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Computer modelling in the area of hydraulic and ctoastal
engineering is a very strongly integrated area of endeavaour
[...1. The remarkKable achievements obtained in this area
have led to further demands from the side of practice and
new efforts on the side of the modeilers to meet this
demand. LooKing at this situation from the research point of
view, one might describe ths area of modelling which is
rather well understood and where the predictive capabilities
are well-established as “the white area”. There is also a
very large area which is so little understood and where
predictive capability is so low that one could describe it
AE “the black area’. In between these arcas is a
considerable “grey area“, merqing intoc white on the one side
and black on the other. As research progresses, the white
area expands and the black is invaded further by the grey,
but & arey area still remains in the middle., [...3. It is
the duty of every organisation in the modelling business to
ascertain, through it research, Jjust how ‘grey’ ites models
are In any actual application and to communicate the extent
of this ‘greyness” [...]. -

in "Computer modelling: a warning", by the Section for the
Use of Computers on Hydraulics and Water Resources, of the
IAHR (THE DOCK & HARBOUR AUTHGRITY, MARCH 1984)

The solution of Ffirst—-order hyperbolic problems is
schizophrenic [...1.

in LAPIDUS and PINDER 1982, pg. é19
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ABSTRALCT

Thie worK presents a systematic study, based on both formal
analysise and npumerical experimentation, of the accuracy and
stability of the solution of the advection-dominated transport
equation bty an Eulerian-Lagrangian method <(ELM}. The method
spltits the transport equation into advection and diffusion
components, <solving the former by the backwards method of
characteristics <(BMC>, and the tlatter by a GalerKin Ffinite
element method.

The space-interpolation procedure associated to the BMC is <chown
to be critical for the overall accuracy, and alternative
interpolation schemes <(some of which Ffirst proposed? are
compared. A combination of compact and non-compact Lagrange
interpolation schemes is suggested to be a potential best choice.

The BMC is shown to be, for proper choices of the interpolation
procedure, consistent, stable, convergent and accurate; <come
other choices lead, however, to instabitity or inconsistency.

The dependence of the accuracy of the BMC on the number of time
steps required to reach a fixed total time is firmly established.
Taking Jless and larger time steps is shown to typically improve
accuracy (a both unusual and very convenient behavior); in the
range of very small Courant numbers, however, accuracy is quasi-
independent of the time step, which avoids divergence.

The effect of grid non-uniformity and multi-dimensionality on the
feasibility and accuracy of the BMC is briefly examined. Al1l
considered interpclation procedures are shown to be senzitive to
grid non—~uniformity, but the BMC performs well as long as the
grid distorsion is not excessivej further work is deemed
necessary to establish proper criteria on this regard. Multi-
dimensional grids pose special difficulties only for non-compact
interpolation schemes, and when associated to unstructured non-
uniformity; the combination of compact and non-compact schemes,
in the sclution of a same problem, should considerably alleviate
such difficulties, which alsc demands further work.

The presence of physical diffusion is shown to improve both the
colution of the advection step and the overall accuracy of the
reference ELM.

Finally, the application of the reference ELM (in a particular
form, based on compact interpoliation schemes alone), to the
solution of selected cace studies of poltutant transport in
coastal waters, is discussed and its usefulness demonstrated. In
particular, the method is shown to allow leng-term <{several
tides)> simulations at moderate cost, even for large and complex
grids, and to aveid the need for artificially high diffusivities
as a numerical stabilizer or smoother; both in qeneral and in
these two specifc accounts, the reference ELM reveale a superior
performance relative to conventional Eulerian methods (e.g.,
Galerkin or Petrov-Galerkin finite element methods, applied to
the undecoupled transport equation?
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SUMARIO

Apresenta-ce um estudo sistemdtico, baseado simult&neamente em
andlises formaics ¢ em experimentag¥o numérica, da precis3c e
estabilidade da <solug¥o da equagdo de transporte por um métado
Euleriana-Lagrangeana (MEL). O método decomp®e a equagidoc de
transporte em equag®Bes separadas de advecg¥o e de difuslo,
resolvendo a primeira pelo método das caracteristicas regressivas
no tempo (MCR), e a segundo por um método de elementos +initos,
do tipo Galerkin.

Mostra-se que as interpolaglies no espago requeridas pelo MCR s%o
um factor Timitativo da precis¥o global do MEL, e comparam-se
diversas técnicas alternativas de interpolag¥o, algumas das quais
criginais. A combinag¥o de esquemas compactos e n¥o-compactos de
interpolag®o, baseados em polindmios de Lagrange, & apontada como
uma potencial solugioc éptima.

Demonstra-se que, para uma adequada escolha do esquema de
interpolagdo, o MCR é consistente, estéAvel e convergente e tem
boas caracteristicas de precis3o. Escolhas inadequadas do esquema
de interpolagic podem, no entanto, causar instabilidade e
inconsisténcia.

Estabelece—se & dependéncia da precis¥o do MCR no passc de
céculo, mostrando-se que essa precis¥o aumenta, em geral (para um
tempo total fixo), quandc se reduz o ndmera de passos de cédlculo,
isto é, quando se aumenta o passo de cilculo (uma propriedade
simultanemente pouco habitual e muito conveniente)., No entanto,
na gama de valores muito pequensz do Ndmero de Courant, a
precisao €& praticamente independente do passo de cikculo, o que
evita que o método se torne divergente.

Anal isa-se brevemente o efeito de malhas irregulares e pluri-
dimensionais sobre a aplicabilidade e precis¥o do MCR. Apesar de
sensfvel & irregularidade da malhxk, o método mantém boas
caracteristicas de precis¥o desde que as distors®es geométricas
n&o sejam exc:isivas, Malhas pluri-dimensionais, quando
eimul t&neamente irregulares, levantam problemas especificos de
aplicabilidade de esquemas n¥o-compactos de interpolag¥o; esses
problemas poder%o se resolvidos através da utilizag¥e conjugada
de esquemas compactos e n¥o~compactos, para um mesmo problema.
Investigagdo adit ianal ¢ ainda requerida nestas areas.

Mostra-=se ainda que a presenga de mecanismos ficicos de difuso
beneficia tanta a precis¥o da solug¥%o da equaglo de advecg¥o como
a precisdo global do MEL.

Finalmente, demostra-se a eficédcia da aplicag¥o do MEL (numa
forma particular, restricta a esquemas de interpolagio compactos)
a simulag¥o do transporte de poluentes em 4Aquas costeiras. O
metodo permite, em particular, realizar simulag®es longas (varias
marés) a custos moderados, mesmo para malhas irregulares com
elevade ndmero de nds, e, também, evitar a necessidade do uso de
difusividades artificiais como garante de estabilidade; em geral,
¢ nestes dois aspectos em particular, o método revela-se superior
a métodos Eulerianos, mais convencionais (por exemplo, métodos de
elementos finitos, do tipo Balrkin ou Petrov-BGalerKin, aplicadas
4 equag¥o de transporte indivica).
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1.1. MOTIVATION AND OBJECTIVES

Computer modeling ig a poawerful tool for the analysis of a
variety of problems in Hyrdraulics and Environmental Engineering,
as long as it is properly used, Howewer, it is too easy to misuse
& computer model, as it is well illustrated by the article by the
IAHR Section Ffor the Use of Computers on Hrvdraulics and Water
Resources, published under the title "Computer modelling: a
warning” in  the March 1986 edition of THE DOCK AND HARBOR
AUTHORITY .

The role of research institutions, such as LNEC, ies of Key
importance in makKing computer modelting a useful rather than a
dangerous toal. Such role should include identifying prioritary
areas for fundamental and applied research, effectively carrying
out and exploring the results of such research, and promoting =&
wide divulgation of both successes and failures among the
technical and scientific communities.

One of the areas where the misuse of computer modeling is a
permanent risk is that of the simulation of the transport of
passive scalars in coastal waters. Indeed, the complexity of the
relevant physical mechanisms, the diversity of important time and
space scales, and the complexity and cost of +Ffield data
cellection and processing, contribute to make computer modeling
in this area specially uncontrolied, and therefore, highly
subject ta eprrors.

In recent years, a variety of efforts have heen made toc overcome
the inherent defficiencies of currently accepted conceptual
formulations and numerical solution techniques. Other efforte
have concentrated on making the already available tools safer and
eacier to use, through recommendations and the estahlishement of
practical wuser’s criteria. Also, efforts have been made to
improve our ability to collect and interpret field data, at
affordable costs.

The emphasie of the present work has been placed on basic
research in the area of the numerical solution of the advection-—
dominated transport equation. This equation has been a major
challenge in computational fluid dynamics since ever, and valid
contributions to the understanding and overcoming of the
defficiencies of availablie methods are in ingreasingly great
demand, in various technical domains.

Our general objective is to contribute to improve the current
ability to solve the transport equation through what has come to
be Known as Eulerian-Lagrangian technigques, and to establish a
solid formal Knowledge of the properties of these increasingly
popular techniques (80 as to assist their application to
practical prablemsy.
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1.2. RESEARCH CQUTLINE AND TEXT ORGANIZATION

The report includes seven Chapters and three Appendices. This
first Chapter introduces the work, by describing the mulivation
and general objectives, and by outlining the contents of the
different Chapters and Appendices.

Chapter 2 provides background information and discussion. The
physical problem of the transport of a passive scalar is stated
in mathematical form, for 3-D and 2-D quasi-horizontal +flows
{section 2.1), the relative role of the two leading physical
"mechanisms for iransport (advection and diffusion) and the nature
of the mathematical problem are discussed (sections 2.2 and 2.3,
respectively), and the most representative techniques for the
numerical solution of the transpart equation are reviswed
(section 2.4), Section 2.1 is largely based on a previous, but
still unpublished work (ADAMS and BAPTISTA 1%84), while <section
2.4 extends and updates BAPTISTA 1984.

Eulerian—~Lagrangian methods (ELM) are identified in section 2.4
as an effective alternative to conventional Eulerian methods.
Chapter 3 describes a reference ELM that generalizes the method
proposed by BAPTISTA 1984, This method splits the transport
equation in advection and diffusion components, soclving the
former by a bacKkwards method of characteristics (BMC) and the
latter by a finite element Galerkin method. Particularly relevant
as an extension of the previous work is the relaxation of the
constraint of & same interpolation scheme applying for baoth
advection and diffusion.

An  introductory discussion of the accuracy of the reference ELM
(section 3.3) identifies the solution of the advection equation,
and, in particular, the associated interpelation procedure, as
the potential major source of errors. Hence, Chapter 4 addresses
in detail the accuracy of the adeopted BMC. Formal analwvsis and
numarical experimentation provide insight into the relevant error
mechanisms and on the relative performance of alternative
interpolation schemes. Emphasis is given to the simple case oFf
advection in 1-D wuniform grids, as to allow a systematic
analysis. Extensions to non-uniform and to two-dimensicnal qgrids

are however presented as an important complement. Several
alternative interpolation schemes {some of them first proposed
through this research) are considered in the analysi:«, which is

effective in comparing schemes and in identifying upper bounds in
the accuracy of the BMC.

Chapter 5 analyzes general properties of ELM, for & selected
range of alternative interpolation schemes for advection. The
influence of diffusion in the solution of the global transport
equation is discussed, and shown to typically correspond to an
improvement of accuracy (section 5.2). Also, the time step that
leads to optimal! accuracy is shown to be a <function of the
relative importance of advection and diffusion, and the selection
of the most cost-effective time step is briefly discussed
(section 5.3).

Chapter & linke findings of earlier chapters to the application

that constitutes the motivation for the present research: the
modeling of the physical mechanisms determining the fate of
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passive scalars (e.q., pollutants and water quality indicators)
in coastal waters. Three case studies (BAPTISTA 1984, BAPTISTA et
al. 1984 and KOSSIK 1984) where =z 2-D depth-averagad Eulerian-
Lagrangian transport madel, ELA ¢(BAPTISTA 1984), was used as a
fundamental tocl, are critically reviewed, and the improvements
that should be introduced toc ELA following the present research
are discusced,

Chapter 7 summarizes the relevant conclusions of the present
research, and outlines further work, both at the level of basic
research and of engineering applications.

The Appendices provide compliementary information to the material
described in the text. Appendices A and C reproduce material
presented to the VI International Conference on Finite Elements
in Water Resources, held at LNEC, between June 1-5, 198&: the
statement of reference problems and accuracy measures for a
specialized Forum on the advection-dominated transpart equation
(Convection-Diffusion Forum), and a paper on the representation
of sources in transport models, respectively. Appendix B brisfly
refers to the companion circulation models, TEA and TEANL, for
the transport model ELA.
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CHAPTER 2

BACKGROUND
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2.1 MATHEMATICAL STATEMENT OF THE TRANSPORT PROBLEM

2.1.1 Governing equation for three-dimensional transport

The fate of a substance intraduced in a host fluid is governed by
the principle of mass conservation. 1In the absence of internal
sources and sinksy; this principle, applied over an elementary
volume of fluid, states that

"the rate of increase of mass within the elementary wvaolume
equals the net inflow of mass through the boundaries of
the elementary volume",

This principle is mathematically expressed by the partial
differential equaticon (PDE) :

dc 0q; .
—— — it i=1,23 (2.1
ot 0x; { J
where summation is implied over repeated indices, and
clx,»;2,t) - is the substance concentration
qlx,»,Z2,t> — is the mass flux in the i-direction
"t - is the time coordinate

x=x1, y=x2, z=x3 - are the spatial coordinates

e npnote that & wvolumetric definition of concentration was
adopted, i.e,.

mass of substance

c = (2.2
volume of solution

This definitiaon is related to the alternative massic definition

mass of substance

cm= (2.3
mass of solution

through

C =P + Cpy (2.4

where p is the density of the solution.

Two mechanisms promote mass flux across the volume boundaries:
advection, defined as the transzport of mass by the Ffiuid
motion; and molecular diffusion, defined as the transport of mass
by the Brownian motion of molecules within the fluid.

The mass flux in the i-direction is defined by

: (2.5
g;=u;C+qy
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where uc represente the flux by advection (us being a velocity),
and quthe flux by molecular diffusion.

Molecular diffusion is governed by Fick’s law, which states that

"the flux of mass in a given direction, due to molecular

diffusion, 1is proporticnal to the gradient of concentration
in that direction”,

In differential form, this isc expressed as

oc
= -pJ_

where the minus sign indicates that transport is from high to low
concentrations. The proportionality constant, D, iz called
molecular diffusivity and has dimensions of square length per
time. The melecular diffusivity is isotropic, and its actual
value depends on the molecular structure of the substance and the
host  fluid, on their relative concentratiens, and on the
temperature and pressure of the system.

Replacing Egqs. 2.5 and 2.4 into 2.1, we cobtain the three
dimensional transport equation

ac 2 (u:e) = 2 (D 3 el

-a—: *BXL . ) axL ( &K'L) {L-l,Z,-gS C2.7)
written in terms of instantaneous values of concentration and
flow characteristics. White general, this form ic inconvenient in
turbulent flows <(which includes, in particular, most natural

flows). Indeed, turbulent flows exhibit random fluctuaticns over
the time-scale of turbulence, which we seldom Know how, and often
do not care, toc represent.

Hence, +or turbulence flows, this governing equation is more
often used in the form involving mean turbulent quantities, which
is derived through the concept of Reynolds-averaging.

With this objective, instantaneous quantities are represented by

the sum of an average value (over the time—-scale of turbulence)
and a deviation from the average; for velocity and concentration

U=+ (2.8)

c=?fc’ (2.9

where the bars dencte time-average and the primes denote
deviation from the average.

Introducing Egqs. 2.8 and 2.9 into 2.7, and averaging the latter
over the time-scale of turbulence, we otain the 3-D Reynolds
transport equation
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3

‘c’) {i=1,2,3}
Cx; _ (Z2.16)

——rat

We note that three new unknowns (the double corretations uc’ in
the three dimensicne of space) zre introduced; each corretation
represents a mass flux, due to random Ffluctuations of
concentration over the time—-scale of the turbulent moction.
Specification of these unkKnowns is required to close the problem
{turbulence closure), ahnd remains as one of the greatsst
challenges in modern modeling of turbulent flow and transport.

Turbulence closure is often attempted either by intraducing new
equations (e.g. for turbulent Kinetic energy, or for turbulent
Kinetic energy and its discsipation: kK and kK-€ maodels,
respectively?, or by using some ad-hoc assumption on the form of
the unknown turbulent fluxes.

Very often, the approach adopted in engineering practice is of

the latter type, Iinvolving an analogy with Fick’s law for
malecular diffusion, based on Prandtl‘s mixing length argument.
In this approach, the turbulent mass filux in the i—-direction is

expressed as

-~

’ L - OC
qu.-:u'.('z_]\m:“ {2.11>
CX;

t

where K is the eddy diffusivity in the i-direction, which must
be specified or computed from Known quantities (the brackKets
indicate that i is not a summable index). Eddy diffusion
coefficients are generally several orders of magnitude larger
than molecular diffusion coefficients and, unlike molecular
diffusion, they depend on the flow characteristics. Hence, in
general, they are neither iscotropic nor homogeneous.

Recoanizing that K; »>> D and drepping the overbar, Eq. 2.11 may
be substituted into Eq. 2.18 to yield

dc ¢ ) dc

— 4+ (u;c)== Kg—1+S8 {i=1,23

ot @O Gx;( “’an) l ) (2.12)
where, for the sake of generality, we added a term §,
representing the rate of production or loss of mass per unit

vaolume by internal sources or sinks,

2.1.2 Governing equation for two-dimensional (depth-averaged?
transport

In many natural flows, motion in the vertical direction ie much
smatler than in the horizontal. For such flows, Eq. 2.12 may be
simplified by vertical averaging. We will consider the case of a
quasi-horizontal +Ffiow, definmed over a depth hi{x,r,z,t) between
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adjacent interfaces Qi(x,y,z t) and nRaix,¥,z,t) as shown in Fig.
2 1.

Integration of Eq. 2.12 over depth leads to

moGe L P LB ho¢ oc
'[ - dz+ f — (u;0) dz +ow =J - (KU} )CL (K: -.—_)
N2 at LH C_;xj LH 2 ij J ¢

L F} L' P
+J Sgs £2-13
] 7

2 H J'__ ?]‘
. J=12}
Using Leibnitz‘s rule, and rearranging, gives
¢ m .. fm ) "1( a ) m
— | cdz4— u,cdc=5— K dz+¢, ~¢, + Sd:z
- - pn] U) r
CIJ; CXj Jn, ’ €Xi Jn, Xj .14
T2
where Hn, (with m=1,2) is mathematically described by
- G C cc ¢
¢ ={c (C—f’~'—"+uj 9:’1'-"—-“) (Ku,ﬁ ,"’!' K, __)} (2.15)
ot CXx; Cx; Cx; ¢z .
T J Tm

Physically, ﬁn represents the mass flux across the interface
z=nnfx,y,t), ﬁ% first and <econd terms of Eq. 2.15 being,
respectively, advective and diffusive flux components.

Fluxes across interfaces are problem—-cpecific (e.q., advective
fluxes are null for impermeable interfaces, and diffusive fluxes
are nutl for fully-reflective surfaces), and must be specified in
a case-by-case basis, as vertical boundary conditions.

To treat the other terms of Eq. 2.14, we introduce the notation

Tyt = <r> +r"(x,5,2,10) (2.18>
with
I T .
<P =— rdz (2.17
h 0
and
m
rd==0 (2.18)
L
where r is a dummy variable that maw represent u , ¢ ar K ; g
denctes @ depth-averaged value, and the doubl prime denots &
deviation from the average. Eq. 2.14 may then he rewritten as

ja -

(- a . - i
E(h<c>)+—(h<u.><c>)=,c [h(<KU,><a >+ <K'y = >)] |
B LN %) X (2.19)

&x; !

6 (h<w'”>)+¢ —¢, th<§> {i=1,2}
Note that new unknowns, in the form <uj'c"> and <Kpj) (dc"/dxjr>,
were introduced by the wvertical integration. These unknowns

represent horizontal mass fluxes, due to differential advection
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(shear) and diffusion ocver depth. By analeogyr with turbulent
diffucsion, these fluxes are assumed to be of the form

gt}

cX; Yooax
i C-'A.,-
*
where the vertical shear diffusion coefficients, Kg s mu=t be

cspecified or computed from Known guantities.

Inserting Eq. 2.28 into Eg. 2.19, and dropping " and < >, leads
ta the 2-D {depth—-averaged) transport equation
¢ o0 G oo
EIUHYTFJ Umf):*”'(Euhf

. ..
oy x; )““f’m‘“‘f’nﬁ'S’* Jif = 1.2 - (2.21)

X;

where the diffusion coefficients E/j; result from lumping
together the eddy and horizontal shear diffusion coefficients.

The above form of the transport equation is Known as the
conservative form. Making explicit use of the 2-D continuity
equatian

3 4 ac¢hv) Lo {j=hl}

ot X (2.22)

we can derive the non-conservative form

ﬁq EC__I ¢ e 1 ‘ (2.23
& E TR e [Ev’* 5]*5 [d’m‘%]” (=12

1

2.1.3. Initial and boundary conditions

The mathematical Formulation of a phyrsical preoblem is not
complete until proper initial and boundary» conditions are
specified. General forms for these conditions are

and

(1—o} [Q'n (X,}’»f)—Q*(X,}’.I)]—!—a(x,_v,t) [C(X,}', t)—C* (_\‘._1,',[)]:0 (2.25)
atr>0,on TP

where 2 and 7 denote the compuiational domain and its boundary,
Co s €* and @* are prescribed functions, and o controls the type
of boundary condition: e.qg.,, & prescribed concentration conditian
if a=1, a preccribed flux condition if 2=8, The wvariable g,
represents the mass flux along i, the direction normal to the
boundary, and is given byiassuming Ey, =8 for P Fj
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-—-[ﬂuhc-—(l -fhE, g;:' cos (n, x)+[:ﬁvhc—(1 ~B) h E, -——:, cos (1, y) (2.28)

where B controls the Kind of flux to be prescribed: e.g.,
advective flux if f=1, diffusive flux if f=6.

On closed (or land) boundaries, a flux condition is usually used
(a=6>. m~As normal velocities must be zero on these boundaries,
advected fluxes are implicitly zero. Dispersive fluxes, however,
.must be specified, and Eq. Z2.24 becomes

(h E, < cos (n, x)+hE 6; € cos (7, y)) o* ' (2.27)

The wvalue of Q" depends on the reflectivity of the boundary as
regards the tracer., When a full reflection may he assumed, G*=8.

Open boundaries are much more difficult to handle, and no
uniformly accepted procedure exists. For inflow boundaries
concentration is usually prescribed {W=1), in the form

c(x, ))=C*{x,5,1) (2.28)

but ‘it may be more convenient <(e.g., in the wvicinity of
effluent discharges in a receiving water body), to prescribe
advective +luxes (=g, ﬁ=1), in the form

uc cos (1, x)+uvce cos (A, §)=0* (2.29)

in outflow boundaries, a flux condition (a=8, f=6), in the form
cc de
E, . — ¢os (A, x)+E, ar cos (n,y)=0 (2.38)

is often wused, to indicate that only (unspecified) advective
fluxes occur. Egq. 2.38 is, however, only valid if concentration
gradients are negligible near the outflow boundary, which, in
some real problems (e.g., diffusicon of effuents in a receiving
water bodr) can be achieved by considering a tlarge enough
computational domain.

TakKing again as & reference the problem of effluent dispersal in
a receiving water body, the specification of the values of C° oar
&* required at inflow boundaries (Egs. 2.28 or 2.29) is

relatively easy if the currents are unidirectional <(even so,
difficulties will arise when the background concentration field
is not trivial). In the presence of reversing currents

specification of C* or @* becomes quite hard, though, because the
mass that Jleaves the computational domain in the ocutflow phase
will reenter in the inflow phase and must be takern intoc account.
Several approaches to this problem have been proposed, the least
arbitrary being to consider a large enough domain, in order to
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reduce outflow concentrations to background lewel; unfortunatelw
practical  Timitations concerning CPU time and memory capacity
zome times prevent this approach.

Whern & 2-D (depth-averaged) formulation is used, thes mazs Fflux
normal to  the surface and to the bottom comstitute wertical
boundary conditions, that must bhe =zpecified in additien to the
horizontal conditions described by Eg. 2,25, Qften, these fluxes
are rather unimportant, and mar be set equal to zerc. Trpical
cexceptions include thermal energy and dissolwed gasez, which are
exchanged with the atmosphersz, and sediments which are deposited
and re—-suspended at the hottom.

A  thorough review of healt exchangs mschanismz is pressnted in
ADAMS et al. 17815 wvolatilization and reaeration mechanisme have
been summarized in BRUTESERT and JIRKa 1784; and wertical fluxes
of sediments are discussed in VaANOMI 1977, The reader it refered
to  these works for information on the specification of wertical
mass fluxes,

ol



2.2 ON THE ROLE OF ADVECTION AND DIFFUSION

From the derivaticen of the 2~D (depth-averaged? transport
equation, it should ke clear that advection and diffusion are not
staunching mechanisms, the actusxl mganing of each depending on

the time and space scale= that we elect to explicitly repressnt
in a given formulation.

To illustrate concepts, and provide insight on  the relative
importance of these wmechanisms, we loosely approximate &
contipuom host fluid of a passive scalar,in turbuient motion,
through an "infinite" set of equal Ffluid parcels, =ach of

infinitesimal ¢(although larger than the scxle of Brownian moition?
size. Mass of the scalar is asscciated to each parce]l according
to some initial distribution, and we examine the changee that
take place as time progresses.

I+ we laok at the problem throuvwgh the three-dimensional
instantaneous Fform of the transport equation {(Eg. 2.7) we
identify the trancport mechanismes as being advection by the
instantanecus flow and molscular diffusicon.

Sdvection redistributes mase through the displacement of fluid
parcels, which follow the flow; the original amount of mass  in
gach parcel i strictly preserved. It is useful, at this point,
to consider the carrying Flow as a superposition of  three
components: & uniform component, & shear component {(associated
with the dewiations From uniformity that refer to space and
agsociated time scalss larger than what is logosely called the
scale of the turbulent fluctuations? and a fluctuxting component
(associated with the devizations from uniformity within the scale
of the turbulent fluctuations). While the uniform component moves
parcels in a rigid-body—-1iKe way, the non-uniform components
rearrange the position of the parcels relative to each other: =&
deterministic rearrangement over large =cales, in the case of the
shear component, and a random rearrangement over small scales, in
the caze of the Ffluctuating component.

Diffusion, in turn, redistributes mass by actually exchanging it
between adjacent parcels, through Brownian motion at the
molecular level; no parcel displacements are  involved. Mass
gxchange s set im & war thxt temnds to smeooth ocut existing
gradisnts (i.e., masz goss from parcels with higher content fo
parcels with Teower contentd, and the exchangs rate =3

proportional te the driving gradients.

For passive scxlars, diffusion does not affect advection.
However, advscticn by the non-uniform componente of the carrying
flaw may significantly affect the efficiency of diffusion,
Indeed, the relative pesition of fluid parcels is changed by non-
uniform advection, which estabklishes new parcel neighborhoods: if
parcels with high mass content are 11 brought closer fto each

cther, diffusion becomes less efficient; conversely», if such
parcels are spread ower larger regions, diffusion becomes more
efficient. Trpically, non—uniform advsction enhances global

diffusion, although it may inhibkit diffusion locally.

We now take the three—giﬂgﬂqugai form of the eguaticn for mean
turbulent transport, Eq. 2Z.12. Both advective and diffusive
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mechanisms are, again, present.

MNow, however, advection is acssociated only with the mean
turbulent fiow Cuniform and shear components), and the effect of
the fluctuating component of the flow Jjs represented as a
turbulent diffusion. As pointed out eariier, turbulent diffusion
is typically several orders of magnitude more efficient than
molecular diffusion, and the latter can therefore be dropped from
the governing equation.

Because diffusion implies exchange of mass between fluid parcels,
we immediatly recognize, from earlier discussion, that the size
of the parcels that we can look at has increased: parcels are
still s=mall, but they must be larger than the scales associated
with turbulent fluctuation.

We lost recolution, but we gained convenience. Indeed, we avoided
the explicit representation of the fluctuating component of the
flow, which is particularty hard to handle. This approximation
may constitute the difference be tween feasinility anrd
unfeasibility in the modeling of turbulent flow and transport{i’.

Let us now consider the two-dimensional equation Ffor mean
turbulent transport, Eg. 2.21. Advection ie ascociated enly with
the wuniform component and with a part of the shear component of
the flow. Indeed, the effect of vertical shear is reprecented as
a diffusion mechanism (vertical-shear diffusion) and added to
the turbulent diffusion,

Again, we lose recsoluticn <(the horizontal size of the Ffluid
parcels is still constrained only by the scale of the turbulent
fluctuations, but the vertical size must be the flow depth) to
gain convenience {we avoid the explicit representation of the
vertical flow and of the vertical variation of the horizontal
flow).

Computational =zavings related to depth—-averaging are much less
impressive than those achieved by Reynolds - averaging, but are
still <significant {may be cne to two orderc of magnitude in CPU
and memory requirements). Although advanced computers already
exist that make Ffeacible the computational effort For the
solution of three-dimensional mean turbulent transport problems,
depth~averaging <(or an alternative space averaging) is =still
often useful or even the only sensible or feasible approach

(1)To illustrate thie statement, we reproduce from WHITE 1974 the
following reasoning based on figures given by EMMONS 1978: for
the relatively <cimple problem of turbulent flow in a pipe, a
computer solution revealing the turbulence structure of the flow,
at a Reynolds number of 18EY would require 1BE22 operations; at
the computer speed of 16 microseconds per operation
{representative of computers in the <ceventies), this would
regquire IBE17 seconds, or 3x10E? vears (about one fifth of the
age of the universe); since we are probably limited by the speed
of 1light to an "ultimate" computer speed of { nanosecond per
cperatiaon, our fastecst foreseeable computation would take
3.2x18E4 years (over 568 generations).
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(hecause of: limitations of the computer actually availablej
detail that cam be achisved in the specification of boundary
conditione; accuracy of available numerical sclution technigues;
gted .

It should be emphasized that Eq.2.2! assumes that the horizontal
plan is represented as & continuum; however, the numerical
enlution of this equation involves the discretization of the
horizontal plan, through the set-up of a grid. While in some
Cases L .0, for finite-element me thods? unambiguous
interpolation functions heold within each arid element, some
space— {and &aszociated time-) scales of the Fflow are, againg
cmmi ted or il11-represented. This further reduces ocur z2hility to
directly repressnt advectien, and should, again, be compensated
bw the introduction of an additiconal diffusion mechanism:  now,
the sub-grid =cale horizontzxl shear diffusion (DEARDORFF 1271,
CHRISTOLROULOQU et al. 12755,

Felevant guestions are how to evaluate the diffusion coefficient
that i3 actually going to be used in the computations, and how
important has diffuszion become relative to advection.

Clearly, the answers depend on the specific problem and on  the

model  (dimensiconaltity and Fform of the esgquations; zzxluticon
tachnigue and its spatial refinsment) that one elects to EEEH
thiez iz discussed in further deizil by ADAME and BAFTISTA 1784,
who address the empirical determination of diffusion

coefficients, in the comntext of coastal and cceanic flows.
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2.3. ON THE MATHEMATICAL NATURE OF THE TRANSPORT EQUATION

The detailed analysis of the mathematical nature of the transport
equation is beyond the scope of this work. The following brief
discussion ehould, however, be helpful to the understanding of
problems arising in the numerical sclution of this equatiaon, and
are a motivation for Eulerian-Lagrangian methods.

We taKe as a reference, whithout loss of conceptual generality,
the 1-D partial differential equation

) 3c = 3 29¢ , Cixtl e + Dexd

_a_% s Alx L) 3¢ (xk) + Cxb) (x,%) (2.215
where the coefficients B{x,t, Alx, t) - representing,
respectively, diffusion and advection (or advection plus non-
uniform diffusion, see Chapter 32 - are of special interest.

This equation is limear, &s revealed by the functional dependence
of the coefficients A through D (1). Hence, the extensive body of
Krowledge available on linear PDE applies, and socme general
properties may be assumed.

In particutar, it i¢ eaxsily recoanized that Eq. 2.31 has a
considerably different behaviour, depending on whether Bi{x,t) is
or ie not nuil. Indeed, when B(x,t)£86, the equation is a second—
order parabolic PDE, while it becomes a first-order hyperbolic
PDE when Blx,t =8 (2.

Hence, when B{x,t»8, Eq., 2.21 hzas a single family of horizontal

charazcteristic lirnes (or, to be more precise, two coincident -
thue nececsesarily horizontal - familises), and i associated with
the initial and boundary conditions diagrammatically represented
in Fig. 2,2{x), The functicn cix,t) is determined, at any oiven
location of space and time, by 211 the initial data plus the data
Cih the boundaries which are on or below the retevant
charactericstic line. Hence, in particular, at any given fTime, I,

sotutions at different space locations are 211 interrelated.

(1) A nth —order PDE is nonlinear when ite coefficiente depend on

nth —order derivatives of the dependent variable; it is quasi-—
linear when they depend on mikh —order derivatives, with m ¢ n3; and
it is tinear when they depend on the independent wvariabies
zlone.

