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ABSTRACT

The paper aims at presenting some achievementsnbfsgatistics. The different statistical distrilmns used for the
description of the main parameters of the joint gattitude, intensity, area, and aperture) amodhiced. For the
attitude, a comparison of the existing distributimctions is made. For the intensity, the formufas its
determination are given, the applicable statistmatels are presented, and the Poisson modeldavdturrence of
the discontinuities in rocks is discussed in defthe statistical models for the distribution of thelume of the
blocks of a rock mass are introduced. For the amgain, the formulas for its determination are givand the
applicable statistical models presented. Finahg, distribution function for the aperture is reéetito, as well as a
note on the roughness and waviness.

1. INTRODUCTION

Rock masses always present numerous discontinuifgces, which may be of genetic origin
(contacts between crystals, schistosity planes, dibgd planes, etc.), tectonic origin
(microfissures, joints, faults, etc.), or othergams (fractures due to the daily thermal wave))etc.
From the Rock Mechanics point of view, the disaouity surfaces may be sorted into 2 groups:

- one, that assembles those discontinuity surfadeish, due to their great number, small
dimension, or little variation of the mechanicaloperties (at the scale of the considered
problem), although having an influence on the noass properties, do not prevent the use of the
Mechanics of the Continuous Media for the studthefrock mass; and

- another one, that assembles the remaining diseotyt surfaces, i.e., those which call for the
use of the Mechanics of the Discontinuous MediaHerstudy of the rock mass.

The whole lot of the discontinuity surfaces belarggto the second group, are called the rock
masgointing and, usually, include the joints, the faults, ifaetures along schistosity planes, the
bedding planes, etc.

The large majority of the discontinuity surfacexuweing in a rock mass, are approximately
plane, and, therefore, the orientation in the spdi@ach one of them, called th&itude, can be
defined by two parameters, habitually, sheke (c) and thadip (3) (Grossmann 1977).

In general, a rock mass presents discontinuityased with all attitudes, but, as a rule, the great
majority of those surfaces may be included in atnely small number ofliscontinuity sets,
which are characterized by the fact that all disiooity surfaces of the same set have adjoining
attitudes, i.e., all discontinuity surfaces of aa® approximately parallel.

The jointing of a rock mass is, therefore, usuaehgracterized by the presence of a small number
of discontinuity sets, and, additionally, a fewadistinuity surfaces with a random attitude.
However, in most studies of the geometrical charastics of the rock mass jointing, the problem
is simplified, by reducing it to the determinatioh the occurring discontinuity sets, and the
description of their geometrical parameters.

The geometrical parameters which, generally, ansidered in the description of a discontinuity
set, are the attitude, the intensity, the area tb@wdpening, these parameters being chosen due to
the fact that the discontinuity surfaces are oftevdelled as prisms with a very small height in
relation to the dimension of their bases.



2. ATTITUDE OF THE DISCONTINUITY SETS
2.1. Concept

The parameter attitude describes the orientatidhenspace of the discontinuity surfaces of the
set, independently from their location, and assgrtiey are plane.

As has been said, the attitude of a discontinuityase is, in general, quantified through the 2
parameters strike and dip.

2.2. Statistical Distribution
2.2.1. Isotropic models

Although graphical representations of the distitouiof the jointing surface attitudes have been
used in geotechnical studies for nearly 80 yeardll@v] 1933), the first mathematical models for
the distribution function of the discontinuity sack attitudes of a set date from only about 40
years (Watson, 1966).
These models were, however, all isotropic, i.e.tlem, the probability density function i €)]
is given by

f(w, &) = AeBd®
as a function of the longitude) and the colatitudes) of the discontinuity surface attitude (in a
system of spherical co-ordinates, whose revolusigis is normal to the mean attitude of the
considered discontinuity set); the 2 constantsai#d (B); and a function [g)] of the colatitude
(¢).
The probability density functions of the most imait isotropic models are:
a) for theArnold distribution (Arnold,1941)

f (C(), E) — kkA ekAcosg
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with the parameter @ which measures the dispersion. The Arnold distidn is the
hemispheric counterpart of the erroneously ofteedussher or spherical normal distribution.
b) for theBingham distribution (Bingham 1964)
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with the parameter 8§ which measures the dispersion, and Kummer’'s aentlhypergeometric
function [M (1/2; 3/2; k)], with the parameters (1/2) and (3/2), and thealde (k).
c) for theisotropic bivariate normal distribution (Grossmann 1985)
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with the standard variatiow), For practical purposes, the above expressiomcesito

f(w, €)= ! e %



In spite of the limitation imposed by the isotroflye use of these models still finds support in the
literature. This standpoint, however, is not juabfe, because the experience has shown that the
large majority of the discontinuity sets occurrimgthe rock masses, presents an anisotropic
distribution of the discontinuity surface attitudesnd several anisotropic models for that
distribution have already been presented in teeditre.

