
1 INTRODUCTION 

Rock mass deformability plays a significant role in the 
design of large structures such as concrete dams, large 
bridges, underground caverns and tunnels, since their 
behaviour depends on the displacements undergone by the 
rock mass. For the design of these types of structures, it is 
not adequate to characterize rock mass deformability just 
using laboratory tests on intact rock specimens, and 
extrapolating their results to the rock mass based on 
subjective indices such as the RMR, Q or GSI values. In 
situ tests involving relatively large and representative rock 
mass volumes can provide reliable estimates of rock mass 
deformability, and allow reducing uncertainties during 
design stages. 

Large flat jack (LFJ) tests are one of the field techniques 
used to assess the rock mass deformability that allow testing 
relatively large volumes of rock mass (Rocha 1974). LFJ 
tests begin with cutting a thin slot in the rock mass using a 
disk saw, and inserting a flat jack. Then, hydraulic pressure 
in the flat jacks applies loads to the slot walls, while rock 
mass deformation is measured at several locations by 
displacement transducers. 

The equipment for opening 1.50 m deep slots includes a 
cutting machine, with a 1.00 m diameter diamond disk saw 
mounted at the end of a rig that houses the system that 
transmits the rotating movement to the disk. A central 
168 mm diameter hole with a depth of 1.10 m is previously 
drilled by the same machine, in order to allow the disk saw 
supporting column to cut the slot down to the desired depth. 
Once the slot is cut, a flat jack is introduced and the central 
hole is filled with mortar (Figueiredo et al. 2010). 

Each flat jack consists of two steel sheets, less than 1 mm 
thick, welded around the edges (Fig. 1a). Inside the flat jack 
there are four transducers for measuring the opening of the 

slots (Fig. 1b). Each transducer consists of two small steel 
cantilevers with four electric strain gauges. They are 
calibrated before being placed inside the jack in contact 
with both sides of the jack. Displacements are also 
measured at the surface of the rock mass. Previously to slot 
cutting, two pairs of measuring pins are placed 100 mm to 
each side of the slot and 175 mm from the jack axis of 
symmetry (Fig. 1c).  

 

Figure 1. a) Large flat jack; b) location of the displacement 
transducers; c) ready for testing jacks in two contiguous slots.  

The flat jacks are initially filled with oil and a low initial 
pressure, usually of about 0.05 MPa, is applied, in order to 
guarantee that the jacks are in contact with the slot wall. A 
LFJ test consists of, at least, three loading and unloading 
cycles with increasing maximum pressures. The raw test 
results are the pressure versus displacement curves obtained 
in the test. 

In order to obtain a mean value of the modulus of 
deformability in large rock volumes, as well as information 
about the rock mass heterogeneity, two co-planar 
contiguous slots are usually opened for each test. 
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Interpretation of flat jack test results is not 
straightforward, due to the development of a tensile crack 
along the plane of the slots as applied pressures increase. 
Crack initiation and propagation depends not only on 
applied pressure but also on the in situ stresses and rock 
mass tensile strength, which are generally unknown 
parameters (Pinto 1981, ISRM 1986). 

To deal with this difficulty, a three-dimensional 
numerical model was recently developed for the 
interpretation of the large flat jack test results, enabling to 
simulate several cases of test geometries with two co-planar 
contiguous slots. The model allows simulating an actual 
large flat jack test protocol with several loading and 
unloading cycles (Figueiredo et al. 2011), and can also be 
used for estimating the initial in situ stresses perpendicular 
to the slots (Figueiredo et al. 2010).  

Applications of the model to several cases are presented 
in this paper. They consider different cases regarding the 
relation between the initial stress normal to the slots and the 
rock mass tensile strength, the applied pressures, the loading 
and unloading cycles, or the loaded area (one or two loaded 
flat jacks). The influence of the tension crack on the test 
results is assessed and discussed. 

2 NUMERICAL MODEL 

For the interpretation of LFJ tests, a three dimensional finite 
differences model using the software FLAC3D (Itasca 
2009) was developed. It can simulate a LFJ test, with two 
co-planar contiguous slots, performed at an angle between 
the plane of the slot and the rock mass surface (Figueiredo 
et al. 2010). The mesh is a 30m×30m×15m solid and has 
149,440 zones. 

In order to simulate with detail the crack initiation and 
propagation into the rock mass, a very refined mesh around 
the slots was required, since they are just a few millimetres 
thick. Figure 2 (top left) shows a view of the mesh, and 
Figure 2 (top right) displays a middle vertical cross-section. 
The dark zones are the refined mesh, which is presented 
magnified at the bottom. 