(2) Second-order linear or quasi=linear PDE of the general form

v BV c Bv kM \
Q()271+Zb()ﬁéa* 5 do)?;'+20)§? v{vege) =0 (z.32)
where (.D represents some functional dependence, are classified
as hyperbolic if h%}4ac, as parabelic if bé=4ac and as elliptic
if b*<dac (e.g., LAPIDUS and PINDER 1982, pgs. 12-13). The above
criterion does not qive any useful informaticn for first—order
PDE; however, hyperbolic equations are identified as those for
which the Cauchy probiem is well-posed (JEFFREY 1974, pq. azs,

which is the case of Eq. 2.21 when B(x,t>=0.
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When B(x,t)=8@, Eq. 2.3t has, again, a single family of
characteristic lines. MNow, however, thie number results from the
-order of the -equation, and not from the coincidence of two
families of linesy hence, in particular, the characteristic lines
do not have to be (and are not, except in the uninteresting case
af A(x,t)=o0) horizontal. The requirements on initial and
‘boundary conditions, and the domain of dependence of the
«walution, are now completely different, as illustrated in Fig.
2.2¢b). In particultar, we note that the relevant initial or
iboundary conditions Ffully determine the solution along each
characteristic line,.

The transition between the parabolic and the hyperbolic behaviour
of the equation is, from the above discussion, discontinuous
(associated to a singularity at Bix,t)=8). Although this is
formally S0, the actual behaviour of the solutions is
hypothesized to change gradually as diffusion becomes less and

less important with regard to advectiuvn. This is in agreement
with the physice of the transport phenomena, and may justify the
frustrating experience of many modellers, in the last decades,
while solving numerically the advecticon—-dominated transport
equation.

‘Hence, the idea of <¢plitting the transport into a purely
parabolic diffusion equation and a purely hyperbolic advection
equation, and <=olving each by & different method, betomes

appealing, and has indeed been increasingly explored <{(section
2.4,
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2.4 REVIEW O0OF MUMERICAL SOLUTIOM METHODS FOR THE TRANSPORT
EQUATION .

2.4.1 Introduction

The transport equaticon has been =zolved by sewveral different
numerical methods , which may be classified inte three broad
categories 1 Euleriam , Lagrangian and Eulerian-Lagrarngian .

Eulerian methods (EM) solve the Eulerian form of the transport
gquation y, =&t the nodes of & fixed grid . This regquires the
simultanecus <golution  of hyperbolic (advectiveld and parabolic
{diffusiver cperators , which has proved to be & hard task when
the former dominatse the latter. Indesed when sdvection
dominates, "centered” EM  often generxte spuricus =patijal
ascillations {wiggles) while "upwind" and "balanced-dissipatiaon”
EM introduce significant numerical damping.

Lagrangian methods (LM)  awvoid the explicit treatment oF
hwperbelic operaxtors by solwing the Lagrangian form of  the
transport equation in grids movwing with the flow. This approach
i= potentially wery accurate; but i=s made unattractive oar
unfeasible in many situations of interest (e.g.,conrtinous zources
and complex reversing Flows) due to pratical difficulties
assaciated with the orid displacement and deformation.

Eulerian—-Lagrangian methods (ELM? retxin the convenience of &
fined grid , but , at gome point of the numerical procedure, =&
part  or the whole transport equation (s treated in a Lagrangian
farm, in order to avoid the explicit tresatment of hyrperbolic
coperators. Reported resulis from ELM are rather promising,
showing that wiggles and numerical damping can be areatly
reduced, even +for wvery strongly advection—dominated problems,

Discussian  in the next paragraphs concentrates on EM (=2%i11  the
mxst used in enginmeering practiced, and on ELM {which are
becoming increasingly used),

2.4.2 Eulerian methods

Methode in this category are typically based on the seft-up and
solution of & single system of algebraic equations, whers both
advective and diffusive terms are represented; unknowns are the
concentrations at a finite number of fixed locations (modss) in
the computational domain. The transformation of the original
differential equsation into such a syzstem of algebraic eguations
i= usvally achisved using either finite difference methods {FDM
aor finite element methods (FEM).

Felative merits of FDM and FEM have bgen widely discusszed Ffor
geveral wears., While few widely accepited conclusians have hesn
reached, it 7= vsually recognized that FEM

=handle more efficiently the description of comnlicated tand
boundaries, &= well as internal orid refinements;
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—are more consistent in the treatment of boundary conditions
and in the set-up of interpolation procedures cver the whole
computational domaing

while FDM

-zre more intuitive to formultate, and tend to require less
memary and CPU time, for a similar number of nodesy

-result in significantly easier procedures Concerning
preparation and input of data.

The opticen between FEM zand FDM, while of practical importance,
plays a secondary rale in what the fundamental difficulties of
the accurate solution of the tramnsport sgquation are concerned.
Indeed, as we shall zes, each FDM hasz what can be considered a
FEM "equivalent", sharing the same type of fundamental abilities
and limitations.,

FDM hawe been used in the soluticn of the transport equation
since the late 17507« They . trpically discretizs the
computational daomain  throuwgh the use of an orthogonal grid
{ztretching transformationz have howewver been increasingly wused
to pravide some grid refinement or specific shaping?. COver each
arid element, the differential transport equation is replaced by
an algebraic equation, where bhoth the space- and time-derivatives
are approximated by finite-differences. The resulting system of
algebraic equatione iz adjusted to take inta account the
appropriate boundary conditicons, and ie then solwed to give the
nodal concentrations.

Initial FDM used centered schemss to approximate both  the
advection and the diffusion terms. These methods, howewer, lead
cften te strong parasitic spatial ocscillations Cwigglesd,
zpecially for large Courant numbers {(ji.e., often in the range of
practically fezsible Ax, Aty. Imn & careful {although toco
specific) Formal analysis in the context of =& one-dimensiocnal,
steady problem, with Dirichlet boundary conditions specified at
the two boundaries, ROACHE 1278 (pp. 141-1835) showed that wigoles

are, in this cass, causzed by 2 singularity at Jlow DAy (the
numerical eguivalent of the singultarity at D=8 of the behavior of
the exact =zolution, discussed in section 2.3), According to

Roache, a perturbation i= generated at the ouiflow boundary,
for Peclet numbere, Pe=ul\xsD, larger than 2, and propagatesz to
the whole domain.

Experience shows, howewer, that wiggles may have a broader rangs
of origins. @& mors general statement is  (see discussion in
Chapter 4) that wiggles are the consequence of phase errors at
short wavelengths; hsnce, wiggles will occcur whenever such
wavelengths are of <igrificance in thse true soluticon {which
relates to insufficient discretization’, and are not artificially
damped by the numerical algorithm.

damping but
{g.g., =&

B centered FDM  are often asscciated with smal
ndeed, promote

significant phase errors  at short wavsleng

]
]
Fourier analwsis by HOLLY 1975), they should, i
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wiggles, except when phygical diffusion is strong enough to
smaocth out sharp (relative to the grid discrstization? adients,

Az & remedy for wiggles in aduection—-dominated problems with
zharp ogradients, more recent FDM have wused centersd Finite-
differences only for the diffusion terms, replacing the advective
derivatives by upwind differences. Upwinding methads do  avaoid

wiggles; howewer, thi=z is done by very strongly damping short
wavelengths; for lingar approximations, & numerical diffuszion is
explicitly introduced fas easily shown by Tarlor serigs

expansiond, which often cvershadows physical diffusion.

BOOK et al. 1973 proposed, as an alternative to "brute—force"
upwinding, the elimination of wiggles through the caontralled
addition of (unsteady, non-uniform and non-isotropicy artificial

diffusicon (Flux-Carrected Transport FD Method) to numericszl
solutions obtained with centered differences. This and simitar
techniques lgad also to a re-statement of the phrsical problem,
and can  loosely be seen as forms of "intelligent" , but céten
relatively expensive, upwinding.

FEM thave bescome popular for the solution of the transport
equation sirnce the early 1%787=s, The computational deomain is
divided 1ipto elements of convenient shape, such as triangless ar
gquadrilatersle., MWithin ezch element information is concentrated
at node=s, but mar be unambiguously interpolated toc the intericr
using pre-selected interpolation functions., The original partix]

differential eguation i=s then tranzformed into =z system of
ordinary differentizl eguations in  tims, yging a weighted
residual method, Numerical integration of this srstem leads
finxlly to a system of algebraic equaticons, whose solution gives

the nodal wvalues of the concentration fietd,

The wuse of the weighted residual method requires the definition
of elementary weighted residuals, resulting from the integration
cver each slement of the erroars made in approximating the actuxl
concentration field, weighted b pre—-selected weighting
function=y the sum over the whole computationzal domain of 4ke
elementary residuals i= then forced to be zero, toominimize the
approximaticon erraors. Different FEM rezult from different choices
of interpalation and weighting functions., In the early 19787%,
mosk FEM solwed the transport equation wuzing the Same
interpolation and weighting functicns; such methods are Known as
Galerkin~-FEM (GA-FEM>.

GAa~FEM  leaxd to "centered" approximations of the adwective terms,
and present the same 1imitation as centered FDM: wiggles are
produced when short wavelengths are significant, and are no
progressively damped by phrsical diffusion (Peclet number above a
critical walue)., The increase of the order of the interpolation
functicns +from linear to gquadratic seems to have a significant
effect on accuracy {e.g. MOROMHA and BAKER 1934), but is unable
to fully avocid wiggles, Users of GA-FEM (=.g. LEIMKULHER 1974)
fiave tried to extend the application of the method to advection-
dominated problems with sharp gradients, through the adopticon of
unifaorm diffusion coefficients which are 1! to 2 orders  of
maonitude larger than the physical ones f{which i= & rough re-
statement of the physical problem).

-~
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In the late 19767 several attempts were made to account for the
flow direction, i.e., to "upwind" FEM. Pstrov-Galerkin FEM {PG-
FEMY, as presented by CHRISTIE &t al., 1%7&, and extended by
HEINRICH et al. 1977 and HEINRICH and Z2IEMZIEWICZ 1?77 constitute
anne such attempt which has been successful in aveiding wiggles.
In these methods, the weighting functicnes are not squal to the
interpolation functicms, but are chtained from them by & chanae
in shape that increases the rslative weight of upstream
informatian in & way that depends on the element geometry and the
flow characteristics, Limitations of PG-FEM metheads inciude (ab
introduction of numerical dazmping f{clocse similarity with
upwinding FDM); <«(b) increased computational effort required to
generate weighting functicons from interpoiation functions, at
each element and at each time step, and (c) difficulty -in
handling elements which are not quadrilaterals.

A different upwinding praocedure (much in the line of the Flux-
Corrected Trapsgport Method in FDMY) was proposed in HUGHES 127%
for 1-D, and was extended to 2-D by HUGHES and BROOKS 197% and by
KELLY et al., 1738, In this procedure, the weighting and
interpolation functions are equal, Tike in standard GA-FEM.
Howewer, an artificial anisctropic diffusicon term, saguivalent to
the one that is implicitly introduced by the PG-FEM, is computed
and added to each element at sach time step. Methods using this
procedure have not received a unique designation, but are often
referred to as Balanced-Dissipaticon-FEM (BD-FEM)., Results of BD-
FEM have been reported as indistinguishable from results obtained
with FG-FEM, +for a few simple test cases. Howewer, EDR-~FEM are
much Tlesgs expensive and are more easily applied to elements of
any shape and dimensionalityy for complex flows, they should alsa
fead to a meore controlled twpe of upwinding, resutting in
enhanced acecuracy.,

A final comment on Euleriamn methods ie that none of them can  be
gafely applied for large Courant numbers. As a general rule,
explicit methods become unstable far Cudl (the classical Courant-
Lewy stakility critericony, while implicit methods, even |+
stable, temd to significantly lose accuracy above the same limit.

2.4.3 Eulerian-Lagrangian Methods

- We now analyze Key aspects of ELM. & distinction will be made

between ELM based on the concept of "concentration" {(ELMsCY, ELM
based on the concept of "particie" (ELMAP) and on ELM involving
both concepts (ELMACP)Y, '

Twpically, ELMAC split the transport equation into an advection
and a diffusion equations, solving the former by a point-to-point
transefer method {e.g., & backwards method of characteristics) and
the latter by some cornventional global discrete element technique
.., finite elements or finite~differences’., ELM
implementations kased on this conceptual approach include thoss
reported by LEITH 1745, HOLLY and PREISEMAN 1577, BENGQUE et al.
1938, NEUMAN and SOREK 1982, GLASS and RODI  {$82, HOLLY and
FOLATERA 1984, HOLLY and KOM&TSU 1984, BAPTISTA (984, BAPTISTA et
al. 1983 and KOMATSU et &1. 1934,
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Twe major general splitting approaches have been used. The most
common  of these approaches fof which the techrigue descriked inm
Chapter 3 iz an example) applies to the time~discretized form of
the transport squaticon, while the approach sugoested by  NEUMSH
xnd SOREK 1982 applies to the differential form of the equation.

The latter approach e attractive for  its  formal  elegance,
poterntial ACCUrMAcy, and  jndependence relative bo tTime-
dizcretization schemee; however, when advection is dominant, it
apparently generates syetematic {although lacalized) errors  in

the diffusion step and, therefore its practical advantags over
the more conventional former approach ie »et to be demonstrated.

The soluticon of the adwection equation by a goint—to-point
transfer method is based on the faci that the concentration of =
particle following the flow remains caonstant, if advection iz the
anly transport mechaniem. Most often, the method takes the form
of  {a) assigning at sach new time step, n, & particle to sach
node  of  the computatiomal grid, {bY Ffollowing each particls
Backwards along characteristic lines defined by the flow, until
reaching time step n—-1, where concentratiaons at the foot of each
characteristic line are computed, by interpolation between Known
modxl waluees, and (c)  assigning such concentraticons *o the
corresponding  grid nodes at time n; Chapter 2 provides Ffurther
details of this procedure.

Two major tasks are clearly inuvoluwed @ the particle backtracking
and ths interpolation to find concentraticns =t the feet of the
characteristic lines,

Very accurate particle tracking algorithms were deweloped bBoth
Tor simply =tructured and  Ffor complexly structured o
unstructured grids Ye.g. sees Chapter 3). The computaticnal cost
of these algorithms increasss significantly with the complexity
of the grid and of the Flow field, but accuracy may be Kept
gxceltlent within affordable costs,

M

The interpolation procedure to find the concentrations at  the

gt of the characteristic lines has proved much harder to
-handle, A wvariety of interpaiation schemes have been or cap  be
considered; howewer, even I+ gseweral of these schemes allow ELMAC

to reduce fdwhen compared to EM)  the range of dimensicnless
wavelengths that are affected by significant amplitude and phasze
errorse, no  scheme can claim to ke free of & "critical"

wavelength, which mary =till bs constraining for a number of
applications. & comprehenszive discussion of the absclute and
relative merits and limitations af alternative interpolatian
schemes is presented in Chapter 4,

Meanwbile, most ELMAC handle  accurately the zclution of the
diffusion equation, &y using a conwventiocnal centered FO or FE
techrmique. We note that the solution is global (i.e., involues

211  the grid nodes simultanscuzlydy, which impliss that largs
systems of equations must be solved at sach time step. The size
of these =zrztems has not proved to be = sericus problem in  2-

becauze they are often nicely banded and srmmetric, and becaus
most  of the above mentigned EWMAC zre  implicit, altowing Fa
large time steps (i.e., reducing the number of required galutlan#
of the swystem of squaticns). Howeswer, in 3-0 apmlications +the

global solution of the diffusion step will becoms 2 major proflem

3

i -

1"| in

n
5
(]
rn
1.8
K
"~
—_
I
™
-, ‘V.I
X
43
As]
A
o



in terms of computer costs and memory requirements.

CHENG et a1. 1784 proposed & ELMAC that i=2 slightly different,
conceptually, from the preceding ones. The whaole transport
gguation is written in Lagrangian form, and solved by a backKwards
method of characteristice in which diffusion iz treated as &
correction term. The assignment of a particle to each grid nade

and its backtracking with the flow is shared with preceding
ELMA/ T however, the coencentration &t the feet of the
characteristic lines is computed by a weighted-average of the

concentrations at points defining & phrsically—-bkased mixing
regiony the concentration at each of these points is cbtained by
interpolation between nodal values,

Cheng’s approach has the merit of providing a non-global solution
of the diffusion, which may prove highly valuable in a 2-D
context. Also, it allows & natural treatment of non-isctropic
diffusion. Reported ACCUr&RCY and mase rreservation
characteristics &are promising, at the same level of precedent
ELMAC, However, restrictions <chould have to ke applied to  the
maximum allowable time step, to Keep on with accuracy , and this
may strongly Yimit the method’s efficiencyr.

ELMAP (e.g. FRICKETT 172812 are based on a conceptually diffsrent

approach: particles are introduced in the domain Ywhich was
previcualy discretized in & conveni=snt wayd) in a number and
Tocation related to the imitial concentration Ffisld: thsze
particles are moved Fforward with the flow (the $low should
represent both "advection" and "diffusion” and is  typically

described in an Eulerian formd; whenever convenient,; the number
and location of the particles is processed back to the Fform  of
concentrations, as fto give the instantanecus concentration field.

EiMAP are natural, and phrsically sound. They inherently avoid
the i=zsue of short dimensionless wavelengths, and therefore
handle accurately sharp gradients and small {(ae compared to the
grid size) scurces of mass, which ELMAC can not do. Alse, thew
are rather versatile, being egually suvited for the analysis of
concentraticons fields, residual transport and field experiments,

Howewer , ELMAF have some potential problems, Clearly, they are
not inherently conservative: mass conservation relies only on
accuracy, both requiring that = very large (znd sometimes
unfeasibled) number of particles be tracked, and that =z Ffins
support grid be usged for the conversion bestween number  and
Tacation of particles and concentration. Also, i+ the "advective®
part of the carrying flow may be "easily" found by means of =
cemplamentary circulation model, the =zame is not true Ffor the
*diffusive" part Cwhich we will call pseudoc-velocitiss),

Approaches to  handle the pseudo-velocities range from purely
deterministic to partially statistical methods., LANGE 1972, after
SOme manipulation of the theory of diffusiaon, proposed
deterministic pseudoc-velaocities in the form

C
U = - K &= (2,33
- axy
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where LU ie the pseudo-~velocity inm the i-direction, K is a2

conventional eddyr diffusivity coefficient, and C s the
concentration, expresszed in fterms of the number of particles . In
this deterministic method, the motion of a single particle is
affected by the whole concentration field, i.e., by the positions

ot the other particles.

Statistical approaches rely on asscciating the pseudo-velocities
te random perturbations of the maotion of imndividua) particles.
Apgain, this may be made by resorting to the eddyr diffusivity
concept, and using it a5 to define the statistice of the random
motion f(e.g., as suggested by CSANADY 1773); or in &2 more
fundamsntal way, by extracting the statistics of the rardom
motion from BEulerian records of the fFlow (ZaMNMNETI 17840,

The ELMACP propossd by NEUMAN 1984 constitutes 2 hrbrid and werw
promising novel approsch. A& ELMAC formulation ie weed sveryuwhere
in the domain, except near gradients too sharp to be handlied
accurately this wawy & ELMAP formulaticon iz adopted in  these
cases (just Ffor the advection equationd. With this approach, most
of the computational effort e based an a2 fixed reference gridj
forward trackKing of particles (s required only in specific

regions  of time and space, and therefore inwclwe only  an
affordable number of particles. Principal gray areas for  this
approach include: mass preservation; efficient and caonzistent

detection of sharp gradients; and accurate procedurss for mapping
concentrations from particles to the nodes of the fixed grid (we
note that this mapping must be performed sach time step, previous
to the solution of the diffusion squaticnd. A1l thess gr
may becomz harder to handle for complex Flows than thesw
the =simple Fleowse that have beesn used 2o far to  demonst
effectivencss of the approach.

ELM  owercome in & natural way the limitation on  the Courant
number referred to for EM. This will ke discussed in Chapter 4,
in the context of the reference ELM/C described in Chapter 2, and
constitutes a fundamentz] advantage of ELM cwer EM.
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CHAPTER 3

DESCRIPTION OF A REFERENCE EULERIAN-LAGRANGIAN
METHOD
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3.1, INTRODUCTION

This Chapter describes an Eulerian-~Lagrangian numerical method <a
ELM/C in the terminology of Chapter 23, that generalizes the
method described in BAPTISTA 1984,

The transport equation is time-discretized and seplit into
advection and diffusion componentes; the advection equation is
then solved by a Backwards Method of Characteristics (BMC),
while the diffusion equation is solved by a Galerkin FEM. Fia.
3.2 illustrates the general procedure.

The description of the method motivates and providee & reference
framework for subsequent chapters. Chapters 4 and 5, which deal
with Ffundamental aspects of the accuracy of ELMAC soluticns of
the transport equation, benefit from the general presentation and
discussion, Meanwhile, Chapter &4, which discusses the performance
of ELA, an Eulerian-Lagrangian model for the 2-D simulation of
pollutant transport in coastzl waters, benefite from the specific
references made to the formutation of such model.

While the discussion is presented in a Z-D context, conceptual
extension to 3-D or particularization to 1-D is straightforward.
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3.2 THE SPLITTING OF ADVECTION AND DIFFUSION
2.2.1 Standard approach

We recall, #$rom Chapter 2, the non-conservative form of the Z-D
{depth—-averaged) tramnsport equation, rewrjtten as

¢ . e - |,

$e v 3 ,_;1. —3- haf-J @ fuj=nz} (3.1
and approximate the time darivative by

ac ) Ch- CIfl-\

ot at (3.2

where n represents current time, and n—1 represents a previous
time, At apart. A truncation error, of the form

£ = at e ot e,
T T o € I (3.3

is introduced.

t

Defining an auxiliary wvariable ¢', and making use of the
jinearity of the equatien, we decompose Egq. 3.1 into time-—
diecrete advection and diffusion equations of the form

f_ro ¢
cC -C ur == =0
= + 24, (3.4>
-t \ WE; -
geet . hax( Jax) r @ (3.5
where we leave undetermined, for the moment, the time of

evaluation of the different terms.

The wvariable c+ may be interpreted as the concentration that
would be obtained at time n, if the only transport mechanism
between n-1 and n was advection by the velocity u; . However, <«
can not be rigidly identified with time n, as it becomes an
initial condition for the solution of the diffusion equation.

The initial <{at the beginning of each step? and boundary

conditions of the full problem may be written in discretized
form, as
= H (3.47
cC:=cC ok -y, in S
=T ot ", on - (3.72
" ot n ,mf:._ (3.8
c]h =C\h
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Ueing the auxiliary variable c*, we again take advantage of the
lTinearity of the problem to obtain the equivalent two following
sets of conditions

- for advection:

c=0C N RTRLR L (3.9

c’:=¢ (3.10)

(3.11)
c.ct at  wne,in
ot Gt n,onl (3.12)
— r (3.13)
v o ek v, on 2
ﬁh' ﬁh ’

3.2.2, Modified approach

in the general case where hE; is space—dependent, the
decomposition defined by Eq=s. 3.& and 3.5 does not avoid the
pregsence of hyperbolic components in the diffusion equation, as
it becomes clear by expanding the derivatives in the R.H.5. of
Eq. 3.35:

2 -
L2 rggh ] By 2% v 4 o2 (hEy) 3
v L5 5 ST L (3.14)
This is formally inconsistent with the purpose of the

decompesition, and may become & source of inacuracies if, in the
R.H.8. of Eq. 3.14, the hyperboclic terms dominate the parabolic
cnes (e.g., due to large gradients in the flow depth).

Even if this is not a typical situation, BAPTISTA 1?84 suqggested
an alternative splitting approach (which was the one effectively
used in ELAY, defined by

ST - EY (2,15
ak oX;

"ot g, 2.+ @

i § ae; (3.16)

Proc. &4/13/7398 33



The pseudo-velocity, u?,

o ey - L 2 ()

L L h axl (3¢1?>

now introduced, represents non-uniform effects on diffusive
transport.

Whether this modified splitting approach should, or should not,

be used instead of the standard approach has to be decided in a
case~by-case basis.

3.2.3. Splitting errors

Both Eqs. 3.4 and 3.5 (or, alternatively, Eqs. 3.15 and 3.18),

are to be solved between times n—1 and n3; they are not, however,
solved <imul taneocusly, which should involve some approximation,
i.e., a osplitting error. This error is now discussed in the
context of the standard eplitting approach, conclusions extending
in a straightforward way toc the modified approach of section
3.2.2., For simplicity, we assume a steadr flow.

For convenience, we assume first that Eq. 3.1 is to be sclved in
a fully implicit way, i.e.,

e ¢ -1l 2 TEshRe |
ot {U 3%; } B { h ax(t ‘Jl""g_.”h *19.}& (2.18)
Consistently, we would then have
i- W=l 3'
C?'- C . C
_— % L ——} =3 )
ot { tax , (3.19)
and
N |
CA': - % JIF{ -a?"— L " g h g ]S +i@}h | | (2.28)

Adding Egs 3.19 and 3.28, to get
W

5..;6‘"_"+.1L§_} “.'ax thi‘)}h»,{q)}h <3.21>

and replacing in this equation c* s a5 given by Eq. 3.28, leads

te
C‘:k.ch-:iui-%;c-{} llh x; L le"gi ]} +ﬂ Q}h*MiuK% [ 59- L hac {_QJ} (3.22)

which recovers Eq. 3.18 except for a 0CAtY term, which represents
the additional error introduced by the splitting. We note that
this error is of the same order of the truncation error
associated with the discretization of the time derivative desdt.
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Errars of this same order are introduced by the splitting defined
by Eqs. 3.4 and 3.5 , for alternative semi-implicit or explicit
solutions of Eq. 3.1, with a single exception: when the first of
the splitted equations is solved explicitly while the second is
solved implicitiy, the splitting introduces no additional error.

We take, for illustration, the case where advection i= salived
explicitly previous to diffusion, which is solved implicitly. The
full! equxtion, Eq. 3.1, becomes

n =| -
S ez p A &), e,

and, consistently, Eqs. 3.4 and 3.5 become

At b o (3.24)
and
h_o S 2 reE. }
c —-¢C _l__ o =] 'h [
a_t s { h aKL E LJ a'xj] " (3.25}
Simple examination indicates, that, indeed, addition of Egs.

3.24 and 2.25 reproduces Eq. 3.2% exactly,

The time discretization scheme adopted in our reference ELM wil]l
follaw Eq. 3.23 and, therefore, the previcus analyeis suggecsts
that no splitting error cccurs. However, for unsteady flows, the
above analysis does not fully hold, and some spltitting errop
(which we sxpect to be miror) should actually be introduced.

{ gvé W:é{lé{r, ,S‘?-;‘ i"'\r/‘fae"j"\‘fﬂ Cos
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2.3, S0LUTION OF THE DIFFUSION EQUATION
3.3.1 Introduction

Most cemtered FDM and FEM will provide appropriate scluticons for
the diffusion equation. We have adopted a standard FEM, based on
& weighted residual GalerKin formulation, with an implicit time—
‘discretization,

The chaice of a FEM rather than a FDM was decided on the basics of
‘the superior ability of the former to deal with unstructured
grids in irregular domains, which ig important for the transport
modet ELA.

The chaice cf an implicit rather than explicit time-
discretization scheme is based on more fundamental arguments,
representing a natural attempt not to constrain one of the areat
advantages of ELM: their inherent ability to solve the advection
equation using large at.

The next sections describe the adopted solution technique for
diffusion.

2.3.2 The Weighted-Residual Statement

The diffusion problem will be stated (Fig. 3.1) as governed by
the differential equation (1>

) 2 [Exh 2S¢
51y L ‘J‘“ax;] e (2,26

with initial conditions

Cixy,b) = Co Lx,y) at k7o i ST
C3.27)
and boundary conditions
clx, k) = € Cx,y,k) at £7¢c,en [ (3. 28)
- .
q“(ghk)s 9, (k) at ke, cu l; (3.29

{1) Formally, the problem should be stated in the time—discrete
form that results +rom the splitting of operators. The non-
discretized Fform is adopted for the sake of simplicity; a
consistent time-~discretization will be used in section 3.3.4.
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The term of production or loss of mass by internal  <sources or
sinkKs, Gic,x,»,t) will be taken in the form {appropriate for ELAD

G =-Kc+p (3.28)

with p representing a source, and Kc a first-order decay.

A discrete reprecentation of the space-domain i=s adopted, szuch
that the concentration iz approximated by

Nt :
conykl e Seunt) =Tyt ¢+ I Ak ¢ eay) (%.31)
j;l
where
_ - denotes approximation due to the spatial dizcretization
Clnt) -~ is zero outside 7 , and is Known everywhere on {7
a4t} - are unknown coefficients
$¢3xy) - are Known interpoclation functions
Nt = is the number of nodes in the domain

This approximation introduces residuals over J, fi and ﬁ » defined
as

A A
2. 7. hoc S .
Q(’(,y): ai-f-- 'I;‘l— BXJ' [LLJ 3’-‘1] '\"kc 69 1) R (3.32)
L
Tlay) = ¢-c¢ (3.33)
S — (e}
S i (3.34)

We will satisfy the essential boundary condition Eq., 2.Z2%
exactly, which implies that the residual T(x,») and the functicns
¢3 must vanish identically on 7 . The errors in R and on 7 will
ke minimized in a weighting residual <ense, by tetting

W = ” w Kixy) dA + {w Stany)ds=0
Z 4 ‘

where W is the weighted~residual over the domzin, and w is an
arbitrary weighting function.

Intraducing the definitions of the residuals Rix,») and Six,»)

inta Eg. 23.3%, the wsighted residual aver the whole domain
becomes
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2 Ew 9% 13€ ol =2
wsﬂimgf_ __i:cjwﬁ_,.:i_ _‘l‘"‘_’.i(hE]J)B%+fwc-wl':}dA¢}w(ci“-ﬁ,,)ds (3.3

Integration by parts of the term involving second derivatives,
and re—arrangement, leads to the balanced weak form of the
weighted residual statement retained for our Ffinite element
formulaticn:

W =JJZHW§_E+ B2 i‘:_-%;th&i)ﬁ_ﬁ s bl -deA ¥ J\uf:l‘“d; }')w'{v‘dS'O ca. 37
. r )

This statement takes, when the modified splitting approach of
section 3.2.2 is adopted, the simpler form

)
X
03
o

I M R
t z |

3.3.3 The FEM Formulation

A in any FEM formulatien, the domain is divided intoc =eslements.
The weighted residual over the domain, W, which is required to
vanisk by Egq. 3.37; ic evaluated as the sum of the elementary
residuals, we .

Following & Galerkin approach, we will restrict the weighting
functions to have the same shape as the interpolation functions,
aver each element. Clearly, the weighting functione must now
vanish onfz , as the interpolation functions do. Therefore, the
integral over fi on the right-hand of the weighted residual
statement,viwﬁnds , vanishes identically. Also, we may write over
an elementy in a way consistent with Eq. .31,

8 - E(‘I)‘) ﬂelt)

(2,39
T T
W dloy) Wethz W ¢t) & ()
(3.48)
where ®e and we are column vectors containing the nodal

concentrations and the {arbitrary? nodal weights; é_ e a row
vector containing the interpolations functions.

The weighted residual over an element then becomes:

i 'y dh) B 2" 34 ga, ) &7 e3¢
wE' i('zji q’ q"' ) (” l.j YT a‘ +~RJ£T§-;‘.( E‘))S;; C\ﬂ) E_e"'
(Z.41)

L K T o) de - ] 47 pen + ] 47 Fads

Re -Re [4
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or equivalently,

We. wl {He de s (AetBe)de -T’eﬁ

- - (3.42)
where
Ne = ] ¢T§ dA
o R (3,43
_oa¢T 3, ¢ (uE;) 24 aA
Ae = H ‘lbl-j "3%'\' 'a_:<j+ YT ax;}

T fe (2.443

8 (2.44)

When the modified splitting approach of =zection 3.2.2 is adopted,
matrix A takes the simpler form

_ E.. T 99
Ae = | 4] 3%} S dA {3.47)
e J | .

The sum, ocver the whole domain, of the individual contributions
of the elements to the global weighted residual leads to the
system of ordinary differential equations

Ha+(8+a)a="F

_— —

(3.4

where each global matrix represents the assemblage of the
corresponding elementary matrices (which should be previous]y
computed using standard integration procedures),

In the abowe formulation, we implicitly assume that concentration
is the single dependent variable of the problesm Cin particular,
avoiding concentration derivatives ac additional variables)., This
deliberately restricts the chaice of the slementarw interpolation
functions, which are selected to be Lagrange interpolations. As
the highset derivatives involved inm the selscted weighted
residual statement are of first order, space—-continuity reguires
that these functions be first-derivative square integrable, i.e.,
Flave pisce-wise continucus First derivatives, In addition,
convergence in the mean—square sense requires that, within each
element, the interpclaticon functions be at least limear.

The «cheoice of the actual interpolation function i= much less ot
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an issue here (where even linear interpclations will lead to
catisfactary accuracy, if properly used) than it is for  the
solution of advecticn. A8 both choices should be consistent
¢{atthough not necessarily the samed, we leave open, for the
moment, the possibility of wusing up to cubic Lagrange
interpolation functicns, reserving further discussion for section
3.4.3.

2.3.4 Time-Discretization Scheme. Solution Strategy

Ta transform Eg. 3.48 into a syetem of algebraic equations, we
adopt the implicit time-discretization scheme

[Mea (A% 6] a" = g oaf vol 7 (3.49)

where superscripts n and f denote current time and ‘"previous®
“time (after the advection equation has heen solwed). This scheme

is unconditionally stable and is consistent with the splitting
procedures described in section 3.2.

