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Bayesian models for the detection of high risk locations  
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Engineering, Lisboa, Portugal

ABSTRACT: Hierarchical Bayesian regression models, with differing hyper-prior distributions, 
are considered as accident prediction models to be fitted on data collected over several years on the 
 Portuguese motorway network. A sensitivity analysis is performed by way of simulation to investigate the 
practical implications of the choice of informative hyper-priors (Gamma, Christiansen and Uniform) and 
non-informative Gamma, as well as various sample sizes and years of aggregated data, on the results of a 
road safety analysis, in particular, at detecting high accident risk locations. It was concluded that informa-
tive hyper-priors were best at detecting hotspots when small sample sizes were considered. For bigger 
samples the various hyper-priors produced equivalent outcomes. Furthermore, more accurate results were 
obtained when more years of data were analyzed.

 software package WinBUGS (Spiegelhalter et al. 
2003, Lunn et al. 2000). Examples of which include 
Schlüter et al. (1997), Heydecker & Wu (2001), 
Miaou & Lord (2003), Carriquiry &  Pawlovich 
(2005), Song et al. (2006), Li et al. (2008), Lan 
et al. (2009), Persaud et al. (2010) and Cafiso et al. 
(2010). Bayesian methods account in a better way, 
than the classical methods, for the uncertainty in 
the data and provide more detailed causal infer-
ences (Carriquiry & Pawlovich 2005) as well as 
more flexibility in selecting accident count distri-
butions (Lan et al. 2009). The Bayesian calculation 
combines prior information and current informa-
tion to derive estimates for the expected safety of 
the sites that are being evaluated. In the context 
of traffic accident analysis, the prior information 
is the expected accident frequency from a group of 
similar sites and the current information is the site-
specific observed accident frequency.

In a hierarchical Bayesian analysis, the param-
eters of the prior distributions depend in turn on 
additional parameters with their own priors that are 
also referred as hyper-priors, see for e.g. Carlin & 
Louis (2000) and Gelman et al. (2004). When these 
hyper-priors densities are chosen to be “vague” 
or “non-informative” they will guarantee to play 
a minimal role in the posterior distribution. The 
rationale for using non-informative prior distribu-
tions is often said to be to “let the data speak for 
themselves”, so that inferences are unaffected by 
information external to the current data (Gelman 
et al. 2004). There is already one study performed 
on Portuguese motorway data employing Bayesian 

1 InTRodUCTIon

The identification of high accident risk locations, 
also referred to as hotspots, is the first step of the 
highway safety management process. There are 
several methods currently used for hotspot iden-
tification: Cheng & Washington (2005, 2008), 
Schlüter et al. (1997), Geurts et al. (2006), Miaou 
& Song (2005), Washington & Cheng (2005), Elvik 
(2008), Miranda-Moreno et al. (2007) employ and 
compare such various methods. Recently there 
has been a growing debate on the employment of 
empirical Bayes methods (EB) and the so-called 
full Bayes approaches or hierarchical Bayes meth-
ods,  Miranda-Moreno & Fu (2009), Persaud et al. 
(2010). The present paper is concerned with obtain-
ing and applying appropriate hierarchical Bayesian 
models for use in traffic safety studies when employ-
ing a ranking criterion for hotspot identification.

Traffic safety studies that have been performed 
using data collected on Portuguese roads and 
motorways are described in Azeredo-Lopes & 
Cardoso (2007a,b, 2009) and have consisted on the 
employment of classical statistical methods com-
prising the use of generalized linear models (see 
details in McCullagh & nelder 1990) where the 
number of accidents or casualties are regarded as 
the response or dependent variable and the model 
parameters are estimated by maximum likelihood 
of iteratively least squares methods. However, 
statistical Bayesian methods have increasingly 
been applied in traffic safety studies over recent 
years, mainly resulting from the availability of the 
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hierarchical models where non-informative hyper-
priors were used, see Azeredo-Lopes & Cardoso 
(2010). There has been, however, no investigation 
on the effect of the hyper-prior choice adopted on 
model parameters on the Portuguese traffic safety 
research. As Lord & Miranda-Moreno (2008) 
have found out, the specification of hyper-priors 
may not be trivial when modeling accident data 
 characterized by a low sample mean and small 
sample size. Under these conditions, the use of 
vague hyper-priors can be problematic leading 
to inaccurate posterior estimates, and the results 
 sensitive to the distribution choice.

