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Abstract 
 
This paper summarizes the results of the bibliographic study on accident prediction 
models applied to urban areas. Several types of models where analyzed, namely for 
accidents involving pedestrians or cyclists, collisions between motorized vehicles, total 
accidents, non injury accidents, accidents with fatalities, injury accidents, night time 
accidents and accidents involving only vehicles. Models with different levels of 
disagregation were also studied: aggregated models describe general safety trends 
(national or regional); disaggregated models represent specific changes in the 
transportation system. 
 
This study is part of the “IRUMS – Safer Roads in Urban Areas” project, carried out at 
the National Laboratory of Civil Engineering and at the Department of Engineering of 
the University of Coimbra, financed by the Foundation for Science and Technology. 
This project intends to develop methods for safety management of urban road networks. 
Procedures for the estimation of expected accident frequencies, identification of sites 
with a promise and selection of efficient corrective measures are being developed as 
well. The case study is being applied in Lisbon. 

 
 

INTRODUCTION 
 
According to official statistics, an important percentage of accidents and injuries are reported in 
urban areas: in Portugal, during the period from 2004 to 2006, 70% of all injury accidents, and 
44% of all fatalities occurred inside urban areas.  
 
To tackle this problem, municipal road administrations need tools for the quantification of safety 
levels and the explicit consideration of safety issues in the road management process. A better 
knowledge of the relations between accident frequencies and variables describing the urban road 
environment will allow a more efficient selection of priorities for intervention and safety funding. 
This can be achieved by means of accident prediction models adapted to the urban context where 
they are applied. 
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Estimating the number of accidents that may result for a given highway design is a matter of 
great interest to the highway engineering community. Several studies were developed in this area 
aiming to determine the effects of different design elements on road safety. Since safety is a 
primary consideration in highway design, the safety consequences of highway design features are 
very important. 
 
Accident prediction models are developed to provide a realistic estimate of the expected number 
of accidents or victims, as a function of explanatory variables such as the traffic volumes and 
road geometry characteristics. They consist of relations between independent variables and 
accidents, through mathematical functions. This procedure allows to quantify the variation in the 
safety level due to changes on each considered variable. The development of these estimates is a 
fundamental component for safety considerations in road planning. 
 
ACCIDENT PREDICTION MODELS 
 
Bases for development 
 
The development of accident prediction models must be carefully made, so that the results and 
interpretations that they provide are suitable, in what concerns: the choice of the exploratory 
variables and type of model; the specification of functional relations; the evaluation of the 
adjustment (validation); the causal interpretation of relations; the evaluation of the performance 
of the model in the forecast; and the evaluation of potential causes of errors.  
 
Several recommendations for the development of accident prediction models were recently 
proposed in the RIPCORD-ISEREST project (Reurings et al, 2005): 

1. The probabilistic distribution of accidents in the original data set must be identical to the 
one of the residual terms of the model.  

2. Models must be disaggregated by level of severity (fatal accidents, accidents with victims 
and property-damage-only accidents), by type of road element (road section, intersections, 
bridges, tunnels, curves and railroad crossings) and by class of vehicles (trucks, cars, two 
wheelers, pedestrians and cyclists).  

3. The correlations between the explanatory variables must be analyzed in detail, with 
justification for the functional forms chosen, as well as all the causal relations. All the 
variables with high correlation between them, as well as the ones that are considered 
confounding, must be eliminated. The possibility of omitted variable bias must be taken 
into account, since it is not feasible to create an accident prediction model with all the 
variables that influence accident occurrence.  

4. The overall goodness-of-fit of the model must allow the decomposition of the variation of 
the number of accidents in: b) random variation, b) systematic variation explained by 
model, and c) systematic variation not explained by the model. This last one must be 
analyzed, to decide if the over-dispersion can be described by a simple parameter or if it 
must be modelled by a variable parameter.  

5. The predictive performance of the model must be tested through its application on a data 
set that has not been used for its development.  

 
Assuming one can identify all the systematic variation, it is possible to consider that road 
accident occurrence follows a Poisson distribution, with useful properties, namely the fact of its 
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expected value is equal to the variance. In case this is not possible, a dispersion parameter can be 
calculated, that allows to consider the omitted variables and to know whether the systematic 
variation of the accidents is conveniently explained or not. 
 
Types of models 
 
Accident prediction models can be classified in different ways (Cardoso, 2007):  

• According to the technique used to estimate the effect on safety indicators: through 
before-after studies or through the adjustment of mathematical equations;  

• According to the consideration of "time" in the model: parametric (cross-sectional 
models) or  variable (time series models);  

• According to level of disaggregation of the variables used: aggregated and disaggregated 
models.  

