TESES DE MESTRADO LNEC

ANÁLISE DISTORCIONAL DE SOLOS ALUVIONARES LODOSOS

Mariana dos Anjos Rodrigues de Carvalho

Licenciada em Engenharia Civil

Dissertação elaborada no Laboratório Nacional de Engenharia Civil Para obtenção do grau de Mestre em Mecânica dos Solos pela Universidade Nova de Lisboa

LNEC•2003

RESUMO

Casos recentes de rotura desenvolvidos em fundações lodosas, em condições não drenadas, pelo peso de aterros altos ($h\geq9,0$ m), tais como os ocorridos durante a construção de aterros na Azambuja e nos terrenos da futura EXPO98 fizeram sobressair a necessidade de desenvolver métodos expeditos, baseados em dados de campo, para estimativas de: i) parâmetros característicos do comportamento de tensões-deformações de solos lodosos; ii) factor de segurança local.

De facto, a expansão da cidade de Lisboa e arredores sobre zonas cujo subsolo é constituído por depósitos aluvionares lodosos, de espessuras consideráveis (e>10 m), caracterizados por valores de Cup reduzidos e valores de sensibilidade relativamente altos, tornam o desenvolvimento dos métodos acima referidos uma contribuição importante.

Nesse sentido propõe-se: i) Obtenção de parâmetros característicos do comportamento de tensões-deformações de solos lodosos a partir dos resultados obtidos nos ensaios de Molinete efectuados no subsolo lodoso da Azambuja Teixeira Duarte (1994 a 1996). Confirmação desses parâmetros por intermédio de ensaios de laboratório (triaxiais e corte simples) em amostras, não remexidas, recolhidas de furos de sondagem efectuados no local pela Teixeira Duarte para fins de investigação; ii) Simulação analítica desses mesmos ensaios e da construção do aterro, usando o método de elementos finitos (MEF); iii) Obtenção de valores de distorção horizontal, γ_h , induzidos, em profundidade no subsolo lodoso da Azambuja pelo peso de aterros, a partir dos registos inclinométricos efectuados no local (LNEC, 1994); iv) Estimativas de factores de segurança local com base nos valores obtidos em i) e iii).

ABSTRACT

Recent cases of total and partial foundation failures of soft soils during construction of tall embankments such as the case of the railroad overpass at Azambuja and waste fills constructed on the grounds of the future site of the EXPO98 in Lisbon, outstand the need to develop new methods based on in situ data to estimate:

i) stress-strain parameters for finite element stability analysis; ii) local factors of safety.

The expansion of the city of Lisbon to zones where the foundation soils are mainly composed of soft soils with significant thickness (over 10 m) and characterized by low peak shear resistance and high sensitivity made it important to develop such methods.

In this paper it is proposed a method to estimate stress-strain parameters from in situ vane test data. These parameters are compared with parameters obtained from the results of laboratory tests (triaxial and simple shear). These same stress-strain parameters are then used with a finite element analysis to model the total and partial foundation failures of the embankment of the railroad overpass at Azambuja. The results obtained are then analyzed to explain why the soft foundation that was previously treated with geomembranes to accelerate its consolidation, did not increase its undrained shear resistance as expected. The results are checked against topographic measurements of vertical displacements and inclinometer measurements of horizontal displacements. Combining the stress-strain data obtained from the results of the field (vane) and laboratory (triaxial and simple shear) tests with inclinometer field data a method is also proposed to estimate the evolution in the field of local factors of safety.

	Pág.
INTRODUÇÃO	31
CAPITULO 1 - SOLOS ALUVIONARES	33
1.1 - Objectivo e descrição geral	35
1.2 - Depósitos aluvionares	35
1.3 - Causas da sobreconsolidação	40
1.4 - Causas da sensibilidade	44
1.5 - Caracterização de um depósito	45
1.6 - Controlo da evolução do comportamento da obra	47
1.7 - Alguns processos de "melhoria" das características dos solos	
aluvionares (lodosos)	48
CAPITOLO 2 - RESUMO DOS ENSAIOS EXISTENTES PARA CARACTERIZAÇÃO DE SOLOS LODOSOS	53
2.1 - Introdução	55
2.2 - Ensaios de laboratório	57
2.2.1 - Análise granulométrica	57
2.2.2 - Limites de consistência	58
2.2.3 - Teor em matéria orgânica	61
2.2.4 - Densidade das partículas	61
2.2.5 - Ensaio edométrico	61
2.2.6 - Ensaio triaxial	63
2.2.7 - Ensaio de corte simples	64
2.3 - Ensaios de campo ou "in situ"	66
2.3.1 - Ensaios de molinete	67
2.3.2 - Ensaios SPT	68
2.3.3 - Ensaios CPT	69
2.3.4 - Ensaios com pressiómetros	71
2.3.5 - Ensaios de carga em placa	75
2.4 - Conclusões	77

ÍNDICE DE MATÉRIAS

	Pág.
CAPITULO 3 - ANÁLISE TEÓRICA DO ENSAIO DE MOLINETE	79
3.1 - Introdução	81
3.2- Equipamento	82
3.2.1 - Pás de ensaio (molinete)	84
3.2.2 - Haste metálica	86
3.2.3 - Equipamento de aplicação do momento torsor e de registo	86
3.3 - Metodologia do ensaio de corte rotativo; vantagens e limitações	87
3.3.1 - Geral	87
3.3.2 - Características do equipamento utilizado nos ensaios	
executados (em 1994, 1995 e 1996) nos lodos da Azambuja	92
3.3.3 - Procedimentos nos ensaios realizados pela Teixeira Duarte	
nos lodos da Azambuja em 1994 e 1995	92
3.3.4 - Procedimentos nos ensaios realizados pelo LNEC e pela	
Teixeira Duarte nos lodos da Azambuja em 1996	93
3.4 - Considerações sobre o tipo de resistência determinada	
através do ensaio de corte rotativo	94
3.5 - Interpretação dos resultados do ensaio	101
3.5.1 - Materiais isotrópicos ($\tau_v = \tau_h = \tau$)	104
3.5.2 - Materiais anisotrópicos ($\tau_v \neq \tau_h$)	108
3.6 - Potencialidades de utilização dos resultados dos ensaios de molinete	109
3.6.1 - Potencialidades correntes	109
3.6.2 - Potencialidades de estimativa de parâmetros característicos de	
tensão-deformação	110
3.7 - Simulação do ensaio de molinete	114
3.7.1 - Considerações gerais	114
3.7.2 - Método dos Elementos Finitos	115
3.7.3 - Necessidade de uma solução linear-elástica	115
3.7.4 - Validação do modelo com solução linear-elástica	118
3.7.5 - Conclusões	132

