MODELOS DE COMPORTAMENTO DA BARRAGEM DOS PEQUENOS LIBOMBOS EM MOÇAMBIQUE

BEHAVIOR MODELS FOR PEQUENOS LIBOMBOS DAM IN MOZAMBIQUE

Portugal, João; Laboratório Nacional de Engenharia Civil, Lisboa, Portugal, portugal@lnec.pt Marcelino, João; Laboratório Nacional de Engenharia Civil, Lisboa, Portugal, marcelino@lnec.pt

RESUMO

A barragem dos Pequenos Libombos é uma barragem de aterro zonado que dispõe de um sistema de observação em exploração há cerca de 20 anos. Os dispositivos desse sistema permitem medir as seguintes grandezas: nível de água na albufeira, deslocamentos superficiais, deslocamentos internos, caudais de infiltração, níveis piezométricos no interior do aterro e fundação e precipitação atmosférica. Após a apresentação e validação dos resultados do sistema de observação, que serviram de base à modelação matemática (estatística) do comportamento da obra, descreve-se a aplicação de modelos estatísticos a esses resultados. Os modelos obtidos são depois explorados para prever o comportamento da obra em diversos cenários e para estabelecer critérios de atenção e alerta a adotar na exploração futura.

ABSTRACT

Pequenos Libombos dam is a zoned embankment dam, which has an monitoring system in operation for nearly 20 years. The devices of this system allow measuring the following quantities: water level in the reservoir, surface displacements, internal displacements, seepage flow, piezometric levels in the dam and foundation and rainfall. After the presentation and validation of the results of the monitoring system, which formed the basis for mathematical modeling of the behaviour of the work describes the application of statistical models to these results. The models obtained are then used to predict the behaviour of the dam in various scenarios and to establish criteria for attention and alert to adopt in the future.

1 - DESCRIÇÃO DA BARRAGEM

O aproveitamento hidráulico dos Pequenos Libombos fica situado no rio Umbeluzi, no distrito de Boane, cerca de 35 km a SW da cidade de Maputo. A construção da barragem decorreu de 1983 a 1986. A barragem, embora de fins múltiplos, destina-se essencialmente a abastecimento de água à cidade de Maputo. Tem também a função de controlo de cheias e de irrigação de terras de cultivo. Recentemente foi instalada uma central hidroelétrica de pequena potência (1,7 MW), a qual não se encontra ainda em funcionamento. A albufeira tem uma capacidade máxima de armazenamento de 400 hm³ e a área inundada, ao nível de pleno armazenamento (NPA), é de 38 km². A bacia hidrográfica é de 5700 km². Trata-se de uma estrutura mista de aterro e betão, constituída por um descarregador de cheias na zona central (em betão) e por dois trechos em aterro, localizados nas zonas laterais, constituídas por um perfil zonado (Figura 1 e Figura 2). A barragem tem uma altura máxima acima da fundação de cerca de 46 m e um comprimento no coroamento de 1540 m. O coroamento, com 8 m de largura, está à cota 51,00 m. O nível de pleno armazenamento (NPA) e o nível de máxima cheia (NMC) estão às cotas 47,00 e 49,55 m, respetivamente A inclinação do paramento de montante é de 1V/3,0H até à cota 40,00 m e 1V/3,2H para cotas superiores (Figura 3). O declive do paramento de jusante é de 1V/2,4H. Este paramento tem uma banqueta à cota 35,00 m, com uma largura de 3,00 m.

Figura 1 - Vista de montante da barragem dos Pequenos Libombos

Figura 2 - Planta da barragem dos Pequenos Libombos

Figura 3 - Perfil transversal-tipo dos trechos em aterro da barragem

O descarregador de cheias está limitado por dois muros de ala, é formado por seis blocos com 10,5 m de largura e é constituído por duas secções. A principal, situada num nível inferior, foi dimensionada para um caudal máximo de 5600 m³/s, é constituída por sete orifícios pouco profundos equipados com comportas de segmento. A outra, a secundária ou de emergência, é constituída por sete vãos em superfície livre, que permitem a passagem de um caudal de 515 m³/s para o NMC.

A descarga de fundo é constituída por duas condutas metálicas, implantadas ao longo dos muros de ala, com 1,50 m de diâmetro e 110,0 m de desenvolvimento. A sua capacidade máxima, no NPA, é de 2×30 m³/s.

2 - SISTEMA DE OBSERVAÇÃO

2.1 - Verificação do dimensionamento

A fim de facilitar o dimensionamento dos sistemas de observação, as Normas de Observação e Inspeção de Barragens da regulamentação portuguesa - NOIB (1993) propõem uma abordagem sistematizada para a quantificação dos aspetos que permitem avaliar o risco associado à barragem. De acordo com as mesmas normas, o tipo de grandezas a observar, bem como a frequência das inspeções visuais e das campanhas de observação, é função das condições de risco associadas a cada barragem.

Para a avaliação da adequação do sistema de observação da barragem dos Pequenos Libombos, procedeu-se à aplicação da referida metodologia, através da determinação do índice global de risco. De acordo com as NOIB, para quantificar o índice global de risco (α_g) é necessário determinar diversos índices parciais (α_i) correspondentes aos diversos fatores de risco. Tal pode ser feito recorrendo ao Quadro I das referidas normas e às características da obra. O quadro referido divide a quantificação do risco em três grupos de descritores: fatores exteriores ou ambientais; fiabilidade da obra; fatores humanos e económicos.

Assim, atentos os elementos de informação disponíveis sobre as características da obra foram definidos os índices parciais de risco (α_i) necessários à quantificação do índice global de risco α_g , devidamente assinalados a sombreado no Quadro 1.

