93 616 points, 1 631 
boundary points and a bandwidth of 322. 

Figure 4 shows the free surface elevation 600s after the start of the calculation with the BOUSS-
WMH module with regular waves from South (propagating in the positive direction of the y-axis) 
with 10s period and 0.6 m amplitude. Figure 5 shows the time series of free surface elevation at a 
point within the port, where the ship is to be moored. 
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Figure 5. Free surface elevation in the area where the ship is moored. 
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3.2.2 Moored ship response 
The ship has a displacement of 108 416 m3, a waterline length of 243 m, a maximum beam of 
42 m and a draft of 14 m. Since it is intended to illustrate the operation of the numerical model for 
moored ship behaviour only, the adopted mooring scheme was very simple, with only two breast 
lines (l1 and l4), two spring lines (l2 and l3) and two fenders (f1 and f2) as shown in Figure 6. The 
ship’s longitudinal axis is parallel to the jetty, her bow being 98 m away from the south end of that 
jetty. All mooring lines were made of polyethylene with the same maximum traction force of 
1274 kN and had the same length (hence the same constitutive relations). The constitutive relation 
of one of these mooring lines is shown in Figure 6a). The pneumatic fenders had a maximum 
compression force of 3034 kN, the constitutive relations shown in Figure 6b) and the hull´s 
friction coefficient is 0.35. In this exercise it is assumed that the wave hitting the ship propagates 
with straight crests perpendicular to the jetty where the ship is moored. This assumption makes the 
analysis simpler and allows one to use directly the results of the numerical model WAMIT for the 
free ship diffraction problem. 
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Figure 6. Mooring scheme. Constitutive relations: a) lines; b) fenders. 

 

In the study, in the frequency domain, of the interaction between the free ship and the incident 
waves it was considered that only the pier wall close to the ship has some influence in this 
interaction. Thus it was modeled the ship near a vertical wall 750 m long, 50 m wide that occupied 
the whole water column, that is, with a height of 17 m. The ship’s side close to the wall was 30 m 
apart from the wall and the ship's bow was 98 m away from the end wall. 

The wet surface for the ship hull was divided into 3732 panels whereas the wall surface was 
divided into 1284 panels. Figure 7 shows a perspective of those panel distributions. The numerical 
model WAMIT was used to solve the radiation and the diffraction problems of the ship for 76 
frequencies evenly spaced between 0.0125 rad / s, 0.95 rad / s. 

 

 
Figure 7. Panel discretization of the ship and the wall. 

 

As expected, the proximity of the vertical wall destroys the symmetry of the flow around the ship 
that existed when there was no wall. Hence, the added mass and damping coefficients that would 
be null for radiation problem of the free ship alone are no longer null (for example, the coupling 
between the surge and sway modes). 

Also in the diffraction problem, the wall presence may change the flow symmetry and so forces 
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that were null in the absence of the wall are no longer null. An example of this is the transverse 
force on the ship that appears for head waves when there is a wall near the ship. 

With the results from the frequency domain radiation and diffraction forces, it was possible to 
determine impulse response functions and the infinite-frequency added mass coefficients that are 
needed to assemble the moored ship motion equations. All impulse response functions were 
calculated with a time interval of 0.1s and a maximum duration of 200 s. 

Starting from the impulse response functions for the 36 possible pairs (force along k coordinate 
due to motion with impulsive velocity along j coordinate) and the corresponding added mass 
coefficients for the various frequencies for which the radiation problem was solved in the 
frequency domain and using equation (4) several estimates for the infinite-frequency added mass 
added were obtained. 

The time series of the forces due to incident waves on the ship were determined by using the time 
series of the free wave elevation estimated for a point in the area where the ship is to be moored 
together with the results from the frequency-domain diffraction problem for bow waves. Given the 
limitations of the procedure for obtaining the force time series, which is based on the Fast Fourier 
Transform, one might only consider the first 500 s of the free-surface elevation time series. Figure 
8 shows the time series of longitudinal force exerted by the incident waves on the ship. In the 
figure it can be seen another limitation of the procedure implemented to calculate time series: 
oscillations in the force time series do occur before the incident wave arrival to the location where 
the ship is moored (around t = 90 s) something which is not physically possible. 

The time series of the movements along the longitudinal axis of the moored ship shown in Figure 
9, illustrates the non-linear response of the ensemble ship + mooring system. In fact, for 
oscillations in the free-surface elevation whose period is about 10 s, there are moored ship 
oscillations with a much higher period. The period of these oscillations is controlled by the 
existence of mooring lines and fenders, as can be confirmed in Figure 10 with the time series of 
the forces in the bow breast line. Since the mooring system elements produce forces acting on the 
ship in the horizontal plane only, it is for the movements in this plane that the non-linear behavior 
is most evident. This can be confirmed with the time series shown in Figure 11 with the roll 
motion where it is observed that the oscillation period is similar to the period of the incident wave 
on the ship. 
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Figure 8. Longitudinal forces on the ship. 
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Figure 9. Longitudinal movement of the moored ship. 
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Figure 10. Tension on line 4. 

 

-4.00E-01

-2.00E-01

0.00E+00

2.00E-01

4.00E-01

6.00E-01

0 50 100 150 200 250 300 350 400 450 500

t (s)

x 4
(g

ra
us

)

 
Figure 11. Roll motion of the moored ship. 

 
4. FINAL REMARKS 
This paper presents the results obtained with the SWAMS numerical package in modeling the 
behavior of a moored ship inside a schematic harbor. The time series of the ship’s movements and 
tensions in the mooring system clearly illustrate the nonlinear behavior of the system ship-
moorings-fenders. 

A Boussinesq-type model was used to determine the time series of the incident waves. Results 
were obtained for a wave whose propagation direction coincided with the breakwater’s length, 
which facilitated the determination of the diffraction forces. To solve more complex problems, 
where the incident waves are significantly diffracted by the harbor’s infrastructures or other 
obstacles, a new procedure was tested based on so-called Haskind relations. In the examples 
shown the velocity potentials of incident waves were obtained with a linear wave propagation 
model. The initial results presented here are very promising and the wave propagation model will 
be replaced by a more complex Boussinesq-type model.  
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