To simulate the tension crack, in the plane of the slots, 
interface elements with a finite tensile strength were used. 
Interface elements remain elastic for stresses below a given 
tensile strength; otherwise, a crack develops and the 
displacements versus pressure curves reveal a nonlinear 
behaviour. 

The numerical model performs calculations that simulate 
both the cutting of the slots and the loading-unloading 
cycles. The initial stages comprise the following steps: 

− installation of the in situ state of stress; 
− completion of the central hole for the right side 

column;  
− opening of the right side slot and filling of the central 

hole with mortar;  
− completion of the central hole for the left side column;  
− opening of the left side slot and filling of the central 

hole with mortar. 
Afterwards, loading and unloading cycles can be 

modelled, considering all possible loading cases (Fig. 3): 
− two loaded jacks in two contiguous slots;  
− one loaded jack in two contiguous slots; 
− a single flat jack in one slot. 

 

 Figure 2. Three dimensional finite difference model.  

Figure 3. Interface for typical cases in LFJ tests: A – two slots 
and two loaded flat jacks; B – two slots and one loaded flat 
jack; C – one slot and one loaded flat jack. 

The model allows assessing the depth of the crack h for 
each loading step, and the evolution of the displacements in 
the rock mass, namely at the location of the transducers and 
along the alignments presented in Figure 4. 
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Figure 4. Location of the measuring points and alignments. 

3 CALCULATION OF THE TENSILE CRACK DEPTH 

3.1 General 

Pressures applied by the jacks to the slot walls often induce 
tensile stresses along the edges of the slots that exceed the 
tensile strength of the rock mass, and therefore a crack starts 
to develop on the plane of the slots. Since determination of 
the rock mass modulus of deformability depends on the 



extent of the crack at each test stage, interpretation of the 
test results can be problematic due to the lack of 
information regarding the crack extent, which is difficult to 
evaluate even if the crack is visible at the rock mass surface. 

Besides the applied pressure, two other parameters 
influence the development of the crack during a LFJ test: 
the tensile strength of the rock mass σt, and the initial in situ 
stress component perpendicular to the plane of the slots σzz. 
The former is a rock mass property, which depends on the 
rock tensile strength and on the jointing pattern. In good 
quality rock masses, without important joints, it can be 
nearly equal to the tensile strength of the rock, whereas in 
weak and fractured rock masses its value is so low that it 
can be neglected. 

3.2 Influence of the in situ stresses and tensile strength on 
the tensile crack depth 

In this section, following an approach by Pinto (1983), the 
relations between crack depth h, applied pressure p, in situ 
stress σzz, and tensile strength σt are presented. Considering 
a rock mass with an isotropic, elastic and linear behaviour, 
the tensile stress σ1 at the tip of the crack resulting from the 
application of a pressure p by the flat jacks may be written 
as a function f(h) of the tensile crack depth h: 

pf(h)σ1 =  (1) 

Likewise, the compressive stresses σ2 at the edge of the 
crack for a null applied pressure by the flat jacks may be 
written as a function g(h) of the tensile crack depth:  

zz2 σg(h)σ =  (2) 

The crack reaches a given depth h when the tensile stress 
σ1 due to the application of the pressure p is equal to the 
sum of the compressive stress σ2 and the tensile strength of 
the rock mass σt:  

t21 σσσ +=  (3) 

Substituting equations (1) and (2) in equation (3), and 
dividing both sides by f(h), the following equation is 
reached:  

tzzzz σ(h)σψ(h)tσf(h)

1
σ

f(h)

g(h)
p ϕ+=+=  (4) 

Finally, a simple relation between p, σzz and σt is reached:  
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Equation (5) shows that, for each value of the tensile 
crack depth, the ratio p/σzz varies linearly with the ratio 
σt /σzz. It was here assumed that the functions ψ(h) and ϕ(h) 
are well represented by quadratic functions of h, given by:  
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Thus, equation (5) can be written as:  
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Equation (5) can also be used to determine the ratio p/σt. 
In this case, the equation of the three dimensional surface 
can be written as follows:  
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Equation (8) is used for the particular and unlikely case 
when the in situ stress σzz is null and equation (7) cannot be 
used. 

3.3 Calculation of the tensile crack depth 

In order to establish relations between the tensile crack 
depth and the ratios σt /σzz and p/σzz, a parametric analysis 
involving a very large number of numerical calculations 
considering plausible values for the parameters was 
performed. The result of each calculation is a set of values 
(h; σt /σzz; p/σzz) approximately complying with equation 
(7). 