The aim of this paper is to investigate, in the 
Portuguese context, the performance of alternative 
hyper-prior distributions for modeling the disper-
sion parameter in hierarchical Poisson-Gamma 
models under various sample sizes and time 
 periods. For this purpose a framework to incor-
porate available evidences from past similar stud-
ies developed by Miranda-Moreno et al. (2009) is 
used to formulate informative hyper-priors for the 
dispersion parameter. In order to achieve this aim, 
a simulation study is carried out to compare alter-
native distribution choices (Gamma, Uniform and 
Christiansen) and hyper-prior specifications (vague 
versus informative). The performance of alternative 
hyper-prior specifications is evaluated according to 
the model capacity to detect the “true” hotspots 
and its corresponding Poisson Mean differences 
test, Risk, Percentage deviation Value and the 
Spearman correlation coefficient. A comparative 
performance is also made in terms of parameter 
estimate accuracy and dIC (deviance information 
criterion) values (Spiegelhalter et al. 2002).

2 HIERARCHICAL BAyESIAn ModELS 
FoR ACCIdEnT dATA

The Bayesian approach treats the mean accident 
frequency at a site as an unknown quantity and, in 
the absence of site-specific previous information, 
the mean accident frequency is described by a prior 
distribution, the dispersion of which represents its 
uncertainty. Through the Bayes theorem, the prior 
distribution is updated with the use of site-specific 
observations of accident occurrence, resulting in a 
posterior distribution which represents the knowl-
edge of the mean accident frequency by combin-
ing the information from the prior distribution and 
the observations in an appropriate way (for more 
details see Gelman et al. 2004 and Congdon 2006).

Several models have been proposed in traf-
fic safety literature for analyzing accident data. 
These models range from the standard negative 
binomial (see Lord 2006, Hauer 2002, Zhang et al. 
2007, Park & Lord 2008) to more complex models 

such as hierarchical Poisson-Gamma and Poisson 
Lognormal (Lord & Miranda-Moreno 2008) and 
recently the Conway-Maxwell-Poisson models as 
in Park & Lord (2009). However, the hierarchical 
Poisson-Gamma is the most popular. A simple ver-
sion of this model can be defined as follows (see 
Lan et al. 2009 and Lord et al. 2005). Consider-
ing Yi, the number of accidents at site i (i = 1,…,n), 
over a given period of time T, as Poisson distrib-
uted. Then:

Y T Poisson Ti i i| , ~ ( )θ θ×  (1)

Y T Poisson T ei i i
i| , ~ ( )θ µ ε×  (2)

e Gammaiε ϕ ϕ~ ( , )  (3)

ϕ π β~ (.) ( ) and  f ∝1 (4)

where θi is the mean accident frequency per unit 
time, µi is commonly specified as a function of site-
specific attributes or covariates (xi) as µi = f(xi;β) 
and β = (β0,…, βk) is a vector of regression 
 parameters to be estimated from the data.

The model error shown in Equation 3 is assumed 
to follow a Gamma distribution (prior  distribution) 
with equal shape and scale  parameters,  leading to:

E e Var ei i( ) ( )ε ε

ϕ
= =1 1and  (5)

An important element in this model is the 
hyper-prior distribution assumed on the dispersion 
parameter ϕ and denoted by π (.) in Equation 4. In 
the same Equation, f(β) denotes the prior density 
on the regression coefficients β, which is commonly 
assumed to be flat or non-informative.

The parameter estimates of the model are 
obtained by posterior inference resulting from 
Markov Chain Monte Carlo (MCMC) simulation 
methods such as Gibbs sampling and Metropolis 
Hasting algorithms (see Gelman et al. 2004) which 
are implemented in the WinBUGS software. The 
posterior estimates of the mean accident frequen-
cies are afterwards ranked and used as a criterion 
for selection of sites for investigation, i.e. high risk 
sites. The type of hyper-prior distribution will 
influence the posterior estimate and hence the 
identification of hotspot sites.