From the anal¥sis of Eqse. 3.42 through 3.45, we reccgnize that Il
ies alwaye & symmetriec, time—independent matrix, while matrices g
and B may be non—symmetric and time—dependent. Howsver, & will be

ttme—independ nt if Ey; and h are both constant, or E;: is
constant®’ arl % uniform over sach single element; and will he
symmetric ff E¢j and t~are both uniform over each element, andy
in additien, Epy=E; . Also, B will be time—independent if K is
constant, and will be symmetric if K ie vuniform oaver e&ch
element.

We note that when the modified splitting approach of <ection
3.2.2. is wused, A is fully independent of h, and therefore
requirements for symmetry and time—independence are associxted

with the characteristics of Eyj, alone. In many sitvations of

practical iriterest {e.qg. pollutant transport in estuaries  and

coaztal watersl, reqU|rement5 on E{} are much more easily

gsatisfied than reqguirements on h, which censtitutes a potentizl
advantage of the modified over the standard splitting approach.

The best strategy for the sclution of the syvstem of &algebraic
equaticns represented by Eq. 3. 49 dnpﬁnda on the actual
characteristics of the mairix 2—M+Atké +B pa

In the <formulation adopted for ELA, £ is symmetric and time-
independent f{a consequence of the adoption of the <plitting
approach of section 3.2.2, and of constant, element-wise uniform

Eij ¢=Ejc ? and kKl To takes advantage of this property, we have

sotved the =ystem by using an LL -decomposi tian. Th=
decomposition of Z ics done conly once, &t the beginning of the
computations; at each specific time step, the required operations
are limited to vupdating the load wecter, F, and performing
appropriate forward and bacKward substitutions to obtain the
vector of nodal concentrations.
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3.49. SOLUTION OF THE ADVECTION EQUATION
3.4.1, Introduction

In continuows form, the advection equation may be written as

(2.58)

where U=ly ,MU=Uy are actual {u,v) or pseudo (u™,u* ) velocities
(depending on whether non-uniform diffusion was or was not
accounted for during the diffusicn stepd. This =imply states that
the concentration of a particle following the {U,V) flow remains

constant along the trajectories or characteriztic linee defined
by

d_xc__ U'(K 1{:) 515
AL (Y £2.3917)

We will use this property to solve the equation. In each time
step, we allocate & fluid particle ta each node of the finite
element grid used ta salve the diffusion equaticon, and we proceed
&g illustrated bBelow,

Consider, at time n, the particle at node j, located at P=(x; 40
- Fig. 3.3. This particle was previcusly at pociticn (P yn=12,
having been driven from there by the flow, along a characteristic
line. Tracking the characteristic line backwards, we can
determine Py, and then determine ci(F’',n-1) b spatial
interpalation at time n-! f{where the concentraticns at the podes
.of the finite element grid are Known). But By Eg. 2.599,
c(Pynd=c(P’,n~1) and the problem is cclved for nede Ji the
procedure must now be repeated for esach of the remaining nodes.,

The =ams basic procedure applies ewen i+ an inflow boundary is
crossed during the back-tracking (caze of naode R, Fig. 3.3). Now,
however, the concentration at (Q,n) is impased directly from the
Boundary condition, i.e., c(G,n}EE(G’,n—Q). In cutflow aor clased
boundaries the back-trajectory of a particle i= towards the
interior of the domain, and boundary conditions are not required.

The approach described has been called "backwards method of
charactericstice (BMC)" (decignation which we will adopty, Tstep-
wise me thod af characteristics”, ‘reverse me thod of
characteristics” or "streakline method". It clearly includes two
main tasks:

- the stepwice back-tracking of particles azlong the
characteristic lines, between time n and time n-=1 {or until zn
inflow boundary is crossed);

— the spatial interpoclation required to find the concentration
carried along each characteristic line.

3.4.2 The Stepwise Particle Tracking

The stepwice tracking of & particle constitutes an initial-value
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problem, governed by the set of ordinary differential equaticons

dxi . U;uyb) ju=1,2} (3.52)
dt

which must be salwed backwards inm time, with boundary conditions

Iy I Kuwe n
X= X a b

ey
o
]
0
S

In most FEM, the driving flow field (u,v,h) is given explicitix
2t the nodes of a foften irregular’ grid, but elementary
interpolation functions allow the unambiguous definition of (U,UD
in the whole domain. Alse, most FE circulation models only

compute the flow field at +Fixed times, requiring time-—
interpclation procedures to complete the Fflow description.,
Exceptiont include models based on frequency—domzin approaches,

that explicitly establish the time dependence of u, v, h.

We now describe an etement—by—element tracking. algorithm that
accounts for the need of an element-based spatixl interpolation
af the Flow Field, and is flexible to accomadate time—
interpolation procedures when required.

We will refer to Fig, 2.4 to describe this algorithm. Consider a
particle at position (P,n) where P coincides with & node of the
finite etement grid; at time n-1 this particle was at (P" ,n-1),
which we want to determine. We firset Ffollow the particle
backwards along its characteristic line, until position (Pgnuﬁii.
Az only element K, is involved, we may write:

W ) .

N CRA I RZ Py iy Kp) g e ¥ (2.54)
L)

h(xyt) = F Ty o) Wy it ' (3.55)
§=1

M —
g ) - pZ o, Uiy Xy) Eijg ¢Fi%) (3.56)
=1

where W , Ty and 8y are elemsntary interpolation functions; u, ,

‘hg and Eyyg represent nedal walues:; and m is the number of nodes
.of the element. If the nodal gquantities uyg hg and Egygare Known
at all times between n and n-f (either directly ar by time

interpolation), UL may be computed everywhere.

Once U,V are defined, the =olution of the initial-value problem

governed by Eqs. 3.52 and 2.53 determines (P’,n-§>. From the
several rumerical solution technigques available for such
solution, we gelected a 4th order Runge-Kutta (R-K)> method, with
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K

constant time—stepping. The R-K time 5tep,£téwhich is a fraction
of, and should not be confused with, the BMC time step) e
automatically selectsd so as to limit the theoretical truncation
error  per R-K step to & prescribed value, Ornce (P’,n—ﬂ4) is
obtained, an evaluation of (F,n> given (P’,n—51> is performed, teo
asggss the total error introduced betwsen consecutjve EMC
instants n and n-=§;; if the total error i€ not fourd
csatisfactory, the time-step is reset (reduced to an hal+2, and
the tracking between (P,n) and (P’,n—ﬁi) = repeated.

Once (P’ ,n-f4> is known within saticfactory RCCURACY, the
functions U and V are replaced by equivalent ones applying owver
element K;, and the particle is tracked alang this element, kack
to (P’7,n-B;5. The tracking is accomplished as before; a new
Funge-Kutta time step St& is selected in an attempt to account
foer the wvariation of the flow characteristics from element to
element.,

The element-by-slement tracking is continued urtil time n-1 i=
reached, or a boundary is crossed (whichever happens first).

The actual implementaztion of the algorithm just described was
originally made for grids invalving straight triangles, with
linear interpolations for the flow charactericstice and quadratic
interpolations for concentrations (which i= consistent with the
formulation of ELAY. Alternative werszicns of this algorithm,
applying to grids involuing <{a) subparametric quadratic triangles
and rectangles, and (&) iccoparametric triangles and rectanglies,
were formuliated and its coding and testing initiated, as a step
tor the extension of ELA (see Chapter &),

3.4.3 The Interpolation Scheme

Consider again the finite element grid shown in Fig. 2.4, &Assume
that (P"™ ,n-1)> was found by the particle tracking procedure, and
lies in slement K4, Eax.

The concentration at (P n~1) will not, in general, ke
explicitly Known. Howewer, concentrations at the nodes of
element ¥ &re Known at time n-1, and <can, therefore, be

interpalated to the intericr of each element.

The Ffinite element approximation uvused to zalve the diffusion
equation inherently suppliss & consistent way of interpotating

concentrations aver the elementsz, i.e,
2%

(Pl = (P na) = cz-:. oy ity cilnmyiy) (Z.57)
where ¢L(x,y;K4 } are the Lagrange interpoclation functions
assaciated with the finite glement approximation far
concentrations; <¢; are nodal concentratione; and m i= the number
ot nodes of the element,

While natural and convenient, this choice of interpolatiaon
functions has accuracy limitations. Indeed (zes Chapter 4>,
VTinear interpclations lead to excecsive numerical damping (in &
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way much eimitar to upwind Eulerian methods), and cubic and

higher order interpolations lead to instability. Quadratic
interpalations seem to be the optimal choice within the class,
and were adopted in BaPTISTa 1984 and in the actual

implementation of ELA (where the interpolation functions far
concentration are defined cver subparametric six—node triangles);
hewever, this <till allows for non-negligible numerical damping
and dispersicon.

Chapter 4 explores the idex of impraving the accuracy of the BMC
(hence ELM/CY by resorting to interpalation functions that, while
consistent with the finite element approximation +for the
diffusion step, are more performing  than such Lagrzange
polynomials.

&s it will be seen, considerable accuracy improvements can be
achieved for advection-dominated preoblems invoiving sharp
aradients, but always at the expense of additional complexity
{both conceptual and practical).

In particular, come of the most promising interpalation schemes
are not compact, i.e, they have a domain of validity smaller than
their domain of definmition, which poses two major problems:

— the definition of the interpolation scheme for highly irregular
grids may become ambiguous;

- the interpolation schemes has to be changed or reformulated near
the boundaries.
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3.3 INTRODUCTORY DISCUSSION O ACCURACY AND STABILITY

The method has no direct stability Timitations on the time step,
At. For the adwvection squxtian, independence of stabkility an at
ie ensured by the fact that the concentration at the foot (P,

say) of each characteristic line is found by interpoclation
(centered on the element that contains P°) prather than by
extrapolationg we should note, howeyer, that conditiconal

stakilityr (e.g., related to the dimensionle=zs wavelength of
dominant Fourier modes in the solution) may be associzted with
some of the interpocliation schemes concidered in Chapter 4. For
the diffusion equaticn, unconditional stakility ic assured by the
implicit time-discretization scheme that was adopted.

Such stability independence on at is a wery sighificant
achievement of ELMsC, and enhances their actual ACCUr&CcyY, as
suggested by the following discussion,

Errers may arise in each of the three major companents of the
method: the splitting technique, the scluticn af the diffusian
equation and the solution of the advection squation.

The error associated with the time—discretization and splitting
of the full transport equation are of QCaty, as discuesed in
section 3.2.82.

The diffusion equation that results from the splitting ie already
in a time-discrete form., Errcors inherent in the sclution af this
equation are therefore due only to spatial approximaticons, and
are sstimated to be of arder QCAY ) or O(Ax3>, respectijvely far
Vinear and quadratic interpolation functions. This ectimate )
bazed on the theoretical bound of the mean—=square error in 1-D

. . P2 Yz
e-¢1) - ixj(c-c)szBI’Z ¢ (nx)P“{gIe[dm:‘,) dA} (3. 53)
e

where p is the order of the interpotation function.

Errars  inherent in the solution of the advectieon equation are
associated with both time and space discretizations.

Time—digcretization errore arice during the particle tracking,
where the time-step for the solution of the h¥perbalic eqguation,
At, i= broken into sub-stepe, &t; az a 4th arder Runge~Kutta
method is used, errors are estimated to be of order ¢ {t* b, and
should be cften negligible, as (&t*) is =mall relative to At, and
is adjusted as to satisfy an accuracy criterion selected by the
user,

Errors per time step asscciated with the interpolation of the
concentrations at the feet of ths characteristic ling, az given

by Taylor-series analysis, arey, for largse Courant numbers,
independent of aAt, i.e2., a (=cheme—specific) function of Ax alons
- section 4.2.2, This implies that tncreasing At, i.e., reducing

the number of time steps, M, mar lead tao improved accuracy in the
solution of the advection equation.

NMumerical experimentation and practice show (e.g. BAPTISTA 19343
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ELMAC
into
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interpoliati
solutions,
formally

on errors in the advection step often dominate

suggesting that a strong effort should be put
uriderstanding and into +finding and actually
implementing remedies for such errors.
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CHAPTER 4

ACCURACY AND  STABILITY ANALYSIS OF THE BACKUWARDS
METHOD OF CHARACTERISTICS






4.1, INTRODUCTION

The adwecticon step s critical +or the accuracy UF ELMAC
solutions of advecticn—-deominazted transport, a=s suggested in

Chapter 32, Mo significant accuracy loss is expected +rom the
tracking stepy indeed, the technigue described in section 2.4.2
i= virtually exact for any consistent flow field. The
interpalation step, however, iz & potential source of major
Brrors,

The present chapter provides & detziled analysis of the accuracy
of the interpolation step of the BMC, +for 2 wide spectpum of
atternative choices (zome of which +1r*t propased  through this
researchy of the interpolation scheme used to find concentrations
at  the feet of the characteristic lines. Emphaszisz ie placed an
the formal understanding of the relevant error mechanizms, on the
comparisaon of available interpolation schemes and on the zearch
far improved alternatives,

Section 4.2 presents a systematic =tudy ({based on both  formal
analysi=s and numerical experimentation) of the BMC accuracy and
stability, For 1-D uniform grids. PResuliz provide sigrificant
insight on the general performance of the BMD and allow & first
ranking of  alternative interpolation schemes, as regards
specially to accuracy, but alsc to convenience and cost.

Extension of the +indings of section 4.2 to nen~uniform and to 2-

b grid=, two cases often of more2  prachtical interest, is
discussed in sections 4.2 and 4.4, respeciively., In both casss,
the analysis is mostly bazed in numerical experimentation
{gyztematic Fformal analrsis is, unfortunately, no longer
feasibler, =nd is carried out only for a restricted sot of
interpolation schemes., Although no interpalation schems ie found

to be Gpt:mﬁl, zome sSchemes are recognizsd as inapproprisate, and
their use dizcouraged, while tentative scenarios are drawn  for
the most convenient use of the remaining ones,.
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4.2. CONSTANT ADVECTION IN ONE-DIMENSIONAL UMIFORM GRIDS

4,2.1. Introduction

In the next zections we will compare the performance of the BMC
for  seweral altzrnative interpolation  schemes, all based on
Lagrange &andsor Hermite—type polynomials, and fitting into  the
following five general classes:

- LI schemezs, using compact Lagranoge interpolation polynomials
{the word compact refers to the fact that the nodes  that
provide information for the interpotation function are all in
the domain of walidity of this function.?

- LR schemes, usino non-compact Lagrange interpotation
polyromials, with restricted domain of walidity

— HlI schemes, using compact Hermite interpolaticon polrnomiale
- HL schemes, using non-compact Hermi te interpolation

polynomials, with derivatives ectimated From Lagrangs
polynomials

- PL. schemes, using non-compact pseudch:- Hzrmite  interpolation
polynomial s, with derivatives zztimated Ffrom Lagrange
polwynomials

LI schemes were first used (e.g. LEITH 1945 and are still a very
attractive option, because of their conceptual simplicity and
practical convenisnce {(e.g. EENBUE et al. 1988, EAPTISTA 17842,
The other classes of schemss constitute attempts to improve  the
accuracy of LI schemes, at the expense of conwenience and cost.

HI schemes (e.g. HOLLY and PREISSMAN 1977, HOLLY and FOLATERA
1784 improve accurxcy by introducing concentration derivatives
as new dependent wvariables. This substankbially increases
computational costs, and poses conceptual prablems &t the
boundaries. In turn, PL (e.g. HOLLY and KOMATESL 1734, KOMATSU =t
z1. 1984>, HL and LR schemes improve accuracy at the cost  of
Iosing compactness {nodez cutside the domain of walidiiy of the
interpolation contributes to the definition of the interpolationd,
which poses conceptual and practical problems in multidimensional
irregular grids, and near boundaries,

The individual irnterpolation schemes actually considered within
the different classes are illustrated and definsd (for 1-D
uniform ogrids) im Fig. 4.t. In order to make their reference
manageable, we will adopt throughout this werk the gzneral

npotation:
nF=-Xm 4,13

where F  dencotes nodal points, and n, XX, m are variaklies,
standing for

r - the number of points  that provide information

{concentrations andsSor concentrations derivatives? far
interpclation
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XX = the identification of the class of interpolation (LI, LR,

HI, HL, PL>

m — the number of nodes of the core element {(definsd as the

domain of validity for the interpolation?
bilkile  the full set of schemes considered xt some point of this
chapter includes

- 2P-L12, 3P-LIZ, 4P-L14

- 4FP-LRZ2, SP-LR3, &P-LREZ, 2P-LR2

- ZP-HIZ

- 4F-HLZ, SP-HL3, 7F-HLZ

- &P-PLZ, BF-FLZ
cur analysis will concentrate on schemes vsing linear and
quadratic core elemsnts (i.e. nP-XX2 and nP-XX3 =chemes) and
invalwing concentrations az single dependent warizbles (LI, LR,
PL and HL schemes).
The 4F=-LI14 is excluded from detailed analysis because of the
garly finding of its unstable characteristics, while the 2P-HIZ,
& potentially very accurate scheme, is excluded because of the
need for derivatives as new dependent wariables {which we want to
avoid, given the formulation of our reference ELM). Both schemes
are, however, ussd as sporadic terms of reference.
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4.2.2. Truncation errors

The numerical solution of any» giwven PDE  introduces truncation
errors, which modify the actual form of the FPDE. Thes=e errors

are, in ogeneral, too complex to be evaluatedy; however, for
schematic conditions Ctypically associatsd with constant
coefficients and wunifeorm grids) truncaticon &rrors Ccan be
azseszed by expanding all terms of the algorithm of the numericsa)
method in Tayior series, and rearranging so as to obtain  the
ariginal equaticon plus a residual. @Although 2 quantitative
extencsion is often not possible, results are uweeful to 2

qualitative understanding of the performance of the numerical
method for more complex problems.,

This general procedure, First suggested by CYRUS AND FULTONM 1947
and HIRT 19458, iec easily applied to the BMC, We consider the
selution of the comstant advection equation

=) dc .
3&9'+u5—:”6 (4.2

in & wuniform space-time grid, through a BMC with general
algorithm

P+ @ n
4
c.. = Z ¢m ik
] e P J (4.3

{which applies to all considered schemes but the 2P-HIZ see Fig.
4.1.7r.

The expansicn of c™ and ¢ in Tarlor series zhout the vilue

n J=K+in
of cj leads, respectively, io

3 b b
cu3“= cb-ﬁitol'. =14 + éf_-_z_ éic_.__ + .A_.Lg °c , at 2%
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+ GL"M_)_I‘Q;(“ a‘.C - M axs .._-a.C Foom
24 x4 120 dx

L]

where atl derivatives are defined at (j,n2.

Buadratic and higher-order derivatives in time can be expressed
in terms of zpatial derivatives, by using Eq. 4.2 and the fact
that v ie a constant: indeed,
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The right-hand side (RHS) of Egq. 4.8 represents the truncatian
errar, which iz scheme specifiz. The actual form of fruncation
error; for altsrnative interpoiation schemes is  precsented in
Tables 4.1 (gerneral case) and 4.2 (forCui=l, i.e.,n--Qu=uptsaxd.

& Ffirst striking ¥inding'ie that trumcation errors per time step

tvalues in Tables 4.1 and 3.2 times At) ars not directls
dependent on At (dependence is rather on the location of the foot
ot the charzcteristic lime within the core element for
interpotation? forCort, i.e, For large At, while they directly

vary with At for (od=1, i.e, for small AtL.
Two major consequences may be identified:
- for a Afixed tetal time, and in the zone of Curl, sccuracyr

should ke improved by tzaling fewer {but larger) time steps &
both unusual and convenient featursd;

-~ gyen =o, consistency {in the precise mathematical =zense of the
criginal FDE being approached az Ax,AY —~% B) is not necessarils
precluded, as truncation errors may  still converges to zero as
ALt - B,

Indeesd, sxamination of table 4.2 indicates that al) the

considered schemes {but the 4&P-PLZ amd the SJP-LISD are
urcondi tionxlly consistent: For Ax,At —% 8, the expansion of ths
numerical  algorithms in Tarlar series approaches  the original
FDE, regardless of the relafive rates of conwvergence of Ax  and
Aft. The 4P-LI4 is conditionally consistent (it depends on  the
relative convergence rate of A and At), while the &P-FLZ is not
consistent.

The cosficients of a11 the truncation terms imvolving derivati
up  to arder M oare null when the interpolation schems adcpt-d
the BMT is #2xact for Ffunctionz up to degres MO1), The ieadi
derivatives in the truncation errors  for the dif%eren
interpolation schemss ¢Tables 4.1 and 4.2 are  therefore those
expected from thes conceptusal generation procedure of  sach
interpolaxtion =cheme, except in the case of the &P-PLE.

ﬁ-am

e ) s I (1

Thi= interpolaticon scheme would be expected to ke exact Ffor
functions wup to linear  fwe npote  that, although the bBxsic
interpalation Ffunction is a cukic Hermite polvnomizal, linear
interpolatione are used to estimate derivatives)., Howewer, the
cosficients of bhoth c; and dc/9x are non-noll,

Elgeer examination of the schemes proposed by KOMSTSU &t 21, 784
i

reveals that the authors indulgsd in unpmecessary roundoff errors
while estimating the actual interpolating coefficiente; becauszse
of these roundoff errors, neither constant nor linear functions
are exactly represented by the schems, which sxplains not oniy
the two anomalcus behaviors already detectsd, But further
defficiencies that will become apparent in the next =seciicns

£1) This can be shown by taking 2 generic functionm F{x?» of degres
M, impozing fixy=Z @, $¢m> for all x, and computing Io,...,Ir: e
find I,==dr,which, replaced in Eq. (9.2, gives the efered

rezul .
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- poterntial inztabilityg
= zwztamatic gain of mazs;
~- incorrect mean advectiony

Mo gerneral conclusiens can, at this stage, be pre;
stability of the EBEMC. Hirt s critericn dwhich ca for  the
coefficient of Fesdxt - formally, & diffusivity — fto be positive
for  stable schemes) suogests that the ZP-LIZ is unconditionally
stable, while the 4P-FLZ ie conditionally stabkle (it would be

mooul

L

ented on the
1=
It

dnconditional 1y ztabkle i+ roundoffd errors had not been
introduced)y howewer, this criterion zhould not be used For the

other schemes, which have null artificial diffusivities. The
iszue of stability will be retaken in section 4.2.5.2.

4.2.3., Amplitude and phase errors
4,2.3.1 Genperal remarks
Mumeric me thode are Known to artfficial]w change the amplitudes

2l
and phases of the individual Fourier components o the trusz
zclution of the ftransport equaticon.

“h

The Fformal analwzis of amplitude and phase errorz, through the
expansion of numerical algorithms in complex Fﬁursﬁr series; was
apparsntly first introduced by von Meuman, at Los Alamos, around
1¥3%  C(ROARCHE 1578, Although originally applised to the study of
stakility (uiu1ng rise to the so-caliled won Meuman stabilitw
analxsis), the ideza has evolued tu & powerful tool for xocuracy
analrsis (e.g. CR“Y and FIMGER 1%74, LAFPIDUE and FINMDER 1%2Z2).

The application of this tool to the anzlvsis of the accuracy of
the BMC iz now described., This application has rswvealed an
griexpec ted complexity Ffor interpoliation schemes  with Ccore
glemegnts  higher than linear, the approach proposed for these

cages being original,

4.2.3.2 The case of interpolation schemes with linear core
#lements

4.2.32.2,1 Theoretical framework

bWe consider a2 generic problem of 1-D constant advection, gowerned
agxin by

gc v oc =0
2= % ¢ -
St 3% (4,183

The general sclution for  thiz gproblem can be  written te 0.
LAPIDUS  and PINDER 1782) in the form of the complex Fourie

zerjias

r
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* L

cb) - = (4.11>
with
.211" - .
¢ k)« A exp i‘t: {x ""‘} €4.12)
where Am are problem—dependent coefficients {repressnting

amplitudes of Fourier compenents), x-ut refers to the phase, and
Ly is the wavelength of the mth component. As u iz a constant,
each individeal Fourier component, c,tx,t), is easily recognized
toc be an #lementary solution of Egq. 4.18 .

In & uniform space—-time grid; Eq. 4.12 kecomes

q .
€, (3 = & Culim)
- me-q " (4.13)

where g corresponds to the integer number associated with the
smxlleet wavelength that can be propagated by the numerical
approximation (2Ax?, and

Con ()= Ay, exp } b (5'“(3)_5 (4.,14)

where A =2WA%/L,, iz the dimensionless wavenumber (with L,/ /Ax
being the dimenzionless wavelengthl, 'ﬁ=uﬁtfﬂx ieg the Courant
numbear, and Jj=x/Ax, =t At.

Interpolation schemes with linear core elsments, not involving
derivatives, 1lead teo BMC algorithmsz of the form
P+

fejm) = :;P Ppta) - § (j-Kep,we1) ¢4.15)

where £ iz the unknown, @i are real interpolation +functions,
&=P-K i= the location of the fcoot of the characteristic 1line
within the core elsment, K=int(ﬁ) and p=P,P+!,...,P+t@ are the
local coordinates of the intervening nodes <Fig. 4.1).

Solving Eq. 4.18 through the algorithm of Egq. 4.15, between times

n=1 and n, and taking the elementary salution Eq. 4.14, written
for (n—1>, as initial condition, leads to
P+
¢ in) = 2 )y A, ex Lo f-¥e -(h'\) =
w (i 0) $pt) Ay, exp | Ly-%+p p} 14,14

p=T 740 _
Ah« exp E-‘)‘w\ (j-\np)].exk; (_i&w‘d) PZP c}P[d)ex}(lA“.H:

Gw‘(ﬂ) Con (ja"‘)

with
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E216,

. ©x () (%) ex [}\,M
G, &) = exp ({1 ,.0) §? dp P (ihp) (4.17)

Hence, the first step of the numerical zolution introduces to the
mth Feourier component an  error, Gl&), which is typically
complex, i.e.y has amplitude and phase componants.

Amplitude errors  are appropriately described by the amplifring
factor
P10
|G,y )] = {[ze (z: $ ) exb mwb,y] (T (z 4 x) expLih.f) ]'j

4.182

which should be unity for exact solutions. If IG,1<1l, the energy
{the term is loosely used in the zense of the 8th momesnt of the
square of the concentration) of the mth Fourier component s
reduyced, the numerical solution being dissipative or damping with
regard to that component; if 16,131, the snergyr iz amplified, and
the numerical sclution is said to be unstable relative to the mth
component, We note that a numerical solution may ke dissipative
with regard to some components, and unstable with regard to
others, the owverall heshavior depending on which components are
dominant.

Fhase errore are described b P Q

I t ‘_7_? ¢Pm§ex‘p(\>« kﬂ]

e \: ZP Qrtﬂ)exh:(_ikm}))]
P:

g arg S should be zero for exact propagation. & useful
wsiated cencnpt ig that of celerity ratic,

{(4.1%)

avg *G\Mtd)} N i

u'l
n 'J

arg | G.@j
B Awm

In an exact solution, thiz ratio should be unity for a1l
components. In an actuxl numericxl solution, the celerity ratio
iz not only different from unity but also wavelength dependent;
thie implies that different Fourier componentz propagate  at
different speeds, giving rise o the so-called numerical
digpersion (detectable through the presence of parasitic
oscillations, Known as "wigglss").,

ral o

{4,20)

Because the same « is associated to all grid nodes (a1 conssquence
of both the wuniformity of the grid and the flow, and of the
lVimearity of the core slement), it can be exzily shown (EBAPTISTA,
unpublished work? that the esxact same error occurs in each new
time step. Hence, errors after N time steps are simply described
b

N
B, (N4 = |G, M)} (4,21)
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l Hw(NJA)} = \G‘M“)\ amplifying factor (4.22)
avg .\HM(N,L&)} . N a3 iG\mf“)} phase error (4,23
K= v celerity ratio (4,24

which are well-inown reczylts,

S$oc Ffar, we have been concerned with amplitude and phase errors

for individual compornents., Howewer, we can invoke the linearity
of Eq. 4.2 {and the fact that no cause exterior to the equation -
€:.9.y & uniform Fflow or grid - promote interaction between
Fourier modes?, toc state that
A | ] o~ : k H
Cgm)s L S ljm) - Z MHwm (N3) Culiym) (4.25)
m=-q wms-§

Eq. 4.25% suggests that, for advection problems involving canstant
flow and wuniform grids, & pseudo-numerical soluticn may bDe
cbtained by convelution of the exact soclution with the Known
recsponse function of the numerical algorithm., This will be put to
rather useful use in the next sections.

4.2.3.2.2. Characteristics of errors per time step

Farticular Fforms of the formula describing the errors per time
step of the BMC were derived for ecach of the considered
interpolation echemes with linear core elements fexcept ZP-HIZ),
and are prezented in Takle 4.2. Figs. 4.2, 4.3 and 4.4 show the
ampl ifying Ffactors,; the phases errors and the celerity ratios,
respectively, as a function of both « and L “Ax; Fig. 4.5 shows
statistice with regard to &« of the amplitude errors, as a
function of L, Ax.

Amplitude errore depend onty on L /A (ax measure of the grid
refinement), and aon & <the lgcation of the Ffocot of the
tharacteristic line inside the core elementd). In particular, no
direct dependence exists on the integsr part of the Courant
number, which indicates & very weak dependence on At Ffor B>1.
This constitutes & major advantags of ELM, because large time
steps can be taken without compromising stability (as we would da
with explicit EM) or accuracy (as we would deo with implicit EM2.

Trpicalliy, amplifying Ffactorse converge to 1 (i.e. too the
candition of no amplitude error) as L, Ax -> oo. This is easily
shown by taking

O
L 81— 0 A0 ‘} P ) P:P P ( )5 {4,24)
P+
AN
§7
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and recognizing that, +or interpolation schemes that fit exactly
constant functions, we have fsee section 4.2.2),

TR
Z Gpla) -

(4.27)
p=?

All  considersd schemes, but the &P-PL2 <(becauss of indulged
rcund-ott errorsd, obey this trivial condition, and, therefore,
propagate the zero-fregquency exactiv. We note, in passing, that
phase errors make no sense for  the zero—-frequency Fourier
component, which is consistent with Eg. 4.24 (note that ‘ﬂp are
real functicns),

The wa» the amplifring Ffactor converges to 1 e of strong
.significance for the accuracy of the numerical solution; in
general, & fast, monotonical, convergence, starting from valuee
below 1, is desirable.

Examination of Figs. 4.2 and 4.3 suggests that convergence is
monotonical, from values below 1, . for all considered schemes but
the &FP-PLZ and the 8P-PLZ. For these two schemes, amplifying
factors above 1 occur for some combinations of «, L A%
suggesting possible instability {see section 4.2.5.2).

For X=8 and &«=1, amplifring factoers equal unity regardless of

L’ A% fexcept for the SP~-FLZ, becauce of Unmecessary
inconsistencyl, in & direct consequence of the fact that
interpolation is exact xt the grid nodes. The practical

usefulness of this singularity is unfortunately semall, because
flows of interest are most often non-uniform, and, theretfore,
associating integer o to all characteristic lines is not
teasible. An interecting exception is the case of flowe of the
form uly,z), Ffor which grids may be set up in such & wav that «
ie always an intsger.

For intermediates values of o, and fixed L, /A%, amplitude errcrs
are typically symmetrical relative to o«=8.5 (the AP-PL2 is again
an unnecessary exception), where they have maxima. The dependence
of the amplifring factors on % although decreaszing as L Ax

increases, i= signifticant over a range of dimenzsianless=
wavelengths that are most often important for the solution  of
pratical preblems; in non-uniform flows andsor grids this may be

in the origin of aliasing, as it shall be discus=zed lzter.

Like amplitude errors, phase errorz per time step depend only an
L% and on x, This implies, in particular, that ths artificial
celerity ratic decreases as intif) increasss (Fig, 4.4), and
indicates that, for the same total time, the BMC will be mors
accurate <less dispersive) for & smaller than for a larger number
af time steps.

Flase errars (and, &= & concequence artificizl celerity ratios)
vanish as L, Ax->00 (zee earlier discussicn based on Eg. 4.28).
Convergence form and rate are scheme dependent fe.g. Fig. RCiE- PR
(g2>. Az =2 rule, convergence (s monotonical for LI and LR
schemes, and non-manotonical for HL and PL schemes.

Fhase errors are null for x=8, @.5 and 1, and =are a&anti-
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symmetrical relative to «=B.D5 (with the usual sxception of the
&P~PL2Y, Simitarly to what happens with amplifwing factors, the
dependence of phase errors on & decreases as L, /Ax increases, but
ies =ignificant owver a range of wavelengths that may be non-
nmegligiblte for practical applications.

4.2.3.2.3. Characteristics of errors after N time steps

For schemes with linear core elements, as the ones under
analr¥sis, errors repeat time step after time step, and therefore,
the qualitative discussicon in the previcus <cection directly
extends to errors after N time steps.

This secticon provides a complementary guantitative illustration
of the range of dimensionltess wavelengths that are affected by
amplitude errors as t increases.

