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1.1 - The subject of study

Waves play a dominant role in the field of coastal engineering. They are a major
component of the design of coastal structures, harbour planning. and beach
protection works. Information about the wave field for a certain area of interest is
important as input data in order to evaluate the nearshore hydrodynamics {wave
processes are responsible for large fluid motions which drive currents) ond also the
nearshore morphodynamics (the consequent sediment i{ransport and bed
evolution). More attention has been devoted to this topic since the 70's, which has
led to significant progress being achieved in its understanding and consequent

modelling.

This particular study is centralised on the modelling of the wave field. The
guantification of the nearshore wave climate usually produces information such as
wave height and wave direction. The estimation of the wave field is done because
in general the locations where the wave conditions are known are different from the
locations at which the design wave conditions are desired and so it is necessary to
calculate the transformation of waves from one depth to another in order to obtain
the design wave conditions at the pardicular area of interest. Such wave
transformations occuming in the nearshore region involve processes such as
shoaling, refraction, diffraction, reflection and breaking.

The sea state is a random process with the repercussion that its modelling is @
complex task. Physical and numerical models have been developed all over the

world to improve the realism and accuracy of wave transformation predictions
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although aspects like wave interactions, mostly non - linear, remain stili poorly
understood. Physical models are usually quite expensive, therefore the use of
numerical models is currently on the increase with the advantage of their

immediate use in industry for more than one application.

Wave transformation modelling techniques and mathematical models of wave
climate have been reviewed by Hamm et al. {1993} and Yoo et al. {1989). Since the
last decade the mild - slope equation derived by Berkhoff {1972, 1976) for linear
waves, has become the most popular mathematical model to predict the wave
field in the nearshore region. It describes wave transformations from deep water
through to shallow water in terms of the velocity potential function, including the

processes of refraction, diffraction and reflection.

The above equation is a departure from the traditional approach based on a wave
averaged energy conservation law, which is the main component of pure refraction
wave ray models, derived by integrating basic equations of fluid motion over the
depth and averaging over a wave period. Ray models have the advantage that
they can be applied to large areas with relafively small computational storage
requirements. Nevertheless, the mgjority of such models cannot describe
satisfactorily wave transformation in caustic zones because the underlying
technique does not allow for the diffraction process. More recently. this limitation
has been overcome in @ model proposed by Yoo and O'Ceonnor (1986) by
infroducing a term that accounts for diffraction inio the kinematic energy
conservation equation. However, like other ray models it is only valid for fully

progressive waves, that is; it excludes the effects of reflection.

The mild - slope equation has been successfully applied to a wide range of water
depths, although it loses some accuracy in shallow water and for very steep waves.
It is also accepted that in shallow water the Boussinesq equation gives better results
than the mild-slope equation because in the latter the linear wave assumption is not
applicable in shallow water. Nevertheless, this disadvantage can be somewhat
overcome by infroducing a certain degree of non - linearity into the model with the
inclusion of a non - linear term based on an empirically formulqted dispersion

relationship. Other phenomena like wave - current interaction (Kirby, 1984) and
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energy dissipation (Dalrymple et al, 1984) have uiso been recently implemented into.

the original equation.

Numerical solution methods for the mild - slope equation have been the subject of
constant investigation since its derivatfion, and in order to develop more efficient
models several researchers have derived different formulations of the mild - slope
equation, namely parabolic, hyperbolic and elliptic. In this work the wave field is
solved adopting the elliptic form of the mild - slope equation. Part of the work is
dedicated fo developing an efficient numerical model capable of solving the
problem with a minimum computational cost and simultaneously without imposing
any mathematical restriction that would lead to inadequate description of the
physics involved. The rest of the work is dedicated to its anplication to a random
wave field. The process of energy dissipation through wave breaking has been
infroduced into the model where the randomness of the wave field is dealt with by
a spectral component approach, which consists of dividing the spectrum into o
finite number of independent components in the frequency domain over a certain

range of directions.

1.2 - Original contributions of this work
The eriginal contributions of this work can be summarised as follows:

1} An efficient numerical model to solve the elliptic formuiation of the mild - slope
equation based on a robust iterative method that can be applied to large areas

with a reasonable computational cost.

2) An improved numerical model based on a hyperbolic form of the mild - slope
equation achieved by incorporating sponge filters info the numerical

boundaries so as to increase their efficiency in dealing with cutgoing waves.

3} An evclﬁcﬁon of the effects on the performance of the numerical model based

on the elliptic form of the mild - slope equation of incorporating sponge filters
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info the model and upgrading the radiation boundary conditions from first to

higher orders of accuracy.

4) A numerical model based on a non - linear transformation of the mild - slope
equation which is solved by an iterative process which has its convergence

behaviour accelerated by a multigrid technigue.

5) A numerical model for iregular wave propagation in the nearshore region that
does not include the energy dissipation process due to wave breaking. based on

(1) above and on the linear superposition of independent spectral components.

6} Two numerical models for irregular wave propagation in the nearshore region
that incorporate the phenomenon of wave breaking based on different

formulations.

1.3 - Layout of the thesis

This thesis is divided in 7 chapters. Each of chapters 2, 3, 4, 5 and 6 deals with a
different subject although there is a logical sequence linking them. In each of the
chapters one or more numerical models are described, developed and validated.
An introduction to the paricular subject is given at the beginning of each chapter
followed by a description of its mathematical formulation and then a literature
survey on work previously done on its modeliing. There follows a mathematicai
description of the model proposed, the tests performed to validate the model or
models together with a discussion of the results obtained, and finally each chapter is
conciluded with a brief summary. In the last chapter. chapter 7, conclusions about
the work undertaken are established and some recommendations for further work

based on these conclusions are put forward.

In chapter 2 two robust algorithms are implemented in two iterative numerical
models of the elliptic form of the mild - slope equation. Chapter 3 is devoted to
improving the performance of models based on the mild - slope equation by

implementing and testing different types of radiation boundary conditions for
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outgeoing waves. Different proposals are examined and implemented. and their
effects evaluated. In chapter 4 a numerical model based on a nen - linear
formulation of the mild - slope equation is solved iteratively and a multigrid
technique is used to accelerate its convergence. In chapter 5 a numerical model
for random waves based on the model previously obtained for monochromatic
waves is developed. Finally in chapter é two different approaches for incorporating
the breaking phenomenon are put forward in the numerical model for random

waves and the performance of the two numerical models generated is evaluated.
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2.1 - Intfroduction
2.1.1 - Chapter layout

in this chapter is described the initial part of the research work done on modelling
wave propagation. The goal was fo develop a numerical model for the mild - slope
equation that approaches the phenomenon of regular wave propagafion
accurately and efficiently without compromising the physics involved. The elliptic
form of the mild -slope equation was chosen because it is the one that best satisfies
the above requirements as will be explained in the chapter.

To develop an efficient model, it is crucial fo implement a suitable algorithm that
iteratively solves the linear system of equations generated from the governing

equation. Thus, iwo numerical models with different algorithms were developed.

The present chapter is organised as follows: ,

 This section introduces the mild-slope equation and discusses its validity. It includes
a description of refraction and diffraction together with a general survey of
previous models that approach both phenomena.

« Section 2.2 is dedicated to the derivation of the mild-slope equation and a
literature survey on the existing models.

* In section 2.3 a numerical model based on an elliptic form of the mild-slope
equation is proposed. The governing equation and the boundary conditions are
described. The mathematical methods o sclve the linear system generated are

extensively discussed and finally the two algorithms implemented are presented.
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* In section 2.4 the validation of the models (which differ in terms of the
implemented algorithm that solves the linear system iteratively) is done. Both are
verified for the case of waves propagating over an elliptic shoal and for harbour
resonance.

* Insection 2.5 the two numerical models are compared in terms of efficiency.

» To close the present chapter a summarised discussion of the work here developed

is done in section 2.4.

2.1.2 - General concepts

Linear waves are the first approximation of a complete theoretical description of
. monochromatic or regular wave behaviour. They are symmetrical about the SWL
and as they are pure oscillatory waves, which means that water particles move in
closed orbits for each wave period, the fluid is assumed not to move in the direction
of wave advance. In order to legitimately apply the linear wave theory the wave

steepness, H/L, and the Ursell or Stokes parameter defined by Stokes (1847) as Ur =
L’H/d’, should be small. Short waves are classified by H/L. << I and Ur < 75. Waves

can be classified based on the ratio of water depth to wave length as

Classification d/L
Shaliow water waves <1/20
Intermediate water depth waves 1/20to 1/2
Deep water waves >1/2

However, Goda (1983) summarised these parameters in the form of the Ursell

parameter and suggested the following classification:

Short waves when Ur<75

Long waves when Urz75

!

Commonly waves are classified as short for periods less then around 22 sec and long

for periods from 22 sec up to 10 min.
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Before the derivation of the miid-siope equation refraction and diffraction were
freated separately for short waves although some authors attempted to describe the
combined phenomenon mathematically. The shorfcomings of these equations was
that they did not reduce to the linear shallow water equation in the case of small
water depth, and they did not reduce o the appropriate refraction equations, the
eiconal eguation {defining the path of a wave ray] and the energy flux equation

{from which can be derived the law of conservation of energy flux between two

rays), when neglecting diffraction (or the curvature V2a of the amplifude function).

Refraction can be caused by variations on the bathymeiry or by any sort of
interference on the wave propagation that causes one part of a wave to travel
faster or slower than another. This phenomenon is described in several text books '
dedicated to wave mechanics and it is approached by a ray theory or geometrical
optics theory, assuming that wave rays can be defined as a family of curves to which
the wave number vectors are tangential and the wave energy flux is conserved
beiween two adjacent wave rays. Neglecting the presence of cuments and for
coastlines with straight parallel contours refraction analysis has been done for several

years based on Snell's law by two basic techniques, graphical and numerical.

Diffraction is the phenomenon of diffusion or transverse flow of wave energy. As a
dynamic process, different from the kinematic process of wave refraction it can only
be investigated through the fundamental equations of fluid motion. Diffraction
effects can occur due to the presence of an obstacle or if there is an abrupt change
in orthogonal spacing along the wave crest. In practice, the second factor can be
neglected for the pure refraction case but one should bear in mind that it can affect
the resulting wave height by diminishing the effect of wave refraction on wave
height variation along a wave crest. Water wave diffraction is analogous to the
diffraction of light, therefore Penny and Price {1952) derived a solufion for the
Helmholiz equation based on Sommerfeld's theory of the diffraction of light for the
case of surface waves. They were able to predict the wave crest pattern and height
variation for diffracted water waves. Wiegel {1962] applied the exact solution
presented by Penny and Price {1952) o calculate the diffraction coefficient for each
point behirid a structure as a function of its position relatively to the lee of the
structure and the characteristics of the incident wave. This method dcn be applied

o evaluate the effects of diffraction for a detached breakwater provided the length
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of the breakwater is equal to or greater than a few wave lengths. Johnson (1952,
1953) studied wave passing through a gap for different gap width to incident wave
length ratios and calculated diffraction coefficient contours in the lee of a gap
whose width is smaller than -about five times the incident wave length. For a greater
gap widih the diffraction effects of the structure on each side of the gap can be
considered independent and therefore the theory for diffraction at the end of each
single structure can be used for each side. For both types of structures, single and
with a gap, diffraction diagrams can be found in several text books (U.S. Army Corps

of Engineers, 1984).

2.2 - The mild-slope equation

The mild-slope equation can be derived based on the principle of conservation of
energy under the assumption that the bed is mildly sloping (Vi/kh = O(e)<<1)), that is
that the rate of change of water depth is small within a characteristic wave length,
and the water motion is irotational. which allows the infroduction of a wave
potential function. Wind action, wave breaking. bottom friction and bed percolation
were neglected. It is a verfically integrated model for wave motion therefore the
governing equation is 2-D. it is valid for a time-harmonic or periodic wave motion
and it can be considered on its time-dependent or time independent form. it
reduces to the Helmholtz equation for constant water depth and to the long wave
equation for shallow water. It is approximate in intermediate depth and exact in both
deep and shallow water. Booij (1983} comparing results obtained from the mild-slope
equation discretised by a finite elements technique with the full linear equations {3-D
model) reported favourably on the use of the mild-slope for quite large slopes like 1:3
or even the order of unity for certain circumstances. Several. other authors like
Copeland (1985), Smith and Sprinks (1975) presented a formal derivation of the mild-
slope equation and a more brief description can be seen in several text books like
Mei (1989), Massel (198%)and Dean and Dalrymple (1984).
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2.2 1 - The existing models

Since the 70's the mild-slope equation has been widely used because it can both
deal with generally complex wave fields {practical flexibility) and guarantee good

agreement with experimental data [accuracy).

Several numerical models were proposed to solve the elliptic form of the mild-slope
equation by a finite elements technigue (Berkhoff 1972, Bettess and Zienkiewicz 1977,
Houston 1981, Tsay and Liu 1983} which were verified by comparison with analytical
solutions like Hom-ma 's results for the long wave equation for plane waves incident
upon an island, measurements from a hydraulic model and different numerical
models available. Others proposed solutions cbtained by a finite differences
technique [Williams et ol 1980). All these numerical models give reasonably good
results although they require a certain minimum number of grid nodes, 8 or 10, per
wave length. This limits the applicability of the model to a large coastal area due to
its computational cost in terms of memory and time requirements. These models were
efficient for domains of applicability of the order of a few wave lengths. Although o
discrefisation of the partial differentfial equation using finite elements has the
theoretical advantage of flexibility in terms of dimensions of grid elements and
therefore allowing a more detfailed solution for a particular area of interest, in
practice, due to the requirement of a minimum number of grid nodes per wave
length. a finite differences discretisation can be a more simple numerical technique
to achieve the same accuracy for the approximate solution, with less computational

effort involved, in this particular elliptic form of the mild - slope equation.

Nevertheless, in order o overcome the computational effort to solve the mild-slope
equation on its elliptic form and obtain a solution for larger domains, several authors
proposed a model based on the transient or time dependent form of the mild-slope
equgation (Copeland 1975, Madsen and Larsen 1987). Copeland's model is described
in chapter 3. These mathematical models consist of a set of first order differential
equations derived from the elliptic form by o and Tanimoto (1972} for a steady state
harmonic solution. The derived hyperbolic system contains the equation of motion
and confinﬂify and it is similar in form to the shallow water equations. The number of
grid nodes per wave lengih necessary to obtain valid results is of the same order as

for the elliptic form. The disadvantage of this model is that for large domains the
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amount cf computer time required fo reach a steady state is considerable since the
time step aliowed by the explicit finite differences method is controlled by the

Courant number criterion.

Dong and Al-Mashouk (1989} compared the hyperbolic or transient model! (initial
value problem) with the elliptic or steady state model (boundary value problem) and
in fact they did not conclude on the superiority of one of the models over the other.
Nevertheless, for some particular problems like harbour resonance, the hyperbolic
model requires a considerable amount of time to reach a steady state, and thus can

be less efficient.

Another way to solve the mild-slope equation using a more economic model was '
suggested by Radder{1979) with a parabolic approximation. Parabolic
approximations are widely used because they can be used in wave propagation
studies over an area of 10 to 100 wave lengths. The disadvantage of such a
formulation concerns the inadequate description of the underlying physics. Wave
reflections and diffraction effects {curvature of the wave amplitude) in the direction
of wave propagation are neglected. This means that only diffraction effects along
the wave front (line of equal phase) are taken into account and that the main
direction of propagation has fo be maintained. Such considerations can be of
extreme importance in harbours and therefore limit the applicability of the model in

those circumstances.

Pursuing the goal of finding approximate solutions of the mild-slope equation suitable
for large coastal areas, Panchang et al {1988) developed a mode! based on the
elliptic form of the mild-slope equation transformed by Radder {1979), the reduced
wave equation, which is solved by an Error Vector Propagation or marching method
implemented in finite differences. The advantage over the parabolic form is that
reflections are considered allowing therefore its applicability when the bathymetry or
structures reflect the energy in the main propagation direction. However, the physics
is still compromised regarding diffraction.

Another c:ﬂémpf to address the problem was suggested by Ebersole {1985) with a
model in which the set of govemning equations was derived from the elliptic form. it

consists of an initicl value problem with a finite differences solution. The author claims
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that it can be applied without the parabolic models constrains for areas two orders
of magnitude larger than the areas were a mode! based on the elliptic form as a

boundary value problem is applied.

Radder (1979) and Li and Anastasiou (1992} proposed a numerical model based on a
non-iinear form of the mild-slope equation where the dependent variable is a slower
varying function than the velocity potential. The advantage of this governing
equation is that due to the characteristics of this new function the minimum number
of nodes per wave length required to obtain reasonable results can be of the order
of 3 in the absence of refiections. Thus, it allows the applicability of the model for
larger coastal areas. Li and Anastasiou (1992) implemented a multigrid technique to
accelerate the convergence process of the model. Further description and

discussion is done in chapter 4.

A recent group of numerical models proposed by Panchang et al (1991), Li (1994}
and Zhao and Anastasiou (1996) seem to be in the right direction fo overcome the
difficulty of solving the mild-siope equation for large coastal areas without
compromising the physics involved in the phenomenon. All these models assume the
elliptic form of the mild-slope equation as the governing equation and discretise it by
a finite differences technique. The innovation of these models consisis of solving the
problem iteratively using powerful algorithms which have been more recently either
developed or explored. A more detailed discussion of these models is done in section

2.3 because it would not be appropriate to do it here.

2.3 - Numerical treatment of the mild-slope equation

The original mild-slope as derived by Berkhoff {1972)

V.(CCEV¢)+co3¢EC-=0 (2.1]

4

can be written in its Helmholtz form without loss of generality (Radder, 1979}, as
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Vid+kid=0, : _ (2.2)

also called the reduced wave equation, where k. . the effective wave number is

defined by

1
ok oy (ccg])- ‘ (2.3)
(ec.)?
k is the local wave number governed by the dispersion relation
@? = gk tanh(kh), (2.4)

@ is the wave angular frequency. h is the local water depth, g is the gravitational

acceleration, C=a/k is the phase velocity and C,=0w/dk is the group velocity.

Equation (2.2} is an elliptic equation, boundary value problem, that can be
discretised by a 2nd order finite differences technique valid for the grid node ij as

follows,

[¢i-l.; _2¢l:’j +¢i~l._p) +[¢'1.j—l _2‘1)1;] +¢1.j-1] N ks‘i’s —0 (2.5)
Ax® Ay* I

in a system of cartesian co-ordinates, where x is the direction normal to the shore and
v is parallel to the shore.
Other forms of discretisation could have been used but this was chosen due to its

simplicity, effectiveness and small number of variables involved,

In a boundary value problem the implementation of the most representative
boundary conditions is essential to the performance of the model. An attempt to
improve the order of accuracy of boundary conditions, as it is done in chapter 3. is @
worthwhile investment aiming at improving the model.

Boundary conditions are extensively described in chapter 3, therefore in this chapter
the subject ,\;;fill be restricted to a brief description of first order radiation boundary
conditions. They can simulate outgoing waves in order to limit the area of

compvtation with the minimum amount of ardificial reflections or infroduce a certain
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reflectivity fo simulate a possible obstacle. The radiation boundary conditions for

waves approaching the boundary with a normal incidence are:

+ Offshore driving boundary

% =ik (2¢' - ¢) | (2.6)

discretised cs

¢i—1,, _¢i,j —ikc[Z ¢:-L] +¢:,; _ ¢’i-1.,| +¢n.jJ =0

(2.7)
Ax 2 2
fori=1landj=1,.,Nyv
» Shoreward downstream boundary
o .
— =ik ou (2.8)
. ¢
discrefised as
i~ 9, +
¢|.,_‘| ¢1—],_| _ ikca[d}u d)l-l.,lj =0 (2.9)
Ax 2
fori=Nxandj=1,. Ny
* Lateral downstream boundaries
b _ ik ab (2.10)
oy
discretised as
=, . +d .
——(b” d)"’“ - ikco{—-———d)"J d)"’”] =0 {2.11)
Ay 2
fori=1,...Nxandj=1, and
— . +
¢’|.] ¢1,_1—l _ikca[¢l.1 ¢1-J'1} =0 . {2.12)
Ay 2

fori=1,..,Nxandj=Nv

where o is d reflection coefficient to be determined empirically and ¢’ is the incident

wave at the boundary.
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The downwave formulations {2.8) and (2.10} were derived to produce an
approximated solution at the boundaries that minimise reflection of the ouigoing
waves and simultaneously a sclution of the Helmholtz equation in the form of a plane
wave. s derivation can be followed in Kirby's publication, 1989. The driving
boundary condition, formulated by equation (2.6) is based on the same derivation as
the downwave boundaries, but here the velocity potential is assumed to have two
components, the incident and the backscattered potential

b=¢' +¢°. : (2.13)

and thus

o =ik (6 —0) =ik (0 - (6-9')) = ik, (20 -4).

The discretisation of this boundary value problem generates a linear system of

equations (Ax=b) that can be solved by a direct or indirect method.

Direct methods, like the Gaussian elimination method, produce the exact answer in o
finite number of steps (in the absence of rounding error). They can be efficient for
domains of approximately 10 wave lengths. However, bigger areas imply larger
storage requirements which can make the problem prohibitive despite applying

sparse matrix technigues.

Indirect or Herative methods produce o sequence of approximations which
converge to the solution in the limit and can be more economical than direci
methods for a large system of equations. iterative methods were therefore chosen.
They can be classified into stationary and gradient methods. For both cases trial
values of variables are improved by iterative corrections until they satisfy a
convergence criterion. It is the comection technique of the values of the variables
that distinguishes the methods,

An iterafive method is called stationary when the error propagation through one

iteration step can be specified in the form
e = Mel®, (2.14)

where e is,’rﬁhe vector of emrors in the approximation x such that

x™ = x e (2.15)
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and M is the iteration matrix, function of the coefficient matrix A, which does not vary
from iteration to iteration.

An iterative gradient method of solving n simultaneous equations is equivalent to the
process of finding the position of the minimum of an error function defined over an n
- dimensional space. This is done by finding groups of vectors and directions that
correspond fo the solution. In each iteration a trial set of values for the variables
generates a new set corresponding to @ lower value of the error function. Here, in
contrast with stationary methods, error vectors cannot be generated by means of an

iteration matrix therefore the process is classified as non - stationary.

Finally comes the convergence critetion which, if satisfied, terminates the iterative
process. The two most common criteria are: either a vector difference norm or a
residual norm both associated with a tolerance chosen according to the degree of
accuracy of the solution wanted.

For a vector difference norm the formulation is
” x(K) _ x(k-1)

" x“"" < tolerance {2.16)

For a residual norm the formulation is

= |
m < tolerance {2.17)
or
[+
m < tolerance, {2.18)
X

where '™ is the residual b-Ax™.