In this study it is investigated the results of using 
three common hyper-priors on the dispersion 
parameter ϕ suggested and employed by Miranda-
Moreno et al. (2009):

π φ ϕ ϕϕ( ; , )
( )

, , ,a b b
a

e a b
a

a b= > > >− −
Γ

1 0 0 0  (6)
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−
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Equations 6, 7 and 8 represent the Gamma, Chris-
tiansen and Uniform distributions, respectively. 
The parameters a and b in each equation are called 
hyper-parameters. The distribution represented by 
Equation 7 was first suggested by Christiansen & 
Morris (1997) where a is the hyper-prior guess for 
the median of the dispersion parameter ϕ.

2.1 Incorporation of prior knowledge

The incorporation of prior knowledge on π(.) in 
Equation 4 was performed according to the meth-
odology followed by Miranda-Moreno et al. (2009). 
It includes two main steps used for the construction 
of informative hyper-priors (Schlüter et al. 1997). 
It requires the use of information about previous 
studies concerning the mean and plausible range 
of ϕ. Considering a Gamma distribution for ϕ 
with mean and variance given, respectively, by:

η ϕ σ ϕ= = = =E a b and Var a b( ) / ( ) /2 2  (9)

where a and b are the Gamma parameters in Equa-
tion 6 assumed now to be fixed. Combining the 
equations results in:

a b and b= × =η η σ/ 2  (10)

In order to obtain previous information about 
the parameter ϕ it is necessary to have access to 
studies concerning accident data from similar 
roadway elements and jurisdictions. Given that 
there are not many published studies involving 
Portuguese motorway data, the values used for the 
incorporation of prior knowledge were the disper-
sion parameters obtained by Azeredo-Lopes & 
Cardoso (2010).

3 SIMULATIon STUdy

The reason to use simulated data for investigating 
whether the proposed models work well for identify-
ing the high accident risk locations was best described 
by Cheng & Washington (2005) who stated that, with 
real data, the analyst never knows beforehand which 
sites are truly hazardous, thus leading to a difficult 
situation when trying to count false positives and 
negatives. However, with simulation it is possible to 
establish sites that are hazardous and assess whether 
the methods employed can correctly identify them.

3.1 Posterior analysis and accident risk estimator

Miranda-Moreno & Fu (2009) state that the most 
popular ranking criteria, or safety measures, for 
hotspot identification are the posterior expected 
number of  accidents, the posterior probability of 
excess, the posterior expectation of  ranks and the 
posterior probability that one site is the worst. 
The posterior expectation of  θi, perhaps the most 
popular in the safety literature, is denoted and 
defined as:

θ θ θ θ θi i i i i iE y p y d= [ ] = ∫
∞

| ( | )
0

 (11)

where p(θi | y) is the posterior distribution of θi. 
This criterion is a point estimate of the underlying 
mean number of accidents on the long term. To 
select a list of sites for safety analyses the n sites 
under analysis are sorted based on their posterior 
mean number of accidents and then select the top r 
locations (r < n) as hotspots. The r is the number of 
locations that exceed a certain cutoff  or threshold 
value usually obtained by finding the 90% prob-
ability quantile, or other suitable quantiles taking 
into account available budgets. In this study the 
50% quantile was chosen. This procedure is the 
most appropriate when the aim is to identify a list 
of sites exceeding a certain critical value, denoted 
here by c. This strategy is represented by the fol-
lowing rule. If:

θi c>  (12)

then site i belongs to the high risk locations list. 
Thus, the “true” hotspots are first identified from 
the true accident frequency distribution, which are 
then compared with the “detected” hotspots deter-
mined with alternative hyper-prior distributions. 
The performance of alternative distributions on ϕ 
is evaluated by comparing the “detected” with the 
“true” hotspots.

3.2 Data

The data consisted of measurements recorded on 
the Portuguese motorway network for periods 
of one year ranging from 1999 to 2007, subdi-
vided in bidirectional segments with 500 meters 
of length. The traffic volume and the number of 
accidents were recorded for each segment (the xi 
specific attributes). The data corresponding to 
each year included around 4600 motorway sec-
tions (segments that contained missing values were 
excluded). Two new sets of data were created by 
aggregating years 2003 to 2007 (T = 5 years) and 
2005 to 2007 (T = 3 years).
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3.3 Simulation design

The simulation methodology considers sets of 
sites with known safety status. This means that 
the model parameters and probability distribu-
tion of mean accident frequency at each site are 
known and are used to create the “true” high risk 
locations and to generate accident data. These gen-
erated accident data is afterwards used for identi-
fying the high risk locations after model fitting, i.e. 
the “detected” hotspots.

