Please use this identifier to cite or link to this item: http://repositorio.lnec.pt:8080/jspui/handle/123456789/1017089
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBubicz, M.pt_BR
dc.contributor.authorArsénio, E.pt_BR
dc.contributor.authorBarateiro, J.pt_BR
dc.contributor.authorHenriques, R.pt_BR
dc.date.accessioned2024-01-12T14:38:06Zpt_BR
dc.date.accessioned2024-03-05T15:30:42Z-
dc.date.available2024-01-12T14:38:06Zpt_BR
dc.date.available2024-03-05T15:30:42Z-
dc.date.issued2023-12-13pt_BR
dc.identifier.citationhttps://doi.org/10.1016/j.trpro.2023.11.774pt_BR
dc.identifier.urihttps://repositorio.lnec.pt/jspui/handle/123456789/1017089-
dc.description.abstractGrounded on public sensorization initiatives to monitor the Lisbon's mobility system as a whole, the Integrative Learning from Urban Data and Situational Context for City Mobility Optimization (ILU) research project was initially designed as a means of providing decision support tools for the city of Lisbon to advance towards sustainable mobility. This paper reviews a significant number of research outcomes developed in the scope of the ILU project that are aligned with the envisaged goal. These are comprehensively analyzed through an integrated framework to identify how different theories and methods anchored in data science and transport planning were applied to the different datasets of the public transport services.pt_BR
dc.language.isoengpt_BR
dc.publisherElsevierpt_BR
dc.relationFundação para a Ciência e a Tecnologia DSAIPA/DS/0111/2018 - iLU: Integrative Learning from Urban Data and Situational Context for City Mobility Optimizationpt_BR
dc.rightsrestrictedAccesspt_BR
dc.subjectSustainable mobilitypt_BR
dc.subjectArtificial intelligencept_BR
dc.subjectContext-aware urban data analyticspt_BR
dc.subjectResiliencept_BR
dc.subjectMultimodal transportpt_BR
dc.titlePlanning for more resilient urban transport systems: Lessons learned from the Covid-19 pandemicpt_BR
dc.typeworkingPaperpt_BR
dc.description.pages3435-3442pp.pt_BR
dc.description.commentsArtigo realizado no âmbito do projeto FCT ILU - "Integrative Learning from Urban Data and Situational Context for City Mobility Optimization", que envolveu uma parceria entre o INESC-ID/IST e o LNEC, com a colaboração da Câmara Municipal de Lisboa e das empresas de transportes CARRIS e Metropolitano de Lisboa. A participação do Departamento de Transportes foi coordenada pela IP Elisabete Arsénio.pt_BR
dc.description.volume72pt_BR
dc.description.sectorDT/CHEFIApt_BR
dc.identifier.proc0701/1101/2160201pt_BR
dc.description.magazineTransportation Research Procediapt_BR
dc.contributor.peer-reviewedSIMpt_BR
dc.contributor.academicresearchersSIMpt_BR
dc.contributor.arquivoSIMpt_BR
Appears in Collections:DT/Chefia - Comunicações a congressos e artigos de revista

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.