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ABSTRACT

We provide a systematic analysis of the consistency, stability,
convergence and accuracy of the numerical solution of the transport
equation by a general Eulerian-lagrangian Method (ELM). The method involves
three basic steps: the backwards tracking of characteristic lines following
the flow, the interpolation of concentrations at the feet of these lines,
and the solution of dispersion taking such concentrations as initial
conditions. The first two steps constitute the Backwards Method of
Characteristics (BMC): the third step involves a time-discretization along
the characteristic lines, and a spatial discretization of the dispersion
operator, both based on conventional techniques (e.g., Euler or Crank-
Nicholson for time; finite-elements or finite-differences for space).

The choice of the spatial interpolator is shown to impact the
consistency, stability and convergence, as well as the accuracy of the BMC.
Most interpolators ensure consistency, but only a2 few ensure stability,
hence convergence; stability criteria are derived from a newly developed
generalized Fourier analysis, which can account for non-~linearities
introduced by quadratic grids. The comparison of formally derived
propagation and truncation errors, complemented by numerical
experimentation, provides a reference for the choice of the interpolator,
given a specific transport problem characterized by prevailing
concentration gradients.

The BMC potentiates the use of large time-steps, well above Courant
number of order one. In the limiting case of pure advection, optimal
accuracy would be obtained for 2 At close to the total time of interest;
the presence of dispersion constrains, however, the size of At, especially
in the case of non-uniform flows. The comparison of the truncation errors
for the three basic steps of ELM provides a reference to select At, as a
function of Ax, of the spatial interpolators and time-discretization
schemes, and of the gradients of flow and concentrations.
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1. MOTIVATION AND OBJECTIVES

The numerical soiution of the transport equation, describing the fate
of a passive scalar in a moving fluid, has been the object of intense
research for the past few decades. So much interest concerning an
apparently inoffensive (it 1s even linear...) equation may seem, at first
sight, misplaced. However, there is a fundamental difficulty in the
solution of the transport equation, which results from the fact that, while
advection and dispersion are simul taneous processes, they promote mass
transport very differently: in the case of advection, transport is along
characteristic lines that follow the flow (in a way that depends only in
the past), while for dispersion transport is between the characteristic
lines (in a way that depends on both the past and the present).
Mathematically (see Appendix A}, this means the need to treat
simultaneously hyperbolic terms (associated with advection) and parabolic
terms (associated with dispersion), a problem that no numerical method has
yet fully overcome. W¥ith the practical importance of simulating transport
mechanisms in fluid environments., this difficulty clearly justifies past

and on-going research.

A review of alternative methods for the solution of the transport
equation (Appendix B) suggests that they fit into three major categories:
Eulerian (EM), Lagrangian (L¥) and Eulerian-Lagrangian (ELM). EM, which
historically were the first to be introduced and are still very popular,

have strong shortcomings in the analysis of transport problems where
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advection has a significant role vis a vis dispersion (the case for most
natural flows) and where sharp gradients in the flow direction can not be
resolved with a reasonable grid size (often the case for pollutant
transport near sources or fronts). In turn, LM, which perform extremely
well for pure advective transport, run into practical difficulties whenever
dispersion has also to be solved, and have hardly been used in the context
of realistic problems. ELM combine the best aspects of EM and LM, having
the potential to provide accurate solutions for the range of advection-

dominated to dispersion-dominated transport problems.

Advection and dispersion are dependent concepts (see qualitative
discussion'in Appendix C), .and distinguishing between the scales of flow
variability that contribute to each process may involve some ambiguity
(e.g., see [A2], [R1]). In this study, we assume that such distinction was
made beforehand, and that the flow characteristics and the dispersion

coefficients are available to us.

As discussed in Appendix B, a few research groups have, in the past
few years, been very active in the study of ELM: these include Holly and co-
workers [H2-H4, K1-K2], Benque, Hauguel and co-workers [B10], Neuman and co-
workers [Ni-N3], and Baptista and co-workers [Al, B1-B5, K3]: other
relevant vorks in the subject are [B11], [C2], [G1]. [B1]. [L1] and [vi].
While there are significant differences among the approaches proposed by
each group, they all share the basic idea of solving the transport equation
in the nodes of a fixed grid, but integrating in such solution past
information that is carried along characteristic lines that follow the

flow.

- 13 -



The conceptual procedure is illustrated in Figure 1, for 1-D (actual
implementations of the procedure have been used also in 2-D, and could be
extended to 3-D). The concentrations at the nodes of the computational

grid are found, at time n, through a three-step procedure:

- Definition of characteristic lines that start at each grid node, at
time n, and follow the flow backwards until time n-1 or a boundary is

reached.

- Calculation, by interpolation from known nodal concentration values
at time n-1 (or at boundaries), of the coﬁcentration at the feet of the
characteristic lines; these concentrations correspond to the concentrations
at time n, if advection was the only transport mechanism. More
importantly, they are also the correct initial conditions for the transport

problem, written between times n-1 and n in Lagrangian coordinates.

- Solution of the transport equation in the coordinate system defined
by all characteristic lines, taking as initial conditions the

concentrations at the feet of these lines.

To implement this procedure, ELM typically split the transport
equation, either in its differential or in its time-discretized form, into
two sub-equations (advection and dispersion), solving the former through
the Backwards Method of Characteristics (BMC). using a choice of-
interpolators, and the latter by a scheme that combines a finite-difference
or finite~element discretization in space with an Euler implicit or a Crank-
Nicholson (defined along the characteristic lines) discretization in time.

Virtually all methods have been used in connection with some local forward

- 14 -



tracking procedure, to handle _gradients that the basic ELM can not handle.
Physical, chemical, or biological transport processes (sodrce/sink terms),
if present, can be treated within the dispersion step, or as a separate,

fourth step.

Results reported by all groups have been extremely promising.
suggesting that, for comparable costs, accuracy of EL¥ should never be
worse than for EM, and is significantly better whenever advection is
dominant over dispersion and sharp concentration gradienfs exist in the

flow direction.

However, most reported results are based on numerijcal experimentation,
taking as a reference either (a) controlled but relatively simple test
problems {transport of instantaneous sources, continuous sourceé or fronts
in 1-D or 2-D uniform or "regularly” non-uniform flows (e.g.. instantaneous
sources in rigid-body rotation}), or {b) realistic but mostly uncontrolled
(accuracy wise) applications (e.g., pollutant transport in coastal waters
or in groundwater). This has left significant gaps in the theoretical
foundation of ELM, which raise pertinent questions concerning both the
relative merits of different ELM, and how accurate and cost-effective any

ELM really is in actual applications. Unclear aspects include:

- The consistency, stability and convergence of ELM and, in

particular, of the BMC.

~ The dependence of ELM accuracy on controlling parameters, related
both to the discretization of the domain and to the mature of the transport

problem.

- 15 -
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- The dependence of ELM accuracy and efficiency on the choice of
specific techniques for the tracking of the characteristic lines, for the
spatial interpolation of the feet of these lines, and for the time-

discretization of the governing equation.

The general objective of our research has been to extend the
understanding of these different issues, and use this undérstanding to
improve current modeling ability of the transport equation by EIM. A
significant emphasis has been given to the solution of advection, which is
commonly accepted as a critical step of the overall procedure. The 1-D
transport equation is usually taken as a2 reference, for formal

developments.

2. RESEARCH OUTLINE

The thesis consists of this Synopsis and four self-contained papers,
[B6-BS]. In the Synopsis, we motivate the study and introduce its
objectives (Section 1), highlight specific contributions from each paper
(this section), present a general, user's oriented, discussion of ELM
modeling of the transport equation, as we now perceive it (Section 3), and
recommend further research (Section 4); background on the mathematical
nature of the transport equation, on available numerical methods for the
solution of the transport -equation, and on the role of advection and
dispersion, is presented in Appendixes A, B and C, respectively. Each of
the four papers discusses in detail one or a set of closely related

specific aspects of the research, as follows:
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Fourier Analysis of the Backwards Method of Characteristics [B6]

-

This is a methods paper, describing the derivation of a novel

technique (a generalized Fourler analysis) to . predict the propagation in
time of amplitude and phase errors. A direct consequence of the derivation
is to unveil an internal source of non-linearities, that characterizes the
BMC for quadratic and higher-order interpolating core elements, and should
also affect conventional finite-element techniques (using higher-than-

linear elements).

The technique described in this paper is extensively used by [B7-BS],

as a tool for the formal analysis of stabllity and accuracy of the BMC.

The consistency. stability and convergence of the Backwards Method of

Characteristics [B7]

This paper provides a systematic assessment (based on Taylor series
and generalized Fourier series analysis of the BNC algorithm, and on Lax
equivalence theorem) of the consistency, stability and convergence of the
BMC, and their dependence on the selected spatial interpolator for
concentrations. It is shown that the BMC is consistent for all
interpolators that fit nodal concentrations exactly, and will not, in
general, be consistent for those which do not fit these concentrations.
Stability, hence convergence, while independent of the Courant number, do
depend on the interpolator, and have to be assessed on an individual basis,
Quantitative criteria for this assessment are derived from the generalized
Fourier analysis of [B6], and used to show that all interpolators based on

Lagrange polynomials alone are stable and convergent, but some recently
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proposed hybrid interpolators, based on Hermite polynomials with estimated

derivatives, are not.

The choice of the interpolator for the Backwards Method of Characteristics

(B8]

The choice of the interpolator to find concentrations at the feet of
the characteristic lines has been recognized as crucial for the accuracy of
the BMC, and [B7] shows that it also influences more basic properties such
as consistency, stability and convergence. This paper provides a
systematic comparison of the most promising {(or historically important)
interpolators, some of which were proposed by the author. The comparison
emphasizes the different trade-offs involved in the choice of an
interpolator, and provides reference information {amplitude and phase
errors, and truncation errors) to allow the reader to make his own choice.
¥hile it is emphasized that no optimal choice exists, we suggest that the
flexible use of Lagrange polynomials of different orders (defined over
quadratic core elements) strikes an attractive balance among cost,
convenience, and accuracy. The order of the chosen polynomial should be

based on the steepness of concentration gradients.

The accuracy of Fulerian-Lagrangian methods [B9]

This is the only paper that concerns the solution of the full
transport equation. It proposes the use of EIM that are flexible in the
choice of the spatial interpolator for advection and in the time-
discretization scheme for dispersion, and provides the systematic analysis
of truncation errors for selected alternative choices of these. This

- 18 -



analysis is used to identify and show the influence of the parameters that
control accuracy, which are associated to both the physical problem
(concentration gradients, mean velocity, velocity gradients) and to the
discretization in space and time of the computational domain {Ax, At).
Particularly relevant is the fact that, unlike in EM, optimal accuracy, for
fixed Ax, does not necessarily correspond to At = O, Criteria to estimate
the At leading to optimal accuracy are derived, and discussed in the
context of the definition of the best computational strategy for ELM, which
involves not only the choice of Ax and At, but also that of the

interpolator and of the time-discretization scheme.

3. A USER'S ORIENTED GENERAL DISCUSSION

In the previous section we identified different individual
contributions of this research. We now discuss how these contributions
can, as a whole, influence the attitude of modelers towards the solution of

actual transport problems, and increase their actual modeling ability.

First, however, we should stress that, in spite of the extensive
research that has been done for some decades, the state of the art in the
modeling of transport mechanisms is not advanced enough to allow the
establishement of a comprehensive user's guide, in the form of unambiguous
rules; the success of each individual application depends on the ability of
the user to be aware of several available alternatives (sometimes poorly
undestood in terms of their potentials and limitations), and to critically

choose the one(s) that best fit his needs and resources.
We would like also to emphasize that the first and a major concern of

- 19 -




the user should be to characterize the physical problem, through the

definition of appropriate scales: in particular, what are the smallest and

‘largest scales of space and time that are of interest, and, within these

scales, how large are the concentration gradients, the velocity, and the

velocity gradients. The estimation of these scales is a matter of common

sense, given a correct perspective of the objectives of the analysis and
appropriate information on the environment where transport occurs. |
However, formulating the mathematical problem in a way that is

unambiguously consistent with these scales is a much more difficult task,

as discussed by [A2] and [R1] in the context of so-called filtering

techniques.

Our research assumes that the physical problem was correctly stated
beforehand, in such a way that not only the proper form of the governing
equation is kmown, but we also know how to quantitatively distinguish
between advection and dispersion, and what are the minimum wavelengths and

period (Lm and Tm. say) that we want to capture.

From the theory of digital signal processing. we know that the
coarsest grid that can resolve all the relevant scales of the transport
problem is characterized by Ax = Lm/2 and At = Tm/2. However, no available
numerical method can correctlylpropagate the Lm wavelength in such a grid;
indeed, depending on the numerical technique being used, on the actual At
to be chosen, and on the time for which L.m will persist as a relevant
wavelength (which depends on the importance of dispersien), Ax will of ten
have to be chosen one or more orders of magﬁitude smaller than Lm. to

ensure proper propagation,
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If we were not constrained by available resources (in particular,
computational time and memory, and round-off errors), any convergent
numerical method would be appropriate for the solution of the problem; we
would only need to take Ax and At "small enough". Because available
resources are limited, though, we often want to rationalize our choice of
the numerical method and of the discretization in space and time, so as to
be as "accurate" as possible, but at the lowest (or, more simply, at a

feasible) cost.

For problems where dispersion is dominant over advection, using an EM
rather than an EIM, or vice-versa, will hardly affect cost or accuracy, if,
within each type of method, equivalent choices are made concerning the
répresentation of space and time. The same is not true, however, when
advection is dominant over diffusion. Indeed, in this case, ELM present
significant potential advantages by their flexibility in the choice of the
space representation (in the advection step) and by their ability to
accurately handle very large Courant numbers (i.e., for a fixed grid, to
use very large time steps). Whether these potential advantages will be of
actual practical interest, i.e., whether better accuracy at a same cost, or
the same accuracy at a lower cost, can be achieved, depends on the
variability of the concentration and flow fields (ELM will be comparatively
more and more efficient as spatial concentration gradients in the flow
direction increase), and on the ability of the modeler to adopt the proper

computational strategy.

Our work ([B8] and [B9] in particular) indicates that none of the

available ELM is "optimal™, and suggests that there are advantages in
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perceiving them merely as specific implementations of a unique general
tool, whose flexible use should be encouraged. While appé}ently trivial,
fhis notion is of paramount importance for the cost-effective use of ElLM,
and it raises the question of computational strategy, in the sense of

combining the choice of Ax and At with the selection of:

- the technique for the tracking of the characteristic lines

- the interpolator to find concentrations at the feet of the
characteristic lines

~ the time-discretization algorithm

- the spatial discretization of the dispersion operator.

Tracking technique

The choice of the tracking technique plays a key role in the accuracy
of ELM, as tracking defines the coordinates along which the problem will be
solved. This fact has not, however, been widely recognized, most probably
due to the simplicity of the flow fields used in common test problems. As
a consequence, most tracking algofithms are rather simplified (e.g., sée
Figure 2a), and, for non-uniform or unsteady flows, will impose the need to
use small time steps, so as to avoid significant errors:; this means that
the ability of ELM to handle Cu > 1 is effectively amputateq, greatly

reducing the attractiveness of these methods.

Recognizing this, and taking advantage of the fact that the tracking
is independent of the concentration field, [B2] developed {in 2-D, and
allowing for irregular finite element grids) a tracking algorithm whose

accuracy can be pre-imposed, in terms of a maximum "closing error'--see
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Figure 2b. The algorithm solves the ordinary differential equation that
defines each characteristic line by a 4th-order Runge—Kut;a scheme, whose
‘time step, 6t < At, is made as small as necessary to satisfy the imposed
accuracy criterion. The algorithm has been shown ([B2]. [K3]) to be
expensive but feasible, in actual detailed computations of pollutant
transport in coastal waters, carried on in small machines (VAX 10-780,

UVAX-II).

¥hile the efficiency of the algorithm proposed by [B2] can be
improved, we suggest that its conceptual basis suits FLM extremely well,
and that similarly accurate tracking procedures should be used whenever the
flow is non-uniform or unsteady, as the only way to actually take advantage

of EIM's inherent ability to handle large time steps.

Interpolator

The next option concerns the spatial interpolator to find the
concentrations at the feet of the characteristic lines. This option has
been widely recognized as crucial for the accuracy of ELX, and, as such, a
variety of interpclators have been proposed, as discussed in detail in
[B8]. While we recognize that valid alternatives exist, we recommend the
combined use of quadratic and/or gquartic Lagrange polynomials, defined over

quadratic core elements, \

Time-discretization aleorithm

Because the BMC has the potential to.use large time steps, the ELM

time discretizatijon scheme should be choosen so as to preserve this
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ability, which may be particularly difficult in the case of noﬁ-uniform
flows ([BS]). The use of a simple Euler implicit discretization, as in
[B2]. is strongly discouraged. An appropriate reference scheme is the
Crank-Nicholson (formulated along the characteristic lines), but a three
time-levels scheme (presumably a Richardson extrapolation, formulated along
characteristic lines} may also be considered as a way to further increase

the allowed At--[BS].

Space discretization of the dispersion operator

The space discretization of the dispersion operator is usually not
critical for accuracy, but does influence the choice of the interpolator
for the advection step, as it determines which types of core element will
be convenient to use. We suggest that, as a referénce. the use of a
discretization scheme {finite element Galerkin, or centered finite
differences) that allows a convenient implementation of interpolators with

quadratic core elements.

Computational stragepy

Given the above general options (which already imply some preliminary
selection, not exempt of subjectiveness), how should one define an
appropriate computational strategy, for a specific application? While this
question have no unique answer, and identifying an optimal strategy may yet
be far from the reach of current knowledge, the present research may
provide useful insight and some actual guidance in this matter. In
particular, we suggest that the conceptuai decision—making procedure
illustrated in Figure 3 be followed as closely as practically feasible.
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This procedure is to be conducted prior to the actual numerical
compuiation: it relies strongly on qualitative and quantitative information
generated through this research ([B5-B9]). Formal extensions or Judicious
extrapolations may, however, become necessary depending on the specifﬁc

application. We note that the procedure implicitly assumes that:

(a) If some concentration and velocity gradients in space and/or time
are not going to be well propagated by the numerical solution, it makes no
sense to pretend, at the level of the formulation of the governing equation
and establishement of initial and boundary conditions, that this is not 50,
by keeping the associated space and time scaleﬁ. ¥e suggest that such
scales be explicitely filtered out, to aveid uncontrolled numerical non-
linearities; as shown by [A2] and, especially, [R1]. this shoild lead to a
reformulation of the governing equation, but not to a significant change of

its mathematical nature.

(b) For an imposed level of resolution of the physical problem (or,
similarly, of accuracy of the numerical procedure), the most signifiéant
trade-offs in the implementation of ELM are (1) the choice of Ax versus the
spatial interpolator for the advection solution, and {2) the choice of At
versus the time-discretization scheme. While taking larger Ax and higher
order interpolators, and larger At and higher-order time-discretization
schemes, will often pay off in the presence of sharp gradients and
advection-dominated problems, the reverse may often be true for strongly

diffusion-dominated problems.

Some of the steps of this conceptual procedure are now discussed:



Characterization of the physical problem -

The physical problem should, for the sake of the choice of a

computational strategy, be characterized in terms of the following main

scales:

£ - a length scale characterizing concentration variability

U - a velocity scale for the mean (in space) flow

AU - a velocity scale for flow non-uniformities
Eu - a length scale characterizing flow non-uniformities
D - a scale for the dispersion coefficient

In addition, and assuming that a filtering technique (e.g.. [A2] and
[R1]) was used to establish the governing equaticn, we will need to Lknow
which were the minimum wavelength, Lm' and period, Tm' that were elected to

be explicitly represented in the Fourier description of concentrations and

flow.

Figure 4 illustrates the definition of these scales (except Lm and
Tm). in the case of the relatively simple problem of the transport of an
instantaneous source (a Gauss-hill) in a constant-shear flow. In more
complex problems, it may be useful to divide the computational domain into

different zones, each characterized by different scales.

Selection of the spatial interpolator and of the time-discretization scheme

¥We suggest that a quadratic Lagrange interpolator, and a Crank-
Nicholson discretization scheme be taken as reference techniques. If

necessary or appropriate, each or both these options can be changed, and we
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do recommend that this be at least considered unless the cost of the
reference.technique is insignificant. It should be stres;ed that changing
the interpolator does not necessarily imply changing the time-
discretization {(or vice-versa), and, indeed, changing each of these at a
time is probably the best way to identify the most appropriate

computational strategy.

It should also be noticed that, if considerably different
concentration gradients are present in different zones of the computational
domain, it may be advantageous to use both quadratic and gquartic
interpolators, the former in the zones of milder gradients, and the latter
in the zones of larger gradients (e.g., near sources}. In the same
perspective, if the time variability of concentration gradients and
velocities and velocity gradients is significant, it may be advantageous to

change the time-discretization scheme (or the At} periodically.

Selection of Ax and At

Once both the physical problem and the solution technique are
characterized, Ax {loosely taken here as a characteristic nodal spacing, in
some relevant space direction(s)) and At can be rationally estimated by a
proper combination of the information provided in [B6-BS] {or its formal or
commen-sense extension to multi-dimensions). The approach that we propose

is to

(1) Assume At as large as possible (consistent with physics), and
estimate a "representative” number of time steps, N = T/At, where T is the

expected duration for which waves of length Lm remain a significant
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component of the whole solution. -

(2) Use N and Lm to define Ax, so as to meet some pre-set criterion
for the amplitude ang phase errors in the propagation of the wave with
length Lm (based on plots of amplitude and phase errors, such as those
presented in [B8], from the Fourier analysis procedure derived by [B6]).
We suggest that the error criterion be quite strict, calling for errors in
the order of a few percent, at most., If Lrn can not be correctly
propagated, this should influence the characterization of the physical

problem, rather than being left as an uncontroled numerical error,

~ (3) Re-evaluate At, by minimizing the total truncation error (i.e., by
matching the order of magnitude of the truncation errors due to the
interpolation of conceﬁtrations at éhe feet of the characteristic lines and
due to the time—discretization). [B9] provide theoretical support for the
estimation of the truncation errors, based on Taylor series analysis; the

procedure requires the knowledge of 8c' U, AU, eu. and D, as well as Ax.

