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ABSTRACT: Large flat jack tests are used to assess mass deformability in the design stages of larggepts.This tesi
consists in cutting a thin slot in the rock massvhiich a flat jack with large dimensions is insdrteil pressure inside the
jack loads the slot walls while the rock mass dettion is measured by displacement gauges locasidki the jack and at
the surface. The main difficulty regarding interat®n of large flat jack tests has to do with #ffect of the tension crack
that may develop in the rock mass during the teatghree-dimensional numerical model was developed the
interpretation of large flat jack test results. Timwdel was used to establish the relations betvikerin situ stress
perpendicular to the slots, the rock mass tensimgth, the applied pressures and the crack depth.
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1 INTRODUCTION

Rock mass deformability plays a significant role the
design of large structures such as concrete daange |

slots (Fig. 1b). Each transducer consists of twalksteel
cantilevers with four electric strain gauges. Thase
calibrated before being placed inside the jack amtact
with both sides of the jack. Displacements are also

bridges, underground caverns and tunnels, sincé&r theneasured at the surface of the rock mass. Preyitaislot
behaviour depends on the displacements undergoribeby cutting, two pairs of measuring pins are placed oo to

rock mass. For the design of these types of strestut is
not adequate to characterize rock mass deformalpilt

each side of the slot and 175 mm from the jack ais
symmetry (Fig. 1c).

using laboratory tests on intact rock specimensg an

extrapolating their results to the rock mass based
subjective indices such as the RMR, Q or GSI valles
situ tests involving relatively large and repreagéime rock
mass volumes can provide reliable estimates of ronaks
deformability, and allow reducing uncertainties idgr
design stages.

Large flat jack (LFJ) tests are one of the fieldni@ques
used to assess the rock mass deformability thava#sting
relatively large volumes of rock mass (Rocha 1974)J
tests begin with cutting a thin slot in the rocksmaising a
disk saw, and inserting a flat jack. Then, hyd@pliessure
in the flat jacks applies loads to the slot walldile rock
mass deformation is measured at several locations
displacement transducers.

The equipment for opening 1.50 m deep slots induale
cutting machine, with a 1.00 m diameter diamondk disw
mounted at the end of a rig that houses the sysheain
transmits the rotating movement to the disk. A @Ent
168 mm diameter hole with a depth of 1.10 m is jonesly
drilled by the same machine, in order to allow diek saw
supporting column to cut the slot down to the dabidepth.
Once the slot is cut, a flat jack is introduced #mal central
hole is filled with mortar (Figueiredet al 2010).

Each flat jack consists of two steel sheets, leas . mm
thick, welded around the edges (Fig. 1a). Insi@efldt jack
there are four transducers for measuring the opeawirthe
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Figure 1. a) Large flat jack; b) location of thesglacement
transducers; c) ready for testing jacks in two iguaius slots.
b

The flat jacks are initially filled with oil and Bw initial
pressure, usually of about 0.05 MPa, is appliedyrder to
guarantee that the jacks are in contact with toewhll. A
LFJ test consists of, at least, three loading amdading
cycles with increasing maximum pressures. The rast t
results are the presswersusdisplacement curves obtained
in the test.

In order to obtain a mean value of the modulus of
deformability in large rock volumes, as well asoimhation
about the rock mass heterogeneity, two co-planar
contiguous slots are usually opened for each test.



Interpretation of flat jack test results is not
straightforward, due to the development of a tensiack
along the plane of the slots as applied pressunagase.
Crack initiation and propagation depends not only o
applied pressure but also on timesitu stresses and rock
mass tensile strength, which are generally unknow
parameters (Pinto 1981, ISRM 1986).

To deal with this difficulty, a three-dimensional
numerical model was recently developed for th
interpretation of the large flat jack test resuéitsabling to
simulate several cases of test geometries withctwvplanar
contiguous slots. The model allows simulating atuac
large flat jack test protocol with several loadiragd
unloading cycles (Figueiredet al 2011), and can also be
used for estimating the initiah situ stresses perpendicular
to the slots (Figueiredet al. 2010).

Applications of the model to several cases areeptesl
in this paper. They consider different cases rdaggrthe
relation between the initial stress normal to tliessand the : m——— :
rock mass tensile strength, the applied presstiredpading Figure 2. Three dimensional finite difference model
and unloading cycles, or the loaded area (one orddaded
flat jacks). The influence of the tension crack the test
results is assessed and discussed.

2 NUMERICAL MODEL

) ) B o Figure 3. Interface for typical cases in LFJ teAts: two slots
For the interpretation of LFJ tests, a three dinwa finite  anq two loaded flat jacks; B — two slots and oredéal flat
differences model using the software FLAC3D (ltascgck; C - one slot and one loaded flat jack.

