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ABSTRACT

A numerical method for the solution of the two~dimensional,

unsteady, transport equation is formulated, and its accuracy is tested.

The method uses a Eulerian-Lagrangian approach, in which the
transport equation is divided into a diffusion equation (solved by a
finite element method) and a convection equation (solved by the method
of characteristics). This approach leads to results that are free of
spurious oscillations and excessive numerical damping, even in the case
where advection strongly dominates diffusion. For pure diffusion
problems, optimal accuracy is approached as the time-step, At, goes to
zero; conversely, for pure—convection problems, accuracy improves with
increasing At; for convection-diffusion problems the At leading to
optimal accuracy depends on the characteristics of the spatial
discretization and on the relative importance of convection and
diffusion.

The method is cost-effective in modeling pollutant transport in
coastal waters, as demonstrated by an illustrative application to a case
study (sludge dumping in Massachusetts Bay). Numerical diffusiom is
eliminated or greatly reduced, raising the need for realistic estimation
of dispersion coefficients. Costs (based on CPU time) should not exceed
fhose of conventional Eulerian methods and, in some cases (e.g.,
problems: involving predictions over several tidal cycles), considerable
savings may even be achieved.
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1., INTRODUCTION

The last few decades have seen an upsurge of numerical models for
circulation and pollutant tramsport in natural waters. Their popularity
is easily understandable: aumerical models are relatively inexpensive,
versatile and easy to use; yet they are based on rather complete forms
of the equations of fluid mechanies, and therefore describe the relevant
phenomena with good detail.

However, recent years have found users and developers of numerical
models progressively more conscious of the limitatiomns of their tools.
Indeed, it has often been stressed (although not so much implemented)
that models need to be calibrated and verified based on field data.
Also, drawbacks of available numerical techniques have been identified
and have become the subject of research.

One such drawback concerns the solutiop of the transport equation,
when convection is dominant over diffusion (or other diffusion-like
mechanisms). Most available numerical methods avoid spurious
oscillations only at the expense of artificial diffusion, introduced
explicitly in the data, or self generated by the method. As a result,
plumes of pollutants tend to be, especially in the so-called
intermediate field, excessively diffused and damped.

The present work describes, tests and demonstrates the
cost-effectiveness of a numerical method characterized by low artificial
diffusion, even for convection-dominated transport problems.

The mathematical problem is stated in Chapter 2. The 2-D unsteady

form of the transport equation is selected, given that we are primarily
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interested in the analysis of shailow coastal waters; however, no
conceptual difficulties should arise if the method is extended to 3-D.

Chapter 3 presents a brief review of methods available for the
solution of the stated problem. A clear distinction is made between
Eulerian, Bulerian-Lagrangian and Lagrangian methods; each of these
categories.of methods represents a rather different solution approach
and results are likely to reflect these differences.

Chapter & describes the method developed in this study, which is
Eulerian-Lagrangian in concept. The method is based on the
decomposition of the transport equation into a diffusion equatiom,
solved by a finite element method, and a convection equation, solved by
the method of characteristics.

Chapter 5 presents the results of tests, performed by using the
proposed method to solve several problems with known exact solutions.
Results are rather satisfactory, showing a good ability in handling even
strongly convection-dominated problems with neither excessive damping
nor spurious oscillatioms.

Chapter 6 describes the application of the method to the analysis
of sludge dumping in Massachusetts Bay. This application is presented
as an illustration of the potential and drawbacks of the method, and is
not intended to provide information for impact assessments.

Chapter 7 presents the conclusions of our work, and identifies

further improvements.

-11-




2. MATHEMATICAL STATEMENT OF THE PROELEM

The fate of a passive pollutant discharged in shallow water is

often appropriately described by the 2-D (depth-averaged)} transport

equation
dc 3¢ _ 1 3 ac
3% " %i3x,  h 3%, (n Dij =0 T Q (2.1)
i i 3
where
c(x,y,t) - is the unknown depth-averaged concentratiom of the
pollutant
ui(x,y,t) - is the flow velocity in the i~direction
h{x,y,t) - is the flow depth

Dij(x,y,t) - are diffusion coefficients, forming a 2x2 tensor

o(c,x,y,t) - represents internal sources and sinks, and vertical
fluxes through the bottom and the surface of the flow
(i =1,2; J=1,2; X 2 x59, =¥y = u; U, = v; summation

implied over repeated indices)
To complete the formulatiom, initial and boundary conditions must

be imposed. Such conditioms will be considered to be of the form (Fig.

2.1)
c(x,y,t) = co(x,y) at £t = 0, in & (2.2)
c(x,f,t) = E(x,y,t) ' at t > 0, on Pl (2.3)
qn(x,y,t) = an(x,y,t) at £ > 0, onT, (2.4)

where an overbar denotes known quantities; q, represents a flux normal
to the boundary, and is defined as

- e ~n
q, = Dij T cos(n,xi) {(2.5)

=12~




Eq. (2.1) results from the principle of mass conservation, applied
to a pollutant dissolved or suspended passively in a turbulent quasi=-
horizontal host flow. The well-known derivatiom involves two averaging
processes: one over the time-scale of tufbulence, and the other over the
flow depth (e.g., see Daily and Harleman, 1966). Two diffusion-like
mechanisms (turbulent diffusion, and shear-diffusion or dispersion)
result from these averages, each repre;enting the bulk transport effect
of the éart of the flow which is not explicitly represented. Turbulent
and shear diffusion are, in general, unsteady, non—homogeneoﬁs, and
orthotropic (with principal axis that do not necessarily coinecide with x
and y, at each point). However, the ability to evaluate the appropriate
coefficients in natural waters is rather limited, which has often lead
to the assumption that Djj are constant in time and space.

Although turbulent and shear diffusion are several orders of
magnitude more efficient than molecular diffusion, their transport
ability is typically still secondary to convection by the part of the
flow that is explicitly represemted by u, v and h. This leads to the
dominance, in Eq. (2.1), of hyperbolic (e.g. u 3¢/3x) over parabolic
{e.g. Dyy 82c/9x2) operators, which constitutes a major difficulty
for the numerical solution of the transport equation (see Chapter 3).

The term Q{c,x,y,t) that appears on the right-hand side of Eq.

.
~

(2.1) is problem-dependent but typically introduces little challenge as
far as the numerical solution of the transport equation is concermed.

In the present work we will set
Q(C,X,Y:t) = P(XJY:t) - K(XSYJt) C(X,Y,t) (2.6)
where p represents a source, and —Xc a first-order decay mechanism.

~13=




3. REVIEW OF AVAILABLE SOLUTION METHODS

3.1 Introduction

Several numerical methods have been proposed to solve numerically
the transport equation. They typically fit in ome of three categories:
Eulerian, lagrangian, and Eulerian-Lagrangian methods.

Eulerian methods solve the Eulerian form of the transport equation
(e.g., Eq. 2.1) in the nodes of a fixed grid. As a comsequence, they
require the simultaneous solution of hyperbolic and parabolic operators,
which has proved to be a hard task when the former dominate the latter
(see §3.2).

Lagrangian methods avoid the explicit treatment of hyperbolic
operators by solving the transport equation in a grid moving with the
flow. Although potentially very accurate, this apprbach leads, in many
situations of interest (e.ge, continuous sources and complex reversing
flows), to practical difficulties, linked to the grid displacement and
deformation.

Eulerian-Lagrangian methods counstitute an intermediate approach.
The convenience of a fixed grid is retained, but, at some point of the
numerical procedure, the.tﬂgnsport equation is treated in Lagrangian
form to avoid the explicit treatment of the hyperbolic operators.

Eulerian methods (EM) aze currently the most popular ones, much
because of historical reasons. However, a major shift: towards the use
of Eulerian-lagrangian methods (ELM) may occur in the: near future. The
review presented in the next section will be restricted to these two
categories. For completeness, we mention Varoglu and Finn, 1980, and

0'Neill and Lynch, 1980, as references om Lagrangian methods.

C-14-




3.2 Eulerian Methods

Methods in this category are typically based on the build=-up and
solution of a single system of algebraic equations, where both
convective and diffusive terms are represented; unknowns are the
concentrations at a finite number of fixed locations (nodes) in the
computational domain. The trans formation of the original differential
equation into such a system of algebréic equations is usually achieved
using either finite difference methods (FDM) or finite element methods
(FEM).

Relative merits of FDM and FEM have been widely discussed for
several years. While few uniformly accepted conclusioms have been
reached, it is usually recognized that FEM

- handie more efficiently complicated land boundaries and internal
grid refinements;

- are more consistent in the treatment of boundary conditions and
in the set-up of interpolation procedures over the whole
computational domainj

while FDM

- are more intuitive to formulate, and tend to require less memory
capacity and CPU time, for a similar number of nodes;

- result in significantly easier procedures concerning preparation
and input of data.

FDM have been used in the solution of the transport equation since
the late 1950's. They typically discretize the computational domain
through the use of an orthogonal grid. Stfetching transformations may
be used to provide some grid refinement. Over each grid element, the

differential transport equation is replaced by an algebraic equation,

~15~




where both the space- and time-derivatives are approximated by finite-
differences. The resulting system of algebraic equations is adjusted to
take into account the appropriate boundary conditions, and is then
solved to give the nodal concentrationms.