Five values of the tensile strength σt were considered (0, 
1, 2, 4 and 8 MPa), the in situ stress was set as 1 MPa, and 
pressures p between 0.5 and 32 MPa were numerically 
applied to the slot walls. All calculations were performed 
using the numerical model presented above, and considering 
a Young’s modulus of 1 GPa and a Poisson’s ratio of 0.2.  

Considering the most common case of LFJ tests (two 
loaded slots), each calculation rendered as final result a set 
of values (h; σt /σzz; p/σzz). Linear multiple regression 
enabled to determine parameters a to f and to define the 
most probable three-dimensional surface relating crack 
depth and the ratios σt /σzz and p/σzz. This surface is 
presented in Figure 5, which, given estimates of the tensile 
strength and of the in situ stress, allows to determine the 
tension crack depth.  

 

Figure 5. Three-dimensional surface relating crack depth with 
the ratios p/σzz and σt /σzz (two loaded slots case). 



Considering that one of the variables does not change, 
equation (7) can also be used to obtain the graphs relating 
the two remaining variables. So, the following graphs were 
created: 

− relation between tensile crack depth and p/σzz for 
several values of the ratio σt /σzz (Fig. 6);  

− variation of p/σzz with σt /σzz for several values of the 
tensile crack depth (Fig. 7); 

− variation of p/σzz with the crack depth for several 
values of the ratio σzz /σt (Fig. 8). 
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Figure 6. Variation of the ratio p/σzz with the tensile crack 
depth for several values of the ratio σt/σzz. 
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Figure 7. Variation of the ratio p/σzz with the ratio σt/σzz for 
several values of the tensile crack depth. 
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Figure 8. Variation of the ratio p/σt with the tensile crack 
depth for several values of the ratio σzz/σt. 

Dots displayed in Figure 6 correspond to some of the 
calculations performed with the numerical model. They 
show that a good approximation was reached. 

As LFJ tests can be used to assess in situ stresses σzz 
(Figueiredo et al. 2010) and tensile strength does not vary 
over a wide range of values, using Figure 7 it is possible to 
estimate crack depth propagation as pressure is applied 
during loading and unloading cycles of a LFJ test. 

The same approach was followed to define similar 
relations for the remaining types of LFJ tests described in 
Figure 3: one loaded flat jack in two contiguous slots, and 
one loaded jack in a single slot. 

Figure 9 presents graphs relating the ratio p/σzz with the 
tensile crack depth for all the three analyzed cases. Figure 
10 shows the normal stresses on the interface for 
p/σzz = 4 MPa and for a null value of the rock mass tensile 
strength, allowing to appraise the extent of the tensile crack 
(in red) around the slots. 
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Figure 9. Variation of the tensile crack depth with the ratio 
p/σzz for σt /σzz = 0 and σt /σzz = 4. 



   

  

Figure 10. Normal stresses on the interface for p/σzz = 4 MPa 
and σt /σzz = 0. 

4 CALCULATION OF THE YOUNG’S MODULUS 

Several methodologies have been implemented in order to 
estimate the Young’s modulus from the results of large flat 
jack tests. The model that has been used so far is based on 
the theory of elasticity for homogeneous, isotropic and 
elastic bodies and allows simulating a particular case, in 
which the slots are normal to the rock surface, and they are 
inserted in an infinite space from a rectangular testing 
chamber with a typical size: 3.5 m long and 2.5 m wide 
(Pinto 1983). The slot opening δi at measuring point i, 
corresponding to the variation of the pressure applied on the 
slot walls ∆p, is given by: 

E

∆p
)ν-(1kδ

2
ii =  (9) 

where E is the rock mass deformability modulus and ki is a 
coefficient depending on the number and combination of 
flat jacks, the location of the measuring point i, the shape of 
the test chamber and the tensile crack depth.  

Coefficients ki may be used for interpretation of tests 
results independently of the rock mass mechanical 
parameters (modulus of deformability, Poisson’s ratio, 
tensile strength, in situ stress). Pinto (1981, 1983) presents 
the values of ki for several combinations of loaded jacks and 
slots, given the tensile crack depth. Once having defined the 
values of ki at the location of each transducer, the most 
probable value of the deformability modulus E of the rock 
mass can be obtained by minimising the sum of the squares 
of the differences between both sides of equation (9): 

∑
∑

-=
ii

2
i2

δk

k
∆p)ν(1E  (10) 

The numerical model presented in this paper was used to 
calculate values of ki for a large number of situations, 

including several that couldn’t be considered with the 
previous methodology. For each situation, considering a 
modulus of deformability of 1 GPa and a Poisson’s ratio 
equal to 0.2, the numerical model was used for calculating, 
for each pressure increment, the tensile crack depth and the 
displacements at the locations where all displacement 
gauges are placed. Equation (9) is then used to obtain the 
values of the coefficients ki for each crack depth. 