A adoção dos índices (α_i) associados a cada um dos descritores é justificada de seguida:

Fatores exteriores ou ambientais (E=2,0):

 $\alpha_1 = 2$ – aceleração sísmica máxima de projeto de 0,10 g para um período de retorno de 1000 anos;

- $\alpha_2 = 2$ baixa probabilidade de escorregamento dos taludes nas encostas das margens da albufeira;
- $\alpha_3 = 3$ muito baixa probabilidade de cheias superiores à de projeto;
- $\alpha_4 = 1$ gestão anual ou sazonal da albufeira;
- $\alpha_5 = 2$ fracas ações agressivas (clima, água, etc.).

Fiabilidade da obra (F=2,0):

- $\alpha_6 = 1$ dimensionamento estrutural adequado;
- $\alpha_7 = 3$ condições de fundação aceitáveis;
- $\alpha_8 = 1$ órgãos de descarga fiáveis;

$\alpha_9 = 3$ – manutenção da obra satisfatória.

Fatores humanos e económicos (R=4,5):

 $\alpha_{10} = 4$ - volume da albufeira de 400x10⁶ m³;

 $\alpha_{11} = 5$ – ocupação dos terrenos a jusante da barragem com diversos aglomerados populacionais, pequenas indústrias e explorações agrícolas.

O valor assim determinado para o índice global de risco da barragem (α_g =ExFxR) é de 18,0.

2.2 - Grandezas a observar

As NOIB definem as grandezas a observar em função da altura do aterro da barragem, dos valores dos índices global de risco α_g e parcial α_1 (sismicidade), e do descritor associado aos fatores humanos e económicos (R), tal como se apresenta no Quadro 1, onde se encontram assinaladas a sombreado as grandezas a observar na barragem dos Pequenos Libombos (mínimo recomendável).

Para uma altura da barragem de 46 m, α_g =18 e R=4,5 a barragem deverá ser munida com dispositivos que permitam medir as seguintes grandezas: i) nível de água na albufeira (NAA); ii) deslocamentos superficiais; iii) deslocamentos internos; iv) caudais de infiltração total e parciais; v) níveis piezométricos utilizando piezómetros com fluxo e; vi) precipitação atmosférica.

A barragem dos Pequenos Libombos encontra-se em exploração há cerca de 20 anos sem ter exibido comportamentos que indiciem fenómenos lesivos da sua segurança. Por outro lado, tem um registo organizado dos resultados de alguns dos dispositivos de observação instalados, o que, como se verá adiante, permite aferir o seu comportamento com base em observação instrumental. Assim, quer os resultados da inspeção visual, quer os resultados da observação instrumental concorrem para a inexistência de mau comportamento.

Para conseguir estabelecer um juízo de valor sobre a adequação do sistema de observação da barragem, deve-se atender aos cenários de acidente e às patologias mais frequentes em barragens deste tipo e, em especial, com idades semelhantes.

De acordo com Foster et al. (2000), praticamente metade dos acidentes em barragens de aterro em operação (48,7%), ficam a dever-se a problemas de escoamento excessivo e/ou *piping* no aterro ou fundação. Outra grande parcela dos acidentes (34,2%) fica a dever-se ao galgamento do aterro. Do exposto resulta que a monitorização de grandezas que permitam aferir qualquer um destes fenómenos é da maior importância para barragens deste tipo, incluindo esta. No que respeita aos fenómenos de escoamento excessivo e de *piping*, a sua deteção, quando possível, é feita, quer de forma direta, através da medição de caudais, quer de forma indireta, pelas variações anormais nas pressões intersticiais ou pela manifestação de deformações que possam indiciar arrastamento de material de aterro ou da fundação.

Os cenários de deformação excessiva, que não sejam provocados por fenómenos de arrastamento de materiais, são normalmente devidos, neste tipo de barragens, à consolidação ou à fluência. Neste caso, atendendo à idade da barragem, quer os fenómenos de consolidação, quer de fluência deverão apresentar uma expressão muito reduzida. Além disso, visualmente, não se deteta a existência de qualquer deformação anormal, global ou localizada.

No que respeita à possibilidade de galgamento, tal pode acontecer, quer pela perda de folga da barragem, por exemplo, devido a deformações excessivas ou fluência, quer pela ação de sismos. Outras possibilidades são as de ocorrência de cheias superiores às de projeto ou ainda por deficiências ou obstrução nos órgãos de descarga.

Tendo em atenção as considerações anteriores no que respeita à idade da barragem e aos cenários de deterioração e acidente e procurando-se otimizar a recolha de informação pertinente para a avaliação da segurança, para a barragem dos Pequenos Libombos, considera-se adequada a medição das grandezas preconizadas nas NOIB, anteriormente referidas.