(4) Re-iterate as necessary (changing At will change N, which was used

in (2) to estimate Ax).

Irregular grids and/or the pPresence of different scales of interest,
regionally distributed, are recognized difficulties in the implementation
of the above procedure. It 1s tentatively suggested that different zones
be considered within the domain, in each of which a different choice of Ax
may result, and that At be chosen S0 as to minimize the truncation error in
the critical zone (or, if all truncation errors are similar, that the

largest At be chosen).




Estimation of required resources -

The present work does not contribute in any specific way to the
estimation of the required resources (computer time and memory). These
resources clearly increase as Ax and At decrease, in a way that, except for
the tracking algorithm, can be found through code~dependent counting of
operations and array sizes. Because of the self-control that the tracking
algorithm has on its accuracy, resources required by this task will
significantly increase with the variability of the flow in space and time,

and experience should play a key role in their estimation.

4. RECOMMENDATIONS FOR FURTHER WORK

Each ﬁaper containg. as appropriate, recommendations for further
research in its specific area of interest. Here, we simply suggest that a
critical examination of the conceptual decisioh—making procedure
illustrated in Figure 3 provides a good reference for more general/applied

recommendations.

Specifically, steps for further advancement in our ability to solve

the transport equation involve:

= A better understanding of how to define the physical problem, and,
in particular, how to incorporate our scales of interest in the formulation
of the mathematical problem, through a proper distinction between which
part of the flow is explicitly represented as advection, and which part

contributes to dispersion (in the line of the work by [A2] and [R1]).
- The development and application of ELM models in a wide range of
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engineering and environmental problems. None of the presently A&ailable ELM
codes is, in our"perspective. flexible enough to fully explore the
ﬁotentials of the method, in the broad perspective that we defended in the
previous section; however, at least the two-dimensional finite element code
ELA ([B2]), and, probably, other available codes, were developed in a way
that can easily accomodate the required extensions. Each application
should be carefully monitored with regard to: {a) accuracy (this is
recognized to involve some subjectiveness in the definition of error
measures, and considerable difficulty in the collection of reference data):
(b) cost (expressed at least in terms of computational time and memory
requirements); {c) practical difficulties in the implementation, and
effectiveness of the conceptual decision-making procedure of Figure 3, or
similar. The experience by individual users or groups should be
periodically compiled, and divulgated in the open literature {journals,

conference proceedings, specialized forums, etec).

— The further extension of our theoretical understanding of ELM.
Areas of particular interest include the evaluation of tracking errors, the
verification of the validity in multi-dimensions of concepts developed
essentially in 1-D, and the analysis of the effect of grid irregularity.
Some work on the last subject was presented by [B5], which, together with
' on-going research, strongly suggests that, whenever isoparametric mappings
are used to perform interpolations, the "improved isoparametric mapping”

proposed by [C1] should be used to avoid a strong loss of accuracy.
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Figure 1

Illustrative sketch for Fulerian-Lagrangian méthods

Required steps:

1.

3.

Tracking _of the characteristic lines. For each node j, a characteristic
line is independently defined by the backwards (i.e., between n and n-1)
solution of an ordinary differential solution of the form dxi/dt = u.

Interpolation at the feet of the characteristic lines. The

concentration at the foot of each characteristic line is found by
interpolation from known information on neighboring nodes {time n-1}.

Solution of the transport equation, written in lagrangian form. This

solution involves all nodes simul taneously.
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Figure 2 Illustration of alternative tracking algorithms: (a} Standard;
{b) 4th-order Runge-Kutta, with adjustable time step, &t [B2]:
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APPENDIXES!

1Adapted from Baptista, A. M., "Accurate Numerical Modeling of Advection-

Dominated Transport of Passive Scalars,”™ LNE, Lisboa, 1986.
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APPENDIX A

On the Mathematical Nature of the Transport Equation

The detailed analysis of the mathematical nature of the transport
equation is beyond the scope of this work. The following brief discussion
should, however, be helpful to the understanding of problems arising in the
numerical solution of this equation, and is a motivation for Eulerian-

Lagrangian methods.

¥We take as a reference, whithout loss of conceptual generality, the

1-D partial differential equation

dc Sc 625

z— + A(x,t) 5= = B(x,t) —g + C(x.t) ¢ + D{x,t) {(A.1)
ax

gt 8x ~

where the coefficients B(x,t) and A(x,t)--representing, respectively,
dispersion and advection {or advection plus non-uniform dispersion, see

[B1])}--are of special interest.

This equation is linear, as revealed by the functional dependence of

the coefficients A through D2. Hence, the extensive body of knowledge

2An nth—order PDE is nonlinear when its coefficients depend on nth-order

derivatives of the dependent variable; it is quasi-linear when they depend
on mth-order derivatives, with O < m { n; and it is linear when they depend

on the independent variables alone.
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available on linear PDE applies, and some general properties may be

assumed.

In particular, it is easily recognized that Equation A.l1 has a
considerably different behaviour, depending on whether B(x,t)} is or is not
null. Indeed, when B(x,t) # 0. the equation is a second-order parabolic

PDE, while it becomes a first-order hyperbolic PDE when B(x,t) = 03.

Hence, when B(x,t) # O, Equation A.1 has a single family of horizontal
characteristic lines (or, to be more precise, two coincident--thus
necessarily horizontal—-families), and is associated with the initial and
boundary conditions diagrammatically represented in Figure A.1{a). The
function c(x,t) is determined, at any given location of space and time, by
all ;he initial data plus the data on the boundaries which are on or below
the relevant characteristic line. Hence, in particular, at any given time,

t, solutions at different space locations are all interrelated.

3Second-order linear or gquasi linear PDE of the general form

2 2 2
a() §F b0 FEp + o) FF ) ¢
+e() SE+ () vrglr) =0 (4.2)

where {+)} represents some functional dependence, are classified as
hyperbolic if b > 4ac, as parabolic if b = 4ac, and as elliptic if b < 4dac
(e.g., [L1], pp 12-13). The above criterion does not give any useful
infoermation for first-order PDE; however, hyperbolic equations are
identified as those for which the Cauchy problem is well-posed ([J1],

p 42), vwhich is the case for Equation A.1 when B(x,t) = O. -
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¥hen B(x.t)=0, Egq. (A.2) has, again, a single family.of characteristic
lines. Now, however, this number results from the order of the equation.
and not from the coincidence of two families of lines; hence, in
particular, the characteristic lines do not have to be (and are not, except
in the uninteresting case of A(x,t) = «) horizontal. The requirements on
initial and boundary conditions, and the domain of dependence of the
solution are now completely different, as illustrated in Figure A.1(b). 1In
particular, we note that the relevant initial or boundary conditions fully

determine the solution along each characteristic line.

The transition between the parabolic and the hyperbolic behavior of
the equation 1s, from the dbove discussion, discontinuous (associated to a
singularity at B(x,t) = 0). Although this is formally so, the actual
behavior of the solutions is hypothesized to chanée gradually as dispersion
becomes less and less important with regard to advection. This is in
agreement with the physics of the transport phenomena, and may justify the
frustrating experience of many modellers, in the last decades, while

solving numerically the advection-dominated transport equation.

Hence, the idea of splitting the transport into a purely parabolic
dispersion equation and a purely hyperbolic advection equation, and solving
each by a different method, becomes appealing, and has indeed been

increasingly explored (Appendix B).
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APPENDIX B

" Review of Numerical Methods for the Solution of the Transport Equation

Bl. Introduction

The transport equation has been solved by several different numerical
methods, which may be classified into three broad categories: Eulerian,

Lagrangian and Eulerian-Lagrangian.

Eulerian methods (EM) solve the Eulerian form of the transport
equation, at the nodes of a fixed grid. This requires the simultaneous
solution of hyperbolic (advective) and parabolic (dispersive) operators,
which has proved to be a hard task when the former dominates the latter.
Indeed, when advection dominates, “centered" EM often generate spurious
spatial oscillations (wiggles) while "upwind” and "balanced-dissipation" EM

introduce significant numerical damping.

Lagrangian methods (LM) avoid the explicit treatment of hyperbolic
operators by solving the Lagrangian form of the transport equation in grids
moving with the flow. This approach is potentially very accurate, but is
made unattractive or unfeasible in many situations of interest
(e.g.,continuous sources and complex reversing flows) due to practical

difficulties associated with the grid displacement and deformation.
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Eulerian-Lagrangian methods (ELM) retain the convenience of 2 fixed
grid, but, at some point of the numerical procedure, a part or the whole
transport equation is treated in a Lagrangian form, in order to avoid the
explicit treatment of hyperbolic operators. Reported results from ELM are
rather promising, showing that wiggles and numerical damping can be greatly

reduced, even for very strongly advection—dominated problems.

Discussion in the next paragraphs concentrates on EM {still the most
used in engineering practice), and on ELM (which are becoming increasingly

used).

B2. Eulerian methods

Methods in this category are typically based on the set-up and
solution of a single system of algebraic equations, where both advective
and dispersive terms are represented; unknowns are the concentrations at a
finite number of fixed locations (nodes) in the computationzl domain. The
transformation of the original differential equation into such a system of
algebraic equations is usually achieved using either finite difference

methods (FDM) or finite element methods (FEM).

The option between FEM and FDM, while of practical importance, plays a
secondary role in what the fundamental difficulties of the accurate
éolution of the transport eéuation are concerned. Indeed, as we shall see,
each FDM has what can be considered a FEM “equivalent", sharing the same

type of fundamental abilities and limitations.
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FDM have been used in the solution of the transport equation since the
late 1950s. They typlcally discretize the computational domain through the
use of an orthogonal grid (stretching transformations have however been
increasingly used to provide some grid refinement or specific shaping).
Over each grid element, the differential transport equation is replaced by
an algebraic equation, where both the space~ and time-derivatives are
approximated by finite-differences. The resulting system of algebraic
equations is adjusted to take into account the appropriate boundary

conditions, and is then solved to give the nodal concentrations.

Initial FDM used centered schemes to approximate both the advection
and the dispersion terms. These methods, however, lead often to strong
parasitic spatial oscillations (wiggles), specially for large Courant
numbers (i.e., often in the range of practically feasible Ax, 4t). In a
careful (although too specific) formal analysis in the context of a one-
dimensional steady problem, with Dirichlet boundary conditions specified at
the two boundaries, [R1] (pp 161-165) showed that wiggles are, in this
case, caused by a singularity at low D/u (the numerical equivalent of the
singularity at D=0 of the behavior of the exact soclution, discussed in
Appendix A). According to [R1]}, a perturbation is generated at the outflow
boundary, for -Peclet numbers, Pe=uAx/D, larger than 2, and propagates to

the whole domain.

Experience shows, however, that wiggles may have a broader range of
origins. A more general statement is that wiggles are the consequence of
phase errors at short wavelengths; hence, wiggles will occur whenever such

wavelengths are of significance in the true solution (which relates to
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insufficient discretization), and are not artificially damped b} the

numerical algorithm.

As centered FDM are often associated with small damping but
significant phase errors at short wavelengths, they should, indeed, promote
wiggles, except when physical diffusion is strong enough to smooth out

sharp (relative to the grid discretization) gradients.

As a remedy for wiggles in advection-dominated problems with sharp
gradients, more recent FDM have used centered finite-differences only for
the dispersion terms, replacing the advective derivatives by upwind
differences. Upwinding methods do avoid wiggles; however, this is done by
very strongly damping short wavelengths; for linear approximations, a
numerical diffusion is expliciily introduced (as easily shown by Taylor

series expansion), which often overshadows physical diffusion.

[B5] proposed, as an alternative to "brute-force" upwinding, the
elimination of wiggles through the controlled addition of {unsteady, non-
uniform and non-isotropic) artificial diffusion (Flux—Corrected Transport
FD Method) to numerical solutions obtained with centered differences. This
and similar techniques lead also to a re-statement of the physical problem,
and can loosely be seen as forms of "intelligent,” but often relatively

expensive, upwinding.

FEM have become popular for the solution of the transport equation
since the early 1970s. The computational domain is divided into elements
of convenient shape, such as triangles or quadrilaterals. Within each

element information is concentrated at nodes, but may be unambiguously
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interpolated to the interior using pre-selected interpolation functions.
The original partial differential equation is then transf;;med intoua
éystem of ordinary differential equations in time, using a weighted
residual method. Numerical integration of this system leads to a system of

algebraic equations, whose solution gives the nodal values of the

concentration field.

The use of the weighted residual method requires the definition of
elementary weighted residuals, resulting from the integration over each
element of the errors made in approximating the actual concentration field,
weighted by pre-selected weighting functions:; the sum over the whole
computational domain of the elementary residuals is then forced to be zero,
to minimize the approximation errors. Different FEM result from different
choices of interpolation and weighting functions. In the early 1970's,
most FEM solved the transport equation using the same interpolation and

weighting functions; such methods are known as Galerkin-FEM (GA-FEM).

GA-TEM lead to "centered” approximations of the advective terms, and
present the same limitation as centered FDM: wiggles are produced when
short wavelengths are significant, and are not progressively damped by
physical diffusion (Peclet number above a critical value). The increase of
the order of the interpolation functions from linear to guadratic seems to
have a significant effect on accuracy {e.g. [N4]}. but is unable to fully
avoid wiggles. Users of GA-FEM (e.g. LEIMKULHER 1974) have tried to extend
the application of the method to advection—dominated problems with sharp

gradients, through the adoption of uniform dispersion coefficients which
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are 1 to 2 orders of magnitude larger than the physical ones (which is a

rough re-statement of the physical problem).

In the late 1870's several attempts were made to account for the flow
direction, i.e., to "upwind” FEM. Petrov-Galerkin FEM (PG-FEM), as
presented by [C2], and extended by [H2] and [H3] constitute one such
attempt which has been successful in avoiding wiggles. In these methods,
the weighting functions are not equal to the interpolation functions, but
are cbtained from them by a change in shape that increases the relative
weight of upstream information in a way that depends on the element
geometry and the flow characteristics. ﬁimitations of PG-FEM methods
include (a) introduction of numerical damping {close similarity with
upwinding FDM); (b) increased computational effort required to generate
weighting functions from interpolation functions, at each element and at
each time step, and (c) difficulty in bandling elements which are not

quadrilaterals,

A different upwinding procedure {much in the line of the Flux-
Corrected Transport Method in FDM) was proposed in [H7] for 1-D, and was
extended to 2-D by [H8] and [K1]. In this procedure, the weightiﬁg and
interpclation functions are equal, like in standard GA-FE¥. However, an
artificial aniscotropic dispersion term, equivalent to the one that is
implicitly introduced by the PG-FEM, is computed and added to each element
at each time step. Methods using this procedure have not received a unique
designation, but are often referred to as Balanced-Dissipation-FEM
(BD-FEM)}. Results of BD-~FEM have been reported as indistinguishable from

results obtained with PG-FEM, for a few simple test cases. However, BD-FEM




are much less expensive and are more easily applied to elements of any
shape and dimensionality: for complex flows, they should also lead to a

ﬁore controlled type of upwinding, resulting in enhanced accuracy.

A final comment on Eulerian methods is that none of them can be safely
applied for large Courant numbers. As a general rule, explicit methods
become unstable for Cudl (the classical Courant-Lewy stability criterion),
while implicit methods, even if stable, tend to significantly lose accuracy

above the same limit.

B3. Eulerian-lagrangian Methods

¥We now analyze key aspects of ELM. A distinction will be made between
ELY based on the concept of "concentration" (ELM/C), ELM based on the
concept of "particle” (ELM/P) and on EIM involving both concepts (ELM/CF).

Except for this Appendix, we will refer to ELM/C simply as ELM, throughout

the text.

Typically, ELM/C split the transport equation into an advection and a
diffusion equations, scolving the former by a point-to-point transfer method
(e.g.. a backwards method of characteristics) and the latter by some
conventicnal global discrete element technique (e.g., finite elements or
finite-differences). ELM implementations based on this conceptual approach
include those reported by [B1-B2], [B4], [G1], [H1]. [H4-H6], [L3], [N1,
N3], [K2, K3].

Two major general splitting approaches have been used. The most

common of these approaches applies to the time-discretized form of the
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transport equation, while the approach suggested by NEUMAN and SOREK 1952
applies to the differential form of the equation. The laéier approach is
attractive for its formal elegance, potential accuracy, and independence
relative to time-discretization schemes; however, when advection is
dominant, it apparently generates systematic (although localized) errors in
the diffusion step and, therefore its practical advantage over the more

conventional former approach is yet to be demonstrated.

The solution of the advection equation by a point-to-point transfer
method is based on the fact that the concentration of a particle following
the flow remains constant, if advection is the only transport mechanism.
Most often, the method takes the form of (a) assigning at each new time
step, n, a particle to each node of the computational grid, (b) following
each particle backwards along characteristic lines defined by the flow,
until reaching time step n-1, where concentrations at the foot of each
characteristic line are computed, by interpolation between known nodal
values, and (c) assigning such concentrations to the corresponding grid
nodes at time n. Two major tasks are clearly involved: the particle
backtracking and the interpolation to find concentrations at the feet of

the characteristic lines.

VYery accurate particle tracking algorithms were developed both for
simply structured and for complexly structured or unstructured grids (e.g.,
[B1]). The computational cost of these algorithms inéreases significantly
with the complexity of the grid and of the flow field, but accuracy may be

kept excellent within affordable costs.
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The interpolation procedure to find the concentrations at the feet of
the characteristic lines has proved much harder to handle. A variety of
interpolation schemes have been or can be considered; however, even if
several of these schemes allow ELM/C to reduce (when compared to EM) the
range of dimensionless wavelengths that are affected by significant
amplitude and phase errors, no scheme can claim to be free of a "critical”
wvavelength, which may still be constraining for a number of applications.
A comprehensive discussion of the absolute and relative merits and

limitations of alternative interpolation schemes is presented in [B3].

Meanwhile, most ELM/C hgndle accurately the solution of the diffusien
equation, by using a conventional centered FD or FE technique. We note
that the solution is global (i.e.. involves all the grid nodes
simultaneously), which implies that large systems of equations must be
solved at each time step. The size of these systems has not proved to be a
serious problem in 2-D, because they are often nicely banded and symmetric,
and because most of the above mentioned ELM/C are implicit, allowing for
large time steps (i.e., reducing the number of required sclutions of the
system of equations). However, in 3-D applications the global solution of
the diffusion step will become a major problem in terms of computer costs

and memory requirements.

[C1] proposed a EIM/C that is slightly different, conceptually, from
the preceding ones. The whole transport equation is written in Lagrangian
form, and solved {on a fixed grid) by a backwards method of characteristics
in which diffusion is treated as a correction term. The assignment of a

particle to each grid node and its backtracking with the flow is shared
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with preceding ELM/C; however, the concentration at the fget of the
characteristic lines is computed by a weighted-average of the
concentrations at points defining a physically based mixing region; the
concentration at each of these points is obtained by interpolation between

nedal values.

This approach has the merit of providing a non-global solution of the
dispersion, which may prove highly valuable in a 3-D context. Also, it
allows a natural treatment of non-isotropic dispersion. Reported accuracy
and mass preservation characteristics are promising, at the same level of
precedent EIM/C. However, restrictions should have to be applied to the
maximum allowable time step, to keep on with accuracy , and this may

strongly limit the method's efficiency.

ELM/P (e.g., [P1]) are based on a conceptually different approach:
particles are introduced in the domain (which was previously discretized in
a convenient way) in a number and location related to the initial
concentration field; these particles are moved forward with the flow (the
flow should represent both "advection" and "diffusion” and is typically
described in an Eulerian form); whenever convenient, the number and
location of the particles is processed back to fhe form of concentrations,

.as to give the instantaneous concentration field.

ELM/P are natural, and physically sound. They inherently avoid the
issue of short dimensionless wavelengths, and therefore handle accurately
sharp gradients and small (as compared to the grid size) sources of mass,

which EIM/C can not do. Also, they are rather versatile, being equally



suited for the analysis of concentrations fields, residual transport and

field experiments.

However, ELM/P have some potential problems. Clearly, they are not
inherently conservative: mass conservation relies only on accuracy, both
requiring that a very large (and sometimes unfeasible) number of particles
be tracked, and that a fine support grid be used for the conversion between
number and location of particles and concentration. Also, if the
"advective” part of the carrying flow may be "easily" found by means of a
complementary circulation model, the same is not true for the “diffusive™

part (which we will call pseudo-velocities).

Approaches to handle the pseudo-velocities range from purely
deterministic to partially statistical methods. [L1], after some
manipulation of the theory of diffusion, proposed deterministic pseudo-

velocities in the form

[en]

1

I
o=
%13

(B.1)

where Ui is the pseudo-velocity in the i-direction, K is a conventioﬁal
eddy diffusivity coefficient, and C is the concentration, expressed in
terms of the number of particles. In this deterministic method, the motion
of a single particle is affected by the whole concentration field, i.e., by

the positions of the other particles.

Statistical approaches rely on associating the pseudo-velocities to
random perturbations of the motion of individual particles. Again, this

may be made by resorting to the eddy diffusivity concept, and using it as




to define the statistics of the random motion (e.g.. as suggested by [C3]}:
or in 2 more fundamental way, by extracting the statistics of the random

motion from Eulerian records of the flow ([Z1]).

The ELM/CP proposed by [N2] constitutes a hybrid and very promising
novel approach. A EIM/C formulation is used everywhere in the domain,
except near gradients too sharp to be handled accurately this way; a ELM/P
formulation 1s adopted in these cases (just for the advection equation).
With this approach, most of the computational effort is based on a fixed
reference grid; forward tracking of particles is required only in specific
regions of time and space, and therefore involve only an affordable number
of particles. Principal gray areas for this approach include: mass
preservation; efficient and consistent detection of sharp gradients; and
accurate procedures for mapping concentrations from particles to the nodes
of the fixed grid (we note that this mapping must be performed each time
step, previous to the solution of the diffusion equation). All these gray
areas may become harder to handle for complex flows than they are for the
simple flows that have been used so far to demoﬁstrate the effectiveness of

the approach.