Figures 11, 12 and 13 show the diagrams with the 
variation of the coefficients ki with the tensile crack depth 
for the three loading cases presented in Figure 3. Table 1 
presents the values of the coefficients ki obtained with the 
numerical model. These diagrams show that the coefficients 
increase as the tensile crack depth increases till a maximum 
value. For instance, in the case of two slots and two flat 
jacks, the diagram shows that the coefficients ki at the 
location of the transducers A2 and B2 are higher than the 
coefficients at the location of the others transducers. This 
may be explained since the transducers A2 and B2 are 
located closer to the rock mass surface in a lesser confined 
region and consequently the displacements are higher in 
these locations. 
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Figure 11. Variation of the coefficients ki with the tensile 
crack depth. Case A: two slots and two flat jacks. 
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Figure 12. Variation of the coefficients ki with the tensile 
crack depth. Case B: two slots and one flat jack. 
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Figure 13. Variation of the coefficients ki with the tensile 
crack depth. Case C: one slot and one flat jack. 

Table 1. Coefficients ki computed by the numerical model.  

Depth of the crack (m) Case Gauge 
location 0.0 0.2 0.5 1.0 1.6 
A1, B1 1.764 1.969 2.237 2.577 2.811 
A2, B2 2.458 2.630 2.856 3.149 3.362 
A3, B3 2.083 2.279 2.533 2.851 3.056 
A4, B4 1.569 1.767 2.025 2.352 2.577 

C1C2, D1D2 1.115 1.313 1.576 1.920 2.182 

A 

C3C4, D3D4 1.542 1.716 1.947 2.252 2.487 
B1, B2 1.317 1.490 1.708 1.961 2.082 
B3, B4 1.406 1.590 1.824 2.094 2.225 B 

D1D2, D3D4 0.572 0.757 0.994 1.281 1.446 
A1, B1 1.532 1.689 1.888 2.126 2.255 
A2, B2 1.795 1.891 2.018 2.183 2.303 
A3, B3 1.570 1.686 1.835 2.020 2.138 
A4, B4 1.401 1.555 1.750 1.982 2.105 
D1D2 0.787 0.926 1.107 1.335 1.486 

C 

D3D4 0.975 1.076 1.210 1.386 1.519 

5 DISCUSSION AND CONCLUSIONS 

Large flat jack tests were developed mainly for the study of 
concrete dams foundations. Its use decreased in the last 
decades due to the high costs of field tests, and also to the 
sometimes excessive use of classification systems and of 
empirical correlations that provide estimates of the rock 
mass deformability, based on a number of rock mass 
characteristics. However, for design of important structures, 
sensitive to rock mass deformation, after a preliminary 
investigation using indirect methods and empirical 
procedures, it is essential to obtain field values of the 
deformability from reliable tests. LFJ tests using two 
adjacent jacks are well suited to cost-effectively 
characterize rock mass deformability, since they are able to 
mobilize a relatively large volume of rock. 

A difficulty in the interpretation of flat jack test results 
has to do with the tensile crack that may develop in the 
plane of the slots as the applied pressures increase. Crack 
initiation and propagation depend on the in situ stresses, 
rock mass tensile strength and applied pressure. Recently, a 

numerical model was developed for the interpretation of 
LFJ tests reproducing the exact geometry of the test and all 
test stages, as well as the development of the tension crack. 
This numerical model allows to estimate in situ stresses 
perpendicular to the slots and to model rock mass 
deformation during the loading and unloading cycles of the 
LFJ tests (Figueiredo et al., 2010 and 2011). 

This paper presented a methodology for determining the 
tensile crack depth for several geometries and loading 
conditions, from the values of the applied pressure, the 
tensile strength and the initial stress normal to the jacks. It 
was demonstrated that, for each value of the tensile crack 
depth, the ratio p/σzz varies linearly with the ratio σt /σzz and, 
therefore, all calculations could be done as a function of 
these adimensional parameters. Values of the coeficients ki 
for calculation of the modulus of deformability were 
presented as a function of the tensile crack depth for several 
common geometries and loading conditions. 

Studies are now being carried out that consider different 
situations as regards the inclination of the slots with respect 
to the rock face and different bounday conditions that 
simulate different test chamber geometries. 
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