SOCIADOS A RES HUMANOS E NÓMICOS (R)	Instalações	B	Jusante	11	Zona não habitada sem valor económico	Áreas isoladas, agricultura	Pequenos aglomerados populacionais, agricultura, indústria artesanal	Aglomerados populacio- nais médios, pequenas indústrias	Grandes aglomerados populacionais, indústrias, instalações nucleares		Sismologia		x se $\alpha_g > 9$ com $\alpha_1 = 5$	x se $\alpha_1 = 5$	x se $\alpha_1 \ge 4$	x se $\alpha_1 \ge 3$	×
AS: FACTOR ECO	Volume	da albufeira	(_m)	10	< 10 ⁵	10 ⁵ - 10 ⁶	10 ⁶ - 10 ⁷	10 ⁷ - 10 ⁹	> 10 ⁹	1	Precipitação atmosférica		ı	(x)	x Se R ≥ 3	×	×
= (F)	Manutenção			6	Muito boa	Воа	Satisfatória	I	I	Insatisfatórias	Iciais	ómetro n fluxo	1	x x1 = 5	× α1 ≥ 4	×	×
IADOS IABILIDADI	Órgãos	de	descarga	8	Fiáveis	I	1	I	I	nsuficientes não operacionais	ões intersti	ro Piez	0	se (se		
ASSOC RRAGEM - F	Fundações			7	Muito boas	Boas	Aceitáveis	1	Medíocres	Medíocres a más	Press	Piezómet	$\begin{array}{c} x \\ \text{se } \alpha_g > 1 \\ \text{ou } R \ge 3 \end{array}$	×	×	×	×
BA	Dimensio-	namento	estrutural	9	Adequado	1	Aceitável	1	1	Inadequado	Caudal de infiltracão		X Caudal Total se $\alpha_g > 10$ ou R ≥ 3	x Caudal Total	x :audal Parcial se R ≥ 3	x audal Parcial	x audal Parcial
	Acções agressivas (Clima,	(Clima, água, etc)	5	Mínimas	Fracas	Médias	Fortes	Muito fortes	1	nsões otais				(x) C	×	×	
ENTAIS (E)	Gestão da	albufeira		4	Plurianual, anual ou sazonal	I	Semanal	Diária	Bombagem	ł	Te	sou		> 20	> 10 > 3		
DOS S OU AMBII	theias	oeriores	rojecto abilidade)	e	ito baixa ragens e oetão)	1	ito baixa agens de tterro)	1	I	levada	amentos	Inter	1	x se α _g >	x se α_{g}	×	×
ASSOCIAI KTERIORES	nto	Ins	ap (prob		(bar (bar		Mui (barr a			Ш	Desloc	uperficiais	\times 5e α_g > 15 ou R > 3	$\begin{array}{c} x \\ \text{se} \ \alpha_g > 10 \\ \text{ou} \ R \ge 3 \end{array}$	×	×	×
ACTORES E	Escorregame	taludes	propabilida	7	Minima ou nula	Baixa	1	I	I	Grande	(m)	Ň					
AFA	Sismicidade	(período de	retorno de 1 000 anos)	1	Mínima ou nula a <0,05g	Baixa 0,05 g < a <0,1 g	Média 0,1 g < a < 0,2 g	Forte 0,2 g < a < 0,4 g	a > 0,4 g		Altura da barragem		< 15	15 a 30	30 a 50	50 a 100	> 100
				ğ	α=1	α=2	α=3	α=4	α=5	α=6 (a)							

Quadro 1 - Fatores das condições de risco e grandezas mínimas obrigatórias

2.3 - ANÁLISE DA FUNCIONALIDADE DO SISTEMA DE OBSERVAÇÃO

O sistema de observação inicialmente instalado na barragem dos Pequenos Libombos, na sequência da construção, compreendia dispositivos para a monitorização:

a) dos níveis de água na albufeira (NAA);

b) dos deslocamentos superficiais através de marcas superficiais;

c) dos deslocamentos internos, horizontais e verticais, através de inclinómetros clino-altimétricos subverticais;

d) das pressões intersticiais que se desenvolvem no corpo da barragem e na fundação (através de células elétricas e piezómetros de tubo aberto);

e) do caudal drenado infiltrado nas galerias do descarregador;

f) dos caudais drenados e das pressões na fundação do descarregador, através de drenos e piezómetros de tubo aberto;

g) das pressões sob a bacia de dissipação, através de piezómetros de tubo aberto, e;

h) dos níveis de água no terreno a jusante da obra, através de poços de alívio.

Para além destas grandezas o sistema de observação da barragem inclui ainda uma estação meteorológica, essencial também no âmbito do balanço hídrico da albufeira.

Tendo em consideração a constituição do sistema de observação inicial, conclui-se pela sua adequação às características próprias da obra e respetivo risco potencial induzido, sem qualquer lacuna relativamente às grandezas cuja medição se referiu como necessária pela aplicação das NOIB.

O sistema de medição de movimentos superficiais dos aterros e descarregador, constituído por 47 marcas superficiais e respetivos pontos de referência encontra-se inoperacional, não se procedendo a leituras.

Os 8 tubos inclinométricos estão distribuídos por 4 perfis de observação e em 2 deles verificam-se obstruções que impedem a medição de movimentos até ao fundo de furo. Estes dispositivos permitem medir, quer movimentos horizontais – com recurso a sonda inclinométrica, quer movimentos verticais em relação à boca – com recurso a sonda magnética.

Os piezómetros de tubo aberto, instalados nos aterros e respetivas fundações, 41 no total, estão distribuídos por 4 perfis de observação. Destes, 9 estão inoperacionais, mas os restantes 32 permitem monitorar a rede de percolação interna dos aterros.

Das 9 células elétricas de pressão intersticial, que se encontram distribuídas por 3 perfis de observação, uma está avariada, desde 2005, e as restantes 8 fornecem leituras que indiciam também estar avariadas.

Os poços de alívio a jusante, 19 no total, encontram-se distribuídos da seguinte forma: 5 à esquerda do descarregador, dos quais 3 fora de serviço, e 14 à direita do descarregador, todos operacionais.

A escala limnimétrica, instalada no descarregador de cheias encontra-se em bom estado de conservação.

2.4 - Análise da variação do NAA e volume armazenado

O resumo das variações registadas no Nível de Água na Albufeira da barragem dos Pequenos Libombos, desde Novembro de 1990, ano de início da exploração, está ilustrado no Quadro 2. A representação dos valores diários do NAA e respetivas variações encontra-se na Figura 4.