Figs. 4.4 through 4.8 show profiles of the amplifring factor as a
function of L, Ax (in an extended range, relative to Fig. 4.2},
atter 10, 10&@, 1888 and 166868 time steps, for sslected constant «
8.3, 8,25 and 8.423). We note, in particular, that:

- the Z2ZP-LI2 is extremely damping, significantly affecting
dimensionless wavelegths cver 78 for N in the common range of 108
to 18863 this should be considered & very strong argument against
vsing linear interpolatione;

- for ® close to B or 1, the amplification factors +tor the 2F-PL2
bBlow up, when M gets large, Ffor a progressively large f(but
bounded? range of L AAx; althcugh this ie an  indication of
potential instability, the effect is rather localized <(recall
Fig:. 4.2), and <should not tead to actual instabilty in most
practical applicatiocns invoelving non—uniform or unsteady flows or
irregular grides (i.e., & variety of «7s2

- the &P-PLZ, with the interpolating caoefficients computed by
KOM&TSU el al. 1984, bklows up for & wide range of wavelengthse as
M increasss; the 2liminaticon of unnecessary roundoft errors  in
the calculation of these coefficients would lead to a behavior
similar to that described Ffor the EP-PLZ (although less
perfarmingdy we note that tests reported by Komatsu and co-
workers have been for time step= up to 1868, i(i.e. in a range of M
for which the defficiencies of the technique are not wet
apparent.

— HL and LR schemss are typicaliy well-bhehaved, with degreszes of
damping that are consistent with the order of their interpolation
polynomial =.

Fig. 9.9 provides brief insight on how time—varying ®ig.g. as a
conseguence of 2 uniform but unsteady carrying flowd may affect
accuracy, Indeed, the I1G,l versue Ly A% profiles presented in
this +igure (for N=188, 1898 and 10888 correspond to sequences
aef o that were randomiy» gensrated funiform probkability  of
occurence oOf o5 between 8 and 1), Resulte mask Tocalized bad
behaviors, and illustrate "average" performance. We note, in
particutar, that the 2P-FLZ shows no signs of instability, while
the &P-PLZ2 Keeps showing strong defficiencies.
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4.2.23.3, Interpolation schemes with gquadratic or higher order
core elements.

4.2.3.3.1. Theoretical framework

We consider now the BMC general algorithm for  interpolation
schemes with gquadratic core elements
@
s Z dpta). [(j-Yrp, 1) - (4.28)
(o
where, ‘again, + i€ the unknown, QP are r=al interpclation
functions, > = B -k iz the location of the Foot of the
characteristic 1ling within the core &lament, K denotes the

reference node of the core element, and p=F,FP+l,...,P+td are the
nodes  that provide information for the interpolation. We note,

howewver, that K s now different for odd and for even nodes)
indeed,
ind ((&)H. if  (p) evew
: (4.27)
i (@) i} tabp) odad

Memce, solving Egq. 4,18 through the aloorithm of Eq. 4;28,
between n-1 and nn, and taking Egq., 4.14 — written for n-1 - as
initial condition, leads to

& ) = Gy (A G i)

(4,38
with P+
Gon(8]) = @xp (1hmd) Z- C??Cn) exp ({3, p) .
p=7 {4,315
whers the error introduced to the mth Fourier component mo &

i=
function of both o and the type {(odd or sven) of the starting
node .

Locsely speaking, the first step of the numerical soclution gives
rige to two ‘families’ of Fourier components {one defined oaver
aodd nodes  and the other over even nodes), ezach with specific
propagation characteristics. The actual Fourier representation of
the numericasl scluticn does not coincide with any of thess
families, but represents their combination. e note that such
combination necessarily implies energy exchangs between Fourier
components, and, thereforse, depends on the specific problem under
analreis.

The amplitude and phase errors for gach of the "odd" and "even®
modes of an origina! individual Fourier component are independent
of the other Fourier components, both at the first fime step and
at later time=. Therefore, propagation of each of these modes s
independent of the specific problem under analysis.

Howewver, the "odd" and "even" modes interact with each cther in

their propagaticony therefore, amplitude and phase errorz change
in each time step, and Egq. 4.21 doss not apply any more. This
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ature {apparently singular, although intuitive reaschning
ggests  that it mayr have an as »elt unreported equivalence in

u
ather numerical methods? led ta one of the most challenging
specific problems of this research work,

The problem was to find a workable general expression for  the
propagaticn of amplitude snd phase errorsz for BMC with quadratic
core elements, that could be vused to support a formal  accuracy
amd stability analysis similar to that produced far the case of
linear core elemants.

The solution to this problem was derived by inductive reaso

and tedicus algebraic work (BAPTIETA, unpublizhed notes).
Szlecting ths 2P-LIZ as & reference, we took a corner node, at
time n, and, through sucessive application of the reasoning that
led to Ege. 4.36-4.31, we explicitely found the errcrs that would
have occured in such node if the solution procedure had started
at times n~1, n-2, n-=3, ... ‘we naote that teo find the srror at
time n, in a corner node, for a sclution started at time n-2, we
need to Know the errore at n-1 for all corner and middle nodes
that provide information for the step n-i te n; and so  forthd.
The procedure was then repeated for a middle node. Careful
examination of the results showsd that, although the error after
M time steps could not be determined without the Knowledge of the
error after MN-1 time steps, & recurrance formula could be
e=tablished., This formula was assumed to hold, with adjustements
aof <some specific  functions, to the other schemes based on
quadratic core elements, and the assumption was checked by the
sames t¥pe of algebraic workK (which provided alsac the specific
functicons required for each schems). As a result, the follawing
general propagation formulae were established:

H.. {Na,]) ‘“’m("'“']) G, 4) + cimtn,a,Jj Gw(m-Q)J .

t4,.22)
cexp ({Nady, ). exp (ird,)
w'lUn:
Ndi)l: S (X}, N,ﬂ,‘
G (Na i) 2 @ ta). P""‘ (N-La]) ¢ B tard ) Gua (N1, )
P (Lt j = V=l (4,24)
G L, j)= AP
S a 1-1 1} iw\.[[i) odd (4.5
1l i wi(p) evew
¥z fc jov cerner nodes
L, Ta)
;5 ]ar widdle wedes
&2 ' Proc. £4-13/7378




where G <d), S dnd, 0 1 Nd) depend on the specific interpolaticon
schems (Eee Tables 4.2 and 4.4, We note that j is relevant cnlw
to distinguish corner from middle modes.

The Full numerical soluticon cam now be described in terme of &
complex Fourier series as

9
com s o ere (e (o)
hq=—C|

where the coefficients G, have to be obtxined by Fourier analwsis
af the function

Z Hw (N,G,\) Con (j.h) .}ov orner viede’
g
Ftjm -
4 (4,38
77 e (N,32), C () Jor widdle vedes
Wx "'cl

Egq. 4.22 provides, by itsel
at grid nodes, the numsrical
demonstrated in lakter section

s & useful war to cheaply simulate,
ctution of simple test problems, as

[TTR T

Eq. 4.37 is, howewver, interesting to stress the fact thxt, unlike
its "odd" and "even" familiee of Fourier components, the full
numerical  solution inherently suffers from aliasing.

4.2.3.3.2. Characteristics of errors in the first time step

As in section 4.2.3.2.2., particular +o af the Fformula
describing the errors in the first time Ete: were derived, now

for  BMC bazed on interpolation schemes with guadratic core
elements, and are presented in Table 4.2, Figs. 4.2, 4.2 and 4.4
show, alsa for these schemes, the amplifring factors, the phase
grrors  and the celerity ratios, respectivelw, az a function of
both « amd L_~Ax; and Fig, 2.5 shows statistics with regard to &
of the amplitude errors, as a function of L. % Tthis figure alsc

display results for the 4P- LI4, based an = cubic core element).

The dizcussion of section 4,2.2.2.2. on the gensral dependence of
amplitude and phase errors on & and an La“A¥ remainzs walid.
However, we note that, now, srrors vanish identically €i.e. far
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all Lhﬂgx} atew=-1, @, amd ! (i.eg., &t the new locations of the
nodes, in loccal coordinates?, and symmetry (for amplitudesd and
anti—-symmetry (for phases) is defined relative to the axis R=0,

&5 for the properties sssociated to specific schemes, we note
that:

-~ LY and LR schemes show amplifying factors bBelow 1, for all
and meﬁx.

- HL schemes show wide zones of O and L _/pAx where amplifring
factorz are aboue 1.

- The 7P-HLZ has a singular behavior at & =8, where amplituds
errars  are noet nully this is & direct consegquence of the fact
that the interpolation s=cheme i= not exact for the middle nods,
and will later ke shown to affect the convergence of the method.

- The 4F-~LI4 leads to a wery significant amplification of short
wavelengths, clearly suggesting strong instability (this, and
gther unpromising preliminary reeults - e.g. BAFTISTA et al. 1¥80
~ have determined a2 minor concern towards thiz scheme throughoot
this workl,

4.2.2.3.3. Characteristics of errors after N time steps

For schemes with gquadratic core elements,errors are not the same
in successive time stepsz, and cornsr and middle nodes have errors
that propagate differently. Fig. 4.18, which plots amplitude
errore per time step as a function of the number of time steps
{far & Fixed walue of the Ceourant number, Cu=8.24), =clsarly
illustrates the previous point, This figure further <=suggests
that, except in the close wicinity of L sAx=4 (where some sort of
reszonance occurs), both families of amplifring factors convergs,
and canverge to the same limity this timit will, in particalar,
dictate the stabkility and Tong-term accuracy of the schame; phase
errors exhibit a2 similar behavior. '

fe & tempirical? rule, schemes for which amplification of Fourier
modes does not occur in the first time s=tep, will have a 1imiting
behaviar also without amplifications. Schemes  that exhibit
amplification For =ome range of X and L Ax will also  be
amplificative in the 1imit (although not necessarily for the same
range of & and thax).

Figs. 4.4 through 4.5 show profiles of the amplifyring factor (for
corner  npodes) as a function of L Zax, after 18, 182, 1860 and
19868 time steps, For selectsd constant values of & (0.5, 8.235
and B.425%. We note, in particultar, that, while LR schemess=
exhibit no amplification, HL schemes do amplify Fourier modes
over a large range of L, /A%, for soms f{'s. Both twpes of schemes
Keep dissipation restricted to & relatively narrow range of short
wavelengths, ewvsn when M geits very large.

Fig. 4.7 shows similar praofiles for sequences of 188, 1888 and
186889 pandomly generatedd® =, The amplification of Fourier modes
is masked for the case of the FP-HLZ, but not for the case of the

b
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SF-HLZ.

4.2.4, Global accuracy

4.2.9.1. General remarks

m

In the AFollicwing csections we integrate the Findings of th
gariier formal analwysis in a discussion of global accuracy, bas
on numerical experimentation,

LL

1)

3

To define and analyze the numerical experiments, we will taka
locse advantage of the retfterence praoblems and the szccuracy
measures described in Appendix A, that were proposed for a2 forum
en the solution of the advection-dominated tranzport eguation
fConvection-Diffusion Ferumd, held during the WI International
Conference on Finite Elements in Water Resources (LMEC, June 1-5,
17842,

The problem of the advection of a source {(often a Gauss-hill) in
an wuniform Floww and grid will be retained as & basis For  ths
discussion, which will concentrate on the following Key aspects

- masse pressrvatiaon
~ numerical digsipation and dispersian
. — dependence of global accuracy on controling parameters

We should note that zeweral of the results preszented in the next
secticons as  "numerical =solutions” were actually simul xted
through the application of Eqs. 4.2%5 or 4.28 , as appropriate.
This procedure was found to be wirtually exzact for the Gauss-hill
profdlem (BAPTISTA =t =x1. 19843 and, specially for larae N,
reduces CPU costs wery significantly (rung are szssentially "frese”
for schemes with linear core elements, regardless of W, and are
a2t least ten times faster than actual numerical cemputations for
the case of quadratic core elements). It should ke emphasized,
hawever, that the procedure is only walid when an  accurate
Fourier representation of the exact sclution is possible {which,
tor instance, excludes the problem of an advancing front, due to
the Gibbks phenomenond.

4.2.4.2. Mass preservation

Mass = =z quantity of extreme importance in most  engineering
problems  requiring the sclution of the transport equation (e.g.,
pollutant  transport in natural waters), Even =zo, numerical

methods often do not preserve mass.

Frevicus formal analrsis of the propagation of the zero-frequency
component and of a2liasing provide interssting insight inte this
question.

While %11 Fourier compcnents are associated toc some energy, mas
iz, bzcause of the periodic nature of the aother components, il
concentrated in the zero—Ffrequency

L

— il
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For coneistent numerical metheds, masese preservation unlike
accuracy in general? seems to depend enly on aliasing. Indeed, if
no aliasing occurs, the zero- ¥requency component is exactly
propagated {(see section 4.2.3.2.2, Eq.4.24), and, therefore, mass
chould be exactly preszerved. If aliasing does occur, though, the
zero—freguency component is  disturbed in a more or less
significant way, and mass is artificially lost or gained,

&s an illustratien, we consider the reference problem of unifaorm
advection of a Gause-hill in an uniform grid, where f(except Ffor
marginal boundary effects) no causes of aliasing extranecus to
the npumerical algorithm are presgnt. Mass <chould be exactly

preservad in BMC zoluticns involwing interpolation =chemes with
linear core elements f{which are inherently non—aliasing), but
come artificial loss or gain of mase should occur when <schemes
with quadratic or higher oarder core elements d(which are

inherently aliasing? are used.

Table 4.5 summarizes error measures f(including the mMass
preservation indicator 4,3 for BMC solutions of thiz problem, for
different Oo and N (preblems 14, 10, 1E , (K and 1L of the
Convection-Diffusion Forum). Results agres with the previous
discussion,

&11 schemes with linear core elements, except the &P-PLZ,
preserve mase sxactly, even if oither accuracy measures indicate
rather different glcbal performances., The exception of the &F-FLZ
{which systematically gains mass) simply recalls the fact that,
as defined, this gcheme iz not conzistent {section 4.2.2% =xnd
does not correctly propagate the zero—-frequency.

For schemes with quadratic core elements mass ie not  sxactly
=

i
preszrved, but errors are typically Kept mz11, and can e
reduced by increasing fthe dimensionless wavelsngth of  the
doeminant Fourier components or  (much less effechivelwd B

decreasing M.

Far more complex problems, inwolving non-uniform flows  andsor
grids, no interpolation scheme should inherently ensure mass
preservation, because atiasing will  allwars CCCUr . Mzass

preservation can only be achieved by reducing al
will twpically imply refining the grid. This i
retakken in section 4.3.3.

asing, which
sue  will be

i
=

4.2,4,3, Numerical dissipation and dispersiaon

The concepts of numerical dissipation {or rnumericsl  dampingd,
numerical  dispersion, and numesrical diffusion ares widely wused
fand not seldom misused) in the literature.

Mumerical dissipation or damping, & concept wery much associated
to amplitude #rrors of Fourier components, refers to the lTose
ter, less appropriately, to the gain, for unstable methods) of
the snergy of & numerical sclution., It shows up in the reduction
of peaks and consequent amearing f{for the <sakKe of mMass
preservation) of concentration profiles.

A Proc. &4°12-°73782



Mumerical disperzicon refers to the effect of differential phase
errore of the various Fourier modss of the solotion, ard shows up
in the form of parasitic spatial oscillations, Known az wiggissz,

Mumericx]l dispersion is too often mistakenly uzed in the ssncse of
numerical  diffusion, which is in itself a misleading caoncept.
Indeed, numerical diffusicn refers to  the =zmearing of ths

numericzl solution by an artificial diffusion-like troncation
errar;  however, the term numerical diffusioen has been used even
for methods that preoduce smearing without involving second

derivatives ("diffusion terms") in their truncation *erms.

ciate artificiaxl smearing of numerical
ssipation, and use numerical diffusicon
2 due to a diffusion—-like fruoncation

=
solutions with numerical di
aniy»  when such smearing
srrar.,

In this workK, we will asso
i
i

Several numerical experiments, based on the reference problem of
uniform advection of a Gauss-hill, were performed to asssss the
oumerical dissipation and numericxl dispersicon of the EBEMC, for
the xlternative interpolation schemes under analysis. Results are
partially reported in Figs. 4,11 through 4.28.

Examination of Fig. 4.11 f{which shows for diffzrent
interpolation schemes, the actual numerical saluticon and
numerical  solutions from which either amplitude errorz or phase
errors were eliminated) suggeste that amplitude errors  typicalls
play & more important role in most BMC than ghase srrors, and
indeed, act as & controling factor for numerical dizpersion.

The actual amount and the relative rale of numsrical dissipation
and dispersion introduced by the EMC iz strongly dependent on the
selected interpolation scheme.

The 2F-L12 i=s by far the most dissipative scheme, which iz
certainly associated to the fact that it introduces an  actual
numerical diffusion (Tabkles 4.1 and 4.2), @Az s coneequente, this
scheme is wirtually Free of numerical dispersicon, although
significant phasge errors are present (Fig., 4.11),

Even if much less dissipative than the 2PF-LI2, the 2P-HIZ2
exhibits almost no nunerlca} dlzpereian, in a clear =suggestion
that the wuse of derivatives as additional dependent wariables
effectively reduces phasge srrors

A1l the remaining schemes exhibit both numerical dissipation and
numerical dispersion, in wariable but non-negligible degrees. It
iz interesting to note that the PL and the SP-HL2 zchemesz =houw
iess numerical dissipation than the 2F-HIZ. This=z i apparently
contra-natura, as  the former schemes are azpproximations of  the
Tatter., The sxplanation is found by recalling (section 4.2.3)
that the Fformer schemes amplify certain Fourier modes, which
partially compensates for the dissipation of other Fourisr modes,
and lezads to an apparently better (but upcontroled) accuracy.

[

W
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4.2.4.4. Dependence of the global accuracy on controling
parameters

Ae  expected from the formal analwsis of section 4.2.3, accuracy
strongly depends on N, on O, /A% and, fer @3<l, ond . The former
two paramsters provide forms of actuxlly controling numerical
accuracy, not only for the simple test problem under analrsis,
but also for more practical probhlems.

Comparative examination of Figs., 4.12 and 4.24 through 4.24
illustrates the dependence on M, while Table 4.5 (preklemsz 1A, 1K
and 1LY provides complementary quantitxtive information. Faor a
fixed total time, reducing N as to increasze the integer part of
the Courant number lezds to improved accuracy; this improvement,
which s oftenm guite striking, resulte Ffrom the suvbstantial
reduction of the number of times where (similar? interpolation
errcre are introduced. For Courant numbers below 1, reducing N
may or may not improve accuracy {e.g., see Table 4.5, and compare
the mean square error narm,¢ s for problems 14 and 1LY, because,
in this range, errors per time step strongly depend on  ths
Courant number itsel+f.

The dependence of accuracy on the source size {expressed in this
case through G;fﬁx) iz il1lustrated by Tabkle 4.5 {problems 1A, 1D
and 1E>, and by comparison of groups of figures showing
concegrntration profiles Ffor problems where all parameters butf
O, /A% were Kept constant Ce.q. Figs., 4,12 to 4.14; Figs. 4,15 teo
4.17; Figs. 4.18 to 4.28; Figs. 4.21 to 4,22y, Accuracy is
clearly improved by increasing @ 7ax, which iz an  immediate
conseguence ot the Ffact that the importance of shaort
dimencsionless wavelengthes <(those that are more affzcted by
ampl ttude and phase errors) is reduced.

Increasing the dimensiontess wawelength of the dominant dor
simply non-negligible Ffor accuracy? Fourier components of  any

giver problem should, in fact, bs & prioritary concern For
modelTers. The cleanest way of doing this is to refine the
computaticonal grid “"snough”i; the problem is that "enough® s
often "too much" for practical purposes., Figure=z in =ection

4.2.2 f(=showing the dependence of amplitude and gphase srrors  on
L #ax, for different interpolation schemes? provide guidance on

- . .
acceptable ranges of dominant wavelengths, and should assist,
when necessary, in the set-up of complementary procedures to grid
refinement,

Faor problems  invocluving single or =equential inztantaneous

releases of mass, both  the =shape and the size of the source
contribute to the Fourier representation of the problem {which is

also constrained, in the long wavelength range, by the size of
the computationzal domain); this is clearly illustrated Ey Table
4.8 which dieplars the amplitudes of the Fourier components

that correspond to different types {(Gauss—-hill and triangle~hill)
and <sizes of sources. In problems where the esxact shape of the

source is  not meaningful, choosing emococth shapes f{e.g., the
Gauses—hilld i=2 nmaturxlly recommended {see Chapter & Ffor the
discussion of this issus in the context of & practical probliem).
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4.2.5. Consistency, stability and convergence
4.2.5.1. General remarks

Consigtency, stability and convergences are important features for
a numerical method.

Consistency requires the numerical algorithm to  approach  the
eriginal FDE (or, egquivalentiy, the truncation error to approach
Gy azs px At-28. The BMC was shown in section 4.2.2 te bs
unconditionslly consiztent for all intsrpolation schemss, except
the 4p-1 14 {conditionally consistent) and the SP-FLZ
Cunconditionally inconsistent, because of non—fundamenizl
rexsons).,

Convergence J(discussed for BEMC in section 4.2.5.3) requires that
an arbitrarily accurate approximation to the sxact zglution ke
cbtained by appropriately refining the grid, ie2.; that suitzhle
grror norms defined for any node of the numerical grid vanish a=
Az AT—>8,

Stakility (di=zcussed for BMC in zection 4,2.5.2) refers to the
unstakkle ogrowith o stable decaw of errors  in the arithmetic
aoperations needed to actually apply the numerical algorithm.

Conaiatency, stability &and convergence may be related by Lax
equivaltences theorem, which states that , for & concistent
rumerical scheme, z2tability is & necegsary and sufficisnt
conditiaon for conwvergence, for a linear syvstem of equations (Lax
theorem was originally establihed for parabolic squaticons  and
tinite-difference schemss, but has beesn assumed to have wider
gpplication; ROACHE 1974 discussesz the extension of this

thecorem).,

4.2.53.2. Stability

The amplitude errors after M equal or randomly generated time
steps, presented in Figs. 4.4 through 4.9, for alternative
interpalation schemes, provide ﬂtugethEP with the general
dizcussion of sectian 4.H.u1 conceptual =support for the anzxlvsis
of the stakility of the BEMC.

Clearly, stakility depends on the zelected interpalation =cheme.
Schemes for which the amplifying factors in the first time step
are at most unityr, Ffor all & and L AA%, are unconditicnally
stable; this is the case of the 2ZP- LIE 2F-L13, 4P-LRZ, 4P-HLZ,
JF-LRZ, &P-LRZ2 and 2FP-LRZ. On the contrarw, schemes for which the
amplifying factors in the first time step exceed unity for  some
range of d, L, /Ax, are, at the best, conditionally stakle; this
is the case of the SP-HLZ, &P-FLZ, 7P-HL2 and BFP-PL2.

blhether th
solution
include ¢ gr of fime eteps actually used, the domioant
dimensiconlsss wavelengths of the prub1um, the predominant , and
the pre=zence or absence of aliazing

22 latter schemez will or will not bBElow-up  the
iven problem depends on  several factors, which
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For instance, Fig. 4.15 through 4.1&8 show that, for the referencs
problem of the uniform advection of & Gauss-hill in an  uniform
grid, only the 7P-HLZ blows up the =olution, when 1888 time ztsps
are taken to reach a total time of 7404 {y=8.5), Explanaticon lies
on  the small value of &, which corresponds to a mors critical
-ene  for stability for the 7P-HLZ, than for the other schemes
(Fig. 4.2). Hawever, examination of Figs. 4.5 through 4.7
suggests that we could also ceasily set-up problems which solution
would blow—up while usipg ths2 SP-HL3, 4P-PLZ and the EP-FLZ,

General practical stability criteria seem (given the variety of
relevant paramsters, and the fact that they often can not  be
cantrelled in complex problems), & hopeless task for  these
schemez, which use will therefaore invatlve a rigk for high M.

Bxced on Figs. 4.2 and 4.4 through 4.9, we roughly estimate that
enlutions using the SFP-HLZ, &F-PLZ, 7E-HL2 and 8F-FLZ mar start
blowing up for N in the order of 1686, 1888, 188 and 1806884
howewver, the accuracy of each of these schemes may detericrate
much <sooner, specially in the case of complex flows and grids
{gee also zection 4.2,

4,2.5.3. Convergence

&e discussed inm earlier gections, the accuracy of EMC soluticons
of the advéction equaticn improves by taking large time =stepsz
¢Courant number abewe 1. This rathsr unusual behavior has besn
baoth celebrated as a practical advantage with regard to
computaticnal cost Ce.g., ESFTISTE 1784y, and feared as  an
indicztion of the divergence of the methed as At—>8 (e.g., ME LM
15245, :

&lthough Lax eguivalsgnce theorem suggestes that the BMC is
convergent far most interpolation schemes (e.g., 2P-L1z, 3P-LIZ,
4p-HLZ2, 4P-LRZ, SP-LRE, &F-LR2Z, &P-LREZ, which we zhowed to be
both consistent and stakled, further analrysiz iz deemed
approapriate in this area.

To support such analysis, we set-up & numerical | experiment,
involving the solution of a same problem of constant advection of
x Gauss~hill, #for different interpolation schemes and nodal
spacings, and for different combinations of NaAt (but with T=hxat
Kept fixed.

The mean square error normz for the different runs were taken =xs
representative of the global acouracy, and plotted against N

¢Fige., 4.27 and 4.28 - we note that ztraight lines were used to
link computed points enly to  simplify vizualization; na
functional dependsnce is implied). If we discard singular points
rear integer Cu (see earlisr discuszsion on the behavior of the

EMC for integer Cu in section 2.2.4), results show & tendency foar
EMC soluticons to:

1]

- improve their accuracy as M decregases, aWer an initial range of

M {zay, up to N arcund 10883

L]
i
[N}
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- Kegep an essentially constant accuracy, function of the adopted
space discretization, Ffor larger values of M.

The 7PP-HLZ (plets not shownd constitutes an exception, with the
the mean square error norm growing without bound; thiz e
consistent wiith our discussion of the stabkility for the 7FP-HLZ2
scheme, for o near A,

Further insigth inte the behavior just described for "typical”®
BMC ite ocbtained by examination of the truncation srrors of the
Tarylor series expansion of BMC algorithms.

We take as a reference the caze of the 3P-LI2 gcheme, For which
the truncation error per time step ie given by

3
£ = C“3...ﬁ) A

Fit e agc 4oons
6§ ax8

—
n
2
]
[

ar, in the particular case of Béi, i.e. 0(=(3>,

3,43 - Zat
€ . é_(u at vaxt at) YD (4,480

In  the range of "s=mall"™ M, =uch that B>t, o ery  weally
dependent on At (Eq.4.37), and ezsentially th errar  is
introduced per time step, regardless of At. Hence, decreasing M
i 11, in  this range, improve accuracy, simply because it
corresponds  to reducing the numbsr of times where wvery similar
errors are inmtroduced.

g

m —
LT
=)

[y

Howewver , when M becomes | ;- enough so as to ﬁéi, & becomes &
direct function of At EX uat Ax}; and the truncation error per
time =tep varies {(Eq.4.48), to the leading order, &z At, i.e.
M-1, The total truncaticon error, after M time eteps, is then, to
the leading order, independent of the actual choice of HMAL,
being rather, for any given problem, a functicon of the adopted
space discretization. Increaxsing or decreasing N, in thig range
wiltl have just a minor effsct on accuracy.

I

Y

To complete the znalwysis of convergences, we need now to examine
the accuracy behavior as  Ax-»3. Figs., 4.2% and 4.230 illustrate
suchk hbehavior for the reference problem under amalwsis. Inm &
rather conventional way, the mean =quare =rror morRcotonicallw
decreases && AX decreases)  an gxcepticn is the &EP-FLZ which
reaches a minimum around Ax=168 (a conszequence of inconsistency).
Hernce, we can conclude that the BEMC is unconditionally convercent
for most of the considered interpolation schemes, although erraors
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do not necessarily decrease as At->0.

Cwhich bBlows up

inconcsistencyd.,

Exceptions are the 7FRP-ML2

the numerical sclution as At-»8) and the &P-PLZ
{which does not approach the exact solution as Ax—>8,

Praoc.
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4.3. EXTENSIONS TO NONMN-UNMIFORM ONE-DIMENSIONAL GRIDS
4.3.1. General remarks

The effect of non—uniform gride on the accuracy and stability of
numer iCa methods for the solution of the ftransport equaticon is

poorly  understood. Yet, these grids are extsnsively uvzed in
engineering practice.

This constitutes the basi tivation for  the following
discussion, which briefly addressss:

- the extsnsion af the definitions of seiected interpolation
schemes to the case of 1-D non—uniform grids

~ the error mechanisms inherently associated tg theze grids.

Schemes selected For this discussicn were  the 3IFP-LIZ (our

=tandard scheme, and the SP-HL2 (as & representative of schemes

tha+ bEtrg unstable, are apparently accurste when tested faor
|{furm flows and grids?,

4.3.2. Extension of the definition of the interpolation schemes

To extend to 1-D non-uniform gride the interpalzation schemes
considered  in section 4.2, we map the zone invelving x11  nodess
contributing to the interpolation into local coordinates, where
we  apply the same concepts  that were wusad Ffor  the scheme
generation in  un {arm grids. The mapping iz based on the
isoparametric ftransformation of the core element, 211 the
remiining nodes beang mapped according to such tramsformation.

Table 4.7 recxlls standard isoparametric mappings  for 1-0
elementz of up to 4 nodes, while Takle 4.2 presents an improved
jgoparamestric mapping for three-rnodes 1-0 elementz, proposed b

CELIA AMD GRAY 1¥84. These two trpes of mapping will be comparsd
in the next =sctian, for the case of quadratic core elements

4,3.83. Set-up of & numerical experiment and analysis of results

Tz prowide a basis for discussion, we defined & numerical
experiment consisting in the solution of the reference problem of
urniform  adeection of = Gauss-hill, for five different trpes of
irregular grids. In a1l cases, grids were defined by 47 nodss in
the interval «x€[00,134681, a= Ffollows:
Gride of type 1:

XE XL +Axb } Gdd

XP= Xpag X, ipot t4,41)

with AR AAX TS >4 5 X, =0
Grids of twpe 2

Xp= Xp., FAKy i} iE (Ne-) /e

= . . f, 27
Xp= X B %g (} (e (Ng-1)/2 o LAa

with 8K /8%, =551 ; x,20: Ng 2 wowber ¢ etes
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Grids of trpe 2:

{’([ FRLL PSS (XL - KC-?_)

. (4,43
u\lh k’i-’-o 4. 43,

Grids of trpe 4:

K= Xy = Af\b th even cleweuls
. 4 (4,44
xl. ~Xpo = AXg v odd eleweuls

6AXQ—S>$ ;xi-‘-o
Grids of type S:
L+ A% i} { odd
YAXy “l- { even {4.4d5)

X':: Xt_

X E:x\-._,‘
Wwith AXy /ax, =5 21 Ry=0

The controlling parameter for each grid type, s {we note that the
ather parazmsters were systematically adjusted tao fit  the
specified length and rnumber of nodes, Ffor the zp Flﬂd S}y Was
varied +From 1 {regular gridd) to 18 {extremely di rted 5rid);
Fig 4.31 illustrates the aspect of the gridz faor some considered
values of 5. Reszults of the calculations are shown in Figs. 4.32
through 4.42, in the form of concentration profiles, and in Table
4.9, in the form of different accuracy mezxsures. Thess measurec
were taken from Appendix A, with the single exception of the
“ernergy ratic

| I | (R 1]
[ T I T 1]
,—1- —

‘2{ [c“"u.'e)szx A

G = - T (4,45
j Ece’(“‘l"]] dx
J2

which is n2wly proposed a3 a measure for  the stability of
numericxl soluticons (it should be less than ocne for stability).

Fig. 4.32 confirms, in a wery clear war, the claim by CELIA and
GRAY 1924 on the supsriority of their improved iscparametric

mapping over the standard isoparametric mapping.

Al the ather results were therefore generated with the improved
mapping. They indicate that, in particular:

~ The ogrid nmon-uniformity has & definite influsnce on  the
performance of the BMC, and, in particular, onr phase errors and
aliasing.

- Errors dus too grid nor-uniformity mar either add to or
compensate for errors  that wau]d cccur i a&n uniform  gridj
however, except for emall & {say up to 1.5-2), the genersal
tendency is for the dearddatlan of accuracr.

= Mumerical d|=per§'cn tends to become uncontrolled
increasesz, and, &= a conseguence, soluticns became = rongl*
distorted by wiggles; aliasing alsc tends to increase, which, in

particular, leads trpically te a much zmzller (or, at 1= x=t, much
less contralled) &bility to preserve mass, Both theze effscts

IS =

,J.l




xre more sigrificant when shorter (case of 0o=244) rather than
larger fCcase of Oo=4868) dimensicnlsss wavelsngths zre pressnt in
the soluticon,

-~ Examination of the energy ratio, e, reveals that whilte the ZP-
LIZ is a dissipative echeme for al] considersd gridz, the SP-HL3

is clearly unstabls for several of the grid choices, while it is
dissipative +for others. In genrerxl, while the SP-HLZ performs
ketter +for regular and gquasi-regular grids, it often leads to

numerical garbage for large walues of =.