CAPITULO 4 - OBTENÇÃO DE PARÂMETROS DE SOLO A PARTIR	
DE ENSAIOS DE LABORATÓRIO E DE CAMPO	133

4.1 - Introdução	135
4.2 - Resultados dos ensaios de laboratório	135
4.2.1 - Ensaios de identificação (propriedades físicas)	135
4.2.2 - Ensaios mecânicos	138
4.2.2.1 - Triaxial	138
4.2.2.2 - Corte simples	140
4.3 - Resultados dos ensaios de campo	143
4.4 - Modelo de comportamento analítico do solo	151
4.5 - Obtenção dos parâmetros de solo a partir de ensaios de laboratório	160
4.5.1 - Estimativa de parâmetros característicos de resistência	160
4.5.2 Estimativa de parâmetros característicos de deformação	163
4.6 - Obtenção dos parâmetros de solo a partir de ensaios de campo (molinete)	166
4.6.1 - Estimativa de parâmetros característicos de resistência	166
4.6.2 Estimativa de parâmetros característicos de deformação	167
4.7 - Simulação analítica e comparação com os resultados dos ensaios	
de laboratório	172
de laboratório	172 172
 de laboratório	172 172
 de laboratório	172 172 173
 de laboratório	172 172 173
 de laboratório	 172 172 173 174
 de laboratório	 172 172 173 174
 de laboratório	 172 172 173 174 178
 de laboratório	 172 172 173 174 178 178 178
 de laboratório	 172 172 173 174 178 178 179
 de laboratório	 172 172 173 174 178 178 179
 de laboratório	 172 172 173 174 178 178 179 180
 de laboratório	 172 172 173 174 178 178 179 180
 de laboratório	 172 172 173 174 178 178 179 180 185

	Pág.
CAPITULO 5 - ANÁLISE DO CASO PRÁTICO	193
	105
5.1 - Caracterização geológica	195
5.1.1 - Trabalhos realizados no reconhecimento geotécnico	195
5.1.1.1 - Tecnasol, 1992	195
5.1.1.2 - Teixeira Duarte 1994 e 1995 e LNEC - Teixeira	
Duarte 1996	198
5.1.2 - Litologia	199
5.1.2.1 - Passagem Superior	199
5.1.2.2 - Zona da Estação	200
5.1.2.3 - Comparação dos resultados	204
5.2 - Descrição do caso prático	205
5.2.1 - Tipo de problema	205
5.2.2 - Antecedentes	208
5.2.3 - Análise mediática do problema	212
5.2.4 - Medidas tomadas após rotura das fundações do aterro	213
5.3 - Análises de estabilidade	214
5.3.1 - Introdução	214
5.3.2 - Equilíbrio limite; retro-análise	215
5.3.2.1 - Programa de cálculo	215
5.3.2.2 - Métodos de cálculo	216
5.3.2.3 - Análises	217
5.3.2.4 - Evolução do factor de segurança com a altura de aterro	227
5.3.3 - Elementos finitos	229
5.3.3.1 - Introdução	229
5.3.3.2 - Malha de elementos finitos e parâmetros de solo	231
5.3.3.3 - Casos analisados e apresentação de resultados	235
5.3.3.4 - Análise interpretativa dos resultados	236
5.3.3.5 - Estudo paramétrico da influência nos resultados de vários	
níveis de resistência dos lodos	251
5.3.3.6 - Estudo da eficiência do sistema drenante	253
5.4 - Relações semi-empiricas para estimativa do modelo hiperbólico	264
5.5 - Conclusões	268

Pág.

CAPITULO 6 - ESTIMATIVAS DO FACTOR DE SEGURANÇA LOCAL	271
6.1 - Introdução	273
6.2 - Análise interpretativa da distribuição e evolução do factor de segurança ao	
longo da superfície de rotura	273
6.3 - Interpretação dos resultados inclinométricos	278

6.4 - Comparação entre resultados analíticos e de campo	280
6.5 - Estimativa do factor de segurança a partir dos dados inclinométricos	285
6.6 - Estimativa do valor máximo de distorção possível de registo nos tubos	
inclinométricos	290
CONSIDERAÇÕES FINAIS	293

REFERÊNCIAS BIBLIOGRÁFICAS

ÍNDICE DE FIGURAS

	Pág.
Figura 1.1 - Planta de localização da Azambuja	37
Figura 1.2 - Principais ocorrências de solos moles em Portugal	39
Figura 1.3 - Efeito da consolidação secundária na compressibilidade de uma argila	42
Figura 1.4 - Variação das tensões efectivas e do OCR em profundidade	43
Figura 1.5 - Tensão geostática em solo com superfície horizontal	44
Figura 1.6 - Curvas de tensão-deformação para argila e areia densa pura	45
Figura 1.7 - Assentamentos	48
Figura 2.1 - Carta de plasticidade (segundo Casagrande)	60
Figura 2.2 - Esquema da sonda (pressiómetro de Menard)	72
Figura 2.3 - Resultado típico do pressiómetro de Menard	73
Figura 2.4 - Resultado típico do pressiómetro de Wroth e Huges	74
Figura 3.1 - Dispositivo de ensaios (molinete)	81
Figura 3.2 - Superfície de rotura assumida, superfície cilíndrica	81
Figura 3.3 - Metodologia dos ensaios de campo executados em 1996	95
Figura 3.4 - Equipamento de calibração	95
Figura 3.5 - Factor empírico de correcção ($\mu \le 1,2$) da resistência ao corte obtida	
em ensaios de corte rotativo em função do índice de plasticidade	
(Bjerrum); para argilas moles inorgânicas e siltes para análise de	
estab <u>i</u>	
lidade de taludes, escavações e sapatas	96
Figura 3.6 - Valores do factor de correcção, para cálculo de Cu, em função do limite	
de liquidez	98
Figura 3.7 - Valores do factor de correcção, para cálculo de Cu, em função do índice	
de plasticidade e da tensão vertical efectiva	99
Figura 3.8 - Influência do valor da resistência ao corte não drenada registada no	
ensaio de molinete em função do tempo de espera na realização do ensaio	100
Figura 3.9 - Resultados típicos de solos sensíveis	102
Figura 3.10 - Ensaios de molinete realizados, a várias profundidades, nas fundações	
da Passagem Superior da Azambuja	111
Figura 3.11 - Ensaios de molinete realizados, a várias profundidades, nas fundações	
da Passagem Superior da Azambuja, representativos do comportamento	
dos lodos	112