 
Before-after studies and adjustment of mathematical equations 
 
Although before-after studies cannot be considered real accident prediction models, they include 
on its methodology mathematical expressions that allow estimating the effect on safety of 
changes in the transport system. They are considered quite efficient as long as the disturbing 
factors are controlled and the sample dimension and the analysis techniques used are adequate. 
However, the applicability of the defined relations is restricted, since they are specific for the 
context where they were adjusted, a fact that imperils its generalization.  
 
The adjustment of mathematical equations through statistical methods, allows relating data on 
accidents or victims with a series of explanatory variables, creating the so called accident 
prediction models. The main advantage of this type of models relies on the possibility for a direct 
use in the evaluation of the effect on the safety indicator of changes on the exploratory variables. 
Its usefulness increases when the number of explanatory variables is high, when the number of 
confounding variables is high (and they cannot be treated through the consideration of control 
groups) or when the sample (of accidents or victims) is small.  
 
Cross-sectional models and time series models  
 
Cross-sectional models allow representing the variation between variables that characterize 
different road entities and its level of safety, for the same instant. These models explore the 
variation between different entities in the same time period, relating accidents to the variation of 
characteristics of different entities (any geographic unit or physical element - people, vehicles or 
groups with similar characteristics). In the development of this type of models it is important to 
ensure that the road entities are similar and that all variables with influence on accident 
occurrence are considered. This type of models is normally applied when data sets of 
considerable dimension are available and when the possible explanatory variables are 
independent and with low co-variation.  
 
Time series models comprise several observations of the same element in time. In this type of 
modelling, variations are very small, especially when time series disclose a considerable 
colinearity between its potential independent variables. These models generally show less 
correlation between successive confounding terms, associated to the fact of not being more 
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difficult to include all the relevant explanatory variables. The development of this type of models 
is considered easy, since several tools are available to deal with problems of self-correlation and 
auto-regression, among others (Cardoso, 2007; OECD, 1997). 
 
Aggregated models and disaggregated models 
 
Aggregate models allow describing general safety trends on the regional or national level, 
making possible the development of short-term safety evolution estimations, as a function of 
traffic and macro-economic variables. Estimates can be improved by including descriptive factors 
of the impact of safety measures. The use of this type of models, does not allow, however, to 
evaluate the effect of changes in parts of the transportation system, neither the global impact of 
safety interventions on specific groups of users, since variables are generalist.  
 
Disaggregated models may be used to represent the effect of changes in specific parts of the 
transportation system or in the safety of specific user groups. They are used in the evaluation of 
the application of safety policies and in road safety estimations, being therefore considered a 
support instrument to road safety management at a macroscopic level (regional or national). The 
usual types of disaggregation are by transport mode, age group, sex and type of road (Cardoso, 
2007; OECD, 1997).  
 
Functional form of mathematical equations 
 
The functional form of mathematical equations (models) can be defined through several 
statistical methods, as described in the following sub-chapters. 
 
Linear regression models  
 
A linear model expresses its systematic component as a linear function of the following 
parameters  

∑
1=

+=
J

j
ijiji uxβy                                                            (1)  

Where:  
yi -  variable dependent;  
xij - variable independent;  
ui -  random error.  
 
The linear models can be developed through the squared minimums estimation techniques 
(simple or generalized).  
 
A simple linear regression model describes the relation between a quantitative independent 
variable X and a quantitative dependent variable Y, in the following terms (Guimarães et al, 
1997):  
 

( ) nnn EXXY +−×+= βα                                                       (2)  
Where:  
n  = index of the observation;  
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βα ,  = fixed parameters to estimate from the linear relation between X and Y  
En  = random error associated to the observed value Yn  
Regression’s theory is based on the verification of a set of hypotheses:  

1. All variables must be measured, with precision and error-free;  
2. Errors must have expected value null and constant variance;  
3. Errors must be mutually independent, meaning that error of two sets of values of the 
explanatory variables shouldn’t be correlated;  
4. Errors are normally distributed.  

 
A model of multiple linear regression describes a relation between a set of independent 
quantitative variables Xj (j=1,2...,J) and a dependent quantitative variable Y, through the  
expression (Guimarães et al, 1997):  

( ) ( ) njnnn EXXXXY +−++−+= ..... 1 ββα                                       (3)  
Where:  
n    = index of the variable X1...XJ and Y (n=1... N);  
(X1n...XJn,Yn) = nth of the variable X1...XJ and Y; 

jX     = arithmetic mean of the observations of the variable Xj ( ∑=
n

jnj X
N

X .1 );  

j1 β ..., ,β α,  = fixed parameters to estimate from the linear relation between X1...XJ and Y;  
En    = associated random error to the observed value Yn.  
 
The underlying hypotheses to this model are identical to the ones considered in the simple linear 
regression models.  
 