Initial FDM used centered schemes to approximate both the
de) o, il Timl
axli] ] 2Ax ?

, where j denotes an arbitrary node).

convection and the diffusion terms (e.g., u

32c D c:.I+1 - 2cj + cj—l
213 7 73 2

ax~'3 ] Ax

Such methods were typically plagued with spurious spatial oscillatioms

D

(wiggles). A careful analysis of the production of wiggles is presented
in Roacﬁe (1982) in the context of a cne-dimensional, steady problem,
using a regular grid; major conclusions have proved to hold for
higher-dimensions, unsteady conditions, and (in a less straightforward

way) irregular grids. Wiggles are produced when
Pe = E%?-Z_Z

where Pe is the Peclet (or cell-Reynolds) number. The usefulness of
centered FDM is then reduced to the solution of diffusion-dominated
problems (where Pe < 2, with Ax in some practical range).

As a remedy for wiggles in convection-dominated problems (Pe > 2),
more recent FDM have used centered finite;differences only for the
diffusion terms, replacing the convective derivatives by upwinding

se (e, = c._, €1 T Si
differences (e.g., U — = u, ] 3 if uj > 0, and uj J J

ax b Ax Ax

if uj < 0). Upwinding methods do avoid wiggles; however, they
introduce numerical diffusion in a way that increases with Pe and may
easily overshadow physical diffusion (Roache, 1982). The use of such

methods, therefore, corresponds to a re-statement of the physical

=1




problem, which may not be acceptable. In spite of this limitationm,
upwinding FDM have become popular rools in engineering practice.

An alternative approach (Flux-Corrected Tramsport Method) was
proposed by Book et al. (1975) in the form of the additiom of "optimal"
artificial diffusion (the magnitude of the artificial diffusion is
systematically selected over the domain only as required to avoid
wiggles). Again,.this approach leads to a re-statement of the problem.

FEM have become popular for the solution of the transport equation
since the early 1970's. The computatiomal domain is divided into
elements of comvenient shape, such as triangles or quadrilaterals.
Within each element information is concentrated in nodes, but may be
unambiguously interpolated to any other point using pre-selected
interpolation functions. The original partial differential equation is
then transformed into a system of ordinary differential equations in
time, using a weighted residual method. Numerical-integration of this
system leads finally to a system of algebraic equations, whose solution
gives the nodal values of the concentration field.

The use of the weighted residual method requires the #efinition of
elementary weighted residuals; these result from the integration over
each element of the errors made in approximating the actual
concentration field, weighted by pre-selected weighting functioms; the
sum over the whole computational domain of the elementary residuals is
then forced to be zero, to minimize the approximation errors. Different
FEM result from different choices of interpolation and weighting
functions. In the early 1970's, most FEM solved the tramsport equation

using the same interpolatiom and weighting functions; such methods are

-17-




known as Galerkin-FEM (GA-FEM). They are the basis for the models
DISPER (Lleimkuhler, 1974) and FETRA (Onishi, 1981), among others.

GA-FEM lead to "centered" approximations of the advective terms,
and present the same limitatioms as centerad FDM: wiggles are produced
when the Peclet number exceeds a small critical value., Users of GA-FEM
have tried to extend the application of the method to convection-
dominated problems, through the adoptiou of uniform diffusion
coefficients which may be 1 to 2 orders of magnitude larger than the
physical ones.

In the late 1970's several attempts were made to account for the
flow direction, i.e., to "upwind" FEM. Petrov-Galerkin FEM (PG-FEM), as
presented by Christie et al. (1976) and extended by Heinrich et al.
(1977) and Heinrich and Zienkiewicz (1977) comstitute ome such attempt
which has been successful in avoiding wiggles. In these methods, the
weighting functions are not equal to the interpolation functions, but
are obtained from them by a change in shape that increases the relative
weight of upstream information in a way that depends on the element
geometry and the flow characteristics. Limitations of PG-FEM methods
include (a) introduction of artificial diffusion, as a function of the
local Peclet number (similar to upwinding FDM); (b) increased
computational effort required to generate the weighting functions from
the interpolation functions, at each element and at each time step, and
(¢) difficulty in handling elements other than quadrilaterals.

A different upwinding procedure {(much in the line of the
Flux-Corrected Transport Method in FDM) was proposed by Hughes (1979)
for 1-D, and was later extended to 2-D. (Hughes and Brooks, 1979 and

Kelly et al., 1980). 1In this procedure, the weighting and interpola-

-18~




tion funtions are equal, like in standard GA-FEM. However, an
artificial anisotropic diffusion term, equivalent to the one that is
implicitely introduced by the PG-FEM, is computed and added to each
element at each time step. Methods using this procedure have not
received a unique designation, being sametimes referred to as
Balanced-Dissipation - FEM (BD-FEM). Results of BD-FEM have been
reported as indistinguiéhable from results obtained with PG-FEM.
However, BD-FEM are much less expensive and are more easily applied to

elements of any shape and dimensionality.

3.3 Eulerian~Lagrangian Methods

Eulerian-Lagrangian methods (ELM) represent an attempt to combine
the convenience of an Eulerianm grid with the accuracy of a Lagrangian
treatment of convectionn:,Typically, ELM decouple the transport equation
. into two components (pure-convection and pure-diffusion), each being
solved by an appropriate:technique. Most oftenm, the convection equation
is solved by a backwards method of characteristics, while the diffusion
equation is solved by FDM (Holly and Preissmanm, 1977; Glass amnd Rodi,
1982; Holly and Polatera, 1984). A few ELM using FEM to solve the
diffusion equation have been studied in recent years (Newman, 198l;
Newman and Sorek, 1982, Hasbani et al., 1983).

The general procedure behind a ELM is illustrated in Fig. 3.l. At
time t, parcels of fluid are identified with each node of the
numerical grid, and followed backwards along 2 streamline, until a
previous time ty.) where the nodal concentrations are all known.
Concentrations of the parcels at ty.] are then found by interpola-
tion, and directly associated with the nodal concentrations at Gy

=19~



(Fig. 3.la). This completes the solution of the convection equation. A
conventional centered FDM or FEM is then used to solve the diffusion
equation, using the newly computed concentrations as initial conditioms
(Fig. 3.1b).

Cheng et al. 1984 uses a different Eulerian-lagrangian approach.
The transport equation is written in Lagrangian form, but is not
decoupled. As above, at any given time t, a parcel is associated with
each node and followed backwards, along a streamline, until tp-3.

Now, however, instead of using a numerical procedure for the diffusion
step, concentrations at tp are computed as the weighted average of
concentrations within clouds surrounding the parcels' position at
ty-1+ As the size of the clouds is defined by means of the diffusien
coefficients and the time step, this procedure allows the simultaneous
solution of both convection and diffusion.

A systematic comparison of ELM, among themselves and with respect
to Eulerian and Lagrangian methods, is yet to be performed.
Nevertheless, reported results suggest that ELM represent the most
cost—efficient solution technique to solve transport problems. In
general, solutions tend to be "wiggle—free" and remarkably accurate
(very low numerical damping and diffusion) even for high Peclet numbers,

and the computer costs seem comparable to those of Eulerian methods.



4. DESCRIPTION OF THE METHOD

4.1 Introduction

The method described in the next sectiomns is Eulerian-Lagrangian,
in the terminology of Chapter 3. The transport equation is split into a
convection and a diffusion equation - khe former being solved by the
method of characteristics, and the latter by a Galerkin finite element

method.

4.2 The Splitting Technique
The transport equation, Eq. 2.1, may be rewritten by expansion of

the derivatives onm the right-hand side, and rearranged as

c 32c
A Dij A% a%. R (4.1)
i 773

Qazr

— + U,
[

3c *
i

ar

®
where the apparent velocity u, is given by

3
E‘—j_ (hDij) (4.2)

H
=l

We will discretize Eq. 4.1 in time, according to the scheme

- * e 2%e
e+ = . ————t  + .
{u } {DlJ ax.ax.}n {Q}n (4.3)
1]
which introduces an error of order (At). In the above, n denotes
current time, and n~-l a previous time, a time-step, AL, apart.
Defining an auxiliary variable cf, and making use of the
linearity of the transport equation, it is possible to decompose Eq. 4.3

into a convection and a diffusion equationm,
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c - c ac _

At {ul Bxi}n—l =0 (4.4)
n £ 2
c - ¢ -~ 3 ¢

At - {Dij axiax.}n * {Q}n (4.5)

No error is directly introduced by decomposing Eq. 4.3, providing
that at each time step, Eq. 4.4 is solved first, by an explicit
technique, and Eq. 4.5 is solved next, by an implieit technique.

The variable ¢f may be interpreted as the concentration that
would be obtained at time n, if the only transport mechanism between n-—1
and n was convection by the apparent velocity u: . However, ef can
not be rigidly identified with time n, as it becomes an fnitial
condition for the solution of the diffusion equation.

The initial {(at the beginning of each step) and boundary conditions

of the full problem may be writtem in discretized form, as

n-1

c = c at n~l, in Q (4.6)
a -

c = ¢ at m, on T, (4.7)
n _ = t T (4.8)
q, q, at m, on T, .