	Pág.
Figura 3.12 - Resultados dos ensaios de campo obtidos em 1996: a) Furo ST1;	
b) Furo ST2; c) Furo ST3	113
Figura 3.13 - Localização em plantas dos anéis; malha (bidimensional) de elementos	
finitos usada nas análises de tensão-deformação do ensaio de molinete	119
Figura 3.14 - Malha de elementos finitos: usada nas análises de tensão-deformação do	
ensaio de molinete; localização do 1º e 2º anel	120
Figura 3.15 - Malha (tridimensional) de elementos finitos usada nas análises de tensão	
-deformação das soluções não linear e elástica do ensaio de molinete	121
Figura 3.16 - Esquema representativo do elemento "viga"	122
Figura 3.17 - Esquema representativo do molinete-referênciais	122
Figura 3.18 - Dimensões do molinete	123
Figura 3.19 - Resistência ao corte em função da distância ao centro do molinete	124
Figura 3.20 - Deformação de corte em função da distância ao centro do molinete	125
Figura 3.21 - Deslocamentos em função da distância ao centro do molinete	125
Figura 3.22 - Análises, bidimensional e tridimensional, de tensão-deformação da	
solução elástica do ensaio de molinete, deslocamentos vectoriais	
em 11 anéis (τ _{máx} =24,5 kPa)	127
Figura 3.23 - Análises, bidimensional e tridimensional, de tensão-deformação da	
solução elástica do ensaio de molinete, deslocamentos vectoriais	
em 4 anéis (τ _{máx} =24,5 kPa)	128
Figura 3.24 - Análises, bidimensional e tridimensional, de tensão-deformação	
da solução elástica do ensaio de molinete, deformada em 4 anéis	
centrais (τ _{máx} =24,5 kPa)	129
Figura 3.25 - Análises, bidimensional e tridimensional, de tensão-deformação	
da solução elástica do ensaio de molinete, distorção máxima em	
6 anéis (τ _{máx} =24,5 kPa)	130
Figura 3.26 - Análises, bidimensional e tridimensional, de tensão-deformação	
da solução elástica do ensaio de molinete, tensão de corte máxima	
em 5 anéis (τ _{máx} =24,5 kPa)	131
Figura 4.1 - Planta de localização dos ensaios	136
Figura 4.2 - Carta de plasticidade para os lodos superiores da P.S. da Azambuja	138
Figura 4.3 - Provetes após realização dos ensaios	139
Figura 4.4 - Resultados dos ensaios triaxiais	140

10

	Pág.
Figura 4.5 - Equipamento de corte simples (LNEC)	141
Figura 4.6 - Preparação da amostra	141
Figura 4.7 - Amostrador e amostra	142
Figura 4.8 - Amostrador com amostra	142
Figura 4.9 - Consolidação da mostra	142
Figura 4.10 - Resultados dos ensaios de corte simples	143
Figura 4.11 Molinetes tipo I e II	144
Figura 4.12 - Planta de localização	145
Figura 4.13 - Evolução de Cup em profundidade	147
Figura 4.14 - Evolução de Cu no tempo	148
Figura 4.15 - Resistência residual e de pico	149
Figura 4.16 - Sensibilidade dos lodos	150
Figura 4.17 - Módulo de descarga e recarga	152
Figura 4.18 - Representação hiperbólica da curva de tensões-deformações	153
Figura 4.19 - Variação de Ei com σ_3	154
Figura 4.20 - Variação da resistência com a tensão de confinamento	155
Figura 4.21 - Comportamento de tensão-deformação dos elementos da estrutura	
(molinete)	158
Figura 4.22 - relação entre a curvatura e o momento gerado nos elementos "visa"	
da estrutura (molinete)	159
Figura 4.23 - Ensaio triaxial	161
Figura 4.24 - Definição da tensão de corte	161
Figura 4.25 - Ensaio 10 B n.° l; percurso de tensões	162
Figura 4.26 - Percurso de tensões dos ensaios triaxiais	162
Figura 4.27 - Ensaio 10B n.°1, transformada; estimativa de Ei e R _f	163
Figura 4.28 - Ensaio 10B n.°1, transformada; estimativa de Gi e R _f	164
Figura 4.29 - Ensaio 10A n.º4, transformada	165
Figura 4.30 - Determinação de k_E	165
Figura 4.31 - Comparação entre os resultados de Cu obtidos no molinete e no	
laboratório	167
Figura 4.32 - Ensaio de corte simples	168
Figura 4.33 - Determinação dos parâmetros característicos de deformabilidade a	
partir dos ensaios de molinete	169

	Pág.
Figura 4.34 - Determinação de n e k_E	170
Figura 4.35 - Determinação de n e k_E (dados seleccionados)	171
Figura 4.36 - Discretização do provete de ensaio triaxial	172
Figura 4.37 - Discretização do provete de ensaio de corte simples	173
Figura 4.38 - Tensão-deformação	173
Figura 4.39 - Simulação do ensaio triaxial do provete 10B nº1	174
Figura 4.40 - Simulação do ensaio de corte simples do provete 10A nº4	174
Figura 4.41 - Curva de tensão-deformação	175
Figura 4.42 - Transformada da curva de tensão-deformação	175
Figura 4.43 - Curva de tensão-deformação	176
Figura 4.44 - Simulação, análises comparativas com os resultados dos ensaios	177
Figura 4.45 - Comportamento para vários níveis de Cu de um material rígido-plástico:	
usando a nova metodologia e usando a metodologia corrente	183
Figura 4.46 - Níveis de resistência em função da rotação da mola	183
Figura 4.47 - Curva de calibração	184
Figura 4.48 - Calibração dos resultados em função da correcção da mola da cabeça do	
molinete	184
Figura 4.49 - Ensaio ST2-5: influência de k_0 nos resultados da simulação e comparação	
de resultados para os casos A e B	189
Figura 4.50 - Ensaio ST23-5: influência de k_0 nos resultados da simulação e comparação)
de resultados para os casos A e B	190
Figura 5.1 - Reconhecimento geotécnico da zona da Passagem Superior da Azambuja	195
Figura 5.2 - Reconhecimento geotécnico da zona da Estação da Azambuja	196
Figura 5.3 - Resultados dos ensaios de molinete nos Furos VPSI e VPS2	197
Figura 5.4 - Resultados dos ensaios de molinete dos Furos SEl a SE4	198
Figura 5.5 - Resultados dos ensaios de molinete	198
Figura 5.6 - Perfil geológico, A-B, da Passagem Superior da Azambuja	199
Figura 5.7 - Perfil geológico da zona da Estação da Azambuja: perfis A-B, C-D,	
E-F e G-H	201
Figura 5.8 - Carta geológica da Azambuja	202
Figura 5.9 - Planta de localização da Estação e da Passagem Superior da Azambuja	204
Figura 5.10 - Perfil do aterro Sul antes da rotura	205
Figura 5.11 - Rotura do aterro Sul da Passagem Superior da Azambuja	206