Ano	Cota máxima (m)	Cota mínima (m)	Variação máxima (m)	Variação + (m/dia)	Variação (m/dia)	- Início ano (m)	Fim ano (m)	Variação no ano (m)	Volume início (Mm3)	Volume fim (Mm3)	Var. volume (Mm3)	№ leituras anuais	Intervalo médio (dias)
1986	22.6	18.11	4.49	0.04	-0.03		22.6	22.6	-	4.1	-	11	25
1987	38.95	22.99	15.96	1.87	-0.03	22.6	36.63	14.03	4.1	106.8	102.7	65	5.6
1988	44.62	38.95	5.67	0.33	-0.15	36.63	44.62	7.99	106.8	302.6	195.8	91	4.0
1989	47.25	44.15	3.1	0.95	-0.2	44.62	44.4	-0.22	302.6	295.2	-7.4	48	7.6
1990	44.98	44.22	0.76	0.05	-0.12	44.4	44.22	-0.18	295.2	289.2	-6.0	103	3.5
1991	45.8	43.99	1.81	0.39	-0.02	44.24	44.08	-0.16	289.9	284.6	-5.3	304	1.2
1992	44.07	41.36	2.71	0.14	-0.07	44.09	42.15	-1.94	285.0	226.4	-58.6	305	1.2
1993	43.75	42.27	1.48	0.37	-0.02	42.2	42.69	0.49	227.9	241.8	13.9	304	1.2
1994	43.1	41.85	1.25	0.12	-0.02	42.71	41.95	-0.76	242.3	220.9	-21.4	304	1.2
1995	42.31	39.78	2.53	0.65	-0.03	41.95	41.77	-0.18	220.9	216.0	-5.0	304	1.2
1996	47.06	41.92	5.14	0.44	-0.05	41.82	45.08	3.26	217.4	318.6	101.2	305	1.2
1997	46.39	45.12	1.27	0.14	-0.16	45.07	46.02	0.95	318.2	353.0	34.8	304	1.2
1998	47.85	44.86	2.99	2.16	-1.93	46.03	44.91	-1.12	353.5	312.6	-40.9	304	1.2
1999	46.65	44.65	2	0.57	-0.22	44.86	45.59	0.73	310.9	337.0	26.2	274	1.3
2000	48.28	44.44	3.84	2.57	-1.95	45.66	45.46	-0.19	339.4	332.3	-7.1	305	1.2
2001	47.03	44.34	2.69	0.81	-0.28	45.47	45.05	-0.42	332.7	317.5	-15.2	304	1.2
2002	44.92	44.03	0.89	0.07	-0.08	45.04	44.29	-0.75	317.0	291.4	-25.6	304	1.2
2003	44.27	41.56	2.71	0.31	-0.34	44.29	41.67	-2.62	291.5	213.4	-78.1	304	1.2
2004	44.37	41.59	2.78	0.42	-0.02	41.66	43.45	1.79	213.1	264.5	51.4	305	1.2
2005	44.04	42.31	1.73	0.19	-0.02	43.43	42.4	-1.03	264.0	233.3	-30.6	304	1.2
2006	45.82	42.22	3.6	0.67	-0.02	42.39	45.16	2.77	233.1	321.4	88.3	304	1.2
2007	44.89	42.95	1.94	0.11	-0.03	45.16	43.33	-1.83	321.4	260.9	-60.5	304	1.2
2008	43.75	42.01	1.74	0.1	-0.02	43.33	42.37	-0.96	260.9	232.7	-28.2	305	1.2
2009	43.87	41.43	2.44	0.46	-0.02	42.42	43.84	1.42	233.9	276.8	42.8	304	1.2
2010	46.75	43.76	2.99	0.22	-0.05	43.83	45.32	1.49	276.5	327.1	50.6	304	1.2
Máximo	48.28	45.12	15.96	2.57	-0.02	46.03	46.02	22.6	353.5	353.0	195.8		
Mínimo	22.6	18.11	0.76	0.04	-1.95	22.6	22.6	-2.62	4.1	4.1	-78.1		

Quadro 2 - Resumo das cotas, variações do NAA e volumes armazenados na albufeira

* - 1º registo em 28 de Marco de 1986

Figura 4 - Variação do NAA entre Novembro de 1990 e Março de 2011

As variações diárias do NAA dos Pequenos Libombos são, em geral, modestas. Pontualmente ocorrem variações um pouco superiores, correspondendo a períodos de grande afluência e consequentes descargas. O caso mais relevante ocorreu no início de 2000, por ocasião de uma grande cheia em Moçambique. Esses casos, embora bem ilustrados na Fig. 4, representam, na verdade, uma pequena parcela dos valores diários. A maioria, cerca de 74% corresponde a variações negativas de apenas 5 cm. Outra parcela com alguma relevância (19%) corresponde a valores positivos, também de 5 cm/dia. Todos estes valores e outros relacionados com a exploração da albufeira encontram-se resumidos no Quadro 2.

3 - MODELOS DE COMPORTAMENTO

3.1 - Inclinómetros clino-altimétricos subverticais

A leitura dos inclinómetros esteve interrompida durante um período considerável por falta ou avaria no torpedo sensor. Em 2004 passou a estar disponível um sensor novo e, assim, desde essa data retomaram-se as campanhas de observação inclinométrica com periodicidade mais ou menos regular.

No que respeita aos resultados obtidos, os deslocamentos são reduzidos e compatíveis com as observações resultantes da inspeção visual. De facto, assim como na inspeção visual não foram detetados quaisquer desalinhamentos, também se pôde verificar que os movimentos registados pelos

inclinómetros são sempre inferiores a 10 mm. Os movimentos são predominantemente no sentido de jusante, muito embora entre campanhas sucessivas, por vezes, aparentem ocorrer deslocamentos no sentido de montante. Atendendo à fase de vida da obra, em que o primeiro enchimento ocorreu há bastante tempo, às pequenas variações do nível da albufeira e à precisão inerente ao método inclinométrico, é possível concluir que essas pequenas variações possam estar associadas a erros inerentes a este último. Assim, no âmbito deste artigo, dispensa-se uma apresentação mais detalhada dos resultados obtidos com estes dispositivos.

