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ABSTRACT 

 
TITLE: Probabilistic Assessment Of The Safety Of Coastal 

Structures 
 (Ph.D. thesis submitted to the University of Liverpool, 1998) 
 
AUTHOR: Maria Teresa Leal Gonsalves Veloso dos Reis 

 
This thesis is about the safety of coastal structures. To date, applications of 
probabilistic methods in the design of coastal engineering works have been 
very limited. The present study concentrates on the probabilistic assessment 
of single failure modes using First Order Reliability Methods (FORM). FORM 
have been implemented in a computer program called PARASODE which 
has been developed as part of this research. The program has been used to 
study the failure mechanisms of seawall overtopping by waves and of dune 
erosion during a storm surge. 
 
A brief review of available equations for predicting wave overtopping is 
followed by the development of a new model and re-analysis of a large set of 
existing overtopping data for simple seawalls having uniform seaward slopes 
of 1:1, 1:2 and 1:4. Both the new model and an earlier formulation are used 
as input to PARASODE. It is suggested that, in both cases, regression 
coefficients contained within the overtopping equations should be 
established using a robust regression technique such as Least Absolute 
Deviations (LAD). It is shown that the two overtopping models are little 
different in their ability to represent the data, but the new model is inherently 
better suited to describing low overtopping rates. 
 
An example is given of the application of the new and existing overtopping 
models in predicting the freeboards necessary to limit discharges to specified 
values. This example shows that, for the small allowable rates associated 
with normal design conditions, the new model predicts seawall crest 
elevations which may be several metres lower than the values from the 
earlier model. Such differences may have significant financial and 
environmental consequences and are worthy of further investigation. 
Calculations using PARASODE show that the choice of overtopping model is 
also very important in the probability assessment of the safety of seawalls. 
The FORM sensitivity parameters demonstrate that the main influence on 
the variability of the probability of failure is generally provided by the 
uncertainty in the sea state. The accuracy of the FORM reliability algorithms 
used in PARASODE is confirmed by comparing with results provided by the 
simulation method of Latin Hypercube Sampling (LHS). 
 
Dutch experience with regard to the probabilistic design of dunes is also 
examined. The computational procedures currently used in The Netherlands 
are based on an equilibrium profile model. They are not directly applicable to 
conditions along coasts such as that in Sefton, UK, where there is a much 
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weaker correlation that in The Netherlands between wave heights and water 
levels. Consequently, only some features of the Dutch methods are 
incorporated in PARASODE. Examples illustrate how nourishment can be 
used to decrease a dune’s failure probability caused by erosion during a 
storm surge. PARASODE is run in two modes. In mode 1, a nourishment 
width is chosen and the corresponding probability of failure is calculated. In 
mode 2, a probability of failure is input and a corresponding nourishment 
width is computed. These tests demonstrate the converse nature of modes 1 
and 2 and show consistency between the results. The FORM sensitivity 
parameters show that the most important contributions to the resulting 
variance in the probability of failure are provided by uncertainties in the 
maximum water level during surge and the sea state. 
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LIST OF NOTATION 

 

Wherever possible, the notation used in the text of this thesis follows the 

recommendations of the International Association of Hydraulic Research 

(IAHR, 1989). The notation used in PARASODE is defined within the 

program. 
 
 

NOTATION 
IN TEXT 

DEFINITION 

a • Constant (Chapter 2) 
• Coefficient (Chapter 4) 

A 
• Regression coefficient (Chapters 3, 5 & 6; Appendix D) 
• Area between the surge level and the parabolic part of 

Vellinga's profile (Appendix C) 
Ac Accuracy of Vellinga's computational model 

AN
2

 Anderson-Darling statistic 

b 
• Coefficient (Chapter 4) 
• Regression parameter considered, b0 or b1 (Appendix 

A) 

b0 Estimate of parameter β0  

b1 Estimate of parameter β1  

B 
• Regression coefficient (Chapters 3, 5 & 6; Appendix D) 
• Area between the surge level and the gradient 1:mt of 

Vellinga's profile (Appendix C) 

BD Area of a depression 
BetaAcc Relative accuracy of the reliability index 

BH Area of a hump 

C 

• Coefficient (Chapter 3) 
• Ratio of the maximum run-up to the significant height 

of the incident waves (=Rmax/Hs) (Chapters 3 & 5) 
• Erosion quantity (m3/m) above storm surge level 

(Chapter 4 & Appendix C5) 

CL Crest level above datum 
Cd Discharge coefficient 

Cov[X] Covariance matrix of X=(X1,...,XN) 

Cov[X,Y] Covariance of X and Y 

d Depth 
dX Infinitely small integration step on variable X 
dS Still-water-depth at the toe of the seawall 

 Table 1: Notation. 
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NOTATION 
IN TEXT 

DEFINITION 

D 

• Design point (Chapter 2) 
• Matrix of eigenvalues of Cov[X] (Chapter 2) 
• Area between the two 1:md gradients, the surge level 

and the nourished profile (Appendix C) 

Depth Depth of the most seaward point of the parabolic part of 
Vellinga's post-storm profile 

DF Degrees of freedom 

DP 
• Change in the initial profile (Chapter 4; Appendices B, 

D3 & D4) 
• Design Point (Appendix D2) 

DN Kolmogorov-Smirnov statistic 

D50 Median grain size diameter (50% of the weight being finer) 

e Estimate of the error term ε ; also called residual from the 
regression line 

eA Parameter representing the degree of variability in 
regression coefficient A 

eB Parameter representing the degree of variability in 
regression coefficient B 

E Area which lies between points (S9,T9), (S2,T2), the 
surge level and the nourished profile 

E[...] Expected value operator; it represents the expected value 
of its argument 

Err Error in the balance between erosion and accretion 
Err1 Error in the balance between TSurch and area D 

Enc 
Encounter probability (probability that the Tr-year return 
load will be exceeded at least once during the design life 
or reference period) 

f(X1,...,XN) A function of the N variables, Xi, i=1,...,N 

fX Probability density function of variable X  

fX(x) Probability density function of variable X evaluated at point 
X=x 

fX XN1,...,  Joint probability density function of variables X1,...,XN 

F F statistic 

F(t) A function of time (in the description of water surface 
elevation) 

FCrit 
Value of the F statistic corresponding to the one-tailed F 
distribution with p and N-p-1 degrees of freedom, for a 
specific level of significance α  

FX 
• Cumulative distribution function of variable X 
• Input data cumulative distribution function of variable X 

(Appendix A) 

FX(x) Cumulative distribution function of variable X evaluated at 
point X=x 

FX ri i,  
The cumulative distribution function of the maximum 
intensity of action Xi within the reference period, Tref, 
which is subdivided into a number, ri, of elementary time 
intervals for action Xi 

 Table 1: Notation (continued). 
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NOTATION 
IN TEXT 

DEFINITION 

F X
F

 Fitted cumulative distribution function of variable X 

F xX
F ( )

 
Fitted cumulative distribution function of variable X 
evaluated at point X=x 

F X
r

i

i

 
Cumulative distribution function of the intensity of the 
action Xi raised to the power ri 

F X
−1

 
Inverse of the cumulative distribution function of variable X 

F xX
−1( )  

Inverse of the cumulative distribution function of variable X 
evaluated at point X=x 

g Acceleration due to gravity 

G Net loss of sand from a coastal profile owing to a gradient 
in the longshore transport rate 

GB Gust bumps 
Go Reference value for G 

h Maximum water level during storm surge 
H Wave height 
Ho Null hypothesis 

Hrms Root mean square wave height 

HS Significant wave height 

H hS  Value of HS given a value for h 

HS_Inacc Variable representing the inaccuracy in HS given a value 
for h 

Hwavemax Upper limit on µH hS  to account for depth limitations 

i, j Integers 

k 

• An integer 
• Number of time-varying actions (Chapter 2 & Appendix 

C6) 
• Coefficient (in the description of water surface 

elevation) (Chapter 3) 
• Number of classes into which the data is grouped for 

use of the Chi-Square test (Appendix A) 

K Armour stability coefficient (in Iribarren's equation) 
KD Armour stability coefficient (in Hudson's equation) 

K XR  
Coefficient defining the fractile which corresponds to the 
characteristic value of the resistance variable, XR 

K XS  
Coefficient defining the fractile which corresponds to the 
characteristic value of the load variable, XS 

l  An integer 

Le Length of the parabolic part of Vellinga's 
post-storm profile 

Lm Airy wavelength at the toe of the seawall calculated using 
the mean zero-crossing wave period 

Lop Airy wavelength in deep water calculated using the period 
of peak spectral density (= gTp

2 2/ π ) 

 Table 1: Notation (continued). 
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NOTATION 
IN TEXT 

DEFINITION 

Los Airy wavelength in deep water calculated using the 

significant wave period (=gTs
2 2/ π ) 

Lp Airy wavelength at the toe of the seawall calculated using 
the period of peak spectral density 

LS Airy wavelength at the toe of the seawall calculated using 
the significant wave period 

m 
• Total number of time intervals per year (Chapter 2) 
• Number of parameters of a probability distribution 

estimated from a data set (Appendix A) 

1:md Gradient of the eroded dune face 
1:mnour Gradient of the nourished face 

1:mt Gradient of the toe of the post-storm profile 
MaxIter Maximum number of iterations in a FORM calculation 
MADReg Mean absolute deviations regression 

MADRes Mean absolute deviations residual 

MSReg Mean square regression 

MSRes Mean square residual 

n Ratio of the prototype value to the model value 
nourtlev Nourishment top level 
nourwidt Nourishment width at top level 

nd Depth scale (for beach profile and hydraulic conditions) 

nl Length scale for beach profile 

nt Time scale 

nw Scale for the fall velocity of the sand 

nH Wave height scale 

nL Wavelength scale 

nT Wave period scale 

N 

• Number of variables (Chapter 2) 
• Number of run-up values (Chapter 3) 
• Number of observed data points in a sample (Appendix 

A) 

NPch Number of points to be changed in the initial profile 

NPD Initially, the number of points defining the initial profile; 
then, the number of points defining the nourished profile 

NPV Total number of points defining Vellinga's profile 
NumDep Number of depressions 

NumHump Number of humps 

Nj 
Number of data points in the jth class (in the Chi-Square 
test) 

NS Stability number of armour stones 

NWO% Percentage of waves passing over the crest of a structure 

 Table 1: Notation (continued). 
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NOTATION 
IN TEXT 

DEFINITION 

NX Number of data points, Xi's, less than or equal to x, 
i=1,...,N 

NRji 
Power to which each basic distribution, FX i

, should be 
raised, for each time-varying action Xi, i=1,...,k, and for 
each combination j, j=1,...,k 

p 

• Probability of occurrence of a time-varying action in 
each elementary time interval, τ  (Chapter 2) 

• Number of independent variables in the model 
(Appendix A) 

pj 
Expected proportion of the data points that would fall in 
the jth class if sampling was done from the fitted 
distribution (in the Chi-Square test) 

Pf Probability of failure 

q Instantaneous discharge of water over unit length of 
seawall 

Q 
• Mean overtopping discharge over unit length of seawall 

(Chapter 3) 
• Area between the surge level and the nourished profile 

below surge (Appendix C) 
Qp Peak overtopping discharge 

QPRED Predicted mean overtopping discharge over unit length of 
seawall 

Q* Dimensionless overtopping discharge 
r Effective roughness of the seawall's front slope 

ri 
Number of elementary time intervals during the design life 
or reference period of a structure for the time-varying 
action Xi 

R 
• Reliability (Chapter 2) 
• Most landward position to which a dune profile has 

been eroded during a storm surge (Chapter 4) 

RD Retreat distance 
ReqBetaAcc Required relative accuracy of the reliability index 

ReqZAcc Required accuracy of the failure function 

Rc Seawall's freeboard (the height of the crest of the 
structure above the still-water-level) 

Rmax Maximum run-up (=CHs) 

(Rmax)p% p% confidence value of the estimated maximum run-up 

RS Significant wave run-up 

R2% Run-up exceeded by only 2% of the incident waves 

R2 Coefficient of determination 

Ra
2

 
Adjusted statistic which attempts to correct R2 to more 
closely reflect the goodness of fit of the model in the 
population 

R* Dimensionless freeboard 

 Table 1: Notation (continued). 
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NOTATION 
IN TEXT 

DEFINITION 

sup[...] Smallest upper bound on members of the set [...] 

si 
Number of elementary time intervals during a period of 
time shorter than the reference period of a structure for 
the time-varying action Xi 

sm Deep water wave steepness calculated using Tm  

sp Deep water wave steepness calculated using Tp  

S Sample standard error of the estimate 
SD Surge duration 

SDep Cumulative area of the depressions starting from the 
seaward end of the profiles 

SEb Standard error of the parameter b considered, bo or b1, (or 
estimate of the standard error) 

SEbo Standard error of bo (or estimate of the standard error of 
bo) 

SEb1 Standard error of b1 (or estimate of the standard error of 
b1) 

SEIndY
∧

 

Standard error of the individual prediction at a specific 
value Xo of X (or estimated standard error of the individual 
prediction at a specific value Xo of X) 

SEY
∧

 

Standard error of the predicted mean value of Y at a 
specific value Xo of X (or estimated standard error of the 
predicted mean value of Y at a specific value Xo of X) 

SHump Cumulative area of the humps starting from the seaward 
end of the profiles 

Smooth Smoothing coefficient for the iteration process 

Surcharge A coefficient for the surcharge on the erosion area above 
surge level 

SurchEros 
Surcharge on erosion area C above surge level to take 
into account the effects of the storm surge duration, of the 
gust bumps and of the accuracy of the computation 

SurchLongT Surcharge on erosion area C to take into account the 
effect of a gradient in the longshore transport rate 

SurD Total surcharge distance 

S1 
X-coordinate of the intersection point between the 
nourished profile and the surge level 

S2 
X-coordinate of the intersection point between the 
nourished profile and the gradient 1:mt of Vellinga's profile 

S3 
X-coordinate of the intersection point between the 
nourished profile and the gradient 1:md of Vellinga's 
profile 

S4 X-coordinate of the intersection point between the 
nourished profile and the surcharge gradient, 1:md 

S8 X-coordinate of the starting point of the parabolic part of 
Vellinga's post-storm profile 

S9 X-coordinate of the point where the parabolic part of 
Vellinga's profile finishes 
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S10 X-coordinate of the point of intersection between the surge 
level and the gradient 1:md of the surcharge 

SADReg Regression sum of absolute deviations 

SADRes Residual sum of absolute deviations 

SSReg Regression sum of squares 

SSRes Residual sum of squares 

SX Standard deviation of the X values 

S1 Parallel-series system 

S11,S12, S13 Sub-systems of system S1 

t • Time (Chapters 2, 3 & 4) 
• t statistic (Appendix A) 

tanα  

• Tangent of the angle of seawall front slope measured 
from horizontal (Chapters 3 & 5; Appendix D2) 

• Tangent of the angle of the armour slope measured 
from horizontal (Chapter 3) 

tCrit 
Value of the t statistic corresponding to the two-tailed 
Student's t distribution with N-p-1 degrees of freedom, for 
a specific level of significance α  

T Wave period 
TL Toe level above datum 
TR Target value for each FORM calculation 

TSS Total sum of squares 

TSurch Total surcharge on erosion area C which is the sum of the 
surcharges SurchEros and SurchLongT 

T1 Y-coordinate of the intersection point between the 
nourished profile and the surge level 

T2 
Y-coordinate of the intersection point between the 
nourished profile and the gradient 1:mt of Vellinga's profile  

T3 
Y-coordinate of the intersection point between the 
nourished profile and the gradient 1:md of Vellinga's 
profile 

T4 Y-coordinate of the intersection point between the 
nourished profile and the surcharge gradient, 1:md 

T9 Y-coordinate of the point where the parabolic part of 
Vellinga's profile finishes 

Tm Mean zero-crossing wave period 
Tp Wave period corresponding to peak spectral density 
Tr Return period 

Tref Design life or reference period of a structure 
TS Significant wave period 

u Variable in the definition of the incomplete Beta function; 
u=(X-x1)/(x2-x1) 

U Normalised variable 
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V Matrix of eigenvectors of Cov[X] 

Var[X] Variance of X (σX
2 ) 

Vp Peak volume of water in an individual wave 

w Sediment fall velocity for a given water temperature 
W Weight of armour stones 
x Particular value of the variable X 

x1, x2 Respectively, the lower and upper limits on X for a Beta 
distribution 

X 

• Basic variable (Chapter 2 & Appendix D) 
• X-coordinate (Chapters 4, 5 & 6; Appendix C5) 
• New unsmoothed value of X (Chapter 5) 
• Independent variable or X-ccordinate of an observed 

data point in a sample (Appendix A) 
• Variable (Appendix C3) 

XB X-coordinate of the intersection point between the 
changed profile and the surge level 

XDEnd X-coordinate of the end point of a depression 
XDStart X-coordinate of the starting point of a depression 
XHEnd X-coordinate of the end point of a hump 
XHStart X-coordinate of the starting point of a hump 

XM X-coordinate of the most seaward point at the 
nourishment top level 

XMax Maximum value of variable X 
XMin Minimum value of variable X 

XN X-coordinate of the intersection point between the 
changed profile and the nourishment top level 

Xo 
• Point of truncation of a probability distribution, if the 

distribution is truncated (Chapter 5) 
• Particular value of X (Appendix A) 

XP 
Initially, the X-coordinate of the points defining the initial 
profile; then, the X-coordinate of the points defining the 
changed profile; finally, the X-coordinate of the points 
defining the nourished profile 

XPV X-coordinate of the points defining Vellinga's profile 

XQ X-coordinate of the intersection point between the 
nourishment slope 1:mnour and the changed profile 

Xmax Seaward X-limit of Vellinga's parabolic profile 
Xq Quantile of the input data cumulative distribution function 

XNew New smoothed value of X 
XOld Value of X in the previous iteration 

XR 
• Resistance variable (Chapter 2) 
• Distance from the origin to the most landward position 

to which the dune profile has been eroded during a 
storm surge (Chapter 4) 

XRch  Characteristic value of the resistance variable, XR 

XS Load variable 

 Table 1: Notation (continued). 



List Of Notation 

 xxxiii 

 

NOTATION 
IN TEXT 

DEFINITION 

XSch  Characteristic value of the load variable, XS 

XT Target X-coordinate 

X* Linearization point used in the Level II methods 

X  Mean of the X values of the data points in a sample 

XNew
*

 New linearization point 

X q
F

 Quantile of a fitted cumulative distribution function 

Y 

• Non-correlated variable (Chapter 2 & Appendix D) 
• Y-coordinate (Chapters 4, 5 & 6; Appendix C5) 
• Dependent variable or Y-coordinate of an observed 

data point in a sample (Appendix A) 

YB Y-coordinate of the intersection point between the 
changed profile and the surge level 

YDEnd Y-coordinate of the end point of a depression 
YDStart Y-coordinate of the starting point of a depression 
YHEnd Y-coordinate of the end point of a hump 
YHStart Y-coordinate of the starting point of a hump 

YM Y-coordinate of the most seaward point at the 
nourishment top level 

YN Y-coordinate of the intersection point between the 
changed profile and the nourishment top level 

YP 
Initially, the Y-coordinate of the points defining the initial 
profile; then, the Y-coordinate of the points defining the 
changed profile; finally, the Y-coordinate of the points 
defining the nourished profile 

YPT9 Y-coordinate of the point in the nourished profile which 
has X=S9 

YPV Y-coordinate of the points defining Vellinga's profile 

YQ Y-coordinate of the intersection point between the 
nourishment slope 1:mnour and the changed profile 

Ymax Seaward Y-limit of Vellinga's parabolic profile 
Ymed Median of the Y values of the data points in a sample 

Y
∧

 
Predictive value of Y 

Y  Mean of the Y values of the data points in a sample 

z z statistic 

zCrit 
Value of the z statistic corresponding to the two-tailed 
standard Normal distribution, for a specific level of 
significance α  

Z Failure function or limit state function 

Zi 
Value of the fitted cumulative distribution function 
evaluated at xi, F xX

F
i( )  

ZResid Standardised residuals 
Z* Value of Z evaluated at the point X* 

 Table 1: Notation (continued). 
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α  

• Sensitivity factor (Chapters 2, 5 & 6; Appendices D2 & 
D4) 

• Angle of the seawall front slope measured from the 
horizontal (Chapters 3 & 5) 

• Armour slope (Chapter 3) 
• Significance level (Appendix A) 

β  

• Reliability index (Chapter 2) 
• Angle of wave approach measured from the normal to 

the seawall (Chapter 3) 
• Parameter of a model, β0 or β1  (Appendix A) 

β ζ λ( , )  Beta function; β ζ λ ζ λ ζ λ( , ) ( ) ( ) / ( )= +Γ Γ Γ  

β ζ λ β ζ λu( , ) / ( , )  Incomplete Beta function 
βNew  Reliability index of the current iteration 
βOld  Reliability index of the previous iteration 
β0  Unknown parameter of a model (also called the intercept) 

β1  Unknown parameter of a model (also called the slope) 
 

γ  

• Partial coefficient (Chapter 2) 
• Reduction factor to account for influences of berms, 

roughness, shallow water and oblique wave attack on 
wave run-up and overtopping (Chapter 3) 

Γ( )ζ  Gamma function; if ζ  is an integer value, Γ( ) ( )!ζ ζ= − 1  

Γ Γ( , ) / ( )ζ λ ζx  Incomplete Gamma function 

∆h  A short-term increase in the water level due to gust bumps 
and squall oscillations 

∆C  Increase in the volume of erosion due to ∆h  

∆SH  
Increased amount of erosion due to a smoothed 
hydrograph with a maximum ∆h  higher 

∆X  Finite discrete integration step on X 

ε  
Random error term which takes into account the fact that 
a model does not exactly describe reality 

ζ  Parameter of probability distributions 

η  
• Water surface elevation above still-water-level at the 

seawall (Chapter 3) 
• Parameter of probability distributions (Appendix C) 

∂

∂

Z

X











*

 

Partial derivative of Z with respect to X, evaluated at the 
point X* 

λ  Parameter of probability distributions 
µ  Mean value 

µf  Coefficient of friction between the armour stones (in 
Iribarren's equation) 

µX
N

i  
Mean value of the approximate Normal distribution 
according to the Rackwitz & Fiessler (1978) approximation 

 Table 1: Notation (continued). 
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ξp  

Surf similarity parameter calculated using the period of 
peak spectral density (= tan / /α H LS op ) 

π  3.14159....... 

ρ  

• Correlation coefficient (Chapters 2 & 6; Appendices C6 
& D) 

• Water density (Chapter 3) 
ρS  Density of armour stones 
σ  Standard deviation 

σX
N

i  

Standard deviation of the approximate Normal distribution 
according to the Rackwitz & Fiessler (1978) approximation 

τ i  Length of the elementary time interval for the  
time-varying action, Xi 

ϕ  
Probability density function for the standard Normal 
distribution 

φ  Natural angle of repose of the armour slope material 

Φ  Cumulative distribution function for the standard Normal 
distribution 

Φ−1
 Inverse function of Φ  

χ2
 Chi-square statistic 

χCrit
2

 
Value of the χ2  statistic corresponding to the one-tailed 
χ2  distribution with N-p-1 degrees of freedom, for a 

specific level of significance α  

 Table 1: Notation (continued). 

 

 

 



 

xxxvi 

LIST OF ABBREVIATIONS 

 
 

ABBREVIATIONS DEFINITION 

A-D Anderson-Darling 

AIME American Institution Of Mechanical Engineers 

ANOLAD Analysis Of Least Absolute Deviations 

ANOVA Analysis Of Variance 

ASCE American Society Of Civil Engineers 

ASME American Society Of Mechanical Engineers 

BS British Standard 

BSI British Standards Institution 

CDF Cumulative Distribution Function 

CERC Coastal Engineering Research Center 

CIAD Association For Computer Applications In Applied 
Engineering 

CIRIA Construction Industry Research And Information 
Association 

CUR 
Centre For Civil Engineering Research And Codes / 
Centre For Civil Engineering Research Codes And 
Specifications 

DUNE Name of Dutch computer program 

DUNEPROB Name of Dutch computer program 

FOMVA First Order Mean Value Approach 

FORM First Order Reliability Method 

FORTRAN FORmula TRANslation 

HR Hydraulics Research 

H&R Hedges And Reis 

IABSE International Association For Bridge And Structural 
Engineering 

IAHR International Association Of Hydraulic Research 

ICCE International Conference On Coastal Engineering 

ICE Institution Of Civil Engineers 

ICOSSAR 
International Conference On Structural Safety And 
Reliability 

ICTM Institute For Marine Science And Technologies 

IEEE Institute Of Electrical And Electronic Engineers 

IFIP International Federation For Information Processing 

IML Interactive Matrix Language 

IOS Institute Of Oceanographic Sciences 

IWEM 
Institution Of Water And Environmental 
Management 

Table 2: Abbreviations. 
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ABBREVIATIONS DEFINITION 

jpdf joint probability density function 

K-S Kolmogorov-Smirnov 

LAD Least Absolute Deviations 

LBD Liverpool Bay Datum 

LHS Latin Hypercube Sampling 

LNEC National Laboratory Of Civil Engineering 

LS Least Squares 

MAFF Ministry Of Agriculture Fisheries And Food 

MLEs Maximum Likelihood Estimators 

MSL Mean-Sea-Level 

NAG Numerical Algorithms Group Limited 

NAP Standard Amsterdam Datum 

NATO North Atlantic Treaty Organisation 

NERC Natural Environment Research Council 

NRA National Rivers Authority 

OD Ordnance Datum 

OTC Offshore Technology Conference 

PARASODE Probabilistic Assessment Of Risks Associated With 
Seawall Overtopping And Dune Erosion 

PDF Probability Density Function 

PIANC Permanent International Association Of Navigation 
Congresses 

POL Proudman Oceanographic Laboratory 

P-P Probability-Probability 

Q-Q Quantile-Quantile 

SAS Statistical Analysis System 

SI Système International D'Unités 

SORM Second Order Reliability Method 

SPE Society Of Petroleum Engineers 

SPSS Statistical Program For Social Sciences 

SSL Storm Surge Level 

SWL Still-Water-Level 

TACPI Technical Advisory Committee On Protection 
Against Inundation 

TAW Technical Advisory Committee On Water Defences 

2D Two-Dimensional 

3D Three-Dimensional 

Table 2: Abbreviations (continued). 
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1 INTRODUCTION 

 
1.1 Importance Of The Research And Its Main Objectives 
 

A significant proportion of the world's population lives in areas at risk  

from coastal erosion and inundation by the sea. For example, the coastline 

of England and Wales is approximately 4500km long (Birks, 1993;  

MAFF, 1993c). Yet, despite having significant lengths of high rocky cliffs in 

the west, there are large areas in the south and east below the highest sea 

levels. A survey (NRA, 1991) showed a total of nearly 1300km of coastal 

structures protecting low-lying areas. About a quarter of the total coast  

has been developed for housing, industry, or some other purpose  

(MAFF, 1993a). Over 5% of the population and of the nation's industry is in 

areas below the mean annual maximum water level (approximately the 5m 

Ordnance Survey contour) and many of these areas are protected by 

structures (Birks, 1993). Over 50% of agricultural land is also below this level 

and is dependent on drainage and/or flood defence in some way to maintain 

its productivity. A number of cities, including London, have significant 

defences against river or tidal flooding, and coastal towns such as Blackpool 

are defended against flooding by the sea (MAFF, 1993c). Without defences, 

urban areas with key infrastructure, businesses, homes, and agricultural and 

recreational land would all be vulnerable to flooding and coastal erosion. 

Also, a number of historic sites and buildings, some of which are protected 

by statute, are at risk, together with environmentally valuable areas such as 

Sites of Special Scientific Interest. 

 

CIRIA (1986b) stated that the replacement value of existing coastal 

structures in the UK was about £4000 million, with an average cost of  

£2.5 million per km for the country as a whole. Many structures are more 

than 100 years old and in need of replacement. Maintenance costs vary from 

about £500 to £2400 per km (CIRIA, 1986a). Although these values relate to 

the 1980s, they still indicate the considerable investment involved in the 

provision of coastal structures. 

 

In The Netherlands, the River Meuse floods of 1993 and 1995 caused 

economic damage of 250 and 400 million Dutch guilders, respectively 

(Dirkson, 1996). In 1993, 8000 inhabitants had to leave their homes because 
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of the high water levels. In 1995, the stability of the dikes along the River 

Rhine could no longer be guaranteed and 0.2 million people had to be 

evacuated. Fortunately, none of the dikes failed. 

 

Climatic changes over the next few decades may cause a rise in sea levels 

and increased storminess (Doornkamp, 1990; Vrijling, 1990; Stive et al, 

1991; Townend, 1994b; Samuels & Brampton, 1996). As pointed out by 

Hedges (1993), substantial erosion of beaches may be expected, together 

with an increased flow of water over coastal structures (wave overtopping) 

and damage to these structures. Climatic changes may also increase 

vulnerability to inland flooding if there are alterations to the frequency or 

intensity of rainfall patterns combined with greater difficulties in river 

discharge to the sea if the sea level has risen (MAFF, 1993c). It is important 

to ensure that coastal structures are designed and managed within a 

framework which accounts for likely future climate changes as these 

changes will occur within the lifetime of current coastal defence schemes 

(Sorensen, 1991; Naden et al, 1996; Simm et al, 1996). 

 

Clearly, there is a need to minimise risk to life and protect natural and  

man-made assets by providing defences against inundation and erosion. 

Furthermore, it is important that coastal structures are planned in the most 

environmentally sensitive manner whilst also providing an appropriate level 

of protection. Complete safety against flooding or erosion is unattainable. A 

balance has to be struck between costs and benefits to a nation as a whole. 

It is important that coastal defence policy and practices contribute to wider 

social, economic and environmental objectives. Unfortunately, anyone whose 

work is related to coastal structures cannot fail to be aware of the severe 

damage which has been inflicted on some large structures during the last 

few decades (Harlow, 1980; Sorensen & Jensen, 1985; Burcharth, 1987). An 

example is the failure of the Sines breakwater, Portugal. Questions then 

arise concerning the effectiveness of existing structures and of the design 

methods which have been commonly applied. The traditional approach to 

design may be inadequate and unsatisfactory, not only from an engineering 

stand-point but also from an economic point of view (Mol et al, 1983). That is 

why the probabilistic methods used in other areas of engineering have been 

applied in assessing the levels of safety provided by existing and new 

coastal structures. These methods can help the designer achieve a balanced 

approach in which most effort is put into addressing those parameters that 
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make the greatest contribution to the total probability of failure. In other 

words, if limited finance is available for reducing the overall failure probability 

of a structure, it should be invested in those components which show the 

largest reduction in overall failure probability for the given amount of money 

(Mol et al, 1984). 

 

The recent shift towards probabilistic design in coastal engineering 

(Thompson & Scheffner, 1996) has been pioneered by the Dutch. They have 

applied the methods to natural and man-made structures, such as 

breakwaters, dikes and dunes. The scale and importance of coastal defence 

in The Netherlands has encouraged this new approach. But practice in other 

countries is also moving in the same direction. In this connection, the main 

objective of the present research is to assess the safety of coastal structures 

by means of probabilistic methods, with particular reference to wave 

overtopping of seawalls and to dune erosion. A secondary objective is to 

increase interest within the maritime community in the use of probabilistic 

techniques. Note that there is already clear cooperation in this field, evident 

in such multi-national publications as PIANC (1992). 

 
 
1.2 Structure Of The Thesis 
 

The structure of the present research is shown in Figure 1.1. Chapter 2 

contains a review of concepts and methods of probabilistic analysis and of 

the state of the art in their application to the design of coastal structures. At 

present, applications are limited and available knowledge on coastal 

structures is insufficient to enable the probabilistic analysis of a whole 

structure to be carried out in full. Therefore, it was decided to concentrate 

this study on methods for the probabilistic assessment of single failure 

modes. Special attention is given to the particular methods used in 

developing a computer program, PARASODE, and in validating the results of 

the program using a commercial software package, @Risk. PARASODE is 

used to study the failure mechanisms of wave overtopping of seawalls and 

dune erosion. 

 

Chapter 3 is generally concerned with wave overtopping of seawalls. It starts 

with a brief review of the subject, including the models currently used in 

predicting overtopping and the permissible levels of overtopping. Then, an 
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alternative model is presented; this is the H&R model. This new model is 

conceived through theoretical considerations and special care has been 

taken to consider the appropriate physical boundary conditions. A  

re-analysis of Owen's data (Hydraulics Research Station, 1980; Owen, 

1982a) for simple seawalls possessing uniform seaward slopes of 1:1, 1:2 

and 1:4, is also presented. The H&R and Owen models are used in this  

re-analysis and represent part of the input to PARASODE. The implications 

of the new model for seawall freeboards are then discussed. Finally, the 

reliabilities of the two models are assessed. 

 

Chapter 4 focuses upon the Dutch experience in the probabilistic 

assessment of dune erosion during a storm surge. Firstly, a review of some 

key references is presented. Secondly, the current application of Vellinga's 

and Steetzel's models is discussed. Since Vellinga's model is currently the 

one used in The Netherlands for probabilistic calculations, the two Dutch 

computer programs (DUNEPROB and DUNE) which rely on its use are then 

presented. Finally, the applicability of these programs in the British context is 

examined. 
 

The outcome of the literature review on probabilistic methods (Chapter 2) 

and the formulation of the failure modes of wave overtopping of seawalls 

(Chapter 3) and dune erosion (Chapter 4) have been assembled in the form 

of a program, PARASODE, to undertake probabilistic calculations. The 

program, its input and output, are described in Chapter 5. For the failure 

mode of wave overtopping of seawalls, the results obtained from 

PARASODE have been validated using the software package @Risk which 

is also briefly introduced in Chapter 5. 

 

Chapter 6 illustrates the application of PARASODE: the first set of examples 

relates to wave overtopping of seawalls; the second relates to dune erosion. 

The results obtained from PARASODE are discussed and, for overtopping, 

they are validated using @Risk. 

 

The most important conclusions arising out of this research are presented in 

Chapter 7. This chapter also provides the recommendations for further 

research. 
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Figure 1.1: Flowchart of the structure of the thesis. 
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2 PROBABILISTIC METHODS FOR DESIGN AND 
ASSESSMENT 

 
2.1 Introduction 
 

Conventional practice for the design of coastal structures is essentially 

deterministic (Mol et al, 1983; Melchers, 1987; Burcharth, 1992): the 

resistance of a structure should exceed the load by an appropriate margin 

which is an indication of the level of safety (Townend, 1994a). This margin is 

required to counter lack of knowledge and uncertainties with respect to 

resistance, load and other factors (Lee & Mays, 1983). It is based mainly on 

experience rather than on quantification of the unknowns and uncertainties. 

As a result, some structures may be designed to unwarranted levels of 

conservatism but, conversely, other structures will be subject to 

unacceptably high risks of failure. Using conventional design practice, it is 

not possible to determine the extent of under-design or over-design relative 

to an acceptable level of risk (Meadowcroft et al, 1996). 

 

The design load is usually defined on a probabilistic basis. For example, it 

might be the value x of the variable load, X, which is, on average, exceeded 

once during some specified period (e.g. 100 years). This period, Tr, is the 
return period of x. It is given by T m F xr X= −1 1/ [ ( ( ))]  where FX(x) represents 

the probability of X x≤  in any one time interval. Since this time interval 

need not be in years, but Tr is normally expressed in years in engineering 

applications, the total number of time intervals per year, m, needs to be 

calculated. Examples are wave data collected at 3-hourly intervals, resulting 

in m=365x24/3=2920 and high water levels collected at intervals of 

12h25min which gives m=365x24/12.42=705. The return period for the 

extreme load may itself be chosen with regard to the value of the encounter 
probability, E Tnc r

Tref= − −1 1 1[ / ] , which is the probability that the Tr -year 

return load will be exceeded at least once during the reference period, Tref 

(Burcharth, 1987, 1990; Casciati & Natale, 1992; PIANC, 1992; Carvalho, 

1992a). However, there is often little consideration given to the uncertainties 

involved in establishing the probabilities (Burcharth, 1992). 

 

In most cases, the resistance is defined in terms of the load which causes a 

certain degree of damage to the structure and is not given as an ultimate 
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force or deformation. As mentioned by Burcharth (1992), this is because 

most of the available formulae only give the relationship between wave 

characteristics and structural response (e.g. in terms of run-up, overtopping, 

armour layer damage). Almost all such design formulae are semi-empirical 

relationships (Burcharth, 1987), being based mainly on experience, 

engineering skill and central fitting to model test results (using fitting methods 

like least squares regression). The test results do not all fall on the line 

represented by a particular formula; there is often considerable scatter 

around the line which is not incorporated into the design process in any 

systematic fashion (Burcharth, 1992). Consequently, the applied 

characteristic value of the resistance is the mean value and not a lower 

fractile as is usually the case in other engineering fields (e.g. in the 

manufacturing and aeronautical industries). 