	-
Figura 5.12 - Perfil P11 do aterro Sul após rotura	208
Figura 5.13 - Localização das marcas topográficas, dos inclinómetros e representação	
esquemática da zona envolvida pela rotura	210
Figura 5.14 - Registos topográficos dos prumos Pl a Pó, do aterro Sul, e P7 e P8 do	
aterro Norte e evolução da altura de aterro no local dos prumos	211
Figura 5.15 - Aspecto final da obra	211
Figura 5.16 - Registos inclinométricos no tubo IN4	212
Figura 5.17 - Superfície potencial de rotura esquemática	216
Figura 5.18 - Efeitos do coeficiente de correcção nos resultados dos ensaios de	
molinete	218
Figura 5.19 - Zona do aterro Sul (H=8,5 m); pesquisa das superfícies de rotura pelo	
método de Bishop simplificado nos taludes do lado convexo e do lado	
côncavo	220
Figura 5.20 - Zona do aterro Sul (H=8,5 m); retro-análise dos taludes do lado	
convexo e do lado côncavo para as superfícies de rotura ocorridas	
em 94/6/23 (geometria antes da rotura)	222
Figura 5.21 - Resultados dos ensaios de molinete nos furo 4 e 11 A	224
Figura 5.22 - Zona do aterro Sul (H=8,5 m); análise dos taludes do lado	
convexo e do lado côncavo para as superfícies de rotura ocorridas	
em 94/6/23 (geometria após rotura)	226
Figura 5.23 - Análises dos resultado s de equilíbrio limite	227
Figura 5.24 - Curva de Bjerrum com dados referentes ao caso da Passagem Superior	
da Azambuja	228
Figura 5.25 - Malha de elementos finitos	232
Figura 5.26 - Definição do topo da camada a aplicar na fase construtiva	234
Figura 5.27 - Análises de tensão-deformação (MEF); deformadas	237
Figura 5.28 - Análises de tensão-deformação (MEF); deslocamentos vectoriais	239
Figura 5.29 - Análises de tensão-deformação (MEF); distribuição de k_0	241
Figura 5.30 - Análises de tensão-deformação (MEF); estado de tensão local	242
Figura 5.31 - Análises de tensão-deformação (MEF); tensão vertical total/Pa	243
Figura 5.32 - Análises de tensão-deformação (MEF); tensão tangencial máxima	
nos lodos	244
Figura 5.33 - Análises de tensão-deformação (MEF); relação σ_1/σ_3	245

	Pág.
Figura 5.34 - Análises de tensão-deformação (MEF); γ _{máx} e FS	246
Figura 5.35 - Trajectória de tensões, pelo MEF, elementos 504, 1028, 1051 e 758	249
Figura 5.36 - Ampliação da trajectória de tensões do elemento 758 (MEF)	250
Figura 5.37 - Variação da altura de aterro e deslocamentos máximos (MEF)	250
Figura 5.38 - Deslocamentos horizontais e verticais para diferentes	
resistências não drenadas das fundações lodosas	251
Figura 5.39 - Diferença da altura de aterro e deslocamentos verticais, para	
diferentes resistências não drenadas das fundações lodosas	251
Figura 5.40 - Representação esquemática da ocorrência dos deslocamentos nas	
fundações de um aterro	252
Figura 5.41 - Evolução da altura de aterro e dos assentamentos nas fundações	253
Figura 5.42 - Perfil tipo do projecto do aterro com implementação dos geodrenos	254
Figura 5.43 - Representação esquemática da relação Cu/ σ ' _v	255
Figura 5.44 - Resistência não drenada de ensaios de molinete para solos	
inorgânicos e siltes	255
Figura 5.45 - Mineiro, comparação das propostas de Wroth, Jamiolkowski e Mineiro	257
Figura 5.46 - Relação entre a resistência não drenada e a pressão de consolidação	
aplicada em ensaios laboratoriais; factor de correcção a aplicar nos	
resultados dos ensaios laboratoriais face às diferenças da velocidade	
de rotura campo/ensaio	257
Figura 5.47 - Bolbo de pressões	259
Figura 5.48 - Análises de tensão-deformação (MEF); SSL e FS contabilizando Δ Cu	261
Figura 5.49- Evolução das zonas de rotura (com a altura de aterro) com Cu=20 kPa	262
Figura 5.50- Evolução das zonas de rotura (com a altura de aterro) com Cu=31 kPa	263
Figura 5.51 - Definição da tensão vertical	264
Figura 5.52 - Estimativas de K_0 para argilas a partir do IP	266
Figura 5.53 - Determinação de Eu em f(τ_u), da ração de sobreconsolidação e do IP	266
Figura 5.54 - variação do módulo expoente n, para argilas, a partir do IP	267
Figura 6.1 - Malha de elementos finitos com implementação, e identificação dos	
elementos, da superfície de rotura ocorrida no lado convexo do aterro	274
Figura 6.2 - Evolução do factor de segurança, com a altura de aterro, dos	
elementos finitos interceptados pela superfície de rotura ocorrida	
(no lado convexo) nos lodos superiores e na camada de topo	276