2.2.2. Anisotropic models

The anisotropic models for the distribution funotiof the discontinuity surface attitudes of a set
can be sorted into 2 groups:

- one, that assembles the models which use theifubbparameters of the attitude, the strike (
and the dipd), as variables of a plane bivariate normal distidn; and

- another one, that assembles the models whiclasisariables the longitude and the colatitude
(in a system of spherical co-ordinates whose rdimiwaxis is normal to the mean attitude of the
considered discontinuity set).

The models of the first group, which still have pogers, lead to unsatisfactory results,
especially when the discontinuity surfaces of thiease nearly horizontal. This is due to the fact
that the used distribution assumes that the elangatea (d do) has a constant value, although,
in reality, it is the elementary area &ido dd) which has a constant value on the spherical
surface.

As concerns the models of the second group, omsednentioned in the literature, the Bingham
distribution (Shanley & Mahtab 1975) and the biatginormal distribution on the tangent plane
at the mean attitude (LNEC 1973b).

2.2.3. Bingham distribution

The probability density function [d§, €)] of this mathematical model is given by (Bingh&a864)
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2 2
as a function of the longitudey (measured from the orientation with the minimuispdrsion)
and the colatitudeg] of the discontinuity surface attitude (in a systef spherical co-ordinates,
whose revolution axis is normal to the mean atétodl the considered discontinuity set); the 2
parameters(() and {,), which measure the dispersion, and obey theloalat

¢,24,

and Kummer’s confluent hypergeometric function [M2{ 3/2; z)], with the parameters (1/2) and
(3/2), and the variable (z), which is given by thatrix
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As is shown in Fig. 1, the Bingham distribution dosot reject the existence, in any given
discontinuity set, of discontinuity surfaces whadggtude is normal to the mean attitude of that
set.

Due to this inconvenient, which the Bingham disttibn shares with the major part of the
mathematical models for the distribution functidnttte discontinuity surface attitudes of a set,
the bivariate normal distribution on the tangemtngl at the mean attitude began to be used at the
LNEC.
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Fig. 1 — Normalized distribution functions of 3 gpical distributions
2.2.4. Bivariate normal distribution on the tangent plahn¢he mean attitude

On the spherical surface, theobability density function [f(w, €)] of this mathematical model is
given by (Grossmann 1985)
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as a function of the longitude) and the colatitudeg) of the discontinuity surface attitude (in a
system of spherical co-ordinates, whose revoluégis is normal to the mean attitude of the
considered discontinuity set); and the maximumadsdash deviation dy), the minimum standard
deviation 6r,), and the longitudex{y) of the orientation with maximum dispersion, oé thttitude
distribution.
On the tangent plane at the mean attitude, theapility density function (o, €)] of that
distribution is given by (Grossmann 1977)
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and, thus, the area on that plane, limited by a 6hequal probability density, for which the
probability of having poles of the discontinuityrfaces of the considered set inside that area, is
equal to (P), is the ellipse given by
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In order to completely characterize the distribataf the discontinuity surface attitudes of a
given set with the help of the bivariate normal mlooin the tangent plane at the mean attitude,
one has, thus, to knoW parameters, the strike ¢) and the dip ) of the mean attitude, the
maximum and the minimum standard deviations, rasmdy, (o) and 6r,), and the anglewy)
that identifies the orientation for which the maxim dispersion occurs.
The bivariate normal distribution on the tangenangl at the mean attitude is a unimodal
distribution, which is symmetric in relation to tBeperpendicular planes that correspond to the
orientations for which the maximum and minimum eigons occur. Its probability density
function presents bl type shape.
The 5 parameters defining the bivariate normalrihistion on the tangent plane at the mean
attitude, allow an easy visualization of the dsition, because:
- the mean attitude indicates directly the cerngaaht, which is the mode of the distribution;
- the maximum and minimum standard distributiongegihe limits between which lies the
tangent of the colatitude of the points of the lofeequal probability density which encloses the
domain of attitudes containing

1
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of the poles of the discontinuity surfaces of tbasidered set; and
- the anglaoy reveals directly the orientation for which the nmaxm dispersion occurs, and, due

to the perpendicularity of their orientations, meditly also the orientation for which the minimum
dispersion occurs.

3. INTENSITY OF THE DISCONTINUITY SETS
3.1. Concepts
3.1.1. Intensity

The parameter intensity describes the degree ofipg that the whole lot of the discontinuity
surfaces of the set have induce in the rock masgpiendently of the individual extent of each
discontinuity surface.