Using the auxiliary variable cf, we may take advantage of the
linearity of the problem to obtain, again without any decomposition

error, the two following sets of conditions
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c = ¢ at n-1, in Q (4.9)
for convection
cf = ¢ at n, on Tl {(4.10)
, £ .

e = ¢ at n-1, in & (4.11)
n £ . . :

c = ¢ at n, on Tl for diffusion C(4.12)
n —

g = 9 at n, on F2 (4.13)

The splitting technique used in most ELM is based on the same idea
of discretizing the original transport equation in time, and taking
advantage of the time-discrete form to decompose the equation.1
Typically, however, the time~discretization is performed on the
transport equation written in the form of Eq. i.l, rather than that of

/

Eq. 4.1. The splitting leads then to the equations

SR + fu, 254 = 0 | (4.14)
At i3x; n-1 ’
n f
¢ —¢ _ 1 2 dc
— " {H §x_i(hDij é_’?;)} + {Q}n (4.15)

For the general case where hDij is space-dependent the above
decomposition does not avoid the presence of hyperbolic components in
the diffusion equation, as 'is clear by expanding the derivatives in the

right-hand side of Eq. 4.15:

1 An exception is the method described by Neuman and Sorek (1982), where
the decomposition is performed over the continuous form of the equation.
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f ahD, . 2

c = ¢ _ 1 ijy dc 3 ¢
At - {(E' axi ) 5;; * Dij axiaxj} * {Q}n (4.16)

Clearly, if the hyperbolic terms in Eq. 4.16 dominate the parabolic
ones (e.g., due to large gradients in the flow depth), significant

numerical diffusion will occur.

4.3 Solution of the Diffusion Equation
4.3.1 Introductiom

The diffusion equation is solved by a standard FEM, based on a
weighted residual Galerkin formulation. The time-discretization scheme
is implicit, based on a backward Eulér's formula. § 4.3.2 to 4.3.4
present the details of the solution technique.

The selection of a FEM rather than a FDM (more conventional in an
Eulerian-Lagrangian comtext) was recommended by the superior ability of
the former to deal with irregular domains, and with internal grid
refinements.

It should be noticed that the use of an irregular FE grid increases
the complexity of the particle tracking algorithm required to solve the
convection equation (see §4.4.2). On the other hand, FEM, unlike FDM,
lead to the unambiguous definition of interpolation functions that cover
the whole domain. These functious are natural candidates to become the
basis of the interpolation procedure required to solve the convection

equation (see §4.4.3).
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4.3.2 The Weighted—Residual Statement

The diffusion problem will be stated as governed by the differen-

tial equationl

dc azc
_E = Dij a—xls-ig—“ - Kc + p (4017)

with initial conditioms
cl{x,y,t) = Eo(x,y) at £t =0, in Q (4.18)
and boundary conditioms

c(x,y,£) = c(x,y,¢t) at £ >0, on T, (4.19)

qn(x,y,t) = En(x,y,t) at £ > 0, on T, (4.20)

A discrete representation of the space-domain is adopted, such that

the concentration is approximated by

Ny

clx,y,t) = ::(X,Y, L) = E(K,Y,t) "‘E Clj(t) ¢j(x,Y) (4.21)
=1

1 Formally, the problem should be stated in the time-discrete form that
results from the splitting of operators - Egqs. 4.5 and 4.11-13. The
non-discretized form is adopted for the sake of simplicity; it
introduces no errors, providing that the discretization scheme used
before is kept while actually solving the equations {(see §4.3.4).

-25-



where *

- denotes approximation due to the spatial discretiza~-
tion _
c{x,y,t) - is zero outside rl’ and is known everywhere on rl
aj(t) - are unknown coefficients
¢j(x,y) - are known interpolation functions
NT

— is the number of nodes in the domain

This approximation

introduces residuals over Q, I'i and T2, defimed
as
ac 220 .
R(K,}’) = 5‘2’ - Dij m + xc = p in {(h.22)
T(x,y) = ¢ - ¢ on Fl (4.23)
S(x,y) an - an on F2 {4.24)

We will satisfy the essential boundary condition Eq. 4.19 exactly,

which implies that the residual T(x,y) and the functions ¢j must
vanish identically on Ij.

The errors in § and on Ty will be
minimized in a weighting residual sense, by letting

W= [ wRx,y)dA + [ w S(x,y)ds = 0
Q T, '

(4.25)

where W is the weighted-residual over the domain, and w is an arbitrary
weighting function.
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Introducing the definitions of the residuals R(x,y) and S(x,y) into

Eq. 4.25, the weighted residual over the whole domain becomes

2~

ac :

= - a ¢ - _ = _"

= éf{w o7 da Dij v 3% + xwe - wpjdA + { w(q - q lds (4.26)
. _ 5

Integration by parts of the term involving second derivatives, and
re-~arrangement leads to the balanced weak form of the weighted residual

statement retained for our finite element formulatioms:

l°’,

Qr

;' x';+§xw2 - wp}dA + I wands +~f winds = 0

1 1. Pl P2

W"”{w—dA+D

Q
[« %]

ij

(4.27)

4.3, 3 The FEM Formulatiom
As in any FEM formulatlgng thé domain 1is d1v1ded into elements.
Thewweighted residual over the:dbmaln, W, which is required to vanish by
Eq. &4.27, is evaluated as‘thé"SUm of the elementary residuals, w°,
| - Following a Galerkin.appno#ch, we will restrict the weighting
functions to have the samevshgpg»as the interpolation functions, over

each. element. Clearly, the. weighting functions must now vanish omn

-27=




Ty, as the interpolation functions do. Therefore, the integral over
Ty on the right-hand side of the weighted residual statement,

f W ands, vanishes identically. Also, we may write over an element,

I

in a way consistent with Eq. 4,21,

T 6 (x,y) Ee(t) (4.28)

sy ¥ (0 2 w10 8 (xy) (4.29)

£
]

where ae and We are column vectors containing the ncdal concentra-
tions and the (arbitrary) nodal weights; ¢ is a row vector containing
the interpolation functions.

The weighted residual over an element then becomes:

T
3 34 36
T T 9" 38
W= w () eeen) 5 (o s ) 2
Q Q 1 ]
= e
* Uf"ﬂ';Tidﬁ)ie - Jfo'pda + | % q_ds (4.30)
Qe Qe I‘2

T -
W = ¥, {2& Ga + (ée + Eﬁ) P Ee } (4.31)
where
T T . .
M = [[ ¢°¢ dA geometric matrix (4.32)
=e o T
e
T
99" 3¢
A, = /] Dij = 5% dA diffusion matrix (4.33)
Qe 1 1
B = jI.K¢T¢ da decay matrix (4.34)
=2 Q '
e
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= | ¢ p da - i g? an ds source/boundary vector (4.35)
f

The sum, over the whole domain, of the individual contributions of
the elements to the global weighted residual leads to the system of

ordinary differential equations

13
R

+(B+Aga = P (4.36)

where each global matrix represents the assemblage of the corresponding
elementary matrices.

In the above formulation, the highest derivatives involved in the
selected weighted residual statement are of first order. Therefore,
space-continuity requires that the interpolation functions be
first-derivative square integrable, i.e., have plece-wise continuous
first derivatives. In addition, comvergence in the mean-square sense
requires that, within each element, the interpolation functions be at
least linear.

Linear interpolation functious, although admissible, were found to
be inadequate. Indeed, they allow an accurate solution of the diffusion
equation, but tend Eto introduce excessive numerical diffusion and
damping in the solution of the convection equation (see §4.4). The use

of at least quadratic interpolation functions is strongly recommended.
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4.3.4 Time-Discretization Scheme. Solution Strategy

To transform Eq. 4.36 into a system of algebraic equatiomns, we have
adopted an implicit time-discretization scheme, based on a backward
Euler's formula:

M+ at(a” + BD]a" = Mol +at 2" (4.37)
where the superscripts n and [ denote current time and “previous" time
(after the convection equation has been solved).

The scheme is unconditionally stable and is consistent with the
splitting procedure described in §4.2.

From the analysis of Eqs. 4.32 to 4.34, we recognize that M is
always a symmetric, time-independent matrix, while in general‘é and B
are non-symmetric, time—depen&ent matrices. However, A will be
time~independent if Djj are time independent.. The same applies to B
with regard to k. Also, A will be symmetric if the diffusion
coefficients Djj (a) constitute a symmetric tensor and (b) are uniform
over each element (although they may vary from element to element).
Similarly, B will be symmetric if x may be considered uniform over each
element.

The best strategy for the solution of the system of Eq. 4.37
depends on the characteristics of the matrix 2 = M + ﬁt(éﬁ + EP).

In the present work, we have dealt only with situations where Z is
symmetric and time-independent. To take advantage of this property, we
have solved the system by using an appropriate LLT - decomposition
method. The décomposition of Z is done only once; in each additional
time step, the required operations are limited to updating the load
vector, P, and performing appropriate forward and backward substitutiomns

to obtain the wvector of nodal cotncentrations.
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It should be noted that, if the conventional splitting procedure
mentioned in §4.2 had been adopted, the definition of A would include
not only the diffusion coefficients Djj, as before, but also the flow
depth, h, Therefore, A would be time-independent only when Djj is
time-independent, as before, and either (a) h is constant over each
element (in which case the explicit dependence of A on h vanishes), or
(b) h is time-independent. In many situations of interest (e.g.,
estuaries and coastal waters, with non-negligible depth gradients), the
requirements on Djj are much weaker thaﬁ the requirement in h;
as a consequence, the splitting procedure used in this work may
lead to a time-independent Z, while the conventional splitting

procedure would lead to a time-dependent Z, and therefore to less

computational efficiency.’