Figura 6.3 - Evolução do factor de segurança, com a altura de aterro, dos elementos	
finitos interceptados pela superfície de rotura ocorrida (no lado convexo)	
nos lodos superiores 2	276
Figura 6.4 - Evolução do factor de segurança, com a altura de aterro, de 3 elementos	
finitos interceptados pela superfície de rotura ocorrida 2	277
Figura 6.5 - Evolução do factor de segurança, com a altura de aterro, dos elementos	
finitos do aterro interceptados pela superfície de rotura ocorrida (no lado	
convexo)	277
Figura 6.6 - Deformada do MEF para H=8,5 m e localização do inclinómetro IN4 2	278
Figura 6.7 - Evolução da resultante dos deslocamentos horizontais no tempo, no	
inclinómetro IN4, a 3 profundidades em relação à observação de 94/05/18 2	278
Figura 6.8 - Resultados inclinométricos do tubo IN4: a) evolução da resultante dos	
deslocamentos horizontais; b) evolução da distorção horizontal 2	280
Figura 6.9 - Deslocamentos horizontais (MEF), dos elementos finitos correspon-	
dentes à secção em que IN4 se encontrava instalado: desde o início da	
construção do aterro e considerando que na data de instalação h=5 m 2	280
Figura 6.10 - Distorções horizontais (MEF), dos elementos finitos correspondentes à	
secção em que IN4 se encontrava instalado: desde o início da construção	
do aterro e considerando que na data de instalação h= 5 m 2	281
Figura 6.11 - Comparação dos resultados dos elementos finitos com os registos	
efectuados em IN4: deslocamentos horizontais e distorções horizontais 2	281
Figura 6.12 - Comparação dos resultados dos registos inclinométricos do tubo IN4	
com os do MEF: deslocamentos horizontais; distorções horizontais e	
análises de tensão-deformação (MEF) - y _{máx} 2	282
Figura 6.13 - Evolução dos deslocamentos horizontais em função da altura do aterro	
(não corrigida), a uma profundidade de 9,5 m 2	284
Figura 6.14 - Análises de tensão-deformação (MEF) evolução de $\gamma_h/\gamma_{máx}$ 2	286
Figura 6.15 - Análises de tensão-deformação (MEF) evolução de $\gamma_{máx}$ 2	287
Figura 6.16 - Análises de tensão-deformação (MEF) evolução de: SSL e FS em $f(\gamma_{máx})$. 2	288
Figura 6.17 - Factor de Segurança (FS): dos elementos finitos correspondentes à	
secção em que IN4 se encontrava instalado e no tubo IN4 (h>5 m) 2	289
Figura 6.18 - Representação esquemática de uma distorção de um tubo inclinométrico 2	290
Figura 6.19 - Caso de obra com tubo inclinométrico de diâmetro largo: resultantes	
dos deslocamentos horizontais e distorção horizontal 2	291
Figura 6.20 - Caso de obra com tubo inclinométrico de diâmetro médio: resultantes	
dos deslocamentos horizontais 2	292

Pág.

ÍNDICE DE QUADROS

Quadro 2.1 - Classificação da consistência de uma argila	59
Quadro 2.2 - Classificação das argilas puras em função do LL e do IP	60
Quadro 2.3 - Relação entre a consistência de uma argila, o N (SPT), Cu e IC	69
Quadro 3.1 - Dimensões do molinete (norma ASTM D2573-94)	85
Quadro 3.2 - Dimensões dos molinetes usados nos ensaios realizados	92
Quadro 3.3 - Classificação do solo quanto à sua sensibilidade	110
Quadro 3.4 - Simulação bi e tridimensional do ensaio de molinete	123
Quadro 4.1 - Ensaios de identificação	137
Quadro 4.2 - Constituição dos lodos	137
Quadro 4.3 - Tensões de consolidação dos provetes de ensaio (triaxiais)	139
Quadro 4.4 - Tensões iniciais dos provetes nos ensaios de corte simples	140
Quadro 4.5 - Características geométricas dos provetes dos ensaios de corte simples	143
Quadro 4.6 - Parâmetros do modelo hiperbólico	155
Quadro 4.7 - Resultados dos ensaios triaxiais em termos de tensão-deformação	160
Quadro 4.8 - Ângulo de fricção dos provetes (triaxiais)	162
Quadro 4.9 - Tensão de corte e distorção (nos provetes dos ensaios de corte	
simples)	163
Quadro 4.10 - Características de deformação a partir dos ensaios triaxiais	164
Quadro 4.11 - Características de deformação a partir dos ensaios de corte simples	165
Quadro 4.12 - Características de deformação a partir dos ensaios de molinete	170
Quadro 4.13 - Parâmetros do modelo hiperbólico	174
Quadro 4.14 - Estados de tensão inicial nos lodos superiores	187
Quadro 4.15 - Características dos solos usados na simulação analítica dos ensaios	
de molinete	
	188
Quadro 5.1 - Resultados dos ensaios de SPT na zona da P.S. da Azambuja	188 197
Quadro 5.1 - Resultados dos ensaios de SPT na zona da P.S. da Azambuja Quadro 5.2 - Resultados dos ensaios de SPT na zona da Estação	188 197 197
Quadro 5.1 - Resultados dos ensaios de SPT na zona da P.S. da Azambuja Quadro 5.2 - Resultados dos ensaios de SPT na zona da Estação Quadro 5.3 - Resultados do coeficiente de correcção (μ): Análises de equilibro	188 197 197
Quadro 5.1 - Resultados dos ensaios de SPT na zona da P.S. da Azambuja Quadro 5.2 - Resultados dos ensaios de SPT na zona da Estação Quadro 5.3 - Resultados do coeficiente de correcção (μ): Análises de equilibro limite (lado convexo do aterro)	 188 197 197 228
Quadro 5.1 - Resultados dos ensaios de SPT na zona da P.S. da Azambuja Quadro 5.2 - Resultados dos ensaios de SPT na zona da Estação Quadro 5.3 - Resultados do coeficiente de correcção (μ): Análises de equilibro limite (lado convexo do aterro) Quadro 5.4 - Resultados do coeficiente de correcção (μ): Análises de equilibro	 188 197 197 228
Quadro 5.1 - Resultados dos ensaios de SPT na zona da P.S. da Azambuja Quadro 5.2 - Resultados dos ensaios de SPT na zona da Estação Quadro 5.3 - Resultados do coeficiente de correcção (μ): Análises de equilibro limite (lado convexo do aterro) Quadro 5.4 - Resultados do coeficiente de correcção (μ): Análises de equilibro limite (lado côncavo do aterro)	 188 197 197 228 228
Quadro 5.1 - Resultados dos ensaios de SPT na zona da P.S. da Azambuja Quadro 5.2 - Resultados dos ensaios de SPT na zona da Estação Quadro 5.3 - Resultados do coeficiente de correcção (μ): Análises de equilibro limite (lado convexo do aterro) Quadro 5.4 - Resultados do coeficiente de correcção (μ): Análises de equilibro limite (lado côncavo do aterro) Quadro 5.5 - Características e parâmetros dos solos usados no MEF	 188 197 197 228 228 232

Ouadro 5.7 - Estimativa dos valores do IP. $\tau = e \tau$	265
	205
Quadro 5.8 - Determinação dos parâmetros do modelo hiperbólico (condições	
iniciais)	268
Quadro 6.1 - Factor de segurança médio (MEF) ao longo de uma superficie de rotura	275
Quadro 6.2 - Valores limites de γ_h de registo possível nos tubos de inclinómetro	291

AGRADECIMENTOS

A autora deseja expressar o seu reconhecimento e agradecimento às entidades e às pessoas que de diversas formas contribuíram para a realização deste trabalho:

- Ao Laboratório Nacional de Engenharia Civil (LNEC) nas pessoas do Director, Professor de Arantes e Oliveira, ao Chefe do Departamento de Geotécnia (DG), Eng^o Rui Correia, ao Chefe do Núcleo de Estudos Geotécnicos Especiais (NEGE), Eng^o Sêco Pinto, pela oportunidade, pelos recursos humanos e materiais colocados à disposição.