The intensity of a discontinuity set is, therefogeiantified by the sum of the areas of the
discontinuity surfaces of the set which occur imé volume of the rock mass, and, so, should be
expressed im?/m®.

However, the intensity is quite often expressedumber of discontinuity surfaces/m, which
results from the fact that the intensity of a drgawuity set is considered to be the number of
discontinuity surfaces of that set, which are is¢eted by a segment with a unit length, and
whose orientation is normal to the mean attitudéhefconsidered set.

This second definition only corresponds to thetfase if all discontinuity surfaces of the set
possess the same attitude (the mean attitude)uydeacaly in that case the intersection of any of
those discontinuity surfaces with a unit volumeihg\a cylindrical shape, an infinitesimal cross-
section, and generatrices which are normal to teamattitude of the considered discontinuity
set (the volume which is equivalent to the segnretite second definition), is equal to the cross-
-section of that cylindrical volume. It should beted that it is valid to disregard the occurrence
of partial intersections, due to the exiguity of ttross-section of the cylindrical volume.



3.1.2. Spacing

The spacing of a discontinuity set is the inverk#saintensity, i.e., the volume of the rock mass
in which the sum of the areas of the discontinsiigfaces of that set, that occur in it, corresponds
to a unit area (Grossmann 1967) (Fig. 2).

The spacing should, thus, be expressedmnifin?,
although it is usually expressedrmm which results from
the fact that the spacing of a discontinuity set is
considered to be the distance between successiv — "
discontinuity surfaces of the set, measured along aj A 7
straight line with an orientation normal to the mea &
attitude of the considered set.
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.
As, in general, it is not possible to measure tleas of
the jointing surfaces directly, the intensities thie _
various discontinuity sets occurring in a given kroc —
mass, are determined from the knowledge of thetleng
of the intersections of the different discontinuity . . . -
surfaces with the observation surface on which thE'9- 2 — Spacing of a discontinuity set
jointing sampling has been performed.

Thus, for a general observation surface (S), ttensity (I) of a chosen discontinuity set is given
by (Grossmann 1988)
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as a function of the sum)(bf the lengths of the intersections of the digcauity surfaces of that
set with the given observation surface, and thdeafiy between the normal to the surface

element (dS) and any normal to the mean attitudeeo€onsidered discontinuity set.
In the case of plane observation surface, with an area (S), the last expression reduces to

| =t
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On the other hand, the general expression canbasmpansformed, by partial integration, into
(Grossmann 1977)
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as a function of the length (p) of the intersecténthe chosen observation surface with the plane
possessing the mean attitude of the consideredrtisaity set, and corresponding to the length
element (dh) of the segment (h which is defined on a normal to the mean atétofl that set,
by the 2 planes with the mean attitude of the wdiich are tangent to the exterior of the
observation surface.

In the case of a cylindrical observation surface, Wwhich the length (p) is constant, as, for
instance, for dorehole, the last expression reduces to
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If one admits that the intersections of the distwity surfaces of the considered set with the
cylindrical observation surface have all the saemth, i.e., that no partial intersections occur,
and that all those discontinuity surfaces havestrae attitude (the mean attitude of the set), the
last expression can be written as

| = N
| cose

as a function of the number (N) of those discontynsurfaces, the length (I) of any generatrix of
the cylindrical observation surface, and the agléormed by any of those generatrices with the
normals to the mean attitude of the considerecddistuity set.
This last expression applies, obviously, also ®dases in which the observation surface reduces
to asegment, as, for instance, a scanline.
Thespacing of a discontintuity set is easily calculated frdm tespective intensity (I), by

1
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3.3. Statistical Distributions
3.3.1. Poisson distribution

The occurrence of discontinuity surfaces of a sdmeontinuity set is a phenomenon that, in a
homogeneous rock mass, often possesses the fofjqaperties:

i) Stationarity — the probability that one of those discontinwstyrfaces intersects any given
segment element (dl) in the rock mass, is appraeipa&qual to (I cos dl), as a function of the
angle €) between the segment element and any normal tont#en attitude of the considered
discontinuity set, and the intensity (I) of that; se

i) Non-multiplicity — the probability that more than one discontingityfaces of the considered
set intersect the aforesaid segment element gdtiegligible, if compared to (I cagl); and

i) Independence — the number of discontinuity surfaces of the aber®d set which intersect
any given segment in the rock mass, is indepenalietite number of discontinuity surfaces of
that set which intersect any other given segmerthenrock mass, as long as the orthogonal
projections of those 2 segments on a normal tartean attitude of the considered set, do not
overlap, neither totally, nor partially.