The residual norm was the criterion chosen when solving the mild-slope equation for
two reasons: it is known to be the more reliable of the two criteria since some
iterations may have a slow convergence; also its use would be consistent with other
avthors like Panchang et al (1991). Li (1994) and Zhao and Anastasiou {1994}, who
used the same criterion. Consequently, the iterative process used to solve the mild-

slope equation is ferminated when
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> vio+kis[
Slel

< tolerance. (2.19)

The difficulty of iterative methods is mainly related with the convergence process.

Classical stationary methods like Gauss - Seidel, Jacobi and SOR (Successive Over

Relaxation} do not guarantee convergence when applied to the present governing

equaiion because:

a) A is not diagonally dominant. The sum of the coefficients of the non-diagonal
elements in the matrix {which are 4, resulting from the first four terms) are usually

larger in absolute value, than the coefficient of the diagonal element.
—T
b) A is non-Hermitian hence not positive definite. For A to be Hermitian A = A, that
is a_k; = a, , which is not true due fo the boundary conditions.

Consequently other methods have to be considered in order to solve the mild - slope

equation iteratively.

The conjugate gradient (CG) method converges only when A is symmetric (AT = A
or a, =a,} and positive definite (xTAx >0 , Vxe C#0). To overcome this

difficulty, Panchang (1991} reformulated the problem to produce a matrix A, which is
symmetric and positive definite by using a Gauss transformation, i.e. by multiplying
each side of the equation by the complex conjugate transpose of A. The mairix A
was thus fransformed to a normal matrix. Although the process was guaranteed to
converge it was rather slow. Thus Panchang (1991) proposed to use a real matrix to
precondition the governing equation and then apply the previous transformation. He
then obtained an algorithm that requires more operations per iteration but claimed
that convergence'is reached after substantial fewer iterations, resulting in savings of

computer fime.

Li {1994) proposed a modified CG method named generalised conjugate gradient
(GCG) method. As it was said, gradient methods are based on the idea of minimising
an error function. The term conjugate means that the successive generated vectors
that converrge to the solution are orthogonal with respect to A. The- difference

between the CG and the GCG method is that they were derived based on a
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different error function. This allows for the GCG method to be applied in a straight
forward manner without having to transform the matix A inte a normal matrix. Li
(1994) demonsirated that to solve the elliptic shoal case with a convergence
criterion represented by equation (2.19), for a tolerance of 107 the CG without
preconditioning requires 16800 iterations, with preconditioning requires 2000 iterations
and the GCG requires 2500 iterations. He claimed that the rate of convergence of
the GCG is as fast as that of normal equations with preconditioning and with less

storage requirements.

In the present work two other gradient - like methods are studied and used tfo solve
the mild-slope equation. They are the Biconjugate Gradient Stabilised (Bi-CGSTARB)
method praposed by Van der Vorst (1992) and the Generalised Minimum Residual
(GMRES) proposed by Saad and Schultz (1986). They were developed for non-
Hermitian finear systems and the difference between these Krylov Subspace Methods
is that while the GMRES iterates the approximate solution expressed in terms of Arnoldi
vectors, the BI-CGSTAB iterates the approximate solution expressed in terms of

unsymmetric Lanczos vectors.

A subspace of R™ is @ subset that is also o vector space and for a collection of
vectors a;, ... a, eR™ , the set of all linear combinations of theses vectors is a
subspace. Krylov subspaces are just the range spaces of the Krylov matrices which

can be defined as follows: if A ¢ R"' " and v € R”, then the Krylov matrix K(A, v, j) €

R} is expressed as K(A,v,j) = [V,Av,.,.,A"’v].

Using the Arnoldi vectors or the unsymmetric Lanczos vectors are two ways to

proceed in order to overcome the non symmetry of the mairix A which results in the
non existence of the orthogonal tridiagonaiisation QTAQ = T. in order to implement
both algorithms, a partial friadiagonalisation of A is done. The Arnoldi algorithm
dllows the partial friadicgonalisation of A making use of only one set of orthogonal

vectors, meaning that, the approach involves a column by column generation of an

orthogonal @ such that QTAQ = H is the Hessenberg reduction (h, = 0, i>j+1), with

QTQ =1. The unsymmetric Lanczos algorithm makes use of 2 sets of biorthogonal
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vectors for the triadiagonalisation of A. This approach computes the columns of Q =

[qi. ... @) and P = [p,, ..., pa} so that PTAQ =T is tridiagonal and P'Q = I,.

Both algorithms. for the BI-CGSTAR and the GMRES methods, are described in the

following sections.

2.3.1 - The Bi - CGSTAB method

The Biconjugate Gradient method (Bi-CG) was initially presented by Fletcher (1976)
for solving general non-Hermitian systems. I is an extension of the Lanczos derivation
of the Conjugate Gradient method by producing a sequence of iterates {x.} with
the property that x; belongs to x¢H¢(A. 1, k) and produces a residual that is
orthogonal to (A, s, k) for some s, € R, where the symbol k denotes subspace.
However, in here, the matrix A is not symmetric therefore it is not possible to reduce it
to tridiagonal. Thus the unsymmefric Lanczos process is used to generate bases for
the two involved Krylov spaces. In particular, after k steps of the unsymmetric Lanczos
algorithm we have: Q. P € R""¥ such that BT Qi = I, .a tridiagonal mairix T;, = P,’AQ;
such that

AQ, =Q,T, +r.e] P'r, =0

ATP, =P T  +s.e] Q;s. =0,

and the Galerkin condition

Pl (b-Ax,)=P (r,—AQ,y,)=0

is valid, Q. = {qi. ... @] and Py = [p1. .... px] are Lanczos vectors, that is a sequence of

orthogonal vectors, e, = I(:.k) and y« such that T, v = Qi 1o

Because the Bi-CG method suffered from numerical instability due to its dependence
on the unsymmeiric Lanczos process. more stable algorithms were developed in
order fo overcome this shortcoming of the method. The most successful was the
Conjugate 'Gradients-Squared {CG-S). a variant of the Bi-CG that steered the
direction vector towards the solution. It is known for it§ favourable speed of

convergence but it presents a quite iregular convergence behaviour paricularly
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when starting the iteration ciose fo the solution. A new method which is more -
smoothly convergent was needed and so Van der Vorst [1992) proposed the Bi-
CGSTAB method. This method is applied as follows:

a) Choose ¢, and tolerance. Set the scalar @ o= LPB=1 00=1, and the vectors v, =

qo = 0.
b) Calculate r, =b - A¢,
c) Fori=12_...
B: (ro’rl—l)
- 03
(Dl sl P—._ﬂ
B al-l
q: = rt—l +m|(q|-1 _ai—lv:-l)
v, = Aq,
-__B
(ro’vi)
5= r:-l _0—)1":
1=As

d). = ¢i—i +03:q: +O,s
r,=s-a,t

d) ¥ [r, /] . | < tolerance, stop. Otherwise, go 1o (c).

As a remark regarding the above notation used to describe the algerithm, it should

be said that (x. y} denotes inner product of two complex vectors x and y. which is

defined as (x,y)=X"y.

The language used to formulate the algorithm was Fortran 77. As it is also the case for
any other computing language, the structure of the code is totally dependent on the
ability of the programmer. Nevertheless, it is useful to state here some information
regarding this particular aspect. The algorithm was written for complex variables in a
{otal numberf of 68 lines. The main iteration process was written in a total of 42 lines
that evoke iwice a routine with 28 lines and 3 times another routine with 11 lines.

Further information regarding computation time and number of iterations required to
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solve a particular problem will be presented in the appropriate section, section 2.5,
where a comparison with the same parameters concerning the GMRES algorithm will
be established.

A useful final remark within this section is that, in his work, Van der Vorst (1992}
established a comparison between the CG-S and the Bi-CGSTAB for several cases
and demonstrated the better performance of the Bi-CGSTAB regarding efficiency

and convergence behaviour.

2.3.2 - The GMRES method

The original GMRES was proposed by Saad and Shuliz {1986} as an efficient iterative
scheme to solve non-Hermitian linear systems of equations. Just as the unsymrnetric
Lanczos process underwrites the Bi-CG method. the Arnoldi process underwrites the

GMRES method. In this method the iterate x, minimises "b—AxI over the set

XoHU(A,Ip.k) and it is expressed in terms of Arnoldi vectors.

To overcome the difficulty of the original GMRES method in dealing with o matrix with
complex coefficients Walker and zhou (1994) proposed a modified scheme. This
scheme was adopted by Zhao and Anastasiou (1994} who also propose-d 3 other
GMRES-based iterative methods. The GMRES scheme can be formulated as follows:

a} Choose initial x,=¢, and tolerance.

bj Start r, =b~Ax,, B=|r|,. r,=r,/B.

c) Apply the Amoldi process

forj=1....mdo
+ v,=Av,, (v, =Ar)

» Fori=1,...j-1
hl.j = (vl’vi)

v,=v,—h .v,

”

. C’(.:.mpre hj._l = ||V|"

)

vJ = VJ/hJ-.'
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+ p=(ry))
r=r-—p,v;

d) Solve Hy, ym = P
where P = (py, p2, ..., Pm) -
Form the approximate solution:
X =X, +V_ y_
e} Restart,
if satisfied, stop. Else x, = x,, . go to [b).

||vj”2denoies the 2-norm of vector v, . ie. Iif vjz(ql,q:,...,qn)T. then

"anz = \’gq’: )

The Arnoldi iteration number m is used to fruncate the iferation process. For a large
consecutive number of steps the round - off errors would accumulate leading to loss
of orthogonality. Thus, the truncation of the process stabilises the algorithm. The value

used here was m=15 to be consistent with Zhao and Anastasiou (1994).

The programming language used fo code the algorithm was also Fortran 77. Bearing
in mind what was said for the Bi-CGSTAB algorithm, also here some information
regarding the writing of the computational code will be stated. The algorithm was
written for complex variables in a total number of 123 lines. The main iteration process
was written in a total of 98 lines that evoke three times a routine with 28 lines and 4
times another routine with 11 lines. The implementation of the GMRES algorithm is
more complex than the implementation -of he Bi-CGSTAB algorithm. Regarding
computation time and number of iterations required to solve a paricular problem,
further information will be presented in the appropriate section, (section 2.5) where a

comparison between both algorithms is established.
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2.4 - Validation of the models

The two models differ on the algorithm that solves iteratively the linear system of
equations. The system contains the governing equation, equation (2.5) and the
boundary conditions, equations (2.7). (2.9), (2.11}) and (2.12). It is a system of Nx*Ny
linear complex equations. The unknowns are the velocity potential at each grid
node, and Nx and Ny are the total number of grid nodes in the x and v direction
respectively. One model uses the Bi-CGSTAB as the iterative solver {fromm now on
called the Bi-CGSTAB model) and the other the GMRES algorithm {from now on
called the GMRES model). Both models will be validated for two cases: wave
propagation over an elliptic shoal and harbour resonance. The choice of the above

cases will be explained in each section.

2.4.1 - Verification of the models for wave propagation over an elliptic shoal

The elliptic shoal case is often used to demonstrate stability. accuracy and efficiency
of numerical models used to predict the wave climate in the nearshore region
because it involves the occumrence of a complex diffraction patiern behind the

shoal. comesponding to a cusped caustic in the wave-ray approximation.

Berkhoff et al (1982) set an experiment for this case and because the resulls are so
well documented aliowing for the comparison with results obtained from numetical
models this case became known as Berkhoff's shoal. Is geometry consists on an
elliptic shoal that lays down over a mild slope of 1:50. The bottom lay - out is shown in
Fig. 2.1 where a more detailed description of shoal dimensions and position can also
be seen. The incident wave direction is slightly oblique to the bottom contours and to
the minor axis of the elliptic shoal {209). Both numerical models will be applied to

predict the wave climate in this region.

The incident.waves have a period of 1 sec and are normal to the offshore boundary,

The models run on a numerical domain of 220+200 grid nodes in the x and v direction

respectively. The grid spacing considered was Ax = Ay = 0.1 m. The cartesian co-
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ordinates have the directions shown in Fig, 2.1 and the centre of the shoal has co-

ordinatesx=11.0m and y=10.0 m.

Equation (2.6) was used for the incoming or offshore boundary. For the outgoing
boundaries, equations (2.9). {2.11) and {2.12) were used with the coefficient o, = 1, to

simulate artificial boundary conditions. The convergence criterion used for the
iterative methods is expressed by equation {2.18) with a tolerance equal to 107, fo be

consistent with Panchong et al (1991).

The computational results are expressed in terms of normalised wave height. defined
as the wave amplitude at each node divided by the incident wave amplitude,
because this way is easier o analyse the amplification of the incident wave due to its
transformation. The two dimensional {2D) results obtained with the Bi-CGSTAB model
are shown in Fig. 2.2 and the ones obtained with the GMRES model are shown in Fig.
2.3. Both plots represent the results in terms of contours {lines of equal normalised
wave height). Sections taken from the region behind the shoal (Fig. 2.1} are
presented in Fig. 2.4.1 fo Fig. 2.4.8 together with experimental data obtained by
Berkhoff et al {1982). These sections are numbered from 1 1o 8 and are located at x =
1P20m x=140m x=160m x=180m. x=200m.y=80m.y= 100 mand y = 12.0

m, respectively.

The results obtained show that both numerical models. the BI-CGSTAB and the
GMRES, describe reasonably well the physical process of wave propagation and
deformation over this particular bathymetry. The 2D contour plots, Figs. 2.2 and 2.3,
allow fo observe that both models show an excellent agreement in terms of wave
pattern and amplification factor. This is confirmed by Figs. 2.4.1 to 2.4.8, which show in
more detail the computational resulis for the region behind the shoal together with
the experimental data available to validate the models. The physical transformation
that occurs -behind the shoal can be described by two phases: the first is o
convergence- or focusing of wave energy that occurs in aon area up 1o 8 m (between
sections 4 and 5} just immediately behind the centre of the shoal. which is mainly due
to the refraction process originated by the presence of the shoal and thus
producing a peak in the wave amplification factor; the second, at a greater
distance from the centre of the shoal, is mainly the diffraction process that slowly

tends to attenuate the effects caused by the presence of the shoal.
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Comparing the computational with the experimental results, it can be observed that:
at 1 m behind the centre of the shoal {section 1), its presence starts to be noticed
and there is good agreement between numerical and experimenial results, not only
in terms of following the same frend but also having the same values. Then as we
advance further from the shoal, section 2 and section 3. at 3 m and 5 m respectively
from the cenire of the shoal, both models start fo overestimate the peak
amplification factor within the coﬁvergence region and slightly underestimate the
two regions at the sides of the peak. However this tendency starts to vanish at about
6 m from the centre of the shoal and now the calculated peak amplification factor -
tends to be slightly underestimated and the two sides just adjacent io the peak
overestimated as it can be seen in sections 4 and 5, at 7 m and 9 m from the centre

of the shoal. These observations can be confirmed by the results obtained in sections
6.7 and 8.

All the above considerations lead to the conclusions that both numerical models
give very good results in terms of following the trend of the iaboratory data and
reasonable results in terms of accuracy. The numerical models slightly overpredict the
convergence process that occurs behind the shoal and they seem to predict the
attenuation of the effects caused by presence of the shoal at a faster rate than what
really happens in the laboratory experiment. This mismatch between the numerical
and experimental results is due mainly to non - linear effects and wave induced
cuments produced by differential wave pattern. Although no comments were made
regarding the occurrence of breaking within the physical experiment it seems quite
likely that it would have happened. Dissipation of energy due to bottom friction is
also another non - linear effect that is responsible for the differences observed,
although its influence should not be as important as the two previous phenomena,
breaking and non - linear interactions, because laboratory experiments for a regular
progressive wave with H =2 m, T = 8 sec and h = 7 m give relative changes in the
mean energy flux over one wave length due to bottom friction and percolation to
1.7% and 0.06% respectively (Svendsen and Jonsson. 1982). A final remark is that the
trend of the numerical resuits is in very close agreement with that obtained from
other linear models like those by Berkhoff et al {1982) and more recently by

Panchang ét al {1991}.



2. The Mild - Slope Eguation 45

2.4.2 - Verification of the models for harbour resonance
2.4.2.1 - Infroduction

Harbour resonance is the phenomenon of enhancement of the water surface
oscillation and depends on the wave frequency. Both numerical models are also
tested for a rectangular harbour connected to the open sea. The reason why this
case was chosen is to prove the applicability of these models to such an important
case so common along coasts. Besides. this test allows to prove that the models not
only can be appilied for open nearshore areas, as it is the case of wave propagation
over an elliptic shoal, but also for areas with ciosed reflective boundaries as it is the
case of harbours. A rectangular harbour was chosen because it is a simple geometry
and there exist theorefical and experimental results for comparison as this particular
case has been studied before. It also allows to study the phenomenon of harbour

resonance.

2.4.2.2 - Previous studies of the case

The intention of this section is not to deeply investigate the case of harbour
resonance but to document it well enough to understand and support the available

data which will be compared with the present resuls.

Many authors have studied the harbour resonance problem. Miles and Munk (1961)
studied the case of a rectangular harbour connected directly to the open sea. They
formulated the problem as an integral equation in terms of a Green's function
including the effect of wave radiation from the harbour mouth {o the open sea and
found two important aspects of the phenomenon of harbour resonance: a) there is o
limit of wave amplitude within the harbour even at resonance; b) the namowing of
the harbour entrance leads not to a reduction in the harbour oscillation but to its

enhancement (harbour paradox].

Ippen and Goda (1963) also studied the problem of a rectangular harbour

connected to the open sea. They approached the problem using two methods: a)
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The Fourier fransformation method to evaluate the waves radiated from the harbour
enfrance to the open sea: b) the method of separation of variables to evaluate the
solution inside the harbour. At the harbour entrance the solution was obtained by
matching average wave amplitudes from solutions in both regions. To validate their
solution they set a laboratory experiment and compared results. Differences were
observed at the peak amplitudes. The laboratory results were lower than the
theoretical predictions and this can be due to several mechanisms like: radiation
damping associated with energy escaping seaward from the harbour enfrance:
energy loss by friction at the harbour entrance boundaries; energy loss due to wave
breaking in shallow water; and finite amplitude effects of energy transfer into higher
harmonics. An interesting and unexpected result was the fluctuations in the response
curve in the region of the first peak amplilude which indicate that the open sea

condition was not properly physically simulated.

Lee (1971) proposed a theory to solve the problem for a harbour of arbitrary
geometry by applying Weber's solution of the Helmholiz equation for both regions
inside and outside the harbour. He then obtained the total solution by matching the
wave amplitudes and their normal derivatives at the harbour entrance. Weber's
solution of the Helmholtz equation is found by applying Green's identity formula for
the area of interest and using the Hankel function of the first kind and zero order as
the fundamental solution of the two-dimensional Helmholtz equation. In order to
validate his solutions he compared them with experimental data from the laboratory.
For the case of circular or rectangular harbours he also made comparisons with a
different analytical solution obtained from a different theory. This theory consists of
obtaining the solution of the Heimholtz equation in the region inside the harbour by
the method of separation of variables and for the open sea region by Weber's
solution, Once again both solutions were matched for the harbour entrance. These
results will be used for comparison with the numerical results obtained in the present
work. His experimental results were more accurate than the ones previously obtained
by Ippen and Geda (1963). which was due to physical conditions like the wave basin
dimensions.

Since 1hose"experiments. several authors like Mei {1989), Panchang et al {1991]) and
others have been validating their finite elements and finite differences numerical

models for the case of a rectangular harbour because the achievement of
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reasonable results for this particular case is a vote of confidence on the applicability

of their numerical models.

2.4.2.3 - Numerical tests

Both numerical models were applied for a rectangular harbour connected to the
open sea as shown in Fig. 2.5. The depth was considered constant and equal to é m.
The grid spacing was taken as Ax = Ay = 1.0 m. The infinite ocean outside the harbour
was represented by a finite rectangular region {Fig. 2.5) the same size as that used by

Panchang (1991 and Zhao and Anastasiou {1994).

Equation (2.6) was used for the incoming boundary and equations (2.11) and (2.12)

for the artificial lateral boundaries that simulate outgoing waves with a coefficient
a=1. For the sclid boundaries, the shore and the harbour, totally reflective boundaries
were assumed. Therefore equations {2.10) and {2.12} were used for the lateral walls of
the harbour with =0 and equation {2.8) was used for the backwall of the harbour

and the shereline, also with a=0.

The computed response of the fully open rectangular harbour (for several different
wavelengths) at the centre of the backwall of the harbour is presented in Fig. 2.6
together with the theoretical resulis obtained by Lee (1971). The numerical resulis for
both models, the Bi-CGSTAB and the GMRES, were obtained for the convergence
critetion expressed by eguation {2.18) with a tolerance equal fo 10-12, The abscissa is
the parameter kl (where | is the length of the harbour); the ordinate is the
amplification factor, defined as the wave amplitude at the centre of the backwall of
the harbour divided by the standing wave amplitude at the harbour entrance when
the entrance is closed. This representation of the results is consistent with Lee 's {1971)
preseniation and the input wavelengths were chosen within a range that allows
comparison of the abscissa kl to be obtained within the limits of the data available.

The results obtained for the case of harbour resonance follow the trend of the

theoretical results. The differences observed at the peaks, particularly at the first peak
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{longer waves), where the results are shifted o the right, can be due to two factors.
One is that the mild-slope equation was derived for short waves and therefore as the
waves become longer the model simulates less well the phenomenon. The other is
that this case is particularly sensitive to the position of the open sea boundary which
separates the computational domain from the infinite sea and, therefore, a better
simulation of the phenomenon requires this boundary to be located as far away as

possible from the domain of interest.

2.5 - Algorithmic and performance aspects

Bearing in mind that it is intended to develop a numerical model for random waves
based on a model for monochromatic waves it is important to analyse and compare
the Bi-CGSTAB and the GMRES models. The efficiency of the models depends on the
computational skills of the programmer that writes the code but most of all depends
on the performance of the iterative methods. in the present case, the only difference
between the models is associated exclusively with the iterafive process. An
evaluation of the convergence characteristics of both algorithms will be made in an
attempt to compare their efficiency. A comparison criterion should be established. As
each iteration involves a different set of operations, the amount of iterations required
to achieve a certain convergence cannot be used. Instead. the number of
operations is used. The number of operations per iteration for the Bi-CGSTAB is about
28 N and for the GMRES is about 525 N (considering each iteration with m=15 internal

steps). N is the total number of grid nodes considered in the domain.

The computer runs here described were done on a Silicon Graphics RIS 4000

workstation. The convergence criterion used is expressed by equation (2.18).