White it s recognized that the considered grids have, most
often, a regularity pattern that may constrain the gensral
validity of the above comments, we strongly recommend, az &
practical rule, that in the set—-up of numerical grids, ratios
between the characteristic sizes of adiacent slements be Kept as
low a8 possibkle, and, preferably, below 1.5. '
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4,4, EXTENSION TO TWO DIMENSIONS
4,4.1. The case of straight ortheogonal grids

Extension to 2-D of the defimition of the interpolation schemes
considered im earlier sections ie cencepitually trivial for the
caze of straight orthogonal grids: indeed, in this case, ths 2-0
interpolation is simply constructsd by sucessiwe usze of the 1-D
interpolation aleng n grid lines (as many as nodes defining the
1-D <=cheme? in one direction, and ome Finaxl wuse in the
perpendicutar direction. This iz illustrated in Fig. 4.43, fot
the case of a scheme involwing five nodes in one-dimension (g.g.,
SF-LR3, SF-HL3.

The 2-D interpolation becomes tn+l) timez more sxpensive than the
1-0 inmterpolation, which, although non-negligible, represents
Just a2 linear increase of cost.

The formz! analysise of amplitude and phase errors of section
4,2.2 ie alex ezxsily extended: 2-D amplitude errors are for these
grids the product of 1-D amplitude errors in gach of two
reference normat directions, while 2-D phase srrors are
described by the vectorizl =sum of 1-D phase errors in esxch of ths
cpace directions.

To illustrate the performance of the EMC for this trpe of two-
dimensionsal grids, we considered the rather conventional probliem
of & =curce in rigid-body rotation {we should note that this
problem  alsc first introduces in this work a non-uniform  flowd.
appendixn A, preparsd for the Convection-Diffusion Forum of the
VI FEWR, describes the problem and sets specific test parameters
ffrom which we elected to szolwe here the cases 3™ and 3B, which
differ ocne from the other oniy in the type of the source: 2
Gausz=-hill and a Cona-hill, respeciively).

& uniform grid, based on ?-nodes quadrangular elements, with the
nodal spacings specified in -Appendix A, was used Ffor the
calculation=s. Interpolation schemes selected for alternative uss
were the standard 3P-LI3, and the SF-LR2 and SIP-HLZ {we note
that, Ffor the sake of =implticity, we Keep in 2-D the terminologw
adopted in 1-D3Y.

Rezsultz aftzr a complete tour (MN=28) of ths sSoUrCE, are
displaved in Figs. 4.44 and 4.4% , in the form of concentration
profiles along two radial axis of the exact scolution {ome along
the local direction of the flow, and the other normal to jtd.

The following commente appliy:

- The general accuracy of the BMCZ =, for all schemesz,
satisfactory; damping i= low to moderate (fypicx]l peak reductions
belicw 16-15¥, except for the 3IP-LIZY, negative concentraticons
stay (typically well) below 5, and introduced zssymetries  are
minor.

- The SP-HL3 provides owerall best results {even i+, as discusssd
for the 1-D case, fthe accuracy of this sScheme is  somewhat
fictitious, and due to the artificial amplification of some

|
o~
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Fourier modes — which implies the risk of instakility), fallowed
by the SP-LR3 and the ZP-LIS3.

- MNorne of the conzidered schemes is able to pressrwe  the
sharpnesse of the Comne-hill, which becomes smocther near thse
corners;  zones of negative concentrations are more important for
the case of the Cone-hill than in the case of the Gauss—hill, in
& natural consequence of the presence in the solution of smallsr
dimensionless wavelengths.

94,4.2. The case of unstructured grids

Extension of the definitions of the conzidered interpolation
schemes to 2-D unstructured grids (such as those of Figs. £.3,
4.8 and &.14r ie made in & natural way only for  ths case of

compact schemes {e.g., 2P-LIZ2, 3P-LIZ).

Indesd, Ffor compact schemes, there ies no ambiguity az to  the
nodes that contribute to the interpelation (211 nodes within the
care element, and only thosed), and efficient and convenient
normalized forms of the interpolation functions, written in local
cooerdinates through appropriate mappings, can be wussd (e.qg.,
Table 4.18). The cheoice of the shape of the elsment, of the
zctual number of ite nodes, and of the type of slementary mapging
Ce.g., for quadratic elements, subparametric, =tandard
tsoparametric or improved isoparametric) has not been subject to
systematic analysis in the context of the BMC; howewer, from our
#arlier 1-D analrzis, the following should apply:

= Mine-nedss quadrangular elements (the direct squivalent to  the
SF-LI3> are potentially thosze that lead to the best accuracy for
the BMC. Four-nodes guadrangles {(the dirsct equivalent to the 2F-~
LIZ} and three-nodes triangles should be avoided, &s thevy will
introduce excessjve damping. Six-podes triangles and five to
gight-nodes quadrangles provide intermediary accuracy, and should
be used only if and when strictly neceszsary.

- If an isocparamstric mapping is going to be used for quadratic
elementz, the improved mapping proposed by CELIA AMND BR&Y 1784,
adapted to the zelected type of elements should be  chosern.
However, isoparametric mapping leads to = zignificant increase in
the «cost of the tracking =cheme, specially fbut net onlwd when
curvilinear sides are ipvolved, and subparametric mapping zhould
be uwsed zs much as possible.

o=

ELA; the transport model discussed in Chapter &, uzes sisx-—-nodes
triangles (which was impossd by the companion circulation maodel=s
TEA and TEAML), with subparametric mapping. EBEAFTISTA 1984 and,
briefly, Chapter &, discuss the accuracy of thiz appraoach.

Mon-compact  intsrpolation schemes are much harder to  extend to
two-dimensionsal unstructured grids. A first difficolty cansicts
in identifying the grid nodes that will contribuie to  the
interpclation; indeed, ambiguity can easily arise, as illustrated
in Fig. 4.44, by means of the application of the SP-LEZ scheme to
a zone of one of the triangular grids used in Chapter &.
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se~by-case bazis, kv
s and  comstjitutes g
s,

This difficulty has to ke avercome in & cx
the set-up of carefully designed gride
constraint to the uszs of non—compact scheme

The cecond difficulty cfoncerns efficient computation of the
interpolated value., While for compact s=chemes normalized forms of
the interpcliation functicons, applicable to &all elements, could be
used {Keeping the computational effort at maederats Tevelsd, for
fon—-compact schemes each element haxs to ke deal t with
individuzally, asz ngo convenient general mapping be twean globzl
and local coocrdinates can be established. Fig. 4.47,. ilTlustrates
the point: Using an izoparametric mapping for the cors element,
the tocal representation of the nodes invelued in the
interpolation is  not any more general or easier to handle than
the glokal regresentation,

The best zapproach is suggested to be performing the interpalation

in glokal coordinates, by swtension of the conceptual procedurs

in 1-D. For LR schemes, this involves the sclution of =z  n=q

srstem of linear equations {(s.g., =zec iltlustration in Fig.

4.48{(&), for the SP-LRZ schemed; for HL schemes, the soclution of
four slightly zmaller svetems, plus estimation of derivatives and

average of results, will trpically be required <e,g., =zee

iltustration in Fig. 4.43(b), for the SP=~HL2; note that a simpler

procedure can be set for the 7F-HL3>. PL schemes, because of

their conceptual complexity, bscome unfeasible, in practice,

For  both LR and HL schemes, 2 tradecff between CPUY  and memar
requirements has to be decided upon while developing the specific
computer code, Also, one should be concerned  with Jose of
acCuracy  due to irregular nodal Epacing; section 4.2 nrovides
anly a firet glance on erraor mechanizme that maw Become
important,
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4.5 REMARKS ON THE SELECTION OF THE INTERPOLATION SCHEME

Taking as a reference the simplest interpolation scheme, ZP-LIZ,
which is wery often unnacceptably damping, we hawve considersd
impraoving the accuracy of the BMC by increasing the arder or both
the ocrder and the class of the interpolation funciticm.

To increass the order of the interpolation, we first used compact
Lagrangs polynomial s, to fimd cui  that the quadratic
interpolation, 2F-LIZ, represents a potential bezt-choice within
this class; indesed, higher—-order interpolations f(e.g. 4P-LI43
lead & wery =z=trong numerical dispersion and instability in  the
range of short wawvelsngiths,

We then relaxed the constraint of compaciness, and, Keeping the
core elements for interpoclation linear or guadratic, resarted to
progressively higher—order Lagrangs polynomials a4P -LRZ, SP-LR3,
AP~LR2, EF-LR2). Accurscy clearly increases with the order of the
interpelaticon, but =zt the expenze of additional cost and
complexity (e.g. in ths definpition of the interpalation schemes
in irregular gride, and in the handling of core elements sdizacent
to boundaries).

The use of compact Hermite polynomials had been explored by HOLLY
and  PREIZZMAN 1777 and HOLLY and POLATERA 1924, who indicated
that =significant accuracy improvemsnts can ke achisved By this

changs of the «lass of the interpolation scheme fwhich our
resultz, while non-systematic for this scheme, confirmd, The
problem  is  that derivatives are introduced as nsw dependent
variables, increasing costs and forcing the set-up of unmatural

boundary conditions,

In AN attempt to keep the high ZCCUracy ot Hermi te
interpolations, while avoiding the need for derivatives as  new
dependent wvarizbles, HOLLY and KOMATSU 1924 and KOMaTSU et 2] .
1924 explored the idea of estimating the derivatives bas o
information on concentrations from cutside the core P]ement For

"[l

interpalation (&4F-PL2, 8P-PL2); we Kept this general idea to
create & set of interpolation schemes simpler to use in & FE
context, more robust Ciam, non—dependent Eulyl empirica]l

cptimization cosfficients), and with the same type of accuracy
properties (4P-HLZ, SP-HL3; axlsao, the less rohuost 7RP-HL3:.

While accuracy for seweral simple test case=s is apparently wepy
good, our Fourier analysis reveals that HL and PL =chemes amplitw
the amplitude of Fourier modes in some range of , L /_x3 ths BEMC
becomes uns=table, in a war difficult to cantral, and thsrefare
its use becomes unreliable Jas revealed by the extsnsion of the
SP-HLZ =scheme for non-uniform grids. @An sxception iz the 4pP-HL2,
which isy, howswer, a relatively uninteresting scheme, due to a
very close  simititude with the accuracy of the conceptuallw
simpler 4FP-LR2). Being non-compact, PL and HL =chemes <hare with
LR schemess the complexity of the extenszian to unstructured grids
Cwhich  ther indesd agravats) and of the handling of zomnes near
boundaries,

A singular et of inconvenient characteristics lincluding formal
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inconeistency, divergence as Ax -» @, gystematic mass gain, etc.)
iz asscciated specifically with one of these schemes, the &P-PLZ;
urngcessary roundoff errors introduced by KOMATSU et al. 1954 in
the =evaluation of the interpolation coefficients C(an easily
solvable problem) is found to be the reason.

Given the abowe, it should be clear that no optimal  scheme
exizts, and the choice among the different alternatives involves
s often subjective tradeoff invelwing accuracy, convenience and
cost.

Reeults reported in garlier sections should be helpful in guiding
ope  such choice, Our reading @f such informaticon suggesis  that
zeverxzl of the considered schemez will not constitute, in
general, attractive alternatives; namelyr

- the 2P-112, becauses it ic excessively dampingj
~ the 4P-LI14, hbecause it is unstable and highly dispersive;

- ihe 4P-HLZ, because it has an accuracy very similar to that of
the 4F-LRZ, but involwes significant additional conceptual
complexity fwhich, in particular, translates in higher costs and
less contrellsed accuracy For multi-dimensional unstructured
grids)y

- all the reﬁaining HL and PL schemes, because of their
instabilityy

— the &P-LR2 aznd 8P-LR2, becausze of the excesszive number of npodes
involved, which, for multi-dimensions, will often pose canceptual
problems {g.0., definition of the algorithm, choice of
intervening nodes, and handling of zZones near boundary
cenditione), and lead to unfezsible costsy

From the remaining schemes, we want to aveoid the use of Hermite
polynomials, &s they would imply the imtroduction of derijivatives
as new dependent wariables, both for diffusion and for adwvection.
Cur choice is, therefore, restricted te the 3IP-LIZ, 4P-LRZ and
the SP-LR3.

For & came grid, the SF-LR3 iz clearly the most accurate of these
schemes (and is quite close to the accuracy of the ZFP-HIZ); the
4P-LR2 and the 2P-LI3 constitute progressively less accurate
opticn=. However, costs for exch of these schemes will wary in
the apposite way (ege Takle 4,13, Ffor reference?, and, depending
on  the specific problem, it may be cost-effective to use a more
accurate scheme with a less refined grid, or, con the contrary, =2
le=ss accurate zcheme with a more refined grid.

1t should be intuitive that harder proklems, and more strict
requiremsnts on accurzcy will make irnherently more accurate
zchemes f{e.g., the SP-LRZ} more atiractive relative 1o less
accurate onee (3P-LIZ). Fig. 4.2%9 {which is relative to the 1-D
advecticon of & Gauss—hills can be used to iilustrate the point.

lWe take asz a reference salutions for both the 3P-LIZ2 and the SF-
LR3, and assume that Ax=488; the SP-LRI performs better, but
reducing Ax to 28@ {(i.e, doubling the number of elements) for the




ZF-LIZ2 alone, will even out accuracies. Now, we start cut at
A»=48 for both schemes (& much more refined salution); again the
SP-LR2 performs better; now, howsver, doubkling the number of the
elementz used in the 2P-LIZ sclution will be cliearly insufficgient
ta provide an accuracy comparable to that of the SF-LRE for Ax=44
(much more elements would be reaguired for thatd., &z the ratio
(SP-LR3 cost) 7C3F-L1Z cost) has not increased {ihe opposite will
typically happen, because the interpolation step iz only & part -
and, often, for actuzl problems, & relatively smxll part - of the
total cost), the SP-LR2 is now much more cost-sffective than
before,

ke note that there is an essentizlly unexplorsd potential in the
combination of compatible (i.e., sharing a common core  element)
interpolation schemes., While explicit mention has noat been made
te ity we used such combination to harndle the problem of zones
near beoundaries, for  nop-compact sheme=, in the numerical
experiments of sarlier sections (a2 caompact scheme would be used
in =uch zZones); however, as discussed in  Chaptsr &, such
combination may prove a general "optimal" procedure in &2 cost-
ge+fectiveness sense.,

i

Proc. 84132773782 g1






Proc.

CHAPTER O

GENERAL PROPERTIES OF EULERIAN-LAGRANGIAN METHODS

&4/13/7398

83






9.1. INTRODUCTION

In Chapter 4 we analyzed in detail the interpolation procedurs
associated with the sclution of the advectioan equation, which had
previcusly (secticn 2.5) been identified as critical for the
accuracy of our reference ELM. In particultar, we explored sesveral
highly performing interpolation schemes, which significantly
improve our ability to soclve the advection equaticn.

We now retake the full transport equation and briefly discuss
general features of ELM solutions. Discussion is based an the 1-D
case, and the <solution of diffusion i= abtained deing the 1-D
version of the Galerkin FEM described in <=ection 2.3, FEM
interpclation functicons are either quadratic or linear Lagrange

polynomiale, as to allow consistency with the interpolation
scheme adopted for advectioni i.e., when the core element for "the
interpalation step in the advection solution i=s lingar

(quadratic)>, a FEM linear (quadratic) interpolation function is
usad.

The discussion concentrates first {section 5.2) on the dependence
of accuracy on  the reltative importance of advecticon and
diffusion., The motivation is two-folded: first, to compare, &t
the 1light of more performing interpoiation schemes, =errors
introduced by the salution of advection and by the golution of
diffusion; second, to reassess the relatjue merits of the
alternative interpolation functicne analyeed in Chapter 4 for =a
¢in principle) easier, but often more realistic proklem.

Section 3.3, in turn, concentrates on the analyzics af the aptimal
(in a cost-effectiveness sense) time step for ELM, an area that
had earlier been identified as requiring +further research
CEAPTISTA 1984). While an ultimate geal is to reach a practicallwy
usefull criterion for the =election of cost—efficient time eteps,
in this work we simply motivate, both conceptually and
guantitatively, the issue,
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5.2. DEPENDENCE OF ACCURACY ON THE RELATIVE IMPORTANCE OF
ADVECTION AND DIFFUSION

Phyesical diffusion progressively transfers energy from short to
long wavelengths . From secticon 4.2.3, it should be cliear that,
as a consequence, the solution of the advection part of the
transport problem becomes progressively sasier,

Howewer, while far pure advection, errors come essencially from
the interpolation step of the BMC, the solution of the full
transport egquation involves in addition splitting errors and
errors in the solution of the diffusion eguation. '

Hence, al though experience <shows that phyrsical diffusion
tvpically makes the sclution of the full transport equation
easier, the argument can be made that problems involving a very
high, but not infinite, Peclet number (uAx/D), are potentially
harder to soclve than purely advective ones {(this wae, indeed, &
major point of debate in the Convection-Diffusion Forum held
during the recent VI internaticnal Conference on Finite Elements
in Water Resources - Lisbon, LNEC, June 1-5, 1%2&). Apparent
strength is given to this general argument by the fact that the
very accurate ELM/CP used by CADY and NEUMAN 1988 to salve the
reference problems of the Forum effectively performed less well
for- the case involwing the highest finite Peclet number (Pe=3&)
than for pure advection.

n the other hand, if diffusion simplifies the salution of the
transport equation in at least a wide range of Peclet numbers,
the s=olution strategy for practical problems involving non-—
negligible physical diffusion should, for the sake of efficiency,
be able to take advantage of this Ffact <(e.g., by selecting
cheaper interpolation schemes for the solution of advectiond.

With the previous aspectse in mind, we solved a reference problem
of advection—-diffusion of a Gauss—hill in an uniform +flow, for
Peclet numbers ranaing from small to infinity <(Pe=2, 28, 264,
oo), using four alternative interpolation schemes (3P-LI13, 3P-
LR3, SP-HL3 and 8P-PL2), Results are presented in Fig., 3.1, in
the form of concentration profiles, and in Tabkle 5.1, in the form
of selected accuracy measures.

We observe a systematic improvement of accuracy (as represented
by the mean square error, ¢ ,and its discrete equivalent, ¢, 2 as
the Peclet number decreases; in particular, accuracy ic better
for the case of P2=288 (i.e., wvery high, but finite), than for
the case of Pe=o0. These conclusions apply to computations
involving any of the considered interpaolation schemes.

While, .as suggested b Chapter 4, no general conclusicons should
be derived <From non-systematic numerical experiments, resuits
just precented support the idea that the reference ELMAC of
Chapter 3 does improve accuracy when {even very small) diffusion
is present; i.e. the limiting case of pure advection should be a
worst~case condition, Heneeg, the behavior of the EIMACP proposed
by MEUMAM 1984, which seems to result from the adopted splitting
procedure (NEUMAN and SOREK 1¥82), may be misleading as to
"typical" ELM behavioar.

8¢& Procc. &4/-13/73%3




A guestion markK remains, however, concerning early time zteps of
the numerical soluticon, Ffor which damping due to physical
diffusicon is of little significance.

The actual choice of the interpalation schems for  advecticon
becomes progressively less important as  the Peclet number
decreases, in a natural consequence of the phrsical dampirng of
short wavelengths, The relative ranking of the considered
interpolation schemes is not significantty changed with regard to
pure advection preblems, but the actuzl accuracy differences are
substantially reduced as progressively higher dimensicnless
wavelengths dominate the sxact sclution {which is consistent with
the analysis of Chapter 4.

In particultar, For Pe=Z, essentially no difference is found
be twean the Jdiffersnt schemes, each of them leading to virtually
exact sgluticons. However, very often, practical zapplications are
performed for Pe in much higher ranges <{eg.gq, around Pe=2@),
kecause of <cost constraintse on the spatial dizcrstization. In
this case, the differences hetween the performance of different
interpalation schemes are sighificant, and the di=zcussion of
Chapter 4 on the choice nof the most effective schems should haold
as a reference.



S$.3. ON THE CHOICE OF THE TIME STEP

We now consider the problem aof the selection of the time step;
At, to be used for the sclution of & given prablen between times
8 and T.

For a conventiocnal Eulerian method, and except Ffor roundoff
errors, both accuracy and cost increase monotonically as At
decreases; hence, improving &accuracy by refining the time
discretization alwars implies an increase in cost.

For the reference ELMAC of Chapter 3 {(and other ELMAC)Y, though,
the tradeoff between accuracy and cost is more complex, as
cuggested by B&APTISTA 1984: reducing At, while typically
increasing the cost, mar or may not lead simultanecusiy to
improved accuracy. Indeed, reducing At will often reduce accurzcy
for pure advection problems (see Chapter 4), while (except for
roundoff errors in the limit of small AtY it will increase
accuracy for pure diffusicon problems. For problems invelving beth
advection and diffusion, optimal accuracy should therefore be
achieved for some finite value of N, which will strongly depend
on the relative importance of advection and diffusicon (as
quantified by the Peclet number).

To detail and provide gquantitative support to the previocus
argumentse, we solved again the reference test problem of the
advection—-diffusion of a GBause-hill, for different Peclet
numbers, different MN <(hence, different Courant numbers and
Diffusion numbers (DizuAxsD)), and different interpalation
schemes (3P-LI3, 5P-LR3, ©SP-HL3, BP-PL2). Figse. 3.2 through 3.5
graphicaily display the cobtained concentration profiles, while
the values of selected accuracy measures are presented in Tables
S.2 through 5.5 and in Fig. 3.6,

This latter figure, which shows the dependence of the discrete
mean square errcr narm, ¢D, on Ny, ie particulariy interesting for
illustration of the optimal {in an accuracy sense} time step
{Mote: actuxlly computed walues of ¢Dare connected by straight
lines only to facilitate visualization; no functional dependence
should ke assumed).

For each interpolation scheme, this optimal time step is seen to
depend on Pe, and, while specific criteria can not be issued from
thie single experiment, the following comments loosely apply

- For low Pe, the optimal time step will progressively decrease
as the interpcolaticon scheme for advection becomes more accurate,
For instance, for Pe=2, optimal M is around S8 for the 3P-LIZ and
around S688 Ffor the SP-LRI, while no minima is detected up to
MN=18888 for the SP-HL3:; the 8FP-PLZ has, in this regard, an
uncharacteristic behavior (optimal N arcund S8, which may be
related to a strong effect of roundot+ errors in the soluticon aof
the diffusion (we recall that lipear interpoliations are used Ffor
diffusion, in this casel).

- For moderately high Pe {e.g. Pe=28), leading errors are clearly
associated with the advection sclution, and the ocptimal step will
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always approach T.

In =2 practical view point, we are not eo much interested in  an
optimal time =tep in the strict sense of accuracy, but rather in
a cost—-gsfficient time step that provides either best accuracy at
a specified maximum cost, or minimum cozt at a specified minimum
RCCUrACY .,

For this, we need to define both an accuracy functian (such a= in
Fig. 5.8 and & cost function. For simplicity, we will assume
that such cost AFunction is directly related ta the LCPU time
(often a reasonables assumption).

The CPU time reguired, in a WX 11-788, to solve the refersnce
problem used in  this section in a grid with 47 nodes and W
varying from 18 teo 18686, je shown in Table S.4, for the
different interpotation zchemes and for the purs-advection, pure-—
diffusion and advection—-diffusion cazes,

Values in this table are strongly misleading with regard to thse
coel of the tracking step, because of the oversimplification of
the tracking procedure in 1-D steady uniform Flows. These walues
do suggest, though, that

-~ the costs of both the interpolation step and the soclution of
di+tfusian vary in an essentially linear way with the numbsr of
time steps required to reach a fixed final time;

- the «cost of the interpolation step strongly depends on the
adopted scheme; ewven in 1-D (ratics will aggravate in 2-DJ, the
8F-PLZ ie about three times more expenzive than ths 3IP-LI3;

= while the =olution of diffusion is more expencsive than the
interpolation step for the 3P-LI3 (a ratic of little less than
three), this tendency will tend to invert &= more complex
interpolation schemes are considered for advection.,

According to cur experience with ELA, the pollutant transport
model  for  coastal waters described in Chapter &, a rexlistic
qualitative cost function for the 2-D refzrence ELM, while uzing
& standard 3P-LI2, is characterized by (Fig. 5.73:

- &n important background component, asscciated with the tracking
step, and guasi-indspendent of N, At (it depends sssentiall> on
the total particle—tracking timed;

- a often =econdary but non-negligible component, azsociated with
the =clution of the diffusion equation, and warying in  an
appraximately linear way with MNj

- & typically miner component associated with the interpclation
step, varying &gain in an approximately limear way with M.

The wuse of interpolation schemss both more accuraxte and more
gxpensive  than the 2P-LIZ will tend to increase the cost of  the
interpolation step, and te bring it closer %o that of the
diffusion s=sclution. The cost of the sclution of the Full
transport equation will grow faster with increasing N, making it
even more  attractive to take advantage of the ELM ability to
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accomodate large time steps.

The qualitative combination of accuracy and cost functions (Fig.
5.8 suggests that:

— for high Pe, takKing the lTargest At still compatible with the
ph¥sics of the problem and with the needs for intercalar
observation of the progrzssion of the numerical solution, will
very often correspond to a very cost-effective choice, close to
both minimum cost and maximum accuracy

- for low and moderate Pe, optimal accuracy will often require
high cost, and may prove unteasible) however, errors are in this
case typically smaller than in the case of high Pe numbers, and
it may be less important to stay close to optimal accuracy) i.e.,
the time step may be set based on a maximum desired cost, and
changed only if obtained accuracy is not satisfactory {empiricism
will certainly be involved on deciding whether accuracy is
satisfactory).

In problems inveolving time-varying Pe (e.qg., in consequence of
the wvariation of the velocity of tidal currents), it may he
effective to consider variable time steps: shorter when Pe is

smaller, and larger when Pe is high.
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CHAPTER &

THE NUMERICAL MODELING OF POLLUTANT TRANSPORT 1IN
COASTAL WATERS REVISITED
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6.1, INTRODUCTION

LMEC was Ffirst sericusly faced with the need for systematic
modeling of effluent disposal and pollutant transport in coasta)

waters{(l) in Tate 1778, when Electricidade de Portugal, E.F.
CEDPY  asked this MNationzl Labkoratory to perform studies of
recirculaticon and thermzl impact, in connecticn with EDP program

for the construction of thermal power plants along the Portuguese
coacst.,

Foliowing this reguest, LMNEC 1779 ectablizhed & general <{yat
flexible) conceptuxl framework for the development of studies of
thermal impact in coastal zones, which includes mathematical,
numerical and phrsical modeling of near-field, intermediate-field
and far-field phenomena; Fig. 4.1 provides clarification on some
of the terms used. Thiz framework can be particularized to  thsa
etudy of purely hydrodinamic problems, or zxtended in a natursl
way to accomodate the modeling of other types of pollutants,
suspended sediments, tracers, et Through research and
development work, and makKing extensive usze of open-literaturs
Knowledge and of the experience of fellow resgarch institutions
{e.q., Labeorateire Mational d Hrdrauligue, in France, and
Mzezsachusetts Institute of Technology, in 15~4), =zeveral of the
tools required by the defined framework were developed, and
expertise was gained in the respective usze.

Simplified mathematical models for the analysis of thermal jets
CBARPTISTA 1781)  and for  the analrsics of hezxt transport in
schematic receiving water bodies (BAFTISTA 1781, LMNEC 19224b) were
implemented, tested, and used for preliminary analvsis concerning
different power plants and power plant sifes (LNEC 1984a, LMEC
1#84b and LMEC 198&), providing quick wuseful information at
relatively low cost.

A modern, highy automatized, experimental set-up faor =cale
modeling of thermal jets and consequent heat transport in  the
intermediate field was built, =gquiped and used to azsizt the
dezign of the discharge structure =f the Sines Power Flant <{now
in the early phases of industrial productiond - BAPTISTS 1781,
LMEC 1783a, LMEC 1724z, This experimental sei-up remains a
powerful tool for the detzailed modeling of the near  and
intermediate fislds of thermal effluents, its use being planned
for other EDF power plants.

Two—dimensiconal {depth-averaged) Ffinite elsment models for
circulation - TEA (WESTERIMK et a1, 1984) and TEAML (WESTERIMK =t
at, 1%¥23) =~ and for psssive transport — ELA (BAPTISTA 19243 -,

dewveloped at Mascachussets Institute of Technology by a research
team joined by the author, became available zt LNEC, where they
were assembled in a coherent computational structure.

1) The term "cosstal waters" is used throughout this work in a
broad senze, so as to include estuaries, lagoons, stc.

7
-
n
n
S
I
.
—
2
~
~1
0]
~
o

-3

3]



Aan alternative circulation model was meanwhile developed at LNEC
- MHDZ (VIEIRA 1724). While both TEA and TEAML {which differ from
each other by the fact that the former ie linear while the latter
i= nonlinear) resort to frequency—-domain formulaticns (Appendix

B), MHD2 uses a more conventional time-domain formulation; thece

three models have a large patential for complementary use, which
iez vet essentially unexplored.

Several applications of the above numerical madels have been
reported by MIT and LNEZ, invelving either Jjust circulation
(JIEIRS 1983 , WESTERINK et al. 1983 or bath circulation and
passive transpart (BAPTISTA et al. 1984, KOSSIK 1984). However,

most of thece applications have to be considered illustrative or

(because of shortage of field data) tentative.

Planned applicatione of TEA, TEAML and ELA to the study of the
thermal impact of a power plant at Lavos, Portugal, and of MHDZ2
to the study of the circutation of Ric de 1a Plata, Uruguay, will
certainly enhance general expertise of the involved researchers
on  the use of these models, as extencsive field data should be
available in koth cases.

Field data collection and processing has been an early concern,
both at the pre— and post—operational stages of the enginesring
worke under analysis. In particular, & number of extenzive field
surveys, involwing the measurement of currents, tides, wind, air
and water temperatures, salinities, etc, were performed by
Instituto Hidrogridfico, based on specifications issued by LNEC,
and often under an EDP contract {(e.g. LMNEC 1%81, LNEC 1%84c).
This information complements that already available, +From which
we emphasize long—term tidal records that Institutoc Hidrografice
routinely cellects in several points of the Portuguese coast.

Froviding that reliablity can be demconstrated, data collected for
Sines, Setubal and Lavos are, to our Knowledge, among the most
comprehencive data <=sets available woridwide, and centain
information that is precious for both research and engineering
practice. While a Ffirset processing fconsisting mainly on
elimination of spurious measurements, graphical display of data,
and general interpretation of results) was, in all cases, done
by Instituto Hidrografico, it has been found that additional
processing, specifically adapted to the needs of a particular
application or even a particular run, must necessarily be done by
the modeller, cpecially in what concerns tides and tidal
currents. For that sake, a =set of codes for digital data
processing fe.g. sinuscidal least square analysis of tidal and
tidal current constitutants, glimination of <spuriocus data,
filtering of tidal concstitutants) were developped or adapted at
LNEC <(unpublished work by CAPITAD and BAPTISTAY, and their uee
hag been initiated for the data available aon the Lavos coast, in
connection with ongoing thermal impact studies.

While the set of tocls mentioned above is powerful and
incorporates some of the most recent technology, =several ‘'grey
areas"” (in the wording of IAHR Section for the Use of Computers

in Hydrauvlice, <cee guotation in the front page of thie work)
remain associated to a part of such tools.
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These areas include, but are clearly noft restricted to:
- collecting, processing and interpreting field data (specially

on  currents), in a way compatible with the needs of nmumerical
mode 1 €3

- defining well the phrsical probklem, Ffor 2ither circulation or

transport, including proper, in both mathematical and physical
senses, chaoice of governing equations and boundary conditicns;
the dimensionality of the models to wuse, the <closure of

turbulence, and the actual zpescification of boundary conditions
in cpen regions are often particularly challenging isszues}

- solving accurately (in some range of practical interest) the
mathematically definsd phrsicaxl probklem, within prevailing
constraints.

A part of this latter area, concerning the accurate numerical
solution of the transport equation, was analyvsed in the previous
chapters in & very fundamental, pursely numerical, Way
unrestricted to particular applications.

Regulte desecribed in ealier chapters will now be related to the
main motivation for such numerical investigation: the improvement
of the current ability to simulate pallutant transport in coastal
waters. Qur attenticn will focus on the modeling of far-field
transport of passive scalars by x pre—computed carrying f1cuw.
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&.2. ODUTLINE OF THE TRANSPORT PROBLEM

We consider an uncteady, pre-computed (e.g., by &a numerical
circulation model? flow, which is assumed to be representative of
the circulation in & coastal zonefl), Our goal is to predict the
fate of a passive scalar discharged into and transported by such
filow.

Depending on cur engineering goal and on the nature of the scalar
(which may be congervative or undergo phrsical, chemical or
bioctagical transformation?, we may be interested in simulating
the transport for just a few hours (often the case of problems
invalving colifarmsd, or for several davs or weeKs (e.g. for heat
disposed from power plants). Also, we may want considerable
spatial detail fe.g. if we are concerned with thermal
recircutation), or simply general indication on the location and
extent of the plume of the scalar (e.g. to identify residence
time in semi—-enclosed water bodies)., Very often, land boundaries
are irregularly shaped, and the level of required discretization
is unevenly distributed throughout the zone under study.