The simulation experiment consists of the fol-
lowing specific steps.

Step 1. Randomly selecting n sites from real 
data.

From each set of data (T = 3 and T = 5) further 
sets of n sites (n = 50, 100 and 400) were randomly 
selected.

Step 2. Generating the “true” mean frequency for 
each site i.

Assume that the accidents at the given locations 
follow a Poisson-Gamma model with known fixed 
parameters (these parameters were defined previ-
ously from the data corresponding to T = 3 and 
T = 5):

ˆˆ,ϕ β  (13)

The “true” mean accident frequency at each site 
i is generated as follows:

ˆ ˆ ˆ| ~ ( , )ie Gammaε ϕ ϕ ϕ  (14)

θ µ ε
i
true

i
ie=  (15)

' ˆ( ; )i if xµ β=  (16)

Step 3. Obtaining the “true” list of hotspots.
A critical value c is specified depending on 

the data set under analysis. This c-value is the 
50% quantile of the mean accident frequencies 
(obtained previously for each data set T = 3 and 
T = 5). Then the selection criterion in Equation 12 
is applied. That is, if  each value obtained by Equa-
tion 15 (the “true” θi) for each i is greater than c 
then site i is defined as a “true” hotspot.

Step 4. Generating random Poisson samples.
For each site, simulate accident data based on 

the “true” θi, obtained in Equation 15:

Y Poissoni
sim

i
true

i
true| ~ ( )θ θ  (17)

Step 5. Obtaining the posterior expectation and 
the detected hotspots.

Given the accident data simulated in  Equation 
17 and the site-specific attributes xi, the  various 
models with hyper-priors of types given by 

 Equations 6, 7 and 8, as well as a non-informative 
Gamma are fitted.

The estimates from the model’s parameters (β 
and ϕ) and the posterior expectation of θi (given by 
Equation 11) are obtained with the use of Markov 
Chain Monte Carlo (MCMC) simulation methods 
which are already implemented in the WinBUGS 
software package. once the posterior expectation 
of θi is obtained for each site and for each model 
considered (with particular hyper-prior specifica-
tions), the “detected” hotspots are identified if  
Equation 12 holds, else the site is a “non-detected” 
hotspot.

Step 6. Computation of the performance evalua-
tion criteria.

For each model, the “true” hotspot list obtained 
in Step 3 is compared with the “detected” hotspot 
list obtained in Step 5 by employment of the per-
formance evaluation criteria.

In order to obtain statistically reliable estimates, 
each scenario is replicated 25 times repeating steps 
1 to 6. The average of the 25 replications is reported 
in chapter 5.

3.4 Computational details

The simulated data were generated with the soft-
ware R (R development Core Team 2010). The 
posterior quantities of interest were estimated 
using WinBUGS which allows Bayesian analysis 
to be performed using MCMC methods. A con-
nection between the two softwares was made with 
the R package R2 WinBUGS developed by Sturtz 
et al. (2005). The negative Binomial model was fit-
ted to the observed data using the R MASS pack-
age developed by Venables & Ripley (2002).

The simulations were replicated 25 times (Geedi-
pally & Lord, 2010) and afterwards the averages of 
the various performance criteria were computed.

The MCMC simulations had the following 
specifications: 3 Markov chains, 11000 iterations 
per chain, 9000 burn-in iterations, 5 iterations 
thinned, resulting in a total of 1200 iterations used 
for parameter estimation. These ensured that the 
MCMC converged to the target distributions. 
Verifying and certifying that convergence occurs is 
essential when the aim is to produce reliable results 
for the posterior distribution. In order to certify 
that the 25 simulations converged, the statistic 
Rhat of  the Gelman-Rubin diagnostic was used, 
for more details see Gelman et al. (2004), Congdon 
(2006) and ntzoufras (2009).