4.4 Solution of the Convection Equation
4.4.1 Introduction

The convection equation, which in continuous form may be written as

De _ 3¢ * 3¢ _

ot - 5 0 Ui 3%, =0 (4.38)
with * o4 - 13 (D..h) (4.39)

Yi iR ij ’

states that the concentration of a particle following the apparent flow
(u*,v*) remains constant, i.e., that the concentration remains constant

along trajectories or characteristic lines defined by

i *
a—E—= ui(x,y,t) (4.40)
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We will solve the equation using this property. 1In each time step,
we allocate a fluid particle to each node of the finite element grid
used to solve the diffusion equation, and we proceed as illustrated
below.

Consider, at time n, the particle at node j, located at P =
(Xj,yj)-(Fig. 4.1). This particle was previously at position (P',
n~1), having been driven from there by,thé apparent flow, along a
characteristic line. Tracking the characteristic line backwards, we can
determine P', and then determine c(P',n-1) by spatial interpolation at
time n-1 (where the concentratioms at the nodes of the finite element
grid are known). But by Eq. 4.38, ¢(P,n) = c(P',n-1) and the problem is
solved for node j; the procedure must now be repeated for each of the
remaining nodes.

The same basic procedure applies even if an inflow boundary is
crossed during the back—tracking (case of node Q, Fig. 4.1). Now,
however, the concentration at (Q,n) is imposed directly from the
boundary condition, i.e., c(Q,mn) = c(Q',n'). In outflow or closed
boundaries the back-trajectory of a particle is towards the interior of
the domain, and boundary conditions are not required.

The approach described has been called "step-wise method of
characteristics", "reverse method of characteristics” or "streakline
method". It clearly includes two main tasks:

. the stepwise back-tracking of the particles along the
characteristic lines, starting at each node of the fixed
computational grid, at each time n, and being carried until
time n-1 (or until an inflow boundary is crossed);

.- the spatial interpolation required to find the concentratiom

carried along the characteristic line.
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4.4.2 The Stepwise Particle-Tracking Algorithm
The stepwise tracking of a particle coustitutes an initial-

value problem, govermed by the set of ordinary differential equatioms

* *
_ = uy (x,y,t) . {i=1,2} (&4.41)
which must be solved backwards in time, with boundary conditions

£, = X, at time n (4.42)
i i

In a FE context, the driving flow field (u,v,h) is given
explicitely only at the nodes of a (often irregular) grid; however,
interpolation functions that apply to each element, allow the
unambiguous definition of {(u*,v¥) in the whole domain. Also, most FE
circulation models only compute the flow field at fixed times, requiring
time-interpolation procedures to complete the flow description.
Exceptions include models based on frequency-domain approaches, that
explicitly establish the time dependence on the u,v,h.

We have developed an element-per-—element tracking algorithm that
acecounts for the need of an element-based spatial interpolation of the
flow field, and is flexible to accomodate time—interpolation schemes,
when required.

We will refer to Fig. 4.2 to describe this algorithm. Consider a
particle at position (P, n) where P coincides with a node of the finite
element grid; at time n-1 this particle was at (P'''', n-1), which ve
want to determine. We first follow the particle backwards along its

characteristic line, until position (P', n-B1).
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As only element K; is involved, we may write:

m

ui(x,y,t) = 22:1 xpz(x,y;Kl) uiz(t;Kl) (4.43)
m

h(x,y,t) gz=1 T, (x,¥3K,) b, (€5K,) (4 .44)
m

Dij(x,y,t) = lil Bg(x,Y;Kl) Dijltt;xﬁ (4.45)

where ¥y, Tg and 89g are elementary interpolation functions; ujif,

hg and Djjg represent nodal values of uj, h and Dij; and m is

the number of nodes of the element,. 1f the nodal quantities ujg, by
and Djjp are known at all times between n and o (either directly or

*
by time-interpolatior), ug, may be computed everywhere, using Eq. 4.39.

Because we were constrained by the choice of circulation models, we

have used in this work linear interpolation of velocities and flow
depths, over 3—noded triangular elements. The diffusion coefficients
Dij were assumed constant over each element. The procedure is rather
general, though, and may be applied to any other consistent choice of
interpolation functions and element shapes.

Once w* and v* are defined, the solution of the initial-value
problem governed by Egs. 4.41 and 4.42 determines (P', n-83). Several
numerical solution techniques are available; we have selected a 4th
order Runge-Kutta method, with comstant time-stepping. The time step,
6tK1 is selected to limit the truncation error per step to a
prescribed value. Once (P', n-B1) is obtained, an evaluation of
(p, n) given (P', n-B;) is performed, to assess the total error

between n and n-f1; if the total error is not found satisfactory,
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the time-step is reset, and the'tracking between (P, n) and (P', n-81)
is repeated.

Once (P', n-B]) is known within satisfactory accuracy, the
functions u* and v* are replaced by equivalent ones applying over
element K9, and the particle is tracked along this element, back to
(P'', n-85). The tracking is accomplished as before; a new
Runge-Kutta time step 6tK2 is selected in an attempt to account for
the variation of the flow characteristics from element to element.

The element-per—element tracking is continued until time n-1 is

reached, or a boundary is crossed (whichever happens first).

4.4.3 The Intexﬁélation-Scheme

Consider ég%in the finite element grid shown in Figure 4.2. Assume
that (P'''', n-l)‘was found by the particiﬁ-tracking procedure, and lies
in element K4, say.

The-conéent:#tion at (p'''’', n—lJ-wiLllnot, in general, be
eiplicitly known:.. However, concentrationé;at the nodes of elements K@
are known at“tim%&nrl, and the finiteaelemgnt.approximation'used;to-
solve the diffﬁg%&n-equation inherently‘sufplies a consistent way of
interpolating-c&éééntrations over~the.eleﬁ§n;4

Therefore, =~

m -
C(P ,n’.) 2 C.(EP' tee 3n-1-) = Z ¢i(x:,y;. K[‘_) ci(n-l; K4) (4'46)
i=1 : .

where ¢i(x,y; K4) are interpolation functions, associated with the
finite element approximation for concentrations; cj are nodal

concentrations and m is the number of nodes of the element.
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Preliminary tests showed that the use of linear interpolation
functions introduced too much numerical damping. This is supported by
the brief accuracy analysis for the solution of the convection equation,
presented in Appendix. We have therefore adopted quadratic
interpolation functions, defined to be consistent with the interpolation
functions for velocity and flow depth over triangular elements (now with

6 rather than 3 nodes).

4.5 Comments on Stability and Accuracy

The method has mno stability limitatioms on the time step, At. For
the convection equatilon, unconditional stability is assured by the fact
that the concentration at the foot (P', say) of each characteristic line
is found by interpolation (over the element that contains P') rather
than by extrapolatiom. For the diffusion equation, unconditional
stability is assured by the implicit time-discretization scheme that was
adopted.

4 formal analysis of the accuracy of the method is beyond the scope
of our work. Errors may arise im each of the three major components of
the methodﬁ the splitting technique, the solution of the diffusion
equation and the solution of the convection equation.

The error associated with the splitting technique results
exclusively from the time-discrete form adopted for the transport
equation (as pointed out in §4.2, for such discrete form, no additional
@Trors arise—from the splitting of the full equation into two

sub-equations) and is of order o{at).

The diffusion equation that results from the splitting is already
in a time-discrete form. Errors inherent to the solution of this

equation are therefore due only to spatial approximations, and are
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estimated to be of order 0(aL)3, for quadratic interpolation
functions. This estimate is based on the theoretical bound of the
mean-square error in 1-D
- ~2 172 prlp s dPY ey2,,01/2
Hc-cH = {f (e-e)” aa} " < W] (=) da} (4.47)
f @ dx

€

where p is the order of the interpolation function.

Errors inherent to the solution of the counvection equation may be
associated with both time and space discretizatioms. Time-discretiza-
tion errors arise during the particle tracking, where the time—step for
the solution of the hyperbolic equation, At, is broken into sub-steps,
§t; as a 4th order Runge-Kutta method is used, errors are estimated to
be of order (6t)4.

Space~discretization errors arise in connection with the
interpolation of the concentratioms at the feet of the characteristic
line. The magitude of these errors depends on factors such as shape and
length of the original concentration distributien or the source term,
the order of the interpolation functions and the discretization steps in
space and time. A simplified error analysis is presented in Appendix,
in which the damping ervor per time step is calculated for a harmonic
coucentration field, as a function of the dimensiomless wavelength, M,
and of the decimal part of the Courant number, o.

