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Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Master of Science

A TWO-DIMENSIONAL HYDRODYNAMIC MODEL USING A
FINITE-VOLUME APPROACH

By

JOAQUIM JOSE AREIAS CAPITAO
December 1989

Chairman: Dr. Y. Peter Sheng
Major Department: Coastal and Oceanographic Engineering

A two-dimensional model of wind-driven circulation in a closed basin was developed
using a finite-volume technique for generalized curvilinear grids and applying some
of the recent developments in hydrodynamic modeling. The terms in the Navier-
Stokes equations were treated separately according to the fractional step method
and the propagation step, including tﬁe continuity equation and the pressure and
stress terms in the momentum equations, was solved using a conjugate gradient
method.

The model was then applied to a number of test cases to examine the feasibility
of the approach used by comparing with results obtained with the twlo-dimensiona.l
version of the three-dimensional model CH3D. These included a square basin with
constant slope and with a V-shaped bottom and Lake Okeechobee, in South Florida.
To evaluate the long-term numerical stability of the model, a ten-day model simu-

lation with varying wind was also run for Lake Okeechobee.
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CHAPTER 1
INTRODUCTION

Water is as essential to any kind of human activity as the air we breathe. Ever
since the first human settlements, their location has been dependent on the presence
of water. Big cities have naturally developed around important rivers or lakes, or by
the ocean, where water for drinking, irrigation and, since the industrial revolution,
cooling of industrial plants, is easily accessible. '

Unfortunately, water bodies have been considered as infinite sources of fresh
water and, at the same time, infinite dump sites for urban, agricultural and in-
dustrial waste. Only in the last few ye‘a,rs have we started to become aware of the
limits to this source and the effect of using it as a dump site. Entire seas, like
the Mediterranean, have reached dangerous levels of pollution. Rivers and lakes all
over the world are so polluted, chemically and bacteriologically, that their water is
totally unusable without previous expensive treatment.

All this has happened over a period of time and the human mind seems to
be able to adapt to new conditions without fully realizing their implications. It
took, therefore, well-publicized accidents like oil spills or garbage being washed
ashore in popular beaches to make the general public aware of the seriousness of
the problem. That public awareness has put pressure on the political establishment
to find solutions and this has led to increased pressure on the scientific community
to develop the knowledge of the physical, chemical and biological processes involved.

One of the basic subjects involved is the knowledge of hydrodynamic circulation

in shallow water, where the problem is more pressing. The research in this field

has traditionally used three different tools to reach the same objective, a better
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knowledge of circulation patterns in any given area:

1. field measurements;
2. scale models; and

3. numerical models.

Field measurements are in a class by themselves and even the strongest sup-
porters of scale or numerical models will accept the need for some amount of feld
data to support their modeling effort. The continuous development of new instru-
mentation and the increase in computer speed when processing the data has made
field measurements an important part of any study concerned with the knowledge
of circulation patterns in any shallow water area. However, field measurements are
still expensive and must be used sparingly.

Huge scale models for whole estuaries were common in the past, and some
are still being used. However, the cost of keeping and operating such a model has
increased steadily, while, at the same time, the use of ever more powerful computers
has made numerical models cheaper and cheaper. Therefore, scale models seem to
be, at present, more adequate for studying specific physical processes, instead of
general circulation patterns for vast areas.

The evolution of computers, in terms of speed and memory, has made numerical
modeling relatively cheap. But numerical models are not without problems of their
own. Although the Navier-Stokes equations are accepted as a good representation
of the physics involved, for instantaneous, three-dimensional circulation, from a
practical point of view they must be integrated over a finite period of time, giving
rise to problems like turbulence closure.

This thesis presents a new numerical model of hydrodynamic circulation, using

a finite volume technique to solve the two-dimensional, vertically integrated, Navier-
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Stokes equations in a curvilinear grid, and using a fractional step method to solve

u the different terms in the equations separately.

Chapter 2 consists of a brief review of work done in the past on numerical

modeling of hydrodynamics, mainly those models which, in some way, influenced

the way the present model was developed.

In Chapter 3 the finite volume equations are derived from the two-dimensional

vertically averaged Navier-Stokes equations.

S )

In Chapter 4 a number of test cases are presented and Chapter 5 contains the

conclusions of the present work and some ideas about possible future developments

on the present numerical model.
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CHAPTER 2
BRIEF REVIEW

A large number of numerical models of hydrodynamic circulation have been
developed over the last few decades, and most of them use finite difference or finite
element methods in the solution of the Navier-Stokes equations. The finite-element
methods have traditionally been considered to have a better ability to deal with
complex geometries, since they can use non-rectangular grid cells. The need for
rectangular grid cells was, therefore, the main limitation of finite-difference methods
like the one developed by Leendertse (1967), which, on the other hand, have always
been much more intuitive in their development and, therefore, easier to modify.

Although the developers of finite difference models were not ready to move into
finite element modeling, they would recognize the limitations associated with their
own technique, which was a first step into overcoming those limitations. One ap-
proach was the coupling of models using a sparse grid far from the boundary and a
much denser grid near thé boundary, as in Sheng (1976). Another possible approach
utilizes the grid generation techniques presented in Thompson et al. (1985) to re-
solve the physical domain with a boundary-fitted curvilinear grid. Spaulding (1984)
developed the equations of motion in generalized curvilinear coordinates, in terms
of the cartesian components of the dependent variables (the velocity components),
while Sheng (1986) derived the equations of motion in terms of the contravariant
components of the dependent variables.

The approach used in this thesis is the same followed by Sheng (1986) and Sheng

et al. (1988) which consists of transforming not only the independent variables but

also the dependent variables and, therefore, working with equations in terms of




contravariant components of velocity.

Another problem associated with finite difference methods is the non-conserva-
tive nature of the discretized equations in curvilinear grids due to the use of differ-
ential equations. This problem is usually taken care of by treating the geometric
terms more precisely. An alternative to this is to develop the numerical model equa-
tions starting with the integral equations instead of the differential equations. This
is done in finite-volume techniques, and a comparison between the two approaches
is presented by Vinokur (1986). A more detailed explanation of a model using a
finite volume method is presented in Rosenfeld et al. (1988).