For Berkhoff's shoal and a tolerance of 107 the BI-CGSTAB model requires a total of
883 iterations and about 2519 seconds of CPU time while the GMRES model requires a
total of 85 iterations (each including an internal number of steps. m=15) and about
5384 seconds of CPU fime. The Bi-CGSTAB algorithm Is about 2.1 times faster than the
GMRES algorithm and it required only about 55.4% of the total number of operations
required by the GMRES algorithm.
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Both iterative solvers proposed in this work, the Bi-CGSTAB and the GMRES methods,
are more efficient than the one proposed by Panchang (1991}, based on the CG
method, and also that proposed by Li [(1994), based on the GCG, as described in
section 2.3. This statement is based on the numerical resulis obtained for Berkhoff's
shoal case, and it is legitimate because the same convergence criterion and
tolerance were used in each of the 4 solvers. Li (1994) proved that the GCG method
is more efficient than the method proposed by Panchang (1991) based on the CG.
However, it should be noted that although Li's method requires more iterations {2500)
than the CG scheme {which requires 2000 iterations) to achieve the imposed
tolerance, each iteration involves fewer operations. Nevertheless, the Bi-CGSTAB and
the GMRES methods produce an even faster rate of convergence, because the
GCG requires about 27 N operations per iteration, vieling a total number of

operations larger than each of the aforementioned two methods.

In order to investigate further the performance of the models, Berkhoff's shoal was
run for a convergence criterion with a folerance of 1014 The total number of
iterations required for the Bi-CGSTAB was 10585 while for the GMRES was 1402 (each
including an internal number of steps, m=15). The BI-CGSTAB required about 40% of
the total number of operations than the GMRES. Results of the variation of the
residual in the process of convergence are shown in Fig. 2.7. They are expressed in

terms of the total number of operations involved.

The numerical experimenis undertaken to compare the algorithms indicate that both
perform reasonably well. The Bi-CGSTAB is considerable more efficient as the total
number of operations required is about half the number of operations for the GMRES.
The GMRES shows a better stability, that is. a more monotonic convergence but the

overall convergence rate is lower.

2.6 - Closure

This chop’rell' dealt with numerical modelling of monochromatic wave propagation in
the nearshore region. The mathematical formulation chosen to simulate wave

transformation is the mild - slope equation in its elliptic form because it allows to
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approach ine phenomenon without physical constraints, that is, including the
processes of shoaling, refraction, diffraction and reflection. The model was discretised
using a finite differences technique. A new generation of robust iterative methods
was chosen to be the most effective way to find an approximate solution for the
problem. Two efficient algorithms, the Bi-CGSTAB and the GMRES, were implemented
generating two different numerical models. Both models were tested for a complex
bathymetry and harbour resonance. When the results were compared with
experimental results some discrepancies due to the fact that the models do not allow
for non - linearity were observed. However, the general good agreement obtained
suggests that both models can be applied with confidence, not only for wave
transformation in caustic zones where refraction and diffraction are the dominant
processes, but also for cases where refiection plays a major role, like the case of
harbour resonance. Nevertheless, efficiency in terms of computational time, was
ancther parameter considered in the performance of the models, and regarding this
parameter, the model based on the Bi-CGSATB algorithm performed better than the
model based on the GMRES algorithm, although the last showed a better stability. As
it is the intention to develop a model for random wave propagation that is an
extension of these models in the sense that it will be based on the assumption of
linear superposition of independent spectral components, both accuracy and
efficiency play a very important role. Accuracy, because the results obtained for
each tfransformed component will be accumulated, and efficiency because the

model will be dealing with a large number of components,
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3.1 - Infroduction

The objective of this chapter is to improve the accuracy of the numerical model
based on the mild-slope equcﬁon- developed in the previous chapter by
exploring different types of boundary conditions that simulate non-reflective
boundaries.

The subject of numerical freatment of boundary condifions in wave propagation
models is explored. Different formulatfions are investigated, and a numerical
model based on a hyperbolic approximation of the mild - slope equation is also
tested, in order fo obtain a bettfer understanding of the effects of the
implementation of these boundary conditions in models based on different

formulations of the mild - siope equation.

The chapter is organised as follows:

* In the following section the subject of boundary conditions is introduced and
the mathematical formulation for the mild-slope equation is discussed.

+ Section 3.3 is dedicated to a literature review of previous work in the field of
non-reflective boundaries.

* In secfion 3.4 absorbing boundary conditions {sponge filters) combined with
first order radiation boundary conditions are implemented in two models
based on the mild-slope equation: a hyperbolic model and an elliptic model.

A subsection describes the hyperbolic model and the implementation of the
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sponge filters. Another subsection describes the implementation of the sponge
filters in the elliptic model which has been extensively discussed in chapter 2.

* In section 3.5, parabolic radiation boundary conditions (higher order
boundary conditions) for elliptic models of wave propagation are described.

» Section 3.6 is dedicated to the numerical tests done to evaluate the
formulations proposed. The first group of tests reported concern the hyperbolic
model and the second the elliptic model. The results obtained are here
presented and discussed.

e Finally this chapter is closed with a critical summary regarding the work here

developed.

3.2 - General concepts

In the sea there are three types of boundaries: the air - water interface or free
surface, the sea bottom and natural or man made obstacles. When modelling
the sea mathematically several conditions can be assumed at the physical
boundaries and in general the more conditions that are imposed the more
accurately the boundary is represented. For example, at the free surface (where
the atmospheric pressure is taken as zero) the wind action can be neglected or
not, at the sea bottom bed friction can be neglected or not, the bottom can be
assumed as a impenetrable solid or a percolation layer. However a compromise
is made when modelling the sea, and it involves analysing what conditions are
more important fo impose. meaning that if we have to neglect some of the
physics involved or make some assumptions in order to have mathematical
simplicity, we should be aware of the priority of the conditions in terms of their

influence on the results.

The mild-slope equation was derived by Berkhoff (1972) assuming that the influx of
energy through the water surface and bed is zero and that the bed slope is slowly
varying. Due to the fact that it is a 2-dimensional equation applied over a certain
domain ”;he only physical boundaries that are left to be reated are the natural or
man made obstacles. However there is a different fype of boundary to consider

when the propagation of waves is simulated numerically. For the mild - slope
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equation discretised using a finite differences technique over a certain
rectangular domain R = {(x, Vix<x<xym<y<y }. there are two types of
boundaries &R that limit the region of study. They are solid boundaries like
breakwaters or natural existing obstacles and open boundaries. The last ones are

only implemented due to the need to limit the domain.

The mild-slope equation is an elliptic pariial differential equation (PDE} also
designated as a boundary value problem. It requires boundary conditions

appropriate for this type of formulation, which can be expressed in the general
form

A(x,y) iéH* B(x,y) ¢ = C(x,y) (3.1)

along &R where @ is the velocity potential gradient in the direction normal to
c

the boundary in question.

When A(X,y) = 0 the condition is known as a Dirichlet condition and this means

that the dependent variable is known along the boundary. This can happen for
example when there are measurements available for o certain area that can be

used as input data for the model.

When B(x,y)= 0 the condition is known as a Neumann condition and ihe

velocity potential gradient is known along the normal to the boundary. For
example, for the case of lateral boundaries, assuming there is no variation of the
wave height H. in the direction normal to these boundaries and that Snell's law is
valid aleng them, which means that outside the domain the bathymetry contour

lines are paraliel to the offshore boundary (v axis}, then

C—'n—=0 = @=0.

Cy &

Another example is the wavemaker condition which can be used along the

(3.2)

offshore boundary (v axis),

|2

=0. . (3.3)
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Finally when { A(x,y). B(x,y)} = 0 the condition is known as elastic or Robbins

boundary condition. This type of boundary condition can represent a sea wall,
an open boundary or a coastline:

gi—’— ikap = 0 (3.4)

where o is a reflection coefficient that varies with the type of boundary and may
have to be determined empirically. For the case of & = 0 we have fully reflection,
for example a perfectly reflecting wall. For the case of o, = 1 we are dealing with
outgoing waves as will be described Iater on. For o between 0 and 1 we are

dealing with partially reflected / partially fransmitted waves.

3.3 - Previous work on non-reflective boundary conditions

Radiation, outgoing. artificial and damping are four of the names given to the
boundary conditions that limit the area of computation which is the open seq.
The two main objectives when implementing radiation boundary conditions are
that they do not affect the soiution of the differential equation in question inside
the domain and that they minimise the non - physical reflections that occur from
the limits of the computational area. This problem is common in numerical
simulations of local processes in the aitmosphere and in the ocean. An
appropriate mathematical expression to describe this open domain depends on
the character of the equations of motion to be solved (hyperbolic, ellipfic or
parabolic). Romate {1992} and Santos and Neves {1991) reviewed works related

with the subject.

For a problem where any disturbances that are generated in the domain of
integration and in time leave the system (phenomenon which is characterised by

an hyperbolic system], Sommerfeld's radiation boundary condition

@+Co¢ 0,

P

o oy

where ¢ is any variable and C is the phase velocity of the waves, is well known as

{3.5)

the solution to ocutgoing waves. It has been vastly used due to its efficiency. For
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radiation boundary conditions the objective is to have a condition that is satisfied
by outgoing waves but not by incoming waves and the above equation is based
on the expectation that the wave approaching the boundary is non - dispersive

and propagating normally to the boundary.

Aiming to improve the open boundaries, Oranski (1976) proposed a slightly
different approach to Sommerfeld's radiation boundary condition in which the
evaluation of the phase velocity is performed in the vicinity of the boundary and
extrapolated to the boundary instead of fixing a constant value. In fact, he uses
Sommerfeld's condifion to calculate the propagation velocity from the
neighbouring grid points. The advantage is that the waves in the domain pass
through the boundary without undergoing significant distortion and without
influencing the interior solution. This idea is a good improvement to Sommerfeld's
condition. Pursuing the same goal, Chapman {1985) and more recently Tang and
Grimshaw (1994) carried on examining several other different approaches based
on Sommerfeld's radiation boundary condition using @ barotropic coastal ocean
numerical model. They did not comment on the superiority of any particular
formulation proposed and suggested that each formulation should be tested to
fit the model in guestion. Basically, similarly to Orlanski ( 1976}, they suggested
different prescriptions for the phase velocity {or advection velocity), C. In fact,
they produce several tests that confirm the improvements obtained by modifying
the above parameter for different models. from all the above numerical
experiments, it can be concluded that the phase velocity plays a crucial role in
the accuracy of the radiation boundary conditions, and that an improvement on
Sommerfeld's condition can be achieved if its value is not assumed as constant

but made adjustable to the local conditions of the boundaries.

Engquist and Majda (1977) studied the problem of oblique incident waves. They
derived the perfectly absorbing boundary condition based on a solution to the
second order wave equation, but because it was impractical from a
computational point of view they also derived a hierarchy of highly absorbing
local boundary conditions that are approximations to the first one. The
Sommerfeld condition is the first-order approximation to their solution when the
incident wave is normal to the boundary. First and second order radiation

boundary conditions are expressed as:
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*1st order condition

COSOL-"2¢1+CPi =0
: ot

vy | (3.6

where a (Idl <7 /2)is the angle between the wave direction and the normal to

the boundary which is the x axes:

*2nd order condition

& . 080 %
__,.+b__.__c-__T+ =0 3.7
o T o o &y’ et 7]

where
C
a = cosq, cosot, +— (3.8
7T,
b = C (cosat, + cosc, ) (3.9)
. @7 .
e=C- -k- 3.10
(&) 010

and a1 and a2 are the angles between the wave direction and the normal to

each main cartesian axes, x and y. ]all sn/2@3=172).

First and second order radiation boundary conditions were also tested by Broeze
and Romate (1992} who solved the free surface wave problem by numerical
experiments making use of a panel method. These numerical experiments confirm
that an increase in the order of accuracy of the radiation boundary conditions
improves the solutions in the numerical domain by minimising artificial reflections
which occur at the boundaries. 1t can be observed in equation (3.7 that second

order radiation boundary conditions give additional information regarding the

0 cu
conditions at the boundary. Now the advection term (E}O{% = 2 = ax] imposes

a certain’ accelerafion in the direction normal to the boundary, x. and some

A* ov . '
diffusion in the direction of the boundary ( f ? = E ) was also infroduced.
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The same conclusions were achieved by Bayliss et al {1982} and more recenily by
Johnsen and Lynch {1994} who implemented higher order radiation boundary
conditions in their models discretfised by a finite element technique on spherical
co-ordinates. Bayliss et al (1982) solved the elliptic Laplace and Helmholtz

equations and Johnsen and Lynch (1994) solved the shaflow water equations.

All the investigated formulations here described were derived for a fime
dependent problem, as already mentioned. Nevertheless, elliptic formulations
have the same requirements of minimising the arfificial reflections that occur at
the numerical boundaries. In fact, up to the present date, besides Kirby's {1989)
investigation not much research work has been done for this particular problem.
First order radiation boundary conditions, valid for normal incidence at ihe
boundary, have been applied without evaluation of how much an increase in
the order of the operators can improve the inside domain solution. As this subject
will be investigated for the particular case of the elliptic formulation of the mild -
slope equation, a description and discussion of Kirby's work wili be done in

section 3.4.

Other types of radiation boundary conditions are the so - called sponge filters
combined with Sommerfeld's type radiation boundary condition. in practice they
are absorbing boundaries where an artificial dissipation term is added implicitly
or explicitly to the governing equation near the boundaries, so that outgoing
waves are absorbed and therefore reflect as litle as possible. Chapman | 1985)
did some work on this field based on an idea suggested by lsraeli and Orszag
{1981} by combining sponge filters with Orlanski type radiation boundary
conditions imposed at the outer edge of the sponge filter. He implemented
successfully these boundary conditions in @ barotropic coastal ocean numerical
model. Larsen and Dancy (1983} also used sponge filters successfully in a finite
differences numerical model of the Boussinesq equation. The sponge filters
combined with first order radiation boundary conditions are an efficient
alternative fo the implementation of higher order radiation boundary conditions.
In fact, the third term of equation {3.7). intfroduces a certain diffusion that might
bring sor;we instability to the convergence process and the whole expression has
a much higher computational demand than a first order radiation boundary

condition. Sponge filters are of simple implementation and efficient. The only
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disadvantage is that they require a certain wasted area of the numerical

domain.

Based on the studies mentioned above, it can be concluded that while some
type of open boundary conditions are satisfactory in a particular context they
can be unreliable in a different context. Thus, an improvement in the accuracy of
the solutions due to a better simulation of open boundaries réquires a numerical
experimeniation and comparison of different types of open boundaries. Aiming
to improve the accuracy of the results obtained by two numerical models based
on the mild-slope equation, different non-reflective boundary conditions will be
implemented in these models, in the following sections. Tests for different cases will

be done to evaluate the suitability of these boundary conditions.

3.4 - Sponge filters

Sponge filters, described in fthe previous section, will be implemented in the
numerical model described in chapter 2 and also in a numerical model based on
a hyperbolic approximation of the mild - slope equation. The implementation of
sponge filters in the hyperbolic model constitutes a good vehicle for testing these
type of non - reflective boundaries because the model is well docurmented and
the implementation of sponge filters in it is a relatively easy procedure, allowing a
good understanding to be developed regarding the performance of sponge

filters.

The following subsections are dedicated to the implementation of the sponge
filters combined with first order radiation boundary conditions. The first subsection
is dedicated to the hyperbolic model. The model with first order radiation
boundary conditions is described followed by the description of the
implementation of the sponge filters. The second subsection is dedicated to the

implementation of the sponge filters in the elliptic model.
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3.4.1 - Sponge filters in a hyperbolic model of the mild-slope equation
3.4.1.1 - The hyperbolic model

Like the mode! produced by Copeland {1985}, this model is based on a transient
or fime dependent form of the mild-slope equation, which is a hyperbolic system
of first order equations, the equation of continuity and the equation of motion

and discretised using a finite differences scheme.

The mild-slope equation for transient conditions can be written as | Booij, 1981)

v(cc, vm) + (&’ ce, - o & (3.11)
E r' ( E -0 )n T A s T M *

at-

The appropriate harmonic solution for @ steady state condition is

n(x,y,t) = ¢ (x,y) exp(-int) (3.12)
SO
&'n .

—=-®" 3.13
e n (3.13)
Substituting {3.13) in (3.11) gives

, . 1 &n) &n
V(CC_Vn)+(k-CC -—co'(——,— ,J—-—,:O {3.14)

( g n) ( g ) o &° &t

which is the same as
C ('}:r]
VICC,Vn) - == =2 = 0. 3.15

( g rl) C 6 2 ( }
From this equation, to and Tanimoto {1972) derived a pair of first order equations

2
vQ+ = &y (3.14)
C, &t
and
RQ e vn=0 (3.17)
ot

where Q is the flux (vertically integrated function of parficle velocity), Q = Cg n.

The first is the equation of continuity and the second the equation of motion.
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This system contains the governing equations for the hyperbolic model and the

first order derivatives are discrefised by « finite difference technique:

ju

t+ALi2 t-A1/2 C t 1 C 1 1
M * = Ny . [_('-:_J [Qxi—l._] - Qxij]At/Ax - ['C_J [Qyi.j+1 - Qyij] At/ Ay
y e ij

(3.18)
Q= - (06, [y - mi e o 319
Qyy* = Qy} - (ch)jj [nie - ni ] At/ Ay (3.20)

where tis the instant time, i is the index of the nodes in the x direction and j is the

index of the nodes in the y direction for each cell as follows:

A
X
Qxl"l.j
i
Q,\':.,rl D Ny - Q.\'I.J
v o4 T
Qx,,

The fluxes in the x and v directions. Qx and Qv, are calculated at o time At/2
ahead of the comesponding values of 1 and are offset from the locations of n by

Ax/2 and Av/2, respectively.

The model considers two types of boundaries besides the solid boundaries
created when in the presence of obstacles: driving boundaries and downwave

boundafies.
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For the fir:t type, Copeland (1985) introduced what he calied an ad-hoc physical
approach equivalent to the most simple (first order) radiation boundary condition
given by Engquist and Madja (1977} and mentioned in section 3.2, that is

AQx (cosG) AQx|
Ax C/ M

{3.22)

x=0
The reflected or backscattered wave fraveling back towards the offshore
boundary is absorbed at the boundary by calculating its value which is derived
from decompaosing the flux normal to this boundary, Qx, into the required driving
function gx and the reflected wave,

The required driving function at the boundary at a time t+At is
t-At

qx,, =nC,cos8, (3.23)

where the water surface elevation is calculated as
H . . A A 3
n=- sm[k smG%%-kcosB%——m(HAt)). (3.24)

The reflected wave at the boundary, defined by QE at a time t+At. can be
interpolated from the reflected wave at the previous time step t, calculated at

the boundary {location 0.j}. El, and at the row adjacent to the boundary

(location 1,j). E2, as it follows:

QE = El - (E1- E2) CE% (3.25)
where

El=Qxg, —qxg, | (3.2¢)
and

E2=Qx;; —qx,,. (3.27)

Hence the value of the normal flux to the boundary used in the computation is

Qxy = qxi* +QE. (3.28]

For the second type. the downwave boundaries, the values of the flux at the
boundary are calculated from the flux in the adjacent upwave grid row affected
by a time delay T and a weighting factor AF, both parameters calculated for a
certain reflectivity. Copeland (1985} derived these two parameters and as a result

the flux at the boundary at an instant t can be written as
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Qxy; = AF Qxy)), (3.29}

considering (N,j} the location at the boundary and (N-1j] the location at the

adjacent upwave grid row.

3.4.1.2 - Implementation of the sponge filters

Sponge filters were described in section 3.2, therefore this section will explore their

implementation in the hyperbolic model of the mild-slope equation.

The idea was to modify the governing equations in order to introduce a
dissipoﬁoh term that decreases the energy in the system near the downwave
computational boundaries and therefore the outgoing waves are absorbed with
as littie reflection as possibie. Hence the linear system of first order equations was
modified for the computational area near these boundaries by introducing a

dissipation term in the equation of motion (3.17), as follows:

C—;? + CC, Vn+£,Q = 0 (3.34)
c
while the equation of conftinuity (3.16) remains the same. that is
C =]
vQ + — &1 = g, (3.35)

Cg ct

Discretising using a finite differences technique the resulting equations for the

interior domain remain the same as in 3.3.1.1 while for the grid celis at the

downwave boundary they are now:

1+ At 2 1-A102 C t 1 C t t
Tll,,"' =n; az [.EB_J [Qxi,,.j - Qx,]]At/Ax - (C—EJ)[Qy,_],, - le_,]At/Ay
1] [l

(3.36)

Q= Qs - (oe), [ - Ay aneneel, e
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Qi = Qv - (CC,), [ny™* - migi ] At/ Ay +£,Qy), (3.38)

where fp is an empirical dissipation factor that shouid be determined by

experimentation for each case in order to obtain the optimum performance of

the sponge filiers.

3.4.2 - Sponge filters in a elliptic model of the mild-slope equation

The elliptic model of the mild-slope equation was described in chapter 2, and
sponge filters in section 3.3 of this chapter. This section concentrates on the

implementation of the sponge filters into the elliptic model.

By infroducing an energy dissipation term into the elliptic form of the mild - slope
equation, the sponge filters can be simulated. The modified equation is applied

at the downwave boundaries decreasing the energy in this area.

Booij {1981) showed that the inclusion in the original form of the mild-slope

equation of the term iofp$, in which i = J~_l o is the angular frequency and fp a
damping factor, results in wave damping. Based on this, Dalrymple, Kirby and
Hwang (1984) tested the performance of this energy dissipation in wave damping
in the regicn (interior domain) where the dissipation term was included for the

parabolic model developed by Radder (1979).

Subsequently, when implementing a dissipation term in the model. the governing

equation {2.2) can have the same expression but now k. becomes

Kk =k*— V(Ccs)l 2 + iof, (3.39)
0 fec)tocC

where fp-is the empirical damping or dissipation factor that must be established

by expé'rimenfc:ﬁon to obtain the best resulis for each case studied.
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3.5 - Higher order radiation boundary conditions in a elliptic mode! of the mild-

slope equation

Eliptic partial differential equations are in general very sensitive fo the
formulation of the boundary conditions imposed to the computational domain
due to its nature of being a boundary value problem. Aiming to improve the
accuracy of the solutions, higher order parabolic radiation boundary conditions
will be implemented in the elliptic mode! formulated by the reduced wave

equation, as considered in chapter 2.

As menftioned in section 3.2, where existing formulations and their applicability for
open boundary conditions were investigated and discussed, Kirby (1989} derived
several parabolic approximations to radiation boundary conditions for elliptic
wave equations that closely miror Engquist and Majda's (1977) work. Both
authors derived higher-order radiation boundary conditions, but for different
applications.  Engquist and Majda (1977} dealt with a time dependent
formulation, or initial value problem, whereas Kirby (1989) dealt with an elliptic
formulation (constant depth Helmholiz formulation), or boundary value problem.
In this section, the higher-order radiation boundary conditions derived by Kirby
(1989) will be applied to equation {2.2), where the effective wave number K. is

expressed by equation (2.3).

To derive the higher order radiation boundary condifions Kirby used a
homogeneous solution for the constant depth Helmholtz formulation posed in a
half - plan (x £ 0, -x < y <x). Based on the assumption that no reflections occur at
this boundary, the above solution produces the following condition:

¢, =ilp; x=0 (3.40)
where | is a parameter related to the incident wave direction. As the order of
approximation of this parameter increases, a more accurate expression can be
derived for equatfion (3.40), generating a succession of downwave boundaries
more fransparent to the passage of cbliquely incident waves. The simplest
approximation for the parameter 1 produces the well known first order radiation

boundary condition for normal incidence waves which is
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.0 B

—=1k¢d. 3.41)
Fe ¢ (3.41]
The lowest-order parabolic approximation can be written as

% _ ik[da L1 ¢ d’] (3.42)
ox 2k” oy~

and is derived by a binomial expansion of 1 (Kirby., 1989).

