Please use this identifier to cite or link to this item: http://repositorio.lnec.pt:8080/jspui/handle/123456789/1002606
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCasaca, J. M.pt_BR
dc.contributor.authorMateus, P. B.pt_BR
dc.contributor.authorCoelho, J. I.pt_BR
dc.date.accessioned2011-10-19T15:10:28Zpt_BR
dc.date.accessioned2014-10-09T13:51:41Zpt_BR
dc.date.accessioned2017-04-13T10:05:42Z-
dc.date.available2011-10-19T15:10:28Zpt_BR
dc.date.available2014-10-09T13:51:41Zpt_BR
dc.date.available2017-04-13T10:05:42Z-
dc.date.issued2011-02-01pt_BR
dc.identifier.urihttps://repositorio.lnec.pt/jspui/handle/123456789/1002606-
dc.description.abstractSummary: A Bayesian estimator with informative prior distributions (a multi-normal and an inverted gamma distribution), adequate to displacement estimation at dam monitoring net-works, is presented. The hyper-parameters of the prior distributions are obtained by Bayesian empirical methods with non-informative priors. The performances of the Bayes estimator and the classical generalized lest squares estimator are compared using two measurements of the horizontal monitoring network of a concrete gravity dam: the Penha Garcia dam (Portugal). In order to test the robustness of the two estimators, gross errors are added to one of the measured horizontal directions: the Bayes estimator proves to be significantly more robust than the generalized least squares estimator.pt_BR
dc.language.isoengpt_BR
dc.publisherDavid Publishing Companypt_BR
dc.rightsopenAccesspt_BR
dc.subjectBayes estimatorpt_BR
dc.subjectHyper-parameterpt_BR
dc.subjectParametric elicitationpt_BR
dc.titleBayesian Estimation in Dam Monitoring Networkspt_BR
dc.typearticlept_BR
dc.description.figures2pt_BR
dc.description.tables2pt_BR
dc.description.pages7pt_BR
dc.description.volumeVol. 5, Nº 2pt_BR
dc.description.sectorDBB/NGApt_BR
dc.description.magazineJournal of Civil Engineering and Architecturept_BR
Appears in Collections:DBB/NGA - Comunicações a congressos e artigos de revista

Files in This Item:
File Description SizeFormat 
Resumo JCEA.pdf7.07 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.