2009) was developed. It can simulate a LFJ tegh wo
co-planar contiguous slots, performed at an angtevden
the plane of the slot and the rock mass surfacgguéfiiedo The model allows assessing the depth of the cradér

et al 2010). The mesh is a 3680mx15m solid and has each loading step, and the evolution of the disptants in
149,440 zones. the rock mass, namely at the location of the traocss and

In order to simulate with detail the crack initatiand along the alignments presented in Figure 4.

propagation into the rock mass, a very refined nashnd
the slots was required, since they are just a félinmatres T
thick. Figure 2 (top left) shows a view of the mesind }
Figure 2 (top right) displays a middle vertical £sesection. |

= <
The dark zones are the refined mesh, which is ptede g |5
magnified at the bottom. g £

To simulate the tension crack, in the plane of shus, 2 2
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interface elements with a finite tensile strengtravused. ‘
Interface elements remain elastic for stressesibealgiven
tensile strength; otherwise, a crack develops amel t
displacements versus pressure curves reveal aneanli
behaviour.
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The numerical model performs calculations that &iteu S 3
both the cutting of the slots and the loading-udiog 6.0
cycles. The initial stages comprise the followiteps:
— installation of the in situ state of stress; Figure 4. Location of the measuring points andralignts.
- completion of the central hole for the right side
column;

— opening of the right side slot and filling of thentral
hole with mortar;

— completion of the central hole for the left sidéucon;

— opening of the left side slot and filling of thent&l 3.1 General
hole with mortar.

Afterwards, loading and unloading cycles can b

3 CALCULATION OF THE TENSILE CRACK DEPTH

Pressures applied by the jacks to the slot watisnahduce

modelled, considering all possible loading casés. @: tens!:e stresser? a;lohng thi edges of éh?] sloftsemged the
— two loaded jacks in two contiguous slots; tendS| e sl,trengt ho t Ie roc fn’rl]assl, an St ere (cjnma .gtartfs
- one loaded jack in two contiguous slots; to develop on the plane of the slots. Since deteanun o

- a single flat jack in one slot. the rock mass modulus of deformability depends loa t



extent of the crack at each test stage, interpoetatf the Thus, equation (5) can be written as:

test results can be problematic due to the lack of

information regarding the crack extent, which iidilt to p ) o, o, or 7

evaluate even if the crack is visible at the rodsmsurface. - a+bh+ch®+d——h+e——h+f—"h ()
Besides the applied pressure, two other parameter$’ “ # #

influence the development of the crack during a kést:

the tensile strength of the rock magsand the initiain situ

stress component perpendicular to the plane o$ltits ;.

The former is a rock mass property, which dependshe

rock tensile strength and on the jointing pattdmgood

Equation (5) can also be used to determine the pétk.
In this case, the equation of the three dimensisndiace
can be written as follows:

quality rock masses, without important joints, @ncbe P _ aﬁ + bﬁ h+ ch h?+d+eh+ fh? (8)

nearly equal to the tensile strength of the rockemgas in 0t Oy Oy Oy

weak and fractured rock masses its value is sotlaw it

can be neglected. Equation (8) is used for the particular and uniikehse
when thein situ stressay, is null and equation (7) cannot be
used.

3.2 Influence of the in situ stresses and tensile gtiteon
the tensile crack depth

In this section, following an approach by Pinto §39 the 3.3 Calculation of the tensile crack depth

relations between crack depth applied pressurp, in situ  In order to establish relations between the tensikck
stressa,, and tensile strengttx are presented. Consideringdepth and the ratios;/o;, andp/ag;, a parametric analysis
a rock mass with an isotropic, elastic and lineginaviour, involving a very large number of numerical calcidas
the tensile stress; at the tip of the crack resulting from theconsidering plausible values for the parameters was
application of a pressugeby the flat jacks may be written performed. The result of each calculation is acfetalues
as a functiori(h) of the tensile crack depth (h; aloy,; ployy) approximately complying with equation
(7).
o, = f(h) p (1) Five values of the tensile strengthwere considered (O,
1, 2, 4 and 8 MPa), the in situ stress was setM$4d, and

Likewise, the compressive stressesat the edge of the Pressuresp between 0.5 and 32 MPa were numerically
crack for a null applied pressure by the flat jackay be applied to the slot walls. All calculations wererfoemed

written as a functiog(h) of the tensile crack depth: using the numerical model presented above, anddemigg
a Young's modulus of 1 GPa and a Poisson’s rati®.2f

@) Considering the most common case of LFJ tests (two
loaded slots), each calculation rendered as fiesillt a set
of values K, a/og,; plo,). Linear multiple regression
enabled to determine parameterdo f and to define the
most probable three-dimensional surface relatingckcr
depth and the ratiosi/og,, and p/a;,. This surface is
presented in Figure 5, which, given estimates efténsile
strength and of the in situ stress, allows to deilee the
tension crack depth.