ELM overcome in a natural way the limitation on the Courant number
referred to for EM, which constitutes one of the fundamental advantages of

ELM.
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APPENDIX C

On the Role of Advection and Dispersion

From the derivation of the 2-D {(depth-averaged) transport equation--
e.g.. see [Bl]--it should be clear that advection and dispersion are not
staunching mechanisms, the actual meaning of each depending on the time and

space scales that we elect to explicitly represent in a given formulation.

To illustrate concepts, and provide-insight on the relative importance
of these mechanisms, we loosely approximate a continuum host fluid of a
passive scalar,in turbulent motion, through an "infinite" set of equal
fluid parcels, each of infinitesimal {(although larger than the scale of
Brownian motion) size. Mass of the scalar is associated to each parcel

according to some initial distribution, and we examine the changes that

take place as time pProgresses,

If we look at the problem through the three~dimensional instantaneous

. form of the transport equation, we identify the transport mechanisms as

being advection by the instantaneous flow and molecular diffusion.

Advection redistributes mass through the displacement of fluid
parcels, which follow the flow; the original amount of mass in each parcel
is strictly preserved. It is useful, at this point, to consider the
carrying flow as a superposition of three components: a uniform component,

a shear component (associated with the deviations from uniformity that



yS——

refer to space and associated time scales larger than what is loosely
called the scale of the turbulent fluctuations) and a flué;hating component
(associated with the deviations from uniformity within the scale of the
turbulent fluctuations)}. While the uniform component moves parcels in a
rigid-body-like way, the non-uniform components rearrange the position of
the parcels relative to each other: a deterministic rearrangement over
large scales, in the case of the shear component, and a random

rearrangement over small scales, in the case of the fluctuating component.

Diffusion., in turn, redistributes mass by actually exchanging it
between adjacent parcels, through Brownian motion at the molecular level;
no parcel displacements are involved. Mass exchange is set in a way that
tends té smooth out existing gradients {i.e., mass goes from parcels with
higher content to parcels with lower content), and the exchange rate is

proportional to the driving gradients.

For passive scalars, diffusion does not affect advection. However,
advection by the non-uniform components of the carrying flow may
significantly affect the efficiency of diffusion. Indeed, the relative
position of fluid parcels is changed by non-uniform advection, which
establishes new parcel neighborhoods: if parcels with high mass content are
all brought closer to each other, diffusion becomes less efficient;
conversely, if such parcels are spread over larger regions, diffusion
becomes more efficient. Typically, non-uniform advection enhances global

diffusion, although it may inhibit diffusion locally.

We now take the three-dimensionzal form of the equation for mean (in

the sense of Reynolds averaging) turbulent transport. Both advective and
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dispersive mechanisms are, again, present. Now, however, advection is
assoclated only with the mean turbulent flow {uniform and ;hear
components), and the effect of the fluctuating component of the flow is
represented as a turbulent diffusion. As pointed out earlier, turbulent
diffusion is typieally several orders of magnitude more efficient than
molecular diffusion, and the latter can therefore be dropped from the

governing equation.

Because diffusion implies exchange of mass between fluid parcels, we
immediatly recognize, from earlier discussion, that the smallest size of
the parcels that we can lock at has increased: parcels are still small, but

they must be larger than the scales associated with turbulent fluctuation.

¥e lost resolution, but we gained convenience. Indeed, we avoided the
explicit representation of the fluctuating component of the flow, which is
particularly hard to handle. This approximation may constitute the
difference between feasibility and unfeasibility in the modeling of

turbulent flow and transport4.

4To illustrate this statement, we reproduce from [¥W1] the following
reasonsing based on figures given by [E1]: for the relatively simple
problem of turbulent flow in a pipe, a computer solution revealing the
turbulence strucutre of the flow, at a Reynolds number of 107, would
require 10?2 operations; at the computer speed of 10 microseconds per
operation {representative of computers in the seventies}, this would
require 10'7, or 3 x 10° yvears (about one-fifth of the age of the
universe); since we are probably limited by the speed of light to an
"ulfimate" computer speed of 1 nanosecond per operation, our fastest

foreseeable computation would take 3.2 x 10* years (over 500 generations).
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Let us now consider the two-dimensional equation for mean (again, in a
Reynolds averaging sense) turbulent transport. Advection is associated
only with the uniform component and with a part of the shear component of
the flow. Indeed, the effect of vertical shear is represented as a
dispersion mechanism (vertical-shear dispersion) and added to the turbulent

diffusion.

Again, we lose resolution (the horizontal size of the fluid parcels is
still constrained only by the scale of the turbulent fluctuations, but the
vertical size must be the flow depth) to gain convenience (we avoid the
explicit representation of the vertical flow and of the vertical variation

of the horizontal flow)}.

Computational savings related to depth-averaging are much less
impressive than those achieved by Reynolds--averaging, but are still
significant (may be one to two orders of magnitude in CPU and memory
requirements). Although advanced computers already exist that make
feasible the computational effort for the solution of three-dimensional
mean turbulent transport problems, depth-averaging (or an alternative space
averaging) is still often useful or even the only sensible or feasible
approach (because of: limitations of the computer actually available;
detail that can be achieved in the specification of boundary conditions:

accuracy of available numerical solution techniques; etc).

It should be emphasized that the two-dimensional equation for mean
turbulent transport assumes that the horizontal plan is represented as a

continuum; however, the numerical solution of this equation involves the
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discretization of the horizontal plan, through the set-up of a érid. While
in some cases (e.g., for finite-element methods) unambigusas interpolation
functions hold within each grid element, some space- (and associated time-)
scales of the flow are, again, ommited or ill-represented. This further
reduces our ability to directly represent advection, and should, again, be
compensated by the introduction of an additional dispersion mechanism (see

detailed discussion in [Al] and [R1])

Relevant questions are how to evaluate the dispersion coefficient that
is actually going to be used in the computations, and how important has

dispersion become relative to advection.

Clearly, the answers depend on the specific problem and on the model
(dimensionality and form of the equations:; solution technique and its

spatial refinement) that one elects to use.
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ABSTRACT

We present a detailed Fourier analysis of the sclution of the 1-D
advection equation by the Backwards Method of Characteristics {BMC). The
analysis shows that, when the grid has different types of nodes (e.g., the
case of FE grids, for quadratic or higher order elements}, the numerical
solution internally generates a mechanism of energy tranfer between Fourier
components, as a direct consequence of the fact that the error in each node
depends on the nodal type. In this case, the standard Yon Newman procedure
of studying accuracy and stability on the basis of the errors in the first
time-step is not valid, as errors become time—dependent. Error formulae
that account for time-dependence of error propagation are derived for the
case of quadratic core elements, and are used to show that the transfer
mechanism has a transitory, although non-negligible, effect.

1. INTRODUCTION

Fourier analysis has played a significant role in the study of the
stability and accuracy of pumerical methods, since its introduction by Von
Newman, circa 1940 (e.g.. [R1]). The common assumption behind the analysis
is that the amplitude and phase errors in the propagation of the individual
Fourier components that constitute the solution are time-independent, i.e.,
repeat themselves time-step after time—step. It is known that this
assumption requires uniform flows and constant nodal spacing: however, the
analysis has been applied to grids with quadratic core elements, for
instance in the context of finite elements, disregarding the non—uniformity

due to the presence of different types of nodes.

In the context of 2 more general effort on the study of the formal
‘properties of Eulerian-lagrangian Methods based on the Backwards Method of
Characteristics (BMC) [B1-B7]., we were faced with the need to investigate
the performance of a large number of alternative interpolators used by BMC.

Fourier analysis is very well suited to support such investigation, but the



fact that some of the interpolators use guadratic core elgmgnts raised a
significant problem: for these interpolators., we could not match the
results of Fourier analysis, as developed by Yon Newman, with those of
numerical experimentation, even for standard test problems involving

uniform flows and grids.

This study presents the fundaments for a generalized Fourier analysis
of the BMC, for any type of 1-D interpolator that obeys the following

conditions:

~ The interpolator applies over a core element that has two or three
nodes (linear elements or quadratic elements, respectively); nodes outside
the core element are allowed to contribute to the definition of the

interpolator.

- The interpolator is of class C,, i.e., it enforces the continuity of

concentrations, but not of its derivatives, between adjacent elements.

Applications of this analysis are reported by [B&-st.

2. REVIEW OF THE BACKWARDS METHOD OF CHARACTERISTICS

The advection equaticon

S
]

RI&
+

u, =— =0 (1)

states that the concentration, c(xi.t) remains constant along

characteristic lines that follow the flow, i.e., obeying the constraint
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{
g = Wt

- (2)

The BMC is a direct numerical application of this statement,

involving, per time step, At, two basic tasks (Figure 1):

- Tracking backwards, between times n and n-1, the characteristic
lines whose heads coincide with the nodes of a fixed reference grid, so as

to locate their feet.

- Finding the concentration at the foot of each characteristic line,
by interpolation from the known nodal concentrations at time n-1, and

assigning it to the head of the characteristic line.

Given a 1-D uniform grid, and a constant velocity, this procedure can

be represented by the algorithm

Py
c(3.m) = o(§-p.o-1) E ) ¢ (a)-c(i-k+p) (3)
: p=P

where (see Figure 2 for reference)

3 - denotes the node where the concentration is to be computed
(global notation}

n - denotes the instant where the concentration is to be computed
fad - denotes the position of the foot of the characteristic line in
a local coordinate system with origin at node j-k (a is

associated with the fractional part of the Courant number,

B = u°At/Ax)



Py.P; - denote the extreme nodes of the region that is used to define
the interpolator (in local notation)
¢ - are elementary shape functions which, together, define the

interpolator

We note the distinction between the region that is used to define the
interpolator, and the region where the interpolator is applied--"core
element"”; all nodes of the core elements contribute the definition of the
interpolator, but this may (non-compact interpolators)} or may not (compact
interpolators) require in addition information from outside nodes. Several
interpolators have been used or considered for use in the context of the
BMC [B6]. While most of our present analysis is based on the general
algorithm described by Equation 3, we will refer oceasionally, for

illustration purposes, to a selected set of the interpolators considered by
[B&].

3. FORMAL ERROR ANALYSIS

3.1. Reference framework

We consider the constant advection of an instantaneous source of a
passive scalar in an infinite domain. The exact solution of this problem

can be diagrammatically represented, in the spacial window x e [0.X], as

c(x,0) — | F[-] | = c{x,t) = F[e(x.0)] (4)
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where both the initial conditions and the exact sclution can be

conveniently represented in the form of Fourier-series expansions,

"o~ $

c(x.,0) Am exp{iumx} (5)
40

c{x.t) = E Am exp{ipm(x—ut)} (6)
m= —®

In the above, F[*] is the transfer function of the governing equation,
{i=+v -1, u is the velocity of the carrying flow, woo= 2m/X is the
wavenumber of the mth Fourier component, and Am is the corresponding

amplitude,

We now consider the BMC solution of the same problem, which we view as
the combination of two basic operations: {a) the sampling of a continuous
signal (the initial conditions) in the nodes of the numerical grid, and (b}
the numerical propagation of the resulting discrete signal, in accordance
with the numerical algorithm. A third operation (the restitution of a
continuous signal by interpolation from the propagated discrete signal),
has to be performed if non-nodal information is to be made available.

Diagrammatically:
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Sampling: ¢(J.,0) — | CD[+] | — ¢(3.0) A (7)

Numerical propagation: E(j.O) — ?[-] — Z(J.n) (8)

Restitution: c(§,n) ~— | DC[+] | — o(j.n) (9)

where, for a uniform space-time grid described by

»
]

(j-1)4ax J=1.2,...,J+1 (J even) (10)

t_ = nAt n=1.2,....N (11)

we will have, in general (with km = pm-Ax)

J72 J72
S(3.0) = ) Biem{in()= ) & (5m) (12)
m=—J/2 m=—J/2
J72 J72
c(im) = ) E(n).exp{in (50B)) = ) ¢ (5.n) (13)
m=-]/2 m=-J/2
P, © P,
ctt) = ) 4 (a) Sdkpm) = ) ) ¢ (). (k) (14)
p=P, m=— p=P,

Each of the above steps may, and will often, introduce errors, the

nature of which is briefly discussed in the remaining of this section. A
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detailed analysis of the errors in the propagation step will be provided in

Section 3.2.

Errors in the sampling step are due to aliasing, and are independent
of the specific numerical technique. The error mechanism is well-known
from digital signal processing (e.g.. [01]): because the minimumm
wavelength that the grid can resolve is 2ix, the energy of smaller
wavelengths is misinterpreted as associated with larger wavelengths, such

that:

Bm =0 form > ]J (15)

B #A  formgJ (s.t. ¢(4.0) = c(xj.O) for all j) (16)

Hence, while not affecting concentrations at the nodal points,
aliasing destroys the ability of the original continuous signal to be
recovered, regardless of the interpolation procedure that may be adopted.
Clearly. aliasing can be avoided only when the initial conditions have a
Fourier representation that is band-limited in the high~-frequency range;
even in this case, however, practical computational considerations may

limit our ability to sufficiently refine the grid.

Errors in the propagation step are directly associated with both the
selected numerical algorithm and the grid characteristics. For the BMC,
and assuming that one of the available virtually-error-free tracking
algorithms (e.g.. [B1]) is used, propagation errors are simply due to the
interpolation procedure required to find the concentrations at the feet of

the characteristic lines. This procedure can be seen as the restitution,

- 72 —



by interpolation, of a continuous signal from a discrete signal (nodal
concentrations, at time n-1), followed by the sampling of a new discrete
signal (concentrations at the feet of the characteristic lines, at time

n-1, i.e., nodal concentrations, at time n). Diagrammatically

Z(J.n—l) — t{Interpeolation| — é(x.n) ~ |Sampling -—*E(J.n) (17)

The sampling can generate errors only if, through some sort of non-
linear mechanism, energy is transfered, during the interpolation; to
wavelengths smaller than 2Ax (which, we recall, had been zeroed at the
level of the initial conditions). The potential error mechanism will be
called internal aliasing., to indicate that, unlike the aliasing of the

original conditions, it depends on the numerical algorithm.

For linear equations, uniform coefficients and uniform grids,
propagation errors have typically been studied by examination of the
propagation of individual Fourier components in a single time-step. The
underlying assumption is that, because non-linear transfer of energy can

not occur between Fourier components, errors are time-independent, in which

case the coefficient Em in Equation 13 can be written simply as

Bm.'{ G_(B) }n . if m<J

E = 18
n(™ ) if m> j (18)

where Gm(ﬁ}—-typically a complex function--represents the error in any time-

step.
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We will show, however, that energy transfer between Fourier components
.can occur even in uniform grids, when different nodal types co-exist (as in
the case of BMC based on interpolation functions with gquadratic or higher-
order core elements). This purely numerical transfer {non-linearity) leads
to pfopagation errors per time step that are both time-dependent and a
function of the Fourier representation of the actual initial conditions of

the problem under solution.

Given the particular characteristics of the non-linearity, we suggest
that a systematic analysis of propagation errors can still be performed on
the basis of the propagation of individual Fourier components, by
separating the analysis of the errors for each nodal type, according to the

model
E (n) = Bm.H;(n) (19)

where v denotes the type of node j, and H;(n) is time-dependent, but is
independent of the Fourier representation of the actual initial conditions.
This approach, which assumes that internal aliasing is negligible, will be

described in detail in Section 3.2.

Restitution errors result exclusively from interpolation between nodal
values, and if, as assumed in Equation 14, the same interpolator selected
to find the concentrations at the feet of the characteristic lines is used,
these errors can be described in a way much similar to first-step
propagation errors, with B being adjusted so as to describe the position of

the point where concentrations are to be found. Because, now,

— 74 -




. interpolation is exact at the nodes. restitution errors represent the
difference between the accuracy of nodal and non-nodal points, at a given

time.

3.2. Propagation errors
3.2.1. Individual components, first time-step

Using the BMC general algorithm, nodal concentrations after the first
time-step can be expressed as a function of the nodal values of the initial

conditions, in the form

P, .
(i) = ) 4.(a).c (3k-p.0) (20)
p=P;

Substituting Equation 5 into the RHS, and rearranging so as to express

gm(j.l) as a function of Em(J,l). we obtain

ep(3-1) = (@) 8 (4.1) (21)
where Gm(a) is given by
P2
Cla) = exp{ian_}. E ¢p(a).exp{~ipA } = exp{ia }.g () (22)

p=P,

Gm(a) will typically be a complex function, and, therefore, the BMC

will introduce errors in both the amplitude and the phase of the mth
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Fourier component, described, respectively, by

1/2
Gy = lgy@] = { B (@ + 1@ ] (23)
and
I (a)
arg{Gm(a)} = akm + arg{gm(a)} = ahm + arctg { R (a) } (24)
m
with
P,
R(a) = Re {g (@)} = ) ¢ (a).cos(pn) (25)
p=Py
P,
I(e) = In {g ()} = = ) ¢,(e).sin(pA) (26)
p=P,

For interpolation functions with a linear core element, the
description of the position of the feet of the characteristic lines is
independent of the particular node under consideration (a = B - int(f)),.
and, therefore, amplitude and phase errors are equal for all nodes, as
required for the numerical solution to remain a single exponential wave

with the same wavelength of the initial conditions.

However, when quadratic core elements are used, o = B - int(B) + §.
where £ depends on the type of node associated with the head of the
characteristic line: as a consequence, amplitude and phase errors evaluated
at, say., the corner nodes will be all equal, but will be different from
those associated with middle nodes. Hence, the numerical sclution can not

be represented by a single exponential wave, a non-linear mechanism of
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energy transfer being generated. We note, however, that concentrations at
all nodes of a same type still fit a single wave, with the original

wavelength.

3.2.2. Individual components, after N time steps

To evaluate propagation errors after N time steps, we will, based on
the results of the previous section, distinguish between linear and

quadratic core elements.

¥e consider first the case of linear core elements, and express
cm(j,n) as an appropriate combination of Em(w.O), vhere 7 represent the
nodes which concentration at time zero contribute to the concentration of

node j at time n, and where E;(?.O) are given by Equation 12.

Rearrangement leads to (Appendix A, Section 1},

~ n _ _
i) = {600 }3,0m = M (@n) 3 (g (28)

which is clearly consistent with the simple conventional error model
described by Equation 18,

For quadratic core elements, we follow the same general idea of
expressing :m(j,n) as a function of appropriate Em(w.O), rearranging to
express the latter in terms of Em(j.n). and compare this with zm(j.n). The
procedure is now, however, more cumbersome: it not only has to be taken
individually for corner and middle nodes, but have to account for the

interaction between the errors of these two types of nodes. An

illustration of the procedure for the case of a quadratic Lagrange
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- interpolator is shown in Appendix A, Section 2, together with the rational
for its extension to interpolators using information from more than the

three nodes of the core element. Only the result is summarized here
Ll U —_
cm(J.n) =S Hm(a.n).cm(j.n) (29)

where v denotes the type of corner node {0 for extremity nodes, %1 for

middle nodes), and

H:(a,n) = exp{ianhm}.exp{ivhm}.

{ P2em) gy(@) + Q(am) gy(ars) | (30)
p (a.n) = p:;(a.n-l).sm(a) + q_:l(a.n-l).sm(a) (31)
q;(a,n) = p::l(cz.n—l).rm(a) + q;(cz.n—l).rm(a) (32)
py(a1) =1 - |v] (33)
a (2.1) = |v]

Functions rm(a) and sm(a) depend on the number actually used by the
interpolator, and are summarized in Table 1. In general, Hg(a.n) and
Hi;(a.n) will be different from each other, and the ratio

H;(a.n)/H:(a.n~1) will not be a constant,

In the derivation of Equations 28 and 30 it is implicitly assumed that
no aliasing occurs within any time-step of the numerical procedure. This

is strictly true only in the case of linear core elements, and, therefore,
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Equation 30 has to be considered an approximation, which will become exact

in the absence of interval aliasing,

3.2.3. Complete solution after n time steps

The complete solution of the advection problem is, as indicated
earlier, always of the form of Equation 13. To evaluate the coefficient
Em(n) we have, however, to distinguish again between linear and higher-

order core elements.

For linear core elements, Em(n) 1s simply described by Equations 16
and 20. For quadratic core elements, however, Em(n) represents the mth

Fourier component of the discrete signal

1
[t . v —
cimyx { ) v, B } e (36)
Iv|=0
where
v, = 1 if j is of type v
0 otherwise (37)

4. VERIFICATION AND DISCUSSION OF ERROR FORMULAE
4.1, Comparison with numerical experimentation

Let us first consider the solution of the standard test problem of

constant advection of a Gauss-hill, which is governed by Equation 1, with
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initial and boundary conditions

c(x.t) — 0 as Ix| —m o (38)
(x.0) = — { (x_x°)2} (39)
clX, = e ———
Vor o P 202

in particular, we set u=0.5, 0=264, x°=2000. and x ¢ [0,13600],
t e [0,9600] (units are irrelevant, as long as consitent). The problem was
solved (a) numerically and (b) by Fourier analysing the initial conditions,
and propagating the resulting components according to the error formulae
derived in the previous section. The 2P-LI2, 3P-LI3 and SP-HL3
interpolators—-see [B6] for definitions—-were used as a reference {the last

two of these have quadratic core elements).

Numerical and simulated solutions are visually undistinguishable
(Figure 3), which illustrates’ the validity of the generalized Fourier
analysis. We note that simulated solutions are in general much cheaper to
generate, especially for large numbers of time steps, N {typically one
order of magnitude less CPU time, for interpolators with quadratic core
elements, if N > 1000), which suggests that the error formulae of the
previous section can be used, besides as a reference for formal analysis of
accuracy and stability, as a cost-saving procedure for numerical

experimentation.
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4.2. A brief look at the mechanism of energy transfer

The energy transfer between Fourier components, due to the presence of
grid nodes of different types, has constituted the motivation for the
development of the resent generalized Fourier analysis. This mechanism is
now recognized, using the derived error formulae, to work towards the
uniformization of the errors of the different types of nodes. Indeed,
after some number of time steps, which will vary with the interpolator and
the location of the foot of the characteristic line within the core
element, errors per time step associated with corner and middle nodes
become indistinguishable from each other; an exception occurs for
Lm/Ax = 4Ax (i.e., twice the size of the element), where a ressonant
behavior occurs (e.g., Figure-é). Examination of actual amplification
factors for Lm/Ax = 4Ax suggests that thes resonance should be without
practical importance, as the energy wavelength is typically quickly

dissipated (Figure 5).