The source of the sczxlar may be a sinqgle point (e.g., an cutfall
pipe), distributed over a limited area (e.g., Ffrom a multi-port
diffuser, or from & ail =spill), distributed ocver & large area (ag
in supface runoff), or any combination of the former cases. Such
source may be accidental (as in spille) or intentional <as in
cooling water systems), and may be centinucous, instantaneous or
intermittent; alsc, it mar (g.Q., & thermal discharge from a
power plant? or may not {(e.g., an oil spill) have significant
initial momentum. '

Ambient currents may range from weak (some cms/e) to strong {order
of 1 m/s), and may be considerably svmmetrical over the tidxal
cycle, or on the opposite, be characterized by a strong net
drifty; characteristics of the currents {together with decay
properties of the scaxlar? will determine the spatial extent of
the area of interest for the transport study. For instance,
thermz]l impact from a nuclear power plant oftem concerns areas of
several tens of square Kilometers, although significant heating
{gay, above 2°C) affects only much emaller areas.

The relative importance of advection and diffusion depends on the
zbility of the adopted Flow reprecsentation to capture the
relevant scales of time and space, as discussed in Chapter 2. For
2=-D numerical models, diffusion results mainly Ffraom the
neqglecting of vertical shear and of sub-grid herizontal shear. A
tentative representative range of wvaluses for diffusion
coefficients i 1 to 3 mZ/e, but further work needs toc be done in
this issue. If we scale the intensity of currents by 8.5m s (a
reasconable wvalue), and scale dispersion by 35 m2/5, we get a
representative Peclet number of B.lAx. This immediatly implies

(1) 1t should be emphasized that the definition of the carrying
flow may be, and often iz, & very challenging problem in itself.
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that grids with nodal spacings above a few tens of meters will
lead to advection-dominated transport problems, at least during a
part of the tidal cycle; experience has shown that nodal spacings
are more often, because of pratical constraints (CPU and memory
requirements>, rather in the range of a few hundred meters, which
agravates the dominance of advection.
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-6.3. REVIEW OF THE TRaNSPORT MODEL ELA
$.3.1. Motivation

The tranzport model ELA (Eulerian—-Lagrangian Adgnalysis of
Foliutant Transport? was developed between 1983 and 1784
{BAPTISTA et al. 19842, with the objective of overcoming the
severe limitations of DISPER, & still wvery popular finite
etement Eulerian model developped in the middle seventies
(LEIMKUHLER 1974).

DISPER 1limitatione are mostly a direct consequence of the
constraints that must be satisfied for stable and wiggle—fres
solutions, namely (LEIMKUHLER 1274):

Dat o

3 (4.1)

vat o)
AX (4.2

uax . 2
3 (4.3)

To satisfy these constraints, DISPER users have often been
forced, For current applications in coastal waters, to ucse time
steps of less than one minute and artificially high diffusivities
of come tens {(or even a few hundred) m2/s, but even soo they hawve
not always been successful in preventing spurious spatial
escillatione {e.g. KAUFMAMN and ADAME 1781).

Because of such small time steps, CPU costs were high ¢! hour of
CPU for each 4 protaype hours of simuiaticon, in a Honeywel] HISI
4&8/DPS, is a representative order-of-magnitude value for several
practical runs)., Also, results were excessively damped relative
to reality, in consequence of the large artificial diftfusicn.

It i= worthwhile noting that the companicon circulation model CAFE
(WANG  and COMMNOR 1273) would require about & times more CPU time
than DISFER; hence, many users considered the lack of accuracy of
DISPER a much stronger shortcoming than its cost (computing
circulation was the most significant cost constraint, anrwayd.
Llith the development of TES and TEAML, the companion frequency-—
domzin circulation models for ELA, which substancially reduce
regquired CPU time, the issue of the cost of the transport model
becomes of much greater relevance.

Eulerian FE ftransport models alternative to, and sometimes mors
efficient than, DIZPER, were developped in more recent years
{e.g., ONISHI 1%21). However, none has avoided the need Ffor
artificially high diffusivities, &ither self-generated by the
numerical scheme (as in Petrov-GalerkKin schemes) or introducsed by
the wueer, =xs a (falege) remedy for wiggles, Also, none has
achieved warder—of-magnitude =savings in CPY time relative to
DISPER, which, togheter with the cost of conventiconal circulation
models, have sitrongly inhibkited the simulation of phenomena
involving large time scales (indeed, practical simulations have
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moz=t often been carried out for just one or & very few  tidal
cyvclesd,

4.3.2. Formulation

ELA is based aon the ELM described inm Chapter 3. It zclves the 2-D
{depth averaged) traneport egquation at the nodes of An
unstructured finite element grid of subparametic d—nodes
triangles; the <colution involves the splitting of advection and
diffusion, the former being sclved by a Backwarde Method of
Characteristics (with quadratic Lagrange interpolaticns), and the
latter by & GalerkKin FEM.

ELA is wunconditionally stable, and its accuracy typically
increases with the time step, Time steps of above one hour have
been used apparently with good recults,

Information on circulation is given to ELA by either TE& or
TEANL; such information is provided at the corner nodes of each
element, in the form of the amplitudes and phacses of the pericdic
(plus & zero-frequency) components of velocities and elevaticons.

A recent extension of the original code (KOSBIK et al, 1988)
incorporated to ELA a specialized treatment of sources, which
reduces the nesed for extreme ltocal grid refinementz; this
treatment, based of the forward tracking of a series of Gaussian
puffs, is described in Appendix C. The ability to =imulate
transformation processes {such &s volatization) for multiple
components was also incorporated (KOS5IK 1?224).
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é.4. REVIEW OF SELECTED APPLICATIONS
&.4.1, Sludge dumping in Massachusetts Bay

This application, reported by BAPTISTA 1984, concerns &
preliminary C(and mostly illustrative) study of the dispersal of
sludge dumped in a large bay (Massachusetts Bay, in the Northeast
coast of the United Statec). Sludge is produced at the Wastewater
Treatment Plants of Deer Island and MNut Istand, inr the Boston
Harbor, and, among other alternatives, dumping from a barge and
discharge from & submerged offshore outfall were being considered
at the time.

Far our calculations, Massachusetts Bay waes discretized by means
cf the grid shown in Fig. &.2. The grid has 32348 triangular
elements, with 2153 corner nodes, out of a2 total of 789 coarner
pluse mid-side nodes. A constant depth of 18m, was considered over
the whole bar, which was realistic enough for the purpose of the
application,

- The circulation was considered to ke driven simply by a steady

coastal current and by a tidal forcing, and was computed by TE&A
in the corner nodes of the grid. The tidal forcing was specified
by prescribing elevations at the ocean nodes, and driving the
e¥stem at a single frequency (M2)»; tidal elevations were wvaried
linearly +from Cape Ann to Cape Cod and noc phase chifts werse
applied. The steady coastal current was simulated by imposing a
linear elevation gradient along the ocean boundary, and driving
the =sysetem at zero frequency. Calibration was brief, and bassd
only on tidal elevation available at Boston, Cape Ann and Cape
Ccd (JESTERIMK and BAFTISTA 19847, ke note the rather
inconvenient Jocation of the ocean boundary, imposed by the
expected zone of influence of the sludge plume.

Resulting circulation patterns {(e.g., Fig. &.3 and &.4) are
qualitatively reasconable, From what is Known from field data and
previous numerical <studies, but no claim of guantitative
reliability should be made (in particuiar, due to the
gversimplification of the boundary forcings and of the tidal
phencmenon? .

Studge concentrations were computed by ELA in the mid-=side and
corner nodes of the grid. Two alternative sites were considered
for the disposal of the sludge: <=site 1  just outside EBocston
Harbor, and site 2 further offshore but still wi thin
Massachusetts Bar. The simulatione emphasized the long—term
transport, trying to asssss general tendencies of the movement of
the =sludge gplume (in particular its time of residence in the
Baxd.

Consistently with ocur objective, we considered, for both sites,
instantaneous <=iudoge sources, released at the beginning of the

ebb tide, and followed through & tidal cyclee. Earh source was
described E3- a Gaussian-hill, characterized by standard
deviations Ox and Oy, and total mass My for  any given

calculation, the =source may be thought as the result of near-
field, short term, dilution of the sludge dischargsed continucusly
for & t2w hours, which iz consitent with barge dumping
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procedures. For site 2, we set O%x=20%»=8488 m, assuming the barge
to describe & long zig-zag trajectory along a main axie; for =ite
1, we set Ox=Qy=2033 m, assuming the barge to describe a shorter,
more circular, moticon.

Results of the tramsport model, using the generated driving f1aw,
are partially shown in Figs. &.5 and 4.4 (where concentrations
are exprecced in percentage of the maximum scurce concentration).
We note that, for site 2, alternative runs wers made with Ex=Ey=@&
and Ex=Ey=38 m2/s, the latter being in the highest range of
diffusivities expected for the bay (CHRISTODOULOU et al. 1274) 3
for site 1, pure advection was considered. Computations were
carried out for 75 hours, with a time step of § houry trvpically,
representative Courant numbers were belaow 1, while representative
Peclet numbers were above 38 (oo, for Ex=Ey=8),

For the purposes of the present work, it is particularly
interesting toc note that:

- Mo generalized spuriocus cpatial oscillatione occurg however,
for  pure advection, a small spot of non-negligible negative
concentrations — up to 2¥ in magnitude - wae typically detected,
in the immediate wake of the plume ¢this is unfoertunately not
shown in the figures, as iscline B4 was not plotted),

- Numerical dissipation is Kept low or moderate, az seen by the
examination of the evolution of the horizontal areas assccizated
ta each isoline {for pure advection, such areas should remain
vnchanged). Dissipation is superior in the case of dumping at
site 1 than in the case of site 2, which derives in a natural way
from the smaller dimensionless source cize adopted in the former
case,

= Numerjcal diffusion does not significantly contribute to the
observed numerical dissipation, as revealed by the non-smocthed
contour of the sludge plume, +or site 23 this ceontour =xlso
suggeste the dominance, for this problem, of phy¥sical advection
over physical diffusian,

- Mass was preserved within a range of + 3% (these are upper
ranges; the dependence of the actual mass transformation an Ex,Ex
was not assessed).

- Each simulation of siudge transport took, for 75 houre of
prototype, 54 (for pure advection, in which case the code skips
the diffusicn step) or 48 (for advectiocn and diffusion) minutes
of CPU time, in a VAX 11-788, TEA calculations took 2 minutes of
CPL,

6.4.2. Heat disposal from the Brayton Point Generating Staticn

This application, reported by PAPTISTA et xl. 1784, concernse the

simulation of the disperzal of heat discharged with nron-
negligible initial momentum in a relatively small  embayment
(Brarton Point Generating Station, Mount Hope Bay, in the

Mortheast coast of USA - Fig. &.7).

The fact that the source is not passive with regard to the
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ambient flow, which will be locally disturbed, coanstitutes =a
significant difference relative to the previous application, and,
due to the large variation of scales involved, represents a major

difficul ty.

KalFMAN  and ADAMS 1921, who were primarily interested in  the
resolution of induced wvelecities and temperatures in the
intermediate field, proposed the following approach to solve the
dilemma of scales:

- a transition region, corresponding to the near field, is carved
out and used to define an inner boundary for the intermediate and
“far fields, which are simulated through depth-averaged numerical
models;

= the locatien and size of the tranmnsiticn region, the near—-field
dilution of the effluent, the vertical and lateral entrainment
rates, and the depth of the far-field layer affected by the
effiuent are computed from analytical formutae describing the
near field mixing of surface discharges f(e.g., ESTOLIENBACH and
HAaRLEMAN  1971) and given to the numerical model in the form of
water and heat fluxe= along the inner boundary.

While relatively successful in producing 2-0 descriptions of
velacity and temperature fields, +For two different nuclear power
plants, this approach was <strongly limited by the need For
artificial high diffusivities and by excessive computer costs of
the circulation and transport models, CAFE and DISPER, then
availtable &t MIT (KAUFFMSMN and ADAME 17810, Im particular, as a
gtrong grid refinement is required near the inner boundary, time
gtep constraints were enormous, typically imposing At in  the
arder of a few seconds.

BAPTISTA et al. 1934 retock, for the case of the Brawvton Foint
Generating Station, the inner boundary approach, now implemented
by means of the alternative numerical models TEA and ELA.

The computatiornal grid for circulation (Fig., &.72 contains &84
triangular elements, with 411 corner nodes, while the
computational grid for transport (Fig. &.123, which Keeps Jjust
443 elements of the previcuse grid, has 1837 nodes (bath corner
and mid-sided. We note that reducing the number of grid elements
for the tranesport calculaticonz was, in this case, & necessary
strategy to be able to fit ELA in the memory of the used UAaX 11—
7883y however, the procedure is recommended whenever, as in this
case, extense regions that must be modeled inm the circulation
phase to zxllow a proper set-up of boundary conditicns, are not
relevant for the transport process.

Ambient circulation was assumed to be driven by a tidal farcing
and by an infloaw from the Taunton river, lccated northeast of the
power plant site. The tidal forcing was specified by prescriking
elevations at the ocesxn nodes, and driving the system at a single
frequency, M2 {as in the previous application, &n
oversimpliftication of the tidal mechanisms; this does not
correspond to & Yimitation of TEA, simply no further effort was
deesmed necessary for the sake of the specific application); the
inflow from the Taunton River was simulated as & constant flux
nermal to the river boundary.
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Circulation induced by the power plant discharge was generated
by prescribing inflow and cutflow fluxes along the transition
zone; the former represent the original discharge flow rate
corrected (increased) as te account for near field volumetric
ditution, while the latter represent the horizontal entrzinment
induced bkw the discharge. The intake Flow rate was alsc
simulated, as a normal flux alaong the east side of the discharge -
peninsula. Fig. 4.8 illustrates these forcings, while BAPTISTA et
al’e 1984 should be read for further details,

A general circulation pattern is shown in Fig. &,2, and
approximations to the Bravton Point zone are provided in Figs.
S.18 and &.11. While the gemeral circulation ie qualitativelyw

reasonable, the jet-like behavior at the edage of the near field
ie not fully =imulated, as too much spreading occcursy thise igs an
expected limitation of TEA, which, being based on the linearized
shallow waxter equations,; does not include the mor-linear momen tum
needed to simultate jet behavior {TEA drivee the dizscharge only by
elevation gradients).

A% the non-Tinear model TEAML was unavailable by the time, the
ittustrative application of ELA was carried cut on the bazis of
the circulation computed by TEaA, although <stressing the
limitations of this procedure.

Excess temperatures were computed for one tidatl c¥cle, and are
partially shown in Fig. 4.13, in the form of maps of izalines for
the two tidal phases corresponding te the velocities plotted in
Figs. $.18 and £.11. Alternative values of diffusivitiss (Ex=FEy=a
and Ex=Ey=1Bm2/2) were concidered. We note that KAUFMAN and ADAMS
1781 suggest that actual diffusivities, while varr¥ing throughoot
the demain, are typically less than Im2/¢ (i.e., close toc the
pure advection case), but that DISPER requires at least 18m2/s to
reduce wiggles to & manageable level.

For the purposez of the present work, it iz particularly
interesting to note that:

— Generalized spatial spuricus ascillations are not precent, sven
for the purs advection case (although, in this case, a localized
spot of small negative concentrations is detected near the gl ume
edge?) .

= Numerical disgssipation is Kept Jow, as seen by comparing the
pure advection and the advection-diffuszion problems (the latter
teading to & much stronger dissipation and smearing of the
plumed .,

- Becauge of the characteristice of the considered zource, strong
initial concentration gradients ares induced and the role of
diffusion mar be exsily averemphasized by the specification of
unrealistic high diffusivities,

=~ Mass is preserved within the 4-S¥ range {again, these are upper
values, the functicnal dependence on Ex,Ey having naot been
examined).

- In & VWAX 11-72@, and with a time step of 30 minutes, ElLg
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simulated 12.4 prototrpe hours in 34 minutes (pure—-advection? or
44 minutes {advection-~diffusion) of CPU. TEA calculations took 4
minutes of CPU.

4.4.3. Sludge disposal in Boston Harbor

This application, reported by KOSSIK 1984, concerns ‘the came
general area of the application described in section &.4.1, but
emphasizes the analysis of the transpert and wvolatilization of
violatile halogenated organic compounds (VHOCY in the interior of
the Boston Harbor, for the present situation of contamination

(major soyrces of pellution are identified, although not
characterized, in Fig. 4&.14)., While the objective of the
application was rather involved {including the anzalysis of
valatilization processes in the harbor?, we concentrate anly in

the aspecte relevant to this work,

We note the complex geometry of the physical system {e.g., Fig.
4.172, and the wide rangs of spatial scales that will be relevant
for the solution of the problem: +from bBelow one hundred meters,
for pollutant transport analysis within the bharbor, to over an
hundred quitcmeters, Ffor circulation analysise in Massachuseits
Bayr.

The computaticnal qrid for circulation includes elements  with
characteristic length scales ranging from a few hundred meters in
the harbor to 18 km in the ocuter bay; the grid contains &  totxl
of 882 triangular elements, and 532 corner nodes. The bathimetrw
of the harbor and the bay was reproduced through linear
interpolation within each element.

The transport grid is much smaller in extensicon, &nd involues
anly 474 of the original elementzy & total of 1375 nodes {corner
and mid-sided are used in the transport calculaticns. Sources of
pollution are characterized by wvariable, but moderate, Fflow
rates, inducing no significant initial horizontal momentum, and
yery small near field zones, Only the two main sources {the Deer
I=sland and the Mut Island sewage outfalls) were considered by
KOSSIK 19384 in his analysis.

Circulation was assumed to be driven by a single tidal Frequency
(M2 and a zero—frequency component, and calculations were
carried out by the linear model TEA., These optlticone clearly
involve significant approximations for a problem where, from

simple examination of the geomstry, e should expect
nonlinearities to play an important roley, and to generate strong
erergy transfer among tidal components., Hence, computed

circalation patterns should be considered a first approximation
to the problem {(see Fig. &.173, but the complemantary use of the
nonlinear model TEAML, taking into account &1l the significant
tidal components, would be strongly recommended.

Transport calculations were performed for several tidal cycles
(g0 as to zxchieve dynamic equilibrium, which can take from a few
haours to &8 tidal cycles, depending on ths decar rate of the
considered component)., Fig. &.12 presents a cample cutput. The
follawing aspects of the application are of particular interest
to the precent work:
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— Sources were treated by the "puff"-tracking techniques described
by AabaMs et al. 1%288 Cand reproduced in Appendix C), in  an
attempt to avoid the need for further tocal grid refinement.

- Time stepe between 2 and 12.4 hours were used, withaeut apparent
malfunction of the model] {we note, however, that accuracy can not
be cantrolled in & fully satisfactory wayd.,

= Emall but apparent artificial mass transformaticon, with a
pericdic-1ikKe behavier, is consistently detected <fe.g., Fig.
4.1%),

= CFU costs per tidal cycle were as follows: tracking step - 44
minutes; soclution of diffusion and interpoiation step - 4 minutes
for At=2.1 h and 272 minutes for At= 12 4 h. Support runs by TEA
took 28 minutes of CPU,
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&.5. DISCUSSION OF THE GENERAL PERFORMANCE AND FURTHER
IMPROVEMENTS FOR ELA.

The applications described in earlier sections, indicate that ELA
is a flexible engineering tool for the analysis of the transport
of pascsive peoliutants in coasta]l shallow waters. In particular,
ELA can accomodate:

- complex geometries and ambient circulation;

- different scurce types, ranging from the simple case of an
instantaneocus mass release in large areas (as in sludge dumping
from barges, or oil spillsed to the more complex cases of
spatially localized continuous discharges with or Wi thoe:t
significant initial momentum {as in heat discharges from power
plants, and in zewage discharges, respectively); sources may be
single or multiple, and may be of the point or non-point type.

- single or multiple scalars, either conservative or undergeoing
non~uniform linear Iransformation.

ELa Formulation constitutes, in almost every single account, a
net improvement over that of DISPER and other Eulerian methods,
allowing, in particular:

- the use of any arbitrarily low range of wvalues of diffusivities
{specification of large diffusivities are not required toc avoid
wiggles, and the numerical technique introduces no numerical
ditfusian, al though it can not  fully avoid artificial
dissipatiand;

- the use of large time steps; the time step does not constrain
stability, and increasing At will typically improve accuracy when
advection is dominant;g

- the simulation of long-term transport at affordable cost, as a
censequence of the freedom in the selection of the time step, and
of the freguency-domain formulation of the companion circulation
models TEA and TEANL;

- the .accurate tracking of individual fluid parcels, through an
inherent procedure {results not shaown’,

Howewver, the performance of EL&A can £till ke improved in & number
of ways, which may represent modifications in the fermulation, or
simply the establishement of criteria for more effective use.
Major aobjectives of such modifications would be;

- preduction aof the cost of the tracking step, while Keeping =&
satisfactory high level of accuracy;

~ improvement of the general accuracy, in particultar of the
ability to handle short dimensionless wavelenagths (2.0,
generated near <harp fronts or near sources), and of mass
preservation characteristics.

~ incorporation of & phyesically realistic Fformulatian far
internal computation of diffusivities.
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The cost of the tracking step has been shown to be the major
component of costs in &ll considered applications, while accuracy
in this step is most often nearly perfect, This suggests that
attemptes to  further reduce costes of EL& simulations <should
concentrate in the tracking. Review of the formulation suggests
that =savings <can be achieved either by re-stating the inmitial
value problem to be solved or by simplifying the soluticon
strategy,

The former approach could be taken by vsing, whenever poseible,
the standard splitting of advection and diffusion of section
3.2.1, and adopting the moedified approach of section 2.2, now
routinely wused, only for special cases (with strong pseudc—

velocities associated te diffusion). In this way, the initial
value prcoblem to be sclved could be substancially simplified in
many situations of practical interecst, and inherent costs

reduced; while this would imply an increase of the cost of the
diffusion equation, the overall balance is expected to correspand
to considerable savings.

As far the simplification of the current tracking strategr, the
replacement of the fourth-order Runge-Kutta scheme used to solus
the tracking, b» a cheaper technique (e.g., a 2nd-order Runge-
Kutta scheme), should be explored, together with the relaxation
of the internal back-checking andsor accuracy criterix for the
set-up of the R-K time step (see section 3.4.2). We note that,
while no syztematic analysis was performed, only sporadically was
the back~checking found to lead to a modification of the R-K time
step, which clearly suggests a potential for savings (either by
sKipping the back-checking, or by start-out with higher R-K time
steps).

For the improvement of the general accuracy, ane <should
concentrate  again in the solution of advection (as suggested by
Chapter 3%, but now in the interpolaticon step. Chapter 4 providss
theoretical support for the outline of improvements.

An immediate improvement, at modest extira cost and complexity,
should be obtained by replacing the &-nodes sub-parametric
triangles currently used by ELA by 8~ or 9-nodecs subparametric
rectangles, which provide higher order interpolation within the
satety of a BP-LI3 scheme. We note, however, that the restriction
ta subparametric elements iz extremely important for the cozt of
the tracking step, which increases drammatically if the geometry
of the element itself is described by quadratic er higher order
“functians tin which case transformation of generic globxal
coordinates into local coordinates, a frequently required
aperation, must be handled iteratively).

Further improvements -can be achieved by wusing more accurate
interpolation schemes. However, this will twpically lead toc  an
increased cost of the interpolation step within the sclution of
advection f(see section &.3), and to an increased complexity in
the harndling of zones near boundary conditions.

The strategy that is being adepted in the transformation of ELA
i= to aliow the grid elements to be either &-nodes subparamstric
trianglee or 9-nodes subparametric rectangles, and defining
alternatively over each element either a 3P-LIZ or a more
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accurate SP-LR2 interpcoclation <schemey selection of which
interpolation scheme is to be used is made in an automatic, time-
dependent basis. The former interpolation will be used throughout
most of the domain, and, in particular, near the boundaries (so
.as to avoid the need for artificial boundary conditionsd; the
Tatter will be used only for the elements where sharp gradients
are expected (or are detected) to occur.

The choice of the HP-LR2 rather than an  alternative higher
accuracy> scheme represents a tradecff, where we privileged
compatibility <{using the core elements vsed by 2IP-LIZ was =&
requirement), reliability {e.g., we eliminated the SP-HL3 becauce
af the potential instakility) and simplicity amd cost {e.g., for
irregular grids, SP-LR3 is easier to define than HL or FL
schemes, and should be cheaper - see section 4.4).

Because in most intended applications the zones in spacte where
high gradients may occur are confined fe.q., around sources), the
SP-LR3 <(or, conceptuaily, other scheme more compiex but more
accurate than the 2P-LI3) will be applied as an exception, not
as & rule, and costs should therefore be Kept tow. Also, the
zones of potential applicability may be specially prepared <(e.g.
by Keeping the grid fairly regular), as to allow an unambiguous
definition of the interpoclation scheme, and toc enhance its
ACCUPACY .,

While the above apprcach should constitute & cost-effective
contribution to improved accuracy <(through a more correct
handling of & larger range of short wavelengths), it will often
not preclude the complementary use of the strategy for source
reprecsentation described by ADAMS et al. 1984; or alternative
strategies (e.g. MNEUMAN 1984)>. We recall, in this context, that
no numerical method can handle wavelengthe =maller  than 2Ax

{where, in an irregular grid, Ax is scaled by the largest nodal
SpaCing, in =ome relevant zonel), and that even the most
performing interpoclation schemes considered in Chapter 4

introduce cignificant distorsion to Fourier modes with LmAAx<S or
E0.

Transformation (sucessive lose and gain? of mases within the smali
but nmon-negligible range of up to * 5¥, was detected in the
applications of ELA. 0On the basis of the argument that numerical
experimentation for reference test problems with mass preserving
flows revealed nearly perfect mass preservation for the ELM used
by ELA, BAPTIETA 1784 attributed the detected mass transformation
to minor inter—-elementary leakage and to leakKage through the
boundariss, that TE& could not fully aveoid (for the latter, we
note that boundary fluxes are handled by TEA as natural, rather
than essential, boundary conditions).

While Jeakage due to TEA may contribute to mass transformation,
Chapter 4 suggests that aliasing in the ELM =olution could also
be plaring a non—-negligible role specially due to abrupt changes
in characteristic gizes of adijacent elements. Tests to check the
relative importance of the two potential mass loss mechanisms are
a prioritary task, and they zhould take advantzge of the fact
that increasing the source size will reduce eventual mass losszes
due to aliasing, but nmot those due to leakage in TEA.
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The incorporation of & physically realistic formulation for the
internal computation of diffusivities, in a way that relxtes to
the Jlacal average flow and to the space dimensicnality

and
discretization, was, for conventional Eulerian maodels, an
unnecessary complication: much higher artificial diffusivities

would, anywayr, be introduced through the numerical solutiaon
procedure., The situation has considerably changed with the use of
ELM, and a <sericous effort to provide ELA with such realizstic
formulation (which is trivial to handle mathematically, but may

assume high conceptual complexity - see ADAMS and BAPTISTA 1484)
cshould be undertaken.
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7.1, NUMERICAL SOLUTION OF THE TRANSPORT EQUATION BY EULERIAN--
LAGRANGIAN METHODS

This work presents a systematic analysis of the stability and
accuracy of a reference Eulerian-Lagrangian method, with emphasis
cn the Backwards Method of Characteristcs used to solve the
advection equation. Both formal analysis and numerical
experimentation are extensively used; results are presented in a
way that, while supporting our own analysis, should also be able
to provide, in several points (e.g., amplitude and phase errors),
reference information of general interest.

The BMC is shown to be, for proper choices of the associated
interpolation scheme, consistent, stable and convergent. However,
other choices of the interpolation schemes (e.g., a cubic
Lagrange interpolation defined over a cubic core element, or a
cubic Hermite interpolation with derivatives estimated from
infarmation outside the core element) lead to instability; also,
roundof+ errors in the evaluation of the interpolation -
coefficients may lead to inconsistency (e.g., as in the scheme
proposed by KOMATSU et al. 1984).

With regard to accuracy, the BMC is potentially very powerful,
but actuval performance strongly depends on the chaice of the
interpolation scheme and on the adopted space and time
discretizations. Such performance results, in all cases, from a
balance between numerical dissipation, numerical dispersion and
aliasing.

The choice of the most appropriate interpolation scheme is a
difficult problem. While compact Lagrange interpoliation schemes
are the most convenient to formulate and allow & clean treatment
of the boundaries and nearby zones, they provide a worse
compromise between numerical dissipation and dispersion than
alternative interpolation schemes (e.g. based on non-compact
Lagrange polynomials, and on compact or non-compact Hermite or
pseudo-Hermite polynomials). For a specific problem, optimized
cost-efficiency seems to be possible through the use of a compact
Lagrange interpolation (e.9., quadratic, which is shown to be
optimal within the class) as a standard, and of a compatible non-
compact interpolation <{which we recommend to be based also in
Lagrange polynomials) in the zones of time and space where sharp
gradients have to be solved; this approach should be explored in
a systematic way, and may constitute cne of the goals for future
work .,

A most unusual and cenvenient property of the BMC is its ability
to, as a rule, perform progressively better as the number of time
steps required to reach a fixed final time is reduced, i.e., as
At is increased. This property, which is a conseguence of the
fact that major errors in  the salution come from the
interpolation step, can be wused for extensive savings in
computational effort, and ¢unlike feared by some authors) does
not imply the divergence of the method.

The spatial discretizaton plays a decisive role in the accuracy

of the BMC, whatever the choaice of the interpolation scheme is,
Indeed, no scheme can reproduce exactiy the propagation
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characteristics (amplitude and phase) of "short® dimensicnless
wavelengths, and one should be concerned, in any specific
probiem, . in assuring that the spatial discretization is Fine
enough to avoid that dominant Fourier modes +fit the adopted
scheme concept of "short®,

A tradeoff necessarily exists between refining the spatial

discretization, or selecting a more accurate but, in general,
more complex, interpolation scheme. A potentially cost-effective
procedure, for cases where the spatial discretization is a

timiting factor for accuracy, is the following:

— Set-up a grid that is fine enough to provide, over most of the
domain, satisfactory accuracy through the use of a relatively
simple interpolation scheme (e.g., based on compact Lagrange
quadratic polynomials), but is too coarse to allow such scheme
to resolve sharp gradients in localized regions.

- Use the simple scheme as a standard, but, over the regions that
so require, either <(a) resort to a more elaborated <(but
compatible) interpolation scheme, or (b) replace locally the
BMC solution by a Forward particle of "puff" tracking
procedure. Comhining (&) and (b) may often prove attractive.

Non—-uniform grids affect the accuracy of the BMC in a double way:
by modifring the accuracy of each specific interpolation, and by
introducing aliasing (this latter effect being common to all
cther sources of non-uniformities, non-uniform circulation
included). While our analysis is not systematic enough in this
regard, and should be extended in future work, results clearly
show that the transition between the characteristic sizes of
adjacent elements should be Kept as smooth as possible, with the
ratio of 1.5 being suggested as a tentative upper bound.

fAn  additional effect of non-uniform grids is to complicate the
extension of non-compact interpolation schemes to dimensions
higher than one: costs are significantly higher for non-uniform
than for uniform grids <(an exception being non-uniform but
straight orthogonal grids), and conceptual and practical problems
may arise in the definition and implementation of the
interpelation (this is particularly so for non-compact Hermite or
pseudo—Hermite schemes, and for grids of triangular elements).
Significant effort has still to be put on cost-effective
extension of non-compact interpolation schemes to generic
multidimensional grids.

When both advection and diffusion {(rather than only advection)
are considered, the performance of the BMC in the solution of the
advection step is improved, in consequence of the progressive
increase of the wavelength of dominant Fourier modes. Because the
solution of the advection is critical for the overall acquracy,
the reference ELM consistently improves its accuracy as the role
of diffusion becomes more important; we stress, however, that the
performance of the method is very satisfactory in the whole range
between pure advection and pure diffusion.
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7.2, NUMERICAL MODELING OF POLLUTANT TRANSPORT IN COASTAL WATERS

The. present work contributes to a more effective madeling of
pallutant transport in coastal waters by improving our ability to
soclve numerically the advection-dominated transport equation, and
our understanding and ability to control the defficiencies of
such solution.

Among the significant features of Eulerian—-Lagrangian polutant
transport modelis (e.g. ELA), we emphasize:

= The ability to use very large time steps. This, in particular,
allows long-term simulations at moderate cost, which is a
significant practical achievement relative to more conventional
Euleriam models.

- The need for no artificial diffusion as a remedy for numzrical
dispersion or instability, and the introduction of only a
moderate (and not diffusion-like) numerical dissipation. This
allows & much more accurate (as compared to Eulerian models)
treatment of sharp gradients, and motivates further research on
the relative importance of advection and di+fusion tand, in
particular, in the careful evaluation of the diffusivities, in
& way consistent with the adopted representation of the
carrying flow),

The hybrid use of alternative interpolation schemes {a standard
scheme for most of the domain and an improved one for zones of
sharp gradients) is recommended as a further improvement, and
implementation of this strategy on ELA is on the WaY .

A specific area requiring prioritary further work i< the set-up
of practical criteria guiding the definition of non—uniform
grids; indeed, it seems of strong importance to assure relatively
smooth transitions between the characteristic size of adjacent
elements; otherwise, numerical disper-ion may be averly
increased and significant artificial mass transformation may
accur,

A phase of intense application of ELA and its companion
circulation models TEA and TEANL to environmental and engineering
problems is now planned at LMEC, taking as a starting point
ongoing studies of recirculation and thermail impact of Portuguese
power plants.