When numerical schemes are developed to solve complicated equations, special
care must be taken to guarantee numerical stability and consistency. This usually
involves an option between more elaborate numerical schemes and very small spatial
and temporal resolutions. The fractional step method, presented in Yanenko (1971j
is a convenient way to get around these limitations by breaking each time step
into a series of intermediate steps, with a number of terms in the equations being
solved at each time step. Each intermediate step can then be solved using the more
convenient numerical scheme for the specific terms involved, and having only the
limitations in terms of temporal and spatial resolution imposed by those terms. In
this model, the fractional step method is used, breaking the Navier-Stokes equations
into four separate equations, each one to be solved at a different intermediate step.
In the advection step, only the non-linear terms in the momentum equations are
used. The diffusion step solves for the horizontal turbulent diffusion terms and the
Coriolis terms are solved in the Coriolis step. Finally, a propagation step solves
the remaining terms in the momentum equations, pressure terms, wind stress and

bottom friction, together with the continuity equation.
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The propagation step was solved using a conjugate gradient procedure detailed
in Hauguel (1979) and used before, among others, in the cartesian grid, finite dif-

ference circulation model developed by Liu (1988).




CHAPTER 3
THE NUMERICAL MODEL

3.1 Governing Equations

The equations describing .the two—dimehsional, vertically-integrated flow in shal-
low water can be obtained from the three-dimensional Navier-Stokes equations, as-
suming a Hydrostatic vertical pressure distribution and, in this case, a constant and
uniform density. The turbulence closure problem was solved using a constant and
uniform eddy viscosity coefficient, and the final two-dimensional equations are, in

a cartesian coordinate system,

o _ AU; oV
at Oz dy (3-1)
) ('UCU¢)~ 9 (UCVC) 82U, 82U
3t o9z \ H / ay\ H tAng gt An d1?
- dc 1
+fvc_gH£~+;(fm—nz) (3.2)
Ve ] UCVC) ] (VCVC> 8*Ve 8*Ves
3t az( " g \H ) T TG,
d¢ 1
'_"fUC' i gH"(%,' + ; (Twy - Tby) (3-3)

where ¢ is time, £ and y are the cartesian spatial coordinates, Ug(z,y,t) and
Ve(z,y,t) are the cartesian components of the vertically-integrated velocity in the
z and y directions, H(z,y,t) is the total water depth, Ay is the eddy viscosity

coefficient, f is the Coriolis parameter, g is the acceleration of gravity, p is the

7




water density, 7y:(z, ¥,t) and 7y, (z,y,t) are the z and y components of the surface
wind stress and 7. (z, ¥, t) and ny(z,y,t) are the £ and y components of the bottom

giress.

The bottom stress was modeled, as in Liu (1988} by

pgUc\JUE + V4

Ty = C2H? (3.4)
pgVerJUE + VE
Tbu csz (3.5)

where C is the Chézy bottom friction coefficient given, in the C.G.S. system

(em [sec) by

¢ = st (3.6)
and n is the Manning coefficient. The hydraulic radius, R is given by the ratio

between the water cross-section and the wetted perimeter,

Hb
2H+b -

In lakes and estuaries, the width of the basin is usually much larger than its

depth, and the hydraulic radius is approximately equal to the depth H.




Figure 3.1: Physical domain vs. computational domain

3.2 The Computational Grid

Because of the extreme difficulty in generating an orthogonal curvilinear grid,
the equations above have to be solved in a generic curvilinear grid, not necessarily

orthogonal (figure 3.1). For that purpose, a different coordinate system, (€, n) is

‘defined for the computational domain such that each curvilinear cell in the phys- .

ical grid is mapped into a rectangular cell in the computational grid. For sake of
simplicity, all sides of the computational cell have length A& = An = 1.

Changing from the (z, y) cartesian coordinate system to the (£, n) curvilinear
coordinate system involves defining a number of geometric quantities. First of all, we

need to define contravariant and covariant directions (figure 3.2). A contravariant

base vector is perpendicular to a line along which its coordinate remains unchanged.

A covariant vector is tangent to a line along which only the other coordinate changes.

If the curvilinear grid is orthogonal, the two coordinate axis will be perpendic-

ular to each other at every point and, therefore, the contravariant and covariant

directions coincide, since a vector perpendicular to one of the coordinate axis is also

tangent to the other coordinate axis.
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Figure 3.2: Contravariant and covariant directions

Contravariant length vectors can be defined at the center of each side of a cell,

parallel to the contravariant base vectors defined above, with magnitude equal to

the length of the side:

L¢ = yi—=z.7 (3.8)

L = —yei'tzey . (3.9)

where 7 and j are the base vectors in the cartesian coordinate system and the
subscripts denote partial derivatives.

Since the equations will be written in terms of contravariant fluxes, these must
be defined with relation to the cartesian vertically- integrated velocities used in
equations 3.1to 3.3. The contravariant flux components are obtained by perform-
ing the dot product of the contravariant length vectors and the vertically-integrated

velocity vector U = Ugi+ Vei:
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Ut = y,Us—z,Ve (3.10)

Ut = —yUc+zVo (3.11)

Following the procedure used by Rosenfeld et al. {1988) for their three-dimensio-
nal model, the velocity vector can also be written in terms of the covariant directions

as

U = LUS+LU" (3.12)
ST e (TR

gt L\E:-L‘g /\ L:?_::f.:,
To ensure the invariance of the velocity vector, the relationship between th

contravariant length vectors L% and L7 and the covariant “length” vectors IT,S and

I;;, must be given by

& Le=InL, =1 (3.13)
&L =1L =0 (3.14)

which allows for the simple formulation used for the advection terms. Substituting

equations 3.8 and 3.9 into equations 3.13 and 3.14 leads to

J (3.15)




7 (3.16)

where A is the area of the cell surrounding the point where the vectors are defined,

and also the Jacobian of the transformation, given by

A = zeyp — Ty (3.17)