5. CONCLUSIONS

This paper provides a reference tool for the formal analysis of the
accuracy and stability of the BMC, for any interpolation function of class
CO. This tool is extensively used by [B5] to study the stability of the

BMC, and by [BE] to compare the accuracy of different interpolators.

Some of the results obtained in our present analysis, although derived
in the specific context of BMC solutions in uniform grids, can be
extrapolated to other situations, and may provide some new perspectives to

familiar problems.
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In’particular. it should be clear that nodes of a different type are
not an exclusive property of some BMC. For instance, any FE method based
on quadratic and higher-order interpolations will also have different nodal
types, and, therefore, will potentially induce the same type of energy
tranfer identified for the BMC. This may be an unexplored difference
between FE and FD methods, and certainly invites further analysis as well
as the cautionary revision of previous conclusions on accuracy and
stability of FE methods, if based on an oversimplified application of

Fourier analysis,

Also, the fact that some BMC induce, for uniform grids, non-
linearities much similar to those due to grid or flow non~uniformity, but
that are amenable to systematic quantitative analysis, may be used to

provide further insight on the effects of grid and flow non—uniformity.
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Figure 1

Illustrative sketch for the Backwards Method of Characteristics

Required steps:

1.

Iracking of the characteristic lines. For each node j. a

characteristic line is independently defined by the backwards (i.e.,
between n and n-1) solution of an ordinary differential solution of

the form dxi/dt = ui.

Interpolation at the feet of the characteristic line. The
éoncentration at the foot of each characteristic line {and, for pure
advection, at any other point of the characteristic line, including
node j at time n) is found by interpolation from known information on

neighboring nodes, at time n-1.
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Figure 2 Definition of the core elements
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Comparison of the actual numerical solution with the solution obtained

Reference
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Figure 3

ey

by using error formulae

QE.+ dc

problem: 5t Y5y = ¢ ]
“00.0) = e~ 2571
c(x,t) = 0 [x] = "o

Computational parameters: At = 96

Legend: 1

R

Ax = 200

=
I}

T/7At = 100

0.5

[l
n

o= 2.64

~ Exact solution

2P-LI12 (numerical solution)

2P-LI2 (error formulae)

3P-LI3 (numerical solution)

f

3P-LI3 (error formulae)

SP-HL3 (numerical solution)

S5P-HL3 (error formulae)
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Figure 4

Amplification factors per time step, as a

of the time steps, for interpolators with

(¢ = 0.5 for middle nodes; a = -0

(a) 3P-LI3, Lm/Ax
(b) SP-HL3, L /Ax
(c) 3P-LI3, L /Ax
(d) 5P-HL3, L /Ax
(e) 3P-LI3. L /Ax

(f) 5P-HL3, L /Ax
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Table 1

Definition of the Functions rm(a) and sm(d)

B.1 Compact interpolators

ra(a) = go(@)exp(2in)

Sm(a) ¢,1(a)exp(ikm)+¢,(a)exp(—ikm)

B.2 Non-compact interpolators {5 nodes)

[#2(a)+#0(@)Jexp(iA )+$.2(a)exp(i3N )

r (a) =
" ¢-2(a)exp(iN J+do(a)exp(-in )+¢-2(a)exp(-13) )

Sm(a) = ¢_,(a)exp(ikm)+¢1(a)exp{—ikm)

B.3 Non—~compact interpolators (7 nodes)

¢_2(a)exp(i3km)+[¢o(a)+¢2(a)JEXP(iRm)

(@)
" $-2(a)exp(13d )+do(a)exp(iN_}+¢s(a)exp(=in )

$.(2) = [6-a(@)+da(e) Jexp(i3\ J+[b_s (a)+#. (o) Jexp(in )
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APPENDIX A

Derivation of formulae for propagation errors after n time steps

A.l1. - The case of linear core elements

We want to express Em(j.n) as a function of Em(j.n). i.e.,
cm(j.n) = Hm(a.n) cm(j.n) (A.1)

where Hm(a.n) is to be evaluated.

We first use the general expression for the BMC algorithm, Equation 3

to write successively

P,
Em(j.n) = z ¢p1(a)6m(j—K-p1.n_1) -
p1=P1
P, P,
- 2 ¢P1(a) 2 ¢p2(a)cm(j_2K"P1_P2) = ... =
pi:Pi 2=P1
Pz Pz P2 "
= 2 ¢p1(a) 2 ¢p2(a) ... E ¢pn(a)cm(j_nK_ § ,
P+=Ps 2= n=P1 i=1

(A.2)
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Now, using the fact that a = B-K, and expressing Em in Fourier series

form, we recognize that

n
J-nK- 2 Py
i=1

C
m

n
Bmexp ihm J-nK- 2 Py
i=1

B exp{i\_[J-nB]}exp{ir_

n
Sp(3.m)exp{ N |na- ) p,
i=1

1]

———

J

(A.3)

Replacing Equation A.3 into Equation A.2, and rearranging. we recover

Equation A.1, w{th

-

p2 P2 P2
Hyen) = ) ¢ (@) ) ¢ @X ...q ) ¢, (@) -
P1=Py 2=P, .Pn=P1
n
* exp ihm nor— 2 P, =
i=]
P, P, [ J’ P,
Eo@ ) 4, @i ) e @i { ) SROR
p,=P, 2=P, ! _pn_1=P1
n-1
* exp idm (n-1)a- 2 P, =
i=1
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P, P, P,
= 6@ ) @ ) w @) d ) e, (@
pi=Py 2=P, .Pn_2=P1
[ n-2 |
* explid_ {(n-2)a- E Py =
i=l
= ... = {Gm(a)}n (A.4)

vhere Gm(a) denotes the error in the first time step, and is described by

Equation 22. Hence, errors are equal at every time step.

A.2. The case of quadratic core elements

Let us take as a reference the 3P-LI3 interpolator, and the conditions

of Figure A.la, i.e., j is a corner node and int(B) is even.

If the numerical solution had started at time n-1, the relationship
between Em(j,n) and Em(j.n) could be found by expressing the former as a
function of Em(wi.n~1)—-where 7 represents the nodes that contribute teo the
interpolation at the feet of the characteristic line that starts at (j.n)--

and rearranging appropriately. Indeed,

P>

) @8 [I-(K+1)-P] = $-((@)3(5-Kon-1) +
p=P,

c,(3.m)

+ ¢0(a)3(j—K—1.n-1).+¢1(a)5(j-K—2,n-1) =

c(§.n)exp{iA_(F-k-1)}H{¢.: (a)exp(iX )+¢o(a)+$, (a)exp(-1A }} =

o(j.m)exp(iar )g (a) (A.5)
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Now, assume that the numerical solution had started at time n-2. The
‘relationship between gm(J.n) and Em(J.n) can still be found by expressing
Zm(j.n) successively as a function of Em(1l.n-1) and of Em(72.n—2). and

rearranging appropriately. This leads to

c(j.n) = ¢-,(a)E(j—K.n—1)+¢o(a)E(J-K-1.n—1)+¢,(a)5(j—K—2.n—l) =

¢-s(a)[c(§-2K.n-2)¢_, (a)+¢o(a)c(J-2K-1,n-2)+¢, (@)c(§-2K-2,n-2)] +

+

$o(a)[c(J-2K.n-2)¢. (a+1)+¢o (1) §-2K-1,n-2)+¢, (a)( j-2K-2.n-2) ] +

+

¢1(a)[c(j~2K~2.n-2)¢_, (a)+éqo (a)c(j~2K-3,n-2)+¢, (a)c(j-2K-4,n-2)] =

= 3(J.n)exp(120A ) g, (2)s, ()+g (at1)r (a)) (A.6)

with

5p(@) = $-sexp(iN 44, (@)exp(-1\)

ro(e) = ¢o(@)exp(in ) (A7)

If the sblution had started at time n-3, we would have, in turn,

c(3.n) = ¢-1{a)e(i=K.n01)+éo(a)e(i-K,n-1)+¢, (a)o(j-K-2.n-1) =

= ¢_1(a)[¢_1(a)E(j—2k.n-2)+¢o(a)E(j-2k—1,n—2)+$1(a)6(j—2k—2.n—2)]+
¢°(a)[¢-1(a+1)E(j—2k.n—2)+¢o(a+1)5(j—2k—1.n-2)+¢1(a)a(j—2k—2.n—2)]+

$: (@) [4- 1 (@)e(§-2k-2,n-2)+¢o (a)c(j-2k-3.,n-2)+¢, (a)c(j-2k-4,n-2)] =

= ¢-g(a)b. (a)[¢-1(a)c{j-3k.n-3)+¢o(a)c(j-3k-1,n-3)+¢, (a)c(j-3k-2,n-3) J+
¢y (@)do(a)[é. 4 (atl )Efj“3k-n'3)+¢o (a+1)c(j-3k-1 n-3)+¢, (a+l )E(j—Bk—2.n-3) I+

$-1 (@)$; (@)[$-1 (@)E(j-3k-2,n-3)+¢o () c( j-3k-3,n-3)+$, (a)S( j-3k~4,n-3)] +
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+ $0(@)é_ s (a+1)[¢., (@)e(J-3k.n-3)+¢o(a)c(J-3k-1,n-3)+$, (a)a(j-3k-2,n-3) I+
$o(a)do(a+1)[é_ s (a+1)c( -3k, n-3)+¢o(a+1)c(§-3k-1,n-3)+, (a+1)c(3-3k-2,n-3)]

+

$of{a)¢, (a+1)[¢. 4 (a)c(J-3k-2,n-3)+¢o(a)c( j-3k-3.n-3)+¢, (a)c( j~3k~4,n-3)] +

+ ¢y (a)bos (@)} $-s (a)c(§-3k-2,n-3)+¢o (a)c(§-3k-3,n-3)+¢, (a)c(j~3k-4,n~3) ]+
¢1(a)bo(a)[¢-1 (a+1)c(J~3k-2,n-3)+¢o(a+1)c( j-3k~3,n-3)+¢, (a)c( j~3k-4,n-3) I+

¢, (a)dy (@) ¢-1 (@)c{§-3k-4,n-3)+¢o(a)c(j-3k-5,n-3)+¢, (a)c(j~3k-6,n-3)] =

= c(3.n)exp(13A ) (g, ()[s, (a)s (a)+s (a+1)r, (2)]+

+g_(a+1)[r_(a)s_(a)+r_(a+l)r_(a)]) (A.8)
Following the same procedure. and assuming successively that the

numerical solution started at times n—4, n-5, ... ., a recurrance formula is

seen to prevail, in the form
S (3.n) = & (§.m)H_(§.a.n) (A.9)

with

H (§.0.8) = {p,(§.@.Ng, (@)+q (§.a.N)g, (o+1))exp(inar )) (A.10)

and

- gg _




n p (J.a.n) | _ g, (J.a.N)

1 1 0

2 s, (@) r(a)

3 sm(a)sm(a)+sm(a+1)rm(a) rm(a)sm(a)+rm(a+l)rm(a)

4 s ()p,(d.@3)+s (a+D)a (§.0.3) T ()py(d.a3)r (atl)q (5.a.3)
5

s (e)p, (3.0,4)%s (a)q (.e.d) T (@)p, (5. 4)r (at]) (5.0.4)

Repeating the procedure for a middle node (and for int(B) odd, for
both types of nodes)}--Figures A.2b-d--and for different interpolators--
Figures A.2a-b—-and recollecting the results {omitted here), we obtain the

general recurrance formula expressed in the text by Equation 30.
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ABSTRACTS

We present a systematic analysis of the consistency, stability, and
convergence of the solution of the linear advection equation by the
Backwards Method of Chracteristics (BMC), which shows the dependence of
these properties on the interpolator selected to find the concentrations ar
the feet of the characteristic lines. The BMC is unconditionally
consistent for interpolators that match nodal concentrations exactly;
however, stability, hence convergence, has to be assessed in a interpolator-
per—interpolator basis, and criteria, based on the Fourier analysis of a
general BMC algorithm, are derived for such evaluation: the application of
these criteria indicates that common choices of interpolators lead to
stability and convergence. The apparent paradox of the BNC being
convergent and improving its accuracy as At increases (for fixed Ax and

total computational time} is explained through the different dependence of
errors on At above and below Courant number one.

1. INTRODUCTION

A review of alternative‘methods for the solution of the tramsport
equation suggests (e.g.. see [B4]) that they fit into three very general
categories——Eulerian (EM), Lagrangian (LM) and Eulerian-Lagrangian (ELM)~~
according to the selection of the coordinate system for £he equation
{(Eulerian or Lagrangian) and of the type of computational grid (fixed or
moving). While EM (which use Eulerian coordinates and fixed grids) and LM
(which use Lagrangian coordinates and moving grids) may be appropriate
choices for specific problems, ELM (which use Lagrangian coordinates bur
fixed grids) are unique in their potential to cémbine the best aspects of
EM and LM. Numerical experimentation (e.g., [B1-B4], [ﬁl—HS]. [K1]) has
suggested that, indeed, ELM provide accurate sclutions forrthe transport
equation in the whole range between advection-dominated problems (where EM

have inherent limitations if sharp concentration gradients in the flow
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direction are present} and dispersion-dominated problems {while.LM

——

experience practical difficulties when dispersion becomes non-negligible).

ELM lack, however, besides tradition, a well-established theoretical
background that may (a) validate them as reliable numerical tools, and (b}
guide modellers in the choice of computational parameters (At and 4x) and
of specific techniques to solve each of the sub-equations in which ELM
typically divide the transport equation (advection, and dispersion plus

internal sinks and sources).

In this study, we deal only with the solution of advection, which has
been considered a critical step in the ELM procedure (e.g., [B4]);

consistently with common practice, we elect to use the Backwards Method of

Characteristics (BMC) as solution technique. It is known that the accuracy

of the BMC strongly depends on the interpolator used to find concentrations
at the feet of the characteristic lines, and a significant part of recent
ELM research has been devoted to find an interpolator for the BMC that
ensures an high-level of accuracy at feasible cost. However, two legitime

questions of a more fundamental nature can and have been raised (e.g.,

[N1D):

- Can the BMC be consistent and stable (hence convergent), knowing
that, for fixed grid and total computational time, accuracy tends to

improve as At increases?

- How do consistency, stability and convergence depend on the choice

-af the interpolator?
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Taking as a reference a general BMC that can accomodate a cho;ce of
interpolators of class C0 (i.e., preserving inter-element continuity of
concentrations, but not of its derivatives), we show that the BMC is
consistent for all interpolators that preserve the nodal concentrations |
exactly, but that stability (hence convergence) have to be assessed in an
individual basis. Criteria are derived for such assessment. The study
relies strongly on the Taylor-series and Fourier analysis of the general

algorithm of the BMC, and assumes constant advection in a 1-D uniform grid.

2. REVIEW OF THE.BACKWARDS METHOD OF CHARACTERISTICS

The advection equation

=— ==+ u, — =20 (1)

states that the concentration, c(xi.t) remains constant along

characteristic lines that follow the flow, i.e., obeying the constraint

dxi
gt -l (2)

The BMC is a direct numerical application of this statement,
involving, per time step, At, two basic tasks (Figure 1):

- Tracking backwards, between times n and n-1, the characteristic
lines whose heads coincide with the nodes of a fixed reference grid, so as

to locate their feet.
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- Finding the concentration at the foot of each characteristic lipe.

by interpolation from the known nodal concentrations at time n-1, and

assigning it to the head of the characteristic line.

Given a 1-D uniform grid, and a constant velocity, this procedure can

be represented by the algorithm

P2
c(3.m) = e(§-Pm-1) = ) ¢ (@) c(ikrp) (3)
p=P,

where (see Figure 2 for reference)

Jj - denotes the node where the concentration is to be computed
{global notation)

n - denotes the instant where the concentration is to be computed

a - denotes the position of the foot of the characteristic line in

a local coordinate system with origin at node j-k (a is
associated with the fractional part of the‘Courant number,
B = uAt/Ax)

P,,P, - denote the extreme nodes of the region that is used to define
the interpolator (in local notation)

¢ - are elementary shape functions which, together, define the

interpolator

We note the distinction between the region that is used to define the
interpolator, and the region where the interpolator is applied—-"core

element”; all nodes of the core elements contribute the definition of the
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dnterpolator, but this may (non-compact interpolators) or may not {compact
interpolators) require in addition information from outside nodes. We will
consider, throughout this paper, interpolators with either 2-node or 3-node

core elements (which may use information from up to seven nodes).

Several interpolators have been used or considered for use in the
context of the BMC. While most of our present analysis is based on the
general algorithm described by Equation (3), we will refer occasionally,
for illustration purposes, to a selected set of interpolators, defined in
Table 1 (note: familiarity with the nomenclature used in this table will be
assumed along the text). These and other interpolators are the object of a
detailed comparison in a companion paper, concerned with overall

performance (including accuracy)--[B6].

3. ANALYSIS OF CONSISTENCY

Expanding each term of the general numerical algorithm of the BMC
{Equation 3) in Taylor series around ¢{j.n), and rearranging, we obtain the
local equilibrium statement

dec dc
ﬁ-&ua—e (4)

vhere £ denotes the truncation error, and, as shown in Appendix A, can be

written in the general form:

-1)Q Al g1

e = {GhyT M@ & s + H.0.D. - (5)
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Q is the effective degree of the interpolation functipn. a concept -
that we introduce to denote fhe degree of the highest degree generic
Apolynomial that the interpolator can match exactly. Q can not exceed the
actual degree of the interpolator, M; for instance, if a quadratic
interpolator is used, Q { 2. However, Q may be smaller than ¥ (e.g., for
interpolators involving Hermite polynomials with derivatives estimated from

lower-order Lagrange polynomials—e.g., the case of the 6P-PL2 and 7P-HL3

interpolators}).

P(a) represents a polynomial in a of degree n = max {M, Q+1}; i.e.,

formally
n .m 0
Pla) = 2 bp'ap = E bp-[ B - int(B) + £ ] (6)
p=0 p=0

where bp are coefficients that depend on the interpolator, and £ is an

auxiliary variable, that may take the values O and # l--see Figure 2.

Consistency requires that the truncation error vanishes as Ax, At - O,
being unconditional only if this happens independently on how Ax and At
approach zero. The necessary and sufficient condition for the consistency

of the BMC is then

L pAéFI
lim P(a)-z— = lim 2 bp'[B - int(B) + f] 5T < 0 (7
p=0
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The validity of this condition can not be taken for granted without
further analysis. Indeed, due to the meaning of B, both ;;sitive and
negatife powers of AX and At can, in principle, appear in the expression of
the truncation error, and therefore, consistency may not be achieved, or
may depend on how Ax and At approach zero. The three mutually exclusive

cases of the limit of Ax/At being zero, finite but non-zero, and infinite

are individuzally considered in the following discussion.

Let Ax go to zero faster than At, i.e. Ax/At - 0. While both 8 and
int(B) tend to infinity as Ax, At = 0, B-int(B) is kept finite (1) by
definition, and, therefore, so is P(a). Hence, in this case, the
consistency condition is necéssarily satisfied, regardless of the actual

interpolator (assdﬁing Q.> 0).

Now, let Ax and At go to zero at the same rate. In this case, B and
int(B} are held constant and finite, and so is P{a). The consistency
condition is necessarily satisfied by all interpolators of effective degree
one or above, but is not satisfied by interpolators of effective degree

zero or below.

Finally, let At go to zero faster than Ax. Now, B = 0, and int(B)

becomes zero for B < 1. Hence,

lim P(a)-z? = lim

T
Ax,At=0 Ax At—ao
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and, because both f§ and Ax tend to zero, all terms in the summation over 8,

but those with 8 = 0, will also necessarily tend to zero; 1l.e..

AxQ+1 AxQ i p Ax
lim P(a)°zz =lim {u—ﬁ—-z b L }EP(E)-lim —_ (9)
Ax, At-0 px a0t PP ax.At0" P

Hence, when At goes to zero faster than Ax, the consistency condition
is necessarily satisfied for all interpolators that make P(f) zero; for
other interpolators, this condition can be satisfied only when the rate of

Q&+

convergence of At is slower than that of Ax 1 (which immediatly excludes

interpolators of effective degree 0 or below).

Summarizing the above analysis, which covered all possible relative

rates of convergence of Ax and At, we can now state that:

- If P(F) = O, the BMC is unconditionally consistent for all

interpolators of effective degree 1 or above.

- 1f P(E) # O, the BMC can, at best, be conditionally consistent, with

the truncation error vanishing only when AxQ+1/At - 0,

- No interpolator with effective degree less than unity can lead to

unconditional consistency, regardless ofthe value of P(£).
To understand what P(f) = O actually means as a constraint, we

recall, from the definition of the polynomial P(a). that

pE) =0 <= = ) ol (@) (10)
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We can now recognize that because, by definition. the value of §
coincides the coordinate of one of the nodes of the core element, a
sufficient condition for P(f) to be null is that the interpolator be exact

at such nodes, or, equivalently, that:

{ 1 ifp=r171

¢ _(a

pler) =

(11)
otherwise

This is, in particular, the case of all Lagrange interpolators, and of
all Hermite interpolators with derivatives estimated from lagrange
polynomials of the same degree, which are, therefore, unconditionally
consistent. We note that, together, these interpolators represent the

largest majority of interpolators of class Cy ever used in a BMC context.

The condition expressed by Equation 11 is not strictly necessary for
P(E) to be zero, but other forms of achieving this identity (hence
unconditional stability) lack robustness outside the context of uniform
grids. For instance, the 7P-HL3, for which the concentration at the middle
node of the core element is not necessarily preserved, still leads to
P(E) = O, but this is due to a symmetry effect that would disappear if a

non-uniform grid were used.

Also, we note that, while-it makes no sense to develop on purpose
interpolators with Q < 1 (which are bound to have poor overall accuracy)
rounding-off the coefficients of an interpolator may have this effect. The
most significant example is the 6P-PL2, which has a theoretical effective
degree of 1, but can not represent a constant function within machine

precision, hence leading to the unconditioanl inconcsistency of the BMC.

