Please use this identifier to cite or link to this item: http://repositorio.lnec.pt:8080/jspui/handle/123456789/1017963
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRezvan, S.pt_BR
dc.contributor.authorFalcão Silva, M. J.pt_BR
dc.contributor.authorAlmeida, N.pt_BR
dc.contributor.editorDe-Cheng Fengpt_BR
dc.contributor.editorJi-Gang Xupt_BR
dc.contributor.editorXuyang Caopt_BR
dc.date.accessioned2024-11-27T10:58:55Zpt_BR
dc.date.accessioned2025-04-15T13:33:12Z-
dc.date.available2024-11-27T10:58:55Zpt_BR
dc.date.available2025-04-15T13:33:12Z-
dc.date.issued2024-05-15pt_BR
dc.identifier.citationdoi.org/10.3390/su16104143pt_BR
dc.identifier.urihttp://dspace2.lnec.pt:8080/jspui/handle/123456789/1017963pt_BR
dc.identifier.urihttp://repositorio.lnec.pt:8080/jspui/handle/123456789/1017963-
dc.description.abstractFloods pose a significant threat to road networks globally, disrupting transportation, isolating communities, and causing economic losses. This study proposes a four-stage methodology (avoidance, endurance, recovery, and adaptability) to enhance the resilience of road networks. We combine analysis of constructed assets and asset system performance with multiple disaster scenarios (Reactive Flood Response, Proactive Resilience Planning, and Early Warning Systems). Advanced flood Geospatial-AI models and open data sources pinpoint high-risk zones affecting crucial routes. The study investigates how resilient assets and infrastructure scenarios improve outcomes within Urban Resilience Index (CRI) planning, integrating performance metrics with cost–benefit analysis to identify effective and economically viable solutions. A case study on the Lisbon Road network subjected to flood risk analyzes the effectiveness and efficiency of these scenarios, through loss and gain cost analysis. Scenario 2, Proactive Resilience Planning, demonstrates a 7.6% increase compared to Scenario 1, Reactive Flood Response, and a 3.5% increase compared to Scenario 3, Early Warning Systems Implementation. By considering asset performance, risk optimization, and cost, the study supports resilient infrastructure strategies that minimize economic impacts, while enabling communities to withstand and recover from flood events. Integrating performance and cost–benefit analysis ensures the sustainability and feasibility of risk reduction measurespt_BR
dc.language.isoengpt_BR
dc.publisherMDPIpt_BR
dc.rightsopenAccesspt_BR
dc.subjecturban resiliencept_BR
dc.subjectcritical infrastructurept_BR
dc.subjectdisaster riskpt_BR
dc.subjectroad networkpt_BR
dc.subjectfloodpt_BR
dc.subjectcost–risk performance optimizationpt_BR
dc.titleUrban Resilience Index for Critical Infrastructure: A Scenario-Based Approach to Disaster Risk Reduction in Road Networkspt_BR
dc.typearticlept_BR
dc.identifier.localedicaoonline, Suiçapt_BR
dc.description.pages41p.pt_BR
dc.description.volumeVolume 16, art. 4143pt_BR
dc.description.sectorDED/NEGQpt_BR
dc.description.magazineSustainabilitypt_BR
dc.contributor.peer-reviewedSIMpt_BR
dc.contributor.academicresearchersSIMpt_BR
dc.contributor.arquivoSIMpt_BR
Appears in Collections:DED/NEG - Comunicações a congressos e artigos de revista

Files in This Item:
File Description SizeFormat 
NEG_Urban_Resilience_sustainability-16-04143.pdfDocumento cedido por um dos autores. Direitos reservados aos autores e editora.9.84 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.