When these conditions are fulfilled, one is in gresence of a Poisson process. (Benjamin &
Cornell 1970).

In this case, the probability [P(N)] that any giveegment in the rock mass, with a length (1),
intersects a number (N) of discontinuity surfacéshe considered set, is given by the Poisson
distribution
(I | COS&‘) N e—l | cose

N!
as a function of the intensity (1) of that discowiity set, and the angle)(between the considered
segment and any normal to the mean attitude ofsttat
Fig. 3 presents some typical cases of the Poisistribdtion.

P(N) =



For small values of the parameter (I | &)sthe PiNIL
Poisson distribution is strongly skewed to tI 061
right, but, with the increase of the parametess t

distribution approaches the normal distributic 04
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with the mean N) and the standard deviatio ol
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3.3.2. Exponential distribution B2 . HEE WA LA I T

From the expression of the Poisson distributic PINY
one deduces directly that the probability [P(C
that any given segment in the rock mass, witl

length (l), does not intersect any discontinui Il cos€ =25

0,4

surface of the considered set, i.e., that the miiste e
between any 2 successive intersections of
discontinuity surfaces of that set with any give ~ ®%0 5 4 6 5 0 1 N
straight line in the rock mass, is not less than
is given by PN
P(O) — e—l | coss o

as a function of the intensity (I) of the consider |
discontinuity set, and the anglg petween either

the considered segment, or the considered stra 1 l l I | I l |

line, and any normal to the mean attitude of ti O‘O'o 2 4 6 5 10 2
set.

By derivation of the last expression, one obtains Fig. 3 — Poisson distribution
the  probability density function  [f(l)]
corresponding to a distance (I) between 2
successive intersections of the discontinuity
surfaces of the considered set with any given
straight line in the rock mass, i.e., in a certagnse, the probability density function of a
“spacing”, which is given by

—Variation
of the probability with the number of
discontinuity surfaces, for 3 values of
the parameter (I | cep

—| | cose

f(I)=1cosce
This expression corresponds to an exponentialldision with the parameter (I ce}.

3.3.3. Gamma distribution

The probability [R(I)] that the intersection of order (N) of any givstraight line in the rock
mass, with the discontinuity surfaces of the cozr®d set lies at a distance not less than () from
any given point on that straight line, can alsodeeluced from the expression of the Poisson
distribution, and is given by

N (1 lcose) e (N, Il cose)
A= Z; T ~ T(N)

as a function of the intensity (I) of that discowity set, the angles) between the considered
straight line and any normal to the mean attituidéhat set, the gamma functiof(N)] with the
parameter (N), and the incomplete gamma funcfigN [ x)] with the parameters (N) and (x).

By derivation of the expression of ()], one obtains the probability density functifin(l)]
corresponding to a distance (l) between the pdiosen on the straight line and the intersection
of order (N) of that straight line with the disconiity surfaces of the considered set, which is
given by
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This distribution is a gamma distribution with tharameters (N) and (I ca$ (if (N) takes only
integer values, it is also called an Erlang disiiim).

Fig. 4 presents some examples

of the Erlang (gamma)

distribution. En()

For small values of the 1cosE

parameter (N), the gamm
distribution is strongly skewec
to the right, but, with the
increase of the parameter, th
distribution approaches th
normal distribution with the

mean JN) and the standarc

deviation F).

It should be noted that the
aforementioned  exponentie

distribution corresponds to th 0 2 4 6 8 10 1l cos €
particular case of the gamma Fig. 4 — Erlang (gamma) distribution —Variatiof the
distribution in  which the probability density with the vasia (I | cose),
parameter (N) takes the value for 4 values of the parameter (N)

1.

3.3.4. Lognormal distribution

It is found, sometimes, that some discontinuitys s®&icurring in homogeneous rock masses, are
not correctly described by means of a Poisson geockhis fact may, for instance, be due to the
way the rock was formed, to the existence of disnaity sets generated before the origin of the
discontinuity sets which are not susceptible taé&scribed by means of a Poisson model, etc.

In these cases, a description with the help ofgmdamal distribution has been applied with
success.