 

Recent experience of well-publicised severe damage to some large coastal 

structures (Harlow, 1980; Burcharth, 1987, 1990) has led to the conclusion 

that damage was caused by a combination of aspects and that the safety 

levels for these structures were far too small. In other words, taking  

into account all stochastic variables influencing load and resistance,  

the probability of failure was too high, resulting in a high encounter 

probability of a severe damage in the years after completion of the structures 

(Mol et al, 1983). The deterministic methods used, which do not explicitly 

consider the reliability of a proposed design through the incorporation of 

information on the uncertainties involved in the load and resistance 

variables, together with other sources of uncertainties, do not allow an 

accurate assessment of the degree of safety in terms of the probability of 

failure (CIRIA, 1984; Burcharth, 1987, 1990). These deterministic methods, 

which disregard the fundamental stochastic nature of the problem, are 

inadequate (Burcharth, 1985). 

 

Instead of the above simplistic approach which requires relatively little input 

data, a probabilistic approach is preferred. The latter has a number of 

advantages (Van der Meer, 1987; CUR-TAW, 1990; CIRIA/CUR, 1991; 

Lamberti, 1992) including: i) the structure under study can be analysed and 

described as a whole; ii) the uncertainties are rationally incorporated in the 

assessment of the safety of the structure; iii) it is possible to obtain a better 

insight into the sensitivity of the structure's failure probability to the various 

uncertainties: this enables a more balanced design in which priority for 
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further research is given to those parameters that make the greatest 

contribution to the total probability of failure; and iv) it is possible to assess 

explicitly the cost of improving the structure and of damage or loss. 

 

This chapter continues by reviewing general probabilistic concepts and their 

application in design and assessment of the safety of coastal structures 

(Section 2.2). Section 2.3 introduces the probabilistic methods which are 

particularly relevant to the present work. The chapter is not intended to be an 

exhaustive review of the subject; a large number of references has been 

published and it is difficult to select among them, particularly for a brief 

review. The reader is referred to Shinozuka (1983), Ferry Borges & 

Castanheta (1983), Ditlevsen & Bjerager (1986) and Bjerager (1991), for 

historic reviews of probabilistic methods. The chapter illustrates the types of 

concepts and methods which have been used in probabilistic design and 

assessment of coastal structures, together with their strengths and 

limitations. In addition to literature related to coastal structures, a range of 

literature on probabilistic methods applied in other areas of engineering has 

also proved useful in preparing this chapter, including: Alonso (1976), 

D'Andrea & Sangrey (1982) and Nguyen & Chowdhury (1985) - geotechnical 

engineering; Flint & Baker (1976), Schueller & Choi (1977), Fjeld (1977), 

Jensen et al (1990), Ronold (1990), Potts (1993) and Duggal & Niedzwecki 

(1994) - offshore structures; Ferry Borges & Castanheta (1983) and Casciati 

& Faravelli (1985) - structural engineering; Plate & Duckstein (1988) - levees 

on a river; Yen (1989) - culvert flooding; Helton & Breeding (1993) - nuclear 

power plants; Jang et al (1994) - ground water flow and contaminate 

transport; Lumbers & Cook (1993) - water supply systems; Cullen (1990), 

Lafitte (1993) and Kreuzer (1994) - dams; and Melchers & Stewart (1993) 

and Frangopol et al (1996) - general engineering. 

 
 
2.2 General Concepts And Their Application To Coastal 

Structures 
 

In order to judge whether a man-made or natural structure (e.g. a seawall or 

a dune) satisfies the requirements that users and society apply with regard to 

safety and economy, it is possible to use risk analysis methods  

(CUR-TAW, 1990). The term risk can be defined in different ways, but for the 

purposes of this research, risk is defined (BSI, 1991a; Royal Society, 1992) 

as the combination of the probability, during a reference period of time, of an 
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undesirable event (e.g. a storm, which is a combination of waves and water 

levels resulting in extreme loading on a structure) and the consequences of 

its occurrence (e.g. economic loss, casualties, impact on flora and fauna). 

The method of combination is generally to multiply the probability and 

consequences. Risk analysis may then be understood as the whole set of 

activities aimed at quantifying the probability of occurrence, during a 

reference period of time, of an undesirable event (probability of failure) and 

its consequences. Calculation of the probability of failure alone is useful; but 

it fits particularly well into an analysis in which consequences of failure are 

also considered. This is because it is not only the probability of failure that is 

important: an event which has a major impact will generally be accepted less 

readily (i.e. it should have a lower probability of happening) than one which 

has only minor consequences. For example, it is clear that an accident which 

does not involve loss of a single life is more acceptable than one in which a 

thousand lives are lost. In its most general sense, reliability, R, is the 

probability that the structure will fulfil its design purpose during the reference 

period (CIRIA, 1984; Thoft-Christensen & Murotsu, 1986). Note that risk 

analysis and, consequently, the associated concepts (such as probability of 

failure, reliability, etc.) should always be referred to an interval of time  

(Joint Committee on Structural Safety, 1978; Ferry Borges & Castanheta, 

1983). This interval of time may be taken as the lifetime of the structure (the 

time of undisturbed functioning) or as a standard time adopted as reference. 

Even if, for simplicity, this fact is omitted in the following discourse, the 

reader should always keep it in mind. 

 

The three main elements of a risk analysis (Van der Meer, 1987; CUR-TAW, 

1990) are hazards, failure mechanisms and consequences (Figure 2.1). 
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Figure 2.1: Elements of a risk analysis (modified 
after Van der Meer, 1987); the symbol "•" 
in the definition of risk means the 
product. 

 

 

A risk analysis begins with the preparation of an inventory of the hazards 

which can be defined as anything which may occur during the lifetime of the 

structure that can potentially cause harm or loss (Godfrey, 1994). The ways 

in which the structure responds to hazards are called the failure mechanisms 

or failure modes. Note that in assessing the safety of coastal structures, it is 

very important to consider the structure as a whole system. This is known 

(Burcharth, 1992) as probabilistic analysis of failure mode systems. Some 

structures are rather complex and, for simplicity, they are considered as 

series systems, parallel systems, or a combination of both (CIAD, 1985; 

CIRIA/CUR, 1991). Techniques also exist to provide a logical description of 

the many hazards and mechanisms resulting in failure of a structure. These 

include the so-called event trees, which relate to consequences, and fault 

trees, which relate to causes (see, for example, Paté-Cornell, 1984; 

Melchers, 1987; Van der Meer, 1987; Yen, 1989; Andrews & Moss, 1993). 

Fault trees and event trees can be very complex in practice (e.g. Cullen, 



Probabilistic Methods For Design And Assessment 

2-6 

1990). Only schematic examples are shown here (Figures 2.2 and 2.3). For 

real examples, the reader is referred to Mol et al (1984), CIAD (1985),  

CUR et al (1987); Vrijling (1990), CUR-TAW (1990), CIRIA/CUR (1991), 

Thomas & Hall (1992), Townend (1994a), Thomas (1994), Simm et al (1996) 

and others. 

 

The event tree is a deductive logical diagram (Paté-Cornell, 1984). Starting 

from an undesirable initiating event leading to a consequence for the state of 

the structure, it gives all possible sequences of following events (both wanted 

and unwanted) and determines the outcome of each considered sequence 

(Figure 2.2). Typical examples of initiating events include intense wave 

action, high water levels, strong currents, earthquakes, ice damage, collision 

and vandalism. Each branch of the event tree is unique and represents a 

distinct series of events possibly leading to failure. The assessment of an 

event cannot be made in isolation; it must be considered as part of a 

sequence of events and changes to the structure that have lead to its 

occurrence. The event tree methodology is useful in the analysis of the 

consequences of an initiating event and provides a means of identifying top 

events for fault trees (CIAD, 1985). A top event is a particular failure mode. 

In the case of a seawall, for example, it might represent the fact that the 

crest of the wall is built too low. 

 

 

 

 Figure 2.2: Event tree of parallel-series system S1 (modified 
after CIAD, 1985). 
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A fault tree can be constructed starting at the top event and describing, by 

means of inductive logic, the possible initiating causes leading to the 

particular failure (Figure 2.3). It is related to component events and basic 

events by means of logical AND and/or OR gates. If one event alone can 

cause the top event, the occurrence in the fault tree is represented by an OR 

gate. If all related events are required to cause the top event, this occurrence 

is represented by an AND gate. The development stops if the related inputs 

arise from basic events only, which are generally independent of one another 

(Lafitte, 1993). When developing fault trees, it is important to keep in mind 

that each pathway up through the tree forms a unique sequence of events 

describing a failure, starting from a basic event, and it describes all the 

unwanted events leading to the unwanted top event. The quantitative 

analysis of the fault tree involves calculating the probability of a unique 

undesirable top event from the probabilities of occurrence of the basic events 

(Lafitte, 1993). So one proceeds systematically from the base towards the 

top of the tree, the probability obtained at one level being used for the 

calculation at the level immediately above. Each fault tree considers only one 

of the many possible system failure modes. Consequently, more than one 

fault tree may be constructed during the assessment of any system. 

 

 

 

 Figure 2.3: Fault tree of parallel-series system S1 
(modified after CIAD, 1985). 
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Those combinations of components which, if they all fail, cause system 

failure are called cut sets (Andrews & Moss, 1993). A minimal cut set is a cut 

set such that if any component is removed from the combination, the system 

no longer fails (Paté-Cornell, 1984). The calculation of the system probability 

of failure can only be performed after the minimal cut sets have been 

determined. For example, two minimal cut sets exist in Figure 2.3: one 

contains S11 and the other contains S12 and S13. 

 

The drawback of event trees and fault trees is that they are rather strictly 

regulated (CUR-TAW, 1990; Burcharth, 1992): in an event tree, it is not 

possible to combine branches, and no dividing of branches is possible in a 

fault tree. Furthermore, the system is essentially binary in character: an 

event occurs or it does not. In coastal engineering, problems of a more 

continuous character occur. 

 

Event trees and fault trees have been constructed and presented for some 

coastal structures (CIAD, 1985; Van der Meer, 1987; CUR-TAW, 1990; 

CIRIA/CUR, 1991), but they have not been applied in full as logic diagrams, 

except for individual structures which are the subject of very detailed study. 

They have almost always served as schematic representations of failure 

modes rather than as strict logical representations of failures. Some authors 

(Meadowcroft et al, 1994) have found that fault trees and event trees, as 

used in the electronics and chemical industries, may be suitable for systems 

of binary components that either fail or do not fail, but they are not sufficient 

on their own to represent failure of seawalls and related structures which 

exhibit complex failure modes with interactions between them. For example, 

overtopping and geotechnical failure of the landward face of a seawall may 

not, individually, pose a high risk, but the damage due to the geotechnical 

failure will make erosion due to overtopping much more likely: the modes 

interact. Furthermore, the quantity of water overtopping is of great 

importance in determining the consequences: it is not possible to say that 

the system either "fails" or "works", since a spectrum of outcomes can result. 

 

A useful alternative to event and fault trees is provided by the so-called 

cause-consequence charts. They overcome many of the drawbacks of event 

and fault trees outlined above. An example is given in Figure 2.4. 
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Figure 2.4: Example of a cause-consequence chart 
(after Van der Meer, 1987). 

 

 

The concepts outlined above concern static event trees: the corresponding 

probability of failure applies to the final state, assuming a rapid propagation 

of damage once a section fails. In general, the use of dynamic event trees, 

which cover time-dependent aspects, should be considered. It is possible to 

assess dynamic problems using model simulations which include  

time-dependent effects. However, this approach requires complex methods 

which are not further discussed here (see, for example, Cumo & Naviglio, 

1987; Casciati & Faravelli, 1991; Andrews & Moss, 1993). 

 

While preparing the inventory of hazards and identifying the possible failure 

modes of a structure, it is obvious that from all possible failure modes, only a 

few are of real importance (Van der Meer, 1987). Others have such a low 

probability of occurrence that they may be disregarded, provided that they 

are independent with respect to other failure modes. However, in principle, 
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all failure modes must be identified and studied as far as is necessary to 

establish what degree of risk they pose (Meadowcroft et al, 1994). Neglect of 

an important failure mode will bias the estimation of the safety of the 

structure (Burcharth, 1990, 1992; Lamberti, 1992). Furthermore, it is 

important to investigate the way failure modes combine or interact, as 

indicated, for example, in a cause-consequence chart. Consideration  

must be given to two particular factors (PIANC, 1992): physical correlation 

(e.g. the failure of one mode triggers the failure of another) and  

correlation through common parameters (e.g. the same parameter triggers 

two different failure modes). It is not generally known how to quantify the first 

of these factors, even if physical correlation can be identified. Consequently, 

only the second can be dealt with in a quantitative way. 

 

After identifying the failure modes and their mutual relationships, assessment 

of the safety of a structure depends fundamentally on the description of the 

individual failure modes (Thoft-Christensen & Murotsu, 1986). For each 

failure mode, a theoretical model may exist. Failure modes for which no 

mathematical-physical description is available, or for which the model is 

rather poor, become apparent (CIAD, 1985; CIRIA/CUR, 1991). This 

situation arises mainly because the load and/or the structural behaviour is 

complex and is not fully understood. If no theoretical models are available for 

a failure mechanism, simple empirical formulae can be used to describe the 

physical process (CIAD, 1985). When no theoretical models or empirical 

formulae are available, it is necessary to work on the basis of engineering 

judgement (Van der Meer, 1987). 

 

Theoretical models or empirical formulae may be applied to define what is 

called a failure function or limit state function, Z (Figure 2.5). This is a 

function of the basic variables, Xi i=1,...,N, of the problem (e.g. water level, 

wave conditions, structure dimensions, material properties), which are the 

fundamental quantities that the designer has to consider and which may 

influence the reliability of the structure with respect to a particular failure 

mode (CIRIA, 1984). Note that it may not be possible to express Z as an 

explicit function of the basic variables. Provided the function is continuous, 

this is of no consequence. However, if the function is discontinuous (e.g. the 

Van der Meer expressions for the stability of rock armour on breakwaters), it 

must be examined as a series of continuous functions. In any case, the 

simultaneous values of the variables Xi must stay within certain limits in order 
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that the structure behaves as it is intended to do for the failure mode under 

study. For a given structure and failure mode, these limits may be described 

in terms of the failure function which divides the N-dimensional space of the 

X-variables into two sets (Figure 2.5): Z=f(X1,...,XN) denotes safe states if 

Z>0 and failure states if Z<0. Z=0 defines the failure surface. As noted by 

Madsen et al (1986), it is often convenient to include the failure surface in the 
failure states (i.e. Z ≤ 0  defines failure) and it is this definition of failure 

states which is used in the present research. In other words, the probability 

of failure, Pf, is defined as Pf=P(Z ≤ 0), whilst the reliability, R, is defined as 

R=1-Pf. 

 

 

X2

X1

Z>0
Safe states

Failure states
Z<0

Z = f(X   , X   )1 2

Failure function

Z=0
Failure surface

 
 Figure 2.5: Definition of the failure surface Z=0 for 

the case of two basic variables, X1 and 
X2. 

 

 

Note that Z defines what is generally called a limit state, which is a limiting 

condition beyond which a structure is assumed to become unfit for  

its purpose (CIRIA, 1984). A distinction has to be drawn between  

ultimate limit states and serviceability limit states. The former refer to 

conditions in which the structure is unable to fulfil its principal functions (e.g. 

the failure of a seawall in preventing extensive flooding or erosion of the 

backshore). Serviceability limit states, on the other hand, exist when damage 

of considerable magnitude to the structure has occurred but it remains 

possible to rely on the structure for its main function. Under these conditions, 
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some disturbance related to normal use and durability of the structure is 

expected (BSI, 1991a). 

 

After describing the relevant failure modes, calculation of the probability  

of failure associated with each of them can be performed using a  

single failure mode probability analysis (Burcharth, 1992), as described in 

Section 2.3. These probabilities are then used to determine upper and lower 

bounds for the probability of failure of the whole structure (Ditlevsen, 1979b; 

CUR-TAW, 1990). For more detailed discussions of this subject, see  

Thoft-Christensen & Baker (1982), Hohenbichler & Rackwitz (1983), Ang & 

Tang (1984), CIAD (1985), Madsen et al (1986), Thoft-Christensen & 

Murotsu (1986), Ditlevsen & Bjerager (1986), Melchers (1987), CUR-TAW 

(1990) and Bjerager (1991). 

 

Finally, the consequences of failure must be considered. Whilst there are 

many events for which the consequences are obvious, there are others for 

which the outcomes are less easy to predict (Lumbers & Cook, 1993). An 

example of consequences which are obvious might be the overtopping of a 

seawall by a relatively small volume of water causing inconvenience and/or 

injury to pedestrians, but not affecting the safety of the structure. The 

outcome would be less easy to predict where the volume of water causes 

significant flooding. In this case, the consequences would depend on a 

number of factors such as the time of day during which flooding occurs, the 

storm warning service, the efficiency of people's evacuation of the expected 

flooded area, etc. 

 

The probability of failure multiplied by the consequences constitutes the risk 

(Figure 2.1). Risk has the units of the consequences (Meadowcroft et al, 

1995; Simm et al, 1996): for risk to an individual, the units of expression may 

be in terms of fatalities per hour or per year of the individual's activity; for risk 

to society, it may be expressed in units of the expected number of people to 

be affected to a specified degree per year; economic risk expresses the 

expected loss in monetary terms. 

 

In civil engineering, there is no such concept as total safety, but there are 

higher or lower risks of failure (Pate, 1981; CIRIA, 1984; Vasco Costa, 1990; 

Pita, 1992; Vrijling, 1993). The risk of failure can only be minimised or, more 

realistically, the safety of the structures can be optimised to a degree 
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consistent with available information and with justified socio-economic 

investment. The acceptable risk depends on the structural characteristics 

and on the consequences of failure. For a breakwater, the acceptable risk 

during the expected lifetime of the structure can vary from a large value  

(e.g. 10-1) if the consequences are insignificant, to a very small number  

(e.g. 10-4) if the failure of the breakwater would result in significant damage 

(Burcharth, 1991b). For offshore structures, values in the range of 10-6 to  

10-8 are recommended (Potts, 1993). Optimal design is, essentially, weighing 

the risks against the costs of providing higher levels of safety (BSI, 1991a; 

MAFF, 1993c). If there are no intangible damages (damages which cannot 

be expressed or evaluated in monetary terms) then the design probability of 

failure or acceptable level of risk may be chosen by a process of optimisation 

using methods like cost-benefit analysis (CIAD, 1985; CIRIA/CUR, 1991; 

PIANC, 1992; Lafitte, 1993; Parker, 1993). Otherwise, the total damage 

(tangible and intangible) must be quantified in some way; this is a complex 

problem which gives rise to many discussions and ethical objections (Pate, 

1981; Madsen et al, 1986; Green & Penning-Rowsell, 1989; CUR-TAW, 

1990; Penning-Rowsell et al, 1992). Discussion of design optimisation is 

beyond the scope of the present research. Reference is made to Dover & 

Bea (1979), Brennan & Stickland (1981), Pate (1981), Allen (1981), Nielsen 

& Burcharth (1983), CIRIA (1984), CIAD (1985), Bruun (1985), Casciati & 

Faravelli (1985), CIRIA (1986a), Smith (1987), Parker et al (1987), CUR-

TAW (1990), Vrijling (1990), De Haan (1991), Ryu et al (1992), Thomas & 

Hall (1992), Barber (1993), MAFF (1993b), and Ruiz & Quirós (1994). 

 

In risk analysis, it is important to have a good overview both of the 

uncertainties involved and of the related consequences. Without such 

knowledge, it is impossible to evaluate the safety of a structure, a situation 

that is unacceptable for a professional engineer (Burcharth, 1985). To 

investigate the influence of uncertainty on safety evaluation, it is first 

necessary to identify and define what is not known (Kreuzer, 1994). 

Engineering systems inevitably involve many uncertainties in their planning, 

design and operation (Yen, 1989). It is important to acknowledge these 

uncertainties, even though they are obviously difficult to quantify (Burcharth, 

1985; Melchers, 1987). It is a huge step forward simply to identify them and 

quantify them approximately. 
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Probabilistic methods are used to evaluate engineering safety. At the same 

time, they must account for the uncertainties in the various contributing 

factors and evaluate their implications for engineering design. Each basic 

variable, Xi, in the failure function, Z, is a potential contributor to these 

uncertainties. Moreover, a random variable, Xi, might not be a directly 

measurable physical quantity; it can itself represent the uncertainty in a 

specific factor. It can be an error term included as a variable in the failure 

function (Manners, 1990; Der Kiureghian, 1990). 

 

Uncertainties in the study of a single failure mode may include (Yen, 1989; 

Burcharth, 1992): 

 
••••    Uncertainties related to failure mode formulae 

Whether the formula used to describe the "real" behaviour of the 
structure is based on theoretical considerations or physical model 
tests, simplifications and idealisations are made during its 
development which give rise to uncertainties. In certain cases, the 
uncertainties associated with a failure mode formula may be much 
more significant than the uncertainties associated with the basic 
variables in the problem (Ang & Tang, 1975; Thoft-Christensen & 
Murotsu, 1986; Burcharth, 1992). This is clearly seen from the 
many diagrams presenting a formula as a smooth curve shrouded 
in a widely scattered cloud of data points (usually from physical 
model tests) which are the basis for the curve fitting. Coefficients of 
variation of 15-20% or even larger are quite normal. The range of 
validity and the related coefficient of variation should always be 
considered when using a formula. 

 
• Uncertainties related to environmental parameters 

The specification of environmental criteria is one of the crucial 
steps in maritime engineering. In various coastal areas, the 
engineer is confronted with waves, currents, winds, storm surges, 
etc. The ideal situation, where both short-term and long-term wave 
statistics can be established from on-site measurements, almost 
never exists (Burcharth, 1985). According to PIANC (1992), 
uncertainties related to environmental parameters arise, mainly, 
due to: i) errors in instrument response or visual observation;  
ii) variability and errors due to different and imperfect calculation 
methods; iii) statistical uncertainties related both to short-term 
randomness of the variables and to extrapolation from small sets of 
data to events of low probability of occurrence; and iv) choice of 
theoretical distributions as representatives of the unknown  
long-term distributions. 
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• Uncertainties related to structural parameters 

The uncertainties related to material parameters (e.g. density), to 
geometrical parameters (e.g. slope angle, size of structural 
elements) and fracture strength (e.g. of concrete blocks) are 
generally much smaller than the uncertainties related to the 
environmental parameters and to the design formulae. 

 

Note that in a considerable number of failures, human factors have been the 

predominant overall component (Blockley, 1981; Madsen et al, 1986;  

Thoft-Christensen & Murotsu, 1986; Melchers, 1987; Burcharth, 1987; 

Manners, 1990; Melchers, 1993). They may be mistakes in design, analysis, 

construction, maintenance, or use of the structure (Townend, 1994a). 

Therefore, an estimate of its reliability is incomplete without considering 

human factors. Ways of reducing accidents caused by human errors include 

quality assurance techniques (see for example, PIANC, 1988; BSI, 1990, 

1991c; CIRIA/CUR, 1991; Lafitte, 1993) which have developed considerably 

in recent years. 

 

It is beyond the scope of this contribution to discuss in any more detail the 

many uncertainties related to the study of a single failure mode. However, 

further information may be found in Ang & Tang (1975, 1984), Blockley 

(1981), Thoft-Christensen & Baker (1982), Burcharth (1985), Ditlevsen & 

Bjerager (1986), Melchers (1987), Manners (1990), Der Kiureghian (1990), 

Burcharth (1992) and HR Wallingford/Sir William Halcrow & Partners Ltd 

(1993). 

 

Some existing studies on coastal structures have aimed at being very broad, 

covering various failure modes and consequences (CIRIA, 1984; CUR/TAW, 

1990; HR Wallingford/Sir William Halcrow & Partners Ltd, 1993, 1995). 

Others have focused mainly on the study of a specific failure mode (CIAD, 

1985; PIANC, 1992; Allsop & Meadowcroft, 1995). This demonstrates the 

difficulty in achieving a satisfactory compromise between engineering and 

mathematical accuracy, and developing a procedure which can be applied to 

a wide range of coastal structures. 

 

This research does not consider a full risk assessment procedure for coastal 

structures. It has been obvious during the current review of literature that, at 

the moment, there is insufficient knowledge to enable such an analysis to be 

carried out (Burcharth, 1990). This study concentrates on the probabilistic 
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assessment of individual failure modes, particularly seawall wave 

overtopping and dune erosion. For these failure modes, it concentrates on 

calculating the probability of failure during a specified reference period. 

 
 
2.3 Single Failure Mode Probability Analysis 
 
2.3.1 Introduction 
 

This section discusses techniques to quantify the probability of occurrence of 

a particular failure mode represented by the failure function Z=f(X1,...,XN) 

where Xi are the basic variables of the problem. For most practical 

applications, each basic variable, Xi, is random with a probability density 
function fX i

. The failure function, Z, is generally a non-linear function of the 

basic variables.  

 

Now, assume that Z is a function of only two random variables, X1 and X2, 
i.e. Z=f(X1,X2). Given fX X1 2,  as the joint probability density function (jpdf) of X1 

and X2, then the probability of failure, Pf, during a specified reference period, 

can be expressed as: 

 

 f
Z 0

X ,X 1 2P  =  P(Z 0)= f dX dX
1 2

≤
≤
∫∫  (2.1) 

 

If, and only if, the variables can be assumed statistically independent, the 
jpdf is determined from the product of the probability density functions fX1

 

and fX2
. The above equation may then be replaced by: 

 

 f
Z

X XP = f f dX dX
≤
∫∫

0
1 21 2

 (2.2) 

 

In this case, the integral is equivalent to the volume enclosed between the 
horizontal plane fX X1 2

0, =  and the jpdf fX X1 2, , in the space where the 

condition Z ≤ 0  is fulfilled. With two variables only, the jpdf can be shown as 

a surface represented by contours and the failure boundary can be drawn as 

a line (Figure 2.6). Figure 2.6 also shows the so-called design point which is 

the point on the failure surface where the jpdf attains its maximum value, i.e. 

the most probable point of failure. 
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 Figure 2.6: Two-dimensional joint probability density function for variables 
X1 and X2 (modified after Melchers, 1987). 

 

 

Generally, Z is a function of more than two random variables. In this case, it 

is not possible to describe the jpdf as a surface but it requires an imaginary 

multi-dimensional space (CIRIA/CUR, 1991; Burcharth, 1992). The 

probability of failure is then written as follows: 

 

 
f

Z 0
X ,...,X 1 NP P(Z 0) ... f dX ...dX1 N

= ≤ =
≤
∫∫ ∫  (2.3) 

 

where, again, if X1,...,XN are statistically independent: 

 

 

f
Z 0

X X 1 N

Z 0 i=1

N

X i

P = ... f ...f dX ...dX

= ... f dX

1 N

i

≤

≤

∫ ∫∫

∫∫ ∏∫
 (2.4) 

 

These equations form the mathematical basis for probabilistic analysis. 

Except for some special cases, the above integrations cannot be performed 

analytically and have to be approximated in some way (Ferry Borges & 

Castanheta, 1983; Melchers, 1987; Hohenbichler et al, 1987). This is the aim 

of the various probabilistic methods. They are classified on the basis of the 

types of calculations performed and of the approximations made. In 

essence, the designer must choose to what degree of sophistication he 

wants to formulate failure. In general, three common levels are distinguished 
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in the literature (Ferry Borges & Castanheta, 1983; Mol et al; 1983; CIAD, 

1985; CUR-TAW, 1990; Burcharth, 1992; PIANC, 1992). They are listed in 

order of decreasing accuracy and complexity as follows: 

 
• Level III - Full distribution approach 

 This method provides an "exact" probabilistic analysis for whole 
structural systems, or structural elements, using full joint probability 
density functions including the correlations among the variables. 
The probability content of the entire failure region is evaluated (as 
opposed to Level II methods which comprise a check at only a 
single point on the failure surface). 

 
• Level II - Semi-probabilistic approach 

 Approximation methods are applied in which the generally 
correlated and non-Normal variables are transformed into 
uncorrelated and Normal variables. Reliability indices are used as 
measures of the structure reliability. Non-linear failure functions are 
approximated using a tangent hyperplane at some point (First 
Order Methods), using a quadratic approximation (Second Order 
Methods) or even higher order approximations1. Since the second 
and higher order methods complicate considerably the 
computations and, in many cases, the First Order Methods give 
very good approximations (Ditlevsen & Bjerager, 1986), only the 
First Order Methods are described in this thesis. In these methods, 
the failure function is linearized at a specific point in order to 
determine the actual probability of failure. If linearization is 
performed about the expected mean values of the variables 
involved, the method is known as the First Order Mean Value 
Approach, FOMVA. If the failure function is linearized about the 
point in the failure surface having the highest joint probability 
density (design-point) then the method is called a First Order 
Reliability Method, FORM (Burcharth, 1990, 1992). This approach 
requires an iterative procedure in the case of non-linear failure 
functions. 

 
• Level I - Limit state approach 

 This level comprises calculations based on characteristic values 
and partial load and resistance factors. The factors represent, for 
example, the ratio of load at failure to permissible working load. 
This creates a desired margin between the characteristic values of 

                     
1 For further details of the second and the higher order methods, the reader is referred to 

Fiessler et al (1979), Tvedt (1983), Breitung (1983, 1984), Madsen et al (1986), Der 
Kiureghian et al (1987), Naess (1987), Tvedt (1988, 1990), Der Kiureghian & De Stefano 
(1990), Hohenbichler & Rackwitz (1990), Casciati & Faravelli (1991), Bjerager (1991), 
Jang et al (1994), Koyluoglu & Nielsen (1994), Cai & Elishakoff (1994), Wang & Grandhi 
(1995) and Grandhi & Wang (1996). 
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resistance and working load. In this approach, a characteristic load 
is established (for example, a wave height with a certain return 
period) for which hardly any damage should occur. Strictly 
speaking, a calculation at Level I does not allow the determination 
of the reliability (or the failure probability) of the design. 
Consequently, it is neither possible to optimise nor to avoid  
over-design of a structure. It does, however, provide a method of 
checking whether a defined level of safety is satisfied. 

 

A less common fourth level of probabilistic approach has also been 

advanced (Madsen et al, 1986; Plate & Duckstein, 1988; Casciati & Natale, 

1992). This level accounts for the principles of engineering economic 

analysis under uncertainty, considering costs and benefits of construction, 

maintenance, repair, consequences of failure, etc. 

 

The above classification of reliability methods is not exhaustive, but it has 

proved to be very useful in practical discourse on reliability methods. For 

example, this classification does not refer to any combination of the above 

methods using the advantages of each (see, for example, Super-Software, 

1994). In the next few sections, special attention is paid to the FORM 

method since it is the basis of a FORTRAN program, PARASODE, 

developed as part of this research. However, for a fuller treatment of the 

method, the reader is referred to Thoft-Christensen & Baker (1982) and 

Madsen et al (1986). Numerical methods which rely on sampling are also 

briefly outlined since they are the methods applied by the software package 

@RISK which has been used in this research to validate the results obtained 

from PARASODE. Finally, Level I methods are introduced for completeness 

(for more detailed information, see CIRIA, 1984). 
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2.3.2 Level III Methods 
 

2.3.2.1 Numerical Integration 

 

The N-fold integral in eq. (2.3) is solved by full numerical integration, i.e. 

substitution of the infinitely small integration steps dXi by finite discrete 

integration steps ∆X i , and substitution of the integrals by summations. Each 

summation must be done using a discrete number of steps and the 

integration area for each random variable must be evaluated between a 

starting value and an end value instead of running from − ∞ + ∞to  (see, for 

example, Melchers, 1987). The method would be exact if an unlimited 

number of integration steps were used. Of course this is not possible. 

International research seems to focus on Level II methods and traditional 

sampling variations, but rarely on numerical integration, although this is the 

most correct method (Super-Software, 1994). Little literature on this topic is 

available. No general formulae have been found in the literature for solving a 

multi-dimensional integral. 

 

 

2.3.2.2 Numerical Methods Which Rely On Sampling 

 

Introduction 

 

As the complexity of an engineering system increases, the required 

analytical model may become extremely difficult to formulate mathematically 

unless gross idealization and simplifications are invoked; moreover, in some 

cases even if a formulation is possible, the required solution may be 

analytically intractable. In these instances, a probabilistic solution may be 

obtained through sampling which is the process by which values are 

randomly drawn from the input probability distributions. In this case, the  

N-fold integral in eq. (2.3) is solved by letting the computer generate values 

for the limit state function, using a random number generator. Basically, this 

means that the computer needs an algorithm which generates random 

numbers between zero and one from a uniform distribution. Several 

techniques for drawing random samples are available (Ang & Tang, 1984). 

For work that requires the use of digital computers, it is convenient to 

compute a sequence of numbers by a systematic procedure. Such 

procedures are devised so that reasonable statistical tests do not detect any 
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significant deviation from randomness. Such a sequence of numbers can be 

duplicated exactly (e.g. for checking purposes) and therefore, strictly 

speaking, are really not random; for this reason, they are called  

"pseudo" random numbers (Hammersley & Handscomb, 1964; Haugen, 

1968; Rubinstein, 1981; Cope et al, 1982; Ang & Tang, 1984; Melchers, 

1987). For most practical purposes, a sequence of numbers generated by a 

suitable "pseudo" random number generator is indistinguishable from a 

sequence of strictly true random numbers (Rubinstein, 1981). The generated 

"pseudo" random numbers are cyclic, that is, they are repeated with a given 

period. To insure reasonable randomness, the period should be as long as 

possible. When evaluating the techniques for drawing samples, the most 

important factor to consider is the number of iterations required to accurately 

recreate an input distribution. Choosing a sampling method affects both the 

quality of the results and the length of time necessary for simulation. The two 

sampling methods briefly described in this section are those used by the 

software package @RISK which has been applied in this research to validate 

the results obtained from the Level II calculations: traditional sampling (often 

called Monte Carlo Sampling) and Latin Hypercube Sampling (LHS). 

 

Once the standard uniformly distributed numbers have been obtained, 

random numbers with a prescribed distribution may be generated through 

(Rubinstein, 1981; Ang & Tang, 1984; Law & Kelton, 1991): i) direct methods 

(e.g. the inverse transform method, the composition method, and the 

convolution method); or ii) indirect methods (e.g. acceptance-rejection 

method). The particular method used depends on the distribution from which 

one wishes to generate. The reader is referred to the literature for more 

details on these methods. 

 

Sampling is done repetitively, with one sample being drawn every iteration 

from each input probability distribution. With enough iterations, the sampled 

values become distributed in a manner which approximates the known input 

probability distributions. 

 

Clearly, the probability distributions of the governing parameters must first be 

specified. An equation is then used to link the parameters to the outcome. 

The output process is sampled by choosing a random value for each input 

parameter. The outcome of the event is then recorded. The procedure is 
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repeated for a sufficient number of events to accurately determine the 

probability distribution of the outcomes. 

 

 

Traditional Sampling 

 

The term "Monte Carlo" was introduced by von Neumann and Ulam during 

World War II, as a code word for the secret work at Los Alamos; it was 

suggested by the gambling casinos in the city of Monte Carlo in Monaco 

(Rubinstein, 1981). 

 

Monte Carlo Sampling is the traditional technique for using random numbers 

to draw samples from a probability distribution. Any given sample may fall 

anywhere within the range of the input distribution (Figure 2.7). Samples are, 

of course, more likely to be drawn from areas of the distribution associated 

with the higher probabilities of occurrence. 
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 Figure 2.7: Five iterations of Monte Carlo Sampling 

with clustering (modified after Palisade 
Corporation, 1994). 