To get the results in a more easily understandable form, the reverse conversion
also needs to be done, from contravariant flux components to cartesian vertically-

integrated velocity components, using the following relationships:

Lerre | Ty
U = =£ ~ngm X
- AU + (3.18)
= Yere  Un '
Vo = = =Ly 3.19
¢ a7 T (3-19)

The basic computational cell is defined in figure 3.3. The computed surface
elevation is an average value over the cell. In terms of physical representation, it
is assumed to be the value at the center of the cell, and is denoted by (z, 7). The
contravariant flux components are solved at the right face of the cell, (7 + %, J)
for U¢ and at the top face, (i,j + 1) for U". Once again, when it comes to a
physical representation, these flux components through the cell faces are converted

into cartesian vertically-integrated velocity components at the center point of each

face of the computational cell.
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1
Ui ie1/2

AL g
1] > Ui q/2,

Figure 3.3: Basic computational cell

3.3 The Fractional Step Method

Following the procedure detailed in Yanenko (1971), the equations of motion

(eqs. 3.1 to 3.3) were broken into a series of intermediate steps, for advection,

diffusion, Coriolis and propagation. A formal consistency analysis for this approach

-has not yet been made for the full non-linear Navier-Stokes equations. However, it

has been used successfully in a number of hydrodynamic models, like Liu (1988) or
Benqué et al. (1982) and, depending on the validation of this particular model, is
worth trying.

Denoting the intermediate results with one, two and three stars, after the ad-
vection step, the diffusion step and the Coriolis step, respectively, the equations for

the advection step can be written as

Us~UZ 8 (UUo\ 8 (UCVC) ,
At T &z ( H ) Gy \ H (3:20)
Ve-V¢ _ 8 (UCVG) 0 (VCVC)
At 3z \ H dy\ H (3,'21)
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For the diffusion step, only the diffusion terms are retained,

Uy -Us g 9*Uc
At = Ax oz? +An oy?

Vo' =V 8*Ve *Ve
At = An 8z +An oy?

and the Coriolis step is

Uc"ll‘ — Ué‘ _
— Q= Ve
Vc*** — G‘*
e TV _ _ry
i3 fUc

(3.22)

(3.23)

(3.24)

(3.25)

The propagation step includes the continuity equation and the remaining terms

in the momentum equations, pressure, wind stress and bottom friction terms:

¢t —¢" oUc Vg
At ox Ay
vst - g d¢
— A = T9HG tTua— T
Vet —vgr o¢
Y v —Q’Ha—y + Twy — Toy

(3.26)

(3.27)

(3.28)

The contravariant equations for each of these intermediate steps will be the

object of each of the next four sections.
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3.4 The Advection Step

= The contravariant form of the equations for each of the intermediate steps will

always be written in the form

AU¢ - =
- — = L&, .
j A— F (3.29)
AU S
= L .
i‘ A— F (3.30)
[
where F depends on the specific step being solved.
1
] The advection terms in the momentum equations deal with the advection of
— the vertically-integrated velocity vector through a computational cell. Writing the
. vertically-integrated velocity vector as a function of the covariant *length” vectors,
} as in equation 3.12, F is defined as
— 2} UtUt . Utun . 3 Uusun -
- F = — |- —_ —_— -
ag( 7T g L")+an( e
unyn -
- L,,) (3.31)
!
L]
[ Substituting Fin equations 3.29 and 3.30 we get the contravariant equations
for the advection step
|
ue -ue oy, 8 [z, UUS Yo 3 [z, USU"
; At - ABE\A H AO0¢t\A H
B _Yg O [z USUT  yy O (a:,, U"U")
Adn\A H Adn\A H
- 150 0 (yeUSUS) | 20 0 (4 UCUT
AJE\A H AGE\A H




gn —yn"

ot

16
+mni(ye UEU") mni(yﬂU"U")
Adn\A H Adn\A H
ve 0 (ﬁUfU‘) LYl (ﬁU‘U”)
A\A H A0 \A H
Ye & (ﬂU‘U") + &2 (2 TU)
Adg\A H Adg\A H
ze 8 [y UUS =z, 8 [y, UU"
e (45F) - 22 (25F)
z¢ 8 [y USUM ze @ [y, UNUT
_15(2 H )"71"6?(1 H )

(3.32)

(3.33)

Since the £ and #n derivatives are totally separable, each of these equations

can still be broken into a -sweep equation and a n-sweep equation to be solved

sequentially. If U¢* and U™ denote the intermediate flux components after the

E-sweep,

uet _pe

At

gt —ynr

At

At

yn — pynt

At

Ué — ij’E#

vy 8 [z, UUS yp 8 [z, UUM
24 ()28 (%)
R (ysUeUe) LI (y_nUfU”)

AB¢\A H ABE\A H
Ye O (EUEUE +2§i(£aU‘U")
@oE\A H ABE\A H

ze 8 [y USUS ze 8 (y, USUN
T ABE\A H )_Ia_s(I H )

yn 8 [z U Yp @ [z, UU"
_'25(1‘ H )_I%(X H )
L8 (&UEU") 4 %0 (aU”U”)
. Adgp\A H Adn\A H

(3.34)

(3.35)

(3.36)

(3.37)
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These four equations are solved explicitly, with the spatial derivatives being
approximated by centered differences around the right side of each cell, where the
Ut fluxes are computed, or around the top side of each cell, where the U7 fluxes are
computed.

Denoting the center of a generic cell with the subscripts 7 and j, the right side
face of the cell will be denoted by 7 + %, J and the top side of the cell by ¢,7 + %
{figure 3.3).