- 113 -



The effect of this inconcsistency {s llusrtrated in Figure 3, taking as a
reference the problem of the constant advection of a Gaugg:hill. which was
solved--for fixed total time and time step, butlvariable Ax——using the
6P-PL2 and the 4P-LR2 interpolators; while for the 4P-LR2 accuracy improves

as Ax decreases, for the 6P-PL2 accuracy deteriorates int he.regio of small

Ax.

4, ANALYSIS OF STABILITY

4.1. Stability criteria

Stability requires that errors generated in the arithmetic operations
needed to actually apply the numerical algorithm be not amplified by this
algorithm. This property is commonly analysed by observing the errors in
the propagation of individual Fourier components of the solution: the
numerical method will be stable if the amplitudes of these errors converge

to a finite limit, as the number of time steps goes to infinity (At fixed).

The Fourier analysis of the BMC was addressed in detail by [B5], who
derived the general error formulae summarized in Table 2. These formulae
show that, for interpolators based on 9-node core elements, errors are time-
jndependent; hence, the requirement for stability is that the amplitude of
the error in the first (hence, any) time step do not exceed unity, for any

wavelength that can be represented by the grid; i.e.,

| ¢_(a) | <1 , form £ J/2 (12)
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where G (a) represents the error in the propagation of the mth Fourier
_component, and J+1 is the number of grid nodes. Equation 12 is easily
recognized as a particular form of the classical Von Newman stability

criterion.

For interpolation functions with 3-node core elements, errors are time-
dependent, as a consequence of @ numerically generated transfer of energy
between Fourier components (see [B5]). To establish a formal stab111ty

criterion, we have then to require, in this case, that

1im | (e, N) | =€ for all m £ J/2 -~ (13)
N-xo m

where H;(a.N) represents the cumulative error in the propagation of the mth

Fourier component of the solution, evaluated after N time steps, and C is

some finite value {which will, in general, be zero}.

Using well-established knowledge from the theory of jteration, we show
in Appendix B that the necessary and sufficient condition for Equation (13)
to be obeyed is

| <1 for all m < J/2 (14)

where Bm(a) is the the largest (in modulus) eigenvalue of the matrix
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[ Re{s_(a)) -Im{s{a)} Re{s_(at1) ~Im{s (ail)} ]
In{s ()} Re{s(@)  In{s (k1) Re(s_(at1)} | (15)
Re{rm(a)} -Im{r(a}} Re{rm(ail) -Im{rm(ail)}

l Im{rm(a)} Re{r(a)} Im{rm(ail) Re{rm(ail)}

=
n

The functions S and rm are defined in Table 2.

A less formal, but perhaps more jntuitive stability criterion can also
be derivéd, based on the empirical observation ([B5]) that, after a finite
number of time steps, propagation errors per time step become time-
independent, except for Lm - 4Ax. Indeed, this suggests that stability
requires, in a direct extension of Von Newman criterion to the case of

3-node core elements, that:

H(a.N)
— <1 for m £ J/2 and Lm % 4Ax, for large N (16)
#’(a.N-1)
m
and
lim | B(eN) | =0 for L = 4Ax (17)
o m m
Neo .

The criteria expressed respectively by Equations (14) and (17)-(18)

should be equivalent.
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4.2. The stability of the BMC for specific interpolators

ot

The application of any of the above stability criteria is, for most
interpolators, a very hard--if at all possible--task, when pursued
analytically. To overcome this difficulty, we recommend the numerical
generation of charts defining the regions of stability as a function of
both a and Lm/Ax. such as those presented in Figure 4a-b, These charts
should cover a domain bounded by 2 £ Lm/Axlg 2 {with & chosen large enough
to reﬁresent infinity), and by 0 { a { 1; we took & = 50, and computed the
amplification factors in a support grid characterized by Ax = 0.02 and

AL = 0.50+Ax.
m

Fipures 4a-b represent, respectively, the amplification factors (in
the first time step) for a non-compact cubic interpolator, 4§;LR2, and fo;
the also non-compact 6P-PL2; both interpolators have 2-node core elements,
hence Equation (12) prevails as the proper stability criterion. We note
that the BMC is stable for the former interpolator, and unstable for the
latter. We also note that, unlike for the 4P-1R2, the amplification
factors for the 6P-PL2 are not symmetrical around a = 0.5 (a deviation that
results directly from the approximations introduced in the evaluation of

the coefficients of the 6P-PL2).

Figures 4c~d, in turn, concern the compact quadratic interpolator,
3p-LI3, and the non-compact SP-HL3 interpolator, constructed from the
estimation of derivatives of a cubic Hermite polynomial; both interpolators
have 3-node core elements. The figures show, for each interpolator, the

amplification factors per time step (after a "large” number of time steps—-
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400). We note that (a) the BMC is stable for the 3P-LI3, while it is
unstable for the S5P-HL3; (b) except at or near L /Ax = 4--where cumulative
ampiification is virtually null (results not shown)--amplification factors
per time step are, for the 3P-LI3, essentially symmetrical around a = 0.5,
an indication that energy transfer between Fourier components is

approaching the equilibrium; this is still not the case for the SP-HL3,

5. ANALYSIS OF CONVERGENCE

lax's well-known equivalence theorem states that, for a linear system
of equations and a consistent numerical method, stability is the necessary

and sufficient condition for conuvergence.

We can therefore use our previous analysis of éonsistenc& and
‘stability, to conclude that the convergence of the BMC (for the solution of
the linear advection equation) depends on the selection of the
interpolator, a choice of those providing convergent solutions (e.g.. see
[B6]). Here, we concentrate in the understanding of an intriguing aspect:
'if, as suggested by numerical experimentation (e.g.. [B1]. [N1]), the BMC
improves its accuracy as At increases (for fixed Ax, and total

computational time, T), how can the method be convergent?

Let us take the 4P-LR2 as a reference interpolator: the truncation

error of the BMC is, in this case

2 Ax4 640
e = ((I'—Z)'(CC -1} mgx—é- + H.0.D. - (19)
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which indicates that for large B {where a is a weak function of Ax, At)
increasing At will indeed improve accuracy, at least in a mean-square

sense. However, for B < 1 (in which case o = u+At/Ax), we have

4
e = -2-%{1.13:\1:3 - 2u24t2hx — ubthx® + 20x°) Z—% + H.0.D. (20)
b4

which indicates that, in this case, reducing At should improve accuracy,
although probably not very efficiently (note that Ax3 is the dominant

coefficient).

Because letting At go to Zzero, with Ax and T fixed, will inevitably
bring B to below umnity, the dependence of the accuracy on At is recognized
to be more complex than antecipated by [B1] and [N1], among others.

Indeed, reductions of At will affect the accuracy of the BMC differently,
depending on the value of the Courant number: for § > 1, increasing At will
significantly (although only in a least square sense, due to the periodic
variation of «) improve accuracy; if B ¢ 1, decreasing At will improve
accuracy, but not significantly. as erroTs are in this region dominated by
the spatial discretization-—see Figure 5, for illustration. This general
behavior had, less formally. been antecipated by [B3]. and explains why the
BMC can aznd will in general be convergent, and, still benefit from the use

of large At.

6. SUMMARY AND OONCLUSIORS

Both common sense and numerical experimentation have long ago

recogﬁized that the choice of the interpolator for the BMC strongly affects
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its accuracy. This study shows that this choice has an even more
fundamental influence, being a determining factor for thépéonsistency.

stability and convergence of the method.

Most interpolators of class C° pose no threat to consistency.
However, not all interpolators that have been considered recently to
improve the accuracy of the BMC iead to stability, hence convergence. The
Von Newman stability criterion, or its extension to interpolators with
3-node core elements, as proposed in Section 3, provide the necessary tools
to investigate the stability of the BMC, for individual interpclators.
Application of these tools is illustrateﬁ here, but is used in a more

systematic way in [B6].

The fear that the BMC could be intrinsicaliy divergent [N1] is not
justified, and the ability to improve accuracy by increasing At (for a
fixed grid and a fixed total computational time, for large Courant numbers)

can be considered a definite advantage of the method.

We stress that, although the BMC is an explicit method, it is not,
unlike its Eulerian counterparts, subject to stability constraints on the
Courant number. This is a direct consequence of the fact that we force
interpolations to be performed within the core element that contains the

foot, rather than the head, of the relevant characteristic lines.

Some of the formal tools and criteria derived in this paper are
interesting on their own, and deserve further research or application.

This includes, in particular,
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- The general expression derived for the truncation .error can be
effectively used to compare the accuracy of alternative interpolation
functions, and to understand the general dependence of the accuracy of the

BMC on controlling parameters——see [B6], [B7].

- The stability criteria derived to account for the time-dependence of
the propagation errors can, in principle, be generalized to other numerical

methods that use quadratic elements {e.g.. FE-Galerkin}.
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Figure 1

Illustrative sketch for the Backwards Method of Characteristics

Required steps:

1. Tracking of the characteristic lines. For each node j, a characteristic

line is independently defined by the backwards (i.e., between n and n-1)
sclution of an ordinary differential solution of the form dxi/dt =u,.

2, Interpolation at the feet of the characteristic lines. The
concentration at the foot of each characteristic line (and, for pure
advection, at any other point of the characteristic line, including node
j at time n) is found by interpolation from known information on

neighboring nodes, at time n-1.



j+1

j-3

j-4

time n

direction

x
=2
g
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Figure 3
Tllustration of the convergence or divergence of the BMC, as a

consequence of the choice of the interpolator

While the 6P-PL2 interpolator is more accurate than the 4P-LR2 interpolator
for larger Ax, the inconsistency of the former induces errors to grow at
the limit of small Ax. All interpolators considered in this work (but the

6P-PL2) will improve the accuracy of the solution as Ax decreases.

de dc

Reference problem: FT3 + uze = 0 ]
(x,0) = exp{— L’%’;-QJ—}
c(x.t) » 0O Jx| = "om
Computational parameters: At = 0.4
Ax wvariable

N = T/7At = 50000

u 0.5

1l

g = 264
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Figure 4
Amplification factors per time step, as a function of the location, a.
of the foot of the characteristic line within the core element,

and of the dimensionless wavelength

{a) 4P-LR2
(b) 6P-PL2
(c) 3P-LI3

(d) 5P-HL3

Legend
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Note: Irregularities in the contours of the amplification factors
for the 3P-LI3 and 5P-HL3, near Lm/Ax. result from the

inability of the countouring code to handle the prevailing
gradients
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Figure 5 -
Dependence of accuracy on the number of time steps required to

reach a fixed total time

We note that accuracy tends to improve as At increases. However, in the
limit of large N (small At). the accuracy is essentially insensitive to the

variation of At; errors define then a plateau, which is a function of Ax.

Reference problem: Q%-+ u%ﬁ-: 0
_ 2
o(:.0) = enf- 381}
c{x,t) =0 |x| = "o

Computational parameters: At = variable

Ax = 200
T = 8600
u=0.5
o= | 132
264
528
Legend 1: o/4x = 0.66
2! o/Ax = 1.32
3: o/Ax = 2,64
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Table 1

Definition of spatial interpolators

3P-LI3
4P-LR2
SP-HL3
6P-PL2

TP-HL3
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Table 2

Summary of formulae for propagation errors

. Error in the first time step:

Ps
G (a) = exp(iha) + ) 4p(a) exp{ 1\ P)
p=P,
£, (a}
. 2w
(note: A= L—mx)

. Error after N time steps

A. Interpolators with 2-node core elements
Byl = (G ()"

E. Interpelators with 3-node core elemenis
Ho(a.X) = {p_(a.F) g (a)+5, {a.N) e (a+e)}-exp{iNar ) exp(1o) )
with
Ppla.R) = sm(a)pm(a.h’-l)-rsn(me}-qm(a.ri-l)
o (a.N) = v _{a)p (a.N-1)+r (a+8)+q (a.N-1)
pgla.1) = 1-}y]

g (a.1) = |y
~1 1f int(B) odd
‘= { 1 if in:(ﬁ)l even
{o for cormer nodes
» =

] for middle node

where sm(a) and rm(a) are defined as follows:
B.1 Compact interpolators
rp(a) = so(a)exp(2in )
s (2) = ¢oi(a)eop(id e, (e)exp(~1A )
B.2 Non-compact interpolators (5 nodes)
oy« [T @)
r {a) =
BT |-atedempin ) rsa(a)exp{-1h Yo (a)erp(- 130 )
s.(a) = $-a()exp(1 1+, (@)exp(~sA, )
B.3 Non-compact interpolators {7 nodes)
#-2(2)exp{130 Y+[$o(a)+ea(a)Jexp(1 )
!m(ﬂ) = L
¢-2(e)exp( 130 +4o(@)exp(4N )+¢a(a)esp(-1h )
spla) = [¢-a(=)*¢:(u)3=*?(1335)*[0-x(ﬂ)+¢.(C)JGXP(ikm)
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APPENDIX A

Derivation of the general form of the truncation error of the BMC

Let us consider the general BMC algorithm expressed by Equation 3, and

expand c(j,n+1) and c(J—k—am) in Taylor series around c(j,n). We get,

respectively,
dc . 4t? 3%¢c At® 3%
C(J.n+1)=c(1|n)+At a—t-+§!— ----;--{- L +-_c_'j- a—s-'——'f' L (Al)
and

c(j—k-am,n) = c¢(j.n) - (k+am) Ax g§.+ tee 4+
(kte )S

s m s asc .
+("1) ——ST'—AX gx-;+ toe (A2}

where all derivatives are evaluated at (j.n).

Quadratic and higher-order derivatives in time can be expressed in
terms of spatial derivatives of the same order, by trivial manipulation

based on the form of the advection equation. Indeed,

8%c g [ dc ] fil [ dec ] 2 8%c
= —_ -1 -— = -1 — — = 0 —
at® 8t 3x ox “ 3t ax*?

(A3)
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Replacing Equation (A3) into Equations (Al), and, then, Equations (Al)
and (A2) into (3). we obtain, after some rearrangement, the local
equilibrium (at j,n)

dc dc

5?-+ u a; = e (Aé)

where € represents the truncation error of the BMC algorithm, and is

expressed as

1 dc
e =3t {—(I—Io) + [B - (k Io+ Ii)J Ax >
2
-4 [;32 - (KI+ 2KI, + 12)]-u2‘6—9+ -
» axz
. :
q+l q (q-r q
PR G2 S A Pa S CH— ) w322 s yop (A5)
q! r!{q-r)! r g
r=0 Gx
with
P,
= ) TR (A6)
p=P,

The necessary and sufficient condition for the coefficient affecting
the qth derivative in the expression of the truncation error to be null is

that

1 (q—r)
P Lu— S = % = (k+a)d - (AT)
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or, equivalently -

Py
1.2 ) pleg(a) = o for r ¢ g (A8)
p=F,

n
R

The interesting consequence is. that, for any interpolation function of
effective degree Q (i.e., able to exactly represent, within the domain of
validity, any polynomial of degree Q). all derivatives of order r € Q have
zero coefficients, and the expression for the truncation error can be Te-

written as

(-1)® (21 a1 g¥1,

¢ = (@Y ") ®® ot

© q

+ E {%}11[ z _ﬁ_(g_!_l_qu-r(aq—r_ Ir)]} (49)
q=+2 r=0+1

The proof is easily established. Indeed, if a generic polynomial of

degree Q,
Q
Y{a) = E as-as (A10)
s=0

can be exactly described by the interpolator used in the BMC, we have
P>

Q Q P,
Y@ = ) { ¢,(@) > a ol } =) { ) e2e9 (a) } (A11)
p=P, s=0 s=0 p=P, o
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D -

Now, comparison of Equations {Al0) and {Al1) shows that, if the latter
holds, Equation (A8) has necessary to hold, i.e., the ch ;oefficient in
équation (A5) must be zero. However, if Equation (All) applies for Q, it
also applies for Q-1, @-2, ..., 0, i.e., all coefficients must also be zero

for q < @-1, which leads to Equation (A9).

We note that (aQ+1 -

IQ+1) is a polynomial in a of degree
71 = max {M, Q+1}, where M is the maximum exponent of a in the interpolation
functions ¢p: hence Equation {A9) can be re-written as Equations (5) and

(6).
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APPENDIX B

pu——)

Derivation of a stability criterion for the case of 3-node core elements

For stability, we require that the modulus of the cumulative error in
the propagation of any Fourier component of the solution, evaluated at time

N, be finite in the limit of N = » (for all a).

From Table 2 (Equation T3), this is equivalent to requiring that the
limt of lpm(a.N)-gm(a) + gm(a.N)-gm(a+£)| be finite. Because g (a) and
gm(a+8) are independent on N, the actual condition for stabiility is that
|pm(a.N)l and lgm(a}N)| have finite limits, or, equivalently, that the real

and imaginary parts of both pm(a.N) and gm(a.N) have finite limits.

Now, from Equations T4 and T5 (Table 2)

[ Re{p, (a.N)} ] [ Re{p_(a.N-1)}]
In{p, (@M} | = B+ | In{p (a.N-1)) (8.1)
Re{g_(a.N)} Re{g (a,N-1}}

_ Im{g_{a.N)} | _ Im{gm(a-N"l)}-

where matrix R, described by Equation 15 of the text, is independent of N.

The iteration process described by Equation B.1 is of the same form of
interation processes for the solution of linear systems of equations, which
convergence requires (necesary and sufficient condition), for any initial

values of P and g that all eigenvalues of the matrix R be less than
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unity in modulus (e.g., see [F1]). This is then the stability criterion

e

for the BMC, for the case of quadratic core elements.
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ABSTRACT

. This paper compares different interpolators for the solution of the
advection equation by the Backwards Method of Characteristics (BMC), taking
as major references the stability and accuracy of this method.
Interpolators that enforce inter-element continuity of concentrations but
not of its derivatives (class C,) offer over interpolators of higher
classes the advantage of not impacting on the cost of other operations
required for the solution of the advection or the full transport equation
(tracking of characteristic lines, and, if appropriate, solution of
dispersion). A choice of C; interpolators, using information from both the
region of validity of the interpolation and its immediate neighborhood, can
match the accuracy of the cubic Hermite interpolator (of class C;), which
has, in the context of the BMC, been taken as a reference for quality: the
handling of boundary conditions, and, especially, the extension of these
non-compact C, interpolators to irregular grids, pose some practical
difficulties, which are interpolator-dependent and require further
research, but should not limit usefulness.

1. INTRODUCTION

Eulerian-Lagrangian methods (ELM) héve been increasingly used for the
solution of the advection-dominated transport equation, in the context of
engineering and environmental problems. While significant differences
exist among available ELM, most split advection from dispersion, sclving
each of the resulting sub-equations by an appropriate specific technique:
typically, dispersion is solved by a centered finite—differences or finite-
elements method, and advection is solved by the Backwards Method of

Characteristics (BMC}.

The solution of advection is very often critical for the accuracy and
cost of the overall procedure, in spite of the great attractiveness of the
BMCl Introduced by [L1], this method constitutes a direct numerical
implementation of the physical meaning of the advection equation, i.e, of

the fact that concentrations remain constant along characteristic lines
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that follow the flow. The procedure is illustraied in Figure 1, and

s

involveés, in each time step, At, two complementary tasks:

— The backwards tracking of particles assigned, at time n, to each
node, j, of the computational grid, so as to find the position ("foot") of

the respective characteristic line at time n-1, Fj.

— The interpolation of all nodal concentrations at time n, c(j.,n) =

'c(Fj.n-l), from the known nodal concentrations at time n-1, c(j.n-1).

The nature anﬁ difficulties of these two tasks are substantially
different. The tracking requires, for each grid node, the solution between
times 1 and n-1 of an ordinary differential equation of the form

%% = ui(xi.t) (i=1,..., number of dimensions) (1)
and is independent of the actual concentration field. This independece has
two important consequences: (a) the time-stepping strategy for the
tracking, between n and n-1, is unconstrained by the global time-step, Aty
and (b) the error in the tracking can be evaluated, by looping back to time
n znd comparing the departure and arrival locations of the particle

associated to the characteristic line.

Direct control can therefore be exercised on the tracking accuracy, by
adjusting the time-stepping strategy, by trial-and-error, so as to meet
some imposed error bound. A 2-D tracking algorithm conceived with this
philosoph&. and allowing for complex flows and irregular grids, is built in

the Eulerian-lagrangian finite element model ELA ([B2]}, which has been
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used for the simulation of pollutant transport. in coastal water; (e.g..
[Bé]. [K3]): acquired experience indicates that, while ex;;;sive when
éompared to other steps of the solution procedure, the tracking does not
compromise feasibility, even if overly strict error bounds are imposed

(e.g., of the order of the centimeter, for computational grids with

characteristic nodal spacing of the order of one hundred meters).

By contrast, the interpolation to find the concentrations at the feet
of the characteristic lines is relatively inexpensive, but: (a) may
introduce significant errors if the grid can not, due to practical
constraints, be refined as much as it would be necessary to resolve
prevailing gradients of concentration in the flow direction; and (b} does
not allow for any simple accuracy control, as errors refer to the basic
unknown of the problem, concentrations. The search for an accurate
interpolator has been the object of intense, but somewhat discoordinated
research ([H1-H3], [K1-K2], [B3]. [B9])., based mostly on numerical
experimentation; by their variety and specificity, results are difficult to
aprehend and compare, and a correct perspective of the potentials and

iimitations of available interpolators is much needed.

This étudy contributes to such understanding, by providing both a
qualitative comparison of relevant categories of interpolators, and a
detailed quantitative analysis of interpolators of class Cp (i.e., thosé
that ensure inter—element continuity, but not inter-element |
differentiability). Both formal tools (Taylor series and Fourier analysis}

and numerical experimentation (based on standard test problems) are used in
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the analysis, which takes as a reference the case pure-advection by a

constant velocity, in uniform grids.

2. INTERPOLATION STRATEGIES: GENERAL OPTIONS AND IMPLICATIONS
2.1. Global interpolators

An intuitive approach to interpolation is to pass a polynomial over
all the nodes of the computational grid, so as to fit exactly their
concentrations, and, then, sample the polynomial at the feet of all

characteristic lines. This approach has, however, definite shortcomings:

- The definition of the interpolator involves the solution of a system
of equations, characterized in general by a matrix that is time-independent °
and full, and whose size is constrained by the total number of nodes of the
computational grid. While the matrix has to be factorized only once (each
time step requiring only a backsubstitution), the fullness of the matrix
makes the procedure impractical for most grids, in most computers other

than main-frames.