Generalized linear models  
 
Generalized linear models are an extension of multiple regression linear models: the dependent 
variable follows a distribution from the exponential family (Normal, Poisson, Binomial, or 
Gamma, for example).  The relation between the average value of the response variable and the 
explanatory variables can be established by any monotonous and differentiable function. 
 
The general structure of a generalized linear model has three components: the systematic, the 
random and the linking function between the systematic component and the random component. 
The generalized linear models take normally the form of (Wichert et al, 2006):  
 

( ) ∑=
j

jiji xh βλ                                                            (4)  

Where: 
h = linking function (the expected value of the dependent variable is linked to a linear 

regression through a monotonous function) 
β  = parameters to estimate 
x = explanatory variables 
 
The main characteristic of these types of models are (Wichert et al, 2006): 
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• The response y is observed independently of the fixed values of the explanatory variables 
x1..., xp.  

• The explanatory variables can only influence y distribution through a linear function 
named linear predictor:  

pp xx ββη ++= ...11                                                     (5)  
Where: 
β  = parameters to estimate 
x = explanatory variables 

• The distribution of y has density of the form:  
( ){ } ( )( )[ ]iiiiiiii AyyAyf ϕτϕθγθϕθ ,/exp);;( +−=                       (6)  

Where:  
ϕ  = Scale parameter (possibly known)  
Ai = Known prior weight   
θ i = Depends on the linear predictor  
Therefore, the distribution of y must come from the exponential family.  

• The mean μ  is a smooth invertible function of the linear predictor:  
( ) )( ),( 1 μμηημ lmm === −                                                    (7) 

• Inverse function l is called link function, and it describes how the mean of the response 
variable depends on the linear predictors (explanatory variables).  

 
The estimates are calculated through the iterative weighed least squares technique, since explicit 
expressions for the maximum likelihood are not usually available.  
 
Poisson generalized Model  
 
In the stochastic accident analysis it is usual to admit that the occurrence of accidents is 
controlled by a stationary process of Poisson. The justification for the consideration of this 
hypothesis relies not only in the good adjustment of the observed values, but also in the high 
number of opportunities for accident occurrence associated with a low probability of happening 
each one of these opportunities (Wichert et al, 2006).  
 
In a generalized Poisson model it is assumed that the response variable follows a Poisson 
distribution. This type of model is preferably used in situations with small accident counts. For 
accident data sets of large dimension, Gauss models may be used, considering a normal 
distribution (Wichert et al, 2006). The model of regression of Poisson (or log-linear model) has 
usually the following form: 

( ) { } ,...1 ,0 ,!logexp
!

.| =−+−== −
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i

i
i βμμ βμ                      (8) 

Where: 
yi = independent responses modelled by a Poisson distribution;  

iμ  = mean, and ( ) βμ T
iz=log ; 

β  = parameters to estimate. 
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Accident prediction models in intersections and road links 
 
This section summarizes the result of the bibliographic study on accident prediction models 
applied to urban areas. Several types of models where analyzed, namely for accidents involving 
pedestrians or cyclists, collisions between motorized vehicles, total accidents, non injury 
accidents, accidents with fatalities, injury accidents, night time accidents and accidents involving 
only vehicles. Models with different levels of disaggregation were also studied.  
 
Aggregated models - Regional level 
 
Washington et al (2006) developed accident prediction models for: total accidents, fatal 
accidents, fatal and injured accidents, injured accidents, pedestrian accidents, cyclist’s accidents, 
night time accidents and accidents without victims. The standard form off all models is a log 
linear regression model, which included general variables regarding: population (total, by age 
groups, by area, by means of transportation, etc), road length (total, main roads, motorways, 
urban/rural roads, etc), vehicles kilometres travelled, number of intersections per km, average 
income and number of housing units (total and per area):   

+...×Variable+a×Variable+a)=ants+Log(Accide 221101  

 
Disaggregated models 
 
Turner et al (2007) developed several accident prediction models regarding specifically 
pedestrians in intersections (signalized intersections, roundabouts and T-junctions). They 
disaggregated their multiplicative models also by type of movement: crossing, left-turn, and 
right-turn, using traditional variables (motorized traffic volumes and pedestrian volumes):  

321 ×××= 210
aaa

spedestrian sPedestrianTrafficTrafficaAccidents  
but also specific variables associated with conflicting movements, namely: the proportion of 
pedestrians that cross with the “green-man”, the average crossing distance and number of lanes 
that vehicles that turn left have to cross: 

321 b
dist

aa
0spedestrian Crossing×sPedestrian×Traffic×a=Accident  (for example) 

 
Pedestrian accidents at intersections were also modelled by other authors, namely Brüde and 
Larson (1993), Maher and Summersgill (1996) and Gårder (2004) (for roundabouts). All of them 
used multiplicative models which included motorized vehicles and pedestrian volumes as 
explanatory variables:  