Results obtained indicate that (a) the damping error per time step

decreases with the increase of the dimensionless wavelength, M;
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(b) the damping error per time step does not depend on the Courant
aumber, but on its decimal part, aj therefore the error per time step is
essentially independent of the order of magnitude of the time-step and
the total erfor after a given time decreases with increasing At
(decreasing nmumber of time steps); (¢), the damping error decreases
significantly when the order of the interpolation functiomns goes from

linear to quadratic.
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5. SOLUTION OF TEST PROBLEMS

5.1 Introduction

The numerical method described in Chapter &4 was used to solve
several problems with known exact solution. The analysis of the results
provides useful information on the characteristics of the method, that
is out of the reach of a theoretical accuracy analysis.

A quantitative basis for the analysis of the results is provided by
the set of error measures defined in Table 5.1. These measures conc¢ern
a variety of characteristics of the numerical solution: overall
accuracy, artificial damping {reduction of peak concentrations),
spreading and shifting of the concentration field, and spurious
osciliations. This wvariety of error measurés is felt to be necessary,
because (a) different numerical methods introduce different types of
errors, and (b) the property of the exact solution that is of most
interest depends on the specific engineering application.

Test problemé were solved using 2-D regular grids, with 6-noded
triangular elements. Each grid is characterized by its length, L, and
width, W, and by the size of the right-sides of the triangular elements,
A% (which is twice the nodal spacing in the x and y directions, Ax and
Ay

Most problems are, however, essentially 1-D, involving transport in
the x-direction alone. To assure proper dimensionality in these cases,
the initial and boundary conditions were imposed uniformly along the
y-axis; in addition, no-flux conditions were imposed at the lateral

boundaries, and high lateral diffusion was introduced.
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5.2 Pure Convection in a Steady Uniform Flow

We will consider first the 1-D transport of an instantaneous
Gaussian source of initial variance coxz, by a uniform, steady
flow. The governing equatiom is

delx,t) . delx,t)

=T u— 0 w {x @ {5.1)

with initial and boundary conditions

o ( (x - xo)z
c(x,t) = exp) - ——————7—% t=0, == ¢ x <o (5.2)
Ym o 20
ox ox
c{x,t) = 0 . £>0, ’x. + @ {5.3)

where m represents total mass (per unit width and depth and divided by
density), and %, is the original position of the center of mass.
These definitions yield concentrations in dimensionless units for this
and subsequent exampies.

The exact solution corresponds to the undisturbed transport of the

source, i.e.,

cl{x,t) = expi - ° } t>0, == < x < = (5.4)
1

Ym g 2z z
ox

Numerical solutions were found for the combinations of parameters shown
in Table 5.2. Results are partially documented in Tables 5.3 and 5.4
and Figs. 5.1 to 5.5.

For all runs, the numerical solutions are virtually exact regarding
totél mass, position: of the center of mass, and variance ef the
concentration field (see in Tables 5.3 and 5.4 the values of the ervor

measures lig, Wx, Mxx, defined in Table 5.1). However, solutions
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may exhibit some overdamping and loss of symmetry, the latter in the
form of a shift in the position of the peak concentration and of the
presence of a quickly damped wake of negative comcentrations.
Observed errors were found to be controlled by two major
parameters: the number of time steps required to reach the final

computational time, N = T/At, and the dimensionless source length,

M

Gcox/Al. To discuss the influence,of N and M, let us consider
first the integral error measure ¢, defined in Table 5.l.

Fig. 5.1 and Table 5.3 show that ¢ decreases when N decreases.
This means (as T is fixed) that the numerical solution improves as At
inereases. The reason is that the error per time step results almost
entirely from the interpolation procedure required to find the
concentration at the feet of the characteristic lines (§4.4.3), and for
high enough values of M, is mearly independent of the actual At
(see Appendix). Therefore, the total error at time T should be roughly
proportional to the number of required interpolations, i.e., to N.

Assuming ¢ « Nn, we computed a best-fit value for m, by linear
regression of the logarithms of available pairs of (¢,N). The result,
shown in Fig. 5.2a, suggests that ¢ is indeed nearly linear, being
proportional to NO'SS. The power n = 0.83 should not be interpreted
too rigidly, as it may vary with T and with the shape and length of the
source, for instance, The deviation from strict linear propertionality
results from a slight reduction of the error per time step from one time
step to the next (Fig. 5.3), which is due to the presence in the
solution of progressively lower frequency harmonics, generated by
numerical dispersion.

Fig. 5.4 and Table 5.4 show, in turn, that ¢ decreases as M

increases (keeping fixed the shape of the source). This is related to
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the interpolation procedure ;equired to find the concentration at the
feet of the characteristic lines: larger M corresponds to smoother
profiles, and therefore to smaller interpolation errors. Fig. 5.5a
suggests that ¢ = M—Z.S, where, again the value of the power of M
should not be taken too rigidly. It is of interest to define a
' limit M above which errors are 'small"; although such limit will depend
on the actual problem and on the meanipg of "small", we tentatively
suggest that M be taken in the range 7 to 9.

The dependence of ¢ on M and N cannot be extrapolated directly to
other error measures. However, striking similarities exist in the
behaviour of ¢ and e, the mesure of the damping of the peak concentra-

tion: we found ¢ = NO'SS (Fig. 5.2b) and € = Hfz's (Fig. 5.5b),

which are to be compared with ¢ « NO'SS and ¢ = M_Z'B.

No significant spurious oscillations are found in the numerical
solutions in spite of the infinite Peclet number that characterizes the
runs. However, a small region of significant negative coacentrations
appears in the wake of the source profile. Taking the absolute value of
the normalized maximum negative concentration, ¢y, as a measure, it is
clear that the error decreases when N decreases or M increases; Figs.
5.2¢ and 5.5c explore the possibility of a simple dependence of the type
Poe NP, P o« Mq; the former relation, with p = 1.4, seems roughly
adequate, but the latter is clearly inadequate.

The position of the peak concentration (unlike the position of the
center of mass of the concentration profile) is not preserved by the
numerical solution. As measured by £, the shift error tends to

decrease with increasing M (Fig. 5.5). Small values of N tend to keep &

small, although no monotonic dependence was found (Fig. 5.2d).




5.3 Convection and Diffusion in a Steady Uniform Flow
We will consider now the 1-D convection and diffusion of the same

source used in §5.2. The problem is governed by the equation

2
e(x,t) +u delx,t) _ D 9 clx,t) - < x <o (5.5)
3t 9x ax2

and the initial and boundary conditioné Eqs. 5.2 and 5.3.. The exact

solution is

_2 .

c(x,t) = —= exp {- SE-:EEl— } o < x K e (5.6)
Yir o '
x
with

02 = g 2 + 2Dt ' (5.7)

x ox :
£ = x + ut . (5.8)

e}

The numerical solution of this problem was found for'the:coﬁbinations of
parameters shown in Table 5.5. Results are shown in Tables 5;6 to 5.8,
and Figs. 5.6 to 5.11.

The analysis of the results indicates clearly that thé-presence of
diffusion tends to improve the numerical solutionms. ThiSfés.due to the
fact that diffusion increases progressively the effective source length,
making the required interpolationms of concentration*mo:e.aécurate.

Fig. 5.7 shows the dependence of ¢ and ¢ on Pe, for M =7 and
N = 72 (note the logarithmic scale of the axis of Pe). Errors are
rather small for low Pe (up to 4, say), increase significanﬁly in the

region of moderate to high Pe (4 < Pe < 100, say) and then tend
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assymptotically to finite values as Pe goes to infinity.

For pure-convection problems, both ¢ and ¢ decrease monotonically

with decreasing N (i.e., increasing At). This was explained in §5.2 as
'a consequence of the leading errors per time step being associated with
interpolations of concentration, and being essentially independent of
At. TFor convection-diffusion problems, ¢ and € have minima at some
optimal value of N, which increases as'Pe decreases (see Fig. 5.9, for
Pe = 10). This is explained by the fact that, above the optimal value
of N, errors associated with interpolations of concentrations are
dominant; however, below the optimal value, errors inherent to the time
discretizations of the original differential equation, which are roughly
proportional to At (i.e. to N—l), become dominant. Clearly, for
diffusion dominant problems ¢ and € shoﬁld tend to decrease
monotonically with increasing N (decreasing At), except for round-off
errors in the vicinity of At = 0. Thus, unlike Eulerian methods,
Eulerian-Lagrangian methods present the challenge of selecting an
optimal At (see further discussion in §7.2)., However, they have the
strong computational advantage that the optimal At is quite large when.
convection is dominant.

We have seen that, for pure—-convection problems, ¢ and ¢ strongly
depend on M. Such dependence is still present in convection-diffusion
problems, but 1is weaker, as illustrated in Fig. 5.1ll. This results from
the fact that diffusion tends to spread the original source profile,
increasing progressively the effective M seen in each computational
time. Minimal admissible values of M are therefore Pe~dependent and may

be somewhat smaller than those suggested in §5.2.



The dependence of other error measures on Pe, M and N is partially
shown in Tables 5.6 to 5.8. Numerical solutions are always virtually
exact with regard to mass preservation, position of center of mass and
variance of the concentration profiles. Negative concentrations do
appear in the wake of the concentration profile, but they loose
significance as Pe decreases, N decreases or M increases; decreasing the
Pe number decreases the influence of N and M; the same qualitative

comments apply to the error in the poéition of the peak councentration.