~ The order of the interpolator depends on the number of computational
nodes, and will often be in the hundreds or thousands. As a consequence,
and given the form of the terms in the matrix {assuming a 1-D grid, aij =
xii_l, with j from 1 to the number of nodes), very-large and very small
terms will co-exist, leading most likely to poor accuracy in the solution

of the system of equations. Also, high order polynomials, fit to non-

polynomial functions, tend to wiggle between nodes, while approximating non-
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polynomial functions, which is a source for numerical instability, or at

least, significant phase errors,

An alternative, keeping up with the idea of a global interpolator{ is
to fit all nodal concentrations only in a least square sense, taking, for
instance, a polynomial of specified order as a reference. In this case,
storage requirements drop by several orders of magnitude, being determined
by the order of the selected polynomial; required CPU time per time step
increases, but, as no huge initial matrix factorization is necessary, total
CPU time should be decreased drastically. However, such global
interpolators can not ensure that nodal eoncent;ations will be exact at the
grid nodes, and, therefore, from the formal analysis of [B7]. they are
likely to lead to inconsistency——i.e., the numerical approximation to the
advection equation may not match the exact differential equation as Ax and

At approach zero.

To the author's knowledge, no attempt has ever been made to use global
interpolators in a BMC context. while, historically, this may have been
biased by the fact that the BMC was developped to support éiscrete
numerical methods (based on the idea of local expansions of functions and
its derivatives and/or integrals), the present analysis suggests that the
use of global interpolators is, indeed, unlikely to be generally

attractive.

2.2. Local interpolators

The commom strategy for interpolation is the piece-wise definition of

local interpolators, each valid only within a specified region of the
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computational domain (core element). Potential advantages of local

c— o

interpolators, relative to global interpolators, include much lower
expected costs, unconditional consistency, control of stability, and

ability to increase the order of interpclation as needed, over the

computational domain.

In the following discussion of local 1n£erpolators ve will always
assume that the core element for the interpolation is defined so as to
contain the foot of the characteristic line, which has bécome a standard
procedure ([H2-H3], [B1-B7], [N1-N3], etc). The alternative is defining
the core element based on the position of the head of the characteristic
line ([G1], [H1], [L1]). but the former procedure has the advantage of
forcing concentrations to be found always by interpolation (as opposed to
extrapolation, which typically leads to instability). without the need to

restrict the time step through a Courant-type criterion.

Local interpolators that have been used in a BMC context may, for
convenience, be grouped into categories, depending upon whether the
interpolator is compact or non-compact, and upon its class. Compact
interpolators use information only from nodes within the core element,
while non—compact interpolators may use also outside information. The
class of an interpolator refers to its differentiability along the
boundaries of the core element, with regard to the interpolator of the
adjacent core element: Cp. with p 2 O implies continuity of concentrations
and of its p lowest derivatives. Four general categories of interpolators

are of interest.
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Compact interpolators of class C, .

——

Compact interpolators of class Cy, in the form of Lagrangian
polynomials, have been used by [B2] and [B9], among others. They
constitute a convenient choice, because they use concentrations as unique
dependent variables and pose no special problems in the handling of

boundary conditions, regions near boundary conditions, or irregular grids.

However, the optimal order for these interpolators is quadratic, as
linear polynomials introduce excessive numerical damping (in the form of a
numerical diffusion), and cubic and higher order polynomials lead to the
instability of the BMC, as a consequence of the progressive increase of the
number of nodes of the core elehent. Even quadratic interpolators have,
however, a limited ability to resolve sharp gradients of concentration, and
may therefore require the use of grids with very small nodal spacing,

leading to unnaceptable CPU and memory requirements).

Compact interpolators of class C;. and above

For compact interpolators of class C, and above, the order of the
interpolation is increased by requiring further information from each node
of a same core element, rather than by extending the core element. This
concentrates the information used to construct the.interpolator in a closer
vicinity of the foot of the characteristic line, and constitutes a both
more effective and safer form of improving accuracy; indeed, as a rule,

interpolators of class C . will be more accurate than interpolators of

+
1
class C, of the same order, and will not involve the risk of leading to the

instability of the BMC.
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However, additional dependent variables (concentration—derivatives)
are now introduced to the transport problem, which has, in practice,
limited the choice within this type of interpolators to cubic Hermite

polynomials, of class C; ([HI-H2]).

While cubic Hermite polynomials have often been implicitly accepted as
a quality standard for BMC interpolators, they have not become a popular
choice in engineering practice, and recent research has concentrated in
finding equally accurate alternatives ([H3], [Ki-K2]. [B3-B5]). This is
due to the extra work associated with the handling of the additional
variable(s)-——cx in 1-D, C cy-and oy in 2-D, and <, Cyr €y cxy' Cyz and
Cyz in 3~-D--which, more than the interpolation itself, impacts the cost of
the solution of dispersion (by increasing the order and the bandwidth of
the matrices that have to be solved), and the cost of the tracking step.
To understand the extra cost in the tracking step, let us take as a

reference the 1-D case; unlike concentrations, which are kept constant, <,

varies along the characteristic lines, as

|
~

|
Nogur

1
O
P
)
=

(c,) = - uoe, 2)

Hence, a new ordinary differential equation is introduced per new variable,
and has teo be solved along with the equation describing the characteristic
line. Even if, as in [H2], cross-derivatives are estimated..rather than
treated as dependent variables, the additional computational burden may be
unacceptable for two or more dimensions, if the tracking is performed as

accurately as it should (we note that [H2] uses a very simple tracking,

e

- 151 -




without accuracy check: while this does not compromise cost, it seems

inconsistent——other than for uniform of very smooth {lows—-with the

accuracy of the interpolator).

Non—-compact interpolators of class Cn

Non-compact interpolators of class C0 aim to Increase the order of the
interpolation by also using information on concentrations outside the core
element, rather than by increasing the size of the core element or by
introducing derivatives as additional variables. They are expected to
avoid both stability problems and high costs: the price to be payed is the
need for special treatment of regions near boundaries (where available
jnformation is insufficient), and a non-trivial extension to irregular
grids; also, it is expected that, for equal degree of the interpolating
polynomial, they will be less accurate than interpoiators of class Cy,
because they use information farther away from the foot of the

characteristic line.

The simplest form‘of non-compact interpolators of class C0 is a
Lagrange polynomials, defined over the immediate neighborhood of the core
element. Earlier works have used quadratic ([L1]) and cubic ([L2])
polynomials, defined over linear core elements: we will show, however, that
the approach becomes more attractive by using quartic or higher order
polynomials, defined either over linear (polynomials of odd degree) or

quadratic (polynomials of even degree) core elements.

Alternative non-compact interpolators have been proposed based on the

use of concentrations outside the core element to estimate the derivatives
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required to define, within such element, a cubic pseudo~Hermitian ([H3],
[K1-K2]) or Hermitian ([B3]) polynomial. The accuracy of these ™
interpélators has been reported, based mainly on numerical experimentation,
as very similar to that of the cubic Hermite interpolator of class C;. We
will show, however, that most of these interpolators are actually unstable—-
although weakly (i.e., amplification factors close to unity), and in a way
that is independent of the Courant number—-and that the observed apparent
accuracy is a manifestation of such instability: the amplification of some
Fourier components of the solution compensates for the damping of others,
for the test problems and computational parameters that have been used.

The question of whether these schemes will still be useful in practice,
given the fact that the BMC is a numerical method particularly well-adapted
to large time steps (hence, typically, small number of time steps)}, is

legitimate, and will be addressed in latter sections.

A third conceivable form of non—compact Co interpolators is based on
the use of locally-defined splines. To the author’s ¥nowledge, this
approach is first explored in some detail in this paper. We show, however,
that, at least for matural splines, it leads to the same type of apparent
high accuracy, hiding a weak instability, that characterizes non~compact

interpolators based on the estimation of derivatives.

Non~compact interpolators of class C, and above

Just like their Co counterparts, non-compact interpolators of class C,
=2im to increase the order of the interpolator by using information on

concentrations outside the core element, rather than by increasing the size
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attractive the versatility and potential low cost of compact and non-
compact Interpolators of class Co' and will discuss in further detail, in
the next sections, their potentials and limitations. In particular, we
will show that some of these interpolators can match, in what seems to be
an overall more efficient way-—given the fact that concentration
derivatives have not to be handled as additional dependent variables~—the
accuracy of the cubic Hermite polynomial {class C,) proposed by Holly and
co-workers [H1-H2]. '

3. DETAILED OOMPARISON OF INTERPOLATORS OF CLASS C,

3.1. Definitions

This section provides a detailed comparison:of the performance of the
BMC, for different interpolators of class Co' including compact and non-
compact Lagrange polynomials, hybrid Hermitian-lagrangian polynomials, and
natural splines. The terms of reference are consistency, stability, and

accuracy.

Table 1 defines the selected interpolators, and Table 2 illustrates,
when appropriate, their generation procedure for 1-D uniform grids. To
simplify the reference to individual interpolators, we will use the
notation

nP-XXm

where
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- n is the number of nodes that contibute to define the interpolator:

- XX is an alphanumeric, denoting the type of interpolator: LI for

compact Lagrangian: LR for non-compact Lagrangian; HL for hybrid, built

from the estimation of the derivatives of a Hermite polynomial; PL for

hybrid, built by estimating the derivatives of a pseudo-Hermite polynomial;

and SP, for splines;

- m is the number of nodes of the core element.

We note that the BMC algorithm can be written, for all these

interpolators, in the general form:

P,

o(5.m) = e(3-Pm-1) = ) ¢ (a).c(3-kep) (3)

p=P,

where (see Figure 2 for reference)

J - denotes
{global
n - denotes
a - denotes
a local

the node where the concentration is to be computed
notation)

the instant where the concentration is to be computed
the position of the foot of the characteristic line in

coordinate system with origin at node j-k { a is

associated the fractional part ¢f the Courant number

(ﬂ = U'At/AX)

P;.P; - denote the extreme nodes of the region that is used to define

the interpolator (in local notation)



¢ - are elementary shape functions which, together, define the

interpolator

3.2. Analysis of consistency

For interpolators leading to algorithms of the general form of
Equation 1, a sufficient condition for the unconditional consistency of the
BMC is that the interpolation be exact at zll nodes of the core element
([B7]). This trivial condition is, in concept, obeyed by all interpolators
of Table 1. In the case of the 6P-PL2, however, round-off errors were
introduced by [K1] in the evaluation of the interpolation coefficients,
which makes the interpolator inconsistent; indeed, the truncation error

becomes of the form
-4
e = (3.7Ta~-4.2}10 "¢+ ... (4)

and obviously does not vanish even if Ax, At go to zero. The inconsistency
is weak, ana not of a fundamental nature; it can be removed, by
recalculation of the proper coefficients of the interpolator, if this is
found to be otherwise attractive. The results shown in latter sections
arec for the interpolator as proposed by [K1]. hence reflect (and are used

to illustrate) the effect of inconsistency.

3.3. Analysis of stability

Unlike consistency, stability proves to be a mjor factor of

distinction among interpolators. In [B7], we provide the theoretical basis
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for the analysis of stability of BMC with interpolators of class C0
(assuming uniform flows and grids). Quite conventionallyjf;e défine
étability as the ability of the numerical method to propagate without
amplification all Fourier components with wavelength above 2Ax: to assess
this property we derived criteria that extend the conventional Von Newman
criterion to quadratic core elements. These criteria account for the fact
that interpolators with quadratic or higher order core elements internally
generate energy transfer between Fourier components, until an equilibrium
is reached (which often requires several tens to a few hundreds time

stepsj. Only after this equilibrium is reach is the amplification factor

per time~step time-independent.

Figure 3 shows amplification factors per time step, as a function of a
and the dimensionless wavelength Lm/Ax. for the different interpolators of
Table 1. For interpolators with linear core elements, these factors refer
to any time step, while for quadratic core elemnts they refer to the
equilibrium state (and were actually computed as the ratio between
cumulative errors after 400 and 399 time steps). For the 4P-LI4, the only
of the considered interpolators that has a higher than quadratic (cubic)
core element, the amplification factofs shown correspond to the first time

step.
Taking those figures 2s a reference, we find that:

= For Lagrangian interpolators, with linear or quadratic core

elements, the BMC is stable, regardless of the actual order of the
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polynomial. By contrast, instability arises for cubic compact Lagrangian
polynomials (we note that Figure 3 can only suggest the instability of the
4P-L14, as it shows amplification factors in the first time step, rather

than at a time where energy transfer between Fourier components has

stopped: however, numerical experimentation confirms the instability).

- From the hybrid Hermitian-lagrangian polynomials (Hl, PL), only the
4P-HL2 leads to stability. The instability associated with the other
interpolators is however very weak, in the sense of amplication factors
very close to unity. A significant difference among these interpolators is
the size and the location of the zones of thé a - Lm/Ax plane that induce
amplification; those zones have a minimal extent {and concentrate in the
smaller wavelengths) for the 8P-PL2, but affect most of the plane in the
other cases. The round-off errors in the calculation of the 6P-FL2,
discussed in Section 4.2), are showing up strongly in the symmetry of the

amplifying factors.

- The two interpolators based on natural splines lead also to
instability, this being stronger than for HP and PL interpolators, in the
sense that the amplification factors are larger (but still close to unity).
3.4. Analysis of accuracy

3.4.1. Numerical damping and numerical dispersion

Numerical damping and numerical dispersion result, respectively, from
the amplitude and celerity (or phase) errors in the propagafion of

individual Fourier components of the solution. No numerical method is able
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0 avoid both types of errors, and the balance between them Is determinant |

|

for accuracy.

We note, to aveoid common misinterpretation, that both amplitude and
celerity errors can independently lead both to the reduction of peak
concentrations, and to a wiggly behavior of the solution (resulting, in
particular, in negative concentrations). Hﬁwever. amplitude errors are
responsible for much more significant peak reductions, and the wiggles that
they generate, unlike those due to celerity errors, are quickly damped and

preserve symmetry.

Figure 4 both illustrates the above aspects and suggests that,
typically, amplitude errors strongly dominate celerity errors in BMC
solutions, for centered interpolators (i.e., where the core element is
centered within the region that contributes to the definition of the
interpolator); this is not necessarily so for non-centered interpolators,
such as the 3P-LR2 used by {L1] (not considered in this study), for which

celerity errors may become quite significant.

The general dominance of amplitude errors for centered interpolators
is a result of the fact that the regions of the a—Lm/Ax plane that induce
significant celerity errors typically overlap with those that have larger
amplitude damping. Indeed, any wave that tends to travel at a speed
significantly different from the flow velocity will be quickly damped,

contributing little to the numerical solution.

Because of this dominance, a meaningful compariscn among the

interpolators of Table 1 can be performed only on the basis of their
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of the core element, or by introducing derivatives as additional variables.

To do so, however, they elect to enforce the differentiability (but not the

value of the derivative) of the interpolator in the boundaries of the core

element.

This approach was taken by [B10], who used splines of different order
and with different smoothing factors, but, in all cases defined in a global
basis: the resulting interpolators are, however, local, in the sense that a
different interpolation function applies over each core element. These
interpolators are apparently able to match the accuracy of the cubic
Hermite interpolators (class C,), but reported results are insufficiently

detailed to allow for a well-based critical analysis.

A definite drawback of these spline Interpolators of cla;s C,+ is
that, like in global interpolators, a system of equations with size linked
to the total number of nodes of the computational! grid has to be solved.
For 1-D and straight orthogonal multi-dimensionzl grids, this system can be
built so as to be banded {tridiagonal, for cubic interpolators), and,
therefore, 1s relatively cheap to solve. Extension to multi-dimensional
irregular grids is, however, both conceptually non-trivial, and potentially

expensive.

Synthesis

A variety of local interpolators can conceivably be used in the
context of the BMC. The general inplications of the choice of different
interpolators were briefly analysed in this section. While no specific

category of interpolators can claim to be optimal, we find particularly
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amplification factors, already displayed in Figure 3 (see [B5] for similar
information on celerity errors). Rather conventionally, all interpolators
tend to handle better larger than shorter wavelengths, and the difference

among interpolators can be evaluated by examining how well they preserve

the latter.

Such preservation is a function of both the amplification factors per
time step, and of the number of time steps, N. This is illustrated in
Figure 5, which display the actual amplifications of different

interpolators after 10, 100, 1000 and 10000 time steps ( a = 0.5).

For alternative unstable interpolators, the effect of the instability
may become significant after a very different number of time steps, as
illustrated by the point in time where the amplification factors for short
wavelenghts start blowing up in Figure 5 (note that this point depends, for
each interpolator, on a); spline interpolators are, in particular, seen to
be of rather limited practical value. In the actual numerical solution of
a given problem, the blow-up of amplification factors for individual
Fourier components may or may not be of practical significance, depending
on their magnitude relative to the dominant components, and on the range of
a's that, as a combination of the characteristics of the flow and of the

grid, will most frequently be called upon in the interpolations

On the other extreme, after one thousand time steps, the linear

Lagrangian interpolator significanly damps out even wavelengths fifty times
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longer than Ax. The sclution will look nicely smooth, but it will likely
be uﬁnaceptably diffused. -
In general, the ability to handle short wavelengths improves as the
order of the interpolator increases, improvements being more drammatic for
low~order interpolators: e.g., the differences between the amplification
factors for the 2P-LI2 and the 3P-LI3 are much easier to be acceped as

practically relevant than those betwen the amplification factors for the

6P-LR2 and the 8P-LR2.

It is particularly interesting to compare cubic interpolators of class
Co (4P-LR2, 4P-HL2, 4P-SP2, 5P-HL3, SP-SP3, 6P-PL2 and 8P-PL2), among
themselves and with the cubic Hermite interpolator of class C,. To assist
on this comparison, we use as a reference the test problem of constant
advection of a Gauss-hill, for which solutions are presented in Figure 6,

for & choice of interpolators.

We observe a clear overall best performance of the Co interpolators
inveolving the largest number of nodes, with interpolators with five or more
nodes actually outperforming the cubic Hermite interpolator of class C,,
2P-HI2. From the charts of amplification factors shown earlier, this
outperformance is, however, recognized to be somewhat artificial and mostly
uncontrelled, as it results fron the compensation of the damping of some
wavelengths by the amplification of others; for a different problem, or for
the same problem at a latter time, the amplification effect may become
‘dominant, and lead to poor accuracy and instability. This emphasizes the
risks of the comparison of numerical methods based only on numerieal

experimentation, which, necessary as it may be, is unable to systematically
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identify critical conditions, and may be misleading regarding general

e

conclusions.

Also interesting is to compare interpolators based on the same number
of nodes. We take the case of interpolators with five nodes {SP-LR3,
5P-HL3, and 5P-SP3). The amplifying factors for the 5P-LR3, which is a
quartic interpolator, are significantly different from those of the cubic
interpolators 5P-HL3 and 5P-SP3 essentially by the fact that deviations
from unity lead allways to damping, rather than to amplification. This
suggests a superior reliability of the 5P-LR3, especially for long-term
calculations (and according to on-going research, to non-uniform grids),
but may cost it a somewhat poorer performance for short-term calculations
(e.g., Figure 7). We note, however, that even in this case the 5P-LR3 hag

an accuracy comparable to that of the 2P-HI2.

3.4.2. Response to grid refinement

We recall from [B7] that C, interpolators lead to truncation errors of

the form:
Q+1 O+1
Ax ') c .
e = P(CI).-A—t —--6-4_-1- + H.0.D. (5)

where Q denotes the effective order of the interpolator, i.e., the degree
of the highest degree function that the interpolator can exactly fit (Q is
at most equal to the actual order of the interpolator, M, being smaller
whenever a lower order polynomial is involved in the definition of the

interpolator——e.g., cases of the 6P-PL2 and the 4P-HL2). P(a) is an
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interpolator-dependent polynomial in a, of degree 1 = max (M, Q+1}i if the
Cou;ant nﬁmber is large, a and, hence, P{a). are essentially.independent of
Ax, At; if Courant number is below unity, though, P{a) is an explicit
function of Ax, At. The consequence, in terms of the dependence of
truncation errors on At and Ax can be examined., for selected interpolators,

in Tables 4 and 5.

The effective order of the interpolator is seen to play a key role in
accuracy. Indeed, from this expression, we observe that, given the
relationship between moments and derivatives, the ch moment of the
concentration distribution is the highest moment that can a priori be
expected to be exactly propagated by the BMC, regardless of Ax (assuming
that no aliasing is introduced). Also, the largest expected rate of
convergence of truncation errors to zero, is, for fixed At, characterized
by AxQ+1, and occurs for large Couranr number {for small Courant numbers,
a = u*At/Ax, and, therefore, the convergence rate should be reduced

reduced).

These aspects are illustrated by considering again the problem of the
constant advection of a Gauss-hill, which we solve with a 3P-LI3
interpolator {Q = 2); the time step and the number of time steps is kept
fixed, but we let the grid spacing vary. Results are presented in Figure
8, in the form of error norms concerning global accuracy and preservation
of moments up to the 3rd. We note that, while both the preservation of the
third moment and the global accuracy strongly depend on Ax {and global
errors, as measured by the L2-error norm, do decrease, in the zone of

larger Courant numbers, roughly as Ax3), moments of up to order 2
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(representing, respectively, mass, mean displacement and spreading) are

Ly

preserved iﬂ an essentially exact way. Extrapolations to non—'niféfm grids
and/or flows should be considered with caution. On-going investigation
tentatively shows that both the global accuracy and the preservation of
individual moments are sensitive to non-uniformity--e.g., Figure S--but
different interpolators and different types of non-uniformity affect

accuracy differently [B5].

To contrast non—-compact Lagrange interpolators with other types of non-
compact interpolators, we take S5-node interpolators as a reference to note
that, while for the 5P-LR3 the information from outside the core element
was used primarily to increase (relative to the 3P-LI3) the order of the
interpolation to quartic, for the 5P-HL3 and 5P-SP3 that information was
used in part to reduce P(a) and in part to increase the order of the
interpolation to cubic. For an unspecified Ax, neither of the choices is
necessary better; however, the 5P-1R3 is expected to become progessively
more accurate than its counterparts as the Courant number increases, and as

Ax decreases.