3.2 - Piezómetros de tubo aberto no aterro e fundação

Para o estabelecimento dos modelos de análise das variações das pressões de água no aterro e fundação foram testados diversos tipos de expressões que procuram relacionar as variações do nível de água na albufeira, o tempo e as pressões medidas nos diversos piezómetros. Foram consideradas as seguintes equações nos ajustes efetuados (em que os β_i são constantes a determinar, P a pressão, N_{AA} o nível da água na albufeira e, N_{dias} o número de dias que decorreram desde uma data arbitrária):

$$P = \beta_1 + \beta_2 N_{AA}$$
^[1]

$$P = \beta_1 + \beta_2 N_{dias} + \beta_3 N_{AA}$$
^[2]

$$P = \beta_1 + \beta_2 N_{AA} + \beta_3 N_{AA}^2$$
[3]

Para além deste estudo procedeu-se também à avaliação, para cada aparelho deste tipo, da carga relativa, definida por:

$$P_r = \frac{P_{piez} - C_{pp}}{N_{AA} - C_{pp}}$$
[4]

onde P_{piez} representa a carga lida no piezómetro, N_{AA} o nível de água na albufeira e C_{pp} a cota da ponteira porosa. Esta grandeza mantém-se praticamente constante, independentemente do N_{AA} , permitindo uma avaliação simples do funcionamento hidráulico da barragem nesta zona. A título de exemplo apresenta-se na Figura 5 um diagrama com um dos perfis instrumentado com piezómetros onde se representa a pressão relativa registada em cada um.

Figura 5 - Pressão relativa nos piezómetros de tubo aberto instalados no perfil 490

Verifica-se que os piezómetros mais a montante apresentam em geral cargas elevadas, entre 80 a 85%, no núcleo. É de realçar também a carga muito elevada no piezómetro situado na fundação, a montante da cortina. Em termos práticos não há perda de carga até aquela zona. Na zona de jusante do núcleo as cargas são substancialmente mais reduzidas, atestando o bom funcionamento do núcleo e, em especial, da cortina. Saliente-se que o gradiente entre os piezómetros P10 e P6 faz dissipar 80% da carga da albufeira, numa distância de cerca de 10 m. Os valores obtidos para os coeficientes numéricos dos modelos estão resumidos no Quadro 3.

Quadro 3 - Parâme	tros dos modelos	(Eq. 1 ou 4)	dos piezómetros	de tubo aberto	instalados no perfil	490
-------------------	------------------	--------------	-----------------	----------------	----------------------	-----

	C _{pp} (m)	β_1	β_2	R	Pr	Modelo
P01	5.3		inop des	de 1996	25%	P=0,25NAA+3,975
P02	19.44				0%	P=0NAA+19,44
P03	5.34		inop des	de 1998	25%	P=0,25NAA+4,005
P04	22.06				0%	P=0NAA+22,06
P05	28.66				0%	P=0NAA+28,66
P06	7.15				21%	P=0,21NAA+5,6485
P07	14.37	13.82	0.32	0.73	~42%	P=0,317NAA+13,82
P08	32.4				20%	P=0,2NAA+25,92
P09	37.59				0%	P=0NAA+37,59
P10	4.45	-1.75	1.03	0.99	100%	P=1,034NAA-1,75
P11	15.33	10	0.66	0.75	85%	P=0,658NAA+10
P12	25.1	4.66	0.82	0.74	82%	P=0,823NAA+4,66
P13	31.3	-4.26	1.03	0.73	80%	P=1,03NAA-4,26

Nalguns casos os modelos foram estabelecidos utilizando a expressão (1), enquanto que noutros, (em regra quando a variação de pressão é muito reduzida) houve vantagem em aplicar a expressão (4). Notese que as expressões são equivalentes mas, no caso da expressão (4), impõe-se o valor da relação entre o NAA e a carga, ao invés de a determinar com base em algoritmos de minimização do erro.

<u>Perfil 801</u>: Este perfil dispõe apenas de 2 piezómetros, situados na fundação, às cotas 4,97 m e 8,25 m. As pressões registadas em ambos têm-se mantido sensivelmente constantes, e correspondem a cerca de 20 m de coluna de água. As cargas relativas são altas (Quadro 4, Figura 6), sensivelmente o dobro das registadas nos piezómetros da fundação do perfil 490.

Quadro 4 - Parâmetros dos modelos (Eq. 1 ou 4) dos piezómetros de tubo aberto instalados no perfil 801

	C _{pp} (m)	β_1	β_2	R	Pr	Modelo
P01	4.97	12.73	0.25	0.67	40%	P=0,246NAA+12,73
P02	8.25	13.66	0.21	0.63	44%	P=0,211NAA+13,66

Figura 6 - Pressão relativa nos piezómetros de tubo aberto instalados no perfil 801

<u>Perfil 860</u>: À semelhança do que acontece no perfil 490, verifica-se, em geral, uma elevada pressão no núcleo a montante, e valores um pouco mais reduzidos a jusante, como é desejável (Quadro 5, Figura 7). Na fundação, sob o maciço de jusante, os valores obtidos são também da ordem de grandeza dos observados no perfil 490.

Quadro 5 - Parâmetros dos modelos (Eq. 1 ou 4) dos piezómetros de tubo aberto instalados no perfil 860

	C _{pp} (m)	β_1	β_2	R	Pr	Modelo
P01	8.79		inop?		20%	P=0,2NAA+7,032
P02	14.31	18.23	-0.08	0.33	0%	P=-0,080NAA+18,23
P03	8.36		inop?		20%	P=0,2NAA+6,688
P04	13.05	34.83	-0.46	0.69	0%	P=-0,459NAA+34,83

	C _{pp} (m)	β_1	β_2	R	P _r	Modelo
P05	22.53	40.36	-0.33	0.51	0%	P=-0,331NAA+40,36
P06	10.64	61.28	-0.6	0.83	70%	P=-0,596NAA+61,28
P07	27.89				40%	P=0,4NAA+16,734
P08	33.45				0%	P=0NAA+33,45
P09	38.31				0%	P=0NAA+38,31
P10	10.87	46.98	-0.16	0.4	90%	P=-0,155NAA+46,98
P11	20.3				89%	P=0,89NAA+2,233
P12	29.04	32.58	0.24	0.74	95%	P=0,237NAA+32,58
P13	9.57	47.56	-0.17	0.56	82%	P=-0,168NAA+47,56

Figura 7 - Pressão relativa nos piezómetros de tubo aberto instalados no perfil 860

<u>Perfil 1210</u>: À semelhança do que acontece nos perfis 490 e 860 verifica-se um nível de pressão elevado na zona mais a montante do núcleo e valores um pouco mais reduzidos, a jusante, como é desejável (Quadro 6, Figura 8). Na fundação, sob o maciço de jusante, os valores obtidos são também da ordem de grandeza dos observados nos perfis 490 e 860.