The next higher-order is

& 1 8% ( 3 afqaj | |
— =ik -—1. 3.43
ey T ey 543

and is derived based on further improvement of | {Kirby, 1989].

Kirby {198?) performed numerical tests to evaluate the reflection coefficient of
the backscattered waves based on the above formulations and his resulis show
that each succeeding approximation provides an improvement at increasing
angles of incidence but the most significant improvement is achieved when first
order conditions are substituted by the lowest parabolic approximation, that s
the next higher order. Based on these conclusions, the lowest-order parabolic

approximation will be implemented in the present model.

3.6 - Numerical tests

This section presenis a description of numerical tests performed and the results
obtained using the models previously described. The first subsection concerns the
tests undertaken with the hyperbolic model in. order to evaluate the efficiency of
sponge filters and develop a better understanding of their petformance aspects.
The second subsection concerns the tests undertaken with the elliptic model. The
performance of sponge filters and higher order radiation boundary conditions
implemented in order io improve the accuracy of the model developed in

chapter 2, is also investigated.
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3.6.1 - Hyperbolic model

The hyperbolic mode! described in section 3.4.1.2 was applied for cases where
the incident wave direction is not normal fo the offshore boundary or cases
where even if it is normal, due to the bathymetry or the existence of obstacles,
refraction and diffraction originate a change in the wave direction and
consequently waves leave the domain with a direction that is no longer parallel
to the lateral boundaries. For these cases, where there is flux normal to the lateral
boundaries, the performance of the sponge filters was tested successfully. The
above tests were also done when sponge filters were implemented at the shore
{[downwave) boundary but the results show that energy absorption or wave
damping in this area disturbs the progressive wave propagation in the interior of
the domain,

In order to check the performance of the sponge layers the tests chosen to verify

the modei were :

* wave diffraction around a semi-infinite breakwater over a domain of constant
depth for an incident wave normal to the breakwater:

* wave entering through o breakwater gap of width equal fo L over a domain
of constant depth;

+ wave entering through a breakwater gap of width equal to 2L over a domain
of constant depih;

These were chosen because they are cases where there is a flux component

normal to the lateral boundaries and there are results available for comparison,

The computational results for the 3 cases presented here were obtained with the

medel with and without sponge layers. In order fo verify both models, results were

also compared with analytical results obtained by Wiegel (1962) and Johnson

(1952).

The cdlibration of the model which includes sponge filters consisted of minimising
the numerical error infroduced by waves reflected from the boundaries into the
solution fpr the area of interest. This was achieved by using a process of trial and
error to find the optimal gradient of absorption within the sponge iayer width,
bearing in mind to obtain the least amount of reflections with the namowest

possible layer. It was observed that o smooth gradient of the absorption was
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more efficient in reducing fasi oscillations resulting from the presence of partial
standing waves. However, as large sponge layers incur the cost of a wasted area
of calculation, the compromise of obtaining the least amount of reflections with
the narrowest possible sponges has to be considered. The model was calibrated
for an incident wave angle (between the wave direction and the normal to the
offshore boundary) in the range 00 (normal to the offshore) to 45¢ propagating
over uniform depth. For an angle of 45¢ the relative numerical error for the wave
height results is 4%. Experience from running the model for this application

suggests that good results can be obtained for sponge widths between L/2 and L.

The case of normal wave incidence to a semi-infinite breakwater over a uniform
depth of 40 m was fested for the hyperbclic model with first order radiation
boundary condifions as described in section 3.3.1.1 and for the hyperbolic model
with first order radiation boundary conditions combined with sponge layers. The
above tests were done on a computational area of about 100%200 grid nodes (x
and y directions respectively) for the model without sponge filters and 100+230
grid nodes {x and vy direction respectively) for the model with sponge filters. The
number of grid nodes per wave length used was 10. For both applications the
grid spacing considered was about L/10%L/10 m2. The sponge layers width wos
one wave length. An incident wave of height 1 m and period 8 sec was
propagated normally to the offshore boundary. The computed results for the
models with and without sponge filters in terms of confour plots for the normalised
wave height are shown in Fig. 3.1 and 3.2, respectively. In order to verify the
models, resulls can be compared with analyfical results obtained by Wiegel
{1962]. Fig. 3.3. For a better analysis, sections taken from a distance 4 L and 8 L

behind the breakwater can be shown in Fig. 3.4 and 3.5, respectively.

For the cases of a wave propagating through a breakwater gap of widths L and
2 L over a uniform dept of 40 m tests were again done for the hyperbolic model in
the presence and absence of sponge layers. The numerical domain covered an
area of 200+200 grid nodes for the model without sponge layers and an area of
200+230 grid nodes (x and y direction respectively) for the model with sponge
lavyers. Tﬁe number of grid nodes per wave length used was 10 and the grid
spacing considered was L/105L/10 m2. The sponge layer width was equal to L. The

incident waves of height 1 m and period 8 sec were made normal to the offshore
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boundary which included the toially reflecting breckwater. The computed results
are shown in terms of contour plots for the normalised wave height in Fig. 3.6, 3.7.
3.11 and 3.12. The results can be compared with the ones obtained by Johnson
(1952} shown in Fig. 3.8 and 3.13. For better analysis sections taken from a
distance é L and 10 L behind the breakwater are shown in Fig. 3.9 and 3.10
respectively, for the case where the breakwater gap is equal to L and in Fig. 3.14

and 3.15 respectively, for the case where the breakwater gap is equal fo 2 L.

Both hyperbolic models, one where the open boundaries are freated as first order
radiation boundary conditions and the other where they are treated as a
combination of first order radiation boundary conditions with sponge filters, give
good results for wave propagation in the vicinity of an obstacle, that is, simulate
well the wave transformation process of diffraction. The computed results
obtained from the models show good agreement with the analytical solufions
obtained by Wiegel {1962) for the case of the semi-infinite breakwater, and
Johnson (1952) for both cases of breakwater gap. The computational results for
the 3 cases of study plotted in terms of contours {lines of equal normalised wave
height), show that the wave pattern of the diffracted solution can be predicted
well by both models. A generally corect quantitative evaluation of the
transformed waves due to the presence of the structures can also be seen in the
same plofs. Nevertheless, the sections located behind the structures at positions
previously identified, allow a more detailed evaluation of these results. A
common characterisiic observed in all the sections is that the hyperbolic mogel
with first order radiation boundary conditions combined with sponge fiters
reduces the amplitude of the oscillations that can be observed in the model in
the absence of sponges. The amplitude of the oscillations is proporticnal to the
average value of the solution and oscillations are less noticeable when the
gradient of the solution reaches its maximum value. that is, when there is a faster
variation of the wave height, which occurs in front of the lee of the structures. The
results obtained for the model with first order radiation boundary conditions
combined with sponge filters are considerably smoother and in better agreement
with the analytical results. Sponge filters in the hyperbolic model are therefore

efficient in reducing the partial standing waves arising from the boundaries.
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3.6.2 - Elliptic model

The two elliptic models, one with first order radiation boundary conditions
combined with sponge filters, as described in section 3.4.2. and the other with
higher order radiation boundary conditions (lowest-order paraboiic

approximation). as described in section 3.5, were run for Berkhoff's elliptic shoal.

Similarly to the hyperbolic model, a process of frial and error was undertaken in
order fo investigate the sensitivity of the model to the intfroduction of the sponge
filters. The gradient of absorption within the sponge filters was made to vary
linearly along the width. The width of the sponges was about 3.5 L at the lateral
downhwave boundaries and about 2 L at the shore boundary. For these
conditions, the maximum dissipation factor, fomes, at the outer sponge edge was
made to vary within inferval [0.1, 4]. The sensitivity of the solutions to this variation
is shown from Fig. 3.16.1 to Fig. 3.16.8, for the same eight sections considered in
chapter 2 for the Berkhoff's shoal. The computational resulis that best represent
this variation were obtained for an fomes equal to 0.4, 0.5, 0.6, 0.8. 1.0, 1.5, 2.0 and
3.0. To avoid repetition, the bathymetry and numerical conditions are the same
as described in chapter 2. Fig. 2.1. The widih of the sponges was established
based on using the maximum area available around the domain of interest,
which for this case was considered to be precisely the area were the eight

sections are allocated.

For the model with higher order radiation boundary conditions, the lowesi-order
paraboelic approximation, described and discussed in section 3.5 and expressed
by equation (3.42). was implemented. It was derived for downstream condifions,
thus for upstream conditions it can be written as

@ —ik(d) b f"?) . (3.44)
X 2k” ¢y-

% _ i+£¢— where ¢' and ¢ are the

incident”and backscattered velocity potential components respectively, the

Bearing in mind that ¢ =¢' +¢°, and

implementation of the boundary condition was established as follows:
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« Offshore/driving boundary
o _ i+(ikc¢i .,.2;_6 ¢_] ( K ¢+ —— (‘d)J (3.45)

forx=1and 1 <y <Ny,

» Lateral/driving boundary

oy ay 2k & 2k, &x*

foryv=1ory=Nvand 1 <x <Nx.

4

» Shore/downwave boundary

Wy (o, 1 2
= [4) + TR J (3.47)

forx=Nxand | <v <Ny.

* Lateral/downwave boundary

2 a

& _ ( L ¢ ‘b) (3.48)
¢y 2k.- * X

forv=1lorv=Nyvand 1 <x <Nx.

Driving boundary conditions are radiation boundary conditions plus the incoming
waves.
Once again the model was applied to Berkhoff's shoal. The computational results

for the eight sections behind the shoal are shown from Fig. 3.17.1 to Fig. 3.17.8.

The objective of implementing sponge filters within the elliptic model with first
order radiation boundary conditions was fo improve the accuracy of the
numerical solutions by infroducing a dissipation area adjacent to the boundaries
that wouid minimise the backscattered waves. However, what was observed was
that the infroduction of the sponge filters only decreases the wave energy within
the spoﬁge layers and that for the area of interest. which is the region behind the
shoal, they tend to produce sharper variations of the results. Thus, it can be

concluded that sponge filters do not produce a successful improvement when
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dedling with open boundary conditfions for this parficular mathematical

formulation.

Computed solutions of the elliptic model with higher order radiation boundary
conditions show a befter agreement with the experimental data obtained by
Berkhoff {1982) than the solutions of the model with first order radiation boundary
conditions. A higher accuracy was expected to be achieved as the lowest order
parabolic approximation makes downwave open boundaries more transparent
to the passage of oblique incident waves. Nevertheless, the finite differences

scheme, described in chapter 2, requires a 9 points stencil instead of a 5 points

one, due to the infroduction of the terms 9-;? and ¢ 42) .

3y ox

that bring instability to

the numerical scheme if only a 5 points stencil is used. This requirement increases
the computational cost to solve the problem, in terms of time and memory, and
taking into account that the improvement of the resulls is not so significant, it
seems that the applicability of the elliptic model with higher order radiation
boundary conditions is somewhat questionable. That is, if the model is simply to
be applied for a sea state representative of regular waves then the investment
can be worthwhile, but if the objective is to further extend the model for imegular
wave propagation assuming a superposition of independent spectral

components then its applicafion can be computationally very expensive.

3.7 - Closure

This chapter dealt with numerical formulations that simulate open boundary
condifions in a numerical domain for wave propagation. The importance of o
correct simulation of outgoing waves with a minimum of arfificial reflections into
the domain of inferest is crucial with regard to eliminating errors due to the
presence of partial standing waves in the domain of interest. An investigation was
undertaken to establish the state of the art regarding not only formulations for
rcdictio;n boundary conditions, but also their implementation in different wave
propagation numerical models. The behaviour of two different formulations,

based on the mild - slope equation, for non - reflective boundary conditions was
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investigated. These two formulations, elliptic and hyperbolic, are the ones that
best deal with the phenomenon of wave propagation because they do not
impose any physical constraint, therefore it is important to optimise their
performance, noting that further work will be presented regarding only the elliptic

formulation.

For the hyperbolic formulation, first order time dependent radiation boundary
conditions and first order time dependent radiation boundary conditions:
combined with sponge filters were implemented. The objective was to develop a
good understanding of the performance of sponge filters in a numerical model
where their implementation is o reasonably easy procedure, thus undertaking a
more complete investigation regarding this type of non - reflective boundary
conditions. Results obtained from applying the two models to 3 different cases for
which existing data were available for comparison, showed that first order
radiation boundary conditions combined with sponge fillers constitute a

worthwhile improvement.

For the elliptic formulation, the behaviour of the model for three types of non -
reflective boundary conditions was studied. The objective was to improve the
accuracy of the model developed in chapter 2. These boundaries were
simulated by first order radiation boundary conditions, higher order radiation
boundary conditions, and first order radiation boundary conditions combined
with sponge filters. Once again tests were performed to evaluate the efficiency of
these formulations in improving the accuracy of the solutions. The results obtained
with the model where sponge filters combined with first order radiation boundary
conditions were implemented did not show an improvement over the results
obtained from using simply first order radiation boundary conditions. However,
higher order radiation boundary conditions showed to be more effective when
dealing with eliminating the backscatiered waves. Nevertheless, the last model
incurs an higher computational cost in comparison with the model which is based
on first order radiation boundary conditions. Owing to the fact that it is intfended
to extend this model to imegular waves under the assumption of linear
superpc;si‘}ion of independent spectral components, and the improvements

obtained regarding the accuracy of the solutions are not very significant, fhis
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research work led to the conclusion that the most efficient model for the stated

purpose is the model with first order radiation boundary conditions.
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Fig. 3.1 - Semi-infinite breakwater. Wave diffraction diagram obtained with the
hyperbolic model with sponge filters.
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Fig. 3.2 - Semi-infinite breakwater. Wave diffraction diagram obtained with the
hyperbolic model in the absence of sponge filters.
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Fig. 3.6 - Breakwater gap width of one wave length. Wave diffraction diagram
obtained with the hyperbolic model with sponge filters.
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Fig. 3.7 - Breakwater gap width of one wave length. Wave diffraction diagram
obtained with the hyperbolic model in the absence of sponge fitters.
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Fig. 3.11 - Breakwater gap width of two wave length. Wave diffraction diagram
obtained with the hyperbolic model with sponge filters.
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Fig. 3.12 - Breakwater gap width of two wave length. Wave diffraction diagram
obtained with the hyperbolic mode! in the absence of sponge filters.
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4.1 - Introduction

The objective in this chapter is to develop an alternative numerical model that can
overcome the difficulties of the model proposed by Li and Anastasiou (1992) for
solving the non-linear form of the mild-slope equation by a multigrid technique. The
difficulties of the previous mode! was in regard fo the application of a relaxation
method at each grid level. The iterative method proposed was the Gauss Seidel
method which is not strictly applicable as the governing equation does not produce
a diagonally dominant matrix. An appropriate iterative method is here proposed
and its suitability for the solution of the mild-slope equation by a multigrid technique
will be investigated. Such a formulation might incur a smaller computational cost
than the mode! developed in chapter 2 and, therefore, might be a more efficient
alternative for treating monochromatic wave propagation. It follows that its
extension fo a numerical model for imregular wave propagation might be more

appropriate.

The chapter is organised as follows:

» Section 4.2 deals with a description of the non-linear form of the mild-slope
equation which is the governing equation of the numerical model proposed in
the present chapter.

e In section 43 a model based on the multigrid technique is proposed. A

subsection presents and discusses the theoretical concepts of this numerical
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techniqgue and another subsection describes its implementation for the
formulation described in section 4.2.

+ Numerical tests performed to verify the model are described in section 4.4, and
based on their results, a discussion of the applicability of the model is finally
presented.

* Asummary of the key points closes this chapter in section 4.5.

4.2 - The non-linear mild-slope equation

A review of mathematical models for the solution of the mild - slope equation has
already been done in chapter 2. A quaiitative comparison between these models
was also made by summarising not only the physical constraints or limitations but
dlso the associated numerical and computational difficulties. Hence this chapter will
deal straight away with the description of the formulation that will be the governing

equation of the proposed modei,

The reduced form of the mild-slope equation is

Vp+ki=0, 4.1)

similar in form {o the Helmholiz equation, where
" 05

. . Vicc,)

k: =k~ T s (4.2)
(cc,)

and k is the local wave number governed by the dispersion relation

®* = gk tanh(kh) . {4.3)

Equation (4.1} can be transformed by introducing a logarithmic function ¥, that

varies slower than the velocity potential function and relates with this iast one as

follows:

p=e’. (4.4)
Thus, setting,

b = Ae® (4.5)

yields
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¥ = In(A) +is {4.6]
where A is the wave amplitude and s is the phase function, s=k.x.

Consequenily taking inte account the identity:

]- k) " -

E)—V“cb =V (n¢)+(Ving)". (4.7)
equation {4.1) can be written as:

VY +V¥. VY +kl=0 ‘ (4.8)

As Radder {1979} and Li and Anastasiou {1992) claimed, the advantage of using a
model based on equation {4.8) is that due to the fact that ¥ varies slower than ¢.
reasonably good results can be obtained with only two to three grid nodes per
wave iength. This fact is a remarkable advantage in terms of computational
economy. However it should be bome in mind that for a rapidly varying bathymeiry

or areas were reflections occur, a larger number of grid points per wave length

needs to be used.

4.3 - A multigrid model for the mild-slope equation
4.3.1 - The multigrid technigue

The multigrid technique. became a popular numerical tool in the last two decades,
used fo solve efficiently not only boundary value problems as also inifial value
problems. It is a Multi - Level Adaptive Technique as some authors call it. Basically,
the multigrid technigue is based on the idea of solving a discrete system of
equations by working on a sequence of grids, or fevels, of increasing spacing and
{aking advantage from interactions between the approximated solutions obicined
at each level. The discrete system of equations is derived from a continvous
problem by a technique like finite elements or finite differences and the interactions
between the hierarchy of grids is usually done by transferring the residual from one
grid to the other.

It was applied to initial value problems by authors like Jameson (1983,1986) to solve

the Euler equations and on boundary value problems by authors like Brandt {1977}
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to predict the approximate solution of the so called Singular Perturbation Difference

Equations which have the form

eV*U+aU, +bU, =F, (4.9)

where U, U, . U, are the unknown and its derivatives in the x and y directions,
respectively, and e. a, b and F are known coefficients that can be real or complex.

Using Brandt's {1977) nomenclature the technique can be described as follows:

Having a set of uniform square grids

G.G'. .., G | (4.10}
all approximating the same domain  with corresponding grid sizes

ho>h; > ..>hy (4.11)
that have the grid size ratio

hoythy=1:2, {4.12)
the differential problem of the form

LUX)=F(x) ingQ, AU(x) =P(x) on the boundary Q (4.13)

can be approximated by a finite differences discretisation on each arid G¥ as
L*UMx) = F*(x) forx e G~ AUNx) = PX(x) forx e &G~ (4.14)

The solution for the discrete problem in the coarser grid G°, approximates the
solution for the discrete problem in the finest grid G, which is the grid we are
interested to solve the problem in.

For an approximate solution u* at @ grid leve! G* the discrete problem stands

Li* =F* - ARt =Pk p (4.15)
where f* and p* represent the residual functions. Assuming L and A linear and the
exact solution

Uk =uk+ V¥, (4.16)
then the comrection V¥ safisfies the residual equations

LFvE=¢ AF V=g (4.17)
Finally the residuals f and pk can be transferred from one grid level to another by a

transfer operator I} | or I¥* as follows
£ = Iiﬂ(f-k-l _Lk-rlvk—l), pk - It-l(PH _ Ak-.lvm) (4.18)

or

Frel 1:-1(fk _Lkvk)' pk—l — It-a(pk _ Akvk)_ ' {4.19)
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The advantages of the multigrid method are related to the two main steps of the

overall process:
The first step involves the descent process, meaning moving from the finest grid to
coarser grids. The system is relaxed on the finest grid and then the residual is
fransferred to the next coarser grid using a restriction operator {like injection or full
weighting). This process is repeated uniil the coarsest grid is reached. The
advantage of this procedure is that the convergence process is accelerated.
The standard iterative methods used to relax the system of equations possess the
smoothing property (property of eliminating the oscillatory modes or high
frequency modes) but leave the low frequency components of the eror
relatively unchanged. In other words, the standard iterations converge very
auickly as long as the eror has high frequency components but the low
frequency components are much slower to eliminate. When passing from a fine
grid to a coarser grid @ mode becomes more oscillatory, meaning that smooth
modes on a fine grid look less smooth on a cearser grid. So, passing the error after
eliminating the oscillatory components to the next coarser grid means the error is
being eliminated by a much quicker process than using only one single grid.
The second step involves the ascent process, meaning moving from the coarsest
grid to the finer grids. In relation to a more robust iterative method what was just
said for the descent process is not so important because the method can be also
effective in eliminating the smooth or low frequency components of the error.
Thus, solving the system on the coarser grid (that involves a considerably reduced
number of grid nodes than the finest grid), then transferring the residual by a
transfer operator (like nested iteration] to the next finer grid and relaxing again a
few times to obiain a more accurate solution can also accelerate the

convergence process.

4.3.2 - The muliigrid technigue applied to the mild-slope equation

Li and Anastasiou (1992) developed a numerical model where the multigrid
techniqUe'wcls applied to solve eguation (4.8) that was discretised by a finite
differences technique. In the model the Gauss elimination direct method was used

for the coarsest grid if necessary, while on the other grid levels the iterative Gauss
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Seidel method was applied. The success of the above model is due to two aspects.
Firsily there are no constraints or physical limitations in the formulation, like the ones
usually associated with the more economic models like the parabolic model
(Radder, 1979). Secondly only a small number of grid nodes per wave length are
required {2 or 3], in order to obtain reasonably accurate results. Li and Anastasiou
(1992} claimed significant computational speed advantages of this model when
compared with the elliplic and hyperbolic models described in section 2.2.1 of
chapter 2. which required at least a minimum of eight nodes per wave length. Their
model was verified for Berkhoff's shoal and the results obiained showed good
agreement with measured resulls. The shortcoming of this model include the fact
that the governing equation does not produce a positive definite square matrix for
practical cases. Consequently, the iterative Gauss Seidel method cannot converge.
To overcome this difficulty Li and Anastasiou (1992 suggested solving the problem
directly at the coarsest grid level using the Gauss elimination, as said before.
However, if o suitable iterative method is implemented instead of the Gauss Seide!
method then the resulting numerical model would take full advantage of the
multigrid technique, and thus would be more efficient. Such a method is proposed

here.