The probability [P(0)] that any given segment i ttock mass, with a length (I), does not
intersect any discontinuity surface of the con®deset, i.e., that the distance between any 2
successive intersections of the discontinuity sigsaof that set with any given straight line in the
rock mass, is not less than (1), is, then, giverf@®ywssmann 1988)

P(0) = Q[%In (I Icosg)+%}

as a function of the intensity (I) of the considkdiscontinuity set, the angle) (between either
the considered segment, or the considered striightand any normal to the mean attitude of
that set, the (unitless) standard deviationdf the distribution, and the upper tail area [JDOf

the standardized normal (Gaussian) distributionttfe value (x) of the standardized variable.
The probability density function [f(I)] correspomdi to a distance (I) between 2 successive
intersections of the discontinuity surfaces of ¢basidered set with any given straight line in the
rock mass, i.e., in a certain sense, the probglénsity function of a “spacing”, is given by the
lognormal distribution



2
—1[1In(l | cose)+ J}
2|0 2

_ 1
'O ot

For small values of the parametes),( the lognormal distribution approaches a normal
distribution, but, for the values o) usually occurring in the practice (always gredkem 0,7,
and, generally, even greater than 1,5), this @istion is strongly skewed to the right.

3.3.5. Comments

Independently of the applicable statistical moeed, may, thus, state that the distribution of the
distance between 2 successive intersections afifoentinuity surfaces of a given set with any
given straight line in the rock mass, i.e., in @aea sense, the distribution of a “spacing”, has a
positive coefficient of skewness, its mode beingdothan its mean.

In consequence, we may also state that, indepdpdainthe applicable statistical model, the
distribution of the probability [P(N)] that any gm segment in the rock mass, with a length (1),
intersects (N) discontinuity surfaces of the coesed set, can only be assimilated to a normal
(Gaussian) distribution when the length (1) is mightly great (in view of the intensity of the
discontinuity set, and taking into account the arggtween the chosen segment and any normal
to the mean attitude of the discontinuity set)ttsat the mean of the distribution of [P(N)] has a
minimum value of 9.

As, however, the scale of many engineering problenmdies the consideration of segments for
which the above-mentioned condition is not fulfillehe distribution of [P(N)] will, usually, also
have a positive coefficient of skewness, its moeiadplower than its mean.

In short, care must be taken with the fact tha@riyealways, the means of the different
characteristics related to the intensity of theantinuity sets, do not correspond neither to the
most frequent values (modes), nor to the middlaes{medians) of the respective distribution.

Number of joints Probability

3.3.6. Example per 10 m stretch (%)

<4 1,0
The recognition of the skewed character of the a 19
distributions of many practical parameters 5 3,8
connected with the intensities of the discontinuity 6 6’3
sets, has still not entered into the domain of Rock 7 9’0
Mechanics’ common knowledge. 3 11’ 3
Due to this fact, the foreseeable occurrence of :
restricted zones with a great number of 9 12,5
discontinuity surfaces of a given set, tends always 10 12,5
to be considered as an “unpredictable abnormality”. 11 11,4
For instance, if a tunnel, in a homogeneous rock 12 9,5
mass, runs normal to the mean attitude of a j@nt s 13 /7,3
whose intensity is 1 Aim°, and for which the 14 5,2
occurrence of the joints can be described by a 15 3,5
Poisson model, the probability that a certain 16 2,2
number of joints of that set occurs in any given 10 17 1,3
m stretch of the tunnel, is shown in Table |I. >17 1,4

The analysis of this table indicates that, in eacth

Table | -
of that tunnel, one may expect one 10 m stretch
with 3 or less joints of the considered set, babal
another 10 m stretch with 18 or more joints of that
set, a more than sixfold increase in the number of
joints.

Probability of occurrence of
joints of a set with an intensity of
1 mt/m®, in a 10 m.stretch of a tunnel
running normal to the mean attitude
of the set (Grossmann 1988)



Fig. 5 presents the result of a computer simuladfoiie aforesaid occurrence of a joint set whose

intensity is 1 i¥m®, in a tunnel with a length of 1 km, clearly showithat, in ahomogeneous

rock mass, there are zones which an unexperienced obsemadwelassify as totally different in
their jointing.

M SOEL HT TR TCOCRAC AT SR 0 LI e TR 1
LR O O A O
S| (IR TN [ LM RN AT Y0 AR Wil R L
NN 10O 1 1 0 AR
TTCTIUAT T JONC LOCECURT T TR e e T i

L T T TR TR
T L TOT0T A TTAT ST TR LI T T T

0 7 G 1

BT TR IV R R TR LI Ty T T (T

1L}

B O NN OO R O 1 O
1 NN 0 O M AH S I (N

Fig. 5 — Tunnel in a homogeneous rock mass — etéos of the joints of a set
which can be described by a Poisson model
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3.4. Volume of the Blocks

3.4.1. Premises

The knowledge of the volume of the blocks which @éned by the jointing of a rock mass, can

have a great practical interest, because, in miamngtions, the use of those blocks is conditioned

by a minimum and/or maximum volume.