The discrete form of the £-sweep equations is therefore written as

At & Eipreny
U€# = . - yq"'"%-f Zirry U“Hn.? 1§ Téiy Ui U
hamad - l .
$+3v3 l+2lJ Ai+%,J Al+1,] H"_l_l'j A .J H‘_ﬂ,j

y,,‘_*_ JAt Tris,i Une—i-l,a Us+1: _ Znis UE"U"
A, A|+1,J H|+1,J A' i H"

:+j

en n n
+$"-+-.r j At Yeirr s U-‘+1.jUs'€-|-1 g Y UE t,:
A; As‘+1.:' Hir-‘i-l.j A; %) H

i+ 5,4

EI‘I n
+xn='+§-‘iAt Ynigr.j Ul'+1.J'U21—1.f _ Yni s U‘ U:TJ
A€+-;- i \Ae; HE, Ay HY;

(3.38)

At
+4 Flirgitl U--f- ,J+lU +3.d+3

TS N P T Hf+%.:‘+§
z A
sl—v; JEE Ul-—.J+-1'IJ;—'§.J+-
L)
i—-—,,;r+1

Ay

Ye.. At [z ut, . o"

it Tivdi+d Ti+3atd T itLgd

L}
A-,J+% A:+§.J+% ‘H|+2,J+2

Eu n
"é-)‘"‘% ‘—-2-11+I Lr'""'_l.?"'g
n
’_E’J+§ ‘H'—_:J'*'g
__sz..-'+ieAt yf-«a—i J+3 U=+,.J+‘U +3.4+4

n
Al',:'-f-% Al+§-,J+5 H,+2,J+_

T A,
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et &

y5-~§.:+§ 1——.J+‘U=——.J-+-1
n
A:—- g+ H,'_.;.'J'+L
_ zf-‘.;‘+§ At y"n+§.:+§ Ut+,.:+ 2 U=+, Jt+i
n
Aigey \ gy Hisa
5
gy Toaana Ui (3.39)
A, 1 H )
‘mi’:+“ '__IJ"I"
and the equations for the n-sweep become
#
n
v, = pet _y"-'+%.:‘At Sirditd ’+2"+;U‘+2'5‘+"
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3.41
4 Aijy1 HP:iyy Ay HYY (3.41)

# T R
_ze-‘.:‘+§ At (yf.-.,-+1 U:".'j+1Ui'3j+1 Ve Us",rj U:,,j )
i3

i+

]

S

Since the U¢ and U" equations are solved at different positions, interpolated

values of each component must be computed at the position where the other com-

——=

ponent is solved. These interpolations, like all those made in the other intermediate

steps, are made by four-point averaging.

M

1 £ £ £ ¢
[ i gt = U.'+§.j + U-‘+%.j+1 + Ui—%.:.'+1 + U.'_—%,j 3.49

ity T 4 ' (842)
ul o 4+U U U,

- Uy = = ind o] (349

|
L 3.5 The Diffusion Step
‘ In the diffusion step, the turbulence closure problem is solved assuming a con-
L stant and uniform horizontal eddy viscosity. This makes it possible to take the
E{ eddy viscosity out of the derivatives leading to a sfmple definition of the F vector
L

in equations 3.29 and 3.30:

F = AVl (3.44)
L
|

[

r
|
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In the contravariant coordinate system, the Laplacian of the vertically-integra-

ted velocity vector can be written as

slgeogea) o

Writing the vertically-integrated velocity vector U as a function of the con-

travariant flux components, and performing the dot product with the length vectors,

the equation for U¥, equation 3.29 becomes

U e _ 4 yni{yﬂ [i (zgy”Uf-i-z"y"U")

At H g2 a¢ a& A
8 (zeye €4 Tn¥é¢rm :L',, 8 (zfxn ¢
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_’l xf €4 Z%nym

i ) & (o)
IEyn € Inln n)

winl { % | 2 (e 2y

0 (Teye 4 TnYe ze | O (zex
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6‘17 ( A v + A 65 v

z? I Tex
Zngrm | ZEre L 2
+220m) + 2 (Sue s Au)]}

4.0 [un [0 (yeynrre , Vo m
AHAzae{ [36( Ut +=1u

O (Yerre, Ye¥Unym)| _ %a _3(%1’5 ¢
3n( Kye 1 Yoy 2 (2w

+'T'ﬂyﬂ Uﬂ) + i (zfyf Uf + xfyn U")]}
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n (A Y )] N NET; v

d
+a:,:i;,,Un) " % (ﬂif‘fe Ué + IeAEUn U”)]} (3.46)

Equation 3.30, for U7, becomes

L L)

gnt —yn” _ ve 0 |y, | @ (mfy,, Tply ,1)
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_ ve 0 Ve d (‘56% ¢, Tnln n)
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2 2
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2
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AT OE

...i (y_gl']f + yf_y” Uﬂ)] _Zn I:__i x,,ye-UE
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8 (v e, YeUniin ) (-’que £
377(AU+ AU + 35 U
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To make things simpler, auxiliary variables B, C, D and E were defined as

follows:

& i(m’iynUf Znln q)_ 2 ( ey EUE xﬂy€Un)
A[ae AT EY) 5
_Zn [_ O (TeBnpre  Tnpm) L O [Thore "’e-‘"n .
7 |5 (poee Gor) + £ (Grer 20o0)] e

_ ¥ _3_(a:eyn ¢ . Zoln ,,)__Q_(a:eye € :z:,,yE q)

c = A[ag U ) — o (Bt Tty

Z¢ _i TeTn rre :B_'zf n i .'1:_§ €4 '7"53'? n
+A[ ag( a0tV ) e\ gVt Y (3.49)

2

aE an
_%n '_?_(%Ue abagyn) f_(%ye f&m) 350
A7\ 2 T A )t \a VUt (3-50)
[ 2
Ve | @ [YeUn e | Un 8 (Ye ¢ YeUn
= Y| 2 (Yenpe  Ynpm) _ Ut 4 Y pm
E A_af(A +AU) an(A LY
z [ 8 (-’cnye ¢, TnYn ) 3 (xsye ¢ . Teln ,,)
ta T\ a Ut V) re T Ut 7)) (B8

Uust —-u¥ y, 0B Y, 8C z, 8D z, OF
At A gige T AR i g, ~ A gy ~Ar g, (352)

U’?" - Uﬂ" Ye oB Ye acC Ie oD Te oF
At Ars R A gy an Ar gz 5¢ AR an (3.53)

The diffusion equations are then solved explicitly, with the spatial derivatives

being approximated by centered differences. Equations 3.52 and 3.53 become
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'.IJ'+§
The discrete form of the auxiliary variables is
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As in the advection step, when information is needed at positions different from

where they are computed, four-point interpolation is used.