5.4 Convection and Diffusion in a Sinusoidal Uniform Flow

We will consider again the problem defined by Eq. 5.5 and the
initial and boundary conditions of Egs. 5.2 and 5.3, However, we will
now let u be time-dependent; specifically,

u(t) = Umax sin(g%fq (5.9)

where Upay denotes velocity amplitude, and P denotes periocd.
The exact solution is given by Eq. 5.6, where, mow
_ %
x = x_ + [ u(t)dt (5.10)
o
Numerical solutions were found for two combinations of parameters,
corresponding to pure-convection (Pe = ») and to convection-dominated
(Pe = 20) conditions (Table 5.9). Results are shown in Figs. 5.12 to

5.14 and Table 5.10.
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As in previous tests, numerical solutions are virtually exact as
regards total mass and variance of the concentratiom profile. The samé
is not true For the position of the center of mass, though, which may
exhibit a small shift, of the order of 1% of the total travel distance.
The shifts are greatest at half periods (¢t = 0.5P, 1.5P, 2.5P, etc.) and
become insignificant at full periods (¢t = P, 2P, 3P, etc.).

For this test problem, detectable errors have local maxima at half

periods, and local minima at full periods; this suggests that the errors

depend on the flow direction. As such, errors would accumulate while
the flow is in a same direction and would paftially cancel out as the
direction of the flow reverses. This periodic effect is to be
superimposed on a long-term error trend, which depends on the relative
importance of convection and diffusion: pqre—convection lzads to
increasing error with time, while even moderate amounts of diffusion
lead to decreasing error (Fig. 5.14}.

As a consequence of the periodic error.trend, symmetry tends to be
better preserved for pure-sinusoidal than for steady flows, as suggested
by visual analysis of Figs. 5.12 and 5,13 (as compared to Figs. 5.6d and
5.6£), and quantified by the values of the error measures { and § shown

in Table 5.10 (as compared to Table 5.6).

5.5 Convection and Diffusion of a Continuous Source in a Steady Uniform
Flow
In previous sections, we have dealt with the transport of
instantaneous sources. We will consider now the case of a continuous

- - - -
Caussian source of stremgth, m, in a steady uniform flow. The exact
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solution is given by the time integral of solutions of the form of

Eq. 5.6, with m = mdt, i.e.,

£ x - 52
c{x,t) = f o exp{- —31—751-— }dc - { x £ {5.11)
o] fﬁ?bx 20

with ci and x given by Egs. 5.7 and 5.8.

The time-integral on the right-hand side of Eq. 5.11 has no clesed
form solution, but may be easily solved numerically, supplying an
adequate reference solutiom. Numerical solutions were obtained for the
conditions shown in Table 5.11, and results are summarized in Table 5.12
and Fig. 5.15.

As expected,lthe continuous source problem is easiér to solve than
the corresponding instantaneous source problem, since the concentration
profile is now much wider and smoother.

Numerical solutions show very good agreement with the reference
ones, even for Pe as high as 200: mass is preserved in a virtually exact
way, the L-2 norm, ¢, remains low, and no significant negative
concentrations appear. It can be seen (Fig. 5.15) that the numerical
solutions exhibit a slight overshoot at the front edge of the
concentration profile that increases with increasing Pe. However, for
Pe = 200, the overshoot is still less than 2% of the maximum

concentration.



5.6 Diffusion in a Depth-Variable Channel

To test our approach for handling depth variationms (described in
§4.2), we will consider the problem of an instantaneous source in a
depth-variable chamnel. Assuming a uniform diffusion coefficient D, the
governing equation for the depth-averaged concentration in 1-D i;

written

sc ac D3 Jc '
B—E+u3_£ = H—x(hﬁ) (5.12)

with initial and boundary conditioms given by Egs. 5.2 and 5.3.
The above problem does not have a general analytical solution.

However, for the case of pure-diffusion (u = 0), and with

n(x) = h_ eX : (5.13)

Eq. 5.12 reduces to

2

ac e _ 3¢
ﬁ aD-a-;c- = D—-—i‘ (5-14)

3x

As the apparent velocity, -aD, is uniform, an exact solution is

avallable in the form

(x - (= - aD ©1°

cx,y) = exp] - 5 } 0, = < x <= (5.15)
yanm o 20
X X
with 02 = g 2 + 2Dht.
X oX

This solution shows that, as may be expected, depth variation
introduces an effective displacement of the depth-averaged concentration
profile towards small depths, as a way to preserve the total mass, while
net diffusion progresses toward large depths. In the particular
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case of a exponential depth-variation (Eq. 5.13), this displacement
takes place at a constant rate (see Eq. 5.15), because the effective
velocity of displacement is uniform; however, this will not be true for
other depth variatioms, which will in general lead to non-uniform
velocities. Table 5.13 characterizes the numerical ruas, and results
are shown in Fig. 5.16.

We have considered first the case of hg = 3 m, a = 0.0003 m“l,
and x, = 8000 m. The values of hy and a correspond to an average
slope over the computational domain (0 < x < 16000 m) of 2.25%, and an
average slope in the zone of primary interest for the transport of the
concentration profile (4000 < x < 12000 m) of 1.25%., These slopes are
in the usual range for most coastal zones. The numerical results (Fig.
5.16a) show an excellent agreement with the exact omes, in all regards.

We have then increased the value of a to 0.003 m-l, to test the
performance of the methed for extremely high slopes, wnhich in coastal
zones may occur at local discontinuities {e.g., navigation channels and
marine faults). The resulting bottom profile has averaged slopes, over
the entire domain (0 < x < 16000 m) and in the regiom of primary
interest (2000 ¢ x < 10000 m), respectively, of 1.3 x 10172 and 1.0
x 1012% (either of which approximate an infinite slope).

The numerical solution (Fig. 5.16b) shows good agreement with the
exact one, except for a spatial shift. Because depth is a function of
space, this shift is Auite significant in terms of mass content (20% of

the original mass was lost after 9216 seconds). The reason for the
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shift error lies in the fact that the piecewise linear representation of
the depth variation used in the computation is too rough to simulate the
actual exponential form, leading to an incorrect evaluation of the
velocity of displacement.

Two alternative approaches are available to reduce the errors:
reduce A%, the characteristic length of the elements, or increase the
order of the interpolation functions for h, within each element,
Following the latter approach, we used quadratic interpolation for h,
and came up with the results shown in Fig. 5.16c, which are in excellent
agreement with the exact solution.

It should be emphasized that the mass loss detected when a linear
interpolation was used for h, results from ill-representation of the
depth-variation, rather than from the order of the interpolation
functions (indeed, using linear interpolation with smaller Af would have
solved the problem).

These results have implicatioas on the expected accuracy of
convective diffusion calculatioms in 2-D variable depth flows where the
flow field u(t), v(t), h{t) must be specified (e.g., by a numerical
circulation model). In cases where a mass—conserving flow field is
computed on the basis of linear interpolations of velocity and depths,
the transport model should not result in additional mass loss.
Conversely, if the flow field is not conservative, no conservative
solution of the 2-D analog of Eq. 5.12lcan be expected regardless of the

order of the interpolation functions used for u, v and h.




5.7 Advancing Front

We will consider now ﬁﬁﬁ problem defined by

7
de(x,t) +u delx,t) _ D 9 Telx,t) 0¢x<L (5.16)
Jat ax sz _ "

subject to the initial and boundary conditions

c(x,t) = 0 t=0, 0 S_X.S L (5.17)
e(x,t) = 1 t>0, x=0 (5.18)
clx,t) = 0 £>0, x=L (5.19)

The problem differs from previous onmes in that no load is present, the
concentration field being imposed by a comstant mass flux, specified
through constant velocity and upstream concentration. However, it shows
some similarity with the continuous load problem (§5.4), which can be
seen to result also in an advancing front of concentratioms.

The analytical solution, valid for L + =, is (Neuman and Sorek,

1982):

1 x-ut ux x+uk
c(x,t) = ={erfef ) + exp(=) erfc )} (5.20)
2 %Dt D %Dt

The numerical solution was found for the set of parameters defined in
Table 5.14. The results obtained demonstrate (Fig. 5.17) that the
method can handle satisfactorily advancing front problems, although some

overshoot will appear for very high Pe.

5.8 Convection in a Flow in Rigid-Body Rotation
We will consider, as a last test problem, the transport by

convection of a 2-D cosine-hill source in a flow of counterclockwise




rigid body rotation. This problem differs from those treated in
previous sections in two major ways: (a) it is fully 2-D and (b) it
involves a non-uniform flow field; the use of a cosine-hill instead of a
Caussian source is of minor importance and was dictated by expediency in
using available auxiliary computer codes.