Equation (4.8) is the governing equation and can be approximated using the finite

differences technique as follows {Li and Anastasiou, 1992)

—4VE+ V2, + VL + VLV +a Vi +b V] =) {4.20)

I _]‘
where
(\Plnllj \Plnllj )/ ( )

o= (27 - 971 an.)

i.j-1

(4.21)

i and j are the indices of the grid nodes in the x {direction normal to the shorejand v
(longshore direction) co-ordinates respectively, k is the curent grid level with a grid
cell spacing hy, m is the finest grid level with a grid cell spacing h, . and V" and V,”
are the partial derivatives of the residual V" with respect to x and y. As the index n
represents the iteration cycle, the quantities a and b are known from the previous

iteration c"yc!e therefore remove fthe non-linear character of the problem

transforming the governing equation into a linear system ‘of equations. To improve
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the stability of the iterative scheme Li and Anastasiou (1992) suggest the use of an

upwind scheme for V" and V,*.

Regarding the boundary conditions the problem was formulated as follows:

+ Offshore / driving boundary

The incident wave fiefd is assumed known and therefore ¥ = In(A) +is, where A

is the wave amplitude and s is the phase function.
¢ Shore / downstream boundary

First order radiation boundary condition

o¥
— =ik cosat, (4.22}
ox
where the wave angle o at an arbitrary point on the boundary is obtained from
the deep water angle ao by Snell's law

sinot _ sina,

L L,

{4.23)

L is the wave length and the subscript 0 denotes deep water condifions.
* Lateral / downstream boundaries
First order radiation boundary conditions
ﬁ
oy

Similar to the shore boundary, but now the direction of the boundary is x

= ik cosat. (4.24)

therefore. o is now the angle between the incident wave and the direction

normal to the boundary, v.

4.4 - Numerical tests

Once again Berkhoff's shoal from Berkhoff et al {1982) was chosen to be the case to
validate the mulligrid model here developed to solve the mild-slope equation. The
bathymetry-and incident wave conditions are described in section 2.4.1 of chapter

2 and therefore will be omitted.
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Four different numerical schemes, each with a different number of grid levels were
applied. The number of grid levels tested was 3, 4, 5 and 6, and for all of them the
finest grid allows about 5 nodes per wave length. The numerical domains
considered have an area of 22.0%22.0 m?2 for a grid spacing where Ax = Ay. The finest
grid has o total of 65%65 grid nodes. According to the explanation given in section
4.3.1, the next coarser grids have a total of 33+33, 17«17, 99, 5+5 and finally 3+3 grid

nodes.

The objective of this numerical experiment is to investigate how the number of grid
levels influences the accuracy and efficiency of the model. The two iterative
methods described in chapter 2. the B-CGSTAB and the GMRES methods, were
implemented 1o relax the system at each grid level. Both were used to solve
iteratively the linear system of equations generated by equation {4.20) together with
the boundary conditions described in section 4.3.2. The Bi-CGSTAB did not show
convergence for the above formulation and the GMRES showed a non-monofonic
convergence after reaching a certain residual. The computed results are presented
in terms of normalised wave height in Figs. 4.1.1 to 4.1.8, for the eight sections behind
the shoal as defined in chapter 2, and they were obtained with the model where
the GMRES method was implemented, for a residual of order 10-3. It was observed
that the computational cost in terms of total number of global iterations and also
relaxations on each grid level decreases as the number of grid levels increase. For 3
grid levels the computational cost was about twice as much as for é grid levels,
which proves the efficiency of the multigrid technique when applied to this
particular formulation. Interactions between approximated solutions obtained at
each grid level in a hierarchy of grids generate a faster process of convergence
than the simple use of the most refined grid for relaxation of the linear system of

equations.

The analysis of the computational resulis plotted for the 8 sections behind the shoal
suggests that the numerical model here proposed based on the non - linear
formulation of the mild - slope equation expressed by equation (4.8) can predict
reasonably well wave transformation caused by a complex bathymeitry. The modei
is sensiﬁve’ to the focusing region that occurs behind the shoal due to refraction
effects and to the consequent wave decay that occurs further away from the

cenire of the shoal due to the dominance of the diffraction process. The solutions for
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the area at the left side of the focusing region show a good agreement with the
laboratory data, and in fact, the results for this area are quite similar to the solutions
obtained for the linear models proposed in chapter 2. as it can be confirmed by
observing the results along section é. However, the focusing region is slightly
overpredicted in the region at the right side behind the shoal. This can be seen in
sections 2, 3. 4, and 5, and confirmed along section 8. The reason for this is that
although the numerical scheme is robust enough, it did not attain sufficiently
accurate results, due to the fact that the convergence process was limited by a
residual of the order of 103, as mentioned before. Nevertheless, although the
convergence process of the 4 models was stoped for the same value of the residual,
much better solutions are obtained as the number of grid levels increases. The
numerical model that makes use of a hierarchy of é grid levels is the one that gives
the best approximate solutions. The computational results obtained show that an
increase in the number of grid levels improves the accuracy of the solutions allowing
a better agreement with the experimental data. Another observation mentioned
before, is that an increase in the number of grid levels not only allows an
improvement in the results but also decreases the total computational cost as it

decreases the total number of global and grid level iterations.

An attempt to understand why the Bi-CGSTAB method cannot be applied and the
GMRES method can only be applied under certain fimitations was done. Several
recent publications based on research done on the subject were studied aiming to
take into account the most recent developments. A group of mathematicians
{Barret et al, 1996) wrote about algorithms employed for solving iteratively a linear
system: " ...Yet when the matrix is nonsymmetric or indefinite, or both, it is difficult fo
predict which method will perform best, indeed, converge at all. Atternpits have
been made to classify the matrix properties for which a particular method will yield
a satisfactory solution, but “luck” still plays a large role. ...". This suggests that other
methods like the Krylov Subspace Methods should be tried because the results
obtained here are encouraging. Another alternative here suggested is to explore
efficient solutions using sophisticated poly-iterative methods. Very recenily good
progress has been achieved in this area. A poly-iterative soiver consists of applying
different c:igorifhms simultaneously to the system, in the hope that at least one will
converge to the solution. Although this approach has merit in o sequential

computing environment, it is even more valuable in a parallel computing
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environment because by combining global communications the cost of several
meihods can be reduced te that of a single method. A successful numerical

experiment was obtained by using three algorithms simultaneously.

4.5 - Closure

This chapter dealt with the numerical modelling of a non - linear transformed form of
the mild - slope equation. This approximation was derived based on the idea of
using a function which is less rapidly varying than the wave potential, therefore
requiring a smaller minimum number of grid nodes per wave length to achieve the
same accuracy. The non - linear equation was discretised using a finite difference
technique to generate an approximate formulation which is linear and can be
solved using an iterative method. In order to accelerate the convergence process
of the iterative method a multigrid technigue was implemented. Numerical
expetimentations tc validate the model showed that the model is robust in
predicting regular wave transiormation in the nearshore region and that an
increase of the number of grid levels used within the model accelerates the process
of convergence. proving therefore the efficiency of the multigrid technique when
applied to this particular non - linear formulation of the mild -slope equation. An
increase of the number of grid levels not only accelerated the convergence
process but also improved the accuracy of the results. The reason why the present
model will not be extended into a numerical model for iregular wave propagation
assuming a linear superposition of independent spectral components is because,
despite being faster than the model developed in chapter 2, it does not generale
as accurate a solution. Accuracy plays a crucial role in a numerical model for
iregular wave propagation which is based on a component approach because

errors arising from each component accumulate, smearing the final result.
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5.1 - Infroduction

The objective of this chapter is to create g numerical model for iregular wave

propagation. The model is based on the numerical model developed in chapter 2

for monochromatic waves and it can simulate iregular wave fransformation due to

the processes of refraction, diffraction and reflection.

The chapter is organised as follows:

The following section infroduces the subject of modelling irregular waves in the
nearshore region and the associated theoretical concepts. |
In section 5.3 a discussion based on a literature survey of the -exisﬁng numerical
models for iregular wave generation and propagation is presented.

Section 5.4 proposes a numerical mode! for iregular wave propagation. The
methodology used for the discretisation of the directional spectra and the
generation of iregular components is explained together with the mathematical
treatment given to the wave components.

Section 5.5 describes the tests performed to validate the model developed in the
previous section and presents the results obtained. The model is validated by
comparing computational results with data obtained from a laboratory
experiment. Finally a discussion of the model performance is also done in this
section. .

Section 5.6 presents a critical summary of the work developed in this chapter. It
also esié;blishes a link with the work presented in the next chapter with a view to

improving the present numerical model for iregular wave propagation.
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5.2 - Theoretical concepis

Physical oceanographers were the first who used the concept of random waves.
Only later did engineers become aware of the importance of wave iregularity and
its relevance in engineering applications. Gradually in the late 80's nearshore
random wave models started to appear and laboratory experiments with iregular

waves were conducted by several workers in the field of coastal engineering.

The first attempt to treat sea waves as a random process when considering the
mathematical modelling of wave propagation was based on propagating a
monochromatic wave of height equal to the significant wave height (one of the
various statistical measures of sea waves, widely chosen to be a representative sea
state) and period equal fo a certain representative period that can be determined
from gauge records by methods like the zero crossing method. Now it is known that
this approach can give erroneous resulis when predicting wave climate in the
nearshore region and. therefore, it is important to develop a numerical method for

imegular wave propagation that allows a more redlistic prediction.

Goda (1985) compared results obtained for monochromatic and iregular wave
fransformation over a spherical shoal and in the vicinity of a breakwater. The
computation of random wave refraction has the effect of smoothing the spatial
variation in wave height due to the presence of various direcfional and frequency
components. Diffraction is badly treated when considering regular waves because
wave height is underestimated in the sheltered area behind the breckwater resulling
in bad design and eventually {ailure of the structure. Diffraction is particularly
sensitive to the characteristics of wave spectra, especially to the directional
spreading of wave energy. Although these results were obtained from ¢ theoretical
approach, meaning that there was no data to verify them, they generally agree

with observations done later by other authors.

Vincent and Briggs {1989} have demonstrated by wave tank experiments thai
monochromatic models can significantly over predict the maximum ampilification of
imegular waves due to bathymetry variafions. The differences between
monochromatic and spectral models are most pronounced where bathymetric

features lead to strong wave convergence. They concluded from the case of
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imegular waves propagating over an elliptic shoal that monochromatic waves may
overestimate the maximum amplification of iregular waves in convergence zones
and underestimate wave heights in shadow zones by up o a factor of two, and that
wave height patterns were sensitive o the incident wave height and frequency
spectrum, but particularly to the breadth of the directional spreading function.
These experiments motivated the development of mathematical models {that will
be discussed in the next section) for iregular wave propagation because now there

was available experimental data for comparison and validation.

The concept of the spectrum was discovered by Newton and extended to many
physical problems, including the sea. It is a technique of decomposing a complex
physicaf phenomenon into individual components. For the case of sea waves. it can
be analysed by assuming that the sea state consists of an infinite number of

wavelets with different frequencies and directions.

The theory of wave spectra is based on the assumption that the random sea is
stationary, ergodic and Gaussian. Stotionary, meaning that the joint probability
function of the surface displacement Is invariant to the addition of a constant time
to all the times ty, to, ..., t, . that is the statistical properties of n(x,t) are independent
of the crigin of time measurement. Ergodic, meaning that the time averaged
statistics for the surface displacement at a certain spatial location is equal fo those
of the joint probability function of the surface displacement. Gaussian, meaning
that the surface displacement follows a Gaussian distribution. One should bear in
mind that this [ast assumption is not applicable for shallow waters but it is essential to
decompose the random sea waves into an infinite number of components of linear
and independent behaviour. The assumption of a Gaussian distribution is associated
with symmetry about the still water level, which is realistic for small amplitude waves,
especially in deep water. However, observations in the nearshore region show
waves with high crests and shallow troughs and an addifional asymmetry with

respect to a vertical line passing frough the crest.

The three “dimensional spectrum S(k,@) is the Fourier iransformation of the

covariance of the auto-corelation function of the surface elevation n(x,t) that

describes the ocean surface. The auto-comrelation function is a measure of the
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connection between the two values 1(x,t) and n(x+r1,t+1) of the random

variable n and is defined as

Xty =nix ) nx+r,t+1). (5.1}
The three dimensicnal spectrum is
Sk,0) = @m0 f[ [ 2(r,7) exp(=i (k-1 ~ 1)) drdt do , (5.2)

and if the wave field is homogeneous (homogeneous meaning that the joint
probability function of the surface displacement is invariant to the addition of a
constant horizontal vector to all the space points} the Fourier fransformation of the

covariance is the wave number spectrum, S(k), defined as

S(ky= 2m)” [ [ x(r) exp(-ik - 1) dr dk. (5.3)

Nevertheless, one should bear in mind that the nearshore wave field is not always
homogeneocus and different components might not be uncorrelated. In fact, the
propagation of imregular wave trains in shallow water is a non-linear process where
substantial cross spectral energy tfransfer can icke place over relatively short
distances. This process involves the generation of bound sub - and super - harmonics
and near - resonant triad interactions, defined as the energy exchange between
three interacting wave modes. Battjes and Beiji {1992} have done laboratory
experiments o observe speciral evolution in the nearshore region but the

intferaction process is still not clearly understood.

The wave number spectrum,

S(k) = Sik,@), (5.4)
can be transformed into the directional frequency spectrum,

Si(k,o0) = Sz2(w,0), {5.5)
by using the dispersion relationship

o? =gk tanh(kh). (5.6)

The directional frequency spectrum is o two dimensional specirum and can be

constructed according to the empirical relationship
S(o,a) = $(0) G(o,0) (5.7)
where S(@,a)is the directional wave spectrum, S()is the frequency spectrum and

G((o ,oa) is a spreading function.
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The directional wave spectrum represenis the distribution of wave energy in the

frequency domain, (@) and direction, (o).

Several authors like Bretschneider {1948}, Pierson and Moskowitz {1964}, Hasselmann
et al (1973), and others deduced water wave frequency specira from observations.
The spectral shape depends on factors like the geographical location, duration of
wind action, fetch, and wind speed, existence of swell and stage of growth and
decay of a storm. The water depth is another factor that can also determine the
spectral shape because a range of physical effects are dependent on the water
depth. In deep water (kd = 1) the waves are mainly influenced by three physical
processes: wave growth by wind, dissipation of energy by white-capping and non-
linear quadruplet wave-wave interactions. In water of intermediate depth (kd = 1)
additional effects become important such as bottom friction, depth and current
refraction, diffraction and reflection by obstacles. in shallow water (kd < 1} also the
effects of wave breaking, friad interactions and the effects of wave - current
interaction become noticeable.

The main effect of bottom friction is that it reduces wave energy in the lower
frequencies, thus decreasing the mean wave period, whereas quadruplet wave-
wave inferactions increase the mean wave period. Non - linear interactions
between quadruplets and triads conserve energy therefore they do not affect the
total amount of energy but only the spectral shape. Recent experiments by Batijes
and Beji {1992). indicate that the wave breaking process does not change the
shape of the spectrum. Instead non-linear triad wave-wave interactions change the
spectral shape by the generation of both lower and higher harmonic components.
Although the spectral shape depends on the above factors a characteristic
property associated with the spectral energy also plays an important role. 1t is the
saturation condition. Once the spectrum becomes saturated, the continuing input
from the wind is lost by wave breaking, and by energy fransfer from one component
to another. The saturation range expresses an equilibrium between energy loss and

gain.

Regarding .the directional distribution of wave energy, it was found to be more
difficult to ’mec:sure in the field. Nevertheless, some authors proposed expressions for
the spreading function depending initially only on the wave direction and later on

the wave frequency as well.
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The normalised spreading funcfion satisfies

[Glo,o)a=1. (5.8)

In the sea, spectra with one pecak frequency. two peak frequencies (bi-modal] or
even three peak frequencies (tri-modal) can be observed. However, due to the
process of frequency dispersion that takes place because of the fact that the low
frequency components propagate faster than the high frequency components, the
spectrum that reaches the nearshore region has commonly a.narrow frequency
range (it is narrow banded). A narrow band spectrum results in a variation of the
surface elevation comesponding to a regular sinusoidal wave with slowly varying
envelope and phase. Thus, under the assumption that waves are a narrow band
normal process with zero mean and variance, it can be concluded that the wave
amplitude A follows a Rayleigh distribution. What happens in practise is that the
assumption of a narrow band specirum leads to a very small probability that the
maximum of the wave profile is allocated elsewhere than the wave crest, therefore
the wave envelope represents the amplitude of individual waves where the
probabilities of wave crests and troughs are symmetric. Thus, H = 2A and the wave

height H, is preferred rather than the amplitude A.

Based on the above assumption, useful statistical parameters can be derived. One
of them, that will be later used in this chapter is the significant wave height,

estimated as

Hs & Hm(’ = 4 mﬂ = 4 (59}

The significant wave height H,, defined as the average of the highest one third of
wave heights, is approximately equal to Hy . except when the water depth is very
small or the waves are very steep. Hyo is an energy based significant wave height
determined as four times the square root of the area contained under the energy

spectrum S{o).
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All the theoretical concepts that have been described thus far are important for the
understanding of the two following sections because they constitute the theoretical

basis underlining the mathematical modelling.

5.3 - Available madels for iregular waves

The numerical modelling of random waves can be done by two approaches: the
spectrum approach which is the transformation of a number of point values of the
wave number spectrum S(k), and the component approach which is the

transformation of independeant volumes that are the same as regular waves.

The first method, the specirum approach. is based on wave ray theory. Energy is
conserved along the wave rays when waves are subjected to refraction or shoaling.
Assuming a steady state condition the two dimensional specirum is transformed in

space using the equation

0(CC.S &(CC,S A ~\ 8(CC.S
Cg{cosad—g)+sin6-€(—-i}-+l(sin9$—coseﬁ)—-———o( 698 )}-_-N
X ;

(5.10}

where 8 is the angle between the normal to the local bottom contours and the
wave direction, S is the two dimensional spectrum S(w.a) and N is a source term. This
formulation is derived from the energy balance equation for ¢ steady state
condition. Initially this theory was applied by Longuet - Higgins {1957}, and later
Karisson (1969) and Goda and Suzuki {1975) further developed the idea of applying
the energy balonce equation expressed in ferms of the directional spectrum. After
Bouws and Batfies (1982]) further developed the idea of the ray line as a
characteristic line, the model allowed for refraction, shoaling and crossing waves.
Nevertheless. this method has been mostly applied in deep waters, where it is more
approprioié as it includes a source term allowing fo incorporate the most important
physical processes responsible for wave behaviour in deep ocean, such as

atmospheric transfer {wind input), nondinear wave-wave interaction and energy
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dissipation. Three groups of wave prediction models, known as first, second and third
generation models, based on the wave energy equation have been successfully
used for deep water. Several of the authors that are responsible for their
development formed The SWAMP Group (1985}, A more detailed description of
these models will be done in the next chapter. This method will not be further
pursued due to its imitations to treat the phenomenon of wave transformation in the

nearshore region, as diffraction and reflection are not considered.

The component approach is based on the assumption of linear and independent
behaviour of each individual speciral component. The sea surface is represented by
a linear superposition of many harmonics travelling in various directions. An
illustration of such a superposition where 13 elementary individual components sum
to form the final wave profile is shown in Fig. 5.1. The total wave energy considered

for the range of integration in the azimuth set [-n/2, n/2]. is
Total energy E = m,, = L J‘_ﬂ NEReY 2 (5.11)

and can be considered as the summation of a finite number of spectral energy

components or volumes:

Total energy E = > E(0,,;) (5.12)
=1

=> S(0,0)Aeho . (5.13)
2. S(o,0)A

Each component can be associated with a regular wave by

)

S(w,0)Av Ao = %. (5.14)

where 3; is considered to be the wave amplitude of each individual small amplitude
wave with a cerfain frequency and direction of propagation. Based on this
mathematical assumption that allows the manipulation of the spectra concept the

water surface can be written as

n(x,y,t) = Zn:aj cos[cn -0, —k,(xcos6, + ysine,)]. (5.15)
i=1

The compénen’r approach method has been applied successfully to simulate
directional waves over large coastal areas using a linear model based on the mild-

slope equation. However, almost all the models developed up to now are based on
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a parabolic approximation which as explained before approaches the
phenomenon with physical limitations, neglecting the important processes of
diffraction and reflection in the direction of wave propagation. Although it is
understandable why only the parabolic approximation has been used, which is due
to the fact that it is the one that generates the most economic model in terms of
computational cost, the disadvantage is that it has a high cost in terms of

representation of wave transformation.

Regarding the propagation of spectral components the main difficulty is to create a
mode! that combines a good simulation of the physics involved and computational
economy. Another important aspect to consider and evaluate is the minimum
number of individual spectra components required in order to obtain good resulls.
In all cases an optimal distribution between directional and frequency components

is sought.

One of the picneering models for iregular wave transformation in the nearshore
region under the assumption of linear superposition of wave components was that
of Isobe {1987). The random sea was chosen fo be represented by a Bretschneider-
Mitsuyasu-type frequency spectrum with a Mitsuyasu-type directional distribution
function. The number of frequency and directional components used to simulate a
random sea were 7 and 15, respectively. The model was based on a parabolic
approximation of the mild-slope equation and verified for diffraction cases for which
(Goda et al, 1978) analytical solutions were available for comparison, and for
Berkhoffs et al {1982) shoal for which numerical and experimental results were
available. For the diffraction cases the results showed good agreement with Goda's
results for random waves. and for the Berkhoff's shoal the wave height amplification
behind the shoal was not so large as for regular waves, although not much detail

was presented for this case.

Grassa (1990), was one of the authors who proposed an extension of the parabolic
approximation derived by Radder (1979} to iregular waves. He compared fwo
methods for the simulation of iregular directional waves, both of the component
approach’type. These methods differ in the technique used to discretise the wave
spectrum: one is based on components of equal energy cnd. the other on

components resulling from a constant frequency increment discretisation of the
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spectrum. Very little improvement is obtained with more than 100 components and
the differences between resulls from both methods of discrefisation vanish as the
number of components increases. However equalised energy discretisation gives,
from the point of view of propagation, a more reliable representation of iregular
waves than constant step methods, in parlicular if the number of wave components
is not high. This can be a very important factor when dealing with a model built up
from the elliptic form of the mild-slope equation. Therefore, equalised energy
discretisation is a more advantageous method for discretising the specirum and for
obtaining the individual wave components. Hence it will be used in the model
proposed in the next section. Grassa {1990) also compared his numerical results
obtained from the parabolic model (with 10 frequency and 10 directional
componants, iotalling 100 individual components) with the results obtained by
Vincent and Briggs (1989) from laboratory experiments. He emphasised the fact that
it is more important to use a larger number of directional components compared
with the number of frequency components in order to obtain reliable resuls.

particularly in cases involving diffraction.

Hic and Chadwick {1995) studied imegular wave transformation in the vicinity of a
detached breakwater. They appfied a model proposed by Li {1994) for
monochromatic waves based on a time dependent evolution equation derived
from the original mild-slope equation. The model was extended to iregular waves
under the assumption of linear superposition of equal energy spectral components.