3.5 Model specifications

The functional form of Equation 16, also used by 
Persaud et al. (2004) and Cafiso et al. (2010) was 
the following:
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µ β βi i ioffset Length AADT= + + ×exp( ( ) log( ))0 1

 (18)

where AADTi is the average annual daily traffic 
and Lengthi is the length of the segment (the xi 
specific attributes) and β0 and β1 are the regression 
coefficient parameters.

The “true” regression estimates and the “true” 
dispersion parameter (see Equation 13) obtained 
before the simulation process, are displayed in 
Table 7 (in the Real values row) for T = 3 and T = 5 
years.

The informative hyper-prior parameters were 
built based on past evidences reported in Azeredo-
Lopes & Cardoso (2010) according to the method 
described in section 2.1.

The prior distributions for the βj parameters 
were assumed non-informative N(0,103) to reflect 
the lack of precise knowledge of the value of these 
coefficients.

The informative and non-informative hyper-
priors for ϕ considered in the study were:

1. non-informative Gamma with a = b = 0.001
2. Informative Christiansen with a = 1.952
3. Informative Uniform with a = 1.5 and b = 3.0
4. Informative Gamma with a = 14.284 and 

b = 6.705.

4 PERFoRMAnCE EVALUATIon 
CRITERIA

The methods used to evaluate the performance 
of the four types of hyper-prior distributions 
were those employed by Miranda-Moreno et al. 
(2009), Miranda-Moreno & Fu (2009) and Cheng 
& Washington (2008) being the latter two adapted 
so that two lists of accident frequencies (the “true” 
and the “simulated”) could be compared.

4.1 Accuracy measures

The accuracy measures will assess the mod-
el’s capacity to detect the “true” hotspots. 
Table 1 shows the classification of outcomes (Type 
I and Type II errors, of detected and non-detected 
sites as hotspots) according to any hotspot identi-
fication method.

The measures of accuracy defined using the 
notations displayed in Table 1 are: FdR = V/d, 
FnR = R/(n-d), SEnS = S/n1 and SPEC = U/n0.

Small values of  FdR (false discovery rate) 
and FnR (false negative rate) are expected when 
a method or a model perform well. SEnS is the 
sensitivity or proportion of  sites that have been 
correctly detected as hotspots, it can also be 
interpreted as the method capacity to detect a 

“true” hotspot in a group under analysis. Miran-
da-Moreno et al. (2007) argue that values of 
SEnS greater than 0.80 are difficult to obtain. 
SPEC, the specificity, represents the proportion 
of  non-hotspots that have been correctly classi-
fied as “non-hotspots”. It is expected to obtain 
SPEC values close to 1.

note that the lower the FdR and FnR are the 
better the results are; conversely, the higher the 
SEnS and SPEC are, the better the outcome is.

4.2 Poisson mean differences test

The Poisson means differences test (PMd) was 
developed by Cheng & Washington (2008) with the 
aim to differentiate false identifications and quan-
tify the adverse consequences resulting from errone-
ous identification of unequal importance. This test 
statistic is the sum of the absolute difference of the 
“true” θi (Equation 15) associated with the falsely 
identified sites and critical value of the “true” θi. 
The latter was considered to be the 90% quantile of 
all the “true” θi. The model with the larger PMd is 
the less desirable (Geedipally & Lord 2010).

4.3 Risk

Risk is the proportion of the total number of 
errors (Type I and Type II) and the number of 
sites under analysis. Risk values close to zero are 
expected when a method or a model performs well 
(Geedipally & Lord 2010).

4.4 Percentage deviation value

The percentage deviation value described by 
Miranda-Moreno & Fu (2009) was adapted to 
quantify the effects of  changing the hyper-prior 
specifications. It is calculated by dividing the 
number of  accident locations that are common 
in the “true” and “simulated” lists of  hotspots 
by the total number of  hotspots selected from 

Table 1. Possible outcomes when n sites are classified by 
a given hotspot identification method.

number of  
sites “detected” 
as non 
hotspots

number of  
sites “detected” 
as hotspots Total

number  
of “true”  
non-hotspots

U V n0

number of  
“true” hotspots

R S n1

n-d d n
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the top of  a list obtained by sorting the list of 
the mean  accident frequencies for a specific 
model according to the list of  the “true” accident 
frequencies.