Each application is= an integrated work, involving activity in
field data processing, circulation modeling and transport
modeling, and taking into account the objectives and constraints
of the specific project. Whijle significant common ground exists,
each application will challenge the body of Knowledge and the
tools now available at LNEC in specific different ways, helping,
as in the past, in the identification of prioritary research and
development areas,

It is antecipated that a general area requiring & concentration
of efforts in the near future is that of field data processing,
oriented towards the needs of numerical madels, Technical
exchange and active collaboration among the organisms that, in
Portugal, have interest and experience in this area is highly
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recommended., Earlier collaboration of Institute Hidrogr&fico and
LNEC, for coastal sites related to EDP power plants, should, in
particular, be continued and enhanced.

Lisboa, Laboratério Nacional de Engenharia Civil, Junho de 198&

0 Assistente de Investigago
Aunleuro Gtegq&w&‘\s =

Anténic Eugénio de Melo Baptista
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‘Fig. 2.1, Definition sketch for a 2-D quasi-horizontal flow
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Fig. 3.!. Statement of the 2-D transport problem. Definition sketch
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N “numerical solution for exact solution

- GRID 1(s = .5}, with standard

- elementary mapping
0.75+ N

7] numerical soluiio; . numerical solution for

for a uniform gri " GRID1 (s=1.5), with improved
0. 50—_ elementary mapping
0. 25
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I 1 i [ 1 | i I i 1 1 [} I | [ 1 T ) !
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X
3P-113

Fig. 4.32, Effect of different elementary mappings in the accuracy of BMC
solutions for non—uniform grids.
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Fig. 4.33. BMC colutions for the uniform advection of a Gauss-hill in grids of
type 1 (N=188; t=T=9408; Jo=244; u=@.5)
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Fig. 4.34. BMC solutions for the uniform agdvection of a Gauss-hill in grids of
type 1 (N=180; t=T=94808; Jo=400; u=0.35)
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Fig. 4,35. BMC solutions for the uniform advection of a Gauss-hill in grids of
type 2 (N=1008; t=T=9400; Oo=244; u=8.5)
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Fig. 4.36. BMC solutions for the uniform advection of a Bauss-hill in grids of
type 2 (N=188; t=T=9480; Oo=480; u=8.5)
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Fig., 4.37. BMC solutions for the uniform advection of a Gauss-hill in grids of

type 3 (N=188; t=T=9486; COo=244; u=B6.5)
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- Fig. 4.39. BMC <colutions for the uniform advection of a Gauss—-hill in grids of
type 4 (N=1808; t=T=9480; Oo=244; u=08.,5)
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Fig., 4.48, BMC solutions for the uniform advection of a Bauss-hill in grids

type 4 (N=108; t=T=9486; 0o=4808; u=8.5)

of
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Fig. 4.41. BMC solutions for the uniform advection of a Gauss-hill in grids of
type 5 (N=1608; t=T=%4088; Oo=244; u=B.5)
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Fig. 4.42. BMC solutions for the uniform advection of a Gauss-hill in grids of
type 5 (N=188; t=T=94080; 0o=486; u=8.3) '




0

v

PROBLEM: Find concentrations at point P, given concentrations at all grid nodes

PROCEDURE: ¢a) Find concentrations at points A through E, by using the 1-D
interpolation scheme, defined sucessively along axis §f to S

{b> Find concentration at point P, by using the 1-D interpolation
scheme, defined along axis &

Fig. 4.43. Interpolation in 2-D straight orthogonal grids. I1lustrative sketch
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Fig. 4.44. BMC solutions for the 2-D advection of a Bauss-hill in a flow field

in rigid-body rotation. Concentration profiles after one revolution
{W=271/30005 N=30; Qx=0y=244)
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Fig. 4.45, BMC solutions for the 2-D advection of a Cone-hill in a flow field in

rigid-body rotation, Concentration profiles after one revolution
(w=2T/386808; N=38; 1=888)



PROBLEM: Select points that will contribute to define a 3P-LR3
interpolation.

AMBIGUITY: While nodes marked with e and © are unambiguously
appropriate, we only need 7 of the 13 nodes marked
with X to define the interpolation.

Fig., 4.44. Extension of non-compact interpolation schemes to 2-D unstructured
arids. Illustration of a possible ambiguity in the identification of
nodes contributing to the interpolation




{a) Global coordinates

Q o ¢ o
(o}
0 L o — [+]
o
o =] o o

‘

(b Locai coordinates (qualitative skKetch)

Fig. 4.47. Extension of non-compact interpolation schemes to 2-D
grids. Illustration
coordinates.

unstructured
of difficulties in mapping glabal into local



(a) PROCEDURE FOR 5P-LR3

1- Define a bi-dth order polynomial by fitting
the concentrations at the 25 nodes marked witho
{this requires the solution of a system of 25
linear equations),

2- Find concentration at P by substitution.

[+]

(b} PROCEDURE FOR 5P-HL3

° P 1- Define bi-cubic interpolation polynonials

over each of the four zones marked in (b2), by

—— =~ fitting concentrations at the respective nodes

{this requires the solution of a system of
o - 16 linear equations, per zone).

) 2- Estinate derivatives (3%, 2/y, ¥/3xy) in

: the corner nodes of the core element, by
simple average of the contributions from the
four polynomials.

3- Define 2 bi-cubic Hermite polynomial over
the core element, by fitting concentrations
and concentration derivatives at the corner
rodes  {this requires the solution of a
system of 16 linear equaticns),

4- Find the concentration at P by substitution.

Fig. 4.48. Extension of non-compact interpolation schemes to 2-D ungtructured
grids. {1tustration of the interpolation procedure in glcbal

coordinates
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Fig. 3.1. ELM solutions for the transport of a Bauss—hill in a uniform flow. An

illustration of the accuracy dependence on Pe (Cu=0.24;
Oo/Ax=1.32; t=T=9400)
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Fig. 5.2. ELM solutions for the transport of a Gauss-hill in a uniform flow,

using the 3P-LI3.

An illustration of the acuracy dependence on N, for

different Pe, Cu, Di (Oo/Ax=1.32; t=T=%488)
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Fig. 5.3. ELM solutions for the transport of a Gauss-hill in a uniform flow,

using the SP-LR3.
different Pe, Cu, Di (Oo/Ax=1.32; t=T=%488)

An illustration of the acuracy dependence on N, for
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0.6 m/s

Fig. 4.3. Massachusetts Bay. Flow field at maximum ebb

[{rom BAPTISTA. 1984]
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(¢) Aftar 63 hours

Fig. 6.5. Massachusetts Bay. Sludge plumes

{b) After 62 hours

(d) Aftar 75 hours

for dumping at Site 1

[+rom BAPTISTA 19841
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Fig. é.9. Brayton Point. Circulation computed by TEA at maximum ebb

[from BAPTISTA et al. 19841
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Table 4.3, Amplitude and phase errors of the BMC for alternative interpolation
schemes (first time step)
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Note: See Fig, 4.1 for the definition of the functions ch(of), for each scheme

Table 4.3. Cont.
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Table 4.4, Complementary functions for the propagation of amplitude and phase
errors for interpoiation schemes with quadratic core elements
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! SF-HLE | T 1.0000 < OOO0 1.0000 |
G, =400 GEF-FL2 | AT 1.0001 ~ . D004 LAT76T
H 7FP-HLE | 2.45 1. 0000 « Q000 s A 2
P Bu=0,24 gr-FL2 | . 18 1.0000 « OO0 1.000486 |
i ! i
H ' T
]
P11k 2P-LIZ2 | 14,04 1.0000 « QOO0 8.2801
] IP-LIE 7.468 . 7298 L OO03 1.00320 |
PN o= 50 GP-HLZ | 5.88 1. 0000 » OO0 . 7978 |
i SP-HLE | 1.95 . 7998 - OO05 1.0030 |
VO, =264 &F-FLZ | 1.76 1,.0001 - 3004 L0952 1
i 7E-HLE 5.59 « 2999 « D00 1.0010 |
1 Cu=0.48 SF-FL2 | 1.27 1.0000 . 3OO0 1.0000 |
: H H
H ! T
1
HE I 2F-t 12 | 7.36 1. 0000 » D000 2.476% |}
H SP-L1F | 2.92 9998 B alnlen 1.0040 3
PN =10 4p~-Hi.2 | 2.40 1. 0000 elelale] 1.0002
' SE-HLI | .62 « T8 N slelekA 1.0030 |
i Oy, =264 &FP—-FPL2 . 68 1.0001 - CH3O2 . 8351 ¢
H 7EF—HLZ | 1.97 . F999 0001 1.0010 |
I Cu=2.40 8F~pL2 « a4 1.0000 « Q000 . 7998 |
: : ) b

Table 4.5 Accuracy measures for the BMC solution of the uniform advection of
a Gauss~hill (problems of the Convection-Diffusion Forum).




Amplitudes

! H |
i ! H
! L H Gauss-hill 1 Triangle-~hill i
H m |- -— — —_—t
1 I O=264 | =320 1 o=400 | 1=800 | 1=1000 | 1=1200 |
|t e e P Hil 1 - HEle) | H
! Infinity | 0.0485%9 | 0.0888% ! 0.073862 | 0.02937 | 0.05874 | 0.08811 |
i 13600000 1 0,04823 1 0.05825 | 0,07237 ! 0.02929 | 0.0S807 | 0,08588 |
P &B00,000 | 0,04717 | 0.0S638 | 0.048B77 | 0.02904 | ).05&12 | 0.07947 |
! 4533.333 | 0.04545 ! 0.05339 | 0.086316 | 0,02863 | 0.0S5298 | 0.06963 !
Po3400,000 § Q,04315 1 Q.04947 | 0.0S40&6 1 O.02B0& 3 0,04882 1 0,05751 )
H 2720,000 | 0,040346 1 0D,04485 | 0.04810 | G.0273I5 | 00,0486 | 0,04442 |
P 22648,4667 1 3,03720 | D.03F78 | O.03988 | 0.02650 | 0.03834 | D.031&9
H 1942.857 | 0.03378 | 0,03457 | 0.03196 | 0.02551 | 0.03254 | .0204& !
! 1700.000 } 0.03023 | 0.02932 | 0.0247&6 | O,02442 | 0,02472 | 0,01150
H 1511,111 | Q.02665 ! 0.02483&6 | 0.01854 | 0,02322 | 0.02114 { 0.00521 ¢
PO1340.000 1 0.02314 1 0,01981 | 0.01341 1 0.02194 ) 0.015%%9 | 0.00153
H 1236.344 1 0.01981 | 0.01578 | Q.00938 | 0.02059 | 0.01147 { 0.0000%
| 1133,333 1 0.01670 1 0,01226 | D.OO&T4 | 0,01F19 | O,00767 | D.D0024 |
H 1044.154 | 0.01387 | 0,00934 | 0.00414 | 0,01775 | 0.004567 | 0.Q0132 |
! 71,429 | 0.0113&6 | Q.00496 | 0.00262 | 0.018629 | 0,00247 | 0,00283 |
H FQG. 667 | 0.009216 | 0.00507 | 0.00140 | 0.01483 | 0.00102 | Q.00367 |
H 830.000 | 0.00728 | 0.003&42 | Q.000%94 | 0.01338 | 0,00024 | 0.00415
H 800.000 | 0.,00570 | 0,Q0253 | 0.00054 ! 0.011946 | 0.Q0000 ! 0.QA%99 |
H 755.5546 | 0.00440 1 Q00473 1 Q.00030 | 0.01059 | 0.00017 | Q.003I0 !
H 715,789 | 0.00334 | 0.00115 1 0,00014 1 D,00927 | 0.000461 1 0O,.0023F |
t &80,000 | 0,00250 | 0.00075 | Q.00008 | 0,00801 | 0.00118 | 0.00133
H 647.61%9 1 0,00185 | 0.00048 | 0,00004 | 0.00684 | 0.0017&6 § 0,00054 |
H 618.182 | 0.00134 1 0,00030 | Q.00002 | 0.00575 | 0.0022&6 | 0.0000% |
H 591.334 | 0.000946 | $.00018 | 0,00001 | 0.00473 | 0.002561 | 0.00002 |
H S&66.667 1 0,00068 | 0.00011 | 0.00000 | 0,00385 | 0.00277 ) 0.00025 |
! 544,000 | 0,00047 | 0.0000& | 0.00000 | 0,00305 | 0.00275 ¢ 0,00085 |
H 523.077 | 0.00032 | 0.00004 | Q00000 | 0.00235 | 0.00255 | 0.00107 |
| S03.704 1 Q00022 | 0.00002 | 0.00000 ! 0.0QL174 1 0.00221 ! 0,00137 !
H 485.714 | 0.,00015 | 0.00001 | 0.00000 | 0.00124 | Q,00179 ¢ 0.00145 |}
| 448,986 1 0,Q0010 | 0,00001 ! Q. 00000 | 0.000B3 4 O,.00133 1 0.0013T !
H 453.333 { 0,000046 | O,00000 | 0.00000 | 0,00051 ! 0,00089 ! 0.00104 |}
| 428.710 | 0,00004 | 0.0Q000 | 0,00000 | 0.00028 | 0.00051 | O,00087 |
H 425,000 | 0,00002 | 0.00000 | 0,00000 | 0,00012 | 3.0002T ! 0.00033 ¢
' 412,121 § 0,00002 ! Q00000 | 0,00000 | 0,00003 | 0,00006 ¢ Q.00009 |
H 400,000 | 0.00001 } 0.00000 | 0.00000 | 0,Q00000 | 0.00000 1 O,00000 |
' 388.571 1 0.00001 | 0,00000 | 0,00000 | 0,00002 | 0.00004 1 Q,00008 |
H 3I77.778 | 0.00000 | 0,00000 | 0.00000 | 0.00009 | 0,00017 | 0.00024
} 347.568 1 0.00000 1 0.00000 | 0,00000 | 0.00018 | 0,00034 1 O.00045
H 357.895 | 0.00000 ! 0,00000 | 0.00000 | 0.00031 | Q.00054 | 0,00063 )
H 348.718 | 0.00000 § 0.0Q0000 | Q.00000 | 0.00045 | 0.00072 1 0.00073
H 340,000 ! 0.00000 | 0,00000 1 0,00000 | 0.00059 | 0.00084 | 0,00072 !
) 331,707 1 0.00000 1 Q00000 | 0.00000 | 0.00074 | G.00093 1 0.00061
H 323,810 1 0.00000 | O.00000 | G.Q0000 | D.0008% | 0.00098 | 0,00043 |
H 316,279 | Q,00000 | Q.00000 | 0.30000 § Q.00102 | 0.000%94 | 0.00024 |
| J092.098 | 0.00000 1 O,.00000 | G,00000 | 0.00114 | Q.000B4 1 0,00009 |
: 302,222 | 0,00000 | 0.00000 | 000000 1 0.00124 | 9.00070 | 0,00001
H 295.4652 | 0.00000 | 0,00000 | 0,00000 1 O 00132 ) 0,00054 | 0,.00002 |
H 289.362 | 0.00000 { 0.00000 | 9,00000 t Q,00137 ! Q.QO037 | 0.00010 |
H 283.333 | 0.00000 | 0.00000 | 9,00000 1 O,00140 ¢ 0,00022 | 0,00022 |
| 277.551 | 0.0Q000 | 0.Q0000 | 0,00000 | 0.00141 | 0.0Q0010 ! 0.00034 !
H 272,000 1 0.00000 | 0.00000 § 0,00000 ! 0.001392 § 0,00003 ! 0,00043 !
H 285,647 1 0,00000 | Q.0Q0000 | 0,00000 ! 0,0013I5 1 0,00000 | 0.00045 )
: 261.538 | 0.00000 | Q,00000 1 O.00000 | 0.00129 ! 0,00002 ! 0.00041 |
H 256. 404 1 0.Q0000 | 0.00000 | Q,00000) 1 0.00121 § 0.00008 | 0,00031 !
| 251,852 | 0.00000 | 0.0Q0000 | 0,00000 ) 0.00112 1 0.0001& | O,00019 !
i 247.273 1 0.00000 1 G.00000 1 0.00000 § Q,00102 | 0.000256 | 0.00008 |
i 242,857 | 0.00000 ! 0.00000 [ Q,00000 1 0,000%21 ! 0.00035 ! 0,00002 !
| 238.5%4 | 0.00000 1 0.00000 § QO.00000 1 O,0007% § 0.00043 | 0.00000 |
' 234.483 | 0.00000 | 0.00000 ! 0O,00000 | D,00048 ! 0.00048 ! O.00004 !
| 230.508 | 0.00000 | 0,00000 § O,00000 | 0.000556 ! 0.00050 ! 3,00012 |
! 226.6467 1 0.00000 | O,00000 | D.GO000 1 0,00045 ! 0.0004% | 0O, 00020

| 222.9351 © 0,00000 | 0,00000 1 0.00030 | 0.00035 { 0,00044 | O,00027 !
H 219.3535 | 0.00000 | O,00000 | 0.00000 ! Q.00026 ! O,00038 ! 0.00030 |
| 215.873 1 0.00000 | 0.00000 {1 0,00000 ! 0.00018 { 0,00029 ! O.00029 !
H 212,500 } 0.00000 | 0.00000 | 0,00000 1 0.00012 ! 0.00020 | 0,00024 |
| 209,231 | 0.00000 | 0,00000 1 Q.00000 | 0,00007 § O,.00012 ! 0.00018 !
i 206.0&61 1 0.00000 | 0,00000 | O,00000 ! 0.00003 ; 0,0000&6 ! 0.00008 |
t 202.985 | 0.00000 | 0,00000 { 0.00000 | 0.00001 } 0,00002 ! 0.00002 !
I 200.000 | 0.000C00 | 0,00000 ! 0,00000 | 0.00000 3 0,00000 | O.00000 !

Table 4.6 Fourier representation of different instantanecus  sources,

the domain

x6[@,136007.

in



Node 1 Node 3 Node 4 ..Node 2

!
I

o€ i 2
_ C p=t1 cove AN=2)
p=—i r=H r=4i PP (N=32
R r=-1/3 r=+1/3 r=t1 faua {N=4)
.#. - {a) Reference sketch
! |
I lnclude.only if | Include oniy if
| node 3 is present | nades 3 and 4 are present
| I
hy=3lt-n Lo—j0-2) A SRTEE L R
| ;e
e 1
hy=l+el L Lomgl=rdh 5.+,'6(9r3+r7~9r—1)
hy=(=r2) .. SO |+ 2703+ 72 2277 - 7)
t
!

hy = !5{—-27.'3 -97+ 27,4+ 9) !

b Interpolation functions

N
firy= 20 h ¥, (N=number of nodes}
i=1

{c) Interpolation formula

Takle 4.7. Standard interpclation functions and iscparametric mappings for 1-D
elements

{adapted +rom BATHE 17323




Noge 1 hode 3 Nude 2
- . . —

g2-1 $ix geod

{a) Reference sketch

(E—l)(f—.a’) Witk

di(£)= 2(1+a)

_1=£ 26c__(ra=x)
Ba(6) =T R v R e

(E+1)(¢~a)

$i(€) = 2U-a)

(b) Interpolation functions

N
figy= & 4.4, (N=number of ncdes)

i=

(c) Interpolation formula

Table 4.8, Improved interpolation functions and isoparametrics mappings for 1-D0
glements

[adaﬁted from CELIA and GRAY 1984]
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{a) Reference sketch

Include only it node ¢ is defined

i=4 i=5 i=8
h1 = 1-r-5 ‘lh_‘ ......... 1h5
h2= r _th.a "%hs
h3= L 2 S - th _éhu
hy .'-' 4r(1-r-s}
Ay =1 drs
hy = 1 4s(1-r=s)
¢b) Interpolation fupctions
_ $. {N=number 0ot nogesc
fir,s) Zj h ;
‘.-'

tc) Interpolation formula

Takle 4.18., Standard interpciation functions and iscparameiric mappings for
triangular elements

[adapted frem BATHE 19221



% 1

{a) Reference sKketch

Include only if node / is defined

i=5 i=6 i=? i=8 i=9
= | LT k) e L EEREEE R EER TR ~3hg -1n,
hy=| M1t tsh | =g - 3hg —3hg
hy=t A -0 =5) {oeeeenns ~1hg -1h; —1hg
hy= i“ R —%h], _’}”a _'-1ih9
D S I T I Y B L R P R R T] EREE R, ~1hg
He = ,'2(1 L [ B IR ] I N (PRI IR “%hs
h, = ;(1 I B R T T ) PP -%hg
hy = ;“_52”1 e e .- _%hs
hg = | 1 -r2)01 -5%)

(b) Interpolation functions

N
Fir,e)= 2 b f; {N=number of nodes) -
i=1

{c) Interpolation formuls

Takle 4.11., Standard interpolatien functiens and iscoparamstric mappings for
guadrangular elements




A

(-1,1} (rn (1.1

6 7 8

{8.x<)
(-1,€) *3
49 -
{(1,8)

i 2 3

{(-1-) {a- {1,-1}

ta) Reference sketch

Node co-ordinates

(£ m) e, Basis function

(-1,-1) & }(1_5)(1_7’):(1+a)(]-i-e)—‘:;::))f.:::))—-(l'f'ﬂ(l+_E)]
@ e el

I = -
R =

(1,1) $s %(1+§)(1+,,)[f1—y)(l—ﬁ)—:;::;g:g;—u—.s)u-f)]
o e e[S

(-1,1) b6 %(1_5)“+ﬂ)[(1+y)(1—e)—iii:iii::))-u—s)(l+§)}
(-1,¢) s o _E)[: :’::

(1-£9(1-7n%

(8: K) ¢9 . (1—32)(1—&'2)

{bY Interpolation functions

N
fg= Z ¢ 4 (N=number of nodes)
i=1

(c) Interpolation formula

Table 4,12, Improved interpelation functions and isoparametric mappings for 9
nodes quadrangular elements
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1

iperaticons

I

0

Qperation

=

Mode

1
¥
[}
b
)
)

2P-LIZ

126

24

4P-L14

1
1

4P-LRZ

z248

N

SP-LRE3

-3c)

SF-LFZ

]

1gEsa

gp-LRZ2

124
2
252
3
e

4P-HLZ
P-HLZ
SP~PLZ
P-HLZ
BF-FLZ

-
¢

aiternative

tao

associated

‘and operations
interpolation schemes (uniform grids)

noges

of

13 - Number

Tabhle 4




Mxx E

i 3P-LIZ | B.1415E-81 B.18488E-681 8.9997 B.0684 1 .8a645 E
! SP-LR2 | B8.5&54E-682 @.1786E-G2 a.,seeR g.a6a3= 1.6a626 !
1 SP-HLS | B.3857E-6Z B.7841E~63 6.9977 B.8084 1.8849
a 8F-PL2 E B.1857E~-B2 B.1835E-82 1.6666 B.0648 i1 .68668 |
cal Pe= Di=f.n
i Scheme 5 ') % Mo Mx Mo x 5
i\ BP-LIZ | 6.1272E-01{ 8.82344E-82 8,997 g.048a4 i.0649 ;
i SP-LR3 | B8.4872E-G2 B.1123E-A2 A.7998 B.8863 1l.a638 |
i SP-HL® | 8.2648E-672 8.4728E-6032 8.99%7 B.86604 1.48368 |
E 8P-FLZ E B.1435E-62 B.10&46E-B3 i.068a0 b.06806 1.0688
C b Pe=208 Di=a.a&gl2
,l Scheme ; o é, Ho Hx Hxx i
! AP-LI3 | 2.5912E-82  B8.1493E-02  9.9997  ©.0904 1.6020 !
i OP-LRE | 68.1287E-82 B.AZZ728E-04 a.997g 8.868A03 i.a818 |
i SFP-HL3 | 8.5345E-83 6.1230E-84 8.99%7 G6.2684 1.6616 |
i BP-PLZ2 i 8.4724E-83 B.94ABBE~-B5 i1.60488 g.8g640 1.8868 E
(c) Pe=20 Di=g.o12
i Scheme i ¢ ¢ Mo Mx HMxx i
I 3P-L13 | 0.2042E-B8F  B8.1148E-65 B.5998  0.4065 {6068 |
i SP-LR3 | 8.3551E-64 8.34?3E-B7 A.9978 g.8683 1.6086 |
i SP-HL3 | 8.4245E-~84 A.104582E-04 a.9992 a.6a8683 1.06868 |
i 8P-PLLZ | B8.2411E-B4 B.1585E~-87 1.88880 #.8066 1.8868 E
1d) Pe=2 Di=@.12
Table 5.1. Accuracy measures for the transport of a Gauss-hill in an uniform

flow. An illustration of the dependence on Pe (Cu=8.24; N=188;

Oo/px=1.32; t=T=9480)
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An illustration of the dependence on N, for

=T=97488)

=

Cu=24/N
1.32

Di=12/N
using the 3P-PLI3,

Pe=2
10w,
different Pe, Cu, Di (UJo/px

{d)
Table 5.2. Accuracy measures for the transport of a Gauss-hill
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: 16 | @.1482E-83  0.8844E-8&  8.9999 * 1.9018 |
: S5 ! B.1209E-83  B.,4788E-86 8. 9000 * 1.0818 |
{ 188 | B.1432E-83  8.7114E-86& 8.o099 x 1.6010 |
| 568 ! B.1422E-83  8.P474E-B4 B L0000 % ileain |
| 1068 ! B.1444E-62  B.9BAIE-B& 8,999 * 1.gaig |
| 10600 | 0.1448E-83  6.101BE-05 B.9990 % 1.68108 |
¢a) Fe=@ Bi=1.2/N Cu=a
ON p ¢ Ho Hix By
' 1¢ ! B.1193E-83 B.5831E-04 8.9998 8.3602 1.8018 |
! 56 | 9.8758E-B3  8.3257E-04 B.9959 8.6002 iaaie |
188 | 0.1207E-82  0.&220E-04 8.9998 B.REE3 1.ea10 |
!  Ses ! p.1424E-@2  6.B403E-04 g.9997 G.6004 1.0028 |
! 1888 | B.1448E-82  0.8Y74E-84 g .9997 6.0604 16028 !
{ 18000 | 0.1448E-02 B.9237E-G4 g.o907 B.0064 i.aa2a |
(b) Pe=28 Di=1.2/N Cu=24/N
=| N }l 4 %o to Hx Mx l.
' 1¢ | @.1755E-02 B.1393E-03 86.9998 8.6092 1.6028 |
: S@ ! B.4942E-B2  @.1138E-02 B.596% 6.0802 1.0628 |
! 168 ! B.SESEE-AZ B.176BE-62 5.9908  @.0003 {.pp3g |
| Sp@ | §.8252E-92  B.2083E-02  0.9997 G.6005 1.0638 !
| 1060 ! 0.4314E-@2  @.2{2SE-B2 g.99%4 B.AGAS {.p838 !
! 10069 | 0.4347E-02 6.2181E-B2  0.9998 B.0B05 1.8030 !
CCc) Fe= o Di=@ Cu=24/N

Table 3.3. Accuracy measures for the transport of a Gauss-hill in a uniform

flow, using the SP-LR3. An illustration of the dependence
! cn N f
different Pe, Cu, Di (Oo/px=1.32; t=T=%488) i , o




L D ol o s e e e B P L AL e e e | S . . B . L. A L ok o oy o . A A St M e . Sk vy P At o S S v

B 16 | 8.4543E-03 B.S6463E-05 B.9998 2.6003 B.5994 |
! 58 | 9.5432E-04 B.1953E-04 B.9950 6.0862 1.6068 !
| 1g@ ! @.3551E-64 B.3493E-@7 a.9998 8.86G3  1.60660 |
I 560 ! 0.a304E-85 8.1253E-85 8.9909 B.0002 1.0000 !
| 1G@6 | §.5881E-65 7. 2438E-08 a.9003 8.0802 {.g800 |
| 1boee | B.1347E-43 §.4922E-55 B.6003 B.BEa2 1.0608 !
(d) Pe=2 Di=12/N Cu=24,N

E N E ¢ ¢D ru-o HMx My x .}
; 18 | 8.1399E-82 B.24B1E-¢4 8.9998 9.0802 1.0826 |
; 56 ! B.3770E-02 B.7287E~63 B.9990 B.AGEHZ . gB20 !
{198 ! B.4473E-02 B.1123E-82 8.0050 9.6003 i .9@3@ !
| 5@@& ! O.5208E-62 8.1398E-02 b.9997 B.B6GA i.pe3a !
' 1006 | @.5241E-A2 6.1428E-62 B.0007 g.0085 1.0839 |
| 16666 | 6.5307E-02 6.1454E-92 B 9904 9. a605 tiea30 |
(e) Pe=280 Di=6.12/N Cu=24/N

Table 5.3. Cont.



PR —————— PR AP A daata s ]

g.8883
0.06883
B.8884
6.006849
g6.80084
g.g8684

2.00@83
@.68a3
a.0089
g.6605
g.0005
@.6885

} N é b5 Ho

: 18 ! B.1547E-83 P .5844E-04 8.5999
: 56 ! 6.1158E-A3 8. .4748E-04 8,900
! 188 | B.1331E-@3 B.7113E-86 89959
!  S@@ ! G6.1541E-83 B.9474E-04 G .9959
i 1988 | 0.1544E-83 0.9801E-86 f.9009
{ 16008 | 0.15SSE-03 8.1016E~@5 B.9900
(a) Pe= Di=1.2/N Cu=8

N ; 5 Ho

5 16 | 8.2037E-83 8.1453E-65 8.9995
: 58 | @.5439E-83 8.1244E-84 8.9908
! 108 ! 8.5345E-83 B.1230E-64 B.9907
! 508 ! B.1853E-82 9.4512E-84 8.9907
{ 1ges | @.1148E-A2 B.5432E-04 8.9997
| 10000 | 8.1226E-82 B.&451E-04 B.9957
(b) Pe=28 Di=1.2/N Cu=24/N
PN ¢ 4, Ho

: 16 | 8.1233E-82 B.5554E-84 0.9998
; 56 | 6.3049E-02 B.4745E-83 8.5995
! 168 | @.3857E-82 B.7841E-03 b.9o07
|  S@@E | @.5598E-82 B.1677E~82 B.00%4
| 1608 | 9.5848E-92 8.1831E-82 B.5994
{ 10008 | 8.4675E-62 B.1977E~02 B.9904
(cl FPe= oo Di= Cu=24/N

Table 5.4, Accuracy measures
using the SP-HL3.

flow,

for the transport of a Gaus
An illustration of the

different Pe, Cu, Di (Oo/px=1.32; t=T=7488)

s=hill in

a

uniform

dependence on N, for



] 18 | 6.4594E-83 8.5778E-85 B,7797¢ 8.08803 B.999s |
' @ § @.1877E-@63 8.31&45E-64 @,77%8 @.08632 1,6689 |
: 186 | ©.4245E-84 B,1B842E-B4 8.9998 8.86803 l.a0a8 |
i S88 | 8.,2717E-84 a.,2804E-87 . @.9998 a.6663 1.0608 |
1 lega | @,23249E-684 8.1484E-97 6.77993 8.8803 1.8660 |
a ioaaa s 8.,1994E-a4 6.1877E-8@7 B,9978 a.s062 1.8BGE |
(dd Pe= Di=12/N Cu=24,N

E N i 4 % Ho Hx Hxx a
i 16 8.9348E-6G3 @.3154E-64 8.797a& 8.60832 l.a828 1
] o8 B.239Y3E-82 B.2243E-063 8.99%8 G.9883 1.8628 |
| 166 | 8.38408E-52 8.4728E-23 8.9997 8.0804 {.aa3g
i 988 | P.4534E-B2 0.16078E-82 8.9997 f.8885 1.0048 |
1 lase | @.488%9E-@z2 @.1Z266E-02 8.999& B.06635 l.ep48 |
i 1eag90 E 8.3014E-62 6.1385E-02 a.72794 6.06085 1.8948 |

Ce)d Fe=268 Di=@a.12/N Cu=24a,/N

Table 5.4.'Cont.
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An illustration of the dependence on N,

(Do/_x

T=9408)

Cu=24/N
=1.32; t

Di=12/N
using the 8P-PLZ.

different Pe, Cu, Di

f1ow,

Pe=2

(d?
Table 3.5. Accuracy measures +For the transport of a Gauss-hill
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Linear regression
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N
1888 | 100986 | a

Number of time steps,
188
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Scheme

{a) Pure adwection
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Linear regression
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Number of time steps,
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Scheme
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(c) Advection—-diffusion

the

regression to

with correlation coefficient

times were adjusted through linear
MINQUA by E. Oliveira, from LNEC/DH/NET, was used.

Observed CFU

Note:

Program

Pl

cost= at+b*N,

line

straight

advection~diffusion

the

times (seconds) for the solution of
reference problem

J.6. CPU

Table
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REFERENCE PROBLEMS FOR THE CONVECTION~DIFFUSION FORUM

1 - INTRODUCTION

Several numerical methods have been proposed for the solution
of the convection-diffusion equation. None has proved fully satis-
factory, and many exhibit quite poor performauces for convection-
-dominated problems.

A systematic comparison of available methods is felt te be a
very important step to enhance further improvements. Such compari=-
son,which constitutes a giantic task for any individuél, could be
made much easier and efficient if a common referemnce framework was
widely adopted by the technical community to demonstrate the per-
formance of alternative methods.

The Convection-Diffusion Forum is intented to contribute to
the setting-up of such a reference framework, and, ian parallel, to
assess the state-of-the-art in numerical modeling of the conveg-
tion-dowinated convection-diffusion equation.