3.6 The Coriolis Step

The F vector in the Coriolis step is given by

F = Af(Uxk) (3.60)
which, after replacing U with the contravariant flux components and taking the dot

product with the contravariant length vectors leads to

UE--. — e fmexq -+ Yeln UE + fm?’ + yg U

At - A A (3.61)
Lr L] -w 2 2
un Aw; Un _ _f&‘:s ; ye UE _ fﬂ:eﬂin Z Yeln n (3.62)

Equation 3.61 is solved first, implicitly in terms of U¥, and using, in the right

hand side, the last known values for the other component, U7™".
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; it} it ki on
l i +fAt Uv',. (3.63)

A:‘+%.5 L

¥
| i Since the two flux components are being computed at different positions, the

) computed values for U" after the diffusion steps must be interpolated in order to
‘E j be used in the Coriolis step. As in the previous cases, a four-point interpolation
— scheme was used.

After getting new values for U¢, they are also interpolated to be used in equation

3.62, which, once again, is solved implicitly in terms of U".

2 2

T +y
wee - £ 01 £ .01 aee
n — gt Wity Witz pré
Uisry = Uiy~ I8 — Uiy
l— ‘|J+'§
L . xes, i+ I".‘.'+ +y5.‘.'+ y"".'+ wee
—fAptird Teird | Trird Tl tur, (3.64)

Ay el

3.7 The Propagation Step

The propagation step includes not only the remaining terms in the momentum

equations but also the continuity equation. Equations for U¢"* and U™ are first

derived from the momentum equations and substituted in the continuity equation
| to get an equation on ¢ than can be solved using a conjugate gradient method. The
J ; new values for ¢ are theyused to compute U¢ and U".

Going back again to equations 3.29 and 3.30, the vector Fis given, in the

propagation step, by




O

F = -gyﬁ (gi'e) - g@i (gfn) + % (72— 73) | (3.65)

The continuity equation, reflecting the mass balance over each computational

cell is given, in the contravariant coordinate system, by

a _ aut aum

3% = T3 B (3.66)

The bottom friction formulation used is outlined in section 3.1. Note that, for
a contravariant coordinate system, the flux magnitude term, which, in the cartesian

coordinate system is given by

8§ = JUE+V3 (3.67)

becomes

V(5 +92) UF + (=3 +2) U7 + 2 (mcmn + vey) VU

8§ = .
y (3.68)

The bottom friction components to be used in the momentum equations can,

therefore, be written as

Ty = (3.69)
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pgU"s

Tbr} = —(W (3.70)

. All three equations in this step are solved implicitly. However, a number of
problems arise from that. First, the bottom friction terms are non-linear, and, to
be solved implicitly, must be linearized. This is done by always using the flux mag-
nitude value given by equation 3.68 after the Coriolis step, and solving implicitly
only for the other occurrence of one of the flux components. The total depth is also
taken after the last time step {since the depth is changed only at the propagation

step, these are the last known depth values):

ngEn-HS“*
W= Towga (3.71)
n pgUum ™ g
Tbrp+1 = Cn'anz (3.72)

The other problem is that, to use the conjugate gradient as presented by Hauguel
(1979}, the n derivative terms in the U¢ equation and the ¢ derivative terms in the
U" equation must be treated explicitly, so that the ¢ derivative terms and the g
derivative terms in the final ¢ equation can be solved separately.

Defining a coefficient 8 given by

gS At
ﬁ = 1+W (3.73)

the following equations are obtained for U¢ and U™:
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¢ H At & H'At 0 |
€n+1 _ U _ q i n+1Y _ g - n+1
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Substituting these into the continuity equation 3.66 and replacing all occur-
rences of ¢"*! with ¢" + A¢, a single equation was derived, where A¢ is the only

unknown, that can be solved using the conjugate gradient method:

A¢ gAt 2 H" 0 d
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Since none of the implicit terms contains any cross derivatives, the same proce-
dure followed by Liu (1988) can be followed, breaking this equation in two, one for

the ¢ derivative terms and the other for the n derivative terms:

A d H" 8 )
29(At)2A§1 T {ﬁ“‘A [y"ag( A4 +$na—5(anc1)“

_ _ 1@ e +_¢9_
N_,i?gAtae ﬁ*-ht a

8
d 1611 :
“’f‘-"’n'a_g (zefn)]} - 53_5 g (¥n 7wz — -"’n'rwv)] — g (3.77)

E(—J:WAQ - :’7 {ﬁf‘A [ye— (yeAg) + 558— (ngg“g)] }
1 @8 n
= *gAta_n(ﬂ*“) an MA [yeas yng )

2 n

+-’E§ ag (Ifl§ )]} n {ﬁqu [yfé-;’- (yfg )

ad
+x5 (:ceg )]} + 3 |5 (YeTwz — zf'rwu)] +¢ (3.78)

| ®

Q= Q
[

A§1 = Agg (3.79)

The spatial derivatives are approximated by centered differences, leading to the

following discrete equations:
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These equations can be written, in matricial form, as

MA¢ = f— N7y ' (3.82)

_ ~ /NA¢ = 0 (3.83)

where . fog-t
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M= [Agl A?&J (3.84)
Nzl%-&] (3.85)

The partial matrices M; and M; are tridiagonal matrices that contain the left
hand side of equations 3.77 and 3.78 respectively, while, in this case, and since
A¢ and A¢, are computed in the same positions, N; is an identity matrix and
Ny = —Nj.

The right hand side vector f is defined as

f= [fl ] (3.86)

where f; and f; contain the right hand side terms (except for ¢) in equations 3.77

and 3.78.