 

 



Probabilistic Methods For Design And Assessment 

2-23 

When a small number of iterations is performed, a problem of clustering may 

arise. This causes particular difficulties when a distribution includes low 

probability outcomes which could have a major impact on the results 

(Haugen, 1968; Ang & Tang, 1984; Startzman & Wattenbarger, 1985; 

Ditlevsen & Bjerager, 1986; Wen & Chen, 1987). These outcomes have to 

be sampled. But if their probability is very low, a small number of iterations 

may not provide sufficient of these outcomes to accurately represent their 

probability. However, an increase in the number of iterations is not always 

computationally convenient. This problem has led to the development of 

techniques which reduce the sampling error without increasing the sample 

size. These techniques are known as variance reduction techniques and 

include (Hammersley & Handscomb, 1964; Halton, 1970; Rubinstein, 1981; 

Ang & Tang, 1984; Morgan, 1984; Smith & Buckee, 1985; Melchers, 1987; 

Bjerager, 1991; Law & Kelton, 1991): i) Control-Variate Sampling or 

Correlated Sampling; ii) Antithetic Variate Sampling; iii) Importance 

Sampling; iv) Stratified Sampling or Systematic Sampling (e.g. LHS);  

v) Implicit Multicorrelated Sampling or the E-Z-H method after Ermakov, 

Zolotukhin and Handscomb; and vi) Conditional Expectation Sampling. Note 

that comparison of earlier references indicates some differences in 

nomenclature for similar techniques. 

 

In general, the reason why people specify the traditional method is because 

of the length of time that it has been around. Other sampling techniques 

such as LHS have not been as widely implemented. 

 

 

Latin Hypercube Sampling 

 

The LHS method is designed to accurately recreate the input distribution, 

preserving the randomness of the traditional method while using fewer 

samples. Typically, LHS requires about one third of the traditional method's 

iterations to get equal or better results (Palisade Corporation, 1994; Murtha, 

1995). The key to this process is stratification of the input probability 

distribution (McKay et al, 1979; Startzman & Wattenbarger, 1985). Firstly, 

the cumulative distribution is divided using equal intervals on the probability 

scale of 0 to 1 (Figure 2.8). Then a sample is randomly taken from each part 

of the input distribution. Thus, sampling is forced to represent values in each 
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of the divisions, thus avoiding clustering of values and more accurately 

reflecting the input probability distribution. 
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 Figure 2.8: Five iterations of Latin Hypercube 

Sampling (modified after Palisade 
Corporation, 1994). 

 

 

The technique being used during LHS is so-called sampling without 

replacement: the number of divisions of the cumulative distribution is equal 

to the number of iterations performed. Hence, a sample is taken randomly 

from each division and once a sample is taken, the division is not sampled 

again. Note that if a LHS simulation is stopped prior to the execution of the 

specified number of iterations, the results are still valid. However, they do not 

reflect all the benefit of the stratified sampling since not all the input strata 

have been filled. Since the strata which have been sampled from have been 

randomly selected from across a distribution, the results are at least as good 

as the equivalent results produced from the same number of Monte Carlo 

iterations, but not as good as a complete LHS simulation of the same 

number of samples. 
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2.3.3 Level II Methods 
 

2.3.3.1 Basic Features Of The First Order Reliability Method 

 

Suppose that the failure function, Z, can be expressed as follows: 

 

 Z = a + a X + a X +...+a X = a + a X0 1 1 2 2 N N 0
i=1

N

i i∑  (2.5) 

 

where a=(a0,...,aN) are constants and X=(X1,...,XN) are mutually independent 
Normal basic variables with known means µ µ µX X XN

= ( ,..., )
1  and standard 

deviations σ σ σX X XN
= ( ,..., )

1 . It can be shown (Smith, 1986) that provided the 

variables, X, follow the Normal distribution and are mutually independent, Z 
will also follow a Normal distribution having mean, µZ , and variance, σZ

2 : 

 

 Z 0 1 X N X 0
i=1

N

i X= a + a +...+a = a + a
N i

µ µ µ µ
1 ∑  (2.6) 

 Z
2

1
2

X
2

N
2

X
2

i=1

N

i X
2 =  a  +  ... +  a = (a )

1 N iσ σ σ σ∑  (2.7) 

 

The probability of Z being less than or equal to zero follows from the Normal 

distribution, with known mean and standard deviation: 

 

 f
Z=-

0

ZP P Z 0 = f dZ = (- )= ≤
∞
∫( ) Φ β  (2.8) 

 
where fZ is the probability density function of Z, Φ  is the cumulative 

distribution function of the standard Normal distribution (tabulated in 

statistical books such as Abramowitz & Stegun, 1964) and β  is the reliability 

index: 

 

 β
µ
σ

= Z

Z
 (2.9) 

 

Note that β  is the inverse of the coefficient of variation of Z and is the 

distance from the mean value of Z, µZ , to the failure surface, Z=0, in terms 

of the number of standard deviations (Figure 2.9). 
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 Figure 2.9: Illustration of the reliability index (modified 
after Burcharth, 1992). 

 

 

If the basic variables are Normal but correlated then the expression for µZ  
still holds but σZ

2  is given by: 

 

 Z
2

1
2

X
2

N
2

X
2

i=1

N

j=1
j i

N

X X i j X X =  a +...+a + a a1 N i j i jσ σ σ ρ σ σ∑∑
≠

 (2.10) 

 

where the last term accounts for correlation between any pair of basic 
variables and ρX Xi j  denotes the correlation coefficients: 

 

 X X
ov i j

X X

i X j X

X X

i j X X

X X
i j

i j

i j

i j

i j

i j

=
C [X ,X ]

=
E[(X - )(X - )]

=
E[X X ] -

ρ
σ σ

µ µ

σ σ

µ µ

σ σ
 (2.11) 

 

E[...] is the expected value operator and represents the expected value of its 

argument. Cov[Xi,Xj] is the covariance of Xi and Xj; Xi and Xj are said to be 
uncorrelated if Cov[Xi,Xj]=0, i.e. ρX Xi j

= 0 . 

 

Note that eq. (2.8) gives an "exact" probability of failure only if the failure 

function is linear in X and if all the basic variables are normally distributed. 
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2.3.3.2 Non-Linear Failure Functions 

 

Normal Random Variables 

 

If the failure function Z is non-linear then approximate values of µZ  and σZ  

can be obtained by using a linearized failure function (Ferry Borges & 

Castanheta, 1983; CIRIA, 1984; Melchers, 1987; Burcharth, 1992). 

Linearization is generally performed by a truncated Taylor series expansion 

around some point, X*, retaining only the linear terms. This results in the 

following approximation for Z: 

 

 ( )Z Z + X - X  
Z

X
*

i=1

N

i i
*

*

i
≈

∂
∂








∑  (2.12) 

 

where Z* is the value of the function Z at the point X* under consideration, 

( )∂ ∂Z X i/
*

 is the partial derivative with respect to Xi, likewise evaluated at 

the point X*. The mean value and the variance of Z are, respectively: 

 

 Z
*

i=1

N

X i
*

*

i
= Z + ( - X )

Z

Xi
µ µ∑

∂
∂








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X iσ σ∑
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

















  (2.14) 

 

The probability of failure and the reliability index are again expressed by  

eq. (2.8) and eq. (2.9), respectively. 

 

When linearization is performed around the expected mean values, i.e. 
X X XN

* ( ,..., )= µ µ
1 , the method is often called a First Order Mean Value 

Approach, FOMVA (Burcharth, 1992). For non-linear failure functions, the 

errors incurred by neglecting second-order and higher terms in the Taylor 

expansion increase with increasing distance from the linearization point. 
Since the mean point X X XN

= ( ,..., )µ µ
1

 is likely to be well within the safe 

region and not on the failure surface, there are likely to be considerable 

errors in approximating the failure surface if FOMVA is used (CIRIA, 1984). 
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Another problem associated with FOMVA is that the values of µZ  and σZ , 

and thereby also the value of β , depend on the choice of the linearization 

point (Thoft-Christensen & Murotsu, 1986). Moreover, the value of β  will 

change when different but equivalent non-linear failure functions are used 

(Melchers, 1987; Burcharth, 1992). However, there is no arbitrariness due to 

the choice of failure function if only information about the failure surface is 

used, i.e. if the linearization point is selected as a point on the failure surface 

(Madsen et al, 1986). 

 

The first step to obtain invariability of β  is to apply the transformation 

proposed by Hasofer & Lind (1974) in which the basic variables, Xi, are 

transformed into a new set of normalised variables, Ui. For uncorrelated 

normally-distributed basic variables, Xi, the transformation is: 

 

 i
i X

X
U =

X -
i

i

µ
σ  (2.15) 

 
in which case µUi

= 0  and σUi
= 1 . Using this linear transformation, the 

failure surface Z=0 in the X-coordinate system is mapped into a failure 

surface in the U-coordinate system which also divides the space into a safe 

region and a failure region (Figure 2.10). Due to the zero mean and the unit 

standard deviation, the new U-coordinate system has an important 

characteristic, namely a rotational symmetry with respect to the standard 

deviations (Ditlevsen, 1979a; Melchers, 1987). Note that the origin of the 

normalised U-coordinate system corresponds to the mean value of the initial 

variables and will usually be within the safe region. 

 

Figure 2.10 introduces the Hasofer and Lind reliability index (often called the 

first order second-moment reliability index) which is defined as the distance 

from the origin to the nearest point, D, of the failure surface in the  

U-coordinate system (Hasofer & Lind, 1974). D is called the design point and 

is the point on the failure surface at which the linear approximation to the 

failure surface is made. For normally-distributed variables, the coordinates of 

the design point in the original X-coordinate system are the most probable 

values of the variables at failure i.e. the design point is that point on the 

failure surface where the probability density attains a maximum (see CIRIA, 

1984, for proof). These coordinates are given as follows: 
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 X i X i Xi i

* = +µ α βσ  (2.16) 

 

where α i  are the so-called sensitivity factors defined as follows: 

 

 α
σ
σ

∂
∂i

Xi

Z i

Z
X

= −






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
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


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

*

 (2.17) 

 

 

 

Figure 2.10: Joint probability density function for two random variables 
and for two reduced variables. 

 

 

The special feature of the Hasofer and Lind reliability index is that it is related 

to the failure surface Z(U)=0 which is invariant to the failure function because 

equivalent failure functions result in the same failure surface  

(Thoft-Christensen & Murotsu, 1986). The two reliability indices coincide 

when the failure surfaces are linear (Ditlevsen, 1979a; Madsen et al, 1986). 

Obviously, this is also the case if non-linear failure functions are linearized by 

Taylor series expansion around the design point. 

 

Note that linearization about the mean or the design point leads to different 

results, depending on the shape of the failure function Z. In general, 

linearization around the design point is very much to be preferred (Melchers, 

1987; CUR-TAW, 1990) because the design point is the most probable point 

of failure. Linearization around mean values can lead to quite erroneous 

results, but due to the simplicity of the method it might be used to get a first 

estimate of the failure probability (Burcharth, 1992). 
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How well a linear function approximates a non-linear function in terms of the 

resulting probability of failure, Pf, obviously depends on the shape of the 

non-linear function (Casciati & Faravelli, 1991). If it is concave towards the 

origin, Pf is under-estimated by the hyperplane approximation. Similarly, a 

convex function towards the origin implies over-estimation, as in Figure 2.10. 

Note that all failure surfaces that are tangential to each other at the design 

point have the same reliability index (Ditlevsen & Bjerager, 1986); for 

example, if the curved and flat surfaces of Figure 2.10 are considered as 

failure surfaces of two different structures, the reliability indices for the two 

structures are the same suggesting equal reliability, whereas the structure 

with the curved surface is clearly more reliable than the one with the flat 

surface. It would be useful to have a measure of comparativeness of the 

reliability indices with respect to the implied reliability or probability  

content (Melchers, 1987; Casciati & Faravelli, 1991). For this purpose, 

Ditlevsen (1979a) introduced a reliability index which is known as the 

generalised reliability index. However, the lack of comparativeness is not 

critical for single failure mode probability analysis (Ditlevsen & Bjerager, 

1986) and this is why the simple Hasofer and Lind reliability index is usually 

used for this purpose. Hence, details of the generalised reliability index and 

methods consistent with its definition (e.g. Der Kiureghian & Liu, 1986) are 

beyond the scope of this work. 

 

The method in which linearization is performed around the design point is 

often called a First Order Reliability Method, FORM. Since the design point is 

not known a priori, and in most cases cannot be determined directly (except 

if Z is linear), finding the shortest distance, β , in U-space, subject to Z(U)=0 

is strictly a minimisation problem (Rackwitz, 1976; Flint et al, 1981; 

Shinozuka, 1983; Casciati & Faravelli, 1991; Liu & Der Kiureghian, 1991). 

There are several ways in which a solution may be found (Melchers, 1987) 

such as by direct minimisation using a Lagrangian multiplier (Schittkowski, 

1985; Burcharth, 1990), by a numerical approach (Melchers, 1987) or by an 

iterative procedure. In this study, the latter is used; other methods are 

beyond the scope of this research. 

 

Several iteration schemes exist (Thoft-Christensen & Baker, 1982; CIRIA, 

1984; Smith, 1986; CUR-TAW, 1990; Ahammed & Melchers, 1993). In the 

following, the simple scheme suggested, for example, in CUR-TAW (1990) 
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and Ahammed & Melchers (1993), is introduced. It is used in the Level II 

program, PARASODE, developed as part of this research (see Chapter 5): 

 
1) Set the initial design values of the basic variables (e.g. X i Xi

* = µ ) 

2) Compute Z and the partial derivatives ∂ ∂Z X i/  at the point X i
*  

3) Compute µZ  and σZ  

4) Compute β µ σ= Z Z/  

5) Compute αi  

6) Compute new X i
*  

7) Repeat steps 2 to 6 until convergence is achieved within specified 
limits 

8) Check that Z* = 0, within specified limits 

9) Compute the probability of failure from Pf = −Φ( )β  

 

The way this iteration procedure is set-up allows the safety of a structure to 

be assessed, i.e. it allows a calculation of the probability of failure for a given 

design parameter (e.g. the crest level of a seawall). However, this iteration 

procedure, slightly adjusted, and Level II methods in general, may also be 

used for design i.e. a probability of failure is first specified and one design 

parameter is modified until the target reliability is achieved (see Chapter 5 

and Appendices C and D for further details). 

 

Note that the iteration procedure can fail in certain circumstances  

(Rackwitz, 1976; Madsen et al, 1986; Melchers, 1987; CUR-TAW, 1990; 

Super-Software, 1994). One case is for a highly non-linear function for which 

it is possible to alternate between successive approximation points i and i+1 

(Fiessler, 1979). This difficulty can be overcome by starting the new iteration 

using a point between i and i+1 (see Section 5.2.2.5). A second breakdown 

case is when the trial initial design point, X*, lies close to a stationary point 

which is not a minimum; this is because the iteration procedure can only 

search for local stationary points and cannot distinguish between maxima, 

minima or saddle points (Ditlevsen & Madsen, 1980). The problem can only 

be overcome by selecting different starting points (see Section 5.2.2.1) and 

common sense appraisal of results. 

 

A useful by-product of FORM is its ability to quantify the sensitivity of the 

reliability index to inaccuracies in the value of Xi at the design point, i.e. to 
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determine the contribution to the spread of Z made by each random variable. 

Eq. (2.14) can be rewritten as: 
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Thus, αi

2  represents the contribution to σZ
2  due to σX i

2
. If αi

2  is small, Xi 

might be modelled as a deterministic quantity equal to its mean value. 

Typically, the acceptable values of the probability of failure are very small 

(CIRIA, 1984; CUR-TAW, 1990). This fact makes the reliability evaluations 

quite sensitive to the choice of the distributions of some variables and, in 

particular, to the choice of the tails of the distributions (which, of course, are 

the most difficult parts to verify by data). Thus αi
2  gives a powerful means of 

examining which variables are most important and which make a negligible 

contribution to the variance of Z. Knowing αi
2 , one might focus attention only 

on the most important variables (Ditlevsen & Bjerager, 1986). 

 

If basic variables are not independent, three possible courses of action are 

open (Joint Committee on Structural Safety, 1978; CIRIA, 1984): 

 
• if the variables are strongly correlated (say, correlation coefficients 

greater than 0.8), the variables may be conservatively assumed to 
be exactly dependent, in which case the effective number of basic 
random variables is reduced; 

• if the variables are weakly correlated (say, correlation coefficients 
less than 0.2), the variables may be assumed to be independent; 

• for all other cases it is necessary to use a method which deals with 
correlated variables. 

 

In these latter cases, correlation between variables can be dealt with using 

different methods, with different levels of performance and complexity. 

Which method should be used depends upon the problem under study, the 

accuracy required for the answer, and the data available. 

 

To transform non-Normal correlated variables to independent Normal 

variables the Rosenblatt transformation (Rosenblatt, 1952) is usually 
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recommended (Ang & Tang, 1984; Madsen et al, 1986; Thoft-Christensen & 

Murotsu, 1986; Melchers, 1987; Casciati & Natale, 1992). However, there 

are other simpler approaches. For example, correlation can be accounted for 

by allowing the distribution of one random variable to be expressed as a 

function of another random variable (Van de Graaff, 1986; Burcharth, 1992; 

Townend, 1994a; Super-Software, 1994). Another alternative is outlined 

below. It transforms a set of correlated variables, Xi, into a set of  

non-correlated variables, Yi, where Yi are linear functions of Xi, i=1,...,N 

(Thoft-Christensen & Baker, 1982; Ang & Tang, 1984; CIRIA, 1984; Smith, 

1986; Melchers, 1987; Burcharth, 1992): 

 
• Compute the covariance matrix Cov [X] from 

 ov
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ov 2 1 2

ov N 1 N
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 (2.19) 

• Compute the matrix of eigenvectors, V, and the vector of 
eigenvalues, D, of Cov [X] 

• Compute µ µY
T

XV=  where VT is the transpose matrix of V 

• Compute σY
T

ovV C X V D2 = =[ ]  

• Compute Y=VT X 

 

Note that Cov [Y] is a diagonal matrix as follows: 
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 (2.20) 

 

So, no correlation between any pair of random variables Y exists, as 

expected. 
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Non-Normal Random Variables 

 

It is not always reasonable to consider random variables to be  

normally-distributed. For example, significant wave height, HS, is likely to 

follow other distributions (e.g. Gumbel and Weibull) quite different from the 

Normal distribution, and it cannot be described solely by its mean value and 

standard deviation. For such cases of non-Normal variables, the Rosenblatt 

transformation (mentioned above) could be used. On the other hand, it is 

also still possible to use the reliability index concept but an extra 

transformation of the non-Normal basic variables into Normal basic variables 

must be performed. A commonly-used transformation (Thoft-Christensen & 

Baker, 1982; Ferry Borges & Castanheta, 1983; Ang & Tang, 1984; CIRIA, 

1984; CUR-TAW, 1990) is that of Rackwitz & Fiessler (1978). It is based on 

substitution of the non-Normal distribution of the variable Xi by a Normal 

distribution in such a way that the original probability density and cumulative 
distribution functions ( fX i

 and FX i
, respectively) are equal to the 

corresponding values of the probability density and the cumulative 
distribution functions for a normally-distributed variable ( ϕ  and Φ , 

respectively) at the design point X* (Figure 2.11): 

 

 

 

 Figure 2.11: Rackwitz and Fiessler approximation for  
non-Normal variables (modified after Van der 
Meer, 1987). 
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where µX

N

i  and σX
N

i  are the mean and standard deviation of the approximate 

(fitted) Normal distribution. Solving the above equations for µX
N

i  and σX
N

i : 

 

 i i i

i

i

i

X
N

i
* -1

X i X
N

X
N

-1
X i

*

X i
*

= X - [F (X )]

=
[ [F (X )]]

f (X )

µ σ

σ
ϕ

Φ
Φ
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 (2.22) 

 
The iterative method presented earlier can still be used if the values of µX

N

i  

and σX
N

i  are calculated during each iterative loop. Eq. (2.16) for calculation 

of the design point is applied using the values of µX
N

i  and σX
N

i . In this case 

of non-Normal variables, the point determined by iteration does not 

correspond exactly to the point of maximum probability of failure density  

(see CIRIA, 1984, for further details). In general terms, the point may be 

considered to be a close approximation to the set of values of the basic 

variables most likely to cause failure. 

 

 

2.3.3.3 Combinations Of Actions 

 

In nature, many actions (or loads) vary with time1. If a structure is subject to 

only one significant time-varying action, it is necessary to consider only the 

distribution of the maximum action during the anticipated life of the structure 

or the reference period, Tref, for which the risk of failure is being assessed. 

However, if the structure is subjected to the effects of more than one  

time-varying action (e.g. waves and surges), then it is extremely unlikely that 

all of the actions will reach their peak lifetime values at the same moment 

(Turkstra, 1970; Der Kiureghian, 1980; Thoft-Christensen & Baker, 1982; 

CIRIA, 1984; Smith, 1986). Some benefit can be gained, in terms of reduced 

structural capacity, if this fact is taken into account, i.e. a structure can be 

                                            
1
 Note that resistance also changes with time (e.g. Vasco Costa, 1987) and it can also be 

dealt with in a probabilistic manner (e.g. Nielsen & Burcharth, 1983). This aspect is 
beyond the scope of the present research. 
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designed for a total action less than the sum of the peak actions. This fact 

has long been recognised (Turkstra, 1970; Ferry Borges & Castanheta, 

1971, 1983). 

 

Although complex stochastic models may be used with Level III methods 

(CIRIA, 1984), some simplifications are required at Level II. A popular model 

for treating combinations of actions at Level II is that due to Ferry Borges & 

Castanheta (1971, 1983), which is a development of an earlier proposal by 

Turkstra (1970). Several meetings have been held between Mr. Castanheta, 

a Research Engineer at the National Laboratory of Civil Engineering (LNEC), 

Lisbon, Portugal, and the author. They have stimulated very useful 

discussions about the implementation of combinations of actions at Level II. 

 

Ferry Borges and Castanheta's model has generally been very well accepted 

in the field (Turkstra & Madsen, 1980; Ditlevsen & Madsen, 1981; Bjerager & 

Skov, 1982; Thoft-Christensen & Baker, 1982; Melchers, 1987). Applications 

of the method are given in Ferry Borges & Castanheta (1971), CIRIA (1984) 

and Allsop & Meadowcroft (1995). It is described here and subsequently 

applied in the development of PARASODE. Note that some approximations 

in its basic concepts have been proposed by authors such as Paloheimo 

(1975), Ditlevsen (1976) and Rackwitz & Fiessler (1978), and other models 

have also been developed (Der Kiureghian, 1980; Madsen & Tvedt, 1990). 

 

In the combinations of actions with which engineers are normally concerned, 

some actions change in intensity very much more rapidly than others (see 

Figure 2.12). If one action reaches its extreme value at some time during the 

design life, the combination of this action with the simultaneous values of the 

other actions may give the worst loading case (Turkstra, 1970). 
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 Figure 2.12: Representation of three time-varying actions 
(modified after CIRIA, 1984). 

 

 

In the Ferry Borges and Castanheta model, it is first assumed that for each 

time-varying action, Xi, the design life or reference period, Tref, is sub-divided 

into a number, ri, of elementary time intervals of equal length, τ i , such that 
r Ti ref i= / τ  and τ τi i i= +l 1  in which l i  is an integer. The three following 

requirements should also be satisfied (CIRIA, 1984): 

 
• for each interval, the occurrence or non-occurrence of the action 

corresponds to repeated independent trials with a probability pi of 
occurrence; 

• for the duration of the time interval, the load Xi remains at a 
constant intensity (or zero); 

• the intensities of the action in different time intervals are 
independent. 

 

This model is represented in Figure 2.13 for three time-varying actions. 
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 Figure 2.13: Idealised model of three time-varying actions 
(modified after CIRIA, 1984). 

 

 

For each time-varying action, Xi, it is then necessary to define the cumulative 
distribution function of the intensity of the action, FX i

, corresponding to the 

basic time interval, τ i . The cumulative distribution function of the maximum 
intensity of action Xi within the reference period, FX ri i, , may then, in most 

cases, be approximated by (CIRIA, 1984): 

 
 F FX r i X

m

i i

i
, ≈  (2.23) 

 

where mi=piri. For any other shorter period t<Tref, corresponding to, say, si 

intervals of duration τ i , the cumulative distribution function of the maximum 

intensity becomes: 

 
 F FX s X

p s

i i i

i i
, ≈  (2.24) 
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The model then requires the ranking of the actions in increasing order of the 

individual number of possible repetitions ri during the reference period such 

that r r rk1 2≤ ≤ ≤... . As Ferry Borges & Castanheta (1983) demonstrate, an 

approximation to the maximum combined action may then be obtained by 

considering 2k-1 combinations of actions. For example, for k=3 time-varying 

actions: 
 
 Comb. 1 FX

r

1

1  FX
r r

2

2 1/  FX
r r

3

3 2/  

 Comb. 2 FX1
 FX

r

2

2  FX
r r

3

3 2/  

 Comb. 3 FX1
 FX2

 FX
r

3

3  

 Comb. 4 FX
r

1

1  FX2
 FX

r r

3

3 1/  

 

In practice, and consequently in certain literature (Ferry Borges & 

Castanheta, 1974; CIRIA, 1984; Allsop & Meadowcroft, 1995), some of the 

2k-1 combinations of actions are neglected and only k combinations are 

considered. In this case (i.e. when the number of combinations taken into 

account is equal to the number of time-varying actions), the combination rule 

can easily be generalised as follows: when k time-varying actions are 

combined in k combinations of actions, each combination includes only one 
extreme distribution in the design life FX

r

i

i ; actions having a number of 

repetitions less than ri are idealised by their basic distributions FX i
; actions 

having a number of repetitions exceeding ri are idealised by the reduced 
distributions FX

r r

i

i i/ −1 (see Table 2.1). 

 

Referring to the example of the three time-varying actions shown in  

Figure 2.13, application of the combination rule (or Table 2.1) would require 

consideration of the three first combinations listed above, i.e.: 

 
• combination of the distribution of the maximum value of the action 

X1 during the reference period Tref (NR11=2; NRji is the power to 
which each basic distribution, FX i

, should be raised, for each  
time-varying action Xi, i=1,...,k, and for each combination j, j=1,...,k) 
with the distribution of the maximum value of X2 during a period τ1  
(NR12=6/2=3), and with the distribution of the maximum value of X3 
during a period τ2  (NR13=24/6=4); 

• combination of the distribution of the action X1 based on its 
elementary time interval τ1  (NR21=1) with the distribution of the 
maximum value of X2 during the reference period Tref (NR22=6), and 
with the distribution of the maximum value of X3 during a period τ2  
(NR23=24/6=4); 
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• combination of the distribution of the action X1 based on its 
elementary time interval τ1  (NR31=1) with the distribution of the 
action X2 based on its elementary time interval τ2  (NR32=1), and 
with the distribution of the maximum value of X3 during the 
reference period Tref (NR33=24). 

 

 
 Action, Xi X1 X2 X3 ... Xk 

Combination j Number of time 
intervals in Tref, ri  

r1 r2 r3 ... rk 

1 Power to which  NR11=r1 NR12=r2/r1 NR13=r3/r2 ... NR1k=rk/rk-1 

2 each basic   NR21=1 NR22=r2 NR23=r3/r2 ... NR2k=rk/rk-1 

3 distribution, FXi
, NR31=1 NR32=1 NR33=r3 ... NR3k=rk/rk-1 

: . should be raised,  : . : . : . : . : . 

k NRji NRk1=1 NRk2=1 NRk3=1 ... NRkk=rk 

 Table 2.1: Values of NRji (modified after Rackwitz, 1976). 

 

 

The distributions used in the combinations are referred to here as the 

modified distributions (note that, depending on the combination considered, 

these modified distributions may include basic, extreme and reduced 

distributions). To apply this model, either the modified distributions are 

known or they can be obtained if the basic distributions are available 

together with the number of repetitions of each action in the reference 

period. In the latter case, care should be taken in determining the number of 

repetitions to be adopted. As an example, Ferry Borges & Castanheta (1971, 

1983) have shown that, for a reference period of fifty years, probability 

distributions of mean wind velocities with respect to elementary time intervals 

of one hour are transformed into distributions of yearly maxima by 

considering a fictitious number of repetitions of r=50x1000=50000, 

considerably less than the total number of elementary intervals 

r=24x365x50=438000. In this case, the difference is due to the strong 

correlation between the successive hourly mean velocities, i.e. hourly mean 

values are not independent. When there are insufficient observations to 

determine the number of repetitions, the values adopted should be based on 

experience (Joint Committee on Structural Safety, 1978). 

 

Finally, to determine the probability of failure of a structure associated with a 

specific failure mode and subjected to more than one time-varying action, the 
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Level II methods described in Section 2.3.3.2 are applied for each of the k 

combinations using the appropriate modified distributions of the  

time-varying actions. This yields k values of the reliability index, β , which 

may then be combined to estimate the total failure probability using the 

relationship: 

 

 Pf j
j

k

≈ −
=
∑Φ( )β

1
 (2.25) 

 
 
2.3.4 Level I Methods 
 

As noted earlier, each failure mode must be described by a formula. Level I 

methods involve introducing partial coefficients (or partial safety factors) into 

the formula. The coefficients are chosen to give an acceptable margin 

between the characteristic resistance and the design load. By this means, 

the probability of failure is kept to a suitably low level. Safety factors were 

traditionally selected largely on the basis of intuition and experience 

(Committee of the Institution of Structural Engineers, 1955). However, the 

availability of Level II probability methods has made it possible to relate 

probabilistic measurements of safety, such as Pf or β , to the partial 

coefficients in Level I methods. Hence, the safety factors can now be 

determined on a more scientific and rational basis (Yen, 1989). 

 

The partial coefficients, γ , to be applied to a failure mode formula are 

usually larger than or equal to one. Consequently, if one splits the formula 

into either load variables XS,i or resistance variables XR,i then the related 

partial coefficients should be applied as follows to obtain the corresponding 
design values, XS i,

*  and XR i,
* : 

 

 
X =

X

X = .X

R,i

R,i

X ,i

S,i X ,i S,i

ch

R

S ch

*

*

γ
γ

 (2.26) 

 
XR ich,  and XS ich,  are characteristic values of the resistance and load 

variables, respectively. These equations represent the key to the relationship 

between Level I and Level II methods: the so-called design point (Melchers, 

1987; Van der Meer, 1987). 
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The term characteristic value was introduced in the late 1950s at the time 

when probabilistic concepts were first being introduced into structural codes 

of practice, and when it was recognised that few basic variables have clearly-

defined upper and lower limits that can sensibly be used in design. For 

example, in civil engineering codes of practice, the characteristic values of 
resistance parameters, XR ich, , might be chosen as values below which not 

more than 5% of test results may be expected to lie (the 5% fractile). 
Similarly, characteristic values of loads, XS ich, , might be defined as the loads 

with a 5% probability of being exceeded (the 95% fractile) during the lifetime 

of the structure. Alternatively, they may be chosen to be the mean values. 

Other definitions may also be used (Madsen et al, 1986). Note, however, that 

the values of the partial coefficients are uniquely related to the chosen 

definitions of the characteristic values. 

 

The magnitude of γ i  reflects both the uncertainty in evaluating the related 

parameter Xi and the relative importance of Xi in the failure function 

(Burcharth, 1990). It is to be stressed that the magnitude of γ i  is not, in a 

mathematical sense, a rigorous measure of the sensitivity of the failure 

probability to the parameter Xi (PIANC, 1992). 

 

When the partial coefficients are applied to the characteristic values of the 

parameters in a failure function, a design equation is developed. For the 

basic case of one resistance variable, XR, and one load variable, XS, the 

minimum requirement applied to a structure at Level I is that the following 

condition is satisfied: 

 

 Z =
X

-  X  >  0ch

R

S ch

R

X
X Sγ

γ  (2.27) 

 
γ XR  and γ XS  are partial safety factors of the resistance and load, 

respectively. Assuming a Normal distribution for XR and XS, as adopted in the 

Level II analysis, the characteristic values are defined as: 

 

 
X -K
X = K

R X X X

S X X X

ch R R R

ch S S S

=
+

µ σ
µ σ  (2.28) 
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where K XR  and K XS
 are coefficients defining the fractile which corresponds 

to the characteristic value (Madsen et al, 1986). This is illustrated in  

Figure 2.14 for the special case where K KX XR S
= = 196. . 

 

 

 
 Figure 2.14: Definition of characteristic resistance, XRch , and characteristic 

load, XSch
, when XR and XS are both normally distributed 

(modified after Melchers, 1987). 

 

 

Considering the general multi-variate basic variable problem and comparing 

eqs. (2.28) with eq. (2.16) for the design point, X i
* , a relationship between the 

partial coefficients in eqs. (2.26), the reliability index, β , and the sensitivity 

factors, αi , can be obtained (Ferry Borges & Castanheta, 1983; PIANC, 

1992): 
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 (2.29) 

 

The partial coefficients can be related either to each parameter or to 

combinations of the parameters (as overall coefficients). They can also be 

tuned to ensure equal contributions from the various failure modes to the 

failure probability of the structure (Burcharth, 1990). Clearly, it is desirable to 

have a system which is as simple as possible, i.e. with as few partial 

coefficients as possible, but without invalidating the accuracy of the design 

equation beyond acceptable limits. Fortunately, it is very often possible to 

use overall coefficients without losing significant accuracy within the realistic 
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range of combinations of parameter values. This is the case for the system 

of partial safety factors developed for rubble-mound breakwaters proposed 

by PIANC (1992) where only two partial coefficients are used in each design 

formula. For full details, the reader should consult references such as 

Burcharth (1991a) and PIANC (1992). 

 

The accuracy of the Level I methods depends on several factors. The most 

important have been summarised by Allsop & Meadowcroft (1995) as 

follows: 

 
• the range of applicability of the design procedure (the wider the 

area of application the less accurate are the safety factors); 

• the complexity of the partial safety factor system (a system with 
many safety factors will easily match the target reliability over the 
area of application, but will be more complex to develop and apply); 

• the underlying probabilistic methods (the reliability of sample 
designs is assessed using Level III or Level II methods; hence, the 
partial factors developed depend on the accuracy of those 
methods); 

• the underlying failure functions (the reliability with which the failure 
functions represent the failure modes affects the accuracy of the 
safety factors); 

• the source data (if the data used are not very reliable, the safety 
factors cannot be relied upon either). 

 

Level I safety-checking methods are the basis for codes of practice, although 

the safety factors used are assessed by Level II and/or Level III methods 

(CIRIA, 1984). Codes of practice exist for offshore structures (see, for 

example, Fjeld, 1977) and nearly all types of land-based structures 

(Burcharth, 1987). The question of whether coastal structures need such 

codes of practice is often raised (CUR-TAW, 1990) but has not yet been fully 

answered. 

 
 
2.3.5 Comparison Of The Methods 
 

The last few sections illustrate the features of different probabilistic methods. 

All of them have their advantages and disadvantages (Yen, 1989). There are 



Probabilistic Methods For Design And Assessment 

2-45 

various reasons why one method might be used instead of another. The 

issues are discussed below. 

 

In the numerical integration method, the calculation of an N-fold integral may 

be extremely time-consuming and it usually requires a considerable 

computational effort. Even with modern computer facilities, an enormous 

number of calculations is involved if the number of variables exceeds 5 or 6 

and if the failure function is a complex one (Hohenbichler et al, 1987; 

Bjerager, 1991). 

 

Traditional sampling is an acceptable alternative when dealing with simple 

failure functions and failure probabilities which are not very low. However, it 

suffers from the fact that if an "accurate" answer is desired for extreme 

conditions associated with relatively low probabilities of failure (approximately 

10-4<Pf<10-8, according to Bjerager, 1991), many simulations are required. 

This is a drawback that recent methods, like Latin Hypercube sampling, may 

address to some extent by reducing the required number of simulations. In 

other cases, difficulties can be overcome by using Level II methods like 

FORM. The main practical advantages of this approach are that it is less 

time-consuming than Level III methods, the computational effort is 

independent of the probability level, it provides a rational basis for evaluating 

partial safety factors and it also provides an automatic procedure for 

determining the sensitivity of the computed failure probability to each of the 

basic design variables. This latter characteristic allows the designer to focus 

his attention on the parameters which are of greatest significance and shows 

where effort to reduce uncertainty should be concentrated. Due to their 

simplicity, these methods have become very popular, particularly in 

calibration work for codes of practice (Melchers, 1987). Note that unlike 

Level III methods which can be used only for reliability analysis (safety 

checking), Level II procedures may be used also for design (i.e. design for a 

specified reliability level). However, these procedures also have their 

limitations. Amongst others, the main reason for discrepancy between a 

Level II and a Level III method is that the failure function is usually  

non-linear. The stronger the non-linearity, the greater is the chance that the 

Level II results will differ considerably from the "exact" answer. However, the 

FORM results can be improved through a second or higher order 

approximation (Ang & Tang, 1984; Madsen et al, 1986; Jang et al, 1994), as 

mentioned briefly in Section 2.3.1. But computational complications are 
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increased considerably. Therefore, at present, these methods are seldom 

used. It is more common to use the Level III methods, especially simulation, 

to validate the Level II results. Although a FORM method can provide an 

answer to a problem, it is never known how accurate the answer is unless a 

check is done using numerical integration or simulation techniques. 