0-2 = g(h) Uzz

The crack reaches a given deptlwvhen the tensile stress
o, due to the application of the pressprés equal to the
sum of the compressive stregsand the tensile strength of
the rock masgr:

0, =0, to; (3)

Substituting equations (1) and (2) in equation @&)d
dividing both sides byf(h), the following equation is
reached:

_9(h)

1
s == 4
P="tm 7y Ot = VM 40 @

Finally, a simple relation betwegn g,,and ¢; is reached: -

>20
<20
<16
<12
B <3
I <4

= y(h)+ p(h)—- (5)

P
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Equation (5) shows that, for each value of the ikens
crack depth, the ratigp/g,, varies linearly with the ratio
ail o, It was here assumed that the functigiiis) and ¢(h)
are well represented by quadratic functionf,dfiven by:

w(h)=a+bh+ch?

#(h)=d +eh+ fh? 6) Figure.5. Three-dimensional surface relating caggth with
the ratiogp/a,, and g/ o,, (two loaded slots case).



Considering that one of the variables does not ghan
equation (7) can also be used to obtain the graglhting
the two remaining variables. So, the following drapvere

created:

- relation between tensile crack depth apf, for

several values of the ratm/g;, (Fig. 6);

- variation of p/ag;, with ¢;/a;, for several values of the

tensile crack depth (Fig. 7);

- variation of p/g;, with the crack depth for several

values of the ratiar,/; (Fig. 8).
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Figure 6. Variation of the ratip/g,, with the tensile crack

depth for several values of the ratigo;,
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Figure 7. Variation of the ratip/c;, with the ratiogy/ o, for

several values of the tensile crack depth.
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Figure 8. Variation of the ratip/g; with the tensile crack
depth for several values of the ratig/ g;.

Dots displayed in Figure 6 correspond to some @& th
calculations performed with the numerical model.e{rh
show that a good approximation was reached.

As LFJ tests can be used to assiessitu stressess;,
(Figueiredoet al 2010) and tensile strength does not vary
over a wide range of values, using Figure 7 itdsgible to
estimate crack depth propagation as pressure ifiedpp
during loading and unloading cycles of a LFJ test.

The same approach was followed to define similar
relations for the remaining types of LFJ tests dbed in
Figure 3: one loaded flat jack in two contiguousts| and
one loaded jack in a single slot.

Figure 9 presents graphs relating the ratig,, with the
tensile crack depth for all the three analyzed aBeure
10 shows the normal stresses on the interface for
p/o;,=4 MPa and for a null value of the rock massitens
strength, allowing to appraise the extent of thsite crack
(in red) around the slots.
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Figure 9. Variation of the tensile crack depth wiitle ratio
p/a,for g/ g,,= 0 anda;/o;, = 4.



_FLAC3D 4.00 i e including several that couldn’t be considered witie
————— b at |Hons previous methodology. For each situation, consmipra
0.0000E+00 modulus of deformability of 1 GPa and a Poissomrisor

W

1.0000E-01 ' R equal to 0.2, the numerical model was used forutaticg,

588885(0)} for each pressure increment, the tensile crackhdapd the

4.0000E-01 displacements at the locations where all displacéme

2888853} gauges are placed. Equation (9) is then used tairokthe

7.0000E-01 values of the coefficients for each crack depth.

ggggggg} Figures 11, 12 and 13 show the diagrams with the
I 1.0000E+00 variation of the coefficientg; with the tensile crack depth

: for the three loading cases presented in Figur€aBle 1

2 dlotsand 1 flat jack 1dot and 1 flat jack presents the values of the coefficiektobtained with the
numerical model. These diagrams show that the icteits
increase as the tensile crack depth increases ttilhximum
value. For instance, in the case of two slots amad flat
jacks, the diagram shows that the coefficiektsat the
location of the transducers A2 and B2 are highantthe
coefficients at the location of the others transdsic This
may be explained since the transducers A2 and B2 ar

|

] i
Ty [ ‘ located closer to the rock mass surface in a lessgfined
region and consequently the displacements are Hhighe

Figure 10. Normal stresses on the interfacepfoy, = 4 MPa these locations.