- Ao Eng.º Francisco Salgado que orientou a realização desta dissertação, pelo apoio inexcedível e permanente disponibilidade para troca de impressões, ensinamentos, estimulo e condições proporcionadas, bem como da amizade que demonstrou.

- Ao Eng.º Rui Correia pelo apoio, incentivo, confiança depositada e amizade ao longo dos anos de trabalho no LNEC.

- Ao Eng.º Maranha das Neves (JAE/ex. Chefe do DG/LNEC) pelo incentivo e interesse demonstrado.

 Ao NEGE em especial aos técnicos de experimentação Pedro Ramos, Ricardo Oliveira, Celeste Guerreiro, António Coelho e Arlindo de Sousa cujo apoio foi de significativamente manifesto.

- Ao Núcleo de Fundações (LNEC/DG/NF) que realizou os ensaios de laboratório, destacando o apoio dos técnicos de experimentação José Alberto Reis e Gaspar Pereira.

 Aos Caminhos de Ferro Portugueses (CP) por tornarem disponível todos os elementos geotécnicos relacionados com esta investigação; destacando os Eng.ºs Fonseca Neves e Luis Rodrigues.

- À Teixeira Duarte, em especial ao Dr. Machado Leite, ao Eng.º Cerejo e à equipa que colaborou na execução dos ensaios de campo e na recolha de amostras.

- À Soares da Costa na pessoa do Eng.º Martins de Sousa, pela disponibilidade dos dados topográficos.

- À Universidade Nova de Lisboa (FCTUNL) na pessoa do Doutor António Mineiro pela sua colaboração, troca de informações e conselhos que transmitiu.

- Ao pessoal do sector das artes gráficas do LNEC, pela eficiência e competência postas na encadernação deste trabalho.

- Ao Sr. Rui Oliveira da sala de desenho do DG (LNEC) pela sua colaboração na montagem e execução de alguns desenhos.

- Aos colegas e amigos pela sua amizade e incentivo.

Quer a autora por fim expressar o seu profundo agradecimento aos Pais e irmão, e de um modo especial ao José Dinis, pelo incentivo e compreensão que souberam demonstrar.

PREÂMBULO

O presente trabalho corresponde á tese de dissertação de mestrado em Mecânica dos Solos da autora. Na sua génese o documento é composto por dois volumes, o primeiro volume apresenta-se neste documento e o segundo volume corresponde a documentos que se apresentaram sob a forma de anexos. Dadas que as características do segundo volume encarecem substancialmente o preço de venda desta obra, não se colocou à venda a segunda parte deste trabalho. Desta forma, sempre que a autora se refira neste documento ao segundo volume ou a qualquer anexo entenda-se que se refere o II Volume, do trabalho de dissertação, que se encontra disponível para consulta na biblioteca do Laboratório Nacional de Engenharia Civil.

SIMBOLOGIA

- A área; actividade de um solo
- a raio do molinete
- ASCE Américan Society of Civil Engineering
- ASTM American Society for Testing and Materials
- av coeficiente de compressibilidade
- Bt módulo tangente de extensão volumétrico (Bulk modulus)
- C' coesão efectiva
- Cc parâmetro de compressibilidade edométrica no ramo virgem
- C_h coeficiente de consolidação horizontal
- Cr coeficiente de consolidação radial (ou horizontal)
- Ck parâmetro que define a variabilidade da permeabilidade com o índice de vazios
- CPT penetrómetro estático (Cone Penetration Test)
- CU ensaio consolidado não drenado

C_u - coesão não drenada

- Cup, Cur coesão não drenada máxima (de pico) e residual
- C_v coeficiente de consolidação vertical
- D diâmetro do molinete
- d deslocamento
- de diâmetro do domínio exterior da simulação do ensaio de molinete
- de diâmetro equivalente
- d_i deslocamento imediato
- D_L espessura dos lodos
- d_{pá} deslocamento da pá do molinete
- DSS ensaio de corte directo
- DTA- análise térmica diferencial
- dv- deslocamento vertical
- d1 deslocamento primário
- d2 deslocamento secundário
- e, e_o ₋ índice de vazios e índice de vazios inicial
- e espessura
- ef, e_f espessura efectiva
- Ei módulo de elasticidade inicial

Em - módulo pressiométrico

- Es módulo de elasticidade secante
- Et módulo de elasticidade tangente; módulo tangente de Young
- Eu módulo de elasticidade não drenado
- F força
- f_d factor de drenagem
- FS -factor de segurança
- FV ensaio de corte rotativo (field vane)
- G densidade especifica das partículas sólidas; módulo de distorção ao corte
- G* módulo de corte equivalente
- Gi módulo de distorção de corte inicial
- G_{máx} módulo de distorção de corte máximo
- H, h altura de aterro
- H altura do molinete
- H* altura fictícia (ou equivalente) do molinete
- H₀ altura inicial
- h profundidade
- h* altura equivalente
- I momento de inércia
- IC índice de consistência
- IL índice de liquidez
- IP índice de plasticidade
- k coeficiente de permeabilidade
- K coeficiente de módulo de carga
- k_B, k_b coeficiente de extensão volumétrica
- k_E coeficiente elástico
- k_G coeficiente de distorção
- kv coeficiente de permeabilidade vertical
- $k_0 = \sigma'_{ho} / \sigma'_{vo}$ relação entre a tensão efectiva horizontal, ou radial, e vertical

no estado de repouso

 $K_0 = \sigma_{ho}/\sigma_{vo}$ - relação entre a tensão total horizontal, ou radial, e vertical