Tests performed making use of 7 frequency components and 4 directional
components suggested that the number of directional components was insufficient.
The numerical results were verified by comparison with data obtained from field
measurements. In agreement with Goda's observations directional spreading was
found to have a more important role than frequency spreading in determining

wave heights in the diffraction zone.

A different numerical model also based on a time dependent form of the mild-slope
equation was derived by Kirby et al {1992}. The model was verified for 3 of the cases
tested in the laboratory experiments of Vincent and Briggs (198%). The namrow
frequency' spectrum was discretised into five components with equal band widths,
using therefore a constant step method discretisation. Although the number of

directional components used is not mentioned the results presented show that
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increasing direcfional spreading leads to much less spatial wave height variation

induced by localised topographic irregularities.

Panchang et al {1990) chose the parabolic formulation proposed by Radder (1979)
to propagafe the individual spectral components. Once more the model was
verified by comparison with the laboratory results obtained by Vincent and Briggs
(1989) for the elliptic shoal. The model was tested for some of the cases for which
laboratory data was available. The three cases where wave breaking should be
taken into account were excluded because their model did not incorporate the
phenomenon. The TMA spectrum was represented by 15 frequency components
and 41 and 21 directional components for broad and narrow directional spectra,
respectively. The linear superposition of the resulis showed that the model gives

satisfactory results despite its physical limitations due to its parabolic formulation.

A common point obtained from all the above research works, which also agrees
with Goda's observations mentioned earlier, is that directional spreading has been
found to play a more important role than frequency spreading for o better

simulation of iregular wave propagation.

A remark that seems appropriate to make here is that almost all the existing
numerical models for imegular wave propagation based on the mild - slope
equation are governed by a formulation that is a parabolic approximation of the
equation. This is due to the fact that it is the most economic approach in terms of
computational cost. Nevertheless there is a certain paradox here because the
parabolic approximation imposes certain limitations in terms of dealing with wave
direction (a main direction is required therefore components with large angle of
incidence cannot be properly simulated); restriction of diffraction to the normal of
the direction of propagation; and reflection in the direction of propagation. Thus it
leads one to consider that theoretically it is the least appropriate model to apply for
imregular waves. Because of these considerations a different model for iregular

waves is proposed in the next section.
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5.4 - A numerical model based on the mild-slope equation

This section proposes a numerical model for iregular wave fransformation in the
nearshore region that overcomes the limitations implicit in the numerical models
based on the parabolic approximation of the mild slope equation. A governing
equation based on an elliptic form was chosen as the basis of the model. This
decision was one of the motivation factors for the research work presented in
chapter 2, where 2 efficient numerical models for regular waves were investigated.
The model here developed is based on the numerical formulation described in
chapter 2 which generates a robust model for monochromatic waves, It is an
accurate model that freats the phenomenon of wave propagation without any loss
of the physics involved. Because a linear superposition of independent spectra
components will be used to simulate imegularity, it is very important to have
accuracy for each transformed component otherwise emors derived from each
component would accumulate and would smear the final result. The goveming
equation is equation (2.2) and the boundary conditions are first order radiation
boundary conditions formulated by equations (2.4}, (2.8} and (2.10). The governing
equation together with the boundary conditions are discretised by a finite
differences technique' resulfing in the linear system of equations formed by
equations (2.5), {2.7}. (2.9}, {2.11} and {2.12) that is solved by the iterative Bi-CGSTAB
method. The same convergence criterion and order of accuracy as described in

chapter 2 are used here.

The specfral discretisation will be done using a component approach [according to
the discussion in the previous section), therefore the directional spectra will be
considered transformed in a finite number of equal volumes comesponding to equal
energy components. Each component will represent a regular wave that will be
fransformed within @ numerical domain making use of the mild-slope equation
based on the principle of conservation of energy. The reason why this discrefisation
method was chosen is based on the very interesting work done by Grassa {19%0)
described in the previous section where it can be seen that a method based on
equal energy components is mere successful than a constant step method when a

small number of directional components is used.
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The directional wave spectrum S(f,o'.) = S(f)G(f,OL), can be expressed in terms of

wave frequency f, instead of the angular frequency a, using the relation @ = 2% f

Considering a cut - off for the extreme values within the frequency range and that
G(f ,a) is a normalised spreading function for directional distribution, the variance
of the surface elevation or zero order moment of the frequency spectrum, which

represents the total wave energy. can be calcutated as

Ly

m,=n’ = limijnzdt. (5.16]
00

tg— t

For a certain number of spectral components of equal energy N;, and a number of

directional components N, , the directional spectrum will be discretised as follows:

1.I
o f satisfies: | s(f)ar = [-“iJ(i - 05)
M Nf
for fi € [fain, finax] and 1=1, .., N;) (5.17)
e ay satisfies: _[ G(f,o)da = (ﬁ]—](j ~05)
for Oij € [Olminy Olmas], 1i=1,.,Ny and j=1,..,N. (518

To each energy component corresponds a individual regular wave of frequency f,,

direction oy and amplitude a;; that can be written as

a, =42 S(£) G(f..c,) AF, Act, (5.19)

or

a, = |- (5.20]
N,N,

Each component is then fransformed over the numerical domain as a regular wave,
accoerding o the description done in the first paragraph, and finally the resulting

wave height H,, at any location of the domain is calculated as

N Ng
1=1
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The final results are then presented in terms of amplification factor or normalised
wave height which is the ratio of the transformed wave, as calculated by equation

(5.21). to the incident wave, as calculated by equation (5.9},

5.5 - Numerical tests

In order to verify the developed model, tests were performed and results compared
with the laboratory results obtained by Vincent and Briggs {1989) for directionaliy
spread imegular waves passing over a submerged elliptic mound. The bathymetry is
similar fo that used by Berkhoff et al {1982) with the exception that for the present
case the elliptic shoal is in a region of constant depth equal 45.72 cm and not over
a slope. The minimum depth occurs above the centre of the shoal and is 15.24 em.

The shoal boundary perimeter is defined by

n

( X )+[L) = 1. (5.22)
3.05 3.96

The elevation at any point in the shoal cross section E, is given in meters by

A hy

E, = —04572+0.7620, /1 - (—x—) - (—y—] . (5.23)
381  \495

The bottom layout can be seen in Fig. 5.2.

The numerical domain was set to cover an area of {220x200) grid nodes in the x and
v directions which are the direction normal to shore and the longshore direction,
respectively. The domain is built up from square cells with dimensions Ax = Ay = 0.1
m. The centre of the shoal was positioned at 7.0 m from the offshore boundary and
10.0 m from each of the lateral boundaries, with its largest axis parallel to the
offshore boundary. A representation of the numerical domain, the location of the
shoal and the position of the sections where iaboratory measurements were taken is
shown in Fig. 5.2. An important remark is that although 8 sections were described as
locations where laboratory measurements were recorded, Vincent and Briggs (1989)
only published data comespondent to section 4. located behind the shoal.
Neveﬁheléss it is a location of focused waves and therefore crucial for the

verification of the numerical model here proposed.
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The iregular offshore sea state was represented by a Texel, Marsen and Arsloe [TMA)
Specirum, which is a representation of spectral distribution of energy in finite water
depth,

2 4 a5 f ) _(f—fm)2
S(f) = ag®(2m) " £~ exp{—125 —f’“— +(Iny)exp o O(f,h).
REPS:

{5.24)
where:

o = Phillips constant, taken as 0.00155.

f» = peak frequency, taken as for Tm = 1.3 sec.

Y = peak enhancement factor, taken as 2 and 20 for the broad and narrow
frequency spectrum.

007 if f<f,

o = shape parameter. taken as .
009 if fx>f_

@ = factor that incorporates the effect of depth h.
05w,) fora, <1

P = 1—0.5(2—@,,): forl<m, <2
1 foro, >2

formh=21rf\/E.
g

oy will be considered for offshore, with = £, giving on = 0.99 and thus @ = 0.5,

Two different frequency spectra were considered. One namow, for ¥y = 20 and one

broad, for ¥ = 2, both shown in Fig. 5.3, where the spectral components used io

represent the frequency spectrum are also plotted. The lower and upper limits
considered for the frequency spectrum were 0.5 Hz and 2.0 Hz. respectively. These
limits are consistent with Panchang's et al {1990] limits used in a parabolic model
mentioned in the previcus section. Vincent and Briggs (1989) used the same lower
cut - off pof an upper cut - off of 1.5 Hz. Each frequency component was then

calculated by equation (5.17).
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Similarly, two spreading funcfions, one narow and one broad. were used in
conjunction with S(f) to obtain the two dimensional directional specira.

The directional spreading function derived from a Fourier series is

] . 2
G(f,a)=517?+%2exp —("02"’) cosj(a—am) (3.25)

;=

where on, is the spreading parameter, taken as 10° and 30c for a narrow and broad
spreading function, respectively, as shown in Fig. 5.4. In the same figure the point
values used to represent the directional components can also be seen. o, is the
mean wave direction, equat fo 0° and J, faken here as 20 (consistently with
Panchang's et al (1990) numerical experiment], is an arbitrary number of harmonics
chosen to represent the Fourier series. For the narmow spreading function the range
of values considered for the azimuth is within the range -45° < a < 45° because G(f.o)
is practically zero outside this range. For the wide spreading function the range of
values considered for the azimuth is within the range -90° < a < 90°. Each directional

component was then calculated by equation (5.18).

Vincent and Briggs {1989%) considered 17 different cases from which 3 include the
dissipative non - linear process of wave breaking. These last three will be considered
in the next chapter while the others will be dealt with here. Vincent and Briggs
observed that for some of the iregular wave propagation cases fested in the
laboratory occasional superposition of waves induced some breaking in the vicinity
of the mound. Therefore, it was decided that these cases were not appropriate to
verify the present model as the results cannot be compared with confidence. The
cases will be refer to as M for monochromatic input wave, U for unidirectional input
spectrum, N for input directional spectra with namow directional spreading and B for
input directional spectra with broad directional spreading. A summarised

description of the test conditions can be seen in Table 5.1:
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Case ID Type Period Height Q. v Om
{sec) {cm] (deg)

M2 Mono 1.30 2.54 — — -
U3 Spec 1.30 2.54 0.00155 2 0
N3 Spec 1.30 2.54 0.00155 2 10
B3 Spec 1.30 2.54 0.00047 2 30
U4 Spec 1.30 2.54 0.00047 .20 0
N4 Spec 1.30 2.54 0.00047 20 10
B4 Spec 1.30 2.54 0.00047 20 30

Table 5.1. Test conditions for non-breaking series.

Based on the fact that an elliptic model can involve a high computational cost {in
terms of time) for imegular waves as several spectral components should be
propagated over the compuiational domain (Fig. 5.2}, the choice of the number of
frequency and directional components is quite important. There should be a
compromise between having a minimum number of components in order to have @
reasonable computational cost, and a sufficient number of components that give a
good representation of the frequency and directional spreading. Thus 8 frequency
components and 8 directional components was the number chosen to represent
the directional spectra. making a total of 64 components. This choice seems to be

ideal when considering the discussion of the subject in section (5.3).

in order fo evaluate the performance of the numerical model for the above 7 cases
the computational results are presented in terms of the normalised wave height, that
is the rafio of the transformed wave height to the incident wave height, H/H,. The
wave height refers to a representative wave, and for these cases it was chosen to
be the significant wave height. Vincent and Briggs (1989) reported that the period
pattern showed little variation when the wave transformation process was occuring
in the physical experiment. Two dimensional {2D) contour piots for the whole
numerical domain and graphs for 6 sections that can be locdlised in Fig. 5.2 are
presented because they seem to be the best way to show the results obtained.
Results for -é‘ecﬁon 4 are treated with particular attention because this section is the
one where experimental data is available for comparison. For this seé'tidn each case

is verified against laboratory data for validation.
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It was observed that as the frequency component increases in value, the iterative
process requires a larger number of iterations to satisfy the accuracy criteria
imposed. The number of iterations increases about 4 times from the smallest to the
largest component. This confirms the expectations because as the frequency
increases (or the period decreases) the wave length decreases and therefore the
wave steepness, H/L, increases, its value becoming less legitimate to use based on

small amplitude wave theory.

The 2D contour plots are shown for each of the above cases from Fig. 5.5 to Fig. 5.11.

From the observations of the 2D contours conclusions regarding wave pattern and

wave height amplification factor [or normalised wave height value) can be

summarised as follows:

+ Wave pattern
The 2D contour plots show 3 distinct wave patterns regarding the convergence in
the region behind the shoal. The first pattern can be observed for the cases with
a broad frequency spectra, U3, N3 and B3. The focusing area is more extended in
the x direction [normal to the shore) than for the rest of the cases. The second
pattern can be observed for the monochromatic case, M2, and the
unidirectional narrow frequency spectra, U4, where the focusing region is quite
localised in a certain area just behind the shoal, parlicularly for the
monochromatic case. The third pattern can be observed for the cases with a
narmow frequency spectra and directional spreading, N4 and B4. The focusing
region behind the shoal is more localised or more concentrated to a certain area
than the broad frequency spectra cases (U3, B3 and N3}, meaning that is more
similar to the second pattern. Nevertheless, for these two cases the wave patiern
shows a non - monotonic or sharp variation caused by the presence of the shoal
which is extended to a larger area of the domain distant from the shoal.

+ Wave height amplification
Regarding the amplification of the wave height due fo the existence of the shoal
it can be observed that the monochromatic case, M2, is the case that gives the
smallest value for the normalised wave height at the two sides of the sheal. The
narrow frequency spectra with directional spreading cases, B4 and N4, are the
ones wiwich show the highest amplification of the wave height just behind the
shoal and the less smooth variation of its value within the region affected by fthe

presence of the shoal. The results obtained with the broad frequency spectra
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cases, U3, B3 and N3, are the ones which present the smallest difference between
the maximum and the minimum values of the normalised wave height, that is
which appear to be less perturbed in passing over the shoal. The unidirectional
cases, U3 and U4, show a smoother variation of the normalised wave height than
the monochromatic case M2. Results for case U4 are generally higher than for the

case U3 for the area affected by the presence of the shoal.

More about the performance of the model with respect to each case can be
observed from the results plotted for each of the 4 sections (Fig. 512 to Fig. 5.17). The
results for the cases with directional spreading are not absolutely symmetric for each
side of the shoal due to the infroduction of a small numerical error when each
directional component is generated. This happens because the process used to
generate each direction is a cumuialive process so that the numerical error
infroduced when the total area is divided into components is minimised and thus
produces the best representation of the spreading function. The same idea was
applied to generate the frequency spectral components. The three sections in the vy
direction (shore direction), sections 3. 4 and 5, confirm the observations from the 2D
contour plots. The maximum amplification factor at the edge of the shoal {section 3)
is minimum for the broad frequency spectra cases, U3, B3 and N3, and the
monochromatic case, M2, The lowest value at the shoal sides can be seen for the
monochromatic case. M2. Then advancing behind the shoal in the direction of
propagation, for all the cases the peak amplification factor is decreased and the
lowest value at the two regions to the side is increased. However, the decrease of
the maximum value is larger for the namow frequency spectra particularly when in
the presence of directional spreading and for the monochromatic case, for which
the peak, which before was higher than for the broad frequency specira, now
becomes smaller. While this occurs, the profile pattern changes smoothly for the
broad frequency spectra cases whereas for the namrow frequency specira with
directional spreading and monochromatic cases the changes in the profile patiern
are bigger. It can be seen from sections 4 and 5 that for these last three cases the
focusing area enlarges to the sides. The three sections in the x direction, sections 4. 7
and 8, confirm the smoothest variation of the broad frequency spectra. For the
narrow freduency spectra with directienal spreading the i_ncrec:se of spreading in
terms of direction seems irelevant at least when 8 directional components are used

with 8 frequency components because the resulis obtained for the cases B4 and N4,
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aiihough not coincident, are not different enough to be distinguishable in the plots.
For the broad frequency spectra with directional spreading the increase of the
directionat range still does not seem to make a big difference for cases B3 and N3.
Nevertheless when comparing these cases with the unidirectional cases directional
spreading is important. This can be seen in Figs. 5.18 and 5.19, which are relative to
section 4. The two graphs of nomow and broad frequency cases were plotted
separately for a betier visualisation and investigation of the influence of directional
spreading. These results lead to the conclusion that although directional spreading is
important, 8 components are not enough for a good representation of the effects of

directional spreading.

Now that the sensitivity of the model for the 7 cases has been established, and
before more considerations and conclusions are established, it is necessary to
evaluate how close the numerical results are to the experimental data obtained. in
order to validate them comparisons were made for section 4, for which laboratory
data is available. Plots can be seen from Fig. 5.20 to Fig. 5.26 for the 7 cases. The
computational results for the monochromatic case. M2, seen in Fig. 5.20, and the
unidirectional cases U3 (Fig. 5.21) and U4 (Fig. 5.24) show very good agreement with
the laboratory data. In fact, only the peak of the convergence region behind the
shoal is slightly underpredicted. about 15%, for the monochromatic case M2 and
about 7% for the narow frequency spectra, U4. The broad frequency spectra case,
U3. shows an excellent agreement along the whole section. These resulls confirm the
expectation that using namow frequency spectra shows a performance which
stands between the performance of the broad frequency spectra and the
monochromatic case. The cases involving directionai spreading do not show such
good agreement in the focusing region, particularly the cases with broad
directional spreading, B3 (Fig. 5.23) and B4 (Fig. 5.26), for the peak of the focusing
region. In fact, what can be observed from ihe laboratory data is that directionai
spreading decreases the ampilification behind the shoal. Waves are less disturbed
by the presence of the shoal meaning that a smoother variation of the ampilification
factor can be observed in this region. 1t is interesting to observe that for the broad
frequency spectra cases, B3 and N3, the model smoothes the two sides of the
focusing rééion in agreement with the laboratory data, Although the same can also
be observed in the experimental results for the narmrow frequency cases, B4 and N4,

the model does not reproduce this behaviour and thus, it shows a pattern more
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similar to the monochromatic case. This fact indicates that the mode! is sensitive fo
frequency spreading. The biggest difference between the computational results
and the laboratory data can be observed for the broad directional spectra cases,
B3 and B4 at the peak of the focusing area. For the narow frequency spectra with
namow directional spreading case, N4, the peak of the convergence region
overpredicts the laboratory results by about 13%. For the namow frequency
spectrum with broad directional spreading case, B4, the peak of the convergence
region overpredicts the iaboratory result by about 70%. For the broad frequency
spectra with narrow directional spreading case, N3, the peak of the convergence
region overpredicts the laboratory result by about 48%. For the broad frequency
spectra with broad directional spreading case, B3, the peak of the convergence
region overpredicts the laboratory result by about 85%. These trends confirm that the
number of directional components required to simulate directional spreading
should be larger than the number of frequency components required to simulate

frequency spreading.

Some of the differences that can be observed between the numerical results and
the laboratory data may be attribuied to non - linear effects which are not
simulated In the numerical experiment as we are dealing with a linear model;
accumulation of emor due to the superposition of the independent components;
the fact that the laboratory data contains a roughly 5% variability about average
values: the fact that the input frequency spectra and spreading function were not
always exactly replicated between laboratory experiment and calculations;
consiraints implicit in the physical model that influence the process of wave
transformation like the fact that the wavemaker had a finite length resiricting the
region in the basin over which homogeneity can be assumed; the fact that
although the cases where breaking was observed to occur in the vicinity of the
shoal were excluded, with imegular waves random superposition can cause wave
breaking that would not occur with small monochromatic waves; and finally due to

an insufficient number of directional components.

Based on observation of the results of the tests done to volidate the model and the
evaluation of its performance for each input case it can be summarised that:
+ the model gives good results in general because the focusing region is reduced

with distance from the shoal:
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» The model is sensitive to frequency spreading and directional spreading;

* 8 frequency specira components are enough to evaluate the influence of
frequency spreading and obtain good results. This conclusion is supported by the
results obtained for the unidirectional cases and by the differences between the
namow and broad frequency cases with the same directional spreading function;

» 8 directional components are not enough to simulate directional spreading
because the computational results obtained with broad and namrow directional

spreading functions are almost the same.

5.6 - Closure

fn this chapter a numerical model for iregular wave propagation was proposed. It is
based on a linear superposition of independent speciral components each of
which is propagated as a monochromatic wave using the accurate model
developed and validated in chapter 2. An investigation of boundary conditions was
made in chapter 3 in which one of the objectives was to improve the accuracy of
the model developed in chapter 2. Nevertheless, it was observed that sponge filters
are not as efficient for this model as they proved to be for the hyperbolic model,
and that higher order boundary conditions require a more complicated stencil that
incurs a higher computational cost. Bearing in mind that a large number of
components is required to simulate a random sea, the model here applied was
based exactly on the model developed in chapter 2. The results obtained proved
that the model gives good approximate solutions when a reasonable number of
speciral components is used and that the monochromatic representation can lead
fo emoneous results. The number of directional components required is higher than
the number of frequency components. This investigation showed that the model is
appropriate to deal with imegular wave transformation, thus making it worthwhile to
improve it by infroducing the imporiant process of breaking as it will be done in the

next chapter.
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6.1 - Introduction

In this chapter the objective is to incorporate the phenomenon of random wave

breaking into the numerical model developed in the previous chapter.

The chapteris organised as follows:

The following section infroduces the subject of wave breaking and gives a
detailed description of the phenomenon.

Section 6.3 presents a description and discussion of the different criteria that have
been used to describe regular wave breaking.

In section 6.4 the methods used to predict random wave breaking are reviewed.
Section 6.5 proposes 2 different methods to predict random wave breaking and
their incorporation into the numerical model for iregular waves developed in the
previous chapter.

Tests to validate the numerical model proposed in the previous section are
described in section 6.6. The computed results of the tests are compared with
available data from Vincent and Briggs's (1989) laboratory experiments. A
discussion on the performance of the model is then presented.

Finally a critical summary regarding the research work developed within this

chapteris done in the last section of this chapter, section 6.7.
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6.2 - The physics of wave breaking

In the nearshore region there is another important process that determines wave
fransformation besides shoaling. refraction, diffraction and reflection: it is wave
dissipation due to wave breaking. Wave dissipation or decay in the nearshore
region is due to bottom friction, percolation through a porous bottom and wave
breaking. Unless we are in the presence of a very muddy bed, the first two processes
can be neglected as authors like Thornton and Guza (1983) or Dally et al (1985)

suggest.

Wave breaking is extremely important not only when considering wave propagation
onfo a beach where it plays a very important rele in transporting sediments and in
the generation of cuments but also for designing coastal structures, where a

prediction of the maximum wave height is of paramount importance to a project.