The problem is defined by

ac dc dc  _
-a-g+u§—£+v-a—y—0 (5.21)

with initial and boundary conditions

0.5 [1 + cos -b%] £=0, r<MAL/2
c{x,y,t) = _ N (5.22)
0 t=0, ToMAL/2
e({x,y,t) = 0 t>0, v + = (5.23)
In the above
e R S AR e (5.26)
u = -wy {5.25)
v = wx (5.26)

where w is the angular frequency of rotation.
Numerical solutions were found for the set of parameters indicated

below:
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L=W=1:400m
Af = 100 m
At = 30 s
M=3
x = 700 m | (5.27)
Yo = 1100 m
w = %%E rad/s

Results are shown in Fig. 5.18. After 5 hours, the cosine-hill
distribution has neither collapsed nor distorted excessively, even
though a small number of elements (note that M = 3) was used to
discretize the source. Mass, variance, and position of center of mass
are well reproduced, and no wiggles are present (although negative
concentrations do show up). These results suggest the method's adequacy

in fully 2-D problems, with non-uniform flow fields.
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6. ON THE APPLICATION OF THE METHOD TO THE ANALYSIS OF POLLUTANT

TRANSPORT IN COASTAL WATERS

6.1 Introduction

The method described in Chapter 4, and tested in Chapter 5, is the
basis for a computer code, whose priméry objective is to simulate
pollutant transport in shallow coastal waters.

The application of the code will be illustrated in this chapter
through the analysis of sludge dumping in Massachusetts Bay. Our
objective is to demonstrate the cost-effectiveness of the code' and to
identify limitations and desirable imﬁrovements. At this point, we have
not attempted to seriously calibrate or verify the model against actual
field data (other than by using the same model coefficients and
parameters which have been used in previous models and justified on the
basis of field measurements). Therefore the results should not be used
directly for actual impact assessments.

The circulation model TEA (Westerink, et al., 1984), was used to
provide the necessary flow input to the tramsport model., TEA performs a
finite element, frequency-domain solution of the linearized form of the
Navier—-Stokes equation, and should become the basis for a fully
non-linear code, under current development.

TEA is formulated on the basis of triangular elements, with linear

elementary expansions, thus dictating the same choice of expansions for

1Acronym for Tidal Embayment Analysis




velocity and depth in the transport model. The transport model,
however, uses quadratic expansions for concentration. These are defined
over the same triangular elements by adding three additional (mid-side)

nodes.
6.2 Sludge Dumping in Massachusetts Bay

6.2.1 Statement of the Problem

The Metropolitan District Commission of the Commonweath of
Massachusetts has been comsidering several alternatives for disposal of
the sludge produced at the Wastewater Treatment Plants of Deer Island
and Nut Island. Disposal in Massachusetts Bay is one such alternative.
Possible sites include an area just outside of Boston Harbor, where
sludge would be conveyed through a submerged discharge, and an area
further offshore where dumping would be from a barge. We will simulate
the transport of sludge plumes released at locations that roughly
correspond to these two possibilities {Site 1 for the submerged
discharge, and Site 2 for the barge dumping - see Fig. 6.1).

We will concentrate the analysis on long-term dispersion, trying to
assess general tendencies of the plume movement. In particular, will
the plume quickly leave the bay towards the ocean, or will it remain in
the bay, contributing to a progressive increase of the pollution level?
We will consider, for both sites, a single instantaneous sludge source,
released at the beginning of the ebb tide, which we will follow for the
next six tidal cycles. The source has a Gaussian form, characterized by

standard deviations oy, 0y, and total mass Mry.
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The above schematization is: consistent with our objective. For a
given calculation, the source may be considered to result from near
field, short-term, dilution of sludge discharged continuously for a few
hours. This is particularly meaningful for Site 2 where, for instance,
dumping may be concentrated in. periods of three to six hours, n tides
apart, with n a design parameter.

Clearly the values of gy, Oy should reflect the near field
dilution. However, this ditutionrdepends on the mode and actual
characteristics of disposal; which have not yet been defined.
Therefore, we selected gy, qy}based on possible scenarios; for Site
2, we set g4 = 8400 m and dyg='4200, assuming the-bargéfto describe
a long zigzag trajectory a16ng a main axis; for Site I, we set gyx =
gy = 2000 m, assuming either a highly efficient vertical diffuser, or
a barge describing a shorter, more cireular, motion.

As input for the transp@nt model, we have used circulation patterns
obtained with the finite,elément grid shown in Fig. 6;;r The grid is
composed of 360 triangular-élements, and has 215 corner nodes (the only
ones used for circulation calculations), out of a total of 789 cormer
plus mid-side nodes (all of which are used for the tﬁansport calcula~-
tions). The maximum differénce between the numbers of the nodes within
the same element is 19, whgﬁ:corner nodes only are considered, and 75,
when all nodes are considered. The circulation is driven both by a
steady coastal current and a tidal fluctuation. The tidal forcing is
specified by prescribing tfdai;elevations at the ocean nodesg and
driving the system at a frequency corresponding to a period of T = 12.4.

hours; tidal elevations vary linearly from Cape Ann to Cape Cod and no
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phase shifts are applied. The steady coastal current is simulated by
imposing a linear elevation gradient along the ocean boundary, and
driving the system at zero frequency. A constant depth of 50 m is
assumed over the whole bay. |

Calibration of the resulting circulation pattern was brief, and
based only on tidal elevation data, available at Boston, Cape Ann and
Cape Cod (Westerink, 1984). Therefore, although results (Figs. 6.2 and
6.3) are qualitatively reasonable, given available field data and
previous numerical studies, they cannot claim to accurately predict
actual circulation patterns. As water circulationm is the major
transport mechanism for the sludge plume, it is clear ghat results of
the transport model cannot be interpreted other than as preliminary
estimates.

Siudge from the Wastewater Treatment Plants of Deer Island and Nur
island contains non—-degradable components (e.g. heavy metals). As
non-degradability constitutes a worst case condition in terms of
pollution, a decay coefficient of x = 0 was used in our calculations.

Sludge does tend to settle, resulting in deposition on the bottom,
and consequent loss from the water column. This mechanism is not
considered in the present analysis, because it is felt to be secondary
to horizontal transport, and not enough information is available for its
correct parameterizatiom; note, however, that, formally, the model can

easily accomodate this mechanism as a sink term.

6.2.2 Results of the Transport Model
Results of the transport model are shown in Figs. 6.4 and £.5.

They are expressed as isoconcentration lines, each of which is
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associated with a percentage of the maximum concentratiom of the

Gaussian original source,

Cmax EFE%;;;; (6.1)

where My is the total mass of sludge released and h is the flow depth.

These results suggest that Site 2, is clearly preferable to Site 1,
as regards sludge dilution. Considering transport by convection alomne,
results from Fig. 6.4 indicate that, due to the small velocities
prevailing near Boston Harbor, the sludge plume released at Site 1
undergoes almost no net drift and very little dilution, even after six
tidal ecycles. Conversely, the sludge plume released at Site 2 tends to
leave the Bay towards the ocean, in a slow net motion. Note, however,
that Cape Cod may trap part of the plume inside the Bay, as suggested by
Fig. 6.5¢c and 6.5d; further time of computation would be necessary to
check this possibility. Tidal excursion, although still relatively
small, is much more efficient im promoting dilution at Site 2 than it
was for Site 1.

Fig. 6.5 also illustrates the effect of dispersion, for Site 2.
As referred to in Chapter 2, dispersion should be interpreted as a bulk
representation of purely convective mechanisms not explicitly
represented in the description of the flow field. Dispersion
coefficients Dy = Dy = 30 m2/s were used; these values are
in the upper range expected for Massachusetts Bay (as reported by
Christodoulou et al., 1974) based on measured sediment plumes. Although

not nmegligible, especially in the zone of high initial concentrations,
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dispersion is seen to be secondary as compared to convection by the part
of the flow field explicitly represented in the model; the latter
controls the global position of the plume, and promotes a considerable
part of its dilution.

The numerical runs that provided the above results were performed
in a VAX 1178 computer using a time step of ome hour. Runs with pure
convection took 56 CPU minutes, while rums with convectiom and
dispersion took 68 CPU minutes, to simulate 75 prototype hours. Total
mass of the sludge plume was preserved within * 3% accuracy, and no
spurious oscillations were observed, even for pure convection. Negative
concentrations were found to be restricted, in pure~convection runs, to
values of up to 2% of cpay, concentrated in a small region in the wake

of the net motion of the plume; for rums involving convection and

dispersion, no significant negative concentrations were observed.
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7. CONCLUSIONS AND AREAS FOR FUTURE RESEARCH

7.1 Summary

We have formulated and tested an Eulerian-Lagrangian method that
solves the 2-D, unsteady transport équation by the combined use of the
finite element method and the method of characteristics.

The method shows very satisfactory performance. In comparison with
analytical solutions, the numerical model introduces little numerical
damping and diffusion (providing that adequate spatial discretization is
ensured) and is free from spurious oscillations. Mass and phase tend to
be preserved almost exactly.

Illustrative prototype applicaticns of the method to pellutant
transport in coastal (shallow) waters demonstrate great promise. Costs
can be kept moderate, by appropriate (and rather unrestricted) choice of
the time step. Moreover, the method is able to address problems in the
full range between pure diffusion and pure convection without spurious
oscillations or excessive numerical damping and diffusion.

The facts that little numerical diffusion is introduced by the
method, even for pure convection problems, and that no input of
artificial diffusion is required to avoid spurious oscillationms,
constitute a significant achievement, which should lead to a renewed
interest in properly understanding and quantifying ocean dispersion.
Indeed dispersion can now be simulated for its own sake, instead of
being used as a stabilizer for the numerical solutiom (as has often been

the case in Eulerian methods).
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7.2 Areas of Future Research
Future work could be useful in the following areas:

(1) Optimal Time Step

The trade—éff between accuracy and cost 1s rather different, in the
present method (and in other ELM), than in conventional Eulerian
methods.