- L comprimento
- LC limite de consistência
- LL limite de liquidez

- LP limite de plasticidade
- log logaritmo decimal
- LR limite de retracção
- M momento aplicado
- m módulo expoente
- MEF método de elementos finitos
- MO matéria orgânica
- M*p momento de plasticidade completa
- m_v compressibilidade volumétrica
- M*_v momento de cedência
- N número de pancadas do ensaio SPT
- n porosidade ou módulo expoente
- NC normalmente consolidado
- nCU média calculada de n ensaios triaxiais consolidados não drenados
- n_r coeficiente de drenagem
- nSS média calculada de n ensaios de corte simples (CU)
- OC sobreconsolidado
- OCR grau de sobreconsolidação
- P força axial
- p profundidade
- Pa pressão atmosférica
- P_p força axial correspondente à plasticidade
- p0 tensão vertical "in situ"
- qu resistência ao corte não drenada (= σ_d =2C_u)
- R raio de influência dos geodrenos
- r distância radial
- r_d raio do geodreno
- $R_{\rm f}$ coeficiente de rotura
- R₀ raio do pressiómetro
- Rp resistência de ponta
- Ru coeficiente de pressões intersticiais
- S fragilidade de um solo
- SPT ensaios de penetração dinâmica
- SS ensaio de corte simples; estado de corte simples

- SSL "shear stress level"
- SSU ensaio de corte simples consolidado não drenado
- T, t tempo
- tc tempo de construção
- TC estado de compressão
- TE estado de extensão
- Tr factor correspondente ao Ur
- Tv factor correspondente ao Uv
- U grau de consolidação
- UC sub-consolidado, solo não consolidado não drenado
- Ur grau de consolidação radial
- UU ensaio triaxial não consolidado não drenado
- Uv grau de consolidação vertical
- u pressão intersticial
- u0 pressão intersticial inicial
- V, v velocidade
- W teor em água natural
- α ângulo
- β inclinação de taludes
- γ deformação de corte (distorção)
- γ_d peso especifico aparente do solo
- γ_h deformação de corte horizontal
- $\gamma_{m\acute{a}x}$, γ_m deformação de corte máxima
- γ_t peso especifico total do solo
- γ_{rot} deformação de corte de rotura
- γ_w peso específico da água
- γ_{xyrot} deformação de corte horizontal de rotura
- Δ variação ou incremento
- Δe diminuição do índice de vazios
- ΔH assentamento
- Δp incremento de tensão efectiva
- δ deslocamento
- ϵ_1 deformação principal máxima

- $\epsilon_{\rm 1rot}$ deformação principal de rotura
- ϵ_2 deformação principal intermédia
- ϵ_3 deformação principal mínima
- ε_v variação volumétrica
- η viscosidade de um fluido
- θ rotação
- μ coeficiente de correcção (Bjerrum)
- μ_t factor de correcção devido à velocidade de rotura
- υ coeficiente de Poison
- υ_t coeficiente de Poison tangente
- σ,σ' tensão total, tensão efectiva
- σ_a , σ_r tensão axial e radial
- σ_c tensão de consolidação (isotropica)
- σ_d tensão deviatórica (σ_1 - σ_3)
- σ_{drot} tensão deviatórica de rotura
- σ_{dsoft} tensão deviatórica "amolecida"
- σ_{dult} tensão deviatórica última
- σ_h , σ_v tensão horizontal e vertical
- σ'_{hc} , σ'_{vc} tensão efectiva de consolidação horizontal e vertical
- σ'_{h0} , σ'_{v0} tensão efectiva de repouso horizontal e vertical
- σ_n tensão normal
- σ'_p tensão de préconsolidação
- $(\Delta \sigma_r)_{face}$ decréscimo da tensão radial
- σ'_{vm} tensão de pré-consolidação
- σ_x , σ_y tensão horizontal
- σ_z tensão vertical
- $\sigma_1, \sigma_2, \sigma_3$ tensões principais máxima, intermédia e mínima
- τ tensão/resistência de corte
- τ_h resistência de corte horizontal
- τ_i resistência de corte inicial
- $\tau_{máx}$, τ_{pico} resistência ao corte máxima disponível ou resistência de pico
- $\tau_r,\,\tau_{rot}$ resistência ao corte de rotura
- τ_{soft} resistência ao corte amolecida

- τ_u resistência ao corte não drenada
- τ_{ult} resistência ao corte última
- τ_v , τ_h resistência ao corte no plano vertical e horizontal
- τ_{xyrot} resistência de corte horizontal de rotura
- ϕ', φ_u ângulos de atrito efectivo e de consolidação não drenado
- $\phi_{int.}$ diâmetro interior (do tubo inclinométrico)
- $\phi_{inc.}$ diâmetro do inclinómetro (sonda inclinométrica)
- ϕ_p ângulo de atrito de pico
- ϕ_r ângulo de atrito residual
- [K] matriz global de rigidez
- [k] matriz de rigidez
- [Kw] matriz associada ao incremento de pressão intersticial
- {F}, {f} vector do incremento de forças nodais
- {Q} vector de forças nodais
- $\{q\}$ vector dos deslocamentos nodais
- $\{K_w\}$ vector associado ao incremento de pressão intersticial
- $\{\Delta\}$ vector incremento dos deslocamentos nodais
- $\{\Delta u\}$ vector incremento de pressão
- $\{\delta\}$ vector incremento dos deslocamentos nodais

INTRODUÇÃO

INTRODUÇÃO

Com a designação de "solos aluvionares" procura abranger-se todo o tipo de solos com características de elevada compressibilidade, permeabilidade reduzida, sensibilidade significativa, fraca resistência ao corte e comportamento diferido no tempo (independentemente da classificação usada nos sistemas a que a Geologia de Engenharia ou a Mecânica dos Solos recorrem). Geralmente são solos de formação recente (com uma percentagem de matéria orgânica igual ou superior a 2%), argilosos, siltosos ou arenosos, aparecendo com diferentes granulometrias (com predominância da fracção fina), e combinações várias na natureza. Sendo quase exclusivamente solos finos podem apresentar, de modo intercalado, estratos de solo com maiores dimensões (mais rígidos e permeáveis); a titulo exemplificativo referem-se os burgaus. Nesta dissertação dá-se particular atenção aos solos aluvionares lodosos (i.e. com predominância da fracção argilosa).

Entende-se por análise distorcional o estudo que visa o comportamento de um solo (sujeito a acções externas) no que se refere às suas características de resistência ao corte (análise de equilíbrio limite) e de tensão-deformação (análise pelo método dos elementos finitos).