Quadro 6 - Parâmetros dos modelos (Eq. 1 ou 4) dos piezómetros de tubo aberto instalados no perfil 1210

	C _{pp} (m)	β_1	β_2	R	Pr	Modelo
P01	20.57	10.96	0.36	0.82	20%	P=0,355NAA+10,96
P02	30.55				0%	P=0NAA+30,55
P03	18.79	10.05	0.41	0.95	35%	P=0,408NAA+0,408
P04	30.6				0%	P=0NAA+30,6
P05	17.1	13.43	0.36	0.89	42%	P=0,363NAA+13,43
P06	23.48	18.67	0.26	0.78	38%	P=0,256NAA+18,67
P07	33.55	27.02	0.24	0.79	40%	P=0,242NAA+27,02
P08	37.89	40.2	-0.04	0.33	10%	P=-0,040NAA+40,20
P09	42.71	43.46	-0.02	0.64	0%	P=-0,017NAA+43,46
P10	17.95	3.15	0.78	0.99	78%	P=0,775NAA+3,15
P11	23.39	5.43	0.73	0.96	75%	P=0,733NAA+5,43
P12	33.89	30.71	0.22	0.44	?	P=0,215NAA+30,71
P13	37.59	28.65	0.33	0.72	95%	P=0,326NAA+28,65

Em geral, é possível verificar o correto funcionamento do núcleo e da fundação da barragem. Os resultados fornecidos por estes equipamentos encontram-se dentro do previsível para este tipo de barragem. A maioria dos modelos forneceram resultados que podem ser incluídos num sistema de validação automática. Nos Quadros 3 a 6 são listados os parâmetros dos modelos obtidos por aplicação das Eq, 1 ou 4 e que apresentam uma correlação considerada adequada.

Figura 8 - Pressão relativa nos piezómetros de tubo aberto instalados no perfil 1210

3.3 - Células elétricas de pressão intersticial no aterro

No que concerne à observação piezométrica e, em complemento aos piezómetros de tubo aberto, a barragem dispõe de 3 perfis (PK 149, 860 e 1210) instrumentados com células elétricas para a medição das pressões intersticiais. Estes equipamentos foram instalados ainda no decorrer da fase construtiva, pelo que possibilitaram a monitorização dos acréscimos de pressão intersticial decorrentes do crescimento do aterro, permitindo complementar agora a monitorização das variações de pressão intersticial devidas às variações do NAA.

À semelhança do que foi feito nos demais aparelhos foram testados diversos modelos semi-empíricos para procurar ajustar as medições disponíveis. Tendo em consideração a variação observada, tal como se ilustra, a título de exemplo na Figura 9, decidiu-se considerar os seguintes modelos:

$$P = \beta_1 + \beta_2 N_{AA}$$

$$P = \beta_1 + \beta_2 N_{dias} + \beta_3 N_{AA}$$
[6]

$$P = \beta_1 + \beta_2 N_{AA} + \beta_3 \log(N_{dias})$$
^[7]

Na Figura 9 é também notório que o crescimento da pressão intersticial cessou quando se iniciou o enchimento da albufeira, por volta de 1987. Esta circunstância é compatível com o facto de as células estarem a registar acréscimos de pressão intersticial decorrentes do crescimento do próprio aterro. Noutros casos, a pressão intersticial apresenta variações com o início do enchimento da albufeira e, só quando se atinge o nível máximo, é que se observa de forma mais evidente alguma dissipação das pressões intersticiais. Por esse motivo, nos modelos com dependência do tempo (Eqs. 6 e 7) o ajuste foi feito apenas com os dados após se ter atingido o NAA máximo (Abril de 1989).

Em geral os ajustes obtidos foram satisfatórios (Quadro 7) e indicam invariavelmente que as pressões intersticiais devidas à construção dos aterros, que foram muito elevadas (Figura 9), se encontram quase totalmente dissipadas. O modelo que se parece adequar melhor à generalidade dos piezómetros é o que corresponde à Eq. 7. No entanto, o modelo que considera uma dependência linear com o tempo (Eq. 6) também apresenta bons resultados. Isso deveu-se ao facto de não se ter considerado alguns dados da fase inicial das observações (de 1987 a 1989), pelo que o ajuste foi feito com um conjunto de observações aproximadamente linear (por exemplo entre 1990 e 2010, na Figura 9).

Figura 9 - Pressão (em metros de coluna de água) no piezómetro eléctrico PEM3 do P1210

Perfil	Piezómetro	β_{I}	β_2	β_3	σ	R
	PEM9	93.49	-0.08	-6.74	2.84	0.84
490	PEE8	116.07	-0.29	-8.91	0.87	0.99
	PEJ7	76.94	0.17	-7.25	0.53	0.99
	PEM6	123.52	-0.29	-10.12	0.87	0.99
860	PEE5	76.73	-0.09	-5.28	0.4	0.98
	PEJ4	110.05	0.2	-11.92	1.89	0.98
	PEM3	59.39	0.39	-5.29	0.58	0.99
1210	PEE2	44.21	0.14	-2.13	0.69	0.9
	PE]1	36.3	0.03	-0.97	0.27	0.9

Quadro 7 - Parâmetros dos modelos (Eq. 7) dos piezómetros eléctricos

PEM - piezómetro localizado mais a montante

PEE - piezómetro localizado sobre o eixo

PEJ - piezómetro localizado mais a jusante

Por outro lado, e no que respeita ao comportamento mais recente, constata-se que as variações do NAA se repercutem de forma muito atenuada nas pressões intersticiais do núcleo, tal como se havia verificado no caso dos piezómetros de tubo aberto.