4. FINAL CONSIDERATIONS

None of the Co interpclators considered in detail in the previous
section can be recognized as optimal, in a general sense. However, given a
specific problem (chafécterized in particular by the gradients of the
concentration field--vwhich may vary in time, especially if diffusion plays
a significant role——and by the magnitude of the carrying flow), and a

numerical grid {(often constrained by availlable computational resources),
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some interpolators or combination of interpolators, present important

et

advantages over others, which this study may help recognize.

Among compact interpolators, the 3P-LI3 will often be the best option,
as lower order interpolators {(2P-LI2) introduce significant numerical
damping, and higher order interpolators (e.g., 4P-LI4) are unstable. While
the accuracy of the 3P-LI3 may be appropriate in most of the spacial domain
of most problems of practical interest, concentrations in localized zones
of steep gradients (e.g., vicinity of sources, edge of advancing fronts,

etc) may result unnacceptably deformed.

In these zones, we may consider the use of a more accurate
interpolator. The C,; cubic Hermite interpolator, 2P-HI2, is a legitimate
option, but impacts the cost not oniy of the interpolation procedure, but,
especially, that of the tracking and (when appropriate) of the solution of
diffusion; furthermore, using the 2P-HI2 in only a localized region in
space is unnatural, as concentration derivatives are, for this

interpolator, handled as additional dependent variables,

By contrast, non-compact interpolators are natural and effective in
providing local accuracy improvement. If, as we recommend and are assuming
here, the 3P-LI3 is taken as the basic interpolator, non-compact
interpolators sharing its quadratic core element are particularly
convenient for implementational purposes; if the 2P-LI2 is taken as the
reference, non-compact interpolators with linear core elements will be

preferable.
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Among non-compact interpolators, the 5P-LR3 presents a nuﬁber'of
advatages that may suggest it as a coherent first-choice: conceptual
simplicity. minimal amount of required outside information, unconditional
stability, and accuracy comparable to the 2P-HI2. A variety of Opfions do
exist, though, and common-sense use of the accuracy information contained
in this paper may help making specific decisions for specific transport

problems.

Extension of non-compact interpolators to multi-dimensional uniform
grids poses no special problem; for instance, in 2-D, a double sweep
technique, with m interpolations being carried first in one direction, and

cne final interpolation being carried is the orthogonal direction, as been

"~ successfully used [HB.kl,BS-B5]. The extension to irregular grids, of any

dimensionality, is more challenging: in addition to potential loss of
accuracy (which is shared by compact interpolators, and by any Eulerian
numerical method for solution of the transport equation), it involves, in
different scales for different interpolators, some ambiguity in the
definition of the interpolator, and risk of unnattractive costs.
Preliminary results and conceptualization suggest [B5] that the relative
attractiveness of the 5P-LR3 interpolator may result strenghted, but
further research and actual implementation and application of this and
other interpolators in industrial codes is deemed necessary to clarify the

relevant issues.
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Figure 1

Illustrative sketch for the Backwards Method of Characteristics

Required steps:

1.

Tracking of the characteristic lines. For each node j, a characteristic

line is independently defined by the backwards (i.e., between n and n~1)
solution of an ordinary differential solution of the form dxi/dt = .

Interpolation at the feet of the characteristic lines. The

concentration at the foot of each characteristic line (and, for pure
advection, at any other point of the characteristic line, including node
j at time n) is found by interpolation from known information on

neighboring nodes, at time n-1.
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Figure 3
Amplification factors per time step, as a function of the location, a. of
the foot of the characteristic line within the core element. zand of the

dimensionless wavelength

(a) 2P-LI2  (b) 3P-LI3  (c) 4P-LI4  (d) 4P-LR2  (e) 5P-LR3
(f) 6P-LR2  (g) 8P-LR2  (h) 6P-PL2 (i) 8P-PL2  (j) 4P-SP2

(k) 5P-SP3 (1) 4P-HL2  (m) SP-HL3

Amplification factors per time step, for interpolators with quadratic core
elements, where computed as the ratio between the cumulative amplification

factors after 400 and 399 time steps.

Legend
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Figure 4 R

Illustration of the relative importance of amplitude and phase errors

(a) 2P-LI2  (b) 3P-LI3  (c) 4P-LR2  (d) SP-LR3
(e) 6P-LR2  (f) 8P-LR2  (g) 6P-PL2  (h) 8P-PL2
(1) 4P-SP2  (§) 5P-SP3 (k) 4P-HL2 (1) 5P-HL3

(m) 7P-HL3

Reference problem: ==

Computational parameters: At = 192

Ax = 200
N =50
u = 0.5
o = 264
Legend: 1 Exact solution

Numerical solution

Numerical solution, purged from phase errors

b W N

Numerical solution, purged from amplitude errors

- 181 -



Concentrotion

Concentration

1.1

5.5 6.5 7.5 85
(Thousonds)
Distonte along x—oxis

3P-LI3

45

55 6.5 7.5 B.5
(Thousonds)
Distance along x-—oxis

- 182 - e/




Concentration

Conoentrations

1.1

0.9

0.8

0.6

e X

0.4

0.3

02

0.1

11

0.9

0.8

0.7

0.6

0.5

0.4

7 4P-LR2
N
T T T T T T T
4.5 55 8.5 75 B.S
(Thousanda)
Distonce clong x—~axis
| 5P-LR3
T T T 7 T T T
4.5 5.5 6.5 7.5 8.5

{Thousands)
Distence clong x—oxis

183 -




Conoentration

Conocsntrotlon

1.1

0B -

0.6 -
05 =
0.4 =

03 =

0.1 -

4.5

1.1

o
e
&
&

oL =

0.6 -

C3 =

L1~

1,4

=01 =

-02

4.5

1 1 k) ] i ] i
53 -4 75 RS
(Thousenda)
Diztanss siong x—tods

- 184 -




Conoantratlon

Conosnlrotion

1.1

0.9
0.8

0.7

0.5
0.4
0.3
o2

0.1

14

0.9
0.8
c.7
0.6
0.5
C.4

(o)

—1,4 .
2,3 6P-PL2
__—"_‘--._ﬁ\/ v.r-—--_
T T T T T T
4.5 55 635 - a5
{Thousands)
Distonce clong x—oxis
1,4
2,3 Br-PL2
T T T T T T
4.5 5.5 7.5 &85

185

65
{Thousonds)
Dixtonce along the x—oxis




Conocentration

Conoentration

oL
0.7
0.6
0.5
O4
0.3
0.2

0.1

1.1

0.9
0.2

0.7

0.5
0.4
03

02

7 4p-SP2
i 1,4
- 2,3
m 1 2 T T T T T
4.5 58 E.5 7.5 8.5
(Theousands)
. Distance clong x—axis
T T T T T T T T
4.5 55 6.5 7.5 BS
(Thousonda)

Distonce olong x—axis

- 186 -




Conoceantrotion

Conaentration

1.1

0.8
0.8
0.7
0.8
0.5
0.4
03
0.2

0.1

-0.1

-2

1.1

o.%

0.7
0.8
0%
0.4
0.3
0.2

0.1

=01

-0.2

4P-HL2

4 1
2,3
T T L
[ ] 75

(Thousands)
Diztoncs clong xe-cods

187 -




Concentrations

14

0.9
0.3
0.7

0.6

0.4
o3
0.2

o1

-0.1

-0.2

7P-HL3
\__—,-"-'-—
. 1 T T T T T T
4.5 55 E.5 7.5 8.5
(Thousanda)

188

Distance cleng x—oxis




Figure 5

e

Amplification factors after N time steps, as a function of the

dimensionless wavelength (a = 0.5)

(a) 2P-L12  (b) 3P-LI3  (c) 4P-LR2  (d) 5P-LR3
(e) 6P-LR2  (f) 8P-LR2  (g) 6P-PL2  (h) 8P-PL2

(i) 4P-SP2  (j) SP-SP3 (k) 4P-HL2 (1) 5P-HL3

(m) TP-HL3
. Bc dc _
Reference problem: It + == = 0 ]
c(x.,0) = exp{- lféggl_}
c{x,t) = 0 [x] = "o

Computational parameters: o = 0.5

N wvariable
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Figure 6

Comparison of the accuracy of alternative cubic interpolators

L 8o, 8o _
Reference problem: £Ty + uz= = 0 .
(x.0) = exp{- (rexg) )
e(x,t) » 0 %] = "e®

Computational parameters: At = 96

Ax = 200
N = 100
u = 0.5
o = 264
Legend: 1 Exact solution

2 2P-HI2 (reference C, interpolator)
3 4P-1R2
4 6P-PL2
5 8P-PL2
6 4P-Sp2
7 5P-SP3
9 4P-HL2

10 5P-HL3
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Figure 7

-

Comparison of the accuracy of alternative interpolators requiring

information from five nodes

dc dc

Reference problem: 3t + Uz, = 0

Computational parameters: At

Legend:

w

(9. B N

c{x.,0) = exp{— LE:ESIi}

c(x,t) =+ 0 |x| - e

= 96
Ax = 200
N = 100
u = 0.5
o = 264

Exact solution

2P-HI2 (reference C,; interpolator)
5P-LR3

5P-SP3

SP-HL3
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Figure 8

et

Dependence of accuracy on the grid refinement {(3P-LI3 interpolator)

{(a) L2 error norm
{b) Mass ratio
(¢} 2nd-moment ratio

(d) 3rd-moment ratio

, 8e, Jdc _
Reference problem: T V5 = 0 ]
c(x.0) = exp{- 15%591—}
c{x,t} = 0O |} = "o

Computational parameters: At = 56
Ax = 200
N =100
u = 0.5
o = 264
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Figure 9

e

The effect of grid non-uniformity (3P-LI3 interpolator)

(2) L2 error norm

(b} 2nd-moment ratio

dc dc

Reference problem: st U3 < 0 )
c(x,0) = exp{- 155591—}
c{x,t) = 0 x| = e

Computational parameters: At = 96
N =100
u = 0.5
o =

264

Grid characteristics: ~—— Uniform grid, Ax = 200

+/% Step grid

Ax, = {
J
= 200 )

with { {1+s}ix,
(+ s=5 »* 5:2)
o Alternate grid

. Axy
Ax. = XX, 4 =
J J 3 2 Ay
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Table 1

Definition of spatial interpolators

2P-HI2
2P-LI2
3P-L13
4P-L14
4P-LR2
SP-LR3
6P-LR2
8P-LR2
6P-FL2
éP-PL2
4P-HL2
SP-HL3
TP-HL3
4P-SP2

5P-SP3
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Table 2,

Illustration of the Generation Procedure for Hybrid Interpolators

Based on the Estimation of Derivatives of a Core Cubic Hermite Polynomial
(a) 4P-HL2

(b) 5P-HL3

(c) 7P-HL3
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4P-HL2

Basic Hermite polynomial

_— =—|n
n+l n n dc dc
cy = ro(a)cj_k + r1(a)cj_k_1 + SO(G)EE ot 51(a)da '

- J-k-1

with
ro(a) = 2a3 - 3(12 + 1
ry(a) = -22° + 3°
sofa) = ¢® - 2% + @
s, (a) = a® - a®

Estimation of derivatives

del™ _ 1 fdPi(a)| , dPp(a)
da j-k 2 da =0 da a=0
de|”  _ 1 [faP(x)] , dPp(a)
da| T2 da da
j~k-1 a=1 a=1

where

Py (a)

1, = n _ 21 1, 2 . n
ﬁ{a +cz)cj_k_1 + (1« )Cj-k + §{a a)cj_k+1

Po{e) = %a(a—l)c?_k_z - a(a—2)c§_k_1 + %{a-l)(a~2)c§_k
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SP-HL3

Basic Hermite polynomial
n+1 n n dc|” ac|”
c, = 1.y (a)e,_ +1 7 ry(a)e oy ¥ osogfa) = + s,{a) —
3 J=k+1 J=k-1 ] da| o

with
r-s(a) = 0.25(a’-3a+2)
r,{a) = 0.25(-a"+3a+2)
s. {a) = 0.25(a”-a®~a+1)
s;(a) = 0.25(a”+a’~a-1)
Estimation of derivatives
EE n 1/dP, (a) +dP2§a!
dax J-k+1 2| e a=-1 da a=-1
(™ _1 {dP,(a} 4 dP2(e)
da k-1 2 da a=1 da a=1
where

R PO - l, 3 o 2
Pi(a) = - g{a™-3a ¥2a)es 14 * 5(a°2a -at2)e, ) -

_ 1,5 2 1, a_
s{a"-a 2a)cj_k_1 + g{a a}cj_k_2

__ 1, a3 1, s, 2

Pa(a) = ~ Ha a)cj_k+2 + E{a +a 2a)cj_k+1 +

6
+ %{-a3-2a2+a+2}cj_k + é{a3+3a2+2a)cj_k_1
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TP-HL3

Basic Hermite polynomial

—In —in
n+l pe! n dc dc
= TI. + + s_ — -—
oy =rml@eg gy trleeg, g v osala)g et s1(2)gg ket
with
ry(a) = 0.25(a®-3a+2)
ro{a) = 0.25(—a°+3a+2)
sy (a) = 0.25(c®~a®-a+1)
sa(a) = 0.25{a"+a®~a-1)
Estimation of derivatives
ac|” dP,(a) dP, (a)
da = ™4 T
j-k+1 a=-1 a=-1
-—|n
gg_ - TdPgia! + (1 T)dPéia!
j~k-1 a=1 % la=1

vwhere

_ {a+2)(a+l) _ (a+3)(at2)
P,{a) = 5 j=k+3 (a+3)(a+1)cj_k+2 + 5 5ok+1

_ afa-l - _ afla+]
Po(a) = —15-lcj_k+1 (e*1) (@-1)c, y + —15-—lcj_k_1

_ {a-2}{a-3) s _ a-1)}{a-2
Pola) = 5 k=1~ @) (eB)es o 4 g j-k-3
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Table 5

" Truncation Errors for Alternative Interpolatioﬁ;gchehés

Scheme

(a = B = uAt/Ax)

Truncation error

2P-LI2

3P-LI3

4P-L14

4P-LR2

5P-LR3

EP-LR2

8P-LR2

2P-HI2

4P-HL2

5P-HL3

TP-HL3

6P-PL2

8P-PL2

2
%{Ax-uﬂt)g;g-+ higher order derivatives (HOD)
E{uzAtz—sz)aac + HOD
6 ax”
_ 3 4,,3 2 2 _ &x*. 8%
m(gu AtY + 10u“AtAx I )B-x-r-l- HOD

U 9, .08 s 2,.2_ 2 a 8%
§Z{u AtT-2u"At " —udtAx"+24x )§§T + HOD

B
- Tgﬁ{u‘At*-SuZAt2Ax2—4Ax‘)%;S-+ HOD

_u 2, 3 2 2,8%c
Eg{u AtT-2udt“Axc+AtAx )5;7 + HOD

be }
2u”At®-3ub thserhx®) TG + HOD

—
W)

U, 2,.0 2.8%
Ez{u At +Ax )5;7 + HOD
U, 2, 2 , 2 A%c

g(u AtT-Ax )ax"'—._r + HOD

3 g*
(...)c+(...)5§+(...)5;§-+ HOD

£
- B{uPAtP-2ubt® b t4x®) 2% + HOD
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Table 4

"Truncation Errors for Alternative Interpolationdgchemes
(general case)

Scheme Truncation error
Ax® 8¢ .
2P-LI2 a(l—a)§KE-322-+ higher order derivatives (HOD)

. 2_1y4x° 3¢
3P-LI3 ala I)GAt 5t HOD

4 4
4P-LI4 - T%§{9a4+10a2-1)§%—-g;$ + HOD
aP-iR2  afe-2)(c®+1)EX &e ., yop
24At Ox
_ _ 2_ 2_ AXE 85c
5P-LR3 a(a 1)(& Q)W&E-F HOD

& ] .
6P-LR2:  (...)53% T2 + HoD

%8 8%

8P-LR2 (...)At -é-;g"i' HOD
_ 2__\28x* 8%
Ax® 3%
4P-HL2 -a(a—l)(?a—l)i—ﬂ? ey + HOD
L
SP-HL3  -a®(a®+1)oa— 2% + HOD
. ol 1-g2 X A%
TP-HL3 afl-a )SAt -5;_;-+HOD

(3.7a-4.2)a+ 10" o+42]a®+(3. 7K+3.5)a+(0.6-4.2K) Ja 10752 +

2
6P-PL2 +%§?{a2(2K-1443.8)+a(3.7K2+7K+32O.1)+(—4.2K2+18K—314.3)]a-10"-

8%c
az"l" HOD

4 4
éﬁﬁt g§$-+ HOD

8P-PL2 (e®-a)?
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1. INTRODUCTION

et

The numerical solution of the transport equation, describing the fate
of a passive scalar in a moving fluid, has been the object of intense
research for the past few decades. A review of available sclution methods
[B2, B5] suggests that they fit into three major categories: Eulerian (EM),
Lagrangian (LM) and Eulerian-Lagrangian (ELM). EM, which historically were
the first to be introduced and are still very popular, have strong
shortcomings in the analysis of transport problems where advection has a
significant role vis & vis dispersion (the case for most natural flows) and
where sharp gradients in the flow direction cén not be resolved with a
reasonable grid size (often the case for pollutant transport near sources
or fronts). In turn, LM, which perform extremely well for pure advective
transport, run into practical difficulties whenever dispersion has also to
be solved, and have hardly been used in the context of realistic problems.
ELM combine the best aspects of EM and LM, having the potential to provide
accurate solutions for the range of advection-dominated to dispersion-

dominated transport problems.

Several research groups have, in the past few years, attempted to
explore the potential of ELM (e.g., Holly and co-workers [H2-H4, K1-K2],
Benque, Hauguel and co-workers [B10], Newman and co-workers [N1-N3], and
Baptista and co-workers [Al, B1-BS, K3]; other relevant works in the
subject include [B1], [C2], [Gi], [H1], [L1] and {V1]). Because ELM are
relatively new, and lack traditicn, the emphasis of most of the research
has been on developing solution strategies, observing the resulting errors

{mostly through numerical experimentation), identifying possible causes of
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error. and suggesting a fix-up.

This trial-and-error procedure has generated a cholce of specific ELM,
and has pin-pointed some of their potentials and limitations;: however, the
"broad picture” is still missing, while it is already clear that the
ability to recognize and explore such picture is, in ELM even more than in

other methods, fundamental for efficiency and accuracy.

In particular, given their very "physical" approach to the solution of
the transport equation, and the inherent decoupling of the full problem in
fundamentally different steps (tracking of characteristic lines,
interpolation to find the initial conditions associated to each these
lines, and solution of dispersion plus internal sources and sinks along
these lines), ELM have great flexibility in combining. both in time and in
space, different procedures to solve specific tasks; an example of this
flexibility is the choice of the interpolator to find the concentrations at
the feet of the characteristic lines, which may vary in space (in such a
way to replace or complement local grid refinement), or in time (e.g.. to
accomodate changes in the characteristic gradients of concentration in the
flow direction). Also, due to the use of the BMC for the solution of the
advection equation, ELM can handle accurately a much broader range of time
step/space step ratios than conventional EK, and, indeed, the increase of
the time step may (depending on the relative role of dispersion, mean

advection, and differential advection) lead to improved accuracy.

In this study. we seek basic insight on the dependences and
constraints of ELM accuracy, so as to provide modellers with a reliable

conceptual framework for their decisions on computational strategy. The
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analysis 1s based on the derivation and examination of the truncation
errors of a 1-D algorithm that is flexible to accomodate different choices
for time-discretization and for spatial interpolation at the feet of the

characteristic lines.

2. BRIEF REVIEW OF CONCEPTS AND SPECIFIC IMPLEMENTATIONS OF ELM

The conceptual approach behind most ELM is illustrated in Figure 1,
for 1-D (actual implementations of the procedure have been used also in
2-D, and could be extended to 3-D). The concentrations at the nodes of the

computational grid are found, at time n, through a three-step procedure:

- Definition of characteristic lines that start at each grid node, j,
at time n, and follow the flow backwards until time n-1 or a boundary is

reached.

- Calculation, by interpolation from known nodal concentration values
at time n-1 (or at boundaries), of the concentration at the feet, £, of the
characteristic lines; these concentrations would correspond to the
concentrations at time n, if advection was the only transport mechanism.
More importantly, they are also the correct initial conditions for the
transport problem, written in Lagrangian coordinates between times n-1 and

n.

- Solution of the transport equation in the coordinate system defined
by all characteristic lines, taking as initial conditions the

concentrations at the feet of these lines.

To implement this procedure, ELM typically split the transport _
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equation, written either in its differential form (e.g.. [HI—NBj) or, more
commonly, in its timé-discretized form, into two sub—equﬁtions {advection
-and dispersion). Advection is most often solved by the the Backwards
Method of Characteristics BMC (which implements the tho first steps of the
previously described procedure), using a choice of interpolators, reviewed
in detail by [B7]: a Forward Method of Characteristics was alternatively
used by [B10], but, to our knowledge, does not present any specific
advantage, and may lead to practical problems linked to the uncontrolled
deformation of the grid. Dispersion is typically solved by combining a
finite~difference (e.g., [H2-H4], [K1-K2], [L1], [G1], [Bi0]) or finite-
element (e.g. [B2], [B9]. [H1]) discretization in space with an Euler
implicit or a Crank-Nicholson--defined along the characteristic lines—-
discretization in time (e.g., [B2] and [H3], réspectively. Virtually all
methods have been used in comnection with some local forward tracking
procedure, to handle gradients that the basic ELM can not handle (e.g..
near sources [H4, K1] or fronts [Nl]): Physical, chemical, or biological
transport processes (source/sink terms), if present, can be treated within

the dispersion step, or as a separate, fourth step.

3. REFERENCE ALGORITHM

The ELM taken for reference in this study follows closely the
conceptual procedure described in the previous section, being flexible to
accomodate two alternative interpolators and two alternative time-—
discretization schemes. The governing equation is assumed to be of the

form
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Dc dc dc
5t = 507 u{x,t) = L (1)
where L represents the dispersion operator, of the form D:*3%c/8x®. The

description of the techniques selected to perform each of the steps of the

solution follows {a 1-D uniform grid is assumed, as in Figure 1).