A necessidade de desenvolvimento de métodos expeditos com base em dados de campo para estimativa dos parâmetros característicos do comportamento de tensões-deformações e do factor de segurança é obvia face a casos recentes de rotura (Azambuja, EXPO98) em fundações lodosas, (em condições não drenadas, i.e. curto prazo). A expansão das grandes cidades (como Lisboa) e arredores sobre zonas cujo subsolo é constituído por estratos lodosos de espessura significativa (superior a 10 m) vem confirmar a importância do desenvolvimento destes métodos.

Efectua-se uma análise dos resultados de ensaios de molinete realizados pela Teixeira Duarte no subsolo lodoso na Azumbuja em 1994, 1995 e 1996 (neste último ano o LNEC orientou a execução dos ensaios segundo novos procedimentos). Realiza-se uma análise dos resultados de ensaios laboratoriais (triaxiais e de corte simples), efectuados pelo LNEC sobre amostras não remexidas, desses solos, que foram recolhidas pela Teixeira Duarte (1995) para fins de investigação. Apresenta-se uma simulação analítica dos ensaios de molinete (bidimensional e tridimensional) e da construção de um aterro (bidimensional), recorrendo para tal ao Método dos Elementos Finitos. A partir de registos inclinométricos efectuados pelo LNEC no local,

em 1994, avalia-se a evolução da distorção horizontal em profundidade, no subsolo lodoso da Azambuja, induzida pelo peso de aterros. Efectua-se ainda uma análise da evolução do factor de segurança com base em dados de campo.

NOTA INTRODUTÓRIA

O documento que se apresenta constitui a dissertação de Mestrado que a engenheira Mariana dos Anjos Rodrigues de Carvalho submeteu, em 1997, à FCT/UNL para obtenção do Grau de Mestre de Mecânica dos Solos. A classificação que obteve foi de Muito Bom, por unanimidade.

Trata-se de um estudo desenvolvido no Laboratório Nacional de Engenharia de Civil, para cuja realização teve a orientação do Eng.º Francisco Salgado, que desempenha funções como Investigador Principal no Departamento de Geotecnia/ Núcleo de Estudos Geotécnicos Especiais (DG/NEGE), designado em 2003 como Núcleo de Fundações, Taludes e Obras de Suporte (NFTOS), do mesmo Laboratório.

Este trabalho surgiu na sequência das actividades desenvolvidas pelos investigadores do DG/NEGE, no âmbito da construção de aterros em solos lodosos; em Outubro de 1999, no biénio 97/98, este trabalho foi galardoado com o 2º prémio (menção honrosa) da Sociedade Portuguesa de Geotecnia (SPG).

Na sequência deste trabalho publicaram-se os artigos seguintes:

- * M. R. de Carvalho; F. M. Salgado (1998) New Developments on the Interpretation of in Situ Vane Test Data. 8th Congress of the International Association for Engineering Geology and the Environment. Vancouver, pp. 409-416 (V.1).⁽¹⁾
- * M. R. de Carvalho; F. M. Salgado (1998) Evaluation of the local factor of safety from in situ inclinometer and Vane Test Data. 8th Congress of the International Association for Engineering Geology and the Environment. Vancouver, pp. 3387-3394 (V.5).⁽¹⁾
- * F. M. Salgado; M. R. de Carvalho (1998) New Developments on the Interpretation of Inclinometer Field Data. 8th Congress of the International Association for Engineering Geology and the Environment. Vancouver, pp. 401-408 (V.1).⁽¹⁾
- * M. R. de Carvalho; F. M. Salgado (1997) Distortional Analysis of Soft Soils. International Conference on Ground Improvement Techniques. Macau, pp. 101-110.

Nota: ⁽¹⁾ dada a qualidade do trabalho apresentado a Sociedade Portuguesa de Geotecnia (SG) publicou este artigo, traduzido para Português, na revista n.º 86, de Julho de 1999, da SPG.

Casos de roturas desenvolvidas em fundações lodosas, em condições não drenadas, pelo peso de aterros altos (h \geq 9,0 m), fizeram sobressair a necessidade de desenvolver métodos expeditos, baseados em dados de campo, para estimativas de parâmetros característicos do comportamento de tensões-deformações de solos lodosos e do factor de segurança local.

De facto, a expansão da cidade de Lisboa e arredores sobre zonas cujo subsolo é constituído por depósitos aluvionares lodosos, de espessuras consideráveis ($e \ge 10$ m), caracterizados por valores de c_{up} reduzidos e valores de sensibilidade relativamente altos, torna o desenvolvimento dos métodos referidos uma contribuição importante.

Assim, neste documento propõe-se: i) a obtenção de parâmetros característicos do comportamento de tensões-deformações de solos lodosos a partir dos resultados obtidos nos ensaios de Molinete, efectuados no subsolo lodoso, efectuando-se uma confirmação desses parâmetros recorrendo a ensaios de laboratório (triaxiais e corte simples) em amostras não remexidas; ii) uma metodologia de simulação analítica dos ensaios e da construção do aterro, usando o método de elementos finitos; iii) a obtenção de valores de distorção horizontal, γ_h , induzidos, em profundidade no subsolo lodoso pelo peso de aterros, a partir dos registos inclinométricos efectuados no local; iv) a estimativa de factores de segurança local com base nos valores obtidos em i) e iii).

Mariana dos Anjos Rodrigues de Carvalho licenciou-se, em 1991, em Engenharia Civil pelo Instituto Superior Técnico da Universidade Técnica de Lisboa. Foi estagiária com bolsa concedida pelo LNETI através do 5° programa dos Jovens Técnicos para a Industria, no período correspondente a 1990/1991. Em 1992 prestou serviços na Câmara Municipal de Lisboa. Iniciou a sua actividade no Laboratório Nacional de Engenharia Civil em 1993.

Desde essa data, enquanto Estagiária e Assistente de Investigação, tem desenvolvido a sua actividade no Núcleo de Estudos Geotécnicos Especiais, onde realizou estudos de Investigação Programada e de Investigação por Contrato sobre ancoragens em estruturas de suporte, túneis, taludes, estabilidade, instrumentação, observação e tratamento automatizado para obtenção de dados a partir de dispositivos de observação.

Em 1997 obteve o grau de Mestre em Mecânica dos Solos pela Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa. A autora desenvolveu o presente trabalho, que corresponde a um estudo de investigação sobre a análise distorcional de solos aluvionares lodosos, no âmbito da dissertação de Mestrado.