That knowledge can easily be obtained, if the feiigy 3 hypotheses are assumed:
i) the rock mass presents only 3 discontinuity;sets

i) all the discontinuity surfaces of a same seiq@ss the same attitude (the mean attitude of the

discontinuity set); and



i) all discontinuity surfaces end at other distounity surfaces.
The 1st hypothesis will, as a rule, be easily amzkpn the case of rock masses formed by
anisotropic rocks, since the experience has shoantheir discontinuity system is, very often,
basically constituted by 3 approximately triorthagbdiscontinuity sets.
For the rock masses with more than 3 importantodiicuity sets, one would have to merge, if
possible, groups of neighbouring sets into singts.s
The 3rd hypothesis, although seeming very restacis based on the practice. In fact, it has been
verified that, as a rule, only a small percentafjeiscontinuity surfaces seem to end in other
ways than at other discontinuity surfaces (foranse, Kikuchi et al. (1985) indicate 11,5 %), and
it can always be argued that, possibly, some afehdiscontinuity surfaces still continue until
they find others, but with such a tiny opening,tttieey can not be detected by the employed
observation techniques.
If all the 3 aforesaid simplifying hypotheses aceepted, all the blocks of the given rock mass
have the shape of parallelepipeds, the attitudegheir 3 pairs of parallel faces being,
respectively, the mean attitudes of the 3 consdldigcontinuity sets
The volume (V) of a parallelepiped whose 3 pairspafallel faces have, respectively, the
attitudes (A), (B), and (C), is given by
V = dA dB dc

J1-C0S . —COS I, — COS’ @ g + 2 COS g COS Uy COSA g

as a function of the distancesad(ds), and (&) between the 2 faces with, respectively, the
attitudes (A), (B), and (C), and the anglesc], (oca), and 6as) between, respectively, the
attitudes (B) and (C), (C) and (A), and (A) and.(B)

3.4.2. Statistical distribution

When the occurrence of the discontinuity surfadedb@® 3 chosen sets can be described by means
of Poisson processes, the probability density function [f(\6J]the volume (V) of the blocks of
the rock mass is given by (Grossmann 1986)

4v
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as a function of the modified Bessel function oé tbind kind and order 0 p&)], with the

argument (t), and the mean of the distributiM),(Which Is calculated by

— 1
V =

NP \/1— coS @ —CcoS A, —COS A, +2COM . CO ., COKA 5
as a function of the intensitiex )] (Is), and (k) of the 3 discontinuity sets, with, respectivehge
mean attitudes (A), (B), and (C), and the anglgs)( (aca), and (ias) between, respectively, the
mean attitudes (B) and (C), (C) and (A), and (AJ &B).
In this case, the distribution of the volume of thlecks of the rock mass has the standard
deviation 6v), given by

o, = J7V
The cumulative distribution function [F(V)] of thelume of the blocks of the rock mass is, then,
given by
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and the fraction [p(V)] of the rock mass, consétliby the blocks whose individual volume does

not exceed (V), by (Grossmann 1986)
av
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Fig. 6 presents the probability density functiord ahe cumulative distribution function of the
volume of the blocks of a rock mass, for which 3hgertinent discontinuity sets can be described
by Poisson models. In this case, the probabilitysdg function is a monotonically decreasing
function of the block volume.
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Fig. 6 — Probability density function (left) andnoulative distribution function (right)
of the volume of the blocks of a rock mass,
when the discontinuity sets are described by Poissaodels

However, if the occurrence of the discontinuityfaoes of the 3 chosen sets is described with the
help oflognormal distributions, the volume (V) of the blocks of theck mass follows also a
lognormal distribution, whose probability densitnttion [f(V)] is given by

FV)= 2t s

e
N2 oV




as a function of the 2 parameters of the distrdsu(the median&) and the standard deviation
(5)), which are calculated by

§= 2

g
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as a function of the intensities )] (Is), and (k) of the 3 discontinuity sets, with, respectivehge

mean attitudes (A), (B), and (C), and the anglgs)( (aca), and ¢as) between, respectively, the
mean attitudes (B) and (C), (C) and (A), and (AJ éB); and
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function [F(V)] of the volume of  w}
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this case, given by 1
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as a function of the lower tail are

of the standardized norme 7]
distribution [P(x)], for the value |
(x) of the standardized variable
and the fraction [p(V)] of the rock
mass, made up by the block
whose individual volume does nc .,
exceed (V), is given by :
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Fig. 7 presents an example of «

graphical solution (with the help OfFijg. 7 — Fraction of the rock mass, whose individilacks
a lognormal probability paper) of ~do not exceed a given volume, for a lognoriatk
the last equation. volume distribution (dioritic rock mass (LNEC 71®a))
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4. AREA OF THE DISCONTINUITY SETS
4.1. Concepts
4.1.1. Area

The parameter area describes the size of the disady surfaces of the set, independently of
their shape.