Finalmente, e como nota dissonante, é também possível verificar existir uma discrepância acentuada entre os resultados das observações feitas com os piezómetros hidráulicos e elétricos, sendo que, estes últimos, acusam, em geral, pressões bastante mais reduzidas. Assim, na situação atual, subsiste a dúvida sobre o funcionamento destes equipamentos, admitindo-se que já não se encontrem a traduzir de forma precisa, pelo menos quantitativamente, a resposta da barragem.

3.4 - Drenos e piezómetros na fundação do descarregador - medição de caudais e pressões

3.4.1 - Piezometria

No que respeita à medição de pressões no descarregador, esta estrutura encontra-se instrumentada com piezómetros e drenos tal como ilustrado na Figura 10. Estes equipamentos foram alvo de operações de manutenção e reabilitação, trabalhos que ficaram concluídos em 2000, tendo-se iniciado um novo período de observação após essas ações. Os modelos foram construídos com base nos dados recolhidos desde então até à atualidade À semelhança do que foi feito para outros aparelhos, tomaram-se as expressões (1) a (3) para tentar modelar o comportamento observado.

Figura 10 - Pressão relativa nos piezómetros de tubo aberto instalados sob o descarregador

Todos os piezómetros registam pressões baixas, pouco superiores à cota do respetivo manómetro. Os modelos apontados não se ajustam de forma sólida às observações. No Quadro 8 estão resumidos os parâmetros obtidos para o modelo linear no nível da albufeira (Eq. 1). Conforme se pode verificar, apenas 4 aparelhos apresentam um coeficiente de correlação superior a 0,6, valor que ainda assim, assinala uma dependência muito fraca entre as variáveis. De facto, é possível verificar que as observações são, em geral, estacionárias. O mesmo se pode verificar da análise da Figura 10, onde se resumem os valores da carga relativa definida por:

$$C_r = \frac{P_{piez} - C_m}{N_{AA} - C_m}$$
[8]

onde P_{piez} representa a carga lida no piezómetro, N_{AA} o nível de água na albufeira e C_m a cota do manómetro (neste caso particular os valores calculados referem-se às cotas dos manómetros por desconhecimento das cotas exatas das câmaras de tomada de pressão).

Na generalidade dos piezómetros a carga varia entre 0 e 5% da carga de montante.

Ouadro 8 -	Parâmetros	dos modelos	(Ea.1) dos	piezómetros na	a fundação de	o descarregado
Quuuno o	i aranicci ob	abb moacros	(Lq. 1) 405		i naniaaçao a	o acocan egaao

Piezómetro	β1	β2	R
905.07_1	2.32	0.134	0.538
905.07_2	4.13	0.089	0.419
906	1.29	0.161	0.606
913.27	1.90	0.144	0.585
916	1.39	0.155	0.612
916.12	1.80	0.149	0.592
921.08	2.27	0.136	0.530
927.11	2.92	0.120	0.483
928.17	0.88	0.170	0.592
930	0.73	0.174	0.663
933	1.07	0.168	0.613
938.97	5.21	0.063	0.391
939.2	5.73	0.025	0.181
944.97	2.23	0.136	0.593
945.19	6.63	0.005	0.195
948	6.78	0.002	0.028
951.07	4.63	0.077	0.185
951.12	6.18	0.037	0.225
954.32	7.04	0.017	0.106

Piezómetro	β1	β2	R
957.12	5.67	0.050	0.294
960.12	6.04	0.042	0.226
961.22_2	4.99	0.069	0.578
961.22	7.19	0.108	0.312

3.4.2 - Caudais

Os piezómetros instalados na fundação do descarregador são usados para drenar a fundação, por isso, encontram-se, normalmente, a cumprir essas funções. Só quando se pretende medir as subpressões é que os drenos/piezómetros são fechados.

Da análise da variação temporal dos caudais medidos é evidente que tem havido uma redução não desprezável dos valores registados. Por esse motivo, no estabelecimento dos modelos, consideraram-se as seguintes expressões (em que *Q* é o caudal):

$$Q = \beta_1 + \beta_2 N_{AA}$$
[9]

$$Q = \beta_1 + \beta_2 N_{dias} + \beta_3 P_N + \beta_4 N_{AA}$$
[10]

$$Q = \beta_1 + \beta_2 N_{AA} + \beta_3 \log(N_{dias})$$
[11]

Os valores dos caudais totais medidos nas galerias (grande e pequena) resumem-se nas Figuras 11 e 12. Nestas figuras representam-se também os resultados do ajuste resultante da equação 11, podendo-se verificar a boa aderência deste modelo às observações e, para além disso, avaliar também a importante variação nos caudais drenados desde o início da exploração. Grosso modo, os caudais diminuíram 10 vezes, desde cerca de 250 l/min para cerca de 25 l/min, o que indicia um processo gradual de entupimento.

Figura 11 - Caudais totais na "galeria grande"

Figura 12 - Caudais totais na "galeria pequena"

3.5 - Piezómetros sob a bacia de dissipação

A base da bacia de dissipação encontra-se instrumentada com um conjunto de 6 piezómetros dispostos segundo uma malha retangular Foram testados os modelos descritos na secção anterior. Na Figura 13 resumem-se, em planta, os valores das pressões relativas obtidas para estes aparelhos. De salientar que, a par de um valor médio aproximadamente constante de pressão relativa de 33% de carga da albufeira, ocorre no piezómetro 5 um valor de 60%, portanto substancialmente mais elevado.