The percentage deviation only gives information 
about the number of hotspot locations that do not 
appear in both “true” and simulated ranked lists. 
Therefore, the greater the value the worse the out-
come since it suggests that there are more hotspots 
that do not appear in both lists, that is, the model 
results in a higher number of hotspots with respect 
to the “true” list. The total number of hotspots 
selected from the top of this list was chosen to be 
3, 5, 8, 10 and 15 to ensure that various possibili-
ties were taken into account.

4.5 Spearman correlation coefficient

Miranda-Moreno & Fu (2009) employed the 
Spearman correlation coefficient, ρ, to evaluate the 
degree of association between the “true” and “sim-
ulated” ranks ordered on the basis of any hotspot 
identification technique. The value of ρ can vary 
from +1 to ‑1. A value close to +1 suggests that 
the “true” versus the “simulated” ranks are posi-
tively and linearly related. In the present context 
ρ evaluates the degree of association between the 
“true” and the “simulated” ranks for the four types 
of hyper-prior distributions considered.

5 RESULTS

The simulation results for the various scenarios 
considered are summarized in Tables 2 to 9 and 
represent the mean values of the 25 simulations 
performed.

The best overall results were obtained by the 
models with informative Gamma and Chris-
tiansen hyper-priors (see rows (4) and (2) in 
Tables 2 and 3). The model performing worse at 
detecting the “true” hotspots involved the non-
informative Gamma (rows (1) in Tables 2 and 3). 
For n = 400 (Table 4) the type of  hyper-prior con-
sidered becomes less relevant. This also agrees 
with previous works results, e.g. Lord (2006) and 
Miranda-Moreno et al. (2009), where the former 
states that the problem of  low mean can also be 
solved by increasing the number of  roadway ele-
ments involved in the analysis, i.e. increase the 
sample size.

overall the best outcomes shown in Tables 2 
to 4 were obtained when the data analyzed 

Table 2. Hotspot identification errors for n = 50 sites 
and T = 3 and 5 years.

Hyper-prior FdR FnR SEnS SPEC PMd Risk

Time period = 3 years
(1) 0.392 0.064 0.266 0.980 1.370 0.080
(2) 0.372 0.060 0.338 0.972 1.408 0.083
(3) 0.349 0.065 0.271 0.981 1.345 0.079
(4) 0.372 0.063 0.281 0.980 1.344 0.079

Time period = 5 years
(1) 0.738 0.017 0.188 0.989 0.696 0.027
(2) 0.567 0.014 0.354 0.988 0.606 0.026
(3) 0.583 0.016 0.208 0.993 0.436 0.022
(4) 0.458 0.015 0.271 0.994 0.403 0.021

(1) non-info. Gamma, (2) Info. Christiansen, (3) Info. 
Uniform, (4) Info. Gamma.

Table 3. Hotspot identification errors for n = 100 sites 
and T = 3 and 5 years.

Hyper-prior FdR FnR SEnS SPEC PMd Risk

Time period = 3 years
(1) 0.364 0.040 0.388 0.977 1.655 0.060
(2) 0.353 0.036 0.464 0.976 1.571 0.057
(3) 0.312 0.040 0.398 0.980 1.570 0.058
(4) 0.317 0.040 0.395 0.978 1.602 0.060

Time period = 5 years
(1) 0.311 0.026 0.294 0.992 1.343 0.033
(2) 0.332 0.021 0.469 0.988 1.348 0.031
(3) 0.285 0.024 0.375 0.991 1.305 0.032
(4) 0.328 0.023 0.380 0.994 1.336 0.032

(1) non-info. Gamma, (2) Info. Christiansen, (3) Info. 
Uniform, (4) Info. Gamma.

Table 4. Hotspot identification errors for n = 400 sites 
and T = 3 and 5 years.