Solving for A¢ in equation 3.82 and substituting in equation 3.83, a new

equation on ¢ is derived,

(NMINT) g = NM™f , (3.87)

This is the equation that is going to be solved using the iterative procedure

described in Hauguel (1979). This consists of choosing the optimum direction and

distance that the solution must move so that the error, NA¢ reaches an absolute
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minimum. If m denotes the iteration number, the solution after each iteration is

given by

qmri-l — qm+mem (3.88)

¥

T TR Tarit

The new variables in the right hand side are the distance the solution must be

moved, p and the direction, W. Hauguel (1979) defines a functional J, given by

J(q) = %qT (NMINT) g~ g7 (NM7f) (3.89)

which is the base for what he calls the descent method (choice of the optimal
distance for an arbitrary direction) and the conjugate gradient method (selection of
the optimal direction).

The optimal distance p is the one for which J (¢™*!) — J(¢™) has a zero-

derivative. By substituting equation 3.88 in equation 3.89, this is found to be

- W™ T NAe™
(Wm)L NM-1INTWm

(3.90)

Similarly, an optimal direction W can be found by writing

wm = gm_{_“m—lwm—l (3.91)
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and finding the value of ™! for which the difference J (¢g™*!) — J (¢™) has a zero-

derivative.

This is called the gradient step method because it yields a solution for x,

m—-1 __ (Agm)T NTNAgm
(As-m—-l)T NTNAS""’_I

(3.92)

for which W™ and W™~! are conjugate relative to (NM -iN T), since substituting

equation 3.92 into equation 3.91 leads to

W™ NMINTW™ = 0 (3.93)

To make the computation of p and p simpler, a2 new vector V can be defined as

vm = MTINTwm™ (3.94)
and p is now
e
m . (™) NAe™
= = 3.95
? W™ Ny (8.95)

Multiplying both sides of equation 3.94 by M, a new equation can be derived

that looks similar to equation 3.82:
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MV™ = NTw™ (3.96)

The full iterative procedure can now be outlined:
1. Use the value of ¢ at the last time step as ¢°.
2. Solve MA¢® = f — NT¢O,

3. Compute the error ¢° = A¢l — A¢J.
4. Define the initial direction W* = g*.

5. Solve MV™ = NTw™,

E(A;F—A;g‘)wm

6. Compute p™ = Srvp)we

7. Advance g, using ¢™*! = g™ 4 pmW™,
8. Solve MA¢™+ = f — NTgmtl,

9. Compute the new error g™*! = A¢*! — A¢f**! and stop if it falls under a

specified control parameter.

Y(asp+i-agptiy?
T(agqr-ag)”

11. Define the new direction W™+ = gmtl 4 mpym,

10. Compute p™ =

12. Increase m and go back to 5.

The two solutions, A¢; and Ag¢; are averaged point by point, to get the final A¢

solution. The new values of ¢ are given by

"t o= "4 A¢ (8.97)
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|
The new surface elevation values are the inserted into the discrete form of equa-
il tions 3.74 and 3.75 to get the new flux values.
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3.8 The Boundary Conditions

The present model works -only for closed basins, with no-slip and no-flow through

"

boundary condition. Both flux components are taken to be 0 at the boundary, and

. the surface displacement' is taken to be the same as at the nearest cell, or, which is

[

© the same, the surface displacement gradient is taken to be 0 at the boundary.
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3.9 Numerical Stability

The complex character of the Navier-Stokes equations and the non- linearity of
some of its terms makes it very difficult to formally analyze the numerical stability of
the schemes used. As a guideline for the largest admissible time step, however, and
since the advection and diffusion terms are solved explicitly, the stability criteria

valid for linear equations can be used:

At < ZA{ (3.100)
2
At < (ﬁ’; (3.101)

where the minimum linear dimension of the grid cells and the maximum velocity in
the basin should be used,
Since the U” term in the U¢ Coriolis equation is also treated explicitly, the

Coriolis stability condition,

At < (3.102)

!
ol

can also be used as an indication. This condition is, in general, much less stringent
than 3.100, and it is unlikely to become a limitation on the possible time step.

Finally, the stability condition associated with the propagation step is

S TnE (3.103)
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Since the cross-derivative terms in the propagation step are treated explicitly, it
was not clear if this condition would effectively impose a limit to the possible time

step or not. However, several test cases were run with time steps up to five times

higher than this condition would allow, without any stability problems.

Equation 3.100 seems therefore to be, in the usual cases, the best indication of
the stability condition for the whole model.

The fact that the time derivatives are approached by forward differences and

the spatial derivatives by centered differences leads to first-order accuracy in time

and second-order accuracy in space.
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CHAPTER 4
APPLICATIONS

After the development of a numerical model, it is necessary to validate it by
comparing its results with analytical solutions or with results obtained with well-
known models whose accuracy has been, in due time, proved.

In the present case, a number of tests were run with the present model and with
the two-dimensional versioﬂ of the three-dimensional model CH3D, which has been
well tested, as presented in, Sheng (1987), Sheng et al. (1988) and Sheng (1989).

4.1 Comparison with Analytical Solution

For the simple case of constant wind over a rectangular basin with flat bottom,

if only the pressure and wind terms are retained, the momentum equation in the

direction of the wind is reduced to

d¢ -
E" = TEI!E (4.1)
2
which, when integrated, yields
- 02 (5 — z) + C (4.2)
C— ¢ = ?’g T 0 '

(,Q.uwaomaml YN H)

where the index 0 denotes a known point and C is the constant of integration. To

ensure mass conservation, and since the surface elevation gradient is uniform, the

40
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constant of integration is 0 if z, is taken to be the center of the basin. Equation

4.2 then becomes

Twz

- [’agH

¢ (z — zq) (4.3)

A skewed grid (figure 4.1) was designed for a square basin with 50km X 50km
with uniform depth of 3.0m. The model was run until it reached steady state, for a
uniform wind blowing from the west, corresponding to a wind stress of 1dyne/cm?
and the results of the simulation were interpolated for a line parallel to the z-axis
through the center of the basin. Those results are shown in figure 4.2, together with

the analytical results.