Figura 13 - Pressão relativa nos piezómetros de tubo aberto instalados sob a bacia de dissipação

3.6 - Poços de alívio no terreno a jusante

O nível de água dentro dos poços de alívio tem-se mantido relativamente estacionário ao longo do tempo. No início do enchimento, houve algumas variações, naturalmente relacionadas com a variação da carga induzida pela albufeira a montante. Após essa fase inicial as variações registadas têm sido diminutas. A carga relativa em cada poço, à semelhança do que se fez para os piezómetros de tubo aberto, pode ser calculada por:

$$C_r = \frac{P_{piez} - C_f}{N_{AA} - C_f}$$
[12]

onde P_{piez} representa a carga lida no poço, N_{AA} o nível de água na albufeira e C_f a cota do fundo do poço. Esta grandeza mantém-se praticamente constante, independentemente do nível a montante, permitindo uma avaliação simples do funcionamento hidráulico da barragem nesta zona. A maioria dos poços apresenta uma carga relativa de cerca de 20% da carga máxima teórica. Este comportamento está em sintonia com as observações registadas nos piezómetros hidráulicos situados na fundação a jusante (§3.2). O Quadro 9 resume as variações do nível de água nos poços considerando o inicio do enchimento ou o fim do enchimento. A Figura 14 ilustra a situação em Março de 2010 ($N_{AA} = 45,10$ m), sendo possível verificar que, em geral, a carga nos poços é muito inferior à cota do terreno, garantido uma confortável margem de segurança. No poço 4 (PAD 4) essa margem é inferior.

Quadro 9 - Variação do nível da água nos poços de alívio

Deee	Variação	Variação
Poço	1987 (m)	1991 (m)
DADA	1.02	1 70
PAD7	1 70	1 42
PADS	1 61	1 28
DADQ	1.87	1,20
PAD10	1.98	1 54
PAD11	2.05	1,54
PAD12	2,00	1,50
DAD12	2,13	1,30
PAD13	2,04	1,74
PAD14	2,01	1,02
PAD15	3,04	1,00
PADIO DADIZ	3,34	1,99
PAD17	3,00	2,02
PAD18	3,59	2,05
PAD19	5,39	3,72
PAE3		
PAE4		
PIEZ6	seco/inop	
PIEZ9		
PIEZ10		

Perfil longitudinal pelos pocos de alivio

Figura 14 - Nível de água nos poços em Março de 2010 (NAA = 45,10 m)

4 - PREVISÃO DE COMPORTAMENTO DA OBRA

Com base nos modelos estabelecidos é possível estimar o comportamento da piezometria do núcleo e da fundação da barragem. Com efeito, admitindo que não se processa uma variação substancial do comportamento da fundação, o que poderia, eventualmente, acontecer para gradientes muito elevados, pode-se prever o funcionamento do corpo dos aterros e respetivas fundações. Tendo por base os mesmos pressupostos, é também possível estimar o comportamento da piezometria na zona do pé de talude de jusante.

Assim, nas Figuras 15 e 16 ilustra-se a previsão para a situação correspondente ao NPA (NAA = 47 m) nos perfis 490 e 1210, respetivamente A Figura 17 ilustra a previsão de níveis de água a jusante, também na situação de pleno armazenamento. Nestas condições está garantida a segurança da barragem.

Figura 15 - Previsão do nível de água nos piezómetros de tubo aberto instalados no perfil 490 (NAA=NPA)

Figura 16 - Previsão do nível de água nos piezómetros de tubo aberto instalados no perfil 1210 (NAA=NPA)

Figura 17 - Previsão do nível de água nos poços de alívio quando o NAA = NPA

5 - CONCLUSÕES

Em resultado da análise do comportamento da barragem dos Pequenos Libombos é possível inferir sobre o bom comportamento geral da obra. Com efeito, apesar de haver algumas lacunas na informação resultante da observação instrumental, não existem indícios de fenómenos lesivos da segurança, para as condições de exploração atuais

No que respeita a deformações a barragem não apresenta quaisquer indícios de deformação excessiva generalizada ou localizada. Todas as deformações detetadas visualmente podem ser consideradas normais, tendo em consideração a idade da barragem. Os resultados da observação inclinométrica, no que respeita às deformações verificadas desde 2004, corroboram estas conclusões.

No que respeita à piezometria no corpo da barragem e respetiva fundação, de acordo com a análise efetuada, não se detetou nenhum indício que possa ser considerado preocupante no que respeita à segurança da barragem. Assinala-se apenas que o sistema de drenagem da fundação do descarregador deverá ser alvo de operações de manutenção. A diminuição dos caudais recolhidos pelo sistema parece indicar que se encontra em desenvolvimento um processo de colmatação da drenagem, com os inconvenientes que daí derivam, nomeadamente o aumento das subpressões.

REFERÊNCIAS BIBLIOGRÁFICAS

- Foster, M., Fell, R. and Spannagle M. The statistics of embankment dam failures and accidents. Canadian Geotechnical Journal, 37; 2000 p. 1000 1024.
- LNEC. Barragem dos Pequenos Libombos. Avaliação da Segurança em Novembro de 2004 e Revisão do Plano de Observação. Relatório 459/2005, DG/NBOA Proc. Int. 0502/541/221; DB/NO Proc. 0403/001/14990; 2005
- Marcelino Silva J., Portugal, J. C. e Sousa, O. Inspecção de segurança às barragens de Massingir, Corumana, Pequenos Libombos e Macarretane. 6º Congresso Luso-Moçambicano de Engenharia; 2011.
- Normas de Observação e Inspecção de Barragens (NOIB), aprovadas pela portaria nº 847/93, de 10 de Setembro de 1993.