Hyper-prior FdR FnR SEnS SPEC PMd Risk

Time period = 3 years
(1) 0.375 0.054 0.414 0.973 6.736 0.075
(2) 0.371 0.052 0.436 0.972 6.623 0.074
(3) 0.346 0.054 0.411 0.976 6.566 0.072
(4) 0.347 0.054 0.416 0.976 6.570 0.073

Time period = 5 years
(1) 0.288 0.022 0.396 0.993 4.176 0.028
(2) 0.270 0.021 0.411 0.993 4.079 0.027
(3) 0.286 0.022 0.376 0.994 4.134 0.028
(4) 0.284 0.022 0.387 0.994 4.135 0.028

(1) non-info. Gamma, (2) Info. Christiansen, (3) Info. 
Uniform, (4) Info. Gamma.



2357

Table 5. Percentage deviation and ranking correlation for T = 3 years and for n = 50, 100 and 400 sites.

Hyper-prior

Percentage deviation, Ranking correlation

r = 3 r = 5 r = 8 r = 10 r = 15 ρ

n = 50
(1) 0.587 0.504 0.515 0.468 0.397 0.648
(2) 0.640 0.536 0.515 0.488 0.411 0.644
(3) 0.600 0.480 0.505 0.468 0.419 0.649
(4) 0.613 0.496 0.510 0.468 0.416 0.629

n = 100
(1) 0.547 0.512 0.475 0.452 0.419 0.678
(2) 0.547 0.520 0.470 0.440 0.435 0.682
(3) 0.507 0.504 0.470 0.432 0.413 0.685
(4) 0.547 0.512 0.475 0.452 0.419 0.678

n = 400
(1) 0.507 0.448 0.455 0.488 0.491 0.711
(2) 0.493 0.440 0.425 0.472 0.467 0.715
(3) 0.507 0.440 0.440 0.472 0.464 0.713
(4) 0.507 0.448 0.435 0.484 0.461 0.715

(1) non-info. Gamma, (2) Info. Christiansen, (3) Info. Uniform, (4) Info. Gamma.

Table 6. Percentage deviation and ranking correlation for T = 5 years and for n = 50, 100 and 400 sites.

Hyper-prior

Percentage deviation, Ranking correlation

r = 3 r = 5 r = 8 r = 10 r = 15 ρ

n = 50
(1) 0.520 0.472 0.490 0.468 0.413 0.576
(2) 0.547 0.520 0.495 0.468 0.421 0.598
(3) 0.520 0.512 0.470 0.444 0.395 0.586
(4) 0.533 0.504 0.475 0.472 0.413 0.562

n = 100
(1) 0.560 0.504 0.420 0.432 0.384 0.735
(2) 0.547 0.504 0.445 0.436 0.371 0.743
(3) 0.547 0.480 0.410 0.428 0.368 0.744
(4) 0.547 0.496 0.415 0.428 0.381 0.745

n = 400
(1) 0.387 0.464 0.460 0.452 0.453 0.727
(2) 0.373 0.440 0.470 0.440 0.440 0.730
(3) 0.387 0.456 0.440 0.440 0.456 0.731
(4) 0.387 0.440 0.440 0.444 0.448 0.731

(1) non-info. Gamma, (2) Info. Christiansen, (3) Info. Uniform, (4) Info. Gamma.

was aggregated over T = 5 years as opposed to 
T = 3.

There seems to be no conclusion regarding the 
sample sizes, n, as far as the Risk is concerned 
(Tables 2 to 4).

For n = 50 the best outcomes of the percentage 
deviation values are obtained by the informative 
Uniform and Christiansen hyper-priors (Tables 5 
and 6). When the sample sizes increase not many 
differences are found amongst the percentage 
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Table 7. True versus posterior estimated values of model parameters (n = 50 sites and T = 3 and 5 years).

Hyper-prior ß0 (Rhat) ß1 (Rhat) ϕ (Rhat) dIC

Time period = 5 years
Real values -11.284 1.022 1.617 –
(1) ‑14.557 (1.319) 1.202 (1.301) 93.276 (1.134) 61.474
(2) ‑14.308 (1.558) 1.181 (1.499) 1.673 (1.053) 59.341
(3) ‑13.411 (1.333) 1.094 (1.312) 2.229 (1.002) 62.118
(4) ‑13.415 (1.481) 1.095 (1.457) 2.095 (1.006) 62.200

Time period = 5 years
Real values -11.083 0.963 1.814 –
(1) ‑12.510 (1.356) 0.929 (1.358) 103.219 (1.131) 64.862
(2) ‑13.231 (1.448) 0.996 (1.424) 1.848 (1.042) 62.321
(3) ‑12.886 (1.266) 0.961 (1.266) 2.242 (1.003) 64.350
(4) ‑12.957 (1.376) 0.923 (1.374) 2.124 (1.003) 64.410

(1) non-info. Gamma, (2) Info. Christiansen, (3) Info. Uniform, (4) Info. Gamma.