4.2 Square Basin with Constant Slope

The same skewed grid as before (figure 4.2) was used, with a uniform bottom
slope in the south-north direction. Depth is 7.5m at the north end and 2.5m at
the south end. The Coriolis factor f was taken as 0.00009sec™?, the eddy viscosity
coefficient Ay as 10000em?/sec and, in modeling the bottom friction, Manning’s
n was taken as 0.040. The simulation was run for a constant and uniform wind
blowing from the east, with a wind stress Twz = ldyne/em?, for 2.5 days, with a

time-step of 10min.

The CPU time needed for the computation compared favorably with CH3D
(12 min. and 44 sec. against 20 min. and 25 sec.) and the velocity and surface
displacement results at the last time step are shown in figures 4.4 and 4.6 for the
present model and in figures 4.5 and 4.7 for CH3D. Results at every time-step were
recorded at four different points (A through D in figure 4.1) and those results are
shown in figures 4.8 and 4.9 for the present model and in figures 4.10 and 4.11 for
CH3D.
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square basin with uniform depth

Figure 4.1: Skewed grid for a
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Figure 4.6: Surface elevation with constant slope - present model




48

2. {0
0

L)) ]

! ! ! ! ! ! ! ] !

Figure 4.7: Surface elevation with constant slope - CH3D

PP L ry R ey oy



¢ -1 -4 - 7 I =1 ‘] /1 3 ]

I

. =

o

l‘[ ——me

Surfoce Elevatlon gt Point A

10 .
:E: \/\/‘
T
o
K
-iQ
0 12 24 36 a8 0
Time [ Hours }
10 Oepth-Avercged Current at Point A
[ 3]
£ st |
X
<
I '
]
‘=2
o -5¢ . .
o .
-10 : : : -
12 24 35 48 60
Time [ HFours )
10 Depth-Averoged Current ot Point &
- L
9
£ s -
£
[X)
:ﬁo 1
o
o
35
b 3
-i3 . - .
0 12 it i 48 60
Time | Hourz ]

49

[ cm)

Zelo

( cm/sec )

U Veloclty

[ cm/aec )

¥ Velocity

Surfoce Elevaotion at Paint B8

10
-
Q¢
-i0
0 12 24 3% 48 80
Time [ Hou's )
o Desth-Rveroged Current at Point 8 '
1 " T r
s.
o ——
°y
-5
-10 " i . .
2 24 6 48 B0
Time [ Hours ]
10 Depth-Averaged Current at Polnt B
St ///”,___
o/
-5 4
-10 :
Q 12 22 38 48 &0
Time [ Hours )

Figure 4.8: Time series results at points A and B - present model




{ cm )

feta

[ cm/sec )

" U velodily

{ ca/sec )

V Veloclly

Surfaoce Elevetion ot Point C

10 -
0 4
-iQ i
Q 12 24 36 48 &0
Time ( Hours )
Depth-Averaged Current ot Point C
5t 4
o i
=10 i " M :
¢ 12 24 26 43 60
Time [ Hours )
10 Depth-Averaged Current at Polnt €
g
-5} 4
=10 . . ;
0 12 24 36 48 g0
Time ( Hours |

50

V veloclly

(N

1ela

{ cn/sec )

U Veloclty

( cm/sec )

Surfoce Elevatlon ot Point 0

10
a
\J
-0 -
0 12 24 36 48 60
Time [ Hours ]
0 Denth-fiveroged Current ot Point D
1 . . . r
5 b
_5 - -
__lo n J " A L
0 12 24 B 48 &3
Time [ Bowurs }
0 Depth-fAvercged Current gb Point O
1 T T T v
S §
) -\n 1
\_.\__‘
-5 t
-10 :
0 12 24 36 48 60
Time [ Hourz ]

Figure 4.9: Time series results at points C and D - present model




.

Surfocs Elevotion ot Paint R

10
&
L
- . J
-]
&
__10 " -
0 12 24 26 48 60
Time { hours )
10 Qepth-Averoged Current at Point #
o
g st
T
7]
2 °f
Q
s 5
= .
=10 i i i "
0 12 24 36 48 60
Time [ Hours )
10 Cepth—Averoged Current ot Point A
3
Ky St J
£
Q
z ]
Q
Q
2 -5 ]
-
-10 .
i 12 z4 36 48 80

Time | Fours |

51

[ cm }

fela

[ ca/aec |

U Velaclly

[ cm/sec )

V Velocily

10

-10
0

10

[ ]

i
ul

1
[an
[w]

10

Surfoce Elevgtion gt Point B

[\/

12 24 36 45 &0
Time [ Hours )

Desth-fiveroged Current ot Polnt B

<

¥4 24 36 48 60
Time [ Hous )

Deoth-Averoged Current at Point B

Figure 4.10: Time series results at points A and B - CH3D




1

A S -

T

(-

lcm )

Zeta

[ cm/3ec )

U Veloclty

{ cm/sec )

V Veloclty

10

o

1
wn

]
-
L]

10

N

Suefoce Elevation at Point O

3%
{ Hours )

48 80

Depth—fivercged Current ot Point O

52
Surfoce Elevation gt Point C 0
. . - . 1
4
Q
] T
o
K
~-10 +
¢ 12 24 38 43 80 0 12 24
Time { Hours ) Time
Oepth-fAveroged Current ot Point € 10
L
L 4 e St
e
&
Q

e

k)
{ Hours )

48 6¢

Depth-Averoged Current ot Point O

LL =t
)
Q
L ] E =5
. =
1 P L 1 1 _lo L i
12 24 36 48 50 Q 12 24
Time ( Hours ) Time
Depth—fiveroged Current gt Point C q
(%]
L 8 st
=
[&]
a “ 3 0 'y
o N~
(=]
L 4 © -5t
=] .
o
. . . -10 ;
12 24 B - 48 g0 0 12 24
Time [ Hours ] Time

Figure 4.11: Time series results at points C and D -

CH3D




53

The surface displacement results are practically the same for both models, while
the velocities computed by the present model are slightly higher than those com-
puted by CH3D. This is consistent with all the other test cases run, and will be

discussed in the last chapter.