Nevertheless, the FORM method is one of the most important tools in 

probabilistic design because one can rarely afford to make a million Level III 

calculations during preliminary design. 

 

Besides the calculations at Level III and Level II, there are those at Level I. 

Level I calculations are particularly suitable for everyday design (where a 

large body of previous experience of similar systems is available), although 

the determination of the partial coefficients must be based upon higher level 

results. Level I calculations are the basis of codes of practice. 

 

If probabilistic methods are used with foresight and understanding, they are 

powerful and can provide reliable results. For example, comparison of design 

alternatives using these methods is a promising way in which to apply them 

(Dover & Bea, 1979; Townend & Fleming, 1991; Melchers, 1993). One can 

use these methods to decide what is the difference in probability of failure of 

a structure designed with strategy A compared with one designed with 

strategy B and what are the associated projected consequences. Meaningful 

decisions can be based on such comparisons. However, application of 

probabilistic methods leads to the question of whether or not the calculated 

probability of failure corresponds to reality. It is often argued that a 

probabilistic analysis is meaningful only if there is a complete understanding 

of the physics and if the analysis is based on accurate computational models 

and on sufficient statistical data (Burcharth, 1983, 1985; CUR-TAW, 1990). 

However, in practice, these requirements are seldom fulfilled. Analysis has to 

address an idealised system founded upon assumptions, simplifications and 

the collective judgement of a number of individuals, so that the real system 

becomes manageable. As CIRIA (1984) emphasise, probabilistic methods 

should be viewed as an aid to the application of humanity, experience and 

judgement, not as their replacement. In this connection, the calculated 

probability of failure is related to the idealised system (and not directly to the 

real system) and should be interpreted as a measure of the confidence in a 

particular design. It is a notional probability of failure, instead of the 

frequency of cases of failure (Veneziano, 1976; CIRIA, 1984; Van der Meer, 
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1987, CUR-TAW, 1990). In other words, the numerical and graphical results 

produced by the probabilistic methods should be taken as illustrating orders 

of magnitude and trends, rather than describing reality (Fjeld, 1977; 

Burcharth, 1985). Hence, the purpose of a reliability analysis is not so much 

to calculate the exact failure frequency as to produce as good and balanced 

a design as possible with the available information. In fact, the engineer is 

expected to develop a model of the phenomenon under study which 

embodies its salient features and which can be used to make optimal 

decisions using the data available (Turkstra, 1970; Burcharth, 1985; 

Ditlevsen & Bjerager, 1986; Melchers, 1993). He is not expected to produce 

a perfect image of reality which is an impossible task (Lamberti, 1992). In this 

pragmatic sense, even simplistic models, approximate probabilities, notional 

reliabilities, etc., may be satisfactory (Veneziano, 1976). It is also worthwhile 

noting that the less one knows, the more important it is to try to assess the 

reliability of a structure (Burcharth, 1983, 1990). The probabilistic approach is 

the only one which gives information on the risk of failure with due 

consideration to the uncertainties of the various parameters involved. As 

Harlow (1985) stated: 

 
 The art and science of civil engineering deals with applying the materials of 

nature to the use of mankind, but it does not presuppose complete 
understanding of all facts. Civil engineers have always worked with 
incomplete information and probably they always will.  

 

The fact that there is neither a complete understanding of the physics nor 

accurate computational models and sufficient statistical data to make the 

best use of probabilistic methods, does not mean that they should be 

discarded (Yen, 1989). On the contrary, effort should be devoted to 

describing the physical processes and establishing the appropriate models 

and data sets required for their full implementation. Thus, much more work is 

required if complete and objective risk assessments are to be reached. For 

instance, there is a great need for detailed monitoring of existing coastal 

structures, including recording the wave conditions to which they are 

subjected (Ouellet, 1974; MAFF, 1993c). Furthermore, it is important to 

incorporate as much experience as possible from failures. Although 

unacceptable and costly, failures test the limits of our knowledge and, in 

some way, are the price of progress (Eberhardt, 1979; Sorensen & Jensen, 

1985). Failures are of such great importance to the engineering community 

that their details should be widely published. For example, a team from  

HR Wallingford/Sir William Halcrow & Partners Ltd created, as part of 



Probabilistic Methods For Design And Assessment 

2-48 

research carried out for the National Rivers Authority, a database of flooding 

instances, including information such as details of the location and type of 

structure, a description of the failure mode, and an assessment of 

consequences (Meadowcroft et al, 1996). This sort of initiative should be 

encouraged. 

 
 
2.4 Closing Remarks 
 

Risk analysis provides a powerful framework for the design of coastal 

structures, accounting for the probability and consequences of failure as well 

as coping, to some degree, with variability and uncertainty. However, when 

assessing structural safety using probabilistic methods, it must be stressed 

that the process involves knowledge about the individual structure. 

Therefore, confidence in the calculated value of the probability of failure must 

change with the amount and quality of the information used for its 

calculation. With this philosophy in mind, risk analysis may be seen simply as 

a design tool based on scientific methods which can facilitate good 

engineering decisions, but not a process which will necessarily provide a 

precise assessment of safety. 

 

In recent years, much has been learned by coastal engineers about risk 

analysis, but progress in formulating methods and gaining confidence in new 

design procedures is inevitably slow. At present, there is insufficient 

knowledge about coastal structures to enable a probability analysis of failure 

mode systems to be carried out in full. However, instead of abandoning this 

“new” approach to design, efforts should be made to better identify the 

specific physical processes with which coastal engineers must deal, to better 

communicate their data requirements to researchers, to subsequently collect 

the required data sets, and to establish the appropriate models necessary for 

the complete implementation of the methods. 

 

Some existing studies have aimed at being very broad, covering failure 

modes, consequences and costs. Others have focused on particular failure 

modes. This demonstrates the difficulty in achieving a satisfactory 

compromise between theory and practice, and developing an approach 

applicable to a wide range of coastal structures. 
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Diagrams like event trees, fault trees and cause-consequence charts have 

been presented for some coastal structures. However, such techniques have 

still almost always served essentially as schematic representations or 

research tools rather than as strict logical analyses of failure. Information on 

failures tend to concentrate on the consequences rather than on the causes 

of failure. 

 

Assessment of the safety of coastal structures depends fundamentally on 

assessment of individual failure modes. The single failure mode probabilistic 

methods relevant to this research have been presented in Section 2.3. All of 

them have their advantages and disadvantages (see Section 2.3.5). The 

important issue is to be aware of the characteristics of the methods, their 

applicability and their limitations, otherwise wrong conclusions can be drawn, 

incorrect decisions can be made and unsound action may be taken. 
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3 WAVE OVERTOPPING OF SEAWALLS 

 
3.1 Introduction 
 

Seawalls are expensive, and fixing a seawall freeboard at too large a value 

has both a financial penalty and is unnecessarily damaging to the natural 

environment owing to the increased impact of the structure on its 

surroundings. On the other hand, if the crest of a seawall is set too low, then 

there are problems with structural safety and potential social problems 

associated with flooding from wave overtopping. Hence, it is important to 

strike the correct balance between satisfying the structural and functional 

requirements of the project, avoiding unnecessary expense, and having 

undesirable impacts on the surrounding environment. 

 

Recent damage caused by excessive wave overtopping (Jensen, 1984), 

concerns over global warming, the allied rise in mean-sea-level and 

increased storminess have all drawn attention to the fitness of existing 

coastal structures. There is a need to assess their capability in withstanding 

both higher water levels and increased wave activity. Effective evaluation 

depends upon having an adequate theoretical framework for predicting wave 

overtopping and suitable data for validating the theory, for evaluating the 

associated empirical coefficients and for undertaking risk analyses. 

 

Overtopping may occur for relatively few waves under the design event, and 

low overtopping rates may often be accepted without severe consequences 

for the seawall or the area protected by it. On the other hand, some 

structures are designed to have quite severe overtopping under design 

conditions. Other structures, such as breakwaters, may be so low that they 

are overtopped daily. The acceptable overtopping discharge depends upon 

the activities normally performed in the lee of the structure, the need to 

prevent erosion of its rear face, and the socio-economic consequences of 

flooding. 

 

Under random waves, the overtopping discharge varies greatly from wave to 

wave. There are very few data sets available to quantify this variation. It may 

be described by (Allsop, 1994): 
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• the percentage of waves passing over the crest, NWO%; 

• the mean overtopping discharge per unit length of structure,  
Q (m3/s/m); 

• the peak volume in an individual wave, Vp. 

 

Each of these responses depends on wave and structure parameters, 

including: the seawall freeboard, the crest geometry, the seaward slope, the 

significant wave height, and the mean or peak wave period, the angle of 

wave attack measured from the normal to the structure, the water depth at 

the toe of the seawall, and the seabed slope. In many cases, for example for 

determining the required drainage capacity behind seawalls and the depth of 

flooding in the hinterland, it is sufficient to use the mean discharge, Q 

(Jensen & Sorensen, 1979; Owen, 1982b; Jensen & Juhl, 1987; Kobayashi 

& Wurjanto, 1989; CIRIA/CUR, 1991; Van der Meer, 1993). The calculation 

of the mean overtopping discharge for a particular structure geometry, water 

level and wave condition is mainly based on empirical equations fitted to 

hydraulic model test results (Ward et al, 1994). A well-known data set 

applies to flat-topped embankments fronted in some cases by a flat berm 

(Hydraulics Research Station, 1980; Owen, 1982a). These tests were aimed 

at establishing the impact on overtopping discharge of the wave climate 

(including the angle of wave attack and the wave steepness), the seawall 

slope, the crest and berm elevations, and the berm width. 

 

In the remainder of this chapter, a brief review of wave overtopping of 

seawalls is first given, including the models currently used for prediction and 

the permissible limits of overtopping. This brief review has the objectives of 

highlighting the deficiencies in current knowledge which are relevant to the 

work developed as part of this research, and to direct the reader towards 

sources of more detailed information. Then, a new model is presented: this is 

the H&R model. This model is conceived from theoretical considerations: the 

purpose has been to construct a model which accounts for the physical 

boundary conditions. The H&R model and the Owen model are used in a  

re-analysis of Owen's data for simple seawalls possessing uniform seaward 

slopes of 1:1, 1:2 and 1:4, subjected to random waves approaching normal 

to the slope. Owen's data were chosen for re-analysis because of their 

extensive nature and ready availability from HR Wallingford Ltd. There were 

two main difficulties in processing these data: first, the database contained a 

considerable number of errors; and, second, some information was missing. 
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The problems were overcome by consulting the original data sheets at  

HR Wallingford. The implications of the H&R model for seawall freeboards 

are also discussed and an illustrative example is given. Finally, the reliability 

of the two models is assessed by considering the randomness of possible 

model parameters. The software package BestFit is used to support the 

choice of probability distributions to describe the model parameters. 

 
 
3.2 Literature Review 
 
3.2.1 Historical Perspective 
 

Until about 1980, the crest levels of UK seawalls were generally set in 

relation to an extreme wave run-up level (Allsop et al, 1985a; Allsop, 1986). 

In The Netherlands, the level for coastal embankments was an extreme 

water level with an allowance for the 2% run-up, R2% (TACPI, 1974;  

CUR-TAW, 1990). This fact implied acceptance that about 2% of waves 

might overtop under the design event. Random wave run-up levels are 

described in the CIRIA/CUR (1991) manual. Methods from the USA and 

Japan predicted wave run-up levels based on regular waves only (U.S. Army 

Corps of Engineers, Coastal Engineering Research Center, 1984; Goda, 

1985; Douglass, 1986).  

 

Since the late 1970s, there have been major advances in the prediction of 

wave overtopping, particularly from laboratory work in the UK, The 

Netherlands and Italy (Allsop, 1994). These studies concentrated on the 

prediction of mean overtopping discharge over unit length of seawall. In the 

late 1970s, studies using random waves were analysed by Owen. He 

developed a design equation relating the mean overtopping discharge to 

incident wave conditions, described by the significant wave height and the 

mean zero-crossing wave period, and the seawall's freeboard (Hydraulics 

Research Station, 1980; Owen, 1982a). The results covered simple and 

bermed seawalls, but were then extended to include slopes with crown or 

recurved walls and rough or armoured slopes (Bradbury & Allsop, 1988; 

Bradbury et al, 1988; Aminti & Franco, 1988; Owen & Steele, 1991; 

Pedersen & Burcharth, 1992; Allsop & Franco, 1992; De Waal &  

Van der Meer, 1992; Besley et al, 1993; Herbert et al, 1994; Monso et al, 

1996). Methods to predict overtopping of vertical seawalls were derived by 
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Goda (1971), Goda et al (1975) and Goda (1985), and were extended by 

random wave tests in the UK and The Netherlands (Herbert, 1993; De Waal, 

1993; Herbert et al, 1994). 

 

Recent studies in Italy, The Netherlands and the UK have quantified not only 

the mean overtopping discharge but also the distribution of overtopping 

volumes per wave and, particularly, the maximum individual overtopping 

volume (Smith et al, 1994; Franco et al, 1994; Van der Meer & Janssen, 

1995). A relationship may then be used to relate overtopping volume and 

mean overtopping discharge, but this relationship varies with the structure 

geometry and wave conditions. 

 
 
3.2.2 Prediction Methods 
 

In general, the mean overtopping discharge per unit length of seawall, Q, 

depends upon the wave motion, the seawall profile, the foreshore 

characteristics, and the water properties: 

 

 Q =  f (H ,T , ,R , d ,g, )s m c sβ α, ...  (3.1) 

 

Hs is the significant height of the incident waves; Tm is the mean  

zero-crossing wave period; β  is the angle of wave approach measured from 

the normal to the seawall; Rc is the seawall’s freeboard (the height of the 

crest of the structure above the still-water-level); α  is the angle of the 

seawall front slope measured from the horizontal; ds is the still-water-depth 

at the toe of the structure; and g is the acceleration due to gravity.  

Figure 3.1 shows this notation. In the figure, Tp is the wave period 

corresponding to the peak spectral density, CL denotes crest level, TL 

denotes toe level and SWL is the still-water-level above datum. 
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Figure 3.1: Notation for seawall overtopping. 

 

 

Eq. (3.1) may be rewritten in the form of dimensionless groups: 
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Hs/gTm2 is a measure of the incident wave steepness. Owen combined this 

group both with Q gHS/ 3  (or Q g Tm/ 2 3 ) and with Rc/Hs, to write: 

 

 
Q

T gH
 =  f (

R

T gH
,

H
gT

,
d
H

, , .)
m s

c

m s

s

m
2

s

s
α β, ..  (3.4) 

 

He then suggested that: 

 

 
Q

T gH
 =  A ( B

R

T gH
)

m s

c

m s

exp −  (3.5) 

 

A and B are best-fit coefficients determined from experimental data. 

However, other arrangements are possible (Aminti & Franco, 1988; Ahrens & 
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Bender, 1991), including use of the wave period of peak spectral density, Tp, 

rather than the mean zero-crossing period, Tm. Table 3.1 summarises some 

of the options for dimensionless discharge, Q*, and dimensionless freeboard, 

R*, used in studies of the overtopping of seawalls and other structures. 

 

 

Authors 
Dimensionless 
Discharge, Q* 

Dimensionless 
Freeboard, R* 

Overtopping 
Model 

Hydraulics 
Research  

Station (1980); 
Owen (1982a) 

Q

T gH
Q

s

gHm s

m

S

=
2 3π

 
c

m s

c

s

mR

T  gH

R
H

s
=

2π

 

Q A BR* *exp( )= −  

Bradbury & Allsop 
(1988) 

Q

T gHm s

 c
2

m s
3

R

T  gH
 

Q A R B
* *( )= −  

Ahrens & 
Heimbaugh (1988) 

Q

gHs
3

 c

s
2

p

R

(H  L )
1 3/

 Q A BR* *exp( )= −  

Sawaragi et al 
(1988) 

Q

gL Hs s
2

 c

s

R

H
 ----------------- 

Aminti & Franco 
(1988) 

Q

T gHm s

 c

s

R

H
 Q A R B

* *( )= −  

Ward 
(1992) 

Q

gHs
3

 c
1

s
2

op

R

(H  L )
/3

 Q A BR C* *exp( )exp( cot )= − α  

Pedersen & 
Burcharth (1992) 

Q T

L
m

m
2

 c

s

R

H
 Q A R B

* *( )= −  

De Waal & Van 
der Meer (1992) 

Q

gHs
3

 c

s

R R

H

− 2%  Q A BR* *exp( )= −  

Van der Meer 
(1993); 

Smith et al (1994); 
Van der Meer & 
Janssen (1995) 

Q

gH
for

s
3 p

p

tanα
ξ

ξ < 2 

Q

gH
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s
3 pξ > 2  

c

s p
p

R
H

for
1 1

2
ξ γ

ξ <  

c

s
p

R

H
for

1
2

γ
ξ >  

Q A BR* *exp( )= −  

Franco et al 
(1994) 

Q

gHs
3

 c

s

R

H
 Q A BR* *exp( )= −  

Table 3.1: Some options for dimensionless discharge, dimensionless 
freeboard and overtopping model. 

 

 

Note that Hs has been used to denote the significant wave height calculated 

either as the mean height of the highest one third of the waves in a record or 

estimated from the zeroth moment of the surface elevation spectrum  

(IAHR, 1989). Ls is the Airy wavelength calculated using the water depth at 

the toe of the structure and the significant wave period, Ts. Lm and Lp are the 
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corresponding wavelengths calculated using Tm and Tp. s H gTm s m= 2 2π /  is 

the deep water wave steepness calculated using Tm. R2% is the run-up 

exceeded by only 2% of the incident waves. γ  is a reduction factor to 

account for influences of berms, roughness, shallow water and oblique  
wave attack on wave run-up and overtopping. ξp  is the surf similarity 

parameter calculated using the wave period of peak spectral  
density ( ξ α αp s op pH L s= =tan / / tan /  in which L gTop p= 2 2/ π  and 

s H gTp s p= 2 2π / ). C, like A and B, is a coefficient. Finally, note that R* for  

De Waal & Van der Meer (1992) is not strictly a dimensionless freeboard but 

the dimensionless excess of the crest level above the 2% run-up level. 

 

Table 3.1 shows that the two most common overtopping models relating the 

dimensionless groups are: 

 
 * *Q  =  A (-BR )exp  (3.6) 

 * *
-BQ  =  A(R )  (3.7) 

 

where, again, A and B are best-fit coefficients determined from the 

experimental data. Clearly, coefficients A and B must account for all 

influences on Q* other than R*. Note that the γ  reduction factor used by 

some authors (Van der Meer, 1993; Van der Meer & Janssen, 1995) to 

account for influences of berms, roughness, shallow water and oblique wave 

attack on wave run-up and overtopping can similarly be incorporated in any 

other empirical model. 

 

Dimensional analysis provides no means for determining which sets of 

dimensionless groups may be especially informative or helpful in dealing with 

a particular data set. A possible problem in using many of the pairings in 

Table 3.1 is the potential for spurious correlation. A spurious correlation may 

arise when dimensionless groups plotted against one another contain a 

common variable (Massey, 1971). There is nothing wrong with the presence 

of a common variable, but care must be taken in interpreting such plots. 

Scatter in the data may be suppressed simply by the presence of this 

variable. 
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3.2.3 Numerical And Physical Modelling 
 
Much of the existing literature on overtopping reports the results of physical 

model tests. Note, in particular, that: 

 
• It is not yet possible to predict wave overtopping from an entirely 

theoretical basis, even for regular waves. 

• The empirical methods (Table 3.1) were derived by means of 
measurements in random wave physical models. Such models can 
be constructed in any well-equipped wave basin or flume. Test 
procedures used by the major laboratories are well-established, 
and overtopping measurements made using these procedures are 
generally comparable. However, measurements can be subject to 
scale effects and this fact has to be taken into consideration 
(Thomas & Hall, 1992). 

• The empirical methods (Table 3.1) are valid only for the ranges of 
structure configurations and of wave conditions tested, but many 
practical situations fall outside of these ranges. Uncertainties in a 
simple empirical method may not be acceptable for particular 
design problems. In such instances, a short series of physical 
model tests may provide the most accurate and economic design 
tool (CIRIA/CUR, 1991; Allsop, 1994). 

• The physical model results may be used to calibrate numerical 
models. 

 

Numerical modelling of wave overtopping is still under development. The 

description of wave hydrodynamics at structures is very complex which 

makes the task very difficult (Allsop, 1994). However, knowing the wave 

hydrodynamics (such as the water velocity and depth of the water 

overtopping the crest of the structure) would enable, for example, a more 

sensible prediction of the severity of the damage caused by wave 

overtopping (Lording & Scott, 1971; Jensen, 1983; Kobayashi & Raichle, 

1994). In addition, it would help in filling the gap between empirical formulae 

(valid only for the ranges of structure configurations tested) and the many 

practical situations which fall outside of the conditions tested (Kobayashi & 

Wurjanto, 1989). Two types of numerical models are relevant for overtopping 

(Van der Meer, 1994): i) the simplest one uses a depth-averaged wave 

formulation, running a bore-like wave up a (shallow) slope; ii) an alternative 

method uses the "Volume of Fluid" method to describe the full fluid motions 

in two or, possibly, three dimensions; this method can calculate fluid motions 
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beyond the point of wave breaking, but requires super-computer power for 

even relatively few waves. 

 

Prototype measurements of wave overtopping quantities are scarce. To the 

author's knowledge, only two sets of measurements are available from 

literature. Fukuda et al (1974) made direct observations of the rate of wave 

overtopping at the wave absorbing revetment of Niigata East Port, facing the 

Sea of Japan, in the winter of 1971 and 1972. The Danish Hydraulic Institute 

made field measurements on a small Danish breakwater in the Port of 

Hundested in 1977 (Jensen & Juhl, 1987). 

 
 
3.2.4 Permissible Limits Of Overtopping 
 
The definition of tolerable limits for overtopping is still an open question, 

given the high irregularity of the phenomenon and the difficulty of measuring 

it and its consequences (Franco et al, 1994). Remarkably little information is 

available on the effects of wave overtopping on the defence structure  

itself, or on activities behind the structure (Allsop, 1994). Obviously the 

overtopping criteria for design depend upon the structure’s function and 

degree of protection required, and upon the associated risks, taking into 

account the joint probability of wave heights and water levels. In fact, 

relatively large overtopping might be allowed during extreme storms if 

pedestrians and vehicle movements on the structure are prohibited. 

 

Until very recently, the permissible limits on the mean overtopping discharge 

were set by three criteria (Allsop, 1994): 

 
• storage volume available behind the structure for overtopping 

during high water; 

• potential damage to the crest or rear slope of the structure; 

• danger or inconvenience to people or vehicle traffic, or damage to 
buildings. 

 

The limits set by storage volume are specific to the individual site; they are 

not amenable to general guidance. An analysis of wave overtopping of 

seawalls in Japan suggested limiting values of the mean overtopping 

discharge to ensure the safety of vehicles and people in the immediate 
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vicinity of the seawall, and to prevent damage to buildings in its lee and to 

the seawall itself. Based on the impressions of experts observing prototype 

overtopping, the values can be seen in Figure 3.2. They are included in 

design manuals/standards such as the CIRIA/CUR (1991) manual and  

BS 6349 (BSI, 1991b). A further design manual is being planned which will 

describe in detail the overtopping performance of seawalls and the standards 

to which they should be designed (Herbert et al, 1994). Although anticipated 

to be available in draft form in late 1995, it has not been released to date. 

 

 

 

 Figure 3.2: Critical mean overtopping discharges for use in design 
(modified after CIRIA/CUR, 1991). 

 

 

Figure 3.2 shows that full-scale discharges greater than about  

0.001x10-3m3/s/m will be unsafe for vehicles at high speed and may cause 

minor damage to the fittings of buildings. Conditions become dangerous for 

pedestrians when the discharge exceeds 0.03x10-3m3/s/m. Discharges 

greater than about 2x10-3m3/s/m may damage embankment seawalls, whilst  

50x10-3m3/s/m is approximately the critical discharge for seawalls without 

back slopes. Research in Italy using model cars and people (De Gerloni  

et al, 1991; Franco et al, 1994) suggests that higher limits than those shown 

in Figure 3.2 might be appropriate in some circumstances. However, these 

limits take no account of the psychological effects of sudden wetting, shock, 

and related factors (Allsop, 1994). 
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The main point to note from Figure 3.2 studies is that the range of critical 

mean discharges runs from as little as 10-6m3/s/m to about 2x10-1m3/s/m. 

Higher overtopping rates are of little interest in the design of seawalls, 

though they may be of concern to the designers of breakwaters. These 

apparently low figures account for the fact that danger levels are actually 

determined by the single largest overtopping wave which, due to the high 

irregularity of the physical phenomenon, can produce peak intensities much 

greater than the average intensity (Aminti & Franco, 1988). 

 

According to Allsop (1994), continuing research in Italy and in the UK 

suggests that the volume in the largest individual overtopping wave may be 

about 6 to 10 times the average volume in an overtopping wave. Assuming 

that this quantity is discharged over 1/4 of a wave period, it may be shown 

that the peak overtopping discharge, Qp, is then given by: 

 

 
p

WO%

Q   4000 
Q

N
≈  (3.8) 

 

Now, consider a low level of overtopping, say NWO%=0.5%, and  

Q=0.03x10-3m3/s/m. Under this condition, the worst wave could well project 

about 50 litres at significant speed, equivalent to an instantaneous discharge 

of 240x10-3m3/s/m, probably with relatively little warning (Allsop, 1994). The 

impact of such a volume of cold water could cause anyone walking or 

running to fall. In this connection, another factor which is worth considering is 

the intensity of water falling as a function of the horizontal distance behind 

the structure. Work has already begun on this subject related to breakwaters 

(Jensen & Sorensen, 1979; Jensen & Juhl, 1987). Similar research for 

seawalls would also be beneficial to designers. 

 

Whether considering mean overtopping discharges or volumes of 

overtopping, attention must be paid to the influence which the wind has both 

on overtopping quantity and distance of travel (TACPI, 1974; Jensen & 

Sorensen, 1979; Gadd et al, 1984; Allsop, 1986; Thomas & Hall, 1992). The 

most severe incident wave conditions are likely to be associated with strong 

onshore winds which increase the overtopping rate. As a guide, the 

overtopping discharges calculated using the empirical models (Table 3.1) 

may be multiplied by the wind correction factor quoted in the Shore 

Protection Manual (U.S. Army Corps of Engineers, Coastal Engineering 
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Research Center, 1984). The factor ranges from a value of unity for a very 

flat slope with a low freeboard or when there is no wind, to over three for a 

vertical wall with a high freeboard and with very strong onshore winds. 

However, Jensen & Juhl (1987) show physical model results which suggest 

that the effects of the wind may be even greater if the seawall surface throws 

water into the air, such as may occur when the front slope is armoured with 

natural stone or concrete units with large voids. Unfortunately, spray is not 

correctly simulated in hydraulic model tests owing to the influence of surface 

tension. Research on the effects of wind on wave run-up and overtopping is 

currently being conducted (Ward et al, 1994, 1996; De Waal et al, 1996), 

including laboratory and prototype measurements. Laboratory results from 

research undertaken by Ward et al (1996), which have not yet been 

published but have been made available to the author, suggest that model 

wind speeds of up to 6.5m/s have little effect on run-up and overtopping of 

smooth and rough slopes of 1:1.5, 1:3 and 1:5. Only strong winds of 12m/s 

and 16m/s have greatly increased both run-up and overtopping. The difficulty 

remains of scaling up the effects of wind in the model to prototype values. 

More information from the above studies will be very useful in improving 

understanding of the phenomenon, with a view to further development of the 

models used to predict overtopping. The studies can also help in defining the 

content of further research on the effects of wind. 

 
 
3.3 Regression Analysis 
 

Once experimental data have been collected, they may be used to confirm 

the validity of some theory or, where no satisfactory theory exists, they may 

be used to construct regression models. However, it is always useful to have 

some theoretical basis for choosing amongst the possible models. 

Furthermore, there are many techniques available for fitting regression 

models (Gunst & Mason, 1980). Which ones are appropriate for a particular 

study depend upon its objectives. For example, it may be possible to develop 

a model which is good at predicting values of the response variable but 

which, nevertheless, is incorrectly specified (i.e. the model does not include 

all relevant predictor variables or it has an incorrect functional form). In 

describing a regression model, care should be taken to emphasise the range 

of conditions over which there are data to support its use. Unfortunately, it is 

sometimes impossible to collect data on the dependent or response variable 
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(in this instance, overtopping) over the entire range of interest of the 

independent or predictor variables (wave height, structure profile, etc). 

 

Consider the following example. The ability of armour stones to remain in 

place on a slope under the action of waves may be characterised in terms of 

their stability number, Ns: 
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 (3.9) 

 

In this expression, H is the height of regular waves for which armour stones 

of weight W and density ρS  are just stable; ρ  is water density and g is 

gravitational acceleration. The influence of the armour slope, α , on the 

value of Ns has been investigated in many studies including those of 

Iribarren (1938) and Hudson (1959). They proposed the following 

relationships: 

 

 Iribarren:   N  =  
(    -   )

K
s

f
1/3

µ α αcos sin
 (3.10) 

and 

 Hudson:    N  =  (K   )s D
1/3cos α  (3.11) 

 

K and KD are armour stability coefficients and µ f  is the coefficient of friction 

between the armour stones. Note that Iribarren’s equation correctly predicts 

that Ns will be zero when the armour slope is at its natural angle of repose, 
φ . In this state, µ φ αf = =tan tan . Under these conditions, there is a 

balance between the shear resistance along potential failure planes within 

the mass of stones and the downslope force induced by gravity  

(Hedges, 1983, 1985). Any small wave height would disturb this balance 

and, consequently, Ns must be zero. However, Hudson's relationship gives 

Ns as zero only when α = 90 o  (assuming that KD is not zero). Note, also, 

that Hudson’s formula suggests that the armour will be infinitely stable when 
α = 0o  (suggesting that even particles of sand would not move on a 

horizontal seabed), whilst Iribarren’s formula predicts a finite level of stability. 

Figure 3.3 shows the relationships between Ns and α  provided by the two 

empirical expressions. 
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 Figure 3.3: Relationships between Ns and α  

provided by Iribarren's and Hudson's 
empirical expressions (Hedges, 1995). 

 

 

Both Iribarren’s and Hudson’s formulae may be used to fit experimental data 

over the normal range of slopes upon which armour is placed, for the types 

of armouring and wave conditions for which they have been developed, and 

so on. In other words, they may be good for predicting responses within the 

limitations imposed by the range of conditions for which they have been 

tested. However, there could be considerable errors if these formulae were 

used for other purposes (for example, to assess the relative importance of 

individual predictor variables to armour failure). Note that neither formula 

explicitly includes wave period as a predictor variable (though its influence 

could be contained within the values of the coefficients K and KD). 

 

The above example suggests that whilst Hudson’s formula may fit data within 

the normal range of slopes, it does not fit the obvious physical boundary 

conditions which require that Ns=0 when α φ=  and Ns remains finite when  
α = 0o . If this formula was to be applied near the boundaries, it would result 

in considerable errors. This experience can be used to provide a more 

physically reasonable regression model for wave overtopping data rather 

than merely providing an empirical fit to the data. As well as ensuring that all 
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relevant predictor variables are identified, it seems important to address the 

physical boundary conditions which should be satisfied. As a start, consider 

the physical boundary conditions to be met in addressing wave overtopping: 

 
i) when the embankment has a large freeboard (i.e. when its crest 

elevation is well above the level of wave uprush), the predicted 
overtopping discharge should be zero (assuming that the effects of 
wind-blown spray are ignored); 

ii) when the embankment has zero freeboard (i.e. when  
still-water-level is at the crest level of the embankment) then the 
predicted overtopping discharge may be large but should still 
remain finite. 

 

As mentioned in Section 3.2.2, eqs. (3.6) and (3.7) represent two of the more 

common functions used to predict wave overtopping. However, when R* is 

large, both expressions suggest that the discharge will be finite rather than 

zero (though it is small provided that A is not very large and provided also 

that B>1). When R* is zero, the first of these expressions gives Q*=A, a finite 

quantity, whilst the second expression gives Q* = ∞ . Thus neither 

expression satisfies both boundary conditions, with the second of them 

satisfying neither. Since most seawalls are designed to permit only relatively 

small overtopping discharges (see Section 3.2.4), it is especially important to 

satisfy the first of the two boundary conditions. 

 

In addition to considering the boundary conditions, there is also the need to 

establish the line of “best fit” to the observed data. There are many criteria 

for defining the best fit. One possibility is to minimise the sum of the squared 

deviations of the observations from the values predicted from the expression. 

But real data usually do not completely satisfy the classical assumptions for 

a least-squares (LS) fitting (Rousseeuw & Leroy, 1987). For example, the 

deviations may not follow a Normal distribution. Reliable inferences may be 

drawn from regression models fitted by the LS method only if the 

assumptions are valid (Draper & Smith, 1981; Rousseeuw  

& Leroy, 1987). Furthermore, an LS fitting has the disadvantage that the 

result is not “robust”: it is sensitive to outlying data points. Whilst “outliers” 

could be removed, such a procedure should only be considered if there is 

reason to doubt their validity. Such data must not be removed merely 

because they do not support the regression model: it may be the model 

which is wrong. 
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Performing a least-absolute-deviations (LAD) fitting, involves minimising the 

sum of the absolute deviations rather than the sum of the squared 

deviations. It does not rely upon the Normal assumption and allows outliers 

to be retained but prevents these points from exerting a disproportionate 

influence on the values of the regression coefficients. If the deviations are 

assumed to follow a Double Exponential distribution, which has thicker tails 

than the Normal distribution, then the parameter values are maximum 

likelihood estimates. In this research, it was decided to fit the regression lines 

using both the LS and LAD methods. The results of the two approaches 

could then be compared. 

 
 
3.4 A New Regression Model 
 
3.4.1 A Simple Overtopping Theory For Regular Waves 
 

Stepping back from the complications of random waves, consider the simpler 

case of regular waves of height H approaching normal to a seawall. It will be 

assumed that the instantaneous discharge of water over unit length of the 

seawall, q, is given by the weir formula (Streeter & Wylie, 1979): 

 

 q =
2
3

C 2g( -R )   for > Rd c
3/2

cη η  (3.12) 

 

in which η  is the water surface elevation above still-water-level at the 

seawall (a periodic function of time); Cd is a discharge coefficient. Obviously, 

overtopping occurs only when the water surface is above the structure’s 

crest. 

 

Assume that: 

 

 η = kHF(t)  (3.13) 

F(t) denotes a function of time, t. For simple, sinusoidal, progressive waves, 
k=0.5 and F(t t T) cos( / )= 2π , where T is the wave period. However, 

following Kikkawa et al (1968), an even simpler form for F(t) will be adopted 

(see Figure 3.4); k remains a coefficient determined by the particular wave 

and wall details. 
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The mean discharge, Q, is determined as follows: 

 

 Q =
2
3

C 2g
1
T

{kHF(t) -R } dtd
t

t
3/2

c

1

2

∫  (3.14) 

 

in which t1<t<t2 corresponds to the interval during each wave period for which 

kHF(t)>Rc. Using the form for F(t) given in Figure 3.4 then yields: 

 

 ( )
Q

g kH
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2 2
15
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 = 0                   for R kH
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5/2
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c

c
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


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≥

 (3.15) 

 

Note that overtopping occurs only when Rc<kH. In other words, kH 

represents the run-up on the face of the seawall. Since wave run-up is a 

function of the incident wave height and steepness, and of the seawall slope, 

the overtopping discharge can be expected also to depend upon these 

parameters. 

 

 

 
 Figure 3.4: Form of function F(t). 
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3.4.2 The Hedges & Reis Overtopping Model 
 

The above theory suggests a regression equation for the random 

overtopping data of the following form: 

 

 * *
B

*

*

Q = A(1-R )     for 0 R < 1
= 0            forR 1

≤
≥

 (3.16) 

in which 

 * 3
s

3
Q =

Q

gR
=

Q

g(CH )max
 (3.17) 

and 

 *
c c

s
R =

R
R

=
R

CHmax
 (3.18) 

 

Eq. (3.16) is the Hedges & Reis overtopping model (H&R model). Coefficient 

k in the expression for regular waves has been replaced by C in this 

regression model for random waves characterised by Hs. Note that CHs 

represents Rmax, the maximum run-up induced by the random waves, not the 

run-up induced by a wave of height Hs. Consequently, C will depend upon 

the duration of the incident wave conditions unless the wave heights in front 

of the wall are limited by the available water depth. Unless the maximum  

run-up, Rmax, exceeds the freeboard, Rc, there is no overtopping (apart from 

wind-blown spray). It is also clear that coefficient B is related, in the case of 

regular waves, to the shape of the function F(t) which describes the water 

surface variation on the seaward face of the wall. There will be a similar 

dependence on the detailed behaviour of the water surface at the face of the 

wall in the case of random waves. Finally, coefficient A represents the 

dimensionless discharge over the seawall when the freeboard is zero. All 

three coefficients will be influenced by the seaward profile of the structure. 