Table 8. True versus posterior estimated values of model parameters (n = 100 sites and T = 3 and 5 years).

Hyper-prior β0 (Rhat) β1 (Rhat) ϕ (Rhat) dIC

Time period = 3 years
Real values -11.284 1.022 1.617 –
(1) -14.067 (1.297) 1.170 (1.302) 139.465 (1.395) 109.469
(2) -14.094 (1.421) 1.173 (1.374) 2.035 (1.050) 105.747
(3) -14.037 (1.332) 1.167 (1.301) 2.236 (1.003) 108.906
(4) -13.974 (1.335) 1.160 (1.325) 2.112 (1.004) 108.566

Time period = 5 years
Real values -11.083 0.963 1.814 –
(1) -12.134 (1.313) 0.909 (1.302) 141.562 (1.228) 137.946
(2) -12.402 (1.299) 0.933 (1.299) 2.769 (1.039) 134.613
(3) -12.460 (1.256) 0.937 (1.254) 2.235 (1.003) 136.872
(4) -12.063 (1.247) 0.903 (1.229) 2.118 (1.004) 136.429

(1) non-info. Gamma, (2) Info. Christiansen, (3) Info. Uniform, (4) Info. Gamma.

Table 9. True versus posterior estimated values of model parameters (n = 400 sites and T = 3 and 5 years).

Hyper-prior β0 (Rhat) β1 (Rhat) ϕ (Rhat) dIC

Time period = 3 years
Real values -11.284 1.022 1.617 –
(1) -12.114 (1.210) 0.996 (1.208) 35.445 (1.264) 491.569
(2) -12.115 (1.178) 0.996 (1.177)  2.007 (1.063) 484.863
(3) -12.154 (1.149) 1.000 (1.152)  2.175 (1.007) 490.991
(4) -12.111 (1.299) 0.996 (1.292)  2.037 (1.011) 489.734

Time period = 5 years
Real values -11.083 0.963 1.814 –
(1) -12.847 (1.308) 0.973 (1.311) 48.531 (1.603) 523.052
(2) -12.833 (1.373) 0.972 (1.366)  2.394 (1.063) 517.126
(3) -12.821 (1.210) 0.970 (1.206)  2.181 (1.007) 523.091
(4) -12.857 (1.315) 0.974 (1.307)  2.047 (1.010) 521.608

(1) non-info. Gamma, (2) Info. Christiansen, (3) Info. Uniform, (4) Info. Gamma.
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 deviations. However, the Spearman correlation 
coefficient, ρ, increases with increasing n, sug-
gesting that the greater the samples the more posi-
tively and linearly related are the “true” versus the 
 estimated hotspot ranks. The number of years does 
not seem to influence any of the measures shown 
in Tables 5 and 6.

The hyper-priors employed do not seem to influ-
ence considerably the posterior estimates of the ß 
parameters (Tables 7, 8 and 9). When the non-in-
formative Gamma is used the posterior estimates 
of the dispersion parameter f differ substantially 
from its “true” values. This illustrates that the use 
of  informative hyper-priors can lead to much more 
accurate parameter estimates than non- informative 
ones.

In all the scenarios considered the mean Rhat 
values for all the parameter estimates are close 
to 1 demonstrating that, on average, the MCMC 
simulations converged to the sought target 
distribution.

The models with informative Christiansen 
hyper-priors produced the smaller dIC values 
and are thus the best fitted models out of the four 
considered.

6 oVERALL ConCLUSIonS

This study shows that when developing  hierarchical 
Bayesian accident prediction models with the 
aim of using its results for hotspot detection 
in Portuguese motorways it is best to employ 
informative hyper-priors, namely the Gamma and 
Christiansen’s for small sample sizes (between 50 
and 100). It was also found that more accurate 
results were obtained when more years of aggre-
gated data were analyzed.
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