The problems stated in the next sections are preposed as to
be a starting point for a reference framework. The response of par-
t1c1pants and the debate at the Forum will determine any further
steps towards such framework.

Modellers are encouraged to use any general numerical techni-
que to solve the proposed reference problems. To help the working .
group in analysing the different solutions, and preparing a compa-
rative general report, modellers are, however, requested to closely
follow the specifications for both inputs and outputs.

In addition (but not instead) modellers may present alterna-
tive outputs, or, if necessary to illustrate some important feature
of their methods, even perform caleulations with alternative para-
meters.

Modellers may elect to solve only a2 part of the proposed pro-

blems. The final document to be presented by each modeller should

Froc. &4-°137°72%95
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ineclude:

(a) A short (about 1 page/method) but effective description 4&f
the adopted method(s), and reference to where detailed in

formation is reported.
(b) Fourier series analysis of the adopted method(s) —-optiomnal.
(c) The solutioms to the reference problems, as specified.

{d) Eventual comments (e.g., on the general performance of the
methods)

2 - PROBLEM SET #1 : TRANSPORT OF CONCENTRATIQON-HILLS IN UNIFORM
FLOWS (1-D)

2.1 - General Aspects

This set of problems concerms the transport (convection-dif-
fusion and pure-convection) of concentratiom-hills (a gauss and a
triangle) by uniform (steady and unsteady, sinusoidal) flows.

The mathematical problem is governed by the equation

ac e _ . .
ETIR TR T i
with initial and boundary counditioas

c{x,0) = co(x)

c({x,e) = 0 ,as x| = =
‘where
c(x,t) - is the concentration field
u = 1is the velocity field
D. - is a diffusion coefficient
X, t - are space and time coordinates
co(x) - is the initial concentration field, defined as:
» for the gauss-hill 2
(x~x0) '
cofx)- exp (~ —
2 ¢
0
+ for the triangle-hill
. |x—x0] | <2
- X=X
co(x) . 20 0 0
Q : otherwise

BH—& - Proc,., &4/713°73F8




%y = center of mass of the initial councentration field
£, - half-length of the base of the triangle '
C

- standard deviation of the initial concentration
field :

Relevant exact solutions are of the form:

« for the gauss-hill
] : - 2
S Q (x-x)
c(x,t) = — exp (— ——————-)
! a 2 02

with 02 = g 2+ 2 Dt

£

X = X, + j u(t)d<
)

for the triangle-hill, under purs convection (D = 0)
. t
elx,t) = colx - [ u(r)dr )
. 0 7
Modellers should present their results, at the time indicated

in section 2.2, in the form of:

(2) A plot of the concentration profile (numerical results), ~
covering a region of at least x =60 < x < x + Gélgnd
x - 2£0< x < x + 220 (for the gauss and the triangle, re=-
spectively), If any significant feature of the numerical
solution (e.g.,wiggles) extends outside these bounds, a
larger region should be plottéd as to display such feéture.
Concentrations at each node should be denoted by a mark
(e.g., a "+"); additionally,a consistent interpolation
may be used to display the (numerical) profile in a con-

tinuous form.

Scales of the plot (units of problem/cm)should be :200/1
horizontal(zgnd 1/10 vertical

(b) A table of x versus ¢{x); space coordinates should be

written in format F6.0,and concentrations in format E10.4

(c) The values of the accuracy measures of table 1,
format E19,4

in

(1) Except in problem 1C, where X-40<x<x+40
(2) Except in problem 1C, where horizontal scale should be 400/1

Proc. &4-13/73%93 A=
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(1)

Numerical sclutions should be performed in 1-D grids s Te-

ferred to in each problem, and defined as follows:

. GRID 1

x(i) = 200(i-1)

(xc[0,12800])

i = 1,65

. GRID 2 (xe [0,12800])

2(i) = x(i-1)= 200-75co§

m(i=1)
65

where x(i) are the nodal coordinates.

-

1

= 2,65

The total length of the computational domain may be reduced

{by changing the number of nodes, but not the nodal spacing),when-

ever appropriate.

2.2 - Specification of parameteaers

Units are omitted bellow,

be used

Problem 1 A:

Problem
Problem
Problem

Problem

N

u = 0,5
D=0
grid:
co(x): gauss~-hill, with Xy 2000 and GO=264

boundary conditions:

GRID 1

as any set of comsistent units can

-

zero-concentration im-

posed in the upstream boundary; model-

lers are free to impose the downstream

boundary condition in any consistent

way

At = 96

results are requested at

As
As
As
As

in
in
in

in

problem lA, except

problem 14, except
problem lA, except
problem lA. except

time 9600

that D = 2
that D = 50
that co= 320
that cos 400

(1) 1f, because of code availability'or otherwise, it becomes more comvenient
for the modeller to use a 2-D grid, he may do so, as long as he respects
the specified nodal spacing in the x-direction. In this case, he should
state the selected grid characteristics and tramsverse diffusioun coeffi-
cient, and present table (b) in an extending versiom, covering all or a
significant number of rows (to assess eventual transverse oscillatioms).

Proc.,
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) Problem 1 F:

Problem 1 G:

Problem 1 H:

Problem 1 I:

Problem 1 J:

Problem 1 K:
Problem 1 L:

As in problem 14, except that u(t) =

«1.50 sin (%%ﬁ%); zero concentrations are
imposed at the boundaries when the flow

enters the domain;modellers are free to im-
pose boundary conditioms in any consistant

may when the flow leaves the domain

As in problem 1A, except that co(x) is a2
triangle-hill, with 20= 800

As in problem 1A, except that co(x) is =

triangle~hill, with 20= 1000

As in problem 1A, except that GRID 2 should

be used, and x, should coincide with node 16

u = 0.5

D =20

grid: GRID 1

co(x): gauss-hill, with x0=600 and g.= 264

0
boundary conditions: a concentration law

2
[o] (t) = EKP (—- _(.E.u;_)_>
u 20,

is imposed at the upstream boundary;
modellers are free to impose the down-
stream boundarycondition in any con-

sistent way
At= 96
results are requested at time 9600

As in problem A, except that At = 192
As in problem A, except that At = 960

3 - PROBLEM SET #2: PURE CONVECTION OF A ROTATING

3.1 - Introduction

CONCENTRATION-HILL (2-D)

This set of problems concerns the transport by convectica of

concentration-hills

(a gauss and a cone) in a flow in counterc.ok-

wise rigid body rotation.

Froc, 2471277378

I
|
o



The mathematical problem is govermed by the equation

dc 3c dc _
3t TS5 T Y Iy 0

with imitial and boundary counditiomns

where

c(x,7,0) = ¢ (x,7)

e(x,y,t) + 0 as x2+ 32 v

e{(x,7,t)~ is the concentration £field

u(y) = -wy, is the x- velocity

v{x) = wx, is the y~ veloccity

Ww = is the angular frequency of rotation

co(x,y) - i5 the initial concentration fiald, defined as

. for the gauss-hill

cocx,y)= exp (-

(x-2 )% (y-y )7
2 2

200 260

. for the c¢one-hill

‘21

X=X -y
co(x,ykgl- ( 2y +( 2) if(x-xb)2+(y-?°)2< foz

T ¥
To o
Q .- ctherwise

x_ - center of mass of the initial concentration field

¢ _ = standard deviation of the initial concentration
field (gauss) | _

T_ = radius of the imitial councentration distribution

(cone)

The exact solution is of Lhe form

e(x,y,t) = ¢ (x-ut, y-vt)

Modellers should present their results, at the time indicated
in section 3.2, in the form of:

(a) Plots of four concentration profiles (numerical re-

sults), passing by the instantaneous center of mass of
the exact solution, and at least 600 or 2?0 long for
each side of such center. One profile should be normal
to the flow direction (relative to the instantaneous

center of mass), the other parallel, aand the remaining

two at 45° angles. Scales (units of prob/cm):200/1 hor.;
1/10 vert.




(b) A table of r versus c(r) for each of the above profiles
{r inF7.1, and c(r) in E10.4).

(¢) The values of the accuracy measures of table 2, in
format E10.4.

Numerical solutions should be performed in 2-D grids,referred

to in each problem, and defined as follows:

. GRID 3 (x,y ¢€[-3400,3400])
x(i,3) = 200(i~1)-3400 i = 1,35
y(i,j) = 200(j-1)-3400 i = 1,35

. GRID 4 (with x(21,j) = y(i,21) = 0)

x(i+1,5)°x(i,j) = 200-50 cos ZIZL) i = 1,35
y(i,3+1)-y(i,j) = 200-50 cos EL%%ll j = 1,35

where x(1,3), y(i,j) are the nodal coordinates (indices i and j
refer to the x~ and the y- directiouns, respectively). Any elements

that £it these nodal coordinates may be used.

3.2 - Parameter specification

. o 2T
Problem 2 A: w 3000

grid: GRID 3

co(x,y): gauss-hill, with x°=0, y0m43000,00=264

boundary conditions: zero concentration imposed
where flow enters the domain; modellers are
free to specify any consistent boundary comn
dition where flow leaves the domain

At = 100

results are requested after 1 revolution

Problem 2 B: As in problem 24, except that a cone-hill,
with ro=800, should be used

Problem 2 C: As in problem 2A, except that GRID &4 should be

used; (xo, yo) should coincide with node (21,11)

I
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4 - PROBLEM SET #3: ADVANCING FRONT (1-D)

4.1 - General Aspects

In this set of problems the concentration field is imposed
by a constant mass flux, specified through constant velocity and
upstream concentration. _ ‘ '

The mathematical problem is governed by the equatian

de de D azc g E<®

S R T4
with initial and boundary couditioms

c(x,0) = o ogx<=
c(x,t) = 1 t>0, x=o
e(x,t) = o t>0, x+=
where
c{x,t) - is the ‘concentration field
u - is the velocity field
D - is a diffusion coefficient

x,t - are space and time coordinates

The exact solution is given by

c({x,t)= %—(erfc(:;;_::)q- exp(l;ﬁ)erfc (12:;;_:))

or, for D=0,

1 x<ut
c(x,t) {0 otherwise
Modellers should present their results, for time 9600, in the

form of:

(a) A plot of the concentration profile (numerical results), .
covering the relevant computatiomal domain (scales: 200/1

(1)

horizontal and 1/10 vertical). ‘Nodal concentratioms should
be denoted by a mark (e.g., a "+");additionally, a con-
sistent interpolation may be used to display the {(nume-

rical) profile in a continuous form.

(b) A table of x versus c(x); space coordinates should be

wricten in format F6.0, and concentration iaq format E10.3

(¢) The values of the accuracy measures of table 3, in for-
mat E10.4,

(1) Except in problem 3C, where the horizontal scale should be 400/1.
Note: scales are defined as (units of problem/cm)

I
S

~d
0
%
D
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Numerical solutions should be performed im 1-D grids(l), re-

ferred to in each problem, and defined as follows:

. GRID 5 (xe [0,12800])
x(i) = 200(¢i-1) i = 1,65

. GRID 6 (xeg [0,12800]1)

x(i)-x(i-1) = 200-75 cos Ei%gll i=2,65

where x(i) are the nodal coordinates. The number of nodes may be

reduced when appropriate

4.2 - Specification of parameters

i

Problem 3 A: u = 0,5
D =20
grid: GRID S
boundary conditions: c¢=l imposed in the up-
stream boundary; modellers are free
to impose the downstream boundary con

dition in any consistent way

. At = 96
Results requested at time 9600

Problem 3 B: As in probl. 3A, except that D = 2

Problem 3 C: As in probl. 34, except that D = 350

Problem 3 D: As in probl. 3A, except that GRID 6 should be
usad.

Problem 3 E: As in probl., 3A, except that At = 960

5 = FINAL REMARKS

Many modellers (e.g., S.Newman, F.Holly Jr., P.Gresho, E.
Varoglu, J.Benque,A. Baptista, etc.) have used the proposed or sim=-
ilar problews, in one form or another. The present document attempts
to motivate a wide concensus on standard reference problems, with
standard forms and standard‘accuracy measures.

The particular choices of problems and problem dimensional-
ity,the range of controlling parameters (Peclet number, Courant

number, dimensionless source size, etc.), the grid characteristics,

(1) Remarks made in Prob. Set #1 on 2-D grids apply

Proc, 44137737
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the selection of accuracy measures,etc, arve by no means free of
ecriticisms, and discussion and comments previous to and during the
FTorum are strongly encouraged.

It is hoped that the relatively large number of proposed pa-
rameter sets does nmot discourage modellers to presemt sclutioas.
Modellers may decide to solve only a part of the proposed problems;
in such cases, it is suggested that, within each problenm, prioTity
be given to the parameter sets with lower letters (a, b, ete).

Modellers are asked to specify the type of computer used,and the.

memary and CPU time requirements (optiomal).
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LiECFemes Ref: CONVECTION-DIFFUSION FORUM

Dear Colleague :

A few misprints were brought to my attention, concerning the statement of
the reference problems for the C-D Forum. They are listed below:

Page 1, line 6: "may when" should be "way when"

Page 3, line 15: " x—60<x<z+6c" should be " x - bo<x<x+6c "
Page 3, line 16: " x-28 <x<x+2L} should be " X =20 0<x<§+22.0“
Page 7, line 19: " Y= - 18000" should be “ A 1800"

Table 2 : "¢ (6) == {C I ®) - (r,8 8% ?}shouid be

m{t) i it
114 l l 2
¢D {(t) = W { (E [Cl;Llu () - ca{(rf Bif tnz) / } ’

I apologize for these misprints, and hope that they were not a cause of
trouble. ' ‘

Also,I was suggested that in Prcblem set#2, a smaller At should be con-
sidered,in order to allow methods that have Courant—criteria restrictions to be
used. In order to accomodate this, I propose the following three additional |
problems: ' :

Probl. 2D : Bgual to }_:;roblem ZA, except that At = 10
Probl. 2E : Bqual to problem 2B, except that At = 10
Probl.: 2F : BEqual to problem 2C, except that At = 10

Ii
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Finally, ﬁlease note lthat.:-
n . n, s
S {t) is equivalent to ¢ (xi,t) in Tables 1,3 and to
nu . . '
c (ri, Gi,t) in Table 2- _
. m(t) denotes exact total mass, i.e.,
me) = f ¢F(x,t)dx (Tables 1;3)
m(e) = f S (r;6,t)rdrdd (Table 2)

I loock forward to your participation in the Forum.

Yours sincerely
Antemic €ERBe phsk.

Antdnio Melo Baptista




APPENDIX B

A MNOTE OM THE CIRCULATION MODELS TES AND TEA&ML






B.! - Intraduction

This Appendix degscribes fundamental concepts behind  two 2D

tdepth-sveraged? tidal circulation modsls, TE& (WESTERIME ef =z].
1784 amd TEAML {MESTERIHF et al., 1#85), that have heen uszed zs
companions  foar the transport madel ELA. Mo attempt is mades o
grnter in the mathematical detszils, the reader interezted in =uch

details bkeing referred fo the criginal sourcesy  emphasizs s
rather placed on & qualitative discussion of the frequencr—domain
approach adopted in these modeis.

B.2 - Motivation and Concept
The well-known shallow-water quat
oo

describe tidal circulation in
arnd time deriwztives,

-y which often appropriately
regicns, involuwe baoth zpac

Most  avxilable circulation modele handle space-—derivatives by =&
discrete technigus, which iz most often Ffinite differences (FDJ
or finite stements (FE). Although boih are suitable, FE sesem more
well-fitted to estuzries and coastal s2as, by their superior
verzatility in grid discretization <(which becomes extremel
gsefuli in representing irregularly shaped boundaries and  in
allowing tocal refinements inm critical areas).

To  handle time derivatives, most models adopt again the idea of
discretization, salving the derivatives either by uzing =some type
of numerical integration schems or by ap Fl»ing 2 combined space-—

time finite element schems,

Theze "time—domain® models haue been plagued with requirsments
for  =mall time steps, necesszary to insure  numericsal stability
andsS o appropriate a COUTaCY . Tha maximum zllowzble time stiep
decreases =1ang the =scale of the space~discretizatian,

7]

"'T'

makKing appli 'a+iﬂﬂ= that require very small scales fa, = zmall
bars, detailed analwsis of local poliutant trans zport) infeasibls
or undesirable because of the high costz invalued., Te Keep  the
time =step feasibly large, and 2ti11 get soluticns reasonzxbl ¥
smooth many users have adopted artificially high eddyr wiscosity
cofficients, which haz not been free of convincing criticiam

C2.g.,; =ee GREY 1726),

"time—-domxin®

shaortocomings  of convesntionad
tately sttempted two alternztive

gce
tigators havs

- Keep the time-domxin approach, but based on the sco~callsd waus
formalation (e.g. GRAEY and KINMARY IJuL, LYMIH and HEENEF 17880 ;

- &adopt & frequesncy-domain approach, by applring harmonic methcod
ta traditional technique before the acduent of numerical model ing?
in conjunction with FEM.

s TER =nd TEAML resort to this latter 47 equanr—daﬂqnn
spprosach, which  takes advantage of the perisdic nature of  the
tida? phesnomens and of the fact that the primary frequenciss of
interest  ars knawn tand relatively fewd, to generate a2 set of
quasi-szteady (time-independent) governing equations For  each



relevant Frequencr. Appropriate solution of these equations  in
Space, by conventionzxl FE  fcombined when nmecessary inm an
iterative procedure that accounts for non-linear interdependence
oaf  the different freguencies , and, hence, =sets of governing
quaficr5>, followed by & Fourier srnthesizs of the resulte,
provides the desired information on tidal 1euela and wvelocities.

8.2 - General Performance

TEY and TEAML are very attractive for the simultation of strongly
tidal-dominated circulation in sstuaries znd coastal  seas, S
of their potemtiaxl merits include:

) no timeg stepping consiraints due 4o small element sizes are
required;

{hy eliminating the time dependence from the governing sgquations
reduces them Ffrom the difficult and time-consuming hyperbolic
twpe to the much more convenient elliptic trpe;

{ca the results mav be stored in a much more econcmical and
convenient form for later use in a transport modelg

{dr long term residual currents are computed in a natural warj

(e) cold-start problems, =& traditional plague of “"time-domain®
models, are eliminatad.

These models, are, however, potentizxlly less atiractive for non-
tidxl flows, both because & very large number of relesvant
frequenciss may have to be handled, and because these frequencies
may be randomly scattersd.

I-.

Model TEA handles only the linesarized forms of the gowverning
gquations and cannot account for interactions butween different
frequencies, Although First developed just a=z ore component
for & fully non-linear modsl, TEA mar be guite 5u¥‘t:tunt arnd
very uwsefull in relatively large and not sxcezsively  shallow
water bodies, where non=linear effects do not dominate; ewven when
& fully pnon=-linear model will be required, wsing TEA first  mar
constitute an extremely cheap and efficient way of sslecting
appropriate  boundary conditions, detecting insufficiencies In
grid discretization or bathimetry reprezsentaxtion, helping on the
zet-up of field measurements, =tc,

m

The orocedure for using TES comsi=ts in identifying dominant
tida? Ffreguencies, Finding the xppropriate Fforcing functicons
{tidal elevations andsor tidal flows in the model boundari=ssl,
running TEA for each fregquency, and superposing resulits b
zvnthesise of indiwvidual freguenciges ftwe npote that the zero-
frequency can be handled, providing & veefull way of simelating
river ar other guasi-steady Fflow inputs?), The most delicate step

fwhich is shared with most other models)- i= ftoc define the
boundary forcings, which should result from fisld data analyrsis,
but oftern requires in complement a trial-and-error adjustemsnt

procedurs.

Fesults From each run of TES are in the form of

Zp & variable
amplitudes and phase shifts (relative to scme pre—-selec

ﬁd bazi

.;—e- l

I"l
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phase? for flows and tidal elevztions. Final results zre in the
form of Flows  funambiguously related with depth-averagsed
velooities and tidal elevations, which may vary in space and
time, and may be generated for any desired tide or seguence  of
tides compatible with the ingut data.

TEAML iz the fully non-lingar versicn of TES, and  z2llows ths
harndling of non-Yineaxr interacticns betwesn d1~+~rpnt freguenciss
Cthrough the iterative procedure schematized inm Fig. 13, This i=
extremely important in water bodies such as eszstuaries and  =zmal
Bays, where the astronomical tide ie ztrongly diztortsd during
propagationy the mechanism can bes reprezented as the non-linear

growth of harmonics of the princiczl  astronomical comnetituente
2.0, DROMKERZ 1744, PIMGREE and SRIFFITHS 197%), resulting from

finite amplitude eFFectE entering through friction, non-linear
gdvection and interactions with the geomstry of the water bodw.

The inputs and cutputs of TEAML are zs in TES
that all freguencies of interest must be han

' cept by the fact
diszd =im

and therefore ocutputs conmstitute unbreakable =et
™
t_

mul taneousls,
« Superposition
icn an flow  and
is, Just as Ffor

1 these frequencies to chtain final info
tidat elevation is handled by harmonic synt

i
v by
i1}
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SO0URCE REPRESENTATION IN A NUMERICAL TRANSPORT MODEL

E. Eric Adams, Richard Kossik

Dept. of Civil Engineering, Massachusetts Institute of
Technology, Cambridge, Massachusetts, USA

and A. Melo Baptista

Laboratério Nacional de Engenharia Civil, Lisboa, Portugal

INTRODUCTION

Numerical models are routinely used to solve the advection dif-
fusion equation for purposes of simulating pollutant transport
in surface waters. A common difficulty in most such applica-
tions is to adequately represent concentrations in regions of
high concentration gradient. For surface water calculations,
strong gradients are found primarily near sources (e.g., pollu-
tant outfalls),

One procedure for handling such problems is to represent the
continuous plume near the source as the superposition of dis-
crete puffs that are advected forward in time until they are of
sufficient size to be adequately resolved with the numerical
grid. Such a procedure is well suited to Lagrangian Transport
Models or Eulerian-Lagrangian models in which the advection part
of the advection-diffusion equation is simulated by a (Lagrangi-
an) tracking technique.

This approach has been incorporated into the 2-D (depth-aver-
aged) transport model ELA (Baptista et al.,, 1984a, b). ELA uses
a split operator approach solving advection with a backwards
methed of characteristics using quadratic Lagrange polynomials
for interpolation and using an implicit Galerkin Finite Element
method for diffusion. Transformation processes such as volatil-
ization are treated separately in a third operation. The tech-
nique is illustrated in a simulation of halocarbon concentration
distributions resulting from sewage discharges into Boston Har-
bor.

PRCBLEM DESCRIPTION

Figure 1 illustrates a typical problem involving an outfall pipe
discharging into a coastal envircenment discretized with a rela-
tively uniform grid. For purposes of discussion, the near field

Froc. &4°12°7378

[ ]



is defined as that region over which discharge momentum and
buoyancy significantly influence local flow patterns. For a
typical sewage outfall this dimension may be of order 10-100 m
and no attempt is made to resolve concentrations within this
region. However, it is desired to simulate realistic distribu-
tions as close to the near field as possible.

Theoretical analyses (e.g., Fourier analysis) and numerical
experiments by a number of researchers have shown that the abil-
ity to successfully advect a pollutant source improves as the
dimensionless source size (i.e., characteristic source size
divided by characteristic grid dimemsion) increases. The mini-
mum acceptable source size will depend on the numerical proce-
dure and such parameters as Peclet and Courant number and total
simulation time, but will fall in the general range of 3 to 10
(Gray and Pinder, 1976; Baptista et al., 1985). This criterion
is not met, in general, for typical grid sizes of order 100-
1000 m. As a result, artificial diffusion is introduced, either
by the scheme itself, or by the model user who artificially
introduces the mass over a larger-than-realistic region. In
effect, the concentration distribution becomes artificially and
instantaneously spread until it is wide enough to be advected
satisfactorily. The result is erroneous prediction over an
intermediate region at least as large as that required for phy-
sical processes to provide similar mixing. For tidal zpplica-
tions, this intermediate region can easily extend for a distance
of one tidal excursion or more. For regions of strong tidal
currents such as Boston Harbor, this can represent several kilo-

meters or a significant fraction of the computational domain.

Figure 1 suggests three possible procedures for improving reso-
lution up to the point at which physical processes have spread
the pollutant enough to be resolved (i.e., the intermediate
field): a) local grid refinement, b) stochastic particle track-
ing, and ¢) use of puffs.

With finite element models, grid refinement is conceptually
straightforward. However, when the affected area is substan-
tial, and multiple sources are involved, matrix size and band-
width may increase substantially resulting in a significant
increase in computational cost.

Particle tracking has been proposed as a way to resolve strong
concentration gradients in Eulerian-Lagrangian models of ground-

‘water transport (Newman, 1984). Using this approach, particles

would be released at & rate corresponding to their effluent con-
centrations and advected by the known flow field. Diffusion can
be handled by assigning a random or pseudo velocity component to
the advected flow. The process is continued until the particles
have diffused over sufficient elements that a smooth concentra-
tion field can be computed for subsequent discretized calcula-
tion. A major drawback with this approach is that, in order to
accurately convert particle density to concentration, a large

C—g _ Froc. &44/18/7398




number of particles must be tracked in relation to the number of
grid points,

A third option involves the use of puffs as suggested by Adams
et al. (1975) and used by Ilolly and Usseglio-Polatera (1984).

In such an approach, the intermediate field plume is represented
by a number of discrete puffs, released one at a time, with a
size proportional to the near field mixing zone. As with parti-
cles, each puff is tracked forward in time. However, dispersion
is handled by dispersing the puffs in accordance with a pre-
scribed dispersion law, e.g., as determined by a tracer study or
as estimated from the literature (Okubo, 1971). In contrast
with particles, this may involve as little as ome tracking per
unit of time thus reducing costs. As illustrated below, the
present approach is really a hybrid, using up to five trackings
per puff in order to better define puff spreading. Nonetheless,
the savings should still be substantial.

DETAILS

Figure 2 illustrates, schematically, puff placement for the sim-
ple case of a constant current. The elapsed time depicted is

T = NAt where At is the basic computational time step between
alternate advection and diffusion caleulations with ELA. (AL =
3.1h is used in the following calculations.)

Assume MAt is the minimum duration required for the puffs to
mature to full sizd. (M = 1 has been used in our caleulations, )
As indicated by the overlapping circular distributions, puffs
are placed around the source corresponding to mass which is
physically discharged during the period (N-M-1)At < 7 < NAt.

The most recently discharged mass is positioned first {adjacent

to the source)} and subsequent puffs are created to allow suffi-
clent overlap.

Puffs created during the period of duration At from (N-M-1)At <
7 < (N-M)At are mapped onto the finite element grid at the be-
ginning of the advection step. Younger puffs, created between
(N-M)At < r < NAt, are discarded unless a concentration printout
i1s desired, in which case they are mapped onto a highly resclved
local grid created only for contouring.

For the illustrative calculations below, symmetrical Gaussian
puffs have been used implying isotropic dispersion. {However,
different distributions could readily be used.) For each puff,
the concentration distribution is thus

-

C

n{ t)
- PO expil (%)% + (3-y,)71/207) (1)

where h is the local depth, m is the mass loading rate, Ar is
the time interval asscciated with the puff (see Figure 2}, (x,,
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y,) is the center of mass, and ¢ is the standard deviation. Puff

centers are tracked forward in time by reversing the fourth-
order Runge-Kutta integration scheme used by ELA in the backward
tracking of characteristics, along with the known space and time
dependent variation in current speed. Thus

T
%, (T) = %o .~ + f u dt
T

(2)
T

¥1(T) = Yo + f v dt
: T

In principle, puff spreading can be computed from a relationship
such as

T
o2(T) = o3(r) + 2 D dt (3)
T

where D is an empirical (dispersion) coefficient and o, is the

initial standard deviation at the edge of the near field. o, is

determined from the near field mixing as

5Q,
To = — . (4)

J12 Jul h

where Q, = effluent flow rate, |u| = instantaneous current

speed, and 8§ = near field wvolumetric dilution (determined from
measurements or a model as a function of ju| and h).

In a depth-integrated model, D represents physical mixing (dis-
persion associated with horizontal and vertical current shear as
well as turbulent diffusion) plus fluid convergence/divergence
effects associated with changing bottom and free surface eleva-
tion. Hence D would be expected to change with spatial position
and time.

To help separate these effects, and render the intermediate
field spreading of puffs similar to the far field mixing handled
by finite element, an equivalent "diffusionless" puff distribu-
tion at time T can be computed by tracking n - 1 additicnal par-
ticles. These particles are distributed initially at a distance
of o, from the source center (X, ycg and are tracked along with

the puff center. The equivalent ¢ is’ then approximated as the
geometric mean of the dlstances between particles i and the cen-
ter of mass:
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n
ot = I [(x,%p)? + (73-y1)?]
i=2

1f puffs are to be tracked over a long period of time, Equations
(5) and (3) can be used sequentially over a number of time
steps, with the first term on the right-hand side of Equation
(3) taken to be the last value of o2 from Equation (5). It is
apparent that the major difference between this hybrid method
and one using exclusively particles (i.e., Figure 2b) is the way
in which diffusion is calculated.

APPLICATION

The above technique has been used to simulate the fate of treat-
ed sewage effluent discharged into Boston Harbor on the western
shore of Massathusetts Bay. Boston Harbor has approximate mean
width and depth of 10 km and 10 m, and is characterized by nu-
merous islands and complicated bottom topography. Flow is pri-
marily tidally driven with mean amplitude of about 1.4 m.

Figure 3 sketches the finite element grids that are used. The
largest grid (Figure 3a) includes 888 triangular elements with
linear basis functions used to compute circulation with the har-
monic circulation model TEA (Westerink et al., 1985). Transport
caleulations are made with the inner grid (Figure 3b) comprised
of triangles with quadratic interpolation functions used for the
finite element (diffusion) calculations and for the interpola-
tion component of the advection calculdtions. The twe major
effluent sources are indicated (as black dots) on Figure 3b: the
Deer Island Treatment Plant (to the north) and the Nut Island
Treatment plant (to the south) discharging respectively

18.4 m3®/s and 5.9 m3/s.

Field measurements indicate that near field dilution is a strong

function of tidal phase obeying the following approximate rela-
tioms:

8 = 50.5}ju} + 6.5 (Deer Is.)

(&)
S = 31.7{u} + 5.5 (Nut Is.)

where |u] is in m/s. For the Deer Is. outfall, |u] varies from
about 0.07 to 0.61 m/s between slack tide and maximum flood
resulting in almost a factor of four variation in dilution (10 <
§ < 37). For Nut Is., 0.04 < |u}] < 0.25 m/s resulting in a fac-
tor of two variation in dilution (7 < § < 13),

Figure 4 illustrates computed concentration contours for the
compound 1,1 ,1l-trichleoroethane, an industrial solvent discharged
through both outfalls at a concentration of approximately

6.7 ppb. Simulations are shown at high tide under conditioms of
periodic steady-state due to M, tidal forcing (period = 12.4

hours), no wind stress (resulting in minimal residual circula-
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tion), an ambient diffusion coefficient of 10m?/s, and a piston
velocity of 10 cm/hr describing volatilization. Measurements of
halocarbon concentrations have also been taken in the harbor and
substantiate the 2-D assumption. Parallel efforts are mow under
way aimed at a) model validation, b) establishing the viability
of halocarbons as sewage tracers, and c) exploring the process
of volatilization by comparing the geochemical fractionation of
several related compounds both discharged and measured simuita-
neously. However, for present purposes, Figure 4 is presented
to 'illustrate the sensitivity of predicted concentrations to the
source representation., In particular, note the area of high
concentrations west of the discharge from Deer Island and south-
west of the discharge from Nut Island. These high concentra-
tions represent effluent that was discharged during low tide
when near field dilution is low and that has been advected to-
ward shore during flood tide. Preliminary field measurements
have confirmed this phenomenon. Figure 5a depicts corresponding
high tide concentrations resulting from only the puffs released
near the Deer Island outfall during the most recent 6.2 hours

(M =1, At = 3.1 hours) and Figure 5b shows the local grid. The
factor of approximately 2.5 between concentrations at the west-
ern and eastern edges of the plume (representing discharge at
low and high tide respectively) and those in the center (repre-
senting discharge during flood tide) is apparent.

The above calculations were made with a time step of 3.1 hours
or one-fourth of a tidal period. As such, substantial computa-
tional savings were possible by saving, for each of the four
tidal phases, both 1) the feet of the characteristic lines ema-
nating backwards from each grid point necessary for computing
far field concentration and 2) the intermediate field puff sta-
tistics (Ar, %X;, ¥,, ¢). Using this procedure it is estimated

that the CPU time required for a two-week simulation (27 tidal
cycles and the approximate time required to reach periodic stea-
dy state) is about two times that required for a single tidal
cycle. While more accurate calculations would use additional
tidal components, with longer repeating intervals, it is likely
in many instances that transport calculations would still be
required for multiple cycles, hence justifying the storage.

CONCLUSIONS

The above description aud application illustrate how puffs can
be used efficiently to provide increased resolution near effiu-
ent sources in pollutant transport models. " Qutfall configura-
tions, models parameters (e.g., diffusion coefficients) and

" puff representation have been kept simple for illustration, but

more sophistocation can be employed if desired’ and warranted by
available data.
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Figure 3a. Finite Element Grid of Hassac.husetts“Ba:)'r
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