 
The above model for overtopping has the advantage that Q*=0 when R* ≥ 1  

and that Q*=A when R*=0, in accordance with the required boundary 

conditions. Figure 3.5 shows the influences of coefficients A, B and C in the 

new overtopping model. 
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 Figure 3.5:  Influences of coefficients A, B and C in the new 

overtopping model. 

 

 

The value of C (=Rmax/Hs) to be adopted would best be determined from 

experimental data. Unfortunately, Owen’s data set (and others) do not 

provide an adequate number of cases involving zero or very small 

discharges. Consequently, its value has been estimated from run-up 

measurements for random waves acting on slopes for which there is no 

overtopping. Although not ideal for the determination of C, these additional 

data on run-up complement Owen's overtopping results, allowing the new 

model to be applied outside the range of his experimental data. This option 

has been adopted rather than including C alongside A and B as a regression 

coefficient. 

 

A number of equations describing random wave run-up are available 

(CIRIA/CUR, 1991; Van der Meer & Janssen, 1995). For example, the 

CIRIA/CUR (1991) manual gives two equations for evaluating the significant 

wave run-up, Rs, on smooth slopes without overtopping. It notes that these 

equations, based upon Ahrens' data (Ahrens, 1981), are probably 

conservative and that data from Allsop et al (1985b) give values 20 to 30% 

lower. Rewritten in the present notation and allowing for a printing error, the 

expressions are: 
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Here, ξp  is the surf similarity parameter calculated using Tp which was 

estimated for Owen’s data using the relationships between Hs, Tm and Tp 

provided by Isherwood (1987). 

 

Adopting the common assumption that run-up may be described by a 

Rayleigh distribution (Battjes, 1974; Ahrens, 1977; Bruun, 1985; CIRIA/CUR, 

1991; Kobayashi & Raichle, 1994; Van der Meer & Janssen, 1995), then the 

p% confidence value of maximum run-up (defining a level below which p% of 

the cases should lie) is related to the significant wave run-up by (Hogben, 

1990): 

 

 ( )max %

/

R Ln N Ln Ln
p

Rp s= − −






























1
2 100

1 2

 (3.20) 

 

N is the number of run-up values, here taken conservatively to be equal to 

the number of incident waves. 

 

Owen recorded his overtopping discharges during tests involving sets of five 

different runs, each of 100 waves, characterised by the same significant 

wave height. The most probable maximum run-up during each run (the value 

not exceeded in 37% of the cases for a Rayleigh distribution of run-ups) is 

then: 

 
 ( ) ( ) / .maxR Ln R Rs s37% 100 2 152= =  (3.21) 

 

In none of Owen’s cases were there overtoppings for freeboards greater 

than (Rmax)37% if Rs was evaluated using eqs. (3.19). In fact, all nine reported 

cases of zero overtopping were for freeboards of less than this value. Hence, 

setting C=(Rmax)37%/HS is conservative in this instance and the following 

expressions for C then arise from eqs. (3.19) and (3.21): 

 

 
C for
C for
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 (3.22) 
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The fact that these expressions for C are conservative may be a result either 

of the conservative nature of eqs. (3.19) or of deficiencies in the assumptions 

relating to the distribution of run-ups. However, setting C=(Rmax)37%/HS may 

not always be appropriate. Note that the value of C to be adopted in the 

regression model depends both upon the level of confidence associated with 

the prediction of Rmax and upon the duration of the incident wave conditions. 

If C is changed then there will be corresponding changes in the values of A 

and B. The implications for seawall freeboards of adopting different levels of 

confidence in Rmax are considered later. 

 
 
3.5 Results Of Regression Analysis 
 

Appendices A1 to A3 describe in detail how Owen's data have been used in 

carrying out regression analyses for the three embankment slopes of 1:1, 1:2 

and 1:4. The H&R model (employing both (Rmax)37% and (Rmax)99% in defining 

the value of C) and Owen's model have each been considered. Regression 

analysis started by applying the LS method. The presence of both outlier 

data points and violation of the Normal error LS assumption lead to the 

subsequent use of the LAD technique (Gentle, 1977; Narula & Wellington, 

1977; Sposito et al, 1977; Rousseeuw & Leroy, 1987). The LAD results 

appear more reliable than those of the LS method. Consequently, the LAD 

estimates of the regression coefficients are recommended for further use in 

the two models. 

 

Figure 3.6 shows an example of the overtopping data collected by Owen: the 

results for a simple seawall with a uniform front slope of 1:2. The data are 

plotted in the formats required for fitting regression equations using both the 

H&R and the Owen models. Figure 3.6(a) shows the best-fit lines established 

using LS and LAD procedures for the H&R model. Comparison of the 

regression coefficients shows the influence which the outlying data points 

have on the LS values. For example, the magnitude of B obtained from the 

LAD fitting is about 92% of the LS result. Similar comments may be made 

about the regression lines obtained for Owen’s model. Note, that the values 

of A and B reported in Figure 3.6(b) for Owen’s model are not those which 

Owen himself recommended. 
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(a) 

 
(b) 

 

 Figure 3.6:  Wave overtopping data for slope 1:2 plotted in the formats 
required for fitting regression equations, (a) using the H&R 
model, (Rmax)37%, and (b) using Owen’s model. 

 

 

Table 3.2 gives the regression coefficients for all three slopes which have 

been obtained for the H&R model and for Owen’s model, using both LS and 

LAD fitting. Also included for reference are Owen’s recommended values. 
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  H&R MODEL 

(C given by (R max)37%) 
H&R MODEL 

(C given by (R max)99%) OWEN’S MODEL 

  LAD LS LAD LS LAD LS Rec. 

Slope 
1:1 

A 
B 

0.00703 
3.42 

0.00581 
3.22 

0.00515 
6.06 

0.00474 
6.04 

0.00777 
20.44 

0.00758 
21.27 

0.00794 
20.12 

Slope 
1:2 

A 
B 

0.00753 
4.17 

0.00790 
4.55 

0.00542 
7.16 

0.00614 
7.98 

0.0117 
21.71 

0.0125 
22.80 

0.0125 
22.06 

Slope 
1:4 

A 
B 

0.0104 
6.27 

0.00792 
5.94 

0.00922 
10.96 

0.00870 
11.12 

0.0134 
42.92 

0.0164 
46.12 

0.0192 
46.96 

 Table 3.2:  Regression coefficients obtained for use in the H&R 
model and Owen’s model. Also included for reference are 
Owen’s recommended (Rec.) values. 

 

 

Owen restricted his analysis to a particular set of conditions whilst, in this 

analysis, all available data were included apart from eleven of the 110 results 

for the 1:4 slope. Of these eleven, nine had Q=0. Figure 3.5 shows that there 

will be many values of R* for which Q*=0 and data points with Q*=0 must be 

excluded from a regression analysis, otherwise a regression line (if it could 

be fitted) would pass through these data rather than defining their lower limit. 

The other two excluded values (for which Q was not zero) were from a set of 

five runs with the same dimensionless freeboard, three of which had zero 

overtopping discharge. Including only two of these five data points would 

have severely biased the positions of the regression lines. Furthermore, the 

validity of these two data points is doubtful since a full set of five runs at a 

smaller dimensionless freeboard all had Q recorded as zero. Although 

removed for the purposes of regression analysis, the eleven points were 

reinstated for inclusion in Figure 3.7 (see later). The full data set fell within 

the following ranges: 
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Earlier, the problem of spurious correlation was mentioned. Along with most 

other overtopping models (see Table 3.1), the H&R model employs a 
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dimensionless discharge and a dimensionless freeboard which contain a 

common variable (Rmax or CHs). The presence of this common variable may 

reduce the apparent scatter in the data. Consequently, Figure 3.7 shows 

directly the level of agreement between Owen’s measured values of Q 

(converted by Owen to full-scale discharges for a seawall in 4m water depth) 

and the predicted values, QPRED. Of course, the scatter in the relationship 

between Q and QPRED could have been disguised by plotting against 

logarithmic scales (Massey, 1971). But such an attempt is both misleading 

and unnecessary. Under random wave conditions, overtopping will be 

dominated by the few waves with large run-ups: most waves will contribute 

no overtopping if the seawall has a substantial freeboard (Jensen & Juhl, 

1987; Aminti & Franco, 1988). Thus, particularly for short runs of random 

waves, as in Owen’s tests, some variability in the measured values of Q can 

be expected. Indeed, one of the purposes of Owen’s tests was to show this 

inherent variability. 

 

In Figure 3.7, most data points lie within a range for Q/QPRED of 3/4 to 4/3, 

whichever model is adopted. It is not obvious from the figure which model 

best fits the data, nor is it obvious from the plots for simple seawalls with 1:1 

and 1:4 front slopes. Consequently, the data points for discharges in the 

ranges of practical interest (see Figure 3.2) were looked at in more detail. 

For these purposes, the H&R model appeared generally better than Owen’s 

model owing to its ability to predict zero overtopping at finite values of 

freeboard. Furthermore, the next section shows that it tends to give lower 

required crest levels than Owen’s model for small permissible discharges, 

offering lower environmental impact and potential cost savings. 
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(a) 

 
(b) 

 

 Figure 3.7:  Wave overtopping data for slope 1:2, showing the level 
of agreement between Q and QPRED, (a) using the H&R 
model, (Rmax)37%, and (b) using Owen’s model. 

 
 
3.6 Some Implications Of The New Model For Seawall 

Freeboards 
 

According to Owen’s model, the freeboard, Rc, necessary to limit overtopping 

to a specified value, Q, is given by: 

 

 R
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  (3.24) 
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The H&R model gives: 
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Note that eq. (3.24) incorporates the mean zero-crossing wave period, Tm, 

whilst eq. (3.25) involves coefficient C which has been described in terms of 

the period of peak spectral density, Tp. In order to compare the output from 

the two expressions, it has been assumed that the incident waves conform to 

the Pierson-Moskowitz spectrum. In this case (for Hs in metres, with Tm and 

Tp in seconds): 
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Figure 3.8 provides a comparison between the freeboards predicted using 

eqs. (3.24) and (3.25) for embankments with uniform front slopes of 1:2 

subject to random waves with a significant height of 2m. Similar figures could 

be prepared for embankments with seaward slopes of 1:1 and 1:4, for 

additional incident significant wave heights and for different values of the 

confidence level associated with Rmax. 

 

Owen stated (Hydraulics Research Station, 1980) that his empirical 

coefficients A and B were determined only for particular ranges of the 

dimensionless groupings given in eq. (3.4). The conditions included the 
following: 10 106 2− −< <Q T gHm s/  and 0 05 0 30. / .< <R T gHc m s . Many of 

the discharges shown in Figure 3.8 have Q T gHm s/ < −10 6 . For the 

conditions of Figure 3.8, this limit is approximately equivalent to  

Q<10-4m3/s/m. Nevertheless, Owen suggested that it was possible to use his 

equation to extrapolate results when the dimensionless freeboard was such 

that the dimensionless discharge fell below 10-6. Thus, for a typical seawall in 

4m water depth, it is possible to compare the minimum necessary freeboards 

predicted by the H&R model with those predicted by Owen's expression if 

overtopping is to be limited to specified values. 
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Figure 3.8:  Comparison of predicted freeboards for slope 1:2  
(LAD indicates that the values of the regression coefficients 
have been established using the method of least absolute 
deviations; Rec. refers to the coefficient values 
recommended by Owen for use in eq. (3.5); 37% and 99% 
refer to the confidence level associated with Rmax). 

 

 

Two points are worth noting: 

 
• There is reasonable agreement between the H&R model and 

Owen’s model for overtopping discharges in the range of  
10-2m3/s/m to 2x10-1m3/s/m. This is irrespective of the confidence 
level (37% or 99%) assigned in the evaluation of Rmax. However, it 
is in the range where there are significant differences between the 
two models that most seawalls are designed (see Figure 3.2). 

• As the confidence level in Rmax is increased, the freeboards 
predicted by the H&R model approach those values obtained from 
Owen's model. Nevertheless, even using (Rmax)99% there remain 
significant differences. This observation has important implications 
for seawall design. For example, for an expected overtopping 
discharge of 10-4m3/s/m, the difference amounts to about 1.9m. It is 
even greater both for the lower expected overtopping rates 
associated with functional safety requirements (Figure 3.2) and for 
higher Hs values. Owen’s model suggests that the freeboard must 
continue to increase in order to reduce the overtopping rate even 
when the crest of the seawall is clearly above any possible run-up 
level induced by the random waves. 
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3.7 Model Reliability 
 

Neither the H&R model nor Owen’s model provide a perfect description of 

the overtopping data. There is some scatter about the line of perfect 

agreement between predicted and measured values (see Figure 3.7). This 

scatter can be described by interpreting the coefficient A in the models as a 

random variable for a given coefficient B (Allsop & Meadowcroft, 1995) or by 

interpreting the coefficient B as a random variable for a given value of A (Van 

der Meer, 1993; Franco et al, 1994; Van der Meer & Janssen, 1995). 

Alternatively, the degrees of variability in A and B may be represented by 

parameters eA and eB, respectively: 
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If the models were perfect representations of reality, eA and eB would both be 

equal to one. Otherwise they are random variables which may be described 

by a probability distribution. 

 

The variability of eA and eB as functions of R* have been investigated for the 

three front slopes of 1:1, 1:2 and 1:4. The H&R model (employing both 

(Rmax)37% and (Rmax)99% in defining the value of C) and Owen’s model have 

each been considered. Similar results were obtained in all cases. 
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 Figure 3.9:  Variability of eA and eB as functions of R*. 

 

 

Figure 3.9 shows an example of the results for slope 1:1 using the H&R 

model with (Rmax)37%. The variability of eA as a function of R* is not constant: 

the figure suggests an increasing variability in eA as R* increases. The 

degree of variability in eB as a function of R* appears more constant. This, in 

addition to the smaller spread in the data for eB, suggests that eB is more 

appropriate than eA for representing the reliability of the models. Hence the 

probability distribution of eB for each model has been further investigated 

using the software package BestFit (see Appendix A4). Details of the 

analyses are contained in Appendix A5. 

 

First, the eB values were assessed using the summary statistics provided by 

BestFit and by plotting histograms of the data. General guidance on the 



Wave Overtopping Of Seawalls 

3-30 

choice of distribution was obtained from these sources. Then, all the 

statistical distributions available both in PARASODE and BestFit were 

considered and full optimisation was adopted for calculation of their 

parameters. Finally, the adequacy of these distributions was determined 

using the three goodness-of-fit tests available in BestFit, together with 

histograms, P-P and Q-Q plots. Based on the numerical and graphical 

results, the Log-Normal, Maxima Type I (Gumbel) and Gamma distributions 

were chosen as possible candidates for describing the randomness of eB. 

Thus, these three are used in the probability calculations performed with 

PARASODE and @Risk. Table 3.3 shows the means and the standard 

deviations of the input data for eB. Table 3.4 shows the corresponding means 

and standard deviations of the fitted distributions. 
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3.8 Summary 
 

Wave overtopping of seawalls has been the subject of many studies. 

Nevertheless, field measurements are scarce and numerical modelling of 

wave overtopping is not yet well developed. The calculation of overtopping 

discharge is based mainly on equations which have been obtained from 

empirical fitting to hydraulic model test results. These equations have not 

been based upon any overtopping theory and no account has generally been 

taken of the physical boundary conditions. 

 

As part of this research, a new regression model has been presented for 

describing wave overtopping data. Part of the motivation in deriving this new 

model was to improve the methods available to the designers of seawalls by 

developing a model closely related to the physics of wave overtopping. The 

important features of the model are as follows: 

 
• Unlike existing expressions, it satisfies the relevant physical 

boundary conditions, a feature which is especially important when 
the model is used near these boundaries. 

• It explicitly recognises (through its foundations in a simple 
theoretical model for regular waves) that regression coefficient  
A depends upon the shape of the structure since the shape, 
particularly at its crest, affects the discharge coefficient; coefficient 
A represents the dimensionless discharge when the dimensionless 
freeboard is zero. 

• Coefficient B depends upon the detailed behaviour of the water 
surface on the seaward face of the structure; it increases as front 
slopes become flatter. 

• Coefficient C relates the maximum run-up to the significant height 
of the incident waves and may be chosen to allow for the influences 
of the seawall slope, the surface roughness and porosity, and the 
incident wave steepness. Coefficient C can also account for storm 
duration in influencing Rmax (though the regression coefficients in 
the present study have been established only for short sequences 
of 100 random waves). Finally, it may be chosen so that there is a 
specified confidence level associated with Rmax. In this thesis, the 
most probable value of Rmax, (Rmax)37%, has been adopted in order 
to establish the expressions for C (eqs. (3.22)) since they were 
conservative in this instance, but the use of (Rmax)99% has also been 
illustrated. Note, that if the confidence level associated with Rmax 
changes, the expressions for C change and there are 
corresponding changes in the values of A and B (see Table 3.2). 
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It is suggested that the regression coefficients contained within the model 

should be established using a robust regression technique. Examples are 

given of the differences between the LS and the LAD fitting methods in 

analysing overtopping data collected by Owen (Hydraulics Research Station, 

1980; Owen, 1982a). The LAD regression coefficients are recommended for 

use both in the H&R and Owen models. 

 

For the present test results, the H&R model is little different from Owen’s 

model in its ability to represent the data, except for small discharges for 

which the H&R model is better suited. An example is given of the application 

of the H&R and Owen models in predicting the freeboards necessary to limit 

overtopping to specified values. This example shows that, for the small 

allowable discharges associated with normal design conditions, the H&R 

model predicts seawall crest elevations which may be several metres lower 

than values from Owen's model. Such differences may have very significant 

financial and environmental consequences and are worthy of further 

investigation. 

 

The reliabilities of the H&R model and of Owen’s model have been assessed 

by introducing a multiplying parameter to coefficient B of the models. In order 

to determine possible distributions for this model parameter, a software 

package called BestFit has been applied. The Log-Normal, Maxima Type I 

(Gumbel) and Gamma distributions are seen to be acceptable for use in the 

probabilistic calculations performed in this study. 

 

Whilst it is possible to use Owen’s data to show the validity of the approach 

adopted in developing the new wave overtopping model, the data are far 

from ideal for evaluating the empirical coefficients A, B and C. Owen 

collected his data for short runs of waves and the bulk of his data are for 

typical full-scale conditions which produce overtopping discharges well in 

excess of the allowable values shown in Figure 3.2. This second deficiency 

also applies to more recent data sets (Van der Meer & Janssen, 1995). Thus, 

the data available at present are not good for evaluating coefficient C which 

fixes the lowest value of R* for which Q* is zero. Neither are they good for 

evaluating coefficient A, the value of Q* when R* is zero. Owen performed no 

tests with zero freeboard. In the absence of information to locate the 

extremes of the curve shown in Figure 3.5, the values of coefficient B also 

remain in doubt. However, the author is aware that overtopping and run-up 
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tests now being carried out at the Technical University of Braunschweig, 

Germany (Schuttrumpf, 1997), include measurements when there is zero 

freeboard and when the freeboard is sufficiently great to prevent any 

overtopping. The latter condition will allow the direct measurement of Rmax, 

obviating the need to estimate it. 

 

In addition to considering the deficiencies of existing data for the above 

purposes, it is worth emphasising that approaches to coastal engineering 

design are shifting towards probabilistic rather than deterministic procedures. 

The variability in overtopping discharge must then be considered: it is 

necessary not only to predict the expected mean value of Q, but also the 

probability distribution of Q about this value. As a consequence, much larger 

data sets are needed. Furthermore, some attention must be paid to the 

horizontal distribution of the total overtopping volume and the influence 

which the wind has on overtopping discharges (De Waal et al, 1996; Ward et 

al, 1996). 
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4 Dune Erosion During A Storm Surge  

 
4.1 Introduction 
 

Dunes erode in two main ways: a gradual erosion (structural or long-term 

erosion) and a fast, sudden erosion/recession during a storm surge1  

(short-term erosion). Long-term erosion of beaches and dunes can be very 

inconvenient but future losses can be foreseen and, in most cases, can be 

predicted quantitatively. In contrast, high water levels and high waves during 

a storm surge erode huge quantities of dune material in a short time. Thus, 

short-term erosion is a condition which must be analysed very carefully. This 

review considers only the short-term erosion due to a severe storm surge. 

 

Dunes occur naturally in many parts of the world. In their most natural state, 

they are associated with exposed dry sand being transported by the wind. In 

this state, they can migrate with the wind, sometimes invading and disrupting 

the works of man (e.g. to cover highways and railroads and to destroy 

productive agricultural land). On the other hand, dunes act as the primary 

protection against the sea in some regions of the world (e.g. in parts of the 

United Kingdom and The Netherlands). In these cases, effort must be put 

into preserving or enhancing the dunes (Thomas & Hall, 1992; Simm et al, 

1996). In some regions, a high investment has been made in property which 

is very close to the edge of the sea. Figure 4.1 shows two schematic 

examples: (a) a low-lying area behind a narrow line of dunes; and  

(b) buildings close to the sea. Apart from a possible gradual overall erosion 

of the coast, both cases are safe under "normal" conditions. During a storm 

surge, however, the mean sea level rises considerably above normal high 

water level, higher waves than usual approach the shore and offshore 

transport occurs, especially of material from the dunes (Van de Graaff, 1986; 

Van de Graaff & Bijker, 1988). Figure 4.1 shows schematically what 

happens: sand eroded from the dunes is transported towards deeper water 

and settles there. The new beach profile develops at a more elevated level 

and the overall slope becomes less steep than the original. Consequently, 

the rate of erosion of the dunes slows down with time. After the storm, the 

water level and the wave heights go to "normal" conditions again, the dune 

                                                 
1 Surge is the difference between the measured water level and the predicted 

(astronomical) tide level (Pugh, 1987). 
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erosion process is stopped, and a retreat distance, RD, can be observed. 

For safety reasons, the likely position of point R after the surge has to be 

known. In case (a), erosion of the dunes will cause flooding and damage to 

property with possible loss of life. In case (b), no serious flooding occurs but 

there may be destruction of buildings. Hence, the problem of managing a 

dune system is not so much to prevent erosion but to know in detail the rate 

of erosion that can be expected in order to judge dunes as safe or unsafe. 

 

 

 

Figure 4.1:  Schematic dune erosion situations 
(modified after Van de Graaff, 1986). 

 

 

If an existing dune/beach system is unsafe, then consideration may be given 

to the possibility of providing nourishment. Although not appropriate for all 

locations, nourishment has proved to be a cost-effective, flexible and 

environmentally sensitive "soft" engineering strategy (when compared to 

other methods such as the use of groins, offshore breakwaters, etc.). It has 

been used in many places including the United Kingdom (Fleming, 1990; 

Townend & Fleming, 1991; Motyka & Brampton, 1994; HR Wallingford, 

1994), The Netherlands (Vellinga, 1986; Van de Graaff & Bijker, 1988; Van 
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Raalte & Loman, 1993), and the USA (Dean, 1976; Housley, 1996). 

Nourishment usually does not create detrimental side effects in adjacent 

coastal areas (Van de Graaff et al, 1991). Consequently, there is a clear 

interest in nourishment as a strategy for controlling dune/beach erosion 

evident in such multi-national publications as Technical University of 

Braunschweig/SOGREAH Ingenierie/Centro de Estudios y Experimentacion 

de Obras Publicas (1997). 

 

It must be stressed that a long-term commitment to nourishment is required 

to ensure that the benefits anticipated in the design will actually occur 

(Housley, 1996). Nourishment may seem expensive and the need for 

repetition may discourage coastal managers. However, repetition should be 

seen as regular maintenance, as conservation of valuable investments, just 

as for other structures (Van de Graaff et al, 1991). For example, in  

The Netherlands, dune/beach replenishment is generally expected to provide 

a buffer for more than five years (Van de Graaff et al, 1991;  

Van Raalte & Loman, 1993) and in the UK, "lives" of ten years or more are 

the norm (Motyka & Brampton, 1994). Careful consideration of capital and 

maintenance costs frequently proves that nourishment is the optimal 

solution. An added advantage is that the recreational function of the 

dune/beach system is preserved. 

 

The type and volume of sediment required, possible borrow areas  

(e.g. inland sources or material dredged from navigation channels), the 

transportation system, the precise nourishment location and ease of 

placement, and socio-economic aspects have all to be considered. Possible 

nourishment areas include the land side of the dune, the seaward dune face, 

and the foreshore and inshore zones (CUR et al, 1987; Van de Graaff & 

Koster, 1990; Van de Graaff et al, 1991; D'Angremond, 1992; Van Raalte & 

Loman, 1993; Liverpool/Thessaloniki Network, 1996). The Manual on 

Artificial Beach Nourishment (CUR et al, 1987), the Beach Management 

Manual (Simm et al, 1996) and Beach Recharge Material - Demand and 

Resources (CIRIA, 1996) all provide useful further information. 

 

The main approaches to modelling dune erosion may be categorised 

according to the type of integration (Steetzel, 1993): 
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• Space integration (a fixed shape for the cross-shore profile is 
assumed). 

• Time integration (the net effect of the complete storm surge is 
accounted for). 

 

Using these two types of integration, three main categories of dune erosion 

models can be distinguished (Steetzel, 1993): 

 
• Space and time integrated concept  - This approach results in a 

prediction of the erosion profile which is supposed to be present 
after a specific storm event. It can be characterised by so-called 
equilibrium or erosion profile models (e.g. Bruun´s model - Bruun, 
1954, 1962; Dean´s model - Dean, 1977, 1982, 1987, 1991; the 
DUROS model - Vellinga, 1986). 

• Space integrated, instantaneous concept  - The development of 
the shape of the cross-shore profile is described during the  
storm event using a time-dependent shape function. Typically,  
this approach results in a negative exponential development  
of the profile (for constant hydraulic conditions). The term  
quasi-equilibrium models can be used for this category (e.g. Swart, 
1974; the SBEACH model - Larson, 1988, Larson & Kraus, 1989; 
the DUIN model - Roelvink & Stive, 1989). 

• Local and instantaneous concept  - The local transport rate must 
be known at every position on the cross-shore profile in order to 
compute its development during a storm surge. An expression for 
the local transport rate has to be derived. The expressions 
available differ, mainly, as a result of the approach used in 
assessing the local transport rate (e.g. Kriebel & Dean, 1985; 
Kriebel, 1990; the DUROSTA model - Steetzel, 1990, 1993; 
Watanabe et al, 1994). 

 

Obviously, the equilibrium and the quasi-equilibrium models are not suitable 

for the assessment of the effects of arbitrary hydraulic conditions on a  

cross-shore profile. However, they have the advantage of simplicity. 

Applications of Dean´s equilibrium model have been presented recently  

(see, for example, Kriebel, 1990; Dean, 1991). Vellinga´s model is still used 

in The Netherlands to check the safety of the Dutch dunes. 

 

Coastal engineers are still becoming acquainted with the use of probabilistic 

methods for the design and assessment of coastal structures. A simple 

equilibrium model is a good starting point for combining probabilistic methods 

and dune erosion (Van de Graaff, 1986; Dong & Riddell, 1996). The use of 

simple erosion models allows the engineer to concentrate on understanding 
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the application of the probabilistic methods whilst also saving the 

considerable computational time needed in running the more sophisticated 

alternatives. Implementation of these sophisticated models in a probabilistic 

approach is possible but represents such a complex task that, as far the 

author knows, it has not yet been put into practice, even in pioneering 

countries like The Netherlands. Furthermore, some of the simpler models, in 

particular Vellinga´s approach, have proved to be generally conservative 

when compared to Steetzel's more sophisticated formulation (Van de Graaff, 

1995). This may cause problems in relation to the public perception of the 

safety in applying Steetzel's model. 

 

In the following sections, especial attention is given to the research carried 

out in The Netherlands. Vellinga's cross-shore erosion model (Vellinga, 

1986) is studied in detail, not only because it has been the basis for the 

calculation of the safety of the dunes throughout The Netherlands but also 

because probabilistic methods have been applied in conjunction with it. 

Steetzel's model (Steetzel, 1993) is referred to only because it is the latest 

Dutch model; however, no probabilistic calculations have been undertaken 

with it so far. Next, the computer programs which are currently used in The 

Netherlands are presented briefly. Finally, the applicability of these programs 

in the British context is examined. 

 
 
4.2 Vellinga's Model 
 
4.2.1 Prior Research 
 

Edelman (1968) was the first to present a method for the prediction of dune 

erosion in The Netherlands. His method was based on the assumption that 

during a storm surge a normal beach slope develops but at a higher level 

than before. Edelman used a straight beach slope of 1:50 in his 

computations. His method was improved by Van de Graaff (1977) who 

employed a realistic concave-upward erosion profile based on field 

observations. This profile is used in what is known as the provisional 

computational model (Vellinga, 1983, 1986). 

 

Van der Meulen & Gourlay (1968) were the first in The Netherlands to 

investigate the process of dune erosion in small scale movable bed models. 
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The tests were mainly carried out in a basin with monochromatic waves. The 

tests provided qualitative answers to the question of how dune erosion is 

influenced by dune height, initial beach profile, wave height, wave period, 

sea level, and grain size characteristics. However, Hulsbergen (1974) found 

that such tests suffered from the effects of secondary waves. 

 

In 1972, a research project started on the erosion of coastal dunes during 

storm surges. The aims of the research were (Vellinga, 1983, 1986): i) to 

increase insight into the phenomenon, and to develop a general model for 

the computation of the erosion quantity as a function of the hydraulic 

conditions and the coastal profile; and ii) to use this model to check the 

safety of existing beaches and dunes as primary coast protection and to 

determine the required reinforcement. Engineers in charge of coast 

protection were conscious that there was insufficient theoretical background 

and that a firmer basis for decisions was urgently needed. Hence, it was 

decided that the research would consist mainly of extensive experimental 

tests on small and large scale models, together with prototype 

measurements involving waves up to 2.0m significant height. Table 4.1 

summarises how this research evolved. Vellinga (1982, 1983, 1986) provides 

details about the various stages of the project. 
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PRIOR RESEARCH 

1972 
 

Provisional computational model - provisional guideline for the computation of dune erosion 
during a storm surge (TAW, 1972) 

 
 

1974-1975 
 

 
 
 
 

2D 

scale 

 Idealised coastal profile 
 4 depth scales (nd=26, 47, 84, 150) 
 2 sand grain sizes (D50=150, 225µm ) 
 Design Storm Surge Conditions: 
   -  water level=5m MSL 
   -  Hs=7.6m; Tp=12s 

 
 
 
 
 

1976-1978 

series  Idealised coastal profile 
 3 depth scales (nd=26, 47, 84) 
 4 sand grain sizes (D50=95, 130, 150, 225µm) 
 Design Storm Surge Conditions: 
    - water level=5m MSL 
    - Hs=7.6m; Tp=12s 

 Analysis and evaluation of scale relationships
2
: i) Froude scale for hydraulic conditions: 

nH=nL=nd=nT
2; ii) morphological time scale: nt=nd

0.5; iii) model distortion: nl/nd=(nd/nw
2)0.28  

 Analysis of field data for dune erosion caused by the storm surge of January 1976. Evaluation 
of the Provisional Model (Delft Hydraulics Laboratory, 1978). 

1979-1980 Verification of the 2D approach by means of 3D movable bed small scale tests: these tests 
confirmed that a 2D approach was fully acceptable for relatively straight beaches.  

 Verification of scale relationships by means of five large scale tests: nd=1, 3.27 or 5; nl=1, 4.56 
or 7.85; D50=225µm; Design storm surge conditions: i) constant or varying water level; ii) 
water depth in front of wave generator d=4.20 or 5m; iii) wave height at depth d: Hs=1.5, 1.8 or 
2m; wave period at depth d: T=5, 5.4 or 7.6s. Erosion quantities confirmed the scale 
relationships from small scale tests. Erosion profiles also confirmed the scale relationships if 
finer sands than in the prototype were used in the small scale tests. Agreement between the 
erosion (quantities and profiles) obtained in the tests and in the field was satisfactory. 

 
1981-1982 

Parametric small scale model investigations to define the effect of dune erosion parameters on 
the rate of erosion: i) water level during storm surge, wave height and particle diameter were 
determining parameters: an increase in the water level during storm surge produced an 
increase in the dune recession and erosion quantity; the wave height had the same effect but 
to a much lesser extent (the angle of wave incidence did not have a significant effect on the 
erosion quantity); the finer the dune material the less erosion quantity and distance expected; 
ii) wave period and shape of the energy spectrum of the incoming waves did not have a 
significant effect; iii) steeper dune fronts had the highest amounts of erosion and the lowest 
erosion distances; iv) as the dune height increased the erosion quantity also increased while 
the dune recession decreased. 

Table 4.1:  Research prior to the development of Vellinga's model. 

 
 
4.2.2 Formulation 
 

Based on the above research project, a dune erosion model was developed 

by Vellinga. It is known as the DUROS model (see Figure 4.2): 

 

                                                 
2 n - ratio of the prototype value to the model value; nH - wave height scale;  

nL - wavelength scale; nd - depth scale (for beach profile and hydraulic conditions);  
nT - wave period scale; nt - time scale; nl - length scale for beach profile; nw - scale for the 
fall velocity of the sand. 
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 Figure 4.2:  Outline of erosion prediction according to Vellinga 
(modified after Steetzel, 1993). 

 

 
• The input parameters required by the model are (Vellinga, 1983):  

i) coordinates of the initial profile (Xi,Yi); ii) significant deep water 
wave height, HS (significant wave height at depth d>0.5LOS, where 
LOS is the significant deep water wavelength); iii) median grain size 
diameter of dune sand, D50 (50% of the weight being finer) and its 
corresponding fall velocity, w, for a given water temperature;  
iv) maximum water level during storm surge, h. 

• During a storm surge, an erosion profile develops (Figure 4.3). The 
level of the profile is determined by the maximum water level during 
the storm surge. Its shape, perpendicular to the coast, is 
determined by the wave height and the fall velocity of the bed 
material and can be described by the following equation (Vellinga, 
1986): 
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  (4.1) 

 
X is the distance (in metres, positive seawards) from the new dune 
foot and Y is the depth (in metres) below maximum water level 
during storm surge. 
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 Figure 4.3:  Representation of Vellinga's profile after a storm surge 
(modified after Van de Graaff & Koster, 1990). 

 

 
• Eq. (4.1) is valid up to a seaward limit (Xmax, Ymax) given by: 
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 (4.2) 

 
Seaward from this point, the profile continues as a straight line with 
a gradient of 1:12.5 (fixed in agreement with model tests) until it 
intersects the initial profile. The slope of the dune face (X<0) is at 
1:1 (consistent with field observations and large scale tests). 

• After determining the shape of the erosion profile for a given set of 
parameters, this profile must be shifted in relation to the initial 
profile (the profile before the storm) in such a way that erosion is in 
balance with accretion. Transport of sand is in the seaward 
direction and there is no provision for handling longshore gains or 
losses to the profile. 

• The erosion quantity is determined by the difference between the 
initial profile and Vellinga´s erosion profile. 

• The outputs from the model are (Vellinga, 1983): i) the recession of 
the dune front; ii) the erosion quantity above storm surge level; and 
iii) the beach profile after the storm surge. 
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Vellinga's model accounts for the following factors in predicting dune erosion 

(Van de Graaff, 1983, 1986): 

 
• maximum water level during storm surge; 

• significant deep water wave height during the maximum of the 
surge; 

• particle diameter of dune material; 

• shape of initial profile (including dune height); 

• storm surge duration; 

• gust bumps and squall oscillations; 

• accuracy of the computation method. 

 

The model disregards the influences of: 

 
• temperature of the sea water (which affects w in eq. (4.1)); 

• irregularities in cross-sections over small distances alongshore; 

• storm surge direction; 

• groins; 

• dune vegetation. 

 
 
4.2.3 Verification From Laboratory And Field Data 
 

The computational model was verified using both large scale tests and tests 

with a depth scale nd=30. The effects of storm surge level, significant wave 

height, significant wave period, shape of the spectrum, dune height and 

initial profile were all checked. It was concluded that (Vellinga, 1983): 

 
• The computational model accounts adequately for the impacts of 

storm surge level, wave height and profile shape. 