21 ××= 0
aa

spedestrian sPedestrianTrafficaAccident  
(Brüde and Larson; Maher and Summersgill) 

1)×(×= 0
a

spedestrian sPedestrianTrafficaAccident   
(Gårder) 

 
Maher and Summersgill developed accident prediction models for pedestrians in urban T-
junctions without median, with a desegregation of motorized traffic by major and minor roads of 
the intersection: 

221 ×××= 210
aaa

spedestrian sPedestrianTrafficTrafficaAccident  
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Additionally they included accident prediction models for other types of accidents in the same 
type of intersection, namely: total accidents, property damage only accidents; and also for road 
links, namely: total accidents, pedestrian accidents and property damage only accidents. The 
general form of the mentioned models is: 

21 aa
0kss-road linpedestrian ns×Pedestriaht×Traffic×Road Leng=aAccident  

 
Total accident frequency is the most common response variable in accident modelling. Several 
authors developed mathematical functions to explain total accident occurrence at intersections. 
The common explanatory variables used were also motorized vehicles and pedestrian volumes, 
sometimes desegregated by major and minor legs: 

- Lars Leden, 2002 (intersections) 
21

0
aa ns×Pedestria×Trafficdents=aTotal acci  

 
- Sayed and Rodriguez, 1999 (non-signalized urban intersections controlled by STOP signs), 
Greibe, 2003 (urban intersections with three or four legs with and without signals) and 
Mountain and Fawaz, 1996 (intersections with different types of traffic control) 

21 a
2

a
10 Traffic×Traffic×a=accidents Total  

(Only injury accidents for Sayed and Rodriguez and Mountain and Fawaz) 
 

- Lord and Persaud, 2000 (signalized urban intersections with four legs) and Persaud et al 
(2002) (three or four legs intersections with and without signals) 

2321
210

×Trafficaaa ×e×Traffic×Trafficdents=aTotal acci  

  
- Bauer and Harwood, 2000 (collisions in urban and rural intersections - four legs with STOP; 
three legs with STOP and four legs with signal lights) 

 nn23210 Traffic×a+...+Traffic×aa
2

a
1

a e×Traffic×Traffic×e=collisions Total  
 
Although a high percentage of accidents in urban areas occur at intersections, accident prediction 
models were also developed for road links. This was the research subject of several authors, in 
what concerns total accidents. Motorized vehicles traffic volumes were the basic explanatory 
variables used, but other variables like road length, driveway density, number of minor 
intersections existent, pedestrian volumes, road width, number of lanes, speed, were also used: 

- Turner et al, 2003 
   1

0
a×Trafficdents=aTotal acci   

- Mountain, Fawaz and Jarret, 1996  
21

0
aa th×Road leng×Trafficdents=aTotal acci  

- Bonneson e McCoy, 1997  
nn×Variable+...+a×Variable+aaa×Variable×Variable+aa ×eth×Road lengficdents=TrafTotal acci 34322110  

- Abo-Qudais, 2001  
iii ×Variable×Variable×Variabledents=aTotal acci 23

0  

×Speed×Speeddents=aTotal acci 2
0  

1
0

a×Trafficdents=aTotal acci  
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- Greibe, 2003  
n

a a××a×Trafficdents=aTotal acci ×...20
1  

 
FINAL NOTES 
 
This paper summarizes the results of the bibliographic study on accident prediction models 
applied to intersections and road links in urban areas. APM are mathematical functions that 
describe the relation between the road safety and explanatory variables, as traffic, road length and 
width, number of intersections, etc. Its common form is expressed as the following multiplicative 
expression: ∑×××= .

21
ii xγββ eTTαA , where A is the expected value of the number of accidents, 

which varies with the traffic volume (T) and with other factors (Xi). The effect of traffic in the 
accident’s occurrence is modelled through the power ß. The effect of the several risk factors that 
usually influence accident probability is modelled through an exponential function of base e and 
raised to the sum of the product of the γi coefficients by the risk factors, xi.  
 
In what concerns disaggregated models for intersections, the use of variables such as traffic 
volume, and for accidents with pedestrians, the average distance crossed or lane with are 
frequently used, which reveals its high significance in the explanation of these phenomenon. 
Regarding road links, traffic volumes, road width, speed and road length were the most frequent 
significant explanatory variables used to model road accidents. 
 
Considerable progress has been made in the techniques for establishing the relationship between 
accidents, traffic volumes and road geometry. Specific problems such as low mean value, 
overdispersion, disaggregation of data over time and random errors were already identified by 
several authors; the solutions they outlined will help the development of accident prediction 
models for Portuguese urban areas, calibrated with data from the city of Lisbon. 
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