4.3 Square Basin with V-Shaped Bottom

The same skewed grid (figure 4.12) was used in this problem, with a V-shaped
bottom. The deepest part of the basin runs east-west at the center of the basin.
Depth is 2.5m at the north and south ends and 5.0m at the center. The Coriolis fac-
tor f was taken as 0.00009sec™?, the eddy viscosity coefficient Ay as 10000cm?/sec
and, in modeling the bottom friction, Manning’s n was taken as 0.04. The simula-
tion was run for a constant and uniform wind blowing from the east, with a wind

stress Ty, = ldyne/cm?, for 2.5 days, with a time-step of 10min.

The velocity and surface displacement results at the last time step are shown in
figures 4.13 and 4.15 for the present model and in figures 4.14 and 4.16 for CH3D.
Results at every time-step were recorded at the same four points and those results
are shown in figures 4.17 and 4.18 for the present model and in figures 4.19 and 4.20
for CH3D.

4.4 Lake Okeechobee with Constant Wind

A curvilinear grid (figure 4.21) was designed for Lake Okeechobee, in South
Florida. Lake Okeechobee is approximately circular, with an average diameter of
more than 50km and depth not exceeding Tm (figure 4.22). At the west end,
there is a vast area where d_epth is less than 1Im. The depth values used in the
computations were first digitized from a chart, interpolated for the grid nodes and
an offset was added to all depth values based on available field data, therefore

representing accurately the water level of the lake in the Spring of 1989.

Once again, the Coriolis factor f was taken as 0.00009sec™?, the eddy viscosity

coefficient Ay as 10000cm? /sec and, in modeling the bottom friction, Manning’s n
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Figure 4.12: Skewed grid for a square basin with V-shaped bottom
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Figure 4.15: Surface elevation with V-shaped bottom - present model
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Figure 4.18: Time series results at points C and D - present model
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Figure 4.19: Time series results at points A and B - CH3D
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Figure 4.20: Time series results at points C and D - CH3D
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Figure 4.21: Curvilinear grid for Lake Okeechobee
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Figure 4.22: Bottom contours for Lake Okeechobee
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Figure 4.23: Velocity results for Lake Okeechobee - present model

was taken as 0.04. The simulation was run for a constant and uniform wind blowing
frem the east, with a wind stress 7, = 1dyne/cm?, for 2.5 days, with a time-step
of 10main.

The velocity and surface displacement results at the last time step are shown in
figures 4.23 and 4.25 for the present model and in figures 4.24 and 4.26 for CH3D.
Results at every time-step were recorded at six different points (A through E in

figure 4.21) and those results are shown in figures 4.27 through 4.29 for the present

mode! and in figures 4.30 through 4.32 for CH3D.
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Figure 4.25: Surface elevation for Lake Okeechobee - present model
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Figure 4.26: Surface elevation for Lake Okeechobee - CH3D
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Figure 4.27: Time series results at points A and B - present model
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Figure 4.29: Time series results at points E and F - present model
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Figure 4.30: Time series results at points A and B - CH3D
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Figure 4.32: Time series results at points E and F - CH3D
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4.5 Lake Okeechobee with Sinusoidal Wind

To test the long-term numerical stability of the model, the same problem as
before was run, with a uniform wind varying with time. The wind stress was taken
to follow a sine wave, of amplitude 1dyne/cm? and period 12krs.

The simulation was run for 10 days, and the time-series of the results at the

same six points as before are presented in figures 4.33 through 4.35.
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Figure 4.33: Long-term simulation results - points A and B
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Figure 4.34: Long-term simulation results - points C and D
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Figure 4.35: Long-term simulation results - points E and F




CHAPTER 5
CONCLUSIONS

The work leading to this thesis was started with the idea that a number of
techniques that have been developed for finite difference and finite element models
could be successfully applied together with a finite volume approach, therefore com-
bining progress made in different directions in one single model. The time limits
involved cut the objectives of this work to a demonstration of the possibilities of the
method, instead of a full exploration of those possibilities. Therefore, this chapter
is a preview of possible future work more than an analysis of past work.

The advantages that derive from starting the development from the integral
form of the conservation equations instead of the differential form of the same equa-
tions have been the object of Vinokur {1986) and, therefore, will not be further
analyzed here. Being naturally conservative, the resulting equations look consider-
ably simpler than the corresponding finite difference equations, which seems to lead
to a considerable economy in terms of computation time. Recent work suggests that
a careful combination of cartesian and cont‘ravariant velocity components in some
terms in the equations might make them simpler. That is one line where future
work could bring some developments.

The fractional step method Yanenko (1971), allowing different terms in an equa-
tion to be solved using different numerical techniques is a very powerful tool, used
before in finite difference models, as in Liu (1988) and in finite element models, as
in Baptista (1986). It opens the possibility of avoiding strict stability conditions, by
solving implicitly the terms associated with those conditions, allowing, at the same

time, other terms in the equations to be solved using simpler techniques, less time
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consuming and, therefore, cheaper. It is also possible to use different time steps fo?
different terms in the equations, leading to considerable economy in terms of CPU
time.

Using a conjugate gradient method to solve the propagation step involved, as
wés seen before, the linearization of the cross- derivative terms. It is possible that
better ways to deal with the problem can be developed, leading to greater accuracy
without losing computational speed.

The more immedia.te need is, however, the extension of the model to allow for
open boundaries, needed to model any estuary or coastal area.

Finally, as was noted in the previous chapter, the velocity results obtained now
are consistently higher than those computed by CH3D. This is more evident for
smaller depths, as in the westernmost area in Lake Okeechobee. Further research
on why this happens is needed and, once again, the possibility to model open
boundaries can help, due to the large number of theoretical solutions available for
tidal-forced circulation. It should also be noted that, although extreme care was
put into writing the computer code, and extensive debugging followed, it should be
kept in mind that, as in all new computer codes, it is still possible that errors might
remain in the code.

To conclude, the objective of showing the possibilities offered by the joint usage
of some of the latest developments in different numerical methods was met. The
time limitations implicit in a master’s program did not allow for full exploration of
some of the features of the model and, therefore, considerable improvements should

still be possible. The fact that these first results look promising suggests that fur-

ther development of the model is advisable.
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