• The model is valid for typical North Sea storm surge conditions 
(Figure 4.4) involving waves with steepness H LS OS/ .≥ 0 02 . 
Erosion during such an event is equivalent to the erosion which 
takes place during a period of about 5 hours when the water level is 
held constant at the maximum surge level (Van de Graaff, 1983, 
1986; Vellinga, 1986). Storm surges with different hydrographs may 
have different equivalent durations. A correction factor for a 
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different hydraulic regime has been determined on the basis of the 
model tests with constant water level. The erosion quantity above 
storm surge level, C (see Figure 4.10 later), should be increased by 
5% to 10% for each additional hour of storm duration (maximum 
addition not to exceed 50% of C). Storm duration is defined as the 
amount of time in hours that the surge level is within 1m of the 
maximum level (5 hours for the North Sea hydrograph). For 
example, if the storm duration is 9 hours and assuming a 
conservative 10% additional erosion per additional hour, then a 
total of 10(9-5)=40% additional erosion should be considered. 
Since this is less than the maximum recommended addition of 
50%, the value of C adjusted to account for the duration of the 
storm can be computed as 1.4C (Sargent & Birkemeier, 1985). 

 

 

 

Figure 4.4:  Example of the standard North Sea storm surge 
hydrograph (modified after Vellinga, 1986). 

 

 

• The prediction model is somewhat conservative for beaches with 
large bars and troughs, but it should be considered reasonably 
accurate for a large range of hydraulic conditions and initial profiles 
normally found in the field (Vellinga, 1986). 

 

The computational model has also been verified using field measurements 

from the 1953 and 1976 storm surges in The Netherlands and from 

Hurricane Eloise in Walton County, Florida in 1975 (Hughes & Chiu, 1981). 

In addition, Sargent & Birkemeier (1985) verified the model for a number of 

storm surges along the USA East coast and the Gulf coast. 
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4.2.4 Accuracy 
 

Vellinga's model is a relatively simple way of schematising a complicated 

natural process. Its accuracy was established in the following way  

(Vellinga, 1983). First, all measurements were considered 100% true. Next, 

the distribution of the differences between the measured and computed 

quantities was evaluated. It was concluded that the accuracy of the 

computational model could be described by a Normal distribution with a 
mean of zero and a standard deviation σ = +010 20. C m3/m, in which C is 

the computed erosion above storm surge level in m3/m and σ is the standard 

deviation of the differences between the computed and measured dune 

erosion quantities (Figure 4.5). This relationship describes the accuracy of 

the prediction model for given input parameters (such as initial profile, 

maximum surge level, wave height and particle size diameter). The 

inaccuracy of these input parameters is an additional source of errors. The 

effects of gust bumps, squall oscillations and the duration of the storm are 

not included in the model, although Vellinga identified these factors as 

important (see Section 4.2.2) and addressed the problem to some degree  

(see Sections 4.5.2 and 4.5.3). Gradients in the longshore transport are also 

ignored in the model. 

 

 

 

Figure 4.5:  Comparison between measurements and 
computations (modified after Vellinga, 1983). 
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4.2.5 Application And Limitations 
 

Vellinga´s model has been applied to check the safety of existing dunes in 

The Netherlands and to determine the required nourishment. However, the 

model is based upon certain assumptions and has limitations of which the 

user should be aware. The assumptions have been described in  

Section 4.2.2. The model's limitations are described here. 

 

According to Vellinga (1986), the model is only valid formally for waves with 

HS/LOS=0.034 and for conditions with a constant water level for 5 hours. 

However, in practice, the model has been applied to conditions with 
0 02 0 04. / .≤ ≤H LS OS  and for a realistic North Sea storm surge hydrograph 

as shown in Figure 4.4. This hydrograph is characterised by its large height 

and short duration. However, with minor adjustments for the effect of storm 

surge duration, the model can also be used for the prediction of beach and 

dune erosion in other parts of the world (Vellinga, 1983). 

 

The model also has some limitations related to cross-shore profiles. The 

model results have not always proved to be reliable (Steetzel, 1993) for an 

initial profile with a nearshore bank or a very steep bottom slope (owing, 

perhaps, to the presence of a tidal gully). Furthermore, Vellinga's erosion 

profile does not deal with beaches which have a wide range of grain sizes 

such as occur when there is a mixture of sand and shingle. Such cases exist, 

for example, along parts of the UK coastline (Simm et al, 1996). One should 

also note that the model is only applicable in situations with relatively straight 

homogeneous coastlines, i.e. where a two-dimensional idealisation of the 

dune erosion process is possible (Vellinga, 1986). Extra dune erosion should 

be expected where the shoreline is curved, to compensate for possible 

losses of sand due to gradients in the longshore transport rate. Furthermore, 

some coastal problems cannot adequately be solved using this kind of dune 

erosion model (Table 4.2). 
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TYPE OF PROBLEM RELATED EXAMPLES 

non-standard coastal 
profiles or hydraulic 

conditions 

 - nearshore banks 
 - tidal gullies 
 - non-standard surge conditions 

interference by 
 structures 

 - dune revetments 
 - offshore breakwaters 

effect of longshore 
transport gradients 

 - shoreline curvature 
 - tidal gradients 

 Table 4.2:  Limitations of Vellinga's model (modified after 
Vellinga, 1986). 

 
 
4.3 Steetzel's Time-Dependent Model 
 

Although Vellinga's model provides a fair estimate of the amount of dune 

erosion (Steetzel, 1993), a number of problems remain (see Section 4.2.5). 

To overcome some of the limitations, the Technical Advisory Committee on 

Water Defences (TAW) had a more sophisticated model developed. It is 

based on the vertical water velocity and sediment concentration profiles. 

Erosion is then calculated as a function of time. The main goal of the new 

model was to quantify the amount of dune erosion for arbitrary profiles  

(e.g. with bars and tidal gullies) and arbitrary hydraulic conditions. This 

model, developed by Steetzel, is known as the DUROSTA model  

(Delft Hydraulics, 1991). Existing data on storm-induced profile changes 

were re-analysed and some additional investigations were carried out. The 

overall performance of the model was good (Steetzel, 1993). 

 
 
4.4 Current Application Of Vellinga's And Steetzel' s Models 
 

Currently, the safety of the Dutch dunes is determined by the use of a design 

method (seen as Level I) which is based on Vellinga´s equilibrium profile 

model (CUR-TAW, 1989). Probabilistic calculations at higher levels are only 

made on a few occasions when there is some particular need for them. 

 

Steetzel´s time-dependent model is more sophisticated. At present, it is 

applied by specialists only. Nevertheless, it is expected eventually to replace 
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the current procedures. But, owing to its complexity, much still remains to be 

done before it can be successfully combined with probabilistic calculations. 

Such a task is beyond the scope of the present study. 

 
 
4.5 Two Computer Programs Which Use Vellinga's Mode l 
 
4.5.1 Introduction 
 

Many parameters are important in the design of dune nourishment. 

Furthermore, the precise values of these parameters, both before and during 

a surge, are uncertain and can vary in time and space. Thus, a probabilistic 

design approach seems appropriate. 

 

The occurrence of future storm surges accompanied by dune erosion is a 

highly stochastic process (Van de Graaff, 1986). At best, one is able to 

predict the probability of occurrence of a certain set of extreme conditions 

during a certain storm season or in a certain year. Such predictions are 

based on long-term observations and/or simulations of the process. Using 

probabilistic methods and taking into account the transfer function between 

the surge conditions and the amount of dune erosion, one is eventually able 

to determine the probability of exceedance per year of particular dune 

retreats (Figure 4.6). 

 

 

Figure 4.6:  Erosion as a function of frequency of exceedance 
(modified after Van de Graaff, 1986). 
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An acceptable risk of failure of the dunes has to be established. The level of 

acceptability depends mainly on the likely consequences. For example, a 

very low chance of failure is demanded in The Netherlands, due to the high 

importance associated with the low-lying hinterland. There, a probability of 

failure of no more than 10-5/year (a return period of 100000 years) is 

expected (Van de Graaff, 1983, 1986). That is, a dune system is assumed 

safe in The Netherlands only if it is wide enough to withstand erosion with a 

chance of exceedance of no more than 10-5/year. However, a situation like 

that shown in Figure 4.1(b) might permit the allowable probability of a retreat 

beyond point R to be far larger (10-2/year or 10-3/year) due to the relatively 

minor importance of the threatened area. 

 

Predicted dune erosion during a surge depends on the values of the seven 

determining parameters in Vellinga's model (see Section 4.2.2). Knowing the 

density functions of the parameters, the probability of occurrence of a set of 

particular values can be computed using a Level III approach. A probability 

of exceedance curve of properties such as erosion distance, RD, can then 

be found by integration (Van de Graaff, 1986). However, the number of 

computations is enormous when seven parameters are involved. Due to the 

mass balancing procedure required in calculating the erosion volume, the 

computation time for even one calculation is very long. Thus, a large number 

of computations is not an attractive proposition. In The Netherlands, a  

Level III method has been applied only for test purposes. In these tests, 

large integration steps were adopted. 

 

Another problem with Level III methods is that it is impossible to gain insight 

into the relative importance of the parameters involved. This shortcoming, 

together with the number of computations needed, is the main reason why 

Level III methods have not been used frequently. Furthermore, the results 

obtained hardly differ from those of a Level II approach (Van de Graaff, 

1983). Probabilistic calculations on a personal computer then become 

possible. 

 

In The Netherlands, Vellinga's model has been used as the basis for the 

development of two main computer programs: 

 
• a Level II probabilistic program (DUNEPROB); 
• a Level I simplified calculation program (DUNE). 
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The two programs are introduced here. Appendix B contains an example of 

their use and a comparison of results. 

 
 
4.5.2 DUNEPROB 
 

DUNEPROB was developed by Koster Engineering. It calculates the 

probability that erosion will exceed a certain distance, assuming that the 

eroded sand is transported only in a seaward direction. For this purpose, the 

probabilistic FORM is used. In other words, given a certain target  

X-coordinate, XT (e.g. the location of a building close to the sea), the 

program calculates the probability that erosion occurs such that XR in  

Figure 4.7 is landward of XT. 

 

 

 

Figure 4.7: Schematic representation of the dune erosion 
problem (modified after Van de Graaff & Koster, 
1990). 

 

 

As noted earlier, a reliability function Z is defined in FORM calculations such 

that Z ≤ 0  represents failure of the system. In this case, the following 

reliability function meets this requirement: 

 

 Z =  X  -  XR T  (4.3) 
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XR is the X-coordinate of point R and depends on the seven parameters 

affecting the erosion profile according to Vellinga. The main characteristics of 

these seven parameters, as used in DUNEPROB, are described next. 

 

 

4.5.2.1 Maximum Water Level During Storm Surge 

 

The total water level reached during a storm depends mainly upon (Van de 

Graaff, 1983, 1986; Pugh, 1987; Thomas & Hall, 1992): (i) the astronomical 

tide; and (ii) the wind and wave setup and low atmospheric pressure 

associated with meteorological forces (see Figure 4.8). Accounting for  

these phenomena, it is possible to derive the resulting frequency of 

exceedance curve of an arbitrary maximum water level during storm surge 

(Vrijling & Bruinsma, 1980). The Delta Committee (1960) presented similar 

frequency of exceedance curves, based largely on extrapolation of historical 

data, for locations along the Dutch coast. As the Vrijling & Bruinsma curves 

do not differ essentially from the Delta Committee curves, the latter are used 

here. 

 

The probability of exceedance curve for the maximum water level during 

storm surge in metres above datum (NAP under Dutch conditions) can be 

described by an Exponential distribution as follows (Van de Graaff & Koster, 

1990): 

 

 1− 







F =  -

h -
h exp

ζ
λ

 (4.4) 

 
ζ  and λ  are parameters depending on site location along the Dutch coast. 

DUNEPROB assumes this distribution for h and requires ζ  and λ  as input 

parameters. 

 

 

4.5.2.2 Significant Wave Height During The Storm Surge 

 

Water levels and wave heights along a coast are related. Figure 4.8 shows 

why. Wind blowing over water exerts a shear stress which may pile water 

against the coast. Waves induced by the wind add a further setup in the 

water surface as they break. The effects are enhanced by low atmospheric 
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pressure causing a general rise in the sea surface. Water levels and wave 

heights may be strongly or weakly related depending upon the location. Wind 

speeds, directions and durations are all important determining factors, as is 

the tidal range. 
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Wind Atmospheric
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Waves

Mean Sea Level
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Water Level
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 Figure 4.8: Major relationships between waves and total water level. 

 

 

Vrijling & Bruinsma (1980) studied the joint distribution of water levels and 

wave heights in establishing the boundary conditions for the Oosterschelde 

storm surge barrier in The Netherlands. Van Aalst (1983) derived the 

maximum water level during storm surge versus significant wave height 

relationships for various locations along the Dutch coast (Figure 4.9). The 

given significant wave height represents the mean value, µ . For each 

location, a standard deviation, σ , is also shown. DUNEPROB uses the 

following expressions to describe the statistical distribution of the deep water 

significant wave height as a function of the water level during storm surge: 

 

 µ
SH |h

b= ah  (4.5) 

 

where µH hS  is the mean value of HS given a value for h; a and b are 

coefficients that depend on the location and 

 

 S H |h SH |h =   +  H Inacc
S

µ −  (4.6) 
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HS_Inacc is a Normal random variable having a zero mean and a standard 

deviation, σH InaccS− , which is usually set to 0.6 or 0.75 for The Netherlands, 

depending on the site location (Van de Graaff, 1986). 

 

 

 

 Figure 4.9: Expected value of HS as a function of h at locations 
along the Dutch coast (modified after Van de 
Graaff, 1986). 

 

 

There are situations where the expected value for HS, according to eq. (4.5), 

might be too high if the wave conditions are depth limited. For this reason, an 

upper limit, Hwavemax, can be introduced in the program. 

 

 

4.5.2.3 Particle Diameter Of Dune Material 

 

As noted earlier, the amount of dune erosion depends on the grain size of 

the sand (via its fall velocity w). According to CUR-TAW (1989), the fall 

velocity for the period of the year during which storm surges can be expected 
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in The Netherlands, should be calculated for a salt water temperature of 5°C. 

It can be approximated by: 

 

 log
1
w

 =  0.476 (logD )  +  2.18 (logD ) +  3.2262
50 50









  (4.7) 

 

where D50 and w are expressed in SI units. 

 

Kohsiek (1984) analysed samples taken from different locations along the 

coast and determined for each location a mean value and a standard 

deviation for D50 (Normal distribution). The ratio σ µD D50 50
/  varied from 

location to location with values from 0.01 to 0.15. 

 

 

4.5.2.4 Shape Of Initial Profile 

 

Two different cases have to be considered when analysing the influence of 

the shape of the initial beach profile on the resulting dune erosion  

(Van de Graaff, 1983): (i) there is a stable profile; and (ii) there is an unstable 

(long-term eroding) profile. Even a stable profile varies from day to day and 

from season to season. One single profile measurement represents only one 

sample from some distribution. Assuming a Normal distribution, the mean 

profile, µDP , and the standard deviation of the profile, σDP , can be 

calculated when a series of measurements is available. Note that µDP  and 
σDP  are expressed in terms of units of m3/m above a datum and not in 

metres as is DP in PARASODE. 

 

 

4.5.2.5 Storm Surge Duration 

 

Storm surge duration is not a parameter in eq. (4.1). In reality, dune erosion 

is time-dependent and the time during which the water level is near the 

maximum surge level is one of the main factors determining the amount of 

erosion (Van de Graaff, 1983, 1986). Vellinga carried out two sets of tests to 

investigate the matter: a) tests with a constant maximum surge level; and  

b) tests with an actual hydrograph (see Figure 4.4). Note that the shape of 

this hydrograph was only one possibility out of a number of alternatives, all 

with the same maximum water level (Van de Graaff, 1986). From the tests, it 

was concluded that the normal result of an erosion computation (volume C 
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above surge level) can be assumed valid for a surge duration of 5 hours. 

Variations in the storm surge duration around this value can be represented 

as an additional erosion above storm surge level having a Normal distribution 

and the following characterising parameters: µ = 0  and σ = 01. C  (Van de 

Graaff, 1983, 1984, 1986). 

 

 

4.5.2.6 Gust Bumps And Squall Oscillations 

 

Squall oscillations are periodic, local variations in the water level during a 

storm surge with an amplitude of the order of 0.20m and a period of the 

order of 45min (Van de Graaff, 1986). Gust bumps are short-term increases 

in water level caused by the passage of a front or a heavy shower. In 

contrast to squall oscillations, gust bumps can be traced over a large area. 

Their amplitude is about 0.40m and they have a period of about 60min  

(Van de Graaff, 1986). The occurrence of both phenomena is highly variable. 

In recording storm surges, the effects of these irregularities, which mostly 

increase maximum water level, are neglected in Dutch practice. Actual 

hydrographs are smoothed and the maximum values are stored. Equations 

such as eq. (4.4) represent the smoothed curves. However, the amount of 

dune erosion is highly dependent on the maximum water level and any rise, 

even for a short time, results in an increase in the volume of erosion (Van de 

Graaff, 1983). 

 
A short-term increase, ∆h , in water level above the smoothed peak will lead 

to an increase, ∆C , in the volume of erosion. Van de Graaff (1984) argued 

that ∆C  is approximately 0 5. ∆SH , ∆SH  being the increased amount of 

erosion due to a smoothed hydrograph with a maximum ∆h  higher: 

 

 ∆
∆

C =  0.05C
h

0.40






 (4.8) 

 

where C is the eroded volume above the maximum water level which is 

calculated ignoring gust bumps and squall oscillations. Generally, the effects 

of these phenomena can be represented as an additional erosion above 

storm surge level having a Normal distribution and the following parameters: 
µ = 0 05. C  and σ = 0 0125. C  (Van de Graaff, 1984). 
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4.5.2.7 Accuracy Of The Computation Method 

 

The accuracy of the computation method is taken into account as explained 

in Section 4.2.4 (assuming a Normal distribution with a zero mean and a 
standard deviation, σ = +010 20. C m3/m). 

 

 

4.5.2.8 Surcharge 

 

Variations in the last three parameters listed above can be combined  

to form one new single variable, Surcharge, having a Normal  
distribution with the following characteristics: µSurch e Carg .= 0 05 , 

σSurch e C C Carg ( . ) ( . ) ( . )= + + +01 0 0125 010 202 2 2
. The effect of this 

surcharge is expressed in an additional recession of the dune front 

corresponding to an amount of erosion referred to as SurchEros  

(Figure 4.10). 

 

 

 
 Figure 4.10: Surcharge on erosion area C above surge level. 

 

 

Note that in DUNEPROB, the variable Surcharge has a slightly different 

meaning from that described here: it is a surcharge coefficient. This 

coefficient follows a Normal distribution and its mean and standard deviation 
are often approximated by µ = 0  and σ = 1 , respectively. 
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4.5.3 DUNE 
 

At present, the probabilistic approach to dune erosion computations is still 

thought of as rather complicated for "everyday" computations by coastal 

managers. That is the reason why a simplified calculation method has been 

introduced in The Netherlands, based on the results of extended probabilistic 

calculations. This method can be seen as a Level I approach. It is presented 

in the "Guide to the Assessment of the Safety of Dunes as a Sea Defence", 

CUR-TAW (1989). In the Level I approach, it is necessary to account only for 

possible variations in D50  and in the initial profile for a specified surge level 

and significant wave height. Calculations are based on the assumption that 

the eroded sand is transported only in a seaward direction (CUR-TAW, 

1989). Table 4.3 gives the set of characteristic values which yield, within 2% 

accuracy, the retreat distance expected with a  

10-5/year frequency of exceedance. If one needs to consider a higher chance 

of failure (e.g. 10-4/year or 10-3/year), adopting a maximum water level during 

surge, occurring with a probability of exceedance which is a factor 2.15 times 

the acceptable chance of failure, and maintaining the other parameters 

according to Table 4.3, a rather accurate approximation is found  

(Van de Graaff, 1986). 

 

 

PARAMETER CHARACTERISTIC VALUE 

Maximum water level during surge Value with a frequency of exceedance of 
2.15x10-5/year 

Significant deep water wave height Expected value for the given water level 
(Figure 4.9) 

Diameter ( )D D D D50
2 2

50 50 50
1 5= −µ σ µ/ . Holds at least 

for 0% 100% 12 5%< <σ µ/ .  

 

Change in the initial profile 

Profile containing σDP
2 275/ m3/m "less sand" 

than the average profile. Holds at least for 
0 150< <σDP m3/m ( σDP

 is the standard 
deviation of the volume about the mean initial 
profile) 

 
Surge duration 

0.1Cm3/m addition (C being the volume of 
sand eroded above the maximum water level 
during surge, using the parameters defined 
as above) 

Gust bumps and squall oscillations 0.05Cm3/m addition 
Accuracy of computation method (0.1C+20)m3/m addition 

Table 4.3: Characteristic parameter values (modified after Van de 
Graaff, 1986). 
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The above simplified calculation method has been implemented in a 

computer program called DUNE. This program has also been developed by 

Koster Engineering. Appendix B includes an example of its use. 

 

Note that wave period is not an explicit parameter in the above table or in 

Vellinga's model. However, DUNE uses the peak period of the wave 

spectrum to calculate a limiting profile defined by the minimum necessary 

dune crest level and the minimum width at this level, together with an 

acceptable maximum backslope. The erosion profile must remain seaward of 

this limiting profile (CUR-TAW, 1989). 

 

DUNE may also account for situations in which there is net loss of sand from 

the profile owing to a gradient in the longshore transport rate. The loss,  

G (m3/m), for coastal sections of low or moderate curvature may be 

calculated as follows (CUR-TAW, 1989): 

 

 G
C SurchEros H w

GS
O=

+ 



















( )
. .

. .

300 7 6 0 0268

0 72 0 56

 (4.9) 

 

where Go is a reference value for G (m3/m) and is tabulated below: 

 

 

Curvature 
(degrees/1000 m) 

GO (m3/m) 

0 - 6 0 

6 - 12 50 

12 - 18 75 

18 - 24 100 

> 24 further investigation 

 Table 4.4: Go values (modified after CUR-TAW, 
1989). 

 

 

The result of calculating G may be expressed as an additional recession of 

the dune front above maximum water level. 
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4.5.4 Applicability Of The Programs In The British Context 
 

The programs DUNE and DUNEPROB are based on the dune erosion profile 

determined by Vellinga, combined with probabilistic calculations. The 

program DUNE calculates the erosion profile after a design storm 

corresponding to a probability of exceedance of approximately 10-5/year. 

This extremely low probability is justified for Dutch conditions (see  

Section 4.5.1) but it is not always appropriate. This drawback can be 

overcome as described in Section 4.5.3 or by using DUNEPROB. 

 

Both programs relate the significant wave height to the maximum water level 

during storm surge (see Figure 4.9). If the expected values of HS as a 

function of h do not follow a similar trend, then the direct application of DUNE 

or DUNEPROB will produce erroneous results. This is the case on the Sefton 

coast, UK (see Section 6.2.2), where there is little correlation between 

extreme wave heights and extreme water levels (Hawkes & Hague, 1994). 

For this reason, it was decided to introduce Vellinga's model and some of the 

features of DUNEPROB and DUNE into the Level II computer program, 

PARASODE, developed as part of this research (Chapter 5). Probabilistic 

calculations can be performed which allow for appropriate combinations of 

wave heights and storm surge levels. Some examples of the application of 

PARASODE to dune erosion are presented in Section 6.2 of this thesis. 

 
 
4.6 Summary 
 

Dutch experience with regard to the probabilistic design of dunes has  

been examined. The computational model currently used throughout The 

Netherlands is based on Vellinga's equilibrium profile model. The more 

sophisticated time-dependent model developed by Steetzel is not yet used 

as the basis for probabilistic calculations. 

 

The Dutch programs are not directly applicable to conditions along coasts 

such as that in Sefton, UK, where there is a much weaker correlation than in 

The Netherlands between wave heights and water levels. Consequently, it 

was decided to introduce Vellinga's model and some features of the Dutch 

programs into PARASODE, and to carry out new probabilistic calculations. 
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5 SOFTWARE APPLIED IN THIS RESEARCH FOR 
UNDERTAKING PROBABILISTIC CALCULATIONS 

 
5.1 Introduction 
 

This chapter describes the software used in this research to perform 

probabilistic calculations on wave overtopping of seawalls and dune erosion. 

The main element of software, called PARASODE, has been developed as 

part of this work. It is based upon the Level II probabilistic methods reviewed 

in Chapter 2 and the formulation of the failure modes provided in  

Chapters 3 and 4. 

 

Section 5.2.1 gives a general description of PARASODE. Section 5.2.2 

explains the parameters in the program which control each FORM 

calculation. Section 5.2.3 illustrates how truncation of probability distributions 

has been implemented in PARASODE. Sections 5.2.4 and 5.2.5 describe, 

respectively, the incorporation of wave overtopping of seawalls and dune 

erosion into the program. Finally, Sections 5.2.6 and 5.2.7 refer to the input 

and the output of PARASODE, respectively. 

 

To validate the results from PARASODE, various Level III calculations have 

been performed using the commercial software package @Risk, acquired 

from PALISADE Corporation. This program is briefly introduced in  

Section 5.3. For further details about the program, the reader is referred to 

its manual (Palisade Corporation, 1994). 

 
 
5.2 PARASODE  
 
5.2.1 General Description 
 

PARASODE (Probabilistic Assessment of Risks Associated with Seawall 

Overtopping and Dune Erosion) has been developed for assessing the safety 

of coastal structures. In particular, as the name suggests, it concentrates on 

the potential failure mechanisms associated with wave overtopping of 

seawalls and dune erosion. The amount of wave overtopping is calculated by 

both the H&R equation and Owen´s formula. Dune erosion is calculated 
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using Vellinga´s model. Note that incorporation of dune erosion into 

PARASODE presented a more complex task than including the overtopping 

models. Additional problems arise because dune erosion cannot be 

described by an explicit failure function of the basic variables. Details of dune 

erosion calculations are given in Appendix C5. 

 

Although the program incorporates two specific failure mechanisms, the 

majority of the code is generic and can be applied with minor adjustments to 

other types of failure. 

 

PARASODE operates in two ways (see Figure. 5.1): 

 
• MODE 1, the analysis mode, in which the failure probability is 

calculated for a given value of the design parameter, e.g. the crest 
level of a seawall. 

• MODE 2, the design mode, in which the value of a specific design 
parameter is calculated for a target probability of failure. 

 

 

Allowable Discharge

Probability
of Failure

Mode 1

Mode 2

CL1

Pf2

Pf1

CL2 Seawall
Crest Level

 

 Figure 5.1:  Illustration of Mode 1 and Mode 2 for failures 
resulting from overtopping. 

 

 

Mode 1 allows for combinations of time-varying actions using the method of 

Ferry Borges & Castanheta (1983). This method could also have been 

implemented in Mode 2. However, implementation is complex and 

computational time would be considerable. Instead, Mode 2 results involving 
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combinations of actions are best provided by running the program in Mode 1 

for several different values of the design parameter, producing a design 

curve as shown in Figure 5.1. The answers required from Mode 2 

calculations can then be obtained from the curve. Appendix C1 shows 

simplified flowcharts of the program for the analysis and design modes, 

respectively. 

 

The program uses the Level II First Order Reliability Method - FORM (see 

Sections 2.3.3 and 5.2.2). It incorporates routines for transforming the 

correlated variables to a set of non-correlated variables and for mapping 

non-Normal distributions to equivalent Normal distributions. There are ten 

continuous pre-defined statistical distributions programmed in PARASODE. 

Each distribution may be truncated either on the left or on the right side  

(see Section 5.2.3). Details of these distributions (Law & Kelton, 1991; Evans 

et al, 1993) are tabulated in Appendix C3. In PARASODE, the user can also 

add his or her own distributions (see Appendices C4 and C6 for more 

details). This facility is of particular help when the distribution of a variable, X, 

is the result of measurements which are not easily fitted by a pre-defined 

distribution. At present, PARASODE has three user-defined distributions: i) 

observed water levels at Liverpool; ii) observed extreme water levels at 

Liverpool; and iii) predicted tide levels at Liverpool  

(see Appendix C4). They are used in the examples in Chapter 6. 

 

PARASODE has been written in FORTRAN 77. General references on the 

FORTRAN language are Koffman & Friedman (1987), Davis & Hoffman 

(1988) and Etter (1992). Pre-defined subroutines have been used in some 

cases. These subroutines have been extracted from Press et al (1992) and 

NAG (1993). 

 

Appendix C2 shows the various subroutines used in PARASODE. The 

program listing is provided in Appendix C7. It contains a description of the 

subroutines, the variables used in each of them are listed and described, and 

there are guiding comments throughout the code. SI units are used within the 

program, except if otherwise specified. 

 

Appendix C6 provides a detailed list of the input files required and  

their contents. Examples of input and output files are provided in  

Appendices D1 and D3. 
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Before applying PARASODE to wave overtopping of seawalls and dune 

erosion, it was tested using examples reported in literature such as  

Thoft-Christensen & Baker (1982), Ang & Tang (1984), Thoft-Christensen & 

Murotsu (1986), Madsen et al (1986), Smith (1986), Van der Meer (1987), 

CUR-TAW (1990), Pilarczyk (1990), and Burcharth (1992). Examples run 

with other computer programs like PROBA2 (Delft Hydraulics, undated) and 

Super-Risk (Super-Software, 1994) were also reproduced. The results from 

PARASODE were always highly satisfactory. 

 
 
5.2.2 FORM In PARASODE 
 

The parameters controlling each FORM calculation have to be specified in 

the input file form.dad. These parameters are described below. 

 

 

5.2.2.1 Starting Point 

 

The iteration process needs starting values for the design point. It is common 

to choose the mean value of each variable: in other words, iteration starts by 

using the mean value approach. Sometimes, there are reasons to start 

computations at another point. For example, a solution might be found only 

by specifying another starting point. Also, in a case where there is more than 

one solution to the problem, one might find other solutions by trying other 

starting points (see, for example, Wen & Chen, 1987). 

 

When no combinations of actions are involved, or combinations of actions 

are considered and the modified distributions are provided (see Section 

2.3.3.3), PARASODE uses the mean value starting point, unless otherwise 

specified by the user. If combinations of actions are considered and the 

basic distributions are given, then the starting values for the design point are 

obtained as follows: 

 
• If the power, NR, to which the distribution of the variable is raised is 

1 then the starting value is the mean value of the variable. 

• If the power, NR, to which the distribution of the variable is raised is 
not 1, then the starting value corresponds to an extreme cumulative 
distribution function value of 0.5 ( [ ]X FX

NR= −1 10 5. /  where F X
−1  is the 

inverse of FX evaluated at 0.51/NR). 
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5.2.2.2 Minimum And Maximum Values 

 

Variables which have a physical meaning may be restricted within particular 

limits during the iteration process. Also, the form of the failure function may 

prevent variables taking certain values (e.g. a variable which is raised to the 

power 0.5 cannot take negative values). In PARASODE the user can either 

accept the default minimum and maximum values (XMin=-1E25; 

XMax=1E25) or specify required values. However, if the user's limits exceed 

the boundaries defined previously by the variable's distribution, the program 

adopts the more limiting boundaries. So, for example, if a variable follows a 

Log-Normal distribution, then X>0; if the user inputs XMin=-10, the program 

neglects this latter value and adopts XMin=1E-25. 

 

During the iteration process, if a variable X lies outside the boundaries (XMin, 

XMax), then the program continues calculations using a new value of X 

between the last computed value and the boundary which was exceeded. 

This procedure gives final results where otherwise the program would fail. 

 

 

5.2.2.3 Number Of Iterations 

 

In a FORM calculation, the design point can only be found by iteration. The 

number of iterations required depends on the failure function (the more linear 

the function is, the faster the iteration procedure converges), on the point 

used to start the iteration process, on the required relative accuracy of the 

reliability index, on the iteration smoothing process, and on the required 

accuracy of Z being zero. 

 

The maximum number of iterations in a FORM calculation is designated in 

PARASODE by MaxIter. It can be set to any positive value less than 200. If 

no solution is found within 200 iterations then it is likely that some error has 

occurred (e.g. the calculation may be in a loop). After MaxIter iterations, the 

program stops its present calculation and either continues with the next one 

(specified in the input file form.dad) or ends (if no more calculations are 

required). 
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5.2.2.4 Accuracy Of The Reliability Index 

 

Accuracy of the reliability index, β , is essential to insure a corresponding 

accuracy of the calculated probability of failure, Pf. It is important that the 

difference in the reliability index between the last two iterations does not 

correspond to a significant difference in the probabilities of failure. Suppose 

that the value of β  in the last iteration resulted in Pf=10-1. This answer would 

be unreliable if the next iteration gave Pf=10-5. 

 

One way of controlling the relative accuracy of the solution is by calculating a 

parameter, BetaAcc 

 

 BetaAcc New Old

New

=
−

100
β β

β  (5.1) 

 

such that the program does not stop iterating while BetaAcc is greater than 

the required accuracy, ReqBetaAcc. Of course, the required number of 

iterations increases for decreasing values of ReqBetaAcc. The default value 

in PARASODE for ReqBetaAcc is 1 which guarantees a relative accuracy of 

within 1%, which is usually sufficient. The program requires a value for 

ReqBetaAcc within the bounds 0 and 1. 

 

 

5.2.2.5 Smoothing Of The Iteration Process 

 

There are cases where the iteration process does not converge owing to 

instability: the new calculated design point differs considerably from the 

calculated design point of the preceding iteration. This difficulty can lead 

either to divergence of the process, or to values of the random variables 

which cause problems in the failure function. In such cases, "smoothing" of 

the iteration process may help. Smoothing is applied in the following manner: 

 

 X Smooth X Smooth XNew Old(i) ( ). (i) . (i)= − +1  (5.2) 

 

where XNew(i) is the new smoothed value of Xi, X(i) is the new unsmoothed 

value, XOld(i) is the preceding value and Smooth is the smoothing coefficient 

for the iteration process which has a value between 0 and 1. Setting 

Smooth=0 means that no smoothing of the iteration process is performed. 
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Setting Smooth=0.5 provides an average between the old and the new value 

of Xi. 

 

 

5.2.2.6 Accuracy Of The Failure Function 

 

Just as a relative accuracy for β  has been defined, it is possible to specify 

an accuracy for the failure function, Z, being zero. A dimensionless measure 

of accuracy is used in PARASODE (after Super-Software, 1994). The basis 

of this formulation is that if the standard deviation of the failure function, σZ , 

is small, the accuracy of Z being zero is more important than in the case 

where σZ  is large. Hence, the program does not stop iterating while 

 

 Z
qZAcc

Z>
Re

100
σ  (5.3) 

 

where ReqZAcc is the required accuracy of Z. ReqZAcc has to be defined 

within the bounds of 0 and 1. If ReqZAcc=1, then the value of Z at the design 

point is less than 1% of the calculated standard deviation for Z away from 

zero. The default value of 1 is sufficient for most cases. Setting ReqZAcc to 

lower values means a higher accuracy for the answer but requires more 

iterations. 

 
 
5.2.3 Truncation In PARASODE 
 

Sometimes it is necessary to truncate a theoretical distribution of a random 

variable in order that it conforms to measurements or to known physical 

constraints. The truncation is said to be to the right of X=Xo if all values of X 

above Xo are discarded, and is said to be to the left of X=Xo if all values of X 

below Xo are discarded. Since the area beneath the probability density 

function must remain 1, it is necessary to scale the original non-truncated 

values of the probability density function over the truncated range. 

 

Scaling can be performed in a number of ways, depending on factors such 

as the physical meaning of the variable. In this study, truncation has been 

performed as follows (Beaumont, 1986): 
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 Truncation 
For X Below Xo 

Truncation  
For X Above Xo 

 X<Xo X ≥≥≥≥ Xo X ≤≤≤≤ Xo X>Xo 

Truncated 
PDF 

0 
f X

F Xo

X

X

( )

( )1−
 

f X

F Xo

X

X

( )

( )
 0 

Truncated 
CDF 

0 
F X F Xo

F Xo
X X

X

( ) ( )
( )

−
−1

 F X
F Xo

X

X

( )
( )

 1 

Table 5.1:  Truncation method adopted in this study. 

 

 

X

PDF

X

PDF

XoXo

Truncated distributions

Non-truncated distributions

Truncation for X below Xo Truncation for X above Xo

 

 Figure 5.2:  Truncation method adopted in this study. 