4.1.2. Equivalent radius

The equivalent radius (Grossmann 1984) of a distoity surface is the radius of the circle
whose area is equal to that of the discontinuitfese.

4.2. Deter mination

As said before, in general, it is not possible ®asure directly the areas of the jointing surfaces
occurring in a given rock mass.

Therefore, as for the intensity, one resorts tokin@wvledge of the lengths of the intersections of
the different discontinuity surfaces with the olvsgion surface on which the jointing sampling
has been performed, in order to obtain an informmaéibout the area of the discontinuity surfaces
of the different sets occurring in the rock mass.

Unlike what happens with the expressions allowmglitain the intensity of a discontinuity set,
the expressions giving the mean area of the disuatyt surfaces of a set, depend on the type of
the distribution of the areas of the jointing suda of the set, through the parameter (k) which

relates the mean equivalent radids)(of the discontinuity surfaces of that set to thean area

( A) of those surfaces, in the equality (Grossmanry198

R=kvVA
Thus, for aconvex, closed observation surface (S), delimiting the volume (V), for which the
normal to the surface element (dS) forms an anglevith any normal to the mean attitude of the
considered discontinuity set, the mean area ofdibeontinuity surfaces of that set is given by
(Grossmann 1987)
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as a function of the mean lengtth | of the intersections of the discontinuity surfae the
considered set with the observation surface, teauce (k) between the 2 planes with the mean
attitude of that set, which are tangent to the ntam®n surface, and a corrective term (V’) of the
volume (V), which complies with the inequalities

O<V'sV
and depends on the shape of the observation swuafat@n the type of the distribution of the
areas of the discontinuity surfaces of the considlset.
For the case of plane convex observation surface, with an area (S), a transformation of the last
equality for a prism with a height O and bases whtharea (S), gives (Grossmann 1977)
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4.3. Statistical Distribution

4.3.1. Bessel function distribution

As has been referred to, while presenting the bagiotheses for the evaluation of the volume of
the blocks of a rock mass, the experience has shbatnthe majority of the jointing surfaces
occurring in a rock mass, seem to end at othetifjgrsurfaces.

This fact implies that those discontinuity surfatese a polygonal shape, and, thus, their area
depends, basically, on the product of 2 distanetwden opposite sides of the polygon. These
distances, however, correspond to distances betwaecessive discontinuity surfaces along
straight lines, which, in general, follow exponehtiistributions (Priest & Hudson, 1976). The
distribution of the areas of the discontinuity swds can, then, be obtained by multiplying 2
exponential distributions, the result being a Begsgection distribution (Grossmann 1986).
Moreover, a study of 10 different rock masses (l9nd& Priest, 1979) showed a good agreement
between the values measured for the areas of fiferedit discontinuity surfaces, and the
corresponding Bessel function distributions.

The probability density function [f(A)] of the arg&) of the discontinuity surfaces of a set
presenting a Bessel function distribution, is gillgn(Grossmann & Muralha 1987)

2 A
f(A)==K,|2,/=
(A) ==K 24/=

as a function of the modified Bessel function of ®nd kind and order (n) )], with the

argument (x), and the mean of the distributidh )
In this case, the distribution of the area of tieeahtinuity surfaces of the set has the standard
deviation 6a), given by

g,=3A
The cumulative distribution function [F(A)] of therea of the discontinuity surfaces of a set is,

then, given by
F(y=1-2|2 k22
A A

and the contribution [p(A)] of the discontinuityréaces of the considered set, whose individual
area does not exceed (A), to the total fracturimgctv that set induces in the rock mass, given by
(Grossmann 1991)

A A A A
A A A A
Fig. 8 presents the probability density functiontfee Bessel function distribution.

In this case, the probability density function laagertical asymptote at the origin, and decreases
monotonically with the area, tending to O.



For the Bessel function  za Gy
distribution, the value of the W T o —
parameter (k) referred to above, ] — ,

is given by .
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4.3.2. Lognormal distribution
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However, there are also cases
reported in the literature (Piteau
1973), in which it has been .} L
verified that the dimensions of foA=J’_21"
the discontinuity surfaces in the ‘
directions of the strike and of
the dip, follow lognormal «o7s
distributions.
In those cases, also the areas of
the discontinuity surfaces can be
described by a lognormal
distribution.
The probability density function
[f(A)] of the area (A) of the .. N P e
discontinuity surfaces of a set ‘ .
presenting a lognormal ‘ .
distribution, is given by ‘ : |
2 | +
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The mean area@\) is, in this case, given by
2

A=¢fe?