Wave breaking is a non - linear phenomenon that occurs on the so called surf zone.
The surf zone is the area limited by the shoreline and the wave breaking line, which
can be considered as the offshore line at which, waves start breaking in progressing
towards the shore. The physical phenomenon can easily be identified by its visual
characteristic which is the wave crest curling over the surface. The fluid motion in
breaking random waves is highly complex and precise mathematical description of
the phenomenon is a difficult task although attempts have been made to do so
using linear and non - linear theories. Basically quantitative knowledge on breaking
waves has been obtained empirically. For the highly non - linear phenomenon of
wave breaking the fluid accelerations no longer can be assumed to be small
compared to gravity nor is the particle velocity small compared to the phase
velocity. The particle orbits are not closed and generate an excess momenfum flux,
or radiation stress, in the direction of wave propagation after averaging over a
wave period (Southgate, 1986). When waves break this excess momentum flux is
released generating the wave - induced currents (longshore and cross-shore) and

the wave set - up.

Knowledge: about breaking waves initially derived from particular attention deveoted
to regular wave studies. Thus, concepts like breaking point, which can be defined as

the point of maximum wave height or the point when the first water particle comes
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out of the wave crest according to the breaking criterion under consideration,

cannot be so clearly defined for iregular waves.

Waves break in different ways depending on wave height, wave petiod, beach

slope and wind effects ([qualitatively so well known by surfers). Based on
observations, authors like Galvin (1972}, Peregrine (1983), Southgate {1988) and Smith

and Kraus {1991} have identified 4 fypes of breaking according to their visual

characteristics {Fig. 6.1):

Spilling: White water appears at the wave crest and spills down the front face of
the wave. The upper 25% of the front face may become vertical before breaking.
Usually occurs on flat or gently sloping beaches.

Plunging: The whole front face of the wave steepens until vertical; the crest curls
over the front face and {alls into the base of the wave, sometimes proceeded by
the projection of a small jet. Usually occurs on moderate steep beaches.
Collapsing: The lower part of the front face of the wave steepens until vertical,
and this front face curls over as an abbreviated plunging wave. Minimal air
pockets and usudlly no splash - up is observed. This fype lies between the two
previous types, and many times the distinction is not clear.

Surging: The wave slides up the beach with litle or no bubble production. The
water surface remains almost plane, except where ripples may be produced on

the beach face. Usually occurs on very steep beaches.

These properties of breaking waves in the surf zone appear to be govemned by the

parameter £ defined as

€, =

tanf

H
S Lo

. | (6.1)

or the inshore parameter £ defined as

Es

- (E_bJ ~ (6.2)
L,/

Thus, the following classification of breaker types can be established:

surging or collapsing if & > 3.3 or & > 2.0.
plunging if 0.5 <% < 3.3 or 0.4 <% < 2.0.
spilling if £ < 0.5 or & < 2.0.
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When breaking occurs the particle motion undergoes a transformation from
imotational to rotational motion generating vorticity and furbulence. Uniil the
present date no theoretical model allows an accurate estimation of wave height
reduction. Such a model would be based on a rotational analysis allowing to
calculate the mean velocity field through the water column during the rapid
transformation process of the motion. As no such model exists, a proper
determination of energy dissipation and radiation stress can not yet be done. One
step necessary in order to overcome this unsolved problem is to understand
qudlitatively the mechanisms and processes governing the mean flow just after
breaking and this was done by Basco (1985) {Fig. 6.2). He described with a
reasonable depth the mechanisms involved in the breaker types that most
commonly oceur in the surf zone: spilling and plunging. He further developed some
research work done by Svendsen {1984), who introduced some fundamenial
concepfs in wave breaking analysis like the surface rolier {secondary voriex that
propagates forward with a bore - like motion and has a similar scale as the plunger
vortex which is left behind}. and spatiat sub - zones (transition, inner and swash zone)
within the surf zone {uniform beach) where a sequence of visual fransformation of
the broken wave can be identified. Another contribution done by Basco {1985).
even more important than the first one, was the identification of a secondary wave
that can be generated when breaking occurs. Although this fact can only be
supported by visual observations. Basco suggested a very convincing explanation:
the plunger vortex (rotating fluid mass system generated by the overturning jet) that
translates backwards acts like a wave paddle over the fluid between ifself and the
roller vortex that propagates forward, generating a secondary wave with kinematics
completely different from the original wave. Although further investigation is
necessary fo prove this theory, it seems quite plausible and it can be the

explanation as to why we can see waves reforming after breaking.

Besides the mechanisms involved in the physical process of wave breaking there are
two other aspects where some progress has been achieved in the understanding of
the breaking phenomenon. They regard furbulence generation and spatial
distribution Jof the different stages of evolution of the phenomenon. Regarding the
first cspeci: once again an accurate quantitative knowledge is not yet established.
however turbulence is produced, convected, diffused and dissipated when

breaking occurs. Dissipation happens through fwo main areas: the outer radius of
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the plunger vortex that translates backwards, and at the interface between the
surface roller or vortex that propagates forward and the water below. An interesting
estimate, suggested by Svendsen (1984), is that only about one - third of the energy
that comesponds to a 35% drop in wave height in the outer or transition region ({first
sub - zone in the surf zone, where rapid transitions of the wave shape occur) is due
to real energy dissipation. The other two - thirds of wave height decrease are due to
redistribution of energy {and momentum). Potential energy is converted into forward
momentum flux that is concentrated in the surface roller or vortex. Without doubt
Svendsen (1984} undertook a crucial invesfigative work that enormously contributed
to the understanding of the surf zone. However, his theory was developed for the
inner zone {sub-zone thot follows the transition zone, where a rather slow change in
the wave shape can be observed, the wave front resembles a bore, and the wave
to water depth ratio is almost constant). Therefore the above remarks regarding the
wave height decrease within the transition zone were derived based on deductions
resulting from the analysis of the wave before the breaking point and within the
inner region, where in fact Svendsen's theory gives excellent results for wave height

and set - up.

With regard to the spatial distribution of the different stages of evolution of the
phenomenon, different classifications have been proposed by a number of authors.
For example, Seyama and Kimura (1988) divided the surf zone into two regions
(plunging and bore region), and called the area just before breaking the shoaling
region. They considered the point between the plunging and the bore regicn to be
around the point where h/he = 0.6. However, in being consistent with the points
considered when describing turbulence (previous paragraph}. the classification that
seems more practical and better describes the wave shape evolution is the one
atfributed to Stive (1984). The outer zone is the region delimited from the breakpoint
(where the overturning of the jet starts) and the point where the water depth ratio is
almost constant. Within this region rapid transitions of the wave shape are observed.
There follows the inner region where a rather slow change in the wave shape occurs
and the wave front resembles a bore. Finally immediately shorewards is the run - up
region where the shoreline is visible and the flow can be characterised by a quasi -

steady bredking motion, like a bore, independent of the breaker type.
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6.3 - Modelling regular wave breaking

The phenomenon of wave breaking was described and discussed in the previous
section, based on state of the art work to the present date. In this section breaking

will be discussed under the perspective of modelling the phenomenon.

Medelling wave decay due to dissipation through breaking is a complex task,
therefore the initial approach taken by researchers in the field achieved reasonable
results under the assumption of the waves being regular. In this section a literature
survey is done in order to understand how the problem was approached and to
enable further study of the more complex problem thai is the phenomenon of‘

randem wave breaking.

The pioneer researchers who model wave transformation by breaking realised that
a criterion to determine its occurence had to be established. As breaking depends
on variables like bottom slope, wave steepness and wave form, criteria based on
limiting the wave height, the wave steepness or even the wave crest velocity where
established. Miche (1944) was one of the first authors who suggested a criterion
where wave stability depends on the wave steepness, H/L. Using Stokes wave theory

he proposed the formulation

2
%: 0142 tanh[ Idbj (6.3]

b

valid for any water depth. For deep water it reduces fo H/L=0.142 and for shallow
water to H/L=0.78. In fact, this conclusion was in agreement with the ideas of Michell
(1893} who, considering a maximum crest angle of 1200, found the same criterion for
deep water where there is no influence of the botiom slope on the wave
kinematics.

More recenily authors (e.g. Batfjes and Janssen, 1978; Holthuijsen et al, 1989;

Anderson et al, 19921) used a modified Miche - fype relation:

H, =088 k™' tanh[Y k h) (6.4)
088

where v is a wave height io water depth ratio. Batties and Stive (1984} investigated

the influence of the bottom slope and the incident wave steepness on this last
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parameter and they found it independent of the bottom slope. They proposed the

expression

y=05+ 0.4tanh(33~f—°) . (6.5}

0

Another criterion is the breaker height to breaker depth ratio. McCowan (1891}
studied the phenomenon based on solitary wave theory and he found a value for
the breaker wave height inferior to the one derived from equation {6.3}. He
suggested the constant value Hs /db = 0.78. Although this formulation is not the most
accurate to predict wave breaker height because important factors like wave
steepness are not taken into consideration, it is very mueh used in numerical models
to predict wave transformation in the nearshore region. This fact is due to the
simplicity involved in its incorporation in models and to the fact that it provides
reasonable prediction of wave decay in a surf zone where the water depth is
monoctonically varying. Based on the same theory, Munk {1949) derived a different
expression

H, _ 1

He 33(H,.L,)"

(6.6)

from where the brecker height for a non-refracted wave can be derived. This
criterion does not seem a very good suggestion as the breaker height only depends
on deep water parameters and therefore does not allow a wave to reform and

eventually o break more than once.

Another, different, group of formulations was suggested by several authors. They all
consider the influence of the bottom slope and the first one was derived by Le
Mehaute and Koh {1947}

-0.23
H, =076 Ho[%) m?, (6.7)

Q
where m is the boHtom slope.
Later. Weggel {1972) proposed a relation, also including the effects of botiom slope,
in order to estimate the maximum breaker height that a coastal structure might be

subjected to
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H,

H, _ 1 H,
d, 0.64(1 +e"9'5“’)

+4.46(1 - e'"’"‘)—,- (6.8)

This criterion has been widely used in coastal engineering practice and is
recommended in the US Army's Shore Protection Manual. Smith and Kraus (1991)
extended the data set used by Wegge! (1972) to deeper waters and found the
formulation

H, 112 H,

2= e +5.00(1- e"““‘)L—D. (6.9)

that is valid for 0.0007 < Ho/lo < 0.0921 and 1/80 c m < 1/10.

As it can be redlised, different formulations have been suggested for determining
the wave breaker height. The existence of such a vast number of formulations can
be due to basically 2 factors: some simply differ because they were derived from
different data sets and therefore are valid for different water depth ranges; and
another important factor is that the above formulations were derived to fit data

measured vsing different wave measurement systems.

All the previous formulations are based on the concept of limiting directly the wave
height. However, a different fype of models is based on the wave energy equation
from where energy dissipation by breaking can be estimated. The wave energy

equation can be expressed as
c
_aZ(E C.)=-¢ {6.10}

where E is the mean wave energy density, Cg, is the shoreward component of the
group velocity, and € is the energy dissipation per unit surface and per unit of time
due o wave breaking.

The most popular model is the one where broken waves are treated as bores
{hydraulic jumps that transiate in the direction of the initial wave), for spilling and
plunging breakers, Based on this theory the energy dissipation rate can be

considered as

= —pg—a 17 6.11
L e
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where Q is the discharge across the bore, Q = v; h; = vah; and v; and v» the relative
flow velocities to the shock discontinuity. Authors like Hwang and Divoky (1970).
Battjes (1986). Battjes and Janssen (1978) and Thornton and Guza {1983) considered
Q = CWL with C= Jg_h Assuming (hz - h}® = H? and (hz hi} = h? they derived the

following expression for the energy dissipation rate

1 H?
ge=B—
4P5 T

(6.12)

where B is a parameter that evaluates the suitability of the assumption that the bore
resembles a hydraulic jump. Obviously for the theoretical hydraulic jump B would
be equal to 1. The validation of this theoretical model was done by authors like Stive
{1984) for a mild beach slope of 1:40. He measured the flow fields of a hydraulic
jump and a regular broken wave and realised that the mean wave energy
dissipation rate was underestimated from the hydraulic jump formulation by 30 to
50% { Svendsen et al. 1978, reported a value of 20 to 30%). which can be explained
by the effects of the turbulent flux of momentum. However he observed a close
resemblance between the two flow fields and so he decided to readjust the
formulation and create a new model where instead of the empirical parameter B
he now had two different parameters, one concerning the energy dissipation rate
and the other the wave set - up. Comparisons between his numerical results and the
experimental data now showed a good estimation of the wave height but poor
prediction of the wave set - up. Summarising, it can be said that authors who
applied the formulation based on the bore model reported a reasonable success.
Between these authors are Battjes {1986), Stive {1984) and Yamaguchi (1986) who

applied the model for regular waves.

The bore model approaches the phenomenon more accurately than the previous
mode! strictly based on limits of wave condition because it is derived from a
physical concepi. it should also give a better evaluation of wave decay because
the wave height is proportional to wave energy. Besides it can be applied without
the constraints of the previous model where most of the formulations derived are
valid for -"monofonicclly varying sea beds. However, when considering its

incorporation into a wave propagation model, there still remain two unsolved
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problems associated with the exact location of initiation of wave breaking, and

vaiue of the empirical parameter B.

Aiming to develop o more accurate wave breaking model where the energy
dissipation rate was given by the hydraulic jump approximation. Svendsen (1984)
thought that an extended form of the energy balance would dllow a better
description of the reformed wave height and the mean water level. He thought that
this would be achieved if the wave energy equation would include an extra term
besides the energy flux and the energy dissipation {as equation 6.10). This exira term
is associated with the radiation sfress. His idea was based on the fact that when
breaking occurs part of the wave energy is converted into forward momentum flux
in the vortex rolier, therefore increasing the radiation stress, which is associated with
a similar increase in the energy flux. He suggested the following expression for the

wave energy equation

0 ¢
—(EC_)+—(E,C)=-¢ {6.13)
ax( o) ™ (E.C)
where the second term concerns the energy flux carried by the surface roller, that is
AC
E, =p— {6.14}
T

with A the roller area {A = 0.9H2). C the phase velocity and T the wave period.

in fact, this makes sense, because an increase in the energy flux due to the vortex
roller requires an equivalent increase in the absolute value of the dissipation rate,
which is in agreement with his experimental results mentioned 2 paragraphs before.
Although this formulation improves wave height estimates in the inner surf zone it

does not give satisfactory results for the set - up.

Two other types of models based on the wave energy equation should be
mentioned. The differences between them and the bore model concern the
expression proposed for wave energy dissipation. One of them can be called a
turbulent model and the other a stable wave height model. The first is based on the
concept that turbulence is the main mechanism of dissipation in the surf zone and
that turbulence is statistically isotropic. Based on this idea Mizuguchi (1980) proposed

the following formulation

8=—;—ng(1< H)* (6.15)
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where k is the wave number and v is the molecular viscosity for imotational flows.
However he replaced the molecular viscosity v by the furbulent eddy viscosity v,
which is based on the wave and beach profile characteristics and can be written as

H-cd)*
V, =V h (6.16)

where vg is v. ot the breaker line, ¢ is the ratio between the wave height and the
water depth in the wave recovery zone of a constant depth beach, y is the brecker
depth index described before and g an empirical parameter.

Another turbulent model for a turbulent flow that considers waves and currents was

proposed by lzumiya and Horikawa (1984). The wave motion was assumed to be

irotational. The following expression was proposed

20c, Y
e=g£(%) LE}—G (6.17)

where y is the breaker depth index and B a non-dimensional coefficient dependent

on the wave characteristics and on the mean water depth. The product yB is given

by

B=p C.E 0.09 6.18
Yp= [l Cpgh: . ( . j
with Bo = 1.8.

Finally the stable wave height model, is a particular model based on the idea of
wave height stabilisation at some value in a uniform depth after wave breaking. This
idea came out from laboratory and real sea data observations, therefore the model
describes intuitively the transformation of regular waves in the surf zone. The model
was proposed by Dally {1980) who claimed good agreement with laboratory results
(Dally et al, 1984, 1985). However the model requires to be calibrated for a pair of
empirical parameters which does not make the model as simple and as easy to

apply as the author claims.

A good déscripﬁon of the phenomenon of wave breaking should allow us to predict
its spatial occurrence, the reformed wave height and the mean water level. None of

the above models does this, although as it was said, some of them approach the
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physical phenomenon more empirically than others. However, there is one aspect
that none of the existing models up o the present date considers, which is the
steepness of the reformed wave that can generate waves breaking more than once

in the surf zone.

6.4 - Modelling imegular wave breaking

Modelling random waves is a complex task and that is because the concept of
breaking point is difficult to quantify. non - linear wave interactions that influence
the breaking process are not well understood, and much of the knowledge derived

from investigating the breaking phenomenon is empirical.

it is very obvious intuitively that approaching the phenomenon of wave breaking
assuming that the waves are monochromatic would lead to emoneous estimates. In
fact this was observed by Vincent and Briggs (1989) who by performing laboratory
experiments were able to compare resuits for both cases and conclude about the

differences.

The first attempt to incorporate the influence of randomness in the breaking
phenomenon in models of wave propagation was done by applying a certain
breaking criterion derived empirically to a representative parameter of the sea
state, like the significant wave height. More recently, a different approach has been
proposed. This approach consists of applying a breaking criterion to waves
discretised by a component approach method. that is, to individual wave
components. under the assumption of their linear superposition. In fact the model
developed for this work which will be described in the next section proposes two
criteria based on this approach. The following paragraphs are dedicated to
describing both of the approaches starling from the empirical formulation applied

to a monochromatic wave representative of the sea state.

Goda (1975) was one of the first authors who suggested a formul_cﬁion for wave

breaking considering the phenomencn of wave propagation as a random process.
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The criteric determines that the breaker height at a given water depth is a function

of Lo and m.
i=A-!"—° 1- exp —Bndb(l+Km‘) +C : {6.10)
d, 4, L,

where A=0.17, B=1.5, C=0, K=15 ond s=4/3. lzumiva and Isobe (1984} further
investigated Goda's expression for non-uniformly sloping beaches and proposed
that under these circumstances, the bottom slope m, to be considered should be a
value defined as the mean slope in the distance 5ds offshore from the breakpoint.
Moreover, Seyama and Kimura {1988} set - up iregular wave breaking experiments
on uniformly sloping beaches and found a new set of coefficients for equation
(6.10), under the consideration that the value for water depth is not the still water
depth as considered in the above equation but a value accounting for the
differences of the crest and frough amplitudes of non - sinusoidal waves. They
obtained the coefficients A=0.16, B=0.8, C=0.2, K=15 and s=4/3. Although Goda's
formulation, equation {6.10), was based on a large number of data carefully
analysed and therefore making it reliable, when this criterion is used in connection
with linear theories, the breaking point is predicted a little bit shoreward of the true
breaking point. This is due to the fact that linear wave theories underpredict the
wave height increase just prior to the breaking point. To overcome this difficulty,
Watanable et al {1984) reanalysed Goda's criterion and proposed to use the ratio
of water particle velocity at still water level, u, to wave celerity, ¢, . as a breaker
index. This criterion was originally given in o graphic form but for the convenience of
numerical calculation Isobe (1987) proposed the following formula

2t =053~ 03 exp(~3,/d, /L, )+5m' exp[—45 (Va. /L, - 0.1)2) . (6.11)

Co

Another group of formulations proposed concern a breaking criteric based on
energy considerations. One of the first proposals was done by Komar and Gaughan

(1972), who derived the following expression from experimental data:
H, =K g"*(H,T)". (6.12)

were k = 0.39 from best fitting fo experimental data.
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lzumiva and Horikawa (1984) introduced the concept of critical wave energy at
breaking. E.. They derived an expression for the maximum wave energy that a wave

can reach without breaking.

Ec 1 (H]: -n2 2 -1s2
- = = Ul —— 6.13
pgd® 1+a(H/d) \d/, “ { 1+a(H/d)_ Vs } (613

where (H/d)c should be calculated from Goda's expression, equation (4.10). a=0.33

and U, is the Urssel number,

U, = 27(Ah(5) : (6.14)
d \d

<

An interesting approach is based on the idea of associating limiting wave relations
with joint distributions of wave heights to obtain a random wave transformation
model inside the surf zone. As it was explained in the previous chapter, the wave
height, H, can be assumed to follow a Rayleigh distribution and so breaking can be
simulated by truncating the iail of the Rayleigh distribution. Different breaking
criteria (Fig. 6.3) were suggested by different authors and they are briefly

summarised as follows:

+ Collins {1970} and Battjes (1972) used a sharp cut - off of the Rayleigh probability
density function, with all waves that are breaking or have already broken having

heights equal to Hy. Differences arise from using different breaking criteria.

« Kuo and Kuo (1974} also used a sharp cut - off at H;,, but, assuming that broken
waves are smaller than H,, they redistributed them across the range of wave

heights in proportion to the probability of unbroken waves at each height.

+« Goda (1975) assumed wave breaking o occur in a range of wave heights {Hy,
H,.) with a linearly varying probability. According to the outhor, breakers are
spread over a certain range to account for the variability of breaker heights, and
to partially compensate for the inaccuracy of using a single wave period. Broken
waves Jdre redistributed in proportion to the probability of unbroken waves, thus

resulting in a gradual cut - off of the initial probability density function.
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Although these models are based on interesting theoretical considerations they
were infuitively derived because some of the assumptions, like redistribution of wave
heights, have not been confirmed vet. The main shortcoming of these modeis is that
they were derived for a monofonically varying water depth and therefore cannot
be applied to non - monotonically depth decreasing surf zones. Furthermore the
Rayleigh distribution may be only comectly applied to linear waves and so would

not be expected to work for waves near breaking in the surf zone.

Two other models were based on the same assumption, that is that the wave height
follows a Rayleigh distribution which is fruncated by breaking, but they have one
point in their favour which is that they are wave energy equation models. They have
a better physical support than the wave limitation condition models so are more
reliable. One of them was developed by Battjes and Janssen {1978) who assumed
that: the probability function for the lower, non - broken waves, is the same as it is in
the absence of breoking. that is of Rayleigh type: there is @ maximum value of the
wave height, Hy,. possible to occur at each depth: and that broken waves continue
to propagate with the same wave height, H... Based on these assumptions and on
the fact that the broken wave dissipates with a bore - like motion they derived the

following expression for the energy dissipation rate:

) R
e=B—pg—*H (6.15)

4pg h Q,
where Q, is the probability of occurence of broken waves and is governed by the
formulation
]‘— | 2

Q, =_[Hm] _ (6.16)

]nQb Hm

The model was applied (with B=1, fully developed bore) to an exiensive set of
experimental and field dato for purposes of calibration and verification (Battjes and
Stive, 1984, 1985) showing a generally good agreement and a high degree of
realism.

The other model based on the wave energy equation method was proposed by
Thomion and Guza {1983). They analysed a large number of field data at the coast
of Cc:liforrﬁﬁ which led them to conclude that the use of the Rayleigh distribution

gives a reasonable description of waves in the surf zone. Based on that, they
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expressed the distribution of breaking wave heights, pe(H). as a weighting of the

Rayleigh distribution, p(H), for all waves:
P, (H) = W(H) p(H) (6.17)
where W(H) is the weighting function, desired to be as simple as possible to give a

good fit of py(H) to the observed distributions, such as

-53

H Y H Y|
H = | IS _— s . .18
WH) (yh) 1 ]+[yhj (.18l

with ¥=0.42 and n=4.