 

 

The probability density function for significant wave height, HS, provides an 

example of the need for truncation. HS may be limited by the available water 

depth. In this case, several approaches for truncation to the right of Xo are 

possible, depending on the cut-off technique and the definition of the point of 

truncation, Xo (Thornton & Guza, 1983; Allsop & Meadowcroft, 1995). In this 

study, for the failure mode of overtopping, truncation of the distribution 

describing HS has been performed according to Table 5.1 and Figure 5.2. To 

determine the point of truncation, Xo, it is assumed that the heights of 

individual waves (broken and unbroken) are described by the Rayleigh 
distribution and that H drms S= 0 42.  (Thornton & Guza, 1983). Furthermore, 

taking into account that for a Rayleigh distribution H HS rms≈ 142. , it follows 

that a sensible approximation for Xo is: 

 
 Xo d SWL TLS= = −0 6 0 6. . ( )  (5.4) 
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where the variables dS, SWL and TL are defined as in Chapter 3 (see  

Figure 3.1). Hence, the point of truncation is considered simply proportional 

to the local water depth. For simplicity, factors such as the bottom slope are 

not considered to influence Xo. Note that in PARASODE, SWL is forced to 

be always greater than TL. 

 

This approach to truncating the distribution of HS means that HS is assumed 

to have some value smaller than Xo after wave breaking has been initiated 

and that the depth-limited values are redistributed across the range of 

significant heights in proportion to the unlimited values at each significant 

height. 

 
 
5.2.4 Overtopping In PARASODE 
 

The failure mode of overtopping is implemented in PARASODE using both 

the H&R model and Owen’s model. The basic variables in these models are: 

 

H&R Model  Owen's Model  

• Peak wave period, Tp • Mean wave period, Tm 
• Significant wave height, HS • Significant wave height, HS 
• H&R parameter, A • Owen parameter, A 
• H&R parameter, B • Owen parameter, B 
• Still-water-level, SWL • Still-water-level, SWL 
• Tangent of the seawall slope, tanα • Roughness, r 
• Roughness, r • Model parameter, eB 
• Model parameter, eB  

 

The program allows SWL to be specified either as a variable in its own right 

or as the sum of two variables: i) tide level (Tide); and ii) surge (Surge). 

 

Model parameter r, describing the roughness of the seawall front slope, is 

the ratio of the run-up on a rough slope to that on the corresponding smooth 

slope. Values range from about 0.5 to 1.0 (CIRIA/CUR, 1991). It is readily 

incorporated in both the H&R model and Owen's model. 

 

The two failure functions may then be written as follows: 
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 (5.5) 

 

where TR is the discharge allowed for a specific FORM calculation (the 

target value). 

 

The program can run for as many as ten different values of TR. Plots  

can then be produced of the probability of failure as a function of the  

design parameter, seawall crest level, for different allowable discharges  

(see Figure 5.1). These plots are a valuable tool in the preliminary design of 

seawalls using probabilistic analysis. They can be used to make a cost 

optimisation for the structure during the reference period or design life  

(Van der Meer & Pilarczyk, 1987). 

 

For the H&R model, the user has to choose if the coefficient C is calculated 

using a 37% or 99% confidence level for the maximum run-up. Depending on 

the choice made by the user, the program uses a constant of 1.52 or 2.15, 

respectively, in eq. (3.22). The value 2.15 arises from substitution of N=100 

and p=99 in eq. (3.20). At present only these two alternatives are available. 

This is due to the fact that a change in C implies corresponding changes in 

the values of A and B. 

 

For the failure mode of overtopping, the first partial derivatives of the failure 

function required to perform the FORM calculations can be calculated either 

by using their expressions, provided in the code, or by using the subroutine 

EO4XAF (NAG, 1993), called by PARASODE, which computes  

finite-difference approximations to the first derivatives for a given failure 

function. 



Software Applied In This Research For Undertaking Probabilistic Calculations 

5-11 

5.2.5 Dune Erosion In PARASODE 
 

The failure mode of dune erosion is implemented in PARASODE using 

Vellinga’s model. In Mode 1, the program calculates the probability of failure 

associated with a prescribed value of the nourishment width. In Mode 2, the 

nourishment width is calculated for a target probability of failure. 

 

The basic variables in the program are: 

 

• Significant wave height, HS 

• Median sediment  size, D50 

• Change in the initial profile, DP 

• Surge duration, SD 

• Gust bumps, GB 

• Accuracy of the computation, Ac 

• Maximum water level during surge, h 

 

The program allows the maximum water level during surge, h, to be specified 

either as a variable in its own right or as the sum of two variables: i) tide level 

(Tide); and ii) surge (Surge). 

 

Dune erosion is not an explicit function of the basic variables. Consequently, 

it is not possible to express the failure function as a simple equation. Thus, 

the first partial derivatives of the failure function required to perform the 

FORM calculations must be evaluated using the subroutine EO4XAF (NAG, 

1993), called by PARASODE. 

 

In PARASODE, the eroded sand can either be assumed to be transported 

only seaward (as in DUNEPROB and DUNE) or, alternatively, it can be 

assumed to move both landward and seaward during a storm surge. The 

common assumption, that during the short period of a storm surge the  

cross-shore sediment transport will principally be in an offshore direction, is 

conservative. Allowing the user to choose between movements only seaward 

or also in the landward direction, provides two answers which give an idea of 

the range of erosion to be expected. 
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 Figure 5.3:  Illustration of the main erosion 

situations which can be studied 
using PARASODE (modified 
after CUR-TAW, 1989) 

 
 

Figure 5.3 illustrates the main erosion situations which can be studied using 

PARASODE. Case (a) is the situation which normally occurs during high 

storm surges. Case (b) may occur for coastal profiles with flat slopes; after 

the storm surge, Vellinga's profile will be partly below the original profile. If 
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movements of sand are allowed only seaward, the original profile is raised by 

sand from the dune only. If movements of sand are allowed both seaward 

and landward, then the depression in the foreshore can be filled both from 

the dune and from the seaward part of the bed which lies above Vellinga's 

profile, resulting in a smaller amount of dune erosion. Case (c) is similar to 

case (b). If movements of sand are allowed only seaward, the sand 

movements on the seaward side of the bank are of no importance to the 

recession of the dune (since the sand between the bank and Vellinga's 

profile is sufficient to raise the seaward part of the original profile). If 

movements of sand are allowed both seaward and landward, then the 

depression can be filled both from the dune and from the bank, resulting 

again in a smaller amount of dune erosion. In case (d), the bank is fully 

eroded to raise the original bed towards Vellinga's profile, and the amount of 

sand further required for the development of Vellinga's profile is eroded from 

the dune. Finally, in case (e), Vellinga's profile is entirely below the original 

profile. This situation occurs frequently during storm surges at low tide levels. 

According to PARASODE, no dune erosion will take place  

(CUR-TAW, 1989). In practice, however, a minor amount of dune erosion 

may be expected owing to wave run-up, particularly if the dune face is steep. 

 

The general calculation procedure is described here. For further details, the 

reader is referred to Appendices C5 and C7. Figures 5.4 to 5.7, presented at 

the end of this section, illustrate the procedure used and the notation applied 

in the FORTRAN code. Some of the notation in these figures is not 

mentioned in the main text but can be found in the program listing. 

 

The calculation procedure differs depending on the direction chosen for the 

sand movements. In any case, for a given initial profile with NPD points, the 

program starts by establishing a changed profile. The latter is obtained by 

changing the Y-coordinate, YP, of some points in the initial profile  

(see Figure 5.4(a)). The number of points changed is NPch and the change 

is DP. The purpose of making these changes is to represent the possible 

error in the initial profile immediately before the storm surge. These errors 

arise as a consequence of measurement inaccuracies and changes in the 

profile between the time of measurement and occurrence of the storm surge. 

 

Next, a new profile is defined based on the nourishment characteristics 

(nourishment top level, nourtlev, and gradient of the nourished face, 
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1:mnour) and on the value of the design parameter (nourishment width at top 

level, nourwidt). The new profile is referred to as the nourished profile  

(see Figure 5.4(b)). The point of intersection of the nourished profile and the 

surge level, h, is (S1,T1). Note that if the parameter nourwidt is set to zero, 

PARASODE assumes that there is no nourishment. Consequently, if 

nourishment is to be provided without a berm, nourwidt must be set at a 

small positive value. Note also that the gradient of the nourished face 

depends not only upon the method chosen for placing material1 but also 

upon other factors such as the grain size (CUR et al, 1987). Table 5.2 

provides some guidance on expected gradients. 

 

 
   HYDRAULIC FILL 

(usually for beach nourishment) 
MATERIAL  GRAIN SIZE 

( )µm  

DRY FILL ABOVE WATER 
(usually for dune nourishment) Above 

Below Water 

   Water Smooth 
Sea 

Rough 
Sea 

Fine Sand 60-200 up to the  1:50 - 1:100 1:6 - 1:8 1:15 - 1:30 

Medium Sand 200-600 natural angle  1:25 - 1:50 1:5 - 1:8 1:10 - 1:15 

Coarse Sand 600-2000 of repose  1:10 - 1:25 1:3 - 1:4 1:4 - 1:10 

Gravel >2000 (1:1 - 1:2) 1:5 - 1:10 1:2 1:3 - 1:6 

Table 5.2:  Expected gradients of nourished dune/beach face (modified after 
CUR et al, 1987). 

 

 

In its present version, PARASODE allows consideration of a simplified form 

of nourishment to the seaward face of the dune and/or to the beach  

(see Figure 5.4(b)). However, it would be relatively straightforward to modify 

PARASODE to deal with more complicated nourishment profiles. Note that it 

is assumed that once nourishment has taken place, the material stays where 

it has been deposited until a storm surge occurs. The material used for 

nourishment is also assumed, for simplicity, to be of the same type and size 

as the native sediment; usually, the preferred grain size of borrow material is 

equal to or larger than that of the native sediment (Hedges, 1977; CUR et al, 

1987; Simm et al, 1996). 

 

After the nourished profile is defined, the shape of Vellinga's parabolic  

                                            
1 In broad outline, the methods can be distinguished as follows (CUR et al, 1987): 
 i) dry fill - transportation of dry sand to the site by trucks, etc; 
 ii) hydraulic fill - transportation of a sand-water mixture via a pipeline. 
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post-storm profile is calculated according to eq. (4.1). As a first 

approximation, it is assumed that the parabolic part of the profile starts at 

point (S1,T1) (see Figures 5.5(a) and 5.6(a)). The X-coordinate of this 

starting point is always designated as S8. The position of the offshore point, 

(S9,T9), where the parabolic part of the profile terminates is also calculated: 

the length of the profile is Le and the depth is Depth. If point (S9,T9) is 

located above the nourished profile (Figure 5.5), Vellinga's profile continues 

seaward as a straight line with a gradient of 1:mt until it intersects the 

seabed. Otherwise (Figure 5.6), a vertical line is drawn until intersection with 

the nourished profile occurs. The point of intersection is (S2,T2). Landward 

of X=S8, the gradient of the eroded dune face is 1:md. The point of 

intersection of the eroded dune face and the nourished profile is (S3,T3). 

Note that in PARASODE, 1:md is not a constant of 1:1 as in Vellinga's 

original model. The user is free to define this slope. Likewise, the gradient of 

the toe of the post-storm profile, 1:mt, need not be taken as 1:12.5. 

 

After Vellinga's profile is defined, it has to be located in such a way with 

regard to the nourished profile that the total area of eroded sand is equal to 

the area of accretion. In order to achieve this required final position, 

Vellinga's profile is moved along the X-axis, the corresponding areas of 

erosion and accretion are calculated and the balance tested. The methods 

used to calculate the areas of erosion and accretion and to test the required 

balance between these areas depend on the direction of the sand 

movements. Details are provided in Appendix C5. 

 

Finally, the failure function is calculated as follows (Figure 5.7): 

 

 Z TR S= + 4  (5.6) 

 

TR (the target value) is the allowable erosion distance measured from the 

reference line X=0 and S4 is the X-coordinate of the most landward point to 

which the profile has been eroded. Note that S4 is the estimate provided by 

PARASODE of the position R, in Figure 4.1. The program can be run for as 

many as ten different values of TR. Plots can then be produced of the 

probability of failure as a function of the design parameter, nourishment 

width, for the different allowable erosion distances. Such plots are a valuable 

tool in the preliminary design of dune nourishment using probabilistic 

analysis. 
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 Figure 5.4:  Definition of initial, changed and nourished profiles. 
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 Figure 5.5:  Definition of Vellinga's post-storm profile - example 1. 
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 Figure 5.6:  Definition of Vellinga's post-storm profile - example 2. 
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 Figure 5.7:  Definition of the failure function for dune erosion. 

 

 

5.2.6 Input 
 

The program runs simply by executing the command PARASODE. The input 

data can be read either from the computer screen or from input data files. If 

the data are to be read from the screen, the user only has to answer the 

questions asked and choose between alternatives. If the input is provided by 

data files, then the following four files have to be prepared by the user, no 

matter which failure mode is studied: 

 

• general.dad 

• form.dad 

• meandev.dad 

• coefcor.dad 

 

A fifth data file is required if the failure mode under study is dune erosion. 

This file is called perfil.dad . 
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Description of the input files is given in Appendix C6 and examples are 

provided in Appendices D1 and D3. 

 
 
5.2.7 Output 
 

Two output files are created when running PARASODE: 

 
• summary.dat - A file which contains the input data and the most 

important final numerical results only. 

• results.dat - A text file which contains the input data and the 
most important numerical results for all iterations. 

 

Examples of the output file summary.dat are given in Appendices D1 and D3. 

 
 
5.3 Validating PARASODE Using @RISK 
 

To validate the results of a Level II program like PARASODE, Level III 

calculations have to be carried out (Ang & Tang, 1984; Van der Meer, 1987). 

 

The normal way to implement Level III methods is to write a computer 

program. Such a program would consist of random number generation 

(normally a built-in function), solving the appropriate inverse distribution 

functions for the parameters which have been defined, calculating the result, 

and repeating for another set of random numbers. After the required number 

of samples, the results are summarised in terms of a probability distribution, 

or simply the proportion of results corresponding to failure. 

 

A simpler way to carry out a Level III analysis is to use existing software 

packages. A search was made for software suitable for this task. Programs 

such as PREDICT (Risk Decisions Ltd., Oxfordshire, UK), @RISK (Palisade, 

New York), STRUREL (Reliability Consulting Programs, Munich, Germany) 

and SUPER-RISK (Super-Software, Heemstede, The Netherlands) were 

considered. Some programs included probabilistic methods other than  

Level III; however these packages were expensive. Since the main objective 

was to obtain a package solely to carry out Level III calculations, @RISK was 

chosen.  
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@RISK is sold as an add-in for Microsoft Excel or Lotus 123. It uses 

simulation to combine all the uncertainties identified in the modelling. The 

options available for controlling and executing a simulation in @RISK are 

quite powerful. They include: i) Traditional and Latin Hypercube Sampling 

(see section 2.3.2.2); ii) unlimited number of iterations per simulation;  

iii) multiple simulations in a single analysis; iv) continuing a simulation after 

viewing results and performing more iterations if necessary; and v) seeding 

the random number generator. 

 

The random number generator used in @Risk is a portable random number 

generator based on a subtractive method, not linear congruential (for more 

details see, for example, Law & Kelton, 1991). The cycle time is long enough 

that it has no effect on the simulations (Palisade Corporation, 1994). The 

period of the generator is effectively infinite. The seed or starting value, if not 

set manually, is clock dependent, not machine dependent. The results of a 

simulation are reproducible from run to run. If the seed is set to zero it means 

that the sequence of random numbers will start at a random value. The result 

will differ each time a run is made (using the same input). If however the 

seed is set to any positive number, it means the random generated numbers 

will start at a specific place in the sequence. This allows @Risk to give 

reproducible results of a simulation from run to run, because each time a run 

is made the same sequence of random numbers will be used. 

 

The way the program works is appealing because it conforms to the way that 

many engineers now carry out calculations: formulae are entered into the 

spreadsheet as usual, but any data item in a cell (or range of cells) can be 

specified as a probability distribution instead of as a single value. The 

software provides a library of about 30 different distributions, including the 

distributions available in PARASODE. The user issues the command to carry 

out a simulation and the software automatically carries out the task using the 

prescribed probability distributions, recording each interim result. Simulation 

results generated by @Risk include statistics and data reports for both input 

and output variables. The probability distribution of the results for each 

output cell is then displayed graphically. @ RISK graphs include: i) relative 

frequency distributions and cumulative probability curves; ii) summary graphs 

for multiple distributions across cell ranges; iii) statistical reports on 

generated distributions; and iv) probability of occurrence of target values in a 
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distribution. @Risk results and graphs can be placed directly in the Microsoft 

Excel or Lotus 123 spreadsheet for reporting purposes. 

 

The software also has modelling techniques to deal with dependencies. This 

is very important because in many practical engineering analyses, random 

variables are often statistically and physically dependent. Furthermore, 

actual distribution types for the random variables involved can be a mixture 

of different theoretical distributions. To properly replicate such systems, 

simulation should be able to preserve the correlation relationship among the 

stochastic parameters and their distributions (Iman & Conover, 1980, 1982; 

Chang et al, 1994). In @Risk, to allow for correlation, one can build a 

correlation matrix for the input variables. This matrix forms the basis for the 

correlated sampling of the input variables during simulation. The facility is 

especially useful when pre-existing correlation coefficients are available and 

one wants sampling to be governed by those coefficients. 

 

The main advantage of this software is its flexibility and ease of use for 

anyone familiar with spreadsheets. However, because of its user-friendly 

characteristics, there are dangers in the use of @Risk (and similar computer 

programs) unless the user is fully aware of issues such as the importance of 

formulating the correct relationships between input and output variables, the 

selection of the probability distributions, and the choice of sample size as it 

affects the stability of estimates of the output variables, including their 

extreme values. 

 
 
5.4 Summary 
 

A FORTRAN Level II program, PARASODE, has been developed. In 

particular, the program concentrates on the failure modes of random wave 

overtopping of simple seawalls and dune erosion. The quantity of wave 

overtopping is calculated using both the H&R formula and Owen's formula. 

Dune erosion is calculated using Vellinga's model. However, much of the 

program is generic and can be adapted to other failure modes without undue 

difficulty. A Level III software package, @Risk, has been used to validate the 

output from PARASODE with regard to wave overtopping. 
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6 APPLICATION OF PARASODE 

 
6.1 Examples - Wave Overtopping Of Seawalls 
 
6.1.1 Input To PARASODE  

 

Section 6.1 illustrates the use of PARASODE and the differences between 

the H&R overtopping model and Owen's formulation. Note that only some 

features of PARASODE are shown here. For example, due to lack of data, 

Ferry Borges & Castanheta's method of combinations of time-varying actions 

(see Section 2.3.3.3) is not illustrated, although PARASODE is fully 

developed to allow its use. 

 

The geometry of the simple seawall used in the case studies (see  

Figure 3.1) is as follows: 

 
• impermeable slope of 1:2 with a relatively smooth surface; 

• toe level of 0m OD (OD denotes Ordnance Datum); 

• crest level of between 8m OD and 16m OD. 

 

Such a seawall is typical of potential developments around Liverpool Bay in 

the south-eastern corner of the Irish Sea. The allowable discharges 

considered in the examples lie in the range 10-1 to 10-6 m3/s/m (see  

Figure 3.2). 

 

The main statistical characteristics of the basic variables in the H&R and 

Owen models (see Section 5.2.4) are described next. For each basic random 

variable, it is necessary to define a mean value, the corresponding standard 

deviation and to postulate a type of distribution. Depending on the 

distribution type, other statistical values may also have to be provided (e.g. 

the lower limit of a Weibull distributed variable or the lower and upper limits 

of a Beta distribution). 

 

Examples of input files are provided in Appendix D1 as well as the 

corresponding summary.dat output files. 
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6.1.1.1 Distributions Of The Sea State Parameters 

 

The scatter diagram describing the long-term distributions of wave heights 

and periods at the Mersey Bar in Liverpool Bay can be found in Salih (1989). 

Using the method of moments for one year's data (from September 1965 to 

September 1966) recorded at three-hourly intervals (Draper & Blakey, 1969), 

Salih fitted three-parameter Weibull distributions to the significant wave 

heights and mean zero-crossing wave periods. The following approximate 

statistical parameters are derived from his results: 

 

 

Hs (m) Tm (s) 

µµµµ    σσσσ    Lower Limit  µµµµ    σσσσ    Lower Limit 

1.2 0.7 0.45 5 0.9 3.3 

 Table 6.1:  Means, standard deviations and lower limits for the 
Weibull distributions of Hs and Tm. 

 

 

Since the H&R model uses Tp instead of Tm in its formulation, a mean 

JONSWAP relationship between Tm and Tp was assumed as follows 

(Hogben, 1990): Tp=1.28Tm. Hence, a three-parameter Weibull distribution 

was adopted for Tp with µ σ= = =6 4 1152 4 224. ; . lim .s s and lower it s . 

 

Salih also reported a linear correlation coefficient between HS and Tm of 

approximately ρ = 0 6. . This same correlation has been assumed between 

HS and Tp. 

 

 

6.1.1.2 Distributions Of Water Levels 

 

In this study, two main situations have been evaluated, bearing in mind that 

the design conditions which are critical for one type of problem might not be 

critical for others (CIRIA/CUR, 1991; Havno et al, 1996): 

 
1) Performance under normal conditions  - The performance of the 

structure for any possible value of total water level (tide plus surge) 
is evaluated. 
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2) Performance under extreme conditions  - The ability of the 
structure to survive extreme total water levels is checked. 

 

The first condition is relevant, for example, to design of retention and 

drainage systems and for checking the safety of people and vehicles. The 

second provides peak values which are important for structural safety. 

 

PARASODE allows the water level to be specified either as a variable in its 

own right or as the sum of the tide and surge components (see Chapter 5). 

All the information on water levels at Liverpool made available to the author 

was provided by the Proudman Oceanographic Laboratory (POL), UK. 

However, only data on total water levels, both for normal and extreme 

conditions, were initially available. These data were applied to specify  

user-defined distributions for Liverpool (see Appendix C4). Calculations with 

PARASODE were then performed using this information. Later, data on the 

separate tide and surge components for normal conditions were also 

acquired. With the new data, a user-defined distribution for the predicted tide 

levels at Liverpool was established (see Appendix C4), and a Gumbel 

distribution (µ=0.019m; σ=0.192m) was fitted to represent the surge 

component by applying the software package BestFit. Calculations using 

PARASODE were then repeated using these distributions. As expected, the 

results obtained were identical. Hence, for normal conditions, only the results 

of the calculations which used the separate tide and surge components are 

reported in this thesis in Appendix D2. In this same appendix, the results for 

extreme conditions using total water levels are also tabulated. The tide and 

surge components have been assumed independent, based on information 

also provided by POL. Note that tide-surge interaction may be important in 

very shallow water regions (see Alcock & Carter, 1985). 

 

 

6.1.1.3 Interrelationship Between Sea State And Wat er Level 

 

Overtopping of a seawall does not depend solely on the individual sea state 

or the individual water level but on their combination (HR Wallingford, 1989; 

Thomas & Hall; 1992). Even a very severe storm, leading to massive waves, 

may pass virtually unnoticed if water levels are low. At such times, because 

of the generally shallow beach slope below mean water level, waves break 

rather harmlessly by spilling rather than plunging, and there is considerable 

loss of energy due to friction over the beach. These effects, combined with 
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the higher freeboard, mean that no overtopping or damage is likely to occur. 

In contrast, at very high water levels, even quite modest waves can cause 

problems. The increased water depth allows waves to break by plunging on 

the seawall, and also reduces the effect of friction. With the reduction in 

freeboard caused by the high water level, waves can overtop the structure. 

Hence, in design of coastal structures, combinations of large waves and high 

water levels are of particular interest (Simm et al, 1996). In most cases, 

correlation between large waves and high water levels should be considered. 

However, the scope of each correlation assessment should be decided on its 

own merits, in terms of the input data available, the intended end use, and 

the potential benefits to be derived (Hawkes & Hague, 1994). It is beyond the 

scope of the present study to carry out a detailed analysis of the correlation 

between waves and total water levels but the interested reader can refer to 

work such as Hague (1992) and Hawkes & Hague (1994). 

 

The main problem when trying to account for the correlation between sea 

state and total water levels is the fact that it is necessary either to assign a 

correlation coefficient directly between the sea state and the total water level 

or, alternatively, between the sea state and surge and between surge and 

tide level (see Figure 4.8). Unfortunately, information necessary to accurately 

determine the correlation coefficients is often unavailable. Suppose some 

correlation between waves and total water levels is expected, but the 

correlation coefficient is not known. Confidence in accepting a particular 

seawall configuration can be reinforced by examining a pessimistic view of 

the suspected correlation. If the results are still acceptable, then confidence 

in the seawall has been justified. Conversely, if a seawall configuration 

appears unacceptable, one may be reassured that rejection of the design is 

justified by examining an optimistic view of the effect of the suspected 

correlation. 

 

In the Liverpool Bay area of the Irish Sea, the tidal range is around 10m. This 

very big tidal range masks the correlation between waves and surge 

(Hawkes & Hague, 1994). As a consequence, sea states and total water 

levels are not completely independent, but the correlation is very weak. The 

question remained of what degree of correlation to consider in the present 

study. Hawkes & Hague (1994) suggested a positive though weak correlation 

between waves and water levels for North Wales whereas, according to 

Alcock (1984), Hydraulics Research Station assumed that SWL and wave 
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heights were independent for North Wales and for Fleetwood and Cleveleys. 

Since Liverpool Bay falls between these locations (Figure 6.1), a similar 

assumption might reasonably be made in the absence of further data. 

 

In this study, no correlation has been assumed either between waves and 

total water level or between waves and surge. Note that PARASODE allows 

the user to consider correlation between any two variables by providing a 

non-zero correlation coefficient between them. Likewise, independence 

between two variables can be ensured by adopting a value of zero for the 

correlation coefficient. 

 

 

 

 Figure 6.1:  Location of Liverpool Bay in relation 
to North Wales, Fleetwood and 
Cleveleys. 

 

 

6.1.1.4 Distribution Of The Tangent Of The Seawall Slope 

 

The angle at which the seawall front slope is constructed will never be 

exactly as specified in its design. Therefore, this parameter has been 

introduced as a random variable having a Normal distribution with a mean 

µ=0.5 and a standard deviation of 10% of the mean value, i.e. σ=0.05. One 

would expect the angle of the seawall slope to be formed with the same 
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tolerance above and below the design angle. Hence in a narrow band about 

the mean, the Normal distribution is expected to fit well. Obviously, the tailing 

off of the distribution to infinity is not representative of the slope angle. 

However, the behaviour of the tails is not important where there is a small 

standard deviation associated with a high mean as is the case in this 

example. 

 

 

6.1.1.5 Distribution Of The Roughness Of The Seawal l Slope 

 

The slope roughness, r, for different types of cover layer can be found, for 

example, in CIRIA/CUR (1991) or Van der Meer & Janssen (1995). As for the 

angle of the seawall slope, the roughness of the relatively smooth 

impermeable slope has been considered as a random variable. A Beta 

distribution has been chosen, with µ=0.95, σ=0.01 and lower and upper limits 

x1=0.9 and x2=1. The use of the Beta distribution addressed the fact that r 

can never be greater than 1 and it has a specific range of values depending 

on the type of cover layer. A Rectangular distribution might have been used 

instead, particularly since it is simpler than the Beta distribution. 

 

 

6.1.1.6 Distributions Of The Parameters Of The Mode ls 

 

In the example, the values of A and B for both the H&R and Owen models 

have been set to fixed values according to Table 3.2 of Chapter 3: 

 
• H&R model, (Rmax)37%: A=0.00753 and B=4.17 

• H&R model, (Rmax)99%: A=0.00542 and B=7.16 

• Owen's model: A=0.0117 and B=21.71 

 

Following the recommendations of Chapter 3 (Section 3.7), parameter eB has 

been considered as a Log-Normal distributed variable, with mean and 

standard deviation as shown in Table 3.4 of that chapter: 

 
• H&R model, (Rmax)37%: µ=1.049 and σ=0.241 

• H&R model, (Rmax)99%: µ=1.044 and σ=0.200 

• Owen's model: µ=1.027 and σ=0.150 
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Note that eB could equally have been chosen as Gumbel or Gamma 

distributed (see Section 3.7). 

 

 

6.1.2 PARASODE Results And Discussion 
 

6.1.2.1 Normal Conditions 

 

The results produced by PARASODE for wave overtopping of seawalls under 

normal conditions are presented both in tabular form in Appendix D2 and 

graphically in this section. 

 

Figure 6.2 shows the probabilities of failure, Pf (%/year), versus the crest 

level, CL (m OD), for different values of the allowable discharge, for the H&R 

model and for Owen's model. 

 

Figures 6.3 and 6.4 display the sensitivity of the probability of failure to 

inaccuracies in the values of the H&R model basic variables at the design 

point, as a function of the allowable discharge and the seawall crest level, 

respectively. Figures 6.5 and 6.6 give the same results for Owen's model. 

 

Figures 6.7 to 6.14 show parameter values at the design point as a function 

of the seawall crest level and the allowable discharge, for the H&R model 

and for Owen's model. Only the values of the variables which were found to 

have a major contribution to the probability of failure have been plotted, i.e. 

sea state parameters (wave height and period), tide and model parameter 

eB. 

 

Note that the results for the H&R model, (Rmax)99%, are tabulated in  

Appendix D2 but are not plotted here since the observations which could be 

made are essentially identical to those for (Rmax)37%.  

 

From the tables in Appendix D2 and the figures mentioned above, the 

following observations may be made: 

 
• Figure 6.2 - As expected, Pf (%/year) decreases as the crest level 

of the seawall increases. Likewise, for the same value of the crest 
level, Pf decreases as the allowable discharge increases. For the 
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same values of the crest level and the allowable discharge, Owen's 
model predicts higher probabilities of failure than the H&R model. 
For the H&R model the probabilities of failure are higher for 
(Rmax)99% than for (Rmax)37%. Note that these observations are 
consistent with the comments made in Section 3.6. Acceptable 
probabilities of failure for coastal structures are given in Section 
4.5.1 as generally between 10-2 and 10-5 (i.e. 1 to 0.001%/year). 
Consequently, for the input conditions considered, a crest level 
greater than about 10m would be required to satisfy structural 
safety. A level of at least 12m would be required to satisfy 
functional safety according to the H&R model whilst Owen's model 
would demand a crest level greater than 16m. 
As will be shown later in Section 6.2.1.2, the probability of failure 
over the lifetime of the structure may be determined quite simply 
from knowledge of the probability of failure in a year, provided that 
statistical independence of each year is assumed. 

• Figures 6.3 and 6.4 - For the H&R model, the sensitivity 
parameters, α2 (%) , show that the main influence on the probability 
of failure is generally provided by the uncertainty in the sea state, 
i.e. HS and Tp (up to 58%). The tide also has a major contribution 
(up to 47%), although it is never as large as the contribution of the 
sea state. For the biggest allowable discharges, the model 
parameter, eB, occasionally plays the strongest role (up to 49%). 
The effect of the surge is much less important (up to about 10%), 
and the angle of the seawall front slope and its roughness have 
only minor influences on the resulting variance. For each value of 
the seawall crest level, the importance of the sea state and the tide 
tends to increase as the allowable discharge decreases, while the 
effect of eB decreases. For each allowable discharge considered, 
the contributions of the sea state and the tide decrease as the crest 
level increases, while the contribution of eB increases. 

• Figures 6.5 and 6.6 - As with the H&R model, the sensitivity 
parameters for Owen's model show that the most important factor is 
generally the sea state, i.e. HS and Tm (up to 66%). The tide also 
has a major contribution (up to 72%), and in some cases, it is even 
more important than the contribution of the sea state. Model 
parameter eB is, in some instances, more significant than the tide 
(up to 34%); as with the H&R model, the effect of eB is greatest for 
the largest allowable discharges and highest crest levels. For 
Owen's model, the sensitivity to variability in the surge is even less 
important (up to only 4%) than for the H&R model, and again the 
roughness of the seawall front slope makes only a minor 
contribution to the resulting variance. Unlike for the H&R model, the 
influence of the sea state does not show any obvious pattern with 
crest level or allowable discharge. However, as for the H&R model, 
the importance of the tide increases as the allowable discharge 
decreases, for each value of the seawall crest level; and for each 
allowable discharge, the tide's contribution decreases as the crest 
level increases. 
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• The above discussion of Figures 6.3 to 6.6 highlights how crucial it 
is to obtain reliable and sufficient data on wave, tide and eB to 
enable the probability distributions of these variables to be 
determined accurately. 

• Figures 6.7 to 6.14 - The value of Tp at the design point for the H&R 
model does not follow any special trend with the crest level or the 
allowable discharge. Tm for Owen's model increases as the crest 
level and the allowable discharge increase. The values of HS and 
Tide at the design point increase with increasing values of the crest 
level and of the allowable discharge for both overtopping models. 
Also for the two models, the value of eB at the design point 
decreases as the crest level and the allowable discharge increase. 
The values of Hs and Tide at the design point are higher for the 
H&R model than for Owen's model despite the generally higher 
probabilities of failure associated with Owen's model (see  
Figure 6.2). 

• From all figures, it can be seen that the choice of overtopping 
model is very important in the probability assessment of the safety 
of seawalls exposed to normal conditions. The two models lead to 
quite different results. Use of Owen's model in design would be 
more conservative than use of the H&R model. However, the 
conservative nature of Owen's model also implies that its use in 
design will result in more expensive structures than those designed 
using the H&R formulation. 

 

Note that the results for an individual case study cannot be adopted in a 

general sense. Each situation has particular characteristics which make it 

unique. 
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Figure 6.2:  Probability of failure versus crest level for different values 
of the allowable discharge, for the H&R model and for 
Owen's model. 
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Figure 6.3:  Sensitivity of the probability of failure to inaccuracies in the 
values of the H&R model basic variables at the design point as a 
function of the allowable discharge. 
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Figure 6.3:  continued. 
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Figure 6.3:  continued. 
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Figure 6.4:  Sensitivity of the probability of failure to inaccuracies in the 
values of the H&R model basic variables at the design point as a 
function of the seawall crest level. 
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Figure 6.4:  continued. 
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Figure 6.4:  continued. 
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Figure 6.5:  Sensitivity of the probability of failure to inaccuracies in the 
values of Owen's model basic variables at the design point as a 
function of the allowable discharge. 
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Figure 6.5:  continued. 
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Figure 6.5:  continued. 
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Figure 6.6:  Sensitivity of the probability of failure to inaccuracies in the 
values of Owen's model basic variables at the design point as a 
function of the seawall crest level. 
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Figure 6.6:  continued. 
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Figure 6.6:  continued. 
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Figure 6.7:  Value of Tp at the design point as a function of the seawall 

crest level and the allowable discharge, for the H&R model. 
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Figure 6.8:  Value of HS at the design point as a function of the seawall 

crest level and the allowable discharge, for the H&R model. 
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Figure 6.9:  Value of Tide at the design point as a function of the 

seawall crest level and the allowable discharge, for the 
H&R model. 
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Figure 6.10:  Value of eB at the design point as a function of the seawall 

crest level and the allowable discharge, for the H&R 
model. 
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Figure 6.11:  Value of Tm at the design point as a function of the 

seawall crest level and the allowable discharge, for 
Owen's model. 
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Figure 6.12:  Value of HS at the design point as a function of the 

seawall crest level and the allowable discharge, for 
Owen's model. 
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Figure 6.13:  Value of Tide at the design point as a function of the 

seawall crest level and the allowable discharge, for 
Owen's model. 
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Figure 6.14:  Value of eB at the design point as a function of the seawall 

crest level and the allowable discharge, for Owen's model. 
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6.1.2.2 Extreme Conditions 

 

The results produced by PARASODE for wave overtopping under extreme 

conditions are presented in tabular form in Appendix D2. These results could 

also have been presented graphically, as in Section 6.1.2.1. However, for 

simplicity, only the main conclusions are drawn here. 

 

From the tables in Appendix D2, the following observations may be made: 

 
• As anticipated, the probabilities of failure associated with extreme 

conditions are much higher than those for normal conditions. For 
the same values of the crest level and the allowable discharge, 
Owen's model still predicts higher probabilities of failure than the 
H&R model. For the H&R model the probabilities of failure are 
generally higher for (Rmax)99% than for (Rmax)37%. Consequently, for 
the extreme conditions, a crest level greater than 14m would be 
required to satisfy structural safety according to the H&R model 
whilst Owen's model would demand a crest level greater than 16m. 
As for normal conditions, Pf (%/year) decreases as the crest level of 
the seawall increases. Likewise, for the same value of the crest 
level, Pf decreases as the allowable discharge increases. 