Indeed, in Eulerian methods, both accuracy and cost increase
monotonically as the number of time steps, N, increases (i.e., as the
time step, At, decreases). Therefore, except for round-off errors,
better aceuracy always implies an increased cost.

In the present method, however, the dependence of the accuracy on B
is a function of tﬁe relative importance of comvection and diffusion, as
measured_By Pe. Fig. 7.la illustrates qualitatively such dependence.
For diffusion problems, optimal accuracy is obtained as N goes to
infinity (i.e., At goes to zero) as is the case in Eulerian methods.

For conveétion problems, though, leading errors per time step are
essentially independent of the actual time step, and therefore, optimal
accuracy is obtained as N goes to 1 (i.e., as At goes to T). For
convection-diffusion problems, optimal accuracy is obtained for a wvalue
of N that decreases.(i.e., for a value of At that increases) as Pe
increases.

Costs associated with the solution of the convection equation are
almost independent of ¥ (and thus At). Indeed, for a given problem and
spatial discretization, cost is essentially a funcion of the total
computational time, T, and of the accuracy desired for the backtracking
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of particles along the characteristic lines., Costs associated with
diffusion, however, vary linearly with N. Fig. 7.1b shows the
qualitative dependence of costs on N for diffusion, coanvection and
convection-diffusion problems; note that costs are independent of Pe,
except for the limiting cases Pe = 0 and Pe = =, where the program skips
over convection and diffusion calculations, respectively.

Clearly, the value of N (and thus, At} that ensures optimal
accuracy conditional to a given maximum cost is much closer to the value
that gives absolute optimal accuracy for convection~dominated problems
than it is for diffusion-dominated problems.

The above discussion suggests that the cost-efficiency of the
method depends on an appropriate selection of the time step, which could
be based, for a given type of problem, on curves of the form shown in
Fig. 7.la. Also, it is suggested that cost—efficiency could be
increased further either (i) by defining, within a rum, time steps that
vary in time, and lead to optimal accuracy for the instantaneous value
of Pe; or (ii) by defining different time steps for diffusion and for
convection, the former being a fraction of the latter; the diffusion

time step should approach the convection time step as Pe increases.

{2) Optimal Interpolation

Another issue deserving further analysis is the optimum order of
the expansions for concentration. Unlike in most conventional
formulations, an increase of order (e.g., increasing from quadratic to
cubic expansions) may prove cost-effective due to the fact that, for
convection-dominated problems, leading errors come from pure

interpolation procedures.



For any given order of expausions, it is highly recommended that
triangular and quadrilateral elements be used simultaneously.
Quadrangles are more accurate than triangles of comparable order, and
should be used over most of the domain; triangles should be used only in
zones where a fine representation of complex geometries is necessary (in

which case quadrangles become cumbersome).

(3) Validation Tests

Extensive validation of the transport model, based on field and/or
physical model data is deemed essential. Such validation is not
intended as a test for the numerical formulation, which can be assessed
more effectively by solution of problems with exact solution. Emphasis
should rather be placed on identificatiom and, when possible, correction
of limitations of the formulation of the governing equatious.

Issues to address include evaluation of the depth-averaged
assumption (both for stratified and sunstratified flows), quantification
of dispersion coefficients (taking into account both the dispersive
characteristics of prototype and the finite element discretization of
the domain), and simulation of near field dilution (for discharges in

the full range between negligible to strong initial momentum).

(4) Coupling with Circulation Model

The need for a model that provides the transport model with
accurate input on circulation is easily understandable, given that
convection is often the major transport mechanism. When strong
non-linearities are not present in the prototype, TEA is appropriate,
showing good accuracy and very low cost. Furthermore TEA yields results
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as a continuous function of time which is helpful for accurate tracking
of particles along the characteristic lines.

However, when non-linear effects are important (e.g., near capes or
near discharges with significant momentum), a model solving the
non-linear Navier-Stokes equations is required. Such model is now under
parallel development at MIT, as an improvement of TEA, and should be
used in the validation effort for the transport model.

The present work suggests that TEA (or other circulation models to
be coupled with the transport model) might want to use quadratic
expansions for velocities and elevations. Such a change would improve
compatibility with regard to the transport model, allowing
cost-efficient grids to be established for computation of both
circulation and transport. Also, it should represent a significant
improvement for the circulation model alone, in regards to local mass
preservation and general accuracy.

Fluxes represent natural boundary conditions in the finite element
formulation of TEA; as a consequence, some leakage through land
boundaries is unavoidable. The importance of the leakage, in terms of
water and pollutant balanées, should be assessed and: corrective measures
introduced as necessary. Such measures may include (i) definition of a
flux correction procedure for land boundaries to apply prior to the
transport calculations, and (ii) specification of fluxes as essential

boundary conditions in the formulation of TEA.
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Fig. 2.1 Statement of the transport problem. Definition sketch.
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Fig. 6.2 Massachusetts Bay. Velocity field at maximum ebb.
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APPENDIX

FORMAL ACCURACY ANALYSIS OF THE SOLUTION OF CONVECTION

IN THE CASE OF A HARMONIC WAVE

A.1 Introduction

We consider the problem of a 1-D harmonic wave (e.g., representing
concentrations) being convected by a uniform flow, betweeﬁ times n and
n+l, a time step, At, apart.

The exact solution is the displacement, following the flow, of the
undisturbed wave. Formal comparison of this with the numerical solution
obtained by the method described in §4.4 enables the analysis of the
accuracy of the method.

As discussed in the text, the method includes the backtracking of
particles along characterisitc lines, and the interpolation for
concentrations at the foot of each characteristic line. The present
analysis assumes that the backtracking is performed exactly; therefore,
observed errors result from the interpolation procedure alone.

Two 1-D spatial discretization schemes will be considered, one
based on 2-noded elements (over which linear expansions apply), and the

other on 3-noded elements (over which quadratic expansions apply).

A.2 Linear Expansion

Consider the linear spatial discretization scheme illustrated in

Fig. A.l. At time n+l, the value at node j of a harmonic wave of unit
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amplitude may be expressed as:

S5 el = exp {i[A] - ¢n+1]} (A.1)
where A 1s a dimensiénless wave number, defined as A = 2AL/L; ép4 is
1 tn+l
a phase shift, defined as ¢n+1 = ¢0 + Z-f udt; A2 is the element
o

length (constant over the domain); and L is the wavelength.

As convection alone is being considered, the exact value of the
harmonic at (j,n+l) is equal to the value of the same harmonic at
(%,n) where £ is the position, at time n, of the particle that is at

node j, at time n+l. Therefore

= = 1 - 2
cj,n+1 ¢n exp {1i[A2 ¢n]} (A.2)

or, as L = j=-B = K-q,

Cj el exp{-iia) exp{i(kK - ¢n)} {A.3)

where o is the decimal part of the dimensionless displacement, B, of a
particle between instants n and n+l (Fig A.1); note that, in the case of
a steady flow, B coinecides with the Courant number, Cu = uAt/ag.

Now, if the harmonic wave is known only at time n, and we use the
method described in §4.4 to compute values at time n+l, we obtain

(because linear expansions apply over each element)

o N (1-a) .
j,n+l g2,n « cK,n o

CK-l,n (A.4)

Eq. (A.4) may be expanded using the definitiom of cg n and

CK-1,n+ We obtain, after rearrangement
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¢5aer = 1(1m) ¥ e exp(-iM)} exp{ 1K - ¢ )] (4.5)

Comparison of Eqs. A.3 and A.5 shows that the interpolation required

te find c?un+l introduces errors in both the amplitude and the phase of
3 .

the wave. Normalized measures of such errors may be defined as

[e5men] = 150
o j.n+l jsa+l (4.6)
’ o501
jsm+l
nu ‘
¢ _ameley qub - e ey o (4.7)
phase A )

Introducing Eqs. A.3 and A.5 into the above equations, expanding

and rearranging, we obtain

Camp " {[l—a(l—cos)\)]2 + (as-ink)2 }1/2 -1 (4.8)
€ = i—{arctan[ —asin) ]+ KG} (A.9)
phase X T—a{l-cosh) )

The amplitude and phase errors, given by Eqs. A.8 and A.9 are shown
in Fig. A.2 as a function of the dimensionless wave length M = L/AL =
2n/h, for different values of a.

4.3 Quadratic Expansion

Consider now the quadratic discretization illustrated in Fig. A.3.

Following the same approach as in §A.2, we find
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®amp "~ {[asin(2)) + bsinl]2 + {acos(2)) + bcosx + d]2}1/2 -1 (A.10)
_ 1 asin(2X) + bsimk
®phase x-{arctan{— acos(2L) + bcosa + d 1+ 2} (A.11
with
a = (2o-1)/2d (4.12)
b = 4A(l-a) ' (A.13)
c = (1-20)(1l-a) (A.14)

The amplitude and phase errors given by Egs. A.10 and A.ll are
shown in Fig. A.4, as a function of the dimensionless wavelength, M, for

different values of a.
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