and the standard deviation of the areag (which is different from the parametes)(of the

distribution) by
o,=Ae’ -1

The cumulative distribution function [F(A)] of therea of the discontinuity surfaces of a set is,
then, given by

1, A

F(A=P|=In=

g <
as a function of the lower tail area of the stada#d normal distribution [P(x)], for the value (x)
of the standardized variable; and the contribufipffA)] of the discontinuity surfaces of the



considered set, whose individual area does noteex(®), to the total fracturing which that set
induces in the rock mass, by (Grossmann 1991)

—p[LinA-
p(A) =P Jlnf g

Fig. 8 also presents the probability density fumtsi for 7 different lognormal distributions,
which have all the same mean area as the showrlBaastion distribution.
For the lognormal distribution, the value of thegmeter (k), defined as stated before, is given
by
1
k==
0.2

e’

4.3.3. Comments

Independently of its type, the distribution of teeas of the discontinuity surfaces of a set is a
distribution with a strong positive asymmetry, fanich both the most frequent value (mode) and
the middle value (median) are lower than its mean.

On the other hand, the intersection of a discoitiinsurface with the possible observation
surface of the rock mass, only once in a while esponds to the maximum dimension of the
discontinuity surface, even in those cases in whiehobservation surface is large in relation to
the area of that discontinuity surface.

From all this, it results that, usually, an unexgeced observer will be induced to underestimate
the mean areas of the discontinuity surfaces oflitfierent sets occurring in a rock mass, and so,
in general, he/she will not be on the safe side.

5. APERTURE OF THE DISCONTINUITY SETS
5.1. Concept

The parameter aperture describes a given dimensional to the discontinuity surfaces of a set,
which is chosen according to the necessities obthdy under consideration, and to the type of
geological feature of those surfaces.

Thus, in the case of fissures, fractures, or joithis aperture corresponds, usually, to the distanc
between the faces of the 2 blocks contiguous toctmesidered jointing surface; in the case of
veinlets, veins, or faults, the aperture is eq@nmalto the thickness of the respective filling; in
other cases, still, the aperture designates timsuessal dimension of the whole zone of altered
rock, which accompanies certain types of discoitgraurfaces of the rock masses.

When the model adopted for the discontinuity sw$ags the one of prisms with a very small
height in relation to the dimension of its basdsyiously, each discontinuity surface will be
characterized exclusively by 1 aperture value, Wwhigsually, will be the mean value of the
apertures determined at different points of theah$inuity surface.

This model fully satisfies when the discontinuityfaces are plane, or, else, when the coefficient
of variation of the apertures determined at théedkht points of the discontinuity surface, is
small.

For many jointing surfaces occurring in the rocksees, however, the above premises are not
verified, and, thus, their aperture requires a neteorate description.



5.2. Statistical Distribution

The mathematical model for the distribution funotiof the apertures of the discontinuity
surfaces of a set presented in the literature,nassuhat the discontinuity surfaces are prisms
with a very small height in relation to the dimemsiof its bases, i.e., it is a model for the
distribution function of the mean apertures of discontinuity surfaces of a set.

It is again a lognormal distribution, and, thug grobability density function [f(a)] of the (mean)
aperture (a) of the discontinuity surfaces of asgtven by

o1 el
f(a)—me2 ¢

as a function of the 2 parameters of the distrdsu(the median&) and the standard deviation
(c))-

The distribution of the (mean) apertures of thecaininuity surfaces of a set is, still, a
distribution with a positive asymmetry, for whiclth the most frequent value (mode) and the
middle value (median) are lower than its mean.

5.3. Roughness and waviness

As already said, the discontinuity surfaces camamy cases, be modelled as prisms with a very
small height in relation to the dimension of itsés. When, however, this simplification is not
acceptable, the deviations between the disconyirsuitfaces and the respective mean planes are
characterized by the 2 parameters roughness andegav

For the description of those deviations, one resausually, to the uni- or bidimensional
harmonic analysis, i.e., the deviations are inttgat as a superposition of several simple
sinusoidal phenomena, each one possessing italgpatiod and its amplitude.

The roughness concerns those components of theajemelulatory phenomenon, whose spatial
period is small, at most, of the order of magnitafithe size of the crystals in the rock, while the
term waviness is applied to the components of #reral undulatory phenomenon with a greater
spatial period.

The literature (Piteau 1973; Greenwood et al. 198#rs also to criteria for the differentiation
between the roughness and the waviness, which asedbon the characteristics related to the
behaviour of the irregularities of the discontigusurface under shear or compression loads.
These criteria, whose use is not easier that theotisthe above-mentioned geometric criterium,
present the disadvantage that they can lead terdift results for the same discontinuity surface,
when different modes of applying the loads, différdead levels, etc. are used.
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