• For the H&R model, the sensitivity parameters, α2 (%) , show again 
that the major influence on the probability of failure is generally 
provided by the uncertainty in the sea state (up to 99%). Unlike for 
normal conditions, the water level is much less important (up to 
10%), whilst for the biggest allowable discharges, the model 
parameter, eB, still occasionally plays a major role (up to 49%). The 
effect of the other variables is negligible. For each value of the 
seawall crest level, the importance of the sea state tends to 
increase as the allowable discharge decreases, while the effect of 
eB decreases. For each allowable discharge, the behaviour of the 
sea state and eB show no obvious relationship to the crest level. 

• Once more, the sensitivity parameters for Owen's model show that 
the most important factor is the sea state (up to 95%). Model 
parameter eB represents, in some instances, the most significant 
contribution (up to 58%); the effect of eB is greatest for the smallest 
allowable discharges. The other variables make only minor 
contributions to the resulting variance. The influence of the sea 
state shows no obvious relationship to the crest level or allowable 
discharge. 

• The behaviours at the design point of the values of the most 
important variables in relation to the crest level and allowable 
discharge are identical to the behaviours described for normal 
conditions. 
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• As for normal conditions, it can be seen that the choice of 
overtopping model is very important in the probability assessment 
of the safety of seawalls subjected to extreme conditions. The two 
models lead to quite different results. Once again, use of Owen's 
model in design would be more conservative than use of the H&R 
model. 

 
 
6.1.3 Validating PARASODE Results Using @Risk 
 

The accuracy of the Level II (FORM) reliability algorithms used in 

PARASODE has been evaluated by comparison with the results provided by 

the Level III method of Latin Hypercube Sampling (LHS) available in @Risk. 

This evaluation has been carried out for the Level II results of the H&R 

model, (Rmax)37%, and Owen's model, for normal conditions only. The results 

of the Level III method are used as a benchmark, since their only limitation is 

the computer time needed to perform a sufficiently large number of iterations 

(Jang et al, 1994). 

 

In simulation, with more iterations, output distributions become increasingly 

stable as the statistics describing each input distribution change less with 

additional samples. It is important to run enough iterations so that the output 

statistics are reliable. However, there comes a point when the time spent on 

additional iterations is unnecessary because the output statistics are not 

significantly changed. The number of iterations required to generate stable 

output distributions varies depending on the model used in the simulation 

and the distribution functions in the model. 

 

Like other research (Startzman & Wattenbarger, 1985; Super-Software, 

1994), this work concentrates on the variability of the following statistics as 

measures of simulation convergence (Figure 6.15): 

 
• mean; 

• standard deviation; 

• coefficient of variation. 
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Figure 6.15:  Example of the convergence of the mean, 
standard deviation and coefficient of variation 
of Q using Latin Hypercube Sampling for the 
H&R model and for Owen's model. 
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Other statistics, such as the skewness and the kurtosis, have also been 

analysed. The results are not shown here because they behaved in similar 

ways to the above statistics. 

 

Figure 6.15 shows that estimates of the mean, standard deviation and 

coefficient of variation are sufficiently accurate after about 30000 samples for 

Owen's model, while the H&R model does not approach reasonably 

converged statistics until about 60000 samples are used. Simulating more 

samples would not introduce a noticeable improvement on the calculations, 

and would only require more time and computer memory. Several other LHS 

simulations were performed using random seeds and similar results were 

obtained. Therefore, it was decided to carry out the simulations for the H&R 

model and Owen's model using 60000 and 30000 samples, respectively. In 

practice, Owen's model required only about 35% of the computer time 

required by the H&R model, for the input conditions considered. However, 

even 30000 samples is a considerable number, especially when LHS has 

been used instead of the Traditional Sampling method. 

 

Many other statistical properties may be determined by simulation including 

confidence limits. Often, the entire cumulative distribution of the result is 

required. However, there is no reason to believe that the convergence of the 

above statistics would not be accompanied by the corresponding 

convergence of other properties (Startzman & Wattenbarger, 1985; Law & 

Kelton, 1991). 

 

The convergence of the probability of failure for different allowable 

discharges has also been analysed. Figure 6.16 suggests that 60000 

samples for the H&R model and 30000 for Owen's model are more than 

sufficient. 

 

The distributions of the basic variables obtained during the simulation were 

checked against the input distributions. Agreement was excellent, as 

expected with the large number of samples involved in each simulation for 

the H&R model and for Owen's model. 

 

Figures 6.17 and 6.18 show the probability of failure obtained using the Level 

II and Level III methods plotted against the crest level of the seawall for 

particular values of the allowable discharge, both for the H&R model, 
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(Rmax)37% and for Owen's model. The two methods give comparable results. 

However, as the crest level decreases, the FORM results diverge from the 

LHS results, generally overestimating the probability of failure. The 

differences in the probability of failure between FORM and LHS results 

suggest that the failure surfaces for both models are curved near the design 

point. In such cases, a Second Order Reliability Method (SORM) would be 

expected to account for the non-linearity of the failure surface and to remain 

accurate, giving results consistent with the LHS method, while still providing 

sensitivity factors and other details which do not depend on the magnitude of 

the probability of failure. Note that in the present work the FORM calculations 

took only between about 5% and 20% of the computer time required for the 

LHS computations. 
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Figure 6.16:  Example of the convergence of the probability 
of failure for different allowable discharges 
using Latin Hypercube Sampling for the H&R 
model and for Owen's model. 
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Figure 6.17:  Comparison of the probability of failure obtained 
using Level II (FORM) and Level III (LHS) methods 
for particular values of the allowable discharge, for 
the H&R model, (Rmax)37%. 
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Figure 6.17:  continued. 
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Figure 6.18:  Comparison of the probability of failure obtained 
using Level II (FORM) and Level III (LHS) methods 
for particular values of the allowable discharge, for 
Owen's model. 
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Figure 6.18:  continued. 
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6.2 Examples - Dune Erosion  
 
6.2.1 General Cases Of Dune Erosion 
 
6.2.1.1 Input To PARASODE 

 

Table 6.2 summarises the dune erosion examples studied using 

PARASODE. In each example, only one parameter (e.g. the initial profile or 

the allowable erosion distance) has been changed as shown in the table. 

The remaining input data is common to all examples. The input data files 

used in example 1 are provided in Appendix D3 as well as the corresponding 

output file summary.dat. 

 
 

EXAMPLE PROFILE NOURISHMENT ALLOWABLE EROSION 
DISTANCE, TR (m) 

MODE 

1 A1 No 90 1 

2 B1 No 90 1 

3 C1 No 90 1 

4 D1 No 90 1 

 
5 

 
A1 

Yes 
nourwidt=75m 
nourtlev=6m 

1:mnour=1:1.5 

 
90 

 
1 

6 A1 No 140 1 

7 A1 No 130 1 

8 A1 No 120 1 

9 A1 No 110 1 

10 A1 No 100 1 

11 A1 No 80 1 

12 A1 No 70 1 

13 A1 No 60 1 

 
14 

 
A1 

Yes 
nourtlev=6m 

1:mnour=1:1.5 

 
90 

2 
Pf(%)=0.001011 

Table 6.2: Dune erosion examples (note that movements of sand have 
been allowed only seaward in these examples). 

 
 

Profiles A1, B1, C1 and D1 (Figure 6.19) have been used to illustrate the 

main erosion situations which can be studied using PARASODE (see 

Section 5.2.5). 
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Figure 6.19: Initial profiles used in dune erosion examples 1 to 
14. 
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The adopted characteristics of the random variables are shown in Table 6.3 

and are typical of Dutch conditions (see Chapter 4 and Appendix D3).  

 

 

Variable Distribution µµµµ  σσσσ  Lower Limit 

HS Normal 0 0.6 ---------- 

D50  Normal 225E-6 225E-7 ---------- 

DP Normal 0 0.6 ---------- 

SD Normal 0 1 ---------- 

GB Normal 0.4 0.1 ---------- 

Ac Normal 0 1 ---------- 

h Weibull 2.52 0.33 2.19 

Table 6.3: Characteristics of the random variables adopted for 
examples 1 to 14. 

 

 

Correlation between h and HS has been considered as follows (Van de 

Graaff, 1986): 

 

 
µ
µ

H h

H h

S

S

h h h

h h

= + − − ≤ <
= + >

4 82 0 6 0 0063 3 7

4 82 0 6 7

3 13. . . (7 )

. .

.

 (6.1) 

 
where µH hS

 is the mean value of HS given a value for h. Hence, HS has 

been modelled as the sum of µH hS
 and the variability of HS about its mean 

value (see Section 4.5.2). This variability has been considered as Normal 

distributed with a mean of zero and a standard deviation of 0.6m. 

 

Note that PARASODE also allows the user to consider correlation between h 

and HS by providing a non-zero correlation coefficient between the two 

variables. Unlike DUNEPROB and DUNE, independence between h and HS 

can be ensured by adopting a value of zero for the correlation coefficient. 
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6.2.1.2 Results And Discussion 

 

The results from PARASODE for dune erosion are shown in tabular form in 

Appendix D4. This section provides a graphical illustration of some of the 

results. 

 

Examples 1 to 4 show how different initial profiles can affect the final results 

(see Tables D4.1 to D4.4). From the sensitivity parameters, α2(%) , the most 

important contribution to the resulting variance is given by the maximum 

water level during surge, h (Figure 6.20). Values for α2(%)  of about 80% to 

90% indicate that this variable is by far the most important one. The 

sediment size, D50, and the accuracy of the computation, Ac, also make 

some significant contribution to the resulting variance. The contribution of the 

surge duration is less important and the significant wave height, HS, the 

change in the initial profile, DP, and the gust bumps, GB, make only minor 

contributions. It might be expected that HS would play a strong role in the 

effects of erosion. Note, however, that due to the relationship between h and 

HS, the contribution of HS shown in the tables represents only the effect of 

the variability in HS about its expected value. 
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Figure 6.20: Sensitivity of the probability of failure to inaccuracies in the 
values of the erosion basic variables at the design point 
(examples 1 to 4). 

Example 5 illustrates how nourishment can be used to decrease the dune's 

failure probability. The nourishment characteristics applied to profile A1  

are: i) width at top level = 75m; ii) top level = 6m; and iii) gradient of  

the nourished face = 1:1.5 (Table 6.2). If nourishment is not provided 

(example 1), the probability of failure is approximately 0.06%/year  

(Table D4.1). This probability has been reduced to about 0.001%/year by 

nourishment. Example 14 represents the same conditions as example 5 but 

PARASODE has been run in mode 2; i.e. a target probability of failure of 

about 0.001%/year has been input and a corresponding nourishment width 

has been computed (74.87m). Examples 5 and 14 demonstrate the converse 

nature of modes 1 and 2 and show consistency between results obtained in 

running PARASODE in both modes (Tables D4.5 and D4.14). 

 

Examples 1 and 6 to 13 illustrate how changes in the allowable erosion 

distance, TR, affect the results. Values of TR between 60m and 140m have 

been considered since they provide probabilities of failure between about 

Pf=2.6%/year and Pf=0.0006%/year, respectively. This range of probabilities 
covers all likely normal design cases, i.e. 10 102 5− −≤ ≤P yearf /  (see 

Section 4.5.1). A plot has been produced of the probability of failure as a 

function of TR (Figure 6.21). For instance, the probability of failure per year 

associated with an allowable erosion distance of 100m is equal to about 

0.02%/year. Hence, for Dutch conditions (see Chapter 4), if a 10-5/year 

probability of exceedance is needed, TR=100m is unacceptable. However, if 

one considers a higher chance of failure, e.g. 10-3/year, then TR=100m is 

acceptable. Note that a probability of failure associated with a value of TR 

represents a probability of exceedance of this TR value in one year. 

 

Assuming statistical independence of each year, the probability of failure for 

a Tref -year period can be obtained using (Van der Meer & Pilarczyk, 1987; 

Van der Meer, 1990; Van der Meer et al, 1994): 

 

 [ ]P Z T years P Z yearref

Tref( ; ) ( ; )≤ = − − ≤0 1 1 0 1  (6.2) 

 

Results derived from Figure 6.21 using eq. (6.2) are shown in Figure 6.22. 

Curves are drawn for three lifetimes: 20, 50 and 100 years. From this figure it 

follows, for example, that the allowable erosion distance TR=100m will be 
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exceeded with a probability 0 5 1. (%)≤ ≤Pf
 during a lifetime of 20 years, 

whilst for lifetimes of 50 and 100 years, 1 5≤ ≤Pf (%) . 
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Figure 6.21: Probability of failure in one year of profile A1 as a 

function of allowable erosion distance (examples 1 and 
6 to 13). 
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 Figure 6.22: Lifetime probability of failure of profile A1 as a function 

of allowable erosion distance. 

 

 

Plots like Figures 6.21 and 6.22 are valuable tools in preliminary design. 
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Tables D4.1 to D4.14 show that, for all examples, by far the most important 

contribution to the resulting variance is given by uncertainty in the maximum 

water level during surge followed by much smaller contributions from Ac, D50 

and SD. The remaining variables make only minor contributions to the 

resulting variance. The dominant contribution of the surge is in accordance 

with Dutch studies (Van de Graaff, 1986; Van de Graaff, 1995). This fact is 

not surprising since the adopted characteristics of the random variables are 

typical of Dutch conditions. 

 

Note that between 6 and 20 iterations have been required to run each of the 

above examples. The number does not depend on the probability of failure. 

 

Finally, it is important to appreciate that the results of a numerical study are 

specific to the set of parameters used. 

 
 
6.2.2 Particular Case Of Dune Erosion: The Sefton Coast, UK 
 
6.2.2.1 Introduction 

 

In The Netherlands, the narrow stretch of sandy beaches and dunes (in 

some places, the dunes are less than 200m wide) has to be maintained in 

order to protect people and property from damage. On the British Sefton 

coast, with a dune frontage up to 2km wide, the same problem does not 

arise. However, in view of increasing concern about the possibility that dune 

erosion may spread or accelerate in response to sea level rise or an increase 

in storminess associated with greenhouse warming, studies are in progress 

to achieve a better understanding of beach-dune interaction in this area 

(Pye, 1991). As mentioned by Pye & Neal (1994), erosion poses a significant 

management problem for the authorities responsible for the coast. Sefton 

Metropolitan Borough Council has statutory obligations to defend property 

from erosion and flooding, but it is also interested in preserving the natural 

character of the coast in order to maximise the recreational and nature 

conservation benefits. Large areas of the Sefton dune system lie within 

designated National and Local Nature Reserves, or are owned by the 

National Trust, while other areas are owned by private landowners and are 

used as caravan parks, golf courses, or for residential purposes. 
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It was of interest to evaluate the Dutch erosion prediction methods for use on 

this section of the British coast. The Dutch methods allow the retreat 

distance associated with a storm surge to be determined. Subsequently, a 

convenient position for erecting sand-trapping fences along the backshore to 

encourage foredune accretion (Thomas & Hall, 1992; Simm et al, 1996) may 

be fixed in such a way that the predicted erosion distance does not reach the 

fence line. Obviously, the methods' inherent limitations and assumptions 

must be borne in mind when applying the models. Furthermore, the statistical 

characteristics of the basic variables of the problem and the associated 

failure criteria used for Dutch conditions have to be analysed. They should 

not, in any circumstances, be adopted blindly for UK use. 

 

 

6.2.2.2 General Description Of The Sefton Coastline 

 

Figure 6.23 shows the Sefton coast, situated on the edge of Liverpool Bay 

between the Ribble and Mersey estuaries in the south-eastern corner of the 

Irish Sea. 

 

The Irish Sea is almost completely enclosed, with two relatively narrow 

passages to oceanic waters: the North Channel between Scotland and 

Northern Ireland and St. George's Channel between Wales and Eire. There 

is a slow overall drift of water from south to north through the Irish Sea. As 

far as the coast is concerned, tidal currents, wave action and local sea-bed 

drifts are of much greater importance, together with fresh-water inputs from 

the main rivers. The Sefton coast is shielded from direct oceanic waves by 

the mainly enclosed nature of the Irish Sea and the additional blocking 

effects of the Isles of Anglesey and Man (see Figure 6.1). However, perhaps 

once or twice a year, during locally calm conditions, long-crested waves, or 

swells, are apparent and these have most likely been generated in the 

Atlantic Ocean. 
 

Due to its natural state (unconsolidated sands, silts and perhaps a little clay 

with some outcrops of peat), the coast has very little strength. It has been 

moulded by the prevailing environment over many years to an overall form 

approaching equilibrium. This equilibrium is easily upset by very slight 

changes in the environment, leading on the one hand to accretion or equally 

on the other to erosion. 
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 Figure 6.23: Location of the Sefton coast in north-west England 
(after Pye, 1991). 

 

 

The area is notable for its high tidal range, in excess of 10m at maximum 

springs. It is occasionally subject to large meteorological surge contributions 

to high-water which when combined with strong wave activity cause severe 

erosion to the dune coast and some structural damage to coastal defence 

works. Very damaging storm tides occur on average every 5 or 6 years. 



Application Of PARASODE 

6-45 

6.2.2.3 The Sefton Coast Dune System 

 

The Sefton coastal dune complex is the largest in the British Isles and is of 

major significance in a European context (Doody, 1989; Atkinson & Houston, 

1993; MAFF, 1993a; Pye & Neal, 1994). On the Sefton coast, dunes up to 

2km wide are important not only for nature conservation and recreation, but 

also in terms of flood defence since they act as a natural barrier which 

prevents tidal inundation of a large area of West Lancashire and North 

Merseyside.  

 

Following a period of rapid accretion in the second half of the last century, 

the dune frontage at Formby Point has been eroding since about 1906 at an 

average rate of up to 3m/year (Figure 6.24). The southern limit of erosion 

has remained roughly stable in the area of Lifeboat Road, but the northern 

erosion limit has gradually extended northwards. The rate of recovery of the 

frontal dunes following a storm has generally been insufficient to prevent a 

long-term net erosional trend between Lifeboat Road and Fisherman's Path. 

However, further north, between Ainsdale and Southport, and on the south 

side of Formby Point between Alexandra Road and the mouth of the River 

Alt, erosion during storms is generally less severe and the rate of dune 

recovery has been sufficiently rapid to maintain a net accretion throughout 

this century (Pye, 1991). 

 

Foredune erosion at Formby Point was accelerated between 1900 and the 

mid 1970s by the abandonment of dune and foreshore management which 

had been extensively practised during the late 19th century, and by a 

significant increase in recreational pressure, sand mining and military 

activities (Pye & Neal, 1994). Since the establishment of a Coastal 

Management Scheme in 1977, damage to the dunes from these causes has 

been greatly reduced, but the dune protection and restoration works 

employed have had little effect on the problem of beach and foredune 

erosion by waves, especially during storm surges. 

 

According to Pye & Neal (1994), possible factors contributing to the change 

from accretion to erosion around 1906 include: 

 

• effects of dredging and training wall construction on sediment 
transport and wave regime; 
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• reduction or exhaustion of sand supply; 

• effects of changes in bathymetry on wave climate; 

• change in wind/wave climate; 

• abandonment of beach and foredune management practices. 

 

 

 
 

 Figure 6.24:  Plans showing the growth of Formby Point  
1845-1906 and subsequent erosion in the period 
1906-1990 (after Pye, 1991). 
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6.2.2.4 Storm Surge Of February 1990 

 

In 1990, a major storm surge struck the Sefton coast. The storm surge was 

associated with the passage of a vigorous depression across northern 

Scotland and the North Sea during the period of 25-27 February. According 

to Pye (1991), on 26 February the mean hourly wind speed at Squiresgate 

Airport, Blackpool, increased from 33km/h to 73km/h, while the direction 

shifted from south-westerly to westerly. The strong onshore winds produced 

a surge which raised the height of predicted high water at 12.00hrs by 

approximately 1m along the coast between Morecombe Bay and North 

Wales. Strong westerly winds continued during the period 27-28 February, 

although a slight reduction in wind velocity and a reduction in wave height 

meant that the very severe conditions experienced on the morning of the 26 

February were not repeated. 

 

Structural damage was caused along the promenade at Southport and 

Crosby, and coastal defences were breached at Towyn in North Wales, 

causing flooding to several thousand homes. The storm surge and wave 

action also eroded large sections of the natural dune belt between Hightown 

and Southport (Pye, 1991). The greatest erosion was at Wick's Lane and 

Victoria Road (Table 6.4). 

 

 

LOCATION EROSION DISTANCE (m) 

Albert Road 6.0 

Lifeboat Road 8.3 

Wick's Lane 11.1 

Victoria Road 13.6 

Fisherman's Path 7.5 

Ainsdale-Southport 6.0 

 Table 6.4: Erosion between Hightown and Southport 
due to the 1990 storm surge (modified after 
Pye, 1991). 

 

 

At Massam's Slack, where previous erosion had truncated the ends of dune 

ridges created artificially during the 1920s, waves overtopped the frontal 

ridge and flooded the slack behind. 



Application Of PARASODE 

6-48 

6.2.2.5 Input To PARASODE 

 

Due to the lack of data on the basic variables of dune erosion, PARASODE 

has been applied in a deterministic fashion to evaluate the erosion expected 

at Wick’s Lane and Victoria Road due to the storm surge of February 1990. 

The data collected and used for calculations are presented in the following 

sections. 

 

 

Selection Of Initial Profiles  

 

Pye & Neal (1994) present a number of beach profiles, between Hightown 

and Southport, surveyed by the Sefton Borough Council Engineer and 

Surveyor's Department in August 1979. They also provide some information 

on dune heights. More detailed foreshore cross-sections for 1981 were 

obtained from the Metropolitan Borough of Sefton, Department of Technical 

Services. Unfortunately, no surveys were made shortly before or after the 

storm surge of 1990. The 1981 cross-sections are the latest available for the 

site and the ones used here for dune profile definition. Accretion and erosion 

records for the sand dune front at Formby Point are the only existing sources 

of information about the erosion caused by the storm surge (see Table 6.4). 

This information was also obtained from the Metropolitan Borough of Sefton. 

 

The Metropolitan Borough of Sefton also provided maps from an aerial 

survey of July 1982, undertaken by Meridian Airmaps Limited. These maps 

provided information on the slopes and crest elevations of the foredunes. A 

considerable alongshore variation in the dune characteristics is evident in 

these maps. This variability caused difficulties in fixing a representative slope 

and crest elevation for the initial dune cross-sections. 

 

A decision was finally made to study only the Wick's Lane and Victoria Road 

profiles. This selection was based, mainly, upon two factors: 

 
• Vellinga's model, can be applied only to parts of the coast which 

are not strongly curved in plan (see Section 4.2.5). 

• These two locations experienced the maximum erosion during the 
1990 storm surge (see Table 6.4). 

 

The two profiles are shown in Figure 6.25. 
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 Figure 6.25:  Initial profiles at Wick’s Lane and Victoria Road. 

 

 

Sand Grain Size  

 

In the light of measurements reported by Pye (1991), the value adopted for 
the median sand diameter was D m50 215= µ . 

 

As stated earlier, the amount of dune erosion depends on the particle 

diameter of the dune material via the fall velocity, w, which is calculated for a 

specific salt water temperature. In the case of the Sefton coast, the fall 

velocity for the entire period during which storm surges can be expected is 

calculated for a salt water temperature of 5° Celsi us using eq. (4.7). 

 

 

Sea State  

 

A significant wave height HS=5.85m and an associated mean wave period, 

Tm=7.55s, were employed. These data were provided by Dr. Xiaoming Wu of 
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the Proudman Oceanographic Laboratory and are based on the computer 

model WAM. While these assumed wave conditions may not be exactly what 

occurred, they are considered a reasonable estimate. 

 

 

Total Water Level  

 

The maximum water level during surge is the sum of the tide level and  

surge. The mean of the values at Liverpool, 6.3m OD, and at Heysham  

and Southport, 6.4m OD (according to Pye, 1991) has been adopted: 

h=6.35m OD. 

 

 

Interrelationship Between Sea State And Total Water  Level  

 

The occurrence of waves is likely to be at least partially correlated with the 

SWL, since both waves and storm surges are generated by meteorological 

conditions (Alcock, 1984), as shown in Figure 4.8. On the Sefton coast there 

is strong correlation between surges and waves. However, if the tidal range 

is very big, as it is on the Sefton coast (around 10m), the tide masks the 

correlation between waves and surge (Hawkes & Hague, 1994). Complete 

independence between sea states and total water levels is not expected, but 

the anticipated correlation is very weak. As part of Liverpool Bay  

(see Section 6.1), the Sefton coast falls between North Wales and Fleetwood 

and Cleveleys (see Figure 6.1). In the absence of data and following the 

comments in Section 6.1, it was assumed in this study that SWL and wave 

heights were independent. Note that PARASODE allows the user to consider 

correlation between h and HS by providing a non-zero correlation coefficient 

between the two variables. Likewise, independence between h and HS can 

be ensured by adopting a value of zero for the correlation coefficient. 

 

 

6.2.2.6 Results And Discussion 

 

According to Table 6.5, there is no difference in the computed erosion 

distance at Wick’s Lane whether movements of sand are allowed only 

seaward or in both directions. In contrast, at Victoria Road the difference 
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amounts to about 22% of the value when movements are allowed seaward 

only. 

 

 
  

LOCATION 

EROSION DISTANCE FROM 
PARASODE (m) 

  

MEASURED EROSION 
 Movements Of Sand 

Only Seaward 
Movements Of Sand 
In Both Directions 

DISTANCE (m) 

Wick’s Lane 12.7 12.7 11.1 

Victoria Road  6.8 5.3 13.6 

Table 6.5:  Computed and measured erosion distances at Wick’s Lane and 
Victoria Road. 

 

 

In the case of Wick’s Lane, agreement between computed and measured 

erosion distances is very satisfactory. Agreement is much less satisfactory 

for Victoria Road. Two main reasons can be offered in order to explain the 

differences: 

 
• The initial profiles used were unreliable because they had been 

taken nearly ten years before the storm surge of February 1990. 
Unfortunately, they were the latest profiles available. 

• The measured erosion distance (the difference between the 
locations of the dune toe between measurements) did not relate 
solely to the surge event; the initial location of the dune toe had 
been measured eleven days before the surge and the location after 
the surge was taken three days later. Consequently, it would be 
expected that measurements would exceed computed values. This 
is the case for Victoria Road. 

 

Given the potential errors, Vellinga’s model can be regarded as having 

performed satisfactorily. 

 

Finally, note that if the required data on the Sefton coast were available, then 

PARASODE could be run to produce probabilistic results for dune erosion 

due to the storm surge of February 1990. Unlike DUNE and DUNEPROB, 

PARASODE allows any degree of correlation between variables to be 

considered. 
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6.3 Summary 
 

Chapter 6 illustrates the use of some features of PARASODE. 

 

Firstly, the program has been used in a study of wave overtopping of a 

seawall to show the differences between the results of the H&R overtopping 

model and Owen's formulation. In this study, two main situations have been 

evaluated: i) the performance of the seawall for any possible value of total 

water level (tide plus surge); and ii) the ability of the structure to survive 

extreme total water levels. The first condition is relevant to design of 

retention and drainage systems, and for checking the safety of people and 

vehicles. The second provides peak values which are important for structural 

safety. Probabilities of failure per year versus the seawall crest level for 

different allowable discharges have been calculated. Sensitivity parameters 

have also been analysed, and the value of the design point has been 

examined as a function of the seawall crest level and the allowable 

discharge. Two main points are worth noting: 

 
• The choice of overtopping model is very important in the probability 

assessment of the safety of seawalls. The two models lead to quite 
different results. Use of Owen's model in design would be more 
conservative than use of the H&R model. However, the 
conservative nature of Owen's model also implies that its use in 
design will result in more expensive structures than those designed 
using the H&R formulation. 

• For both overtopping models, the sensitivity parameters show that 
the main influence on the variability of the probability of failure is 
generally provided by the uncertainty in the sea state. 

 
Secondly, the accuracy of the Level II (FORM) reliability algorithms used in 

PARASODE has been evaluated by comparison with the results provided by 

the Level III method of Latin Hypercube Sampling (LHS) available in @Risk. 

This evaluation has been carried out for the Level II results of the H&R 

model, (Rmax)37%, and Owen's model, for normal design conditions only. The 

two methods give comparable results. However, as the seawall crest level 

decreases, the FORM results diverge from the LHS results, generally 

overestimating the probability of failure. The differences in the probabilities of 

failure suggest that the failure surfaces for both overtopping models are 

curved near the design point. 
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Thirdly, PARASODE has been used to study general examples of dune 

erosion during a storm surge. In these examples, movements of sand have 

been allowed only seaward. Four profiles have been considered for 

illustration of the main erosion situations which can be studied using 

PARASODE. Some examples illustrate how nourishment can be used to 

decrease the dune's failure probability caused by erosion due to a storm 

surge. The adopted characteristics of the random variables are typical of 

Dutch conditions. PARASODE has been run both in mode 1 (a nourishment 

width has been chosen and the corresponding probability of failure 

calculated) and in mode 2 (the computed probability of failure for mode 1 has 

been input and a corresponding nourishment width has been computed). 

These tests demonstrate the converse nature of modes 1 and 2 and show 

consistency between the results obtained. 

 

Fourthly, an attempt has been made to apply PARASODE in a study of dune 

erosion on the Sefton coast, UK, due to the storm surge of February 1990. 

The study allowed the retreat distance associated with this storm surge to be 

estimated. However, due to lack of data, PARASODE could be applied only 

in a deterministic fashion to determine the erosion expected at Wick’s Lane 

and Victoria Road. These two sections of the Sefton coast were selected 

because Vellinga's model can be applied only to parts of the coast which are 

not strongly curved in plan, and because these two locations experienced the 

maximum erosion during the 1990 storm surge. PARASODE results suggest 

that there is no difference in the computed erosion distance at Wick’s Lane 

whether movements of sand are allowed only seaward or in both directions. 

In contrast, at Victoria Road the difference amounts to about 22% of the 

value when movements are allowed seaward only. In the case of Wick’s 

Lane, agreement between computed and measured erosion distances is 

very satisfactory. Agreement is much less satisfactory for Victoria Road. Two 

main reasons can be offered in order to explain the differences: i) the initial 

profiles used were unreliable because they had been taken nearly ten years 

before the storm surge of February 1990; and ii) the measured erosion 

distance did not relate solely to the surge event. Given the potential for 

errors, Vellinga’s model can be regarded as having performed satisfactorily. 
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7 CONCLUSIONS AND RECOMMENDATIONS FOR 
FURTHER RESEARCH 

 

 

The main objective of the present research was to assess the safety of 

coastal structures by means of probabilistic methods, with particular 

reference to wave overtopping of seawalls and to dune erosion. This chapter 

lists the principal conclusions of the research and, where appropriate, 

provides recommendations for further work. 

 

 

Probabilistic methods 

 

• Probabilistic methods provide a powerful framework for the design of 

coastal structures, accounting for the probability and consequences of 

failure as well as coping, to some degree, with variability and uncertainty. 

However, when assessing structural safety using probabilistic methods, it 

must be stressed that the process involves detailed knowledge about the 

individual structure. Therefore, confidence in the calculated value of the 

probability of failure must change with the amount and quality of the 

information used for its calculation. With these facts in mind, probabilistic 

methods may be seen simply as a design tool based on scientific 

methods which can facilitate good engineering decisions, but not a 

process which will necessarily provide a precise assessment of safety.  

 

• Probabilistic approaches are increasingly being applied in engineering 

practice. This fact is apparent in civil engineering from the use of Level II 

calculations for determining the partial safety factors applied in standards 

and codes for the design of structures. Direct probabilistic approaches 

have increasingly become the rule in connection with the assessment of 

special structures (e.g. nuclear power stations and storage tanks for 

hazardous substances). 

 

• In recent years, much has been learned by coastal engineers about 

probabilistic methods, but progress in formulating methods and gaining 

confidence in new design procedures is inevitably slow. At present, there 

is insufficient knowledge about coastal structures to enable a probability 
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analysis of failure mode systems to be carried out in full. However, 

instead of abandoning this “new” approach to design, efforts should be 

made to better identify the specific physical processes with which coastal 

engineers must deal, to better communicate their data requirements to 

researchers, to subsequently collect the required data sets, and to 

establish appropriate models for the complete implementation of the 

methods. Furthermore, it is important to incorporate as much experience 

as possible from failures. 

 

• Diagrams like event trees, fault trees and cause-consequence charts 

have been presented for some coastal structures. However, such 

techniques have still almost always served essentially as schematic 

representations or research tools rather than as strict logical analyses of 

failure. Information on failures tends to concentrate on the consequences 

rather than on the causes of failure. 

 

• Assessment of the safety of coastal structures depends fundamentally 

on assessment of individual failure modes. All single failure mode 

probabilistic methods have their advantages and disadvantages:  

 
• In the numerical integration method, the calculation of an N-fold 

integral may be extremely time-consuming and it usually requires a 
considerable computational effort, even with modern computer 
facilities. Traditional sampling is an acceptable alternative when 
dealing with simple failure functions and failure probabilities which 
are not very low. However, it suffers from the fact that if an 
"accurate" answer is desired for extreme conditions associated with 
relatively low probabilities of failure, many simulations are required. 
This is a drawback that recent methods, like Latin Hypercube 
sampling, may address to some extent by reducing the required 
number of simulations. In other cases, difficulties can be overcome 
by using Level II methods like FORM. 

• The main practical advantages of the FORM approach are that it is 
less time-consuming than Level III methods, the computational 
effort is independent of the probability level, it provides a rational 
basis for evaluating partial safety factors and it also provides an 
automatic procedure for determining the sensitivity of the computed 
failure probability to each of the basic design variables. This latter 
characteristic allows the designer to focus his attention on the 
parameters which are of greatest significance and shows where 
effort to reduce uncertainty should be concentrated. Due to their 
simplicity, these methods have become very popular, particularly in 
calibration work for codes of practice. However, these procedures 
also have their limitations. Amongst others, the main reason for 
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discrepancy between a Level II and a Level III method is that the 
failure function is usually non-linear. The stronger the non-linearity, 
the greater is the chance that the Level II results will differ 
considerably from the "exact" answer. However, the FORM results 
can be improved through a second or higher order approximation, 
but computational complications are increased considerably. It is 
more common to use the Level III methods, especially simulation, 
to validate the Level II results. Although a FORM method can 
provide an answer to a problem, it is never known how accurate the 
answer is unless a check is done using numerical integration or 
simulation techniques. Nevertheless, the FORM method is one of 
the most important tools in probabilistic design because one can 
rarely afford to make a million Level III calculations during 
preliminary design. 

• Besides the calculations at Level III and Level II, there are those at 
Level I. Level I calculations are particularly suitable for everyday 
design (where a large body of previous experience of similar 
systems is available), although the determination of the partial 
coefficients must be based upon higher level results. Level I 
calculations are the basis of codes of practice. 

 

• It is important to be aware of the characteristics of the various 

probabilistic methods, their applicability and their limitations, otherwise 

wrong conclusions can be drawn, incorrect decisions can be made and 

unsound action may be taken. If probabilistic methods are used with 

foresight and understanding, they are powerful and can provide reliable 

results. For example, comparison of design alternatives using these 

methods is a promising way in which to apply them. 

 

 

Wave overtopping of seawalls 

 

• Seawalls are expensive, and fixing a seawall freeboard at too large a 

value has both a financial penalty and is unnecessarily damaging to the 

natural environment owing to the increased impact of the structure on its 

surroundings. On the other hand, if the crest of a seawall is set too low, 

then there are problems with structural safety and potential social 

problems with flooding and with people’s protection. 

 

• Wave overtopping of seawalls has been the subject of many studies. 

Nevertheless, field measurements are scarce and numerical modelling of 

wave overtopping is not yet well developed. The calculation of 

overtopping discharge is based mainly on equations which have been 
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obtained from empirical fitting to hydraulic model test results. These 

equations have not been based upon any overtopping theory and no 

account has generally been taken of the physical boundary conditions. 

 

• As part of this research, a new regression model (the H&R model) has 

been presented for describing wave overtopping data. Part of the 

motivation in deriving this new model was to improve the methods 

available to the designers of seawalls by developing a model closely 

related to the physics of wave overtopping. The main feature of the 

model is the fact that it satisfies the relevant physical boundary 

conditions, a feature which is especially important when the model is 

used near these boundaries. 

 

• The H&R and Owen models have been used in a