Tracking of the characteristic lines

The tracking of the characteristic lines, within each global time step
At, is performed by the backwards (i.e., from n+l to n) solution, for each
node of the grid, of the ordinary differential equation

%% = -u(x,t) - . ) (2)

with initial condition x = xJ. The algorithm is a 2nd order Runge-Kutta
scheme, with time step 6t < At; once ¥, at time n, is reached, Equation (2)
is solved in reverse direction, so to find the position of the starting
point, i.e., of node j at time n+l; let us dencote the result by xj".. If
xj—xj" is larger than a user-imposed tolerance, the time—-step is adjusted

by trial and error until the closure error becomes acceptable.

Interpolation of concentrations at the feet of the characteristic

lines

To find the concentration at the feet of the characteristic lines. we
use either a compact quadratic or a non-compact quartic Lagrange
interpolator, both of which were studied in detail by [B7]. Their

definition is presented in Figure 2.
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Solution of dispersion

(A) Time-discretization

The discretization in time of the transport equation, written in

lagrange coordinates, takes the general form

n+l £
At %

n+1l

ALP* 4 Bt (3)

where A and B are chosen alternatively as

A=1, B=0 Euler implicit

A=0.5, B=0.5 Crank-Nicholson

The space discretization of the dispersion operator resorts to

centered differences, e.g.,

n+l n+l n+1
L x = ( cj+1 -2 <y + cj—l) (4)

4. TRUNCATION ERRORS

Each of the steps of the procedure described in the previous section
may, and, in general, will, introduce numerical errors. However, errors in
the tracking of the characteristic lines have rather unique properties, as
a consequence of the fact that this step of the procedure is independent of
the actual concentration field; in particular, errors can be kept below

some pre-imposed threshold (defined in the form of maximum acceptablé“
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distance between j and j') by reducing the tracking time-step, 6t, without

e

affecting the global time-step of the solution, At.

For the rest of this work, we will assume that the tolerance criterion
is set restrictive enough for tracking to be “"exact,” or, more precisely,
to have errors that are negligible when compared to errors in the other
steps. We note that this is not so much an approximation to allow for
formal error analysis; rather, it should (although apparently is not--e.g.,
[B4], [B10]) be clear that this is a necessary condition to give
reliability to the all procedure: if the characteristic lines are poorly
tracked, none of the steps that follow can be expected to provide any

consistent correction——Figure 2.

Te understand the nature of the errors in the remaining steps of the
numerical procedure, it is useful to examine the truncation errors of the
numerical algorithm. These were derived in Appendix A, and can be

expressed as

- ] Bc dc d
e = { 5E—+ u(x,t)gg - L } =€ % ezif + eé?? + eé?i (5)
N—————f
etd
dif

where
€int ~ is the error in the interpolation of concentrations at the feet
of characteristic lines
€3if is the error due to the space discretization of the dispersion
operator

e;?f - is the error due to the time-discretization of the dispersion
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operator along the characteristic lines; it may be conveniently
. . . tdm . , .
divided into two components: €dit’ associated with-the time-
discretization along parallel characteristic lines defined by a
tdf .
mean flow; and €qif 2Ccounting for the fact that, due to flow

non—uniformity, the characteristic lines may come closer or

futher away from each other as time progresses.

Table 1 summarizes the expressions for these errors, for the different
choices of interpolators and time-discretization schemes considered in the
previous section, and Table 2 summarizes, for the choice of a quadratic
interpolator and an Euler implicit time-discretization, the ratios between

the different types of errors (within a same tyme step).

No individual type of error ﬁan be identified a priori as dominant
over the others. Indeed each type of error is affected differently by the
characteristics of the transport problem (specifically, concentration
derivatives in space, flow velocity and respective derivatives in space and
time), and by the adopted space and time discretizations. Both the
absolute accuracy and the relative importance of each error are seen to be
controlled by dimensionless parameters, which can conveniently be

classified in two groups:

Controling parameters that are independent of the concentration field

Courant number, Cu = urAt/4x
Dispersion number, Di = D+At/Ax®

Differential Courant number, Cuf = Au-At/Ax

_Cu _ uedx
Peclet number, Pe = B D .
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- AusAx
f - D

Differential Peclet number, Pe

We note that only the first three parameters are independent; Peclet
numbers were kept for convenience, The magnitude of the spacial
variability of the flow was scaled by Au: for realistic problems, u and D

will also have to be interpreted as scales, rather than as local values.

Controling parameters that depend on the concentration field

These parameters concern the ratios between concentration derivatives
of different orders, weighted, when eé?? is involved, by velocities and/or
velocity derivatives. Their actual number and form depend on the choice of
the interpolator and of the space- and time-discretization schemes. To
minimize their number, we have to scale space and time derivatives

(although the latter will have typically a secondary effect); the following

scaling form is suggested

& . L - _1 (6)
axP P (Mﬁx)p
& . L . _1 )
atP £ (Nat)P

5. ACCURACY DEPENDENCE ON THE COMPUTATIONAL STRATEGY
5.1. General aspects

For a given transport problem, the accuracy and the cost of the

reference ELM will depend on the computational strategy, which includes

_227-



both the choice of the space and the time discretization, and tbe choice of
the interpolator and the time-discretization scheme. This section provides
;onceptual support for a rational decision-making process, by analising the
dependence of accuracy on the relevant choices; often we will use as a

reference, for illustration purposes, the problem of the transport of an

instantanecus source,:as characterized in Figure 4.

5.2. Accuracy dependence on Ax

The effect of Ax is reflected on global accuracy through the errors
associated with the interpclation at the feet of the characteristic lines
and with the spatial discretization of the dispersion operator. In both
cases, accuracy improves as Ax decreases, but errors will in general have
significantly different magnitudes, and vanish at different rates.
Interpolation errors will dominate for large Pe (or, similarly, in the case
of Cu > 1, for small Dispersion numbers). The meaning of "small" and
"large" (e.g., see Table 2) is interpolator-dependent; for most
combinations of realistic transport problems and feasible grids,
interpolation errors will be dominant, although the use of 2 quartic,
rather than a quadratic, interpolator for advection brings these two types
of errors closer to each other——which suggests improved efficiency of the

overall solution procedure.

For a fixed Ax, accuracf is better for problems with smoother
gradients than for problems with steeper gradients, a well-known behavior.

In particular, dispersion has a smoothing effect on the gradients, as time

sd
dif
regard to €int’ contributes ultimately to reduce the absolute value of both

progresses, and therefore the increase of D, although increasing e with
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sd and e

€aif int’

5.3. Accuracy dependence on At

The dependence of the accuracy on At is more complex than that on Ax.
Indeed, depending on the relative roles of advection, differential
advection and dispersion, decreasing At may either improve or deteriorate
accuracy. This is analysed starting with the case of pure advection, and

evolving towards the full transport equation.

Pure advection

In this case, the only errors come from the interpolation at the feet
of the characteristic lines. Within each time step, interpolation errors
depend on At only through the location ﬁf the feet of the characteristic
lines within the core element, characterized by a. For large Cu, a is a
weak function of Cu, depending only on its fractional part, and therefore
errors per time step are, in this case, virtually indepgndent of At (for u
and Ax fixed).. As a consequence, to solve the transport equation between 0
and T, we should look for thg minimum number of interpolations {one, in the

limit, if feasible), hence for the largest possible At.

Choosing At small, so as to decrease Cu, a must in EM, is then a
generally poor option in the BMC solution of the advection equation. We
should stress, however, that the improvement of accuracy as At increases is
legitimate, in the sense that the numerical solution does not blow up in
the limit of small At! it rather tends to an accuracy plateau that depends

on Ax and its ability to resolve prevailing concentration gradients. .
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Indeed, as suggested by the form of €int for Cu = a (Table_1), and formally
shown by [B7]. the BMC is. for the interpolators considered in the present

work, unconditionally consistent, stable and convergent.

The effect of dispersion

We recognized before that dispersion has the effect of smoothing
gradients, and, therefore, should ultimately improve accuracy, but that it
also introduces additional errors, associated with both the space and time
discretization of the dispersion operator. The errors in the time-
discretization have particular significance, as they decrease with the time

step At, and, therefore, may reduce or eliminate the ability of the BMC to

accurately handle large At.

The time-step that, at a given point in time, minimizes overall errors

(optimal time-step) is the one than can bring e and e;d as close

if

together as possible. For instance, in the case of the quadratic

int

interpolator and the Euler implicit time~discretization, simple combination
of the expression of these errors indicates the optimal time-step is, in

order of magnitude

Q
W
[}

a(az—l)
3%

]0.5 w2 (8

%o§’|
w

Atopt ~ [ N

-

Ulg-
Aot

|

Y
b
ol

.
ol

Expressions of this form can be similarly derived for other
interpolators and time-discretization schemes (based on Table 1), and,

given a specific problem, they can be simplified by proper scaling
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derivatives, so as to help the selection of At as a function of Ax; e.g.,

using the scales of Section 4, Equation 8 becomes
z %
~ Jafa’-1) M . Au2
Atopt ~ { 3D” l—MoPef} Ax ()

where now M and Au have to be specified consistently with the physical

problem (e.g., Figure 4).

Plots showing the dependence of the total truncation error on At may
however be considerably more informative. Examples of these plots, for
specific choices of (u, D, Au, M, and Ax) are shown in Figures 5 to 9.

They may be intrepreted, for instance, as refering to the problem of the
transport of a Gauss-hill in a 1-D flow. Figures 5 to 8 assume the use of a
quadratic interpolator and a Crank—Nigholson time-discretization; Figure S
refers to alternative choices of interpolators and time-discretization

schemes.
¥e observe that:

- The optimal At is, in a large range of situations, such that Cu > 1
(in contrast with what happens in EM). The optimal At varies
significantly, though, with all controling parameters identified in
Section 4; in particular, for a given problem and grid, it may vary as time
progresses, if the characteristic concentration gradientslchange (e.g.. by
effect of dispersion) or if the role of differential advection relative to

mean advection and dispersion changes (e.g., as in a tidal flow).

- Large velocity gradients may reduce the optimal time-step very
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significantly (e.g., Figure 8). This reductjon is larger for larger Pe{

and for smoother concentration gradients, i.e., larger M, in which case

tdf tdm__
€aif dif

spiution shows no dependence on Pef in the region where interpolation

is dominant over e e.g., see Table 2. The overall accuracy of the
errors are dominant, but it consistently deteriorates with increasing Pef
in the zone where time-discretization errors are dominant; the limit
between these zones, for a given problem and grid, determines the optimal
time step, and depends on all Cu, Di, Pe, Cuf. Pef and M (e.g.., see Table
2).

- Smooth concentration gradients may lead to either larger optimal
time-steps (e.g., Figure 6) than those for steeper gradients, or to no
optimal time-step (accuracy improving all the way down to -the minimal
possible At) depending on the choice of the interpolator and the time-
discretization. However, errors are, for smoother gradients, consistently
much smaller, not only in the sense of the minimal achievable error, but
also for fixed At. This suggests that, when gradients are smooth (e.g.,
due to the long term effect of dispersion}, the use of an optimal time step

may be of secondary interest, for practical purposes.

- The dependence of the accuracy on the time step is also relaxed (in
the sense of a large range of At providing similar accuracy) when the
errors associated with the spacial discretization play a significant role;
this is typically associated wiih small Cuf. with small Cu, and with Di

numbers in some intermediate range (e.g., see Table 2).
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5.4. Accuracy dependence on the interpolator and time-discretization

—

Taking as a reference some choice of interpolator and time-
discretization (a quadratic interpolator and the Euler time-discretization
scheme, say) the optimal time step will increase if the order of the time-
discretization is increased (e.g.. Crank-Nicholson instead of Euler),
keeping fixed the interpolator, and will decrease if the order of the
interpolator is increased (e.g.. quartic instead of quadratic), keeping the
time-discretization scheme fixed; in both cases, optimal accuracy will

improve, but the trade-off in costs should be considerably different.

If the order of both the interpolator and the time-discretization are
changed the optimal time may either decrease or increase:; the choice of a
quartic interpolator and a Crank-Nicholson discretization tends to decrease
the optimal time step, suggesting that interpolation errors are being
helped further than time-discretization errors (not surprising, considering
that the order of the interpolator is increased by two, while that of the

time~discretization is increased only by one).

For uniform flows ,i.e., parallel characteristic lines, it would be
conceivable to use for dispersion (as we did for the tracking) a time-step
smaller than At (dt, say), so as to take larger benefit of the ability of
the BMC to handle large time-steps--i.e., to extend the optimal time step.
However, flow non—uniformity prevents this strategy, which would be
effective only if the solution of dispersion could be done following the
characteristic lines, hence requiring interﬁolations at each dt (which

would then necessarily coincide with At).

Hence, for a fixed interpolator, the ability to increase the optimal
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time-step reqguires increasing the order of the timefdisczsyizat}on scheme,

which involves a trade-off in cost. The difference in cost between the

Euler and Crank-Nicholson schemes is minor, and we do recommend that the

latter be used in a systematic basis. Further increasing the order of the |
time~discretization scheme may or may not be.cost—effiéient, however;

indeed, Brd order accuracy in time would require considerable additional

work (including tracking), as illustrated in Figure 10.

6. FINAL CONSIDERATIONS

Remarkable characteristics of ELM, as compared to more conventional
EM, include the ability of the former (a) to flexibly choose between
different spatial interpolators for advection (without having to change the
grid discretization, an/or increase the bandwidth of matrices required for
the solution of dispersion), and between different time~discretization
schemes, and (b) to use large time-steps, well beyond Cu > 1, conditional
only to the time-discretization adopted to solve dispersion along the

characteristic lines that follow the flow.

The efficient use of ELM is, however, more complex than that of EM:
while ELM will in general be at least as accurate as EM that use similar
space and time-discretizations for the dispersion operator, the accuracy of
the former can often be vastly improved by appropriate decisions on the
computational strategy. and, in particular, on the choice of At and on the
Iocal (in time and/or space) increase of the order of the interpolator for

advection and/or the time-discretization.

The analysis of the truncation errors of ELM, for alternative
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interpolators and time-discretization schemes, is of cpnslﬂprable interest
in providing a reference for the different choices involved. as shown in |
this study. Such analysis has necessarily to include an assessment of the
effect of the flow non-uniformity, which plays a key role in the optimal
time-step, and, for larger time-steps, on the actual accuracy sf ELM.
To our knowledge, this study provides the first conceptual "model” to
guide the choice of the ELM computational strategy. Prioritary steps to
improve such model include its extension to 2-D (flow non-uniformity is
more complex in multi-dimensions), and its extensive application in
connection with industrial codes and actual engineering problems. The
succcess of this application is expected to require familiarity with the
trade-offs involved, common sense in the choice of the scales
characterizing the physical problem, and ingenuity in handling problems

involving multiple scales and/or irregular grids.
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Figure 1

.

Illustrative sketch for Eulerian-Lagrangian methods

Required steps:

1.

Tracking of the characteristic lines. For each node j, a characteristic

line is independently defined by the backwards {i.e., between n and n-1)
solution of an ordinary differential solution of the form dxi/dt =u,.

Interpolation at the feet of the characteristic lines. The

concentration at the foot of each characteristic line is found by

interpolation from known information on neighboring nodes {(time n-1).

. Solution of the transport equation, written in Lagrangian form. This

solution involves all nodes simultaneously.
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(assuming exact interpolation)

Figure 3 TIllustration of the effect of poor tracking
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Figure 5

st

Dependence of errors on the nodal spacing, as a function of the time step

Computational parameters:

Ax = 4 25 M = 500/4x
50 Cu = At/Ax
100 Cuf = 0.1 At/Ax

variable At Di = At/AX®

T = 11000 Pe = Ax

u =1 . Pef = 0.14x

Au = 0.1

D=1

- 244 -



49)%o0

G=W'00I=

XV

Y-
4 S

80—
90—
¥'0—
Zo0-

(2)"'60y

245



Figure 6

Dependence of errors on the dimensionless length scale for concentrations,

as a function of the time step

Computational parameters:

Ax = 100 M =45
At variable 25
T = 11000 50
u =1 Cu = At/100
Au = 0.1 Cuf = At/1000
D=1 Di = At/10000
Pe = 100
Pef = 10
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Figure 7

Dependence of errors on the dispersion coefficient,

as a function of the time step

Computational parameters:

Ax = 100 M =5
At variable Cu = 4t/100
T = 11000 Cuf = At/1000
u =1 Di = Dat/10000
Au = 0.1 Pe = 100/D
D=A1 Pef = 10/D

0.1

0.01
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Figure 8

Dependence of errors on the flow non-uniformity,

as a function of the time step

Computational parameters:

Ax = 100 M =5
At variable Cu = At/100
T = 11000 Cuf = At+At/1000
u =1 Di = At/10000
Au = 0.1 - Pe = 100/D
0.01 Pef = 100Au/D
0.001
D =1
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Figure 9

o

Dependence of errors on the spatial interpolator

and on the time-discretization scheme

Computational parameters:

Ax = 100 M =5

At variable Cu = At/100
T = 11000 Cuf = 4t/1000
u =1 Di = At/10000
du = 0.1 Pe = 100
D=1 Pef = 10/D

Legend

1:

2
3:
4

Quardratic interpolator; Euler time-discretization

: Quadratic interpolator; Crank-Nicholson time-discretization

Quartic interpolator; Fuler time-discretization

! Quartic interpolator; Crank-Nicholson time-discretization
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Figure 10

e

Illustration of the strategy for a third-order time-discretization scheme

Step 1:

Step 2:

Step 3:

Use Crank-Nicholson with time-step At to find 53——see (a)

Use Crank-Nicholson with time-step At to find Ej (Caux must be
found, which involve additional tracking, interpolation, and
solution of the set of linear algebraic equations associated with
spatial discretization of the dispersion operator)}--see (b)

Use a Richardson extrapolation to improve the estimate of Cj (from

E; and E?}m—not illustrated
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Table 2

Relative Importance of Different Types of Errors
(for 2 quadratic interpolator and an Euler implicit time-discretization)

Dimensionless Condition for the dominance
Error controlling of the first type of error
type parameLers over the second
: —
. e At , c
Cu >»ar Di = F Di < |2£z(a2-1)[ —x"'c—rrr!
ﬁsd
€int' ®qif O
\ _ udx 1 Ax.c
Cu = a: Pe = D Pe > 2]1"QT|_ C““
udt
Qo=
{ |
i P I =1 )
T 5
gif' Caif M Di>g
: !
tdf sd _ hudt 1 Ax.pu . 'Y’
ed'if' edif cuf = —AT cuf > 6 u141c11a+2u11:ct4;
] ]
i =
. e 2 , Jela*~1)] | !
Cu > o Di Dl 4 3 A-xcl'\l
6tdm
€jurt Edif .
Cu = @t Pe,Cu,Di Pe > —r—1 2L
3]D—— CU.PB
i
[ 1
. ‘ i (4
Etci‘ &tdm Pe. = Audx Pe. > Audxe
dif" ~dif \ f7 D \ f u et +u e
T i
. . . lafa®-1}] Auet??
Cu > o OLlf.Dl Dl.O.!f { 3 u\g.c—ﬁa pry 2ul-.c.za
tdf
€int Sairf
3Cu 121 €43 (1) _t2)
. f u“'c + 2u c
Q.l = - PE.Ql.cuf Pe > m uc{q:
note: v(n) = QEZ withveEcorvs=u -
axP
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APPENDIX A

Derivation of truncation errors

¥e consider first the general time-discretization scheme,

characterized by Equation (3). Expanding individual terms around the foot

of the characteristic line, £, we obtain

2 .2 33
n+l £ De AtT D¢ At™ D¢
c =c +dr e +v5r Tl +52- 25| 4 uop. (A1)
De [8 721 2 0E7 37 3¢
2 3.3
n+l _ E DL At® D% st o3t
L = L + At Dt |¢ + 57 525- £ + 37 5:3- £ + H.0.D. ‘ (A2)

which can be combined so as to obtain the local equilibrium

_ _ 1 D% DL 1_ ..Dg}_
e=t ’f At { 5 ( P )+ (5-4) 52

a 2 2
_M2{%(E£_R£)+(é_%)2£}+aan (A3)
" Dt® Dt? Dt®
Now, from [B7],
De Dec
Dt |F = Dt ln " %int ' (A4)

with
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e Ax a° 8¢ Quadratic
a(a 1) GAt OxX° + H.0.D. . interpolator
e, = 5 (A5)
int . _ _ dc Quartic
a*(a® - 1) (a® 1) 5017 IQOM ax° * H.0.D. interpolator
Similarly, )
| .
L*=1"+ F'L.int (46)

Hence, the local equilibrium at £ expressed by Equation * can be

revritten at (j,n) as

At D )
D 5 —E €int eL.int)+H'0'D° Euler
Dt © L.*-'Eint:"'e'L.int*' AtZ p2 - Crank- (A7)
12 Dt =L+ int+eL. int)+H'0'D' Nicholson
i.e.,
De td
ﬁE=L+ei + €dif + H.0.D. (A8)
with -
é.t_]%+ H.0.D. Euler
td
E.. = 2 (AQ)
dif At 22—;— + H.0.D. Crank-Nicholson
i2 Dt

We now express the time-derivatives of L as a function of space
derivatives of L and c, using the form of the governing equation for

transport to assist in the transformation, but making no assumption on the
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characteristics of the flow field ({.e., a general non-uniform. unsteady

flow is considered). This leads to

Dae 7L _
S, U S TR e
D?At? %L _
12 &x°
2
- Q%E [uxx g§-+ 2ux g;g] + H.0.D. Euler
(A10)
D%4t® e 3°c 8°c d'c Crank-
T 12 [k‘ xtk gtk & * ke =+ HO.D. Nicholson
wvhere kl' cey k4 represent products of concentration derivatives by

velocities or velocity derivatives (see Table 1 for definitions). We note
that e;?? represents the result of the above derivation for the case of

. d .
uniform u, and egii represents a correction due to non-uniformities.

Now, we consider the spatial discretization of the operator L

(Equation 4 in text), to obtain

L =D 62c sd DAx2 640

=DEZ =L +e%¢ L+ 22X 2SS, yo.p. (A11)
o2 dif 12 4

Finally, collecting the contribution of the different errors, we

obtain Equation 5 in the text,

- 260 -