Model results were compared with both laboratory and field data. The accuracy of
the model was dependent on the parameter B.

Both last models have given good predictions and are built up from simple ideas.

Nevertheless, they both depend on empirically determined parameters, thus

requiring calibration.

From now on the attention will be focused on the other breaking approach
mentioned at the beginning of the section. It assumes that at each location the sea
state can be represented by a linear superposition of individual monochromatic
components therefore the remaining problem when considering breaking is to either
implement a breaking criterion that can be applied to each individual component
on each location in the surf zone or to calculate the total amount of dissipation for
each location in the surf zone and then distribute it between the individual
components. {sobe (1987) attempted to implement the first alternative. He
developed an iregular wave propagation model based on a parabolic
approximation of the mild - slope equation that is applied to each individual wave
component. In the surf zone, energy dissipation is modelled based on the wave
energy equation, equation (6.11), for each component. The energy dissipation raie,

&, for each component is assumed to be proportional to its energy.

e =f,E, (6.19)
where f} is the dissipation rote factor for iregular waves that can be writien as

fp =Q.f} - (6.20)

with Q, as the probability of breaking waves and f,; a modified dissipation rate

factor for regular waves.
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On the assumption that the distibution of u/C of individual waves can be

approximated by the Rayleigh distribution, Q, can be calculated as

2 27
Q, = 1+2.oo4["—") exp —2.004(7—'=J (6.21)
Y Yis

with v, given by equation (6.11) and y,1 representing the significant value of the

ratio of water particle velocity to wave celerity without breaking.

The modified dissipation rate factor for regular waves is calculated based on
ff, oy -7, (6.22)
where v is the ratio of water particle velocity to wave celerity and ¥: the same ratio

at the wave recovery zone. In his numerical experiment lsobe used experimental

data obtained for constant bottom slopes to calculate a certain number of
parameters involved in the calculation of ¥ and ¥, together with the assumption
that the ratio of water particle velocity to wave celerity at the breaking point for
individual waves is 20% smaller than that for regular waves, therefore Yo = 0.8 vp'.The

last assumption was made without any basis of scientific support because, although
the breaker height of an individual wave component of iregular waves is known to
be smaller than that of regular waves, a quanfitative evaluation has not yet been
done. A simple application of the model was performed for a plane sloping beach,

but no comparisons were made.

6.5 - Implementation of the breaking phenomenon in the numerical model

The numerical model for irregular wave transformation where the breaking
phenomenon will be implemented is the model described in the previous chapter.
The randomness of the sea is simulated by frequency and directional independent
components which are freafed as monochromatic waves and transformed within
the numerical domain by means of the governing equation, which is the elliptic
form of the mid - slope equation. The directional spectra was chosen to be
discretised using the criterion of equal energy compenents because, as it was
mentioned in the previous chapter, it gives a better simulation of the random sea

particularly if a small number of components is used. At each location the water



4. Modeilling of the Wave Breaking Phenomenon 193

surface eievation is assumed to be equal to a linear superposition of that arising

from each individual spectral component.

As it was discussed in the previous section, wave dissipation by breaking has never
been implemented successfully in @ numerical model based on the mild - slope
equation for iregular wave fransformation. In this section two proposals to simulate
the phenomenon are suggested. The first is based on the idea of calculating the
energy dissipated by each component at each location, and the second involves
calculating the total energy dissipation at each location and then distributing it to
the different components. The following paragraphs are dedicated to describing

both approaches.

The idea for the first method was developed based on the acknowledgement of the
research work done by the SWAMP group. They are a group of researchers who do
ocean wave modelling based on the idea that the evolution of a surface wave field
in space and time is governed by the basic fransport or energy balance equation
éS

§+V-VS=N=SIH+SM+Sds (6.23})
where § = S(f. a. x, 1) is the two dimensional (2D} wave (surface variance) spectrum,
dependent on frequency f and propagation direction a, which varies with X, ton
space - fime scales large compared with a typical wave length or period; v = vif.a)
is the (deep water) group velocity; and the net source function N is represented as
the sum of the input §;, by the wind, the non - linear transfer S, by resonant wave -
wave interactions and the dissipation S4. In fact, several wave prediction models
have been proposed based on the above formulation but the authors who gave an
essential contribution and provided a broader theoretical framework for Iater
models were Phillips (1958) and Miles {1957) with the concept of the equilibrium
range of the spectrum, and Hasselmann {1960) with the analysis of the non - linear

energy fransfer due fo resonant wave - wave interactions.

in the present work all the interest is concentrated around the last term in equation
(6.23), which is the dissipation term, Se. This term includes dissipation by bottom
friction, bed percolation and breaking. Before further comments are done

regarding energy dissipation in the nearshore region it is important to summarise the
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wave - bottom interaction mechanisms and evaluate their importance in terms of
wave energy variation. These interaction mechanisms are basically five: scattering
caused by bottom imegularities, sediment suspension, motion of a soft bottom,
percolation through a porous bottom and friction in the turbulent bottom boundary
layer. The first process results in a local redistribution of wave energy and the last four
are dissipative. Conceming the dissipative processes the first is not well known, the
second is only significant when in the presence of a mud bottom, whereas the other
two are common in coastal areas. Percolation is important for coarse sand, but
friction dominates for fine sand or when sand ripples are present. Laboraiory
experimenfs for a regular progressive wave with H=2m , T =8 sec, and h = 7 m give
the relative changes in the mean energy flux over one wave length due to turbulent
bottom friction and percolation to be 1.7% and 0.06% respectively (Svendsen and
Jansson, 1982). Based on this experimen’r it seems o reasonable decision 1o neglect
the last two dissipative processes and therefore atiribute all the dissipation to the

breaking phenomenon. This will be done here.

Several of the researchers mentfioned above (SWAMP group} proposed different
formulations for the energy dissipation term which differ due 1o different derivation
conditions. However, analysis of all the above formulations proposed reveals that
they have one thing in common which is that energy dissipation is proportional to:
the 2D wave spectrum. S(f, a); the frequency component, £, to the power of m: and
the peak frequency. . to the power of n.

Hasselmann and Hasseiman (1983) proposed o formulation for the energy

dissipation for wave growth in shallow water:

Eo?) *
Sds=—co[ J’J 2_8(f, ) (6.24)
g ) o

P
where co = 1.2x10% E is the iotal variance, w, = 2=f, is the peak angular frequency
and g the gravitational acceleration. This formulation will be used in the model
because of its simplicity and also because, although several other authors proposed
different formulations for shallow water, there is nothing at the present date that
would lead-us to think that this expression is not appropriate for the nearshore region
or that Th"e other formulations are betfer. Thus, a model in which the energy
dissipated by each spectral component is caiculated based on the above

formulation was developed. Each spectral component is propagated as a
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monochromatic wave using the linear model based on the elliptic form of the mild
slope equation with first order radiation boundary conditions. Then, an energy

dissipation term, S, Af Aat |, where

6
m,(2nf )Y (2nf)’
Sdsi,-=-°o[ — ( )3 S(f..ct, ). (6.25)
g/ (onf,)
associated with each fransformed spectra component, ij. is calculated and

subtracted from the energy associated to each transformed spectral component,

which is
—2~ = S(f)lj AfiAClj. {6.26)

This method does not take into account parameters like wave steepness or botfom
slope which are important factors known to influence wave breaking. However, it is
noted again that it is difficult to determine the influence of those parameters when
considering such small components, and also that no research work is known fo
have been done in this area. From now on this numerical model will be refered to as

the model with the first breaking criterion.

Ancther idea also proposed here is based on a different approach of modelling the
breaking phenomenon, and involves the calculation of the energy dissipation rate
at each location and then distributing it between the different spectral
components. The numerical model for wave transformation in the nearshore region
where this method is implemented is based on the model developed in the previous
chapter. The modification done concems the introduction of a dissipation term in
the governing equation. The idea of linear superposition of independent spectral
components which are then propagated as a regular wave remains the same.
Based on the extensive literature survey done before, and in agreement with the
comments made during its description (sections 6.2 and 4.3). it has been concluded
that the best approach for calculating the spatial distribution of the energy
dissipation is the wave energy equation under the assumption that the breaking
wave resembies a bore (hydraulic jump). The assumptions made in order to apply
the modelllﬁ.egiﬁmcfely are that: the probability function for the lower, non - broken
waves, is the same as it is in the absence of breaking, that is the Rayleigh distribution:

there is a maximum valuve of the wave height, H,, possible to occur at each depth:
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and that broken waves cairy on propagating with the same wave height, H,,. The

energ\j dissipation can now be expressed by

e=BL f—"HBQ (6.27)
4pgh m<b ‘

as derived by Baitjes and Janssen {1978} and the probability of occurrence of

broken waves is given by Q, that can be calculaied by the following expression:

1-Q, _ —[H"“’J . (6.28)
InQ, H

m
This method was chosen with confidence because its verification was done using a

large ronge of laboratory and field data {as mentioned in section 6.3) and good
results were oblained.

The initial step towards obtaining the energy dissipation rate at each location is to
find the maximum wave height value possible to occur at that same location. This is
done assuming a cut off of the Rayleight distribution ond the expression used to

calculate the value of Hy, is

H,, =088 k; tanh(y k h/088) (6.29)

where k, is the wave number comrespondent to the peak frequency, y is @ Miche
(1944) type parameter which for shallow water has been considered equal to the
constant value of 0.78 based on McCowan (1891) suggestion derived from solitary
wave theory.

The next step is to calculate Q. that is the probability of occurrence of H,, at each

location and is done by solving equation (6.28). where H,.,, can be estimated as

H,. = +/8m, (6.30)

with m; the total wave energy as described by equation (5.11).

Thus equation {6.28) can be written as

Q, = 1+[@J inQ, (6.31)

which is a non - linear equation that is solved by the Newton Raphson method. This
method is very efficient if the first approximate solution is close to the exact solution
and, as o}*’good approximate solution can be ecsily estimated. this method was
chosen to be used in the present work.

Finally for the wave with energy per unit surface and unit \‘ime,
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9

H..
E=pg—. (6.32)
8
the energy dissipation rate facior fp, can be calculated at each location by
£ H?
f, =—=2Q,f =& 6.33
b E Qb P H' ( )

where H is a representative wave height, here chosen to be THe significant wave
height, H,;s. The empirical facior B, which is used to represent the bore conditions,

was here taken as 1. meaning that we are dealing with a fully developed bore.

Now that the energy dissipation rate is calculated ot each location the remaining
problem is to distribute it to each spectral component. This is done by assuming that
the dissipation is proportional to the 2D wave spectrum times the angular wave
frequency to the power of 4. Once again this decision was based on observation of
the estimates proposed for the energy dissipation term in equation (6.24) by the
SWAMP group. Thus,
4
£,k o, S(f,,a;)

D Nr Ne

sz;‘ S(fi’aj)

1=1 =i

_ (6.34)

iofy, ¢

The dissipation term, . was then incorporated into the mild - slope equation

13

that can now be written as
Vo+kid=0 (6.35)
with

(6.36)

From now on this numerical model will be refered as the model with the second

breaking critetion.
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6.6 - Numerical tests

In order to validate both numerical models, that is, to evaluate and compare their
performance regarding modelling of the breaking phenomenon, 2 different cases

for which laboratory data is available were tested.

The data used here are the results of laboratory tests performed by Vincent and
Briggs (1989) for imegular waves. The bathymetry consists of an elliptic shoal. whose
larger axis is parallel to the offshore boundary, placed in a region of constant water
depth. The bathymetry and the input imegular offshore sea state were the same as
for the cases reported in the previous chapter. Thus, more details regarding the
bathymetry can be found in the previous chapter, section 5.4: the shoal geometry is
given by equation (5.22), the elevation at any point over the shoal is given by
equation (5.23), the uniform depth outside the shoal is 45.72 cm and finally a sketch
of the bathymetry can be seen in Fig. 5.2. The input spectrum was the TMA spectrum
and the spectral distribution of energy in finite water depth is expressed by eguation
(5.24). The directional spreading function derived from a Fourier series is expressed
by the formulation (5.25). The two cases here simulated numerically are: the
propagation of a directional spectrum with a broad frequency spreading (Fig. 5.3}
and a broad directional spreading (Fig. 5.4}, named B5; and a directional spectrum
with @ narow frequency spreading (Fig. 5.3) and a namow directional spreading
(Fig. 5.4). named N3. The test conditions for the breaking series are summarised in the

following table:

Case D Type Period Height a ¥ Om
(sec) (cm) (deg)

B5 Spec 1.30 19.00 0.08650 2 30

N5 Spec 1.30 19.00 0.02620 20 10

Table 6.1 Test conditions for the breaking series

Like the tests for the non - breaking cases performed in the previous chapter. 8
frequency components and 8 directional components were combined so that a
fotal of 64 ’specirc components were considered to represent the offshore sea state.
The computational results are presented in terms of the normalised wave height or

amplification factor. 2D contour plots for the whole computational domain {Fig. 6.4
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to 6.7) and 6 sections (Fig. 6.8 fo 6.13} allocated in the region behind the shoal {Fig.
5.2} were chosen fo give the best visualisation and evaluation of the results. Again,

as for the non -breaking cases, there is only iaboratory data available for section 4.

The 2D contour plots show that for the 2 cases, BS (Figs. 6.4 and 6.5) and N5 (Figs. 6.6
and 6.7}, and both criteria, the focusing area behind the shoal is still evident. The
wave pattern does not differ much between the cases and the amplification factor
is generally higher for the second breaking criterion than for the first. The 6 sections
(Fig. 6.8 to 6.13) behind the shoal allow a befter evaluation of the results and the
differences between the two methods. When comparing case B5 to case B3 and
case NS to case N4, the difference concerns the value of the incident wave height
that before was 2.54 cm and now is 19.0 cm so that breaking occurs. 1t can be
observed that for the wave breaking cases the results are definitely much smoother
than for the non - breaking cases and also the amplification factor is reduced for
the breaking cases, pariicularly with the first breaking criterion. When comparing the
computational results obtained for both cases, BS and N5, for each section, it can
be observed that frequency and directional spreading have the effect of reducing
the disturbance caused by the presence of the shoal. although the second criterion
seems to be less sensitive to that. For each section and each case the first criterion
gives lower results than the second criterion. For section 4 the computationat results
obtained from both models overpredict the peak amplification factor. Concerning
the two sides, they show good agreement for case B5 and again overestimation of
the results for case NS5. In fact, what can be observed is that the laboratory data for
this particular section show that the wave height does not vary much along the
section. This is not achieved with either of the numerical models proposed here. The
reason for this behaviour is that the mode! does not consider non - linear effects, like
wave interactions and bottom friction which, as said before. does not usually
represent such an imboricnt influence on wave decay but might be considerable
for this particular experimental bathymetry when a wave reaches a height of 19.0
cm, and the effecis of iarge scale breaking. The differences between both cases
were expected and confirm some conclusions stated in the previous chapter that
frequency and directional spreading tend to neutralise the effect of the presence of
the shoal, fﬁcf is. the waves tend to be less disturbed when passing over the shoal.
Differences between the computational results obiained from both criteria are due

to the different approach used to model the phenomenon. The second approach
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assumes that all dissipation due to breaking occurs over the shoal, whereas the first
approach assumes that dissipation due to breaking occurs proportionally to the
wave height and therefore not only over the shoal but also over the focusing area
behind the shoal. This expiains why the solutions obtained with the first breaking
criterion are lower than the ones obtained with the second criterion for the region
behind the shoal.

4.7 - Closure

In this chapter two numerical models of wave propagation in the nearshore region
were developed and tested. Both models are an extension of the model developed
in the last chapter in the sense that the process of random wave breaking is
incorporated in that model. Two different ideas based on a different approach of
the phenomenon were implemented. One is based on the concept of breaking
each independent spectral component, and the other on the concept of breaking
the fotal propagating wave and then distributing the dissipated energy among the
independent spectral components. Tests were done fo verify both models and
evaluate their performance. The mode! based on the concept of brecking each
independent wave component produced results that agree better with the
laboratory data available for comparison. Not much research work has been done
in this area so the idea of atfributing a certain amount of wave energy dissipation to
a spectral component is an innovation in the area of modelling wave propagation
in the nearshore region. As mentioned before, the breaking process has been
implemented in numerical models in which the mild - slope equation is the
governing equation, simply by treating the propagating wave as a monocchromatic
wave, representative of the sea state, and usually applying a wave height to water
depth ratio breaking criterion. Thus, although in fact there is not much laboratory or
field data available regarding the process of random wave bredking, it is very
important that the phenomenon is included in numerical models for iregular wave
ircnsformclﬂ,on in the nearshore region. That is the reason why it was considered so

important that the above two proposals were tested.
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Fig. 6.1 - Breaker types (from Horikawa, 1988).
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Fig. 6.2 - Schematic sequence of breaking wave events (from Basco, 1985).
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7.1 - Conclusions

The phenomenon of regutar and iregular wave transformation in the nearshore
region was investigated in the previous five chapters of the present work. Several
aspects associated with the process of wave transformation have been addressed
from the theoretical and numerical point of view using the mild - slope equation as
the modelling equation. s eliiptic formulation was judged as superior in comparison
with the hyperbolic and parabolic formulations, due to its higher computational
efficiency for particular cases, and better simulation of the physics involved. In the
present section a number of conclusions are drawn with regard fo the results

obtained from the work undertaken.

1) Aiming to simulate the sea state using linear superposition of resulis from a
monochromatic refraction - diffraction combined model, requires an efficient
numerical model for monochromatic wave propagation in the nearshore region.
Efficiency concerns a good representation of the physics involved in the
phenomenon and simultaneously an economic computational approach, in
terms of run - fime and memory requirements. This can be achieved by
developing a numerical model that predicts regular wave transformation in the
nearshore region, including the processes of refraction, diffraction and reflection,
which is based on the elliptic form of the mild - slope equation. Certain iterative
methods produce the most economic solvers for the above formulation when

applied to a large domain. it has been shown in this study that two Krquv
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Subspace Methods, the Bi - Conjugate Gradient Method and the Generalised
Minimum Residual Method generate suitable algorithms to satfisfy the requirement
of efficiency. They both produce robust models, capable of producing accurate

solutions when applied for complex geometries.

2) A comparison between the performances of both algorithms showed that the Bi -
Conjugate Gradient algorithm has a better convergence rate than the
Generalised Minimum Residual algorithm. it is considerably faster. requiring about
half of the computational fime. Nevertheless, the Generalised Minimum Residual
algorithm performs with a better stability, that is, it is characterised by monotonic
convergence whereas the Bi - Conjugate Gradient algorithm shows a certain

(small) instability within the convergence process.

3) An appropriate simulation of open boundary conditions is important for
predicting correcﬂy‘The characteristics of the wave field. If outgoing waves are
not comectly simulated arfificial reflections will be intfroduced into the numerical
domain and generate numerical errors due to the presence of standing waves.
This study showed that the success of iheir implementation within the numerical
model is highly dependent on the formulation of the governing equation, that is,
the suitability of the boundary conditions formulation depends on the
mathematical model used and its evaluation should be done by numerical

experimentation.

4) Sponge filters are a viable alternative for improving the efficiency of numetical
simulation of open boundaries. They are applied in combination with first order
radiation boundary conditions. This study showed that they are more suitable for
the hyperbolic mathematical formulation of the mild - slope equation than for
the eliiptic formulation. Their inclusion in each of the models is done by
introducing a dissipation term in the governing equation. A great improvement in
the accuracy of the results was achieved with sponge filters implemented for the
hyperbolic model. Sponge filters result in a certain wasted numerical domain in
the area adjacent to the boundaries. Their successful applicafion was achieved
fora spbnge width equal to only one wave length, for the case of the hyperbolic

model.
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5)

An increase in the order of accuracy of the radiation boundary conditions is the
other altemative for improving the efﬁciéncy of the numerical simulation of open
boundaries because it generates a succession of boundaries more fransparent to
the passage of obliquely incident waves. The implementation of first order and
the next higher order of accuracy radiation boundary conditions into the
numerical model! based on the elliptic form of the mild -slope equation confirmed
that more accurate solutions are obtained. Nevertheless, it was also verified that

they increase the computational cost of the model significantly.

6} A numerical model based on a transformed form of the mild - slope equation

7)

was successfully solved by a multigrid technique. The model was derived based
on a non - linear formulation where the new wave function is less rapidly varying
than the velocity potential leading to a smaller number for restriction of the
minimum number of grid nodes per wave length. The mulligrid technique
applied fo the numerical model solved by the Generalised Minimum Residual
algorithm was shown to accelerate the convergence process of the iterative
solver. An increase of the number of grid levels not only reduces the fotal
number of global and grid level iterations but also improves the accuracy of the

resulfs.

A numerical model for iregular wave iransformation in the nearshore region
based on the linear superposition of monochromatic spectral components
transformed using the linear numerical model developed in the initial part of this
work, can describe the phenomenon of random wave propagation satisfactorily
if a minimum number of frequency and directional components is used. Tests
performed over a complex bathymefry proved that the number of directional
componenis required is higher than the number of frequency components. This
leads to the conclusion that such a requirerhen’r does not oniy apply to
parabolic models, because they have limitations dedaling with large wave angles
since waves have to propagate according to @ main direction, but it is also
extended to an elliptic formulation. Eight frequency componentis are capable of
representing correctly a broad frequency spectrum but the same number is not

enough fo represent a broad directional spreading function.
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8} Wave breaking is one of the main processes that occurs in the nearshore region
therefore it cannot be neglected when modelling wave transformation in such
areas. In this work, two models based on the consideration of breaking of each
individual spectral component were implemenied in the numerical model
previously developed for imegular waves. The results obtained from both models
do not show good agreement with the observed results showing that a linear
model cannot simulate correctly the process of random wave breaking which is
highly non - linear and induces interactions between specira components which
are not taken into account in the present model. in addition the effecis of large

scale (area) breaking cannot be underestimated.

7.2 - Recommendations for further work

Based on the results of this study the following recommendations for further work can

be made.

1) Since the elliptic form of the mild - slope equation can be solved efficiently, as it
was proved in this work, an attempt to include non - linear effects into the
numerical model for monochromatic wave propagation should be done to
achieve more realistic solutions. A proposal is to implement Kirby and Dalrymple's

{1986} non - linear dispersion relation.

2) A numerical model for iregular waves based on the linear superposition of
spectral components propagated wusing o non - linear model for
monochromatic waves (as suggested above} is required. The effects, in terms of
improving the accuracy, by using such mode! would more than compensate
the consequences that are imposed by using @ restricted number of spectral
components to represent the sea state, therefore allowing a more economic

numerical model,

3) There is a clear need for experimental results on the breaking of random waves
and a full analysis of the phenomenon integrated in the context of random

wave propagation.
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4) More insight into the process of random wave breaking and its inclusion into
numerical models for iregular wave propagation in the nearshore is required.
The existing models require additional information about interactions between

speciral components induced by energy dissipation by wave breaking.
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