andag/ag;,= 0.
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4 CALCULATION OF THE YOUNG'S MODULUS | —T |
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Several methodologies have been implemented inrdode | 2 5 — | ; :: ——
estimate the Young’s modulus from the results afdaflat [ ////f/
jack tests. The model that has been used so feased on | § 20 == | i
the theory of elasticity for homogeneous, isotropiod | 2 15 — | N A1 Bl
elastic bodies and allows simulating a particulasec in | & — A2 B2
which the slots are normal to the rock surface, theg are | © 1,0 At A3| B3 B4 ——A3, B3
inserted in an infinite space from a rectangulastine 05 A A2 | g2 él‘_éib%AfClCZ
chamber with a typical size: 3.5 m long and 2.5 imdew ; S B [3 8 ;
(Pinto 1983). The slot opening at measuring point, 0,0 I D304, C3¢
g%rtrs\‘;;;)”c;rl‘d|n%toi\}2§ L/a_rlatlon of the pressureiagpin the 00 02 04 06 08 1.0 1.2 14 1.6 1B
P15 9 y: Depth of the crack (m)

5 =k (1_\,2)£ (9) Figure 11. Variation of the coefficients with the tensile
E crack depth. Case A: two slots and two flat jacks.
whereE is the rock mass deformability modulus dqds a
coefficient depending on the number and combinatbn 4,0 : :
flat jacks, the location of the measuring poairthe shape of —B1 m
the test chamber and the tensile crack depth. 35 _gg B3 B4
Coefficientsk may be used for interpretation of test§ _ 3,0 — B4 B2 Bl
results independently of the rock mass mechanicpE D1D2 Z A
parameters (modulus of deformability, Poisson’siorat | - 25 | D3pa i
tensile strengthin situ stress). Pinto (1981, 1983) present$ € 5 o L——
the values ok; for several combinations of loaded jacks an¢l-S /;é
slots, given the tensile crack depth. Once haviefindd the | £ 1.5 = L
values ofk; at the location of each transducer, the most3 10 | —T—
probable value of the deformability modulEsof the rock '
mass can be obtained by minimising the sum of tluiares 0,5
of the differences between both sides of equaByn ( 0.0
Zk_z 00 02 04 06 08 10 12 14 16 1B
E=(1-v*)4p Zklé (10) Depth of the crack (m)

. i i Figure 12. Variation of the coefficients with the tensile
The numerical model presented in this paper wad tse ¢ ack depth. Case B: two slots and one flat jack.
calculate values ok, for a large number of situations,
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Figure 13. Variation of the coefficients with the tensile
crack depth. Case C: one slot and one flat jack.

Table 1. Coefficient; computed by the numerical model.

Case Gauge Depth of the crack (m)
location 0.0 0.2 0.5 1.0 1.6
Al, Bl 1.764 1.969 2.237 2.577 2.811
A2, B2 2.458 2.630 2.856 3.149 3.362
A A3, B3 2.083 2.279 2.533 2.851 3.056
A4, B4 1.569 1.767 2.025 2.352 2.577
C1C2,D1D2 1.115 1.313 1.576 1.920 2.182
C3C4,D3D4 1.542 1.716 1.947 2.252 2.487
B1, B2 1.317 1.490 1.708 1.961 2.082
B B3, B4 1.406 1.590 1.824 2.094 2.225
D1D2, D3D4 0.572 0.757 0.994 1.281 1.446
Al, Bl 1.532 1.689 1.888 2.126 2.255
A2, B2 1.795 1.891 2.018 2.183 2.303
C A3, B3 1.570 1.686 1.835 2.020 2.138
A4, B4 1.401 1.555 1.750 1.982 2.105
D1D2 0.787 0.926 1.107 1.335 1.486
D3D4 0.975 1.076 1.210 1.386 1.519

5 DISCUSSION AND CONCLUSIONS

Large flat jack tests were developed mainly for shely of

concrete dams foundations. Its udecreased in the last

decades due to the high costs of field tests, tsulta the
sometimes excessive use of classification systemads cdi
empirical correlations that provide estimates of tlock

numerical model was developed for the interpretaid
LFJ tests reproducing the exact geometry of thieaed all
test stages, as well as the development of théotesack.
This numerical model allows to estimaite situ stresses
perpendicular to the slots and to model rock mass
deformation during the loading and unloading cydéshe
LFJ tests (Figueiredet al, 2010 and 2011).

This paper presented a methodology for determitiieg
tensile crack depth for several geometries and ihgad
conditions, from the values of the applied presstine
tensile strength and the initial stress normalh® jacks. It
was demonstrated that, for each value of the &mrséck
depth, the rati@p/g;, varies linearly with the ratio;/o,,and,
therefore, all calculations could be done as atfancof
these adimensional parameters. Values of the ceefik;
for calculation of the modulus of deformability weer
presented as a function of the tensile crack dieptheveral
common geometries and loading conditions.

Studies are now being carried out that considderdift
situations as regards the inclination of the stath respect
to the rock face and different bounday conditiohatt
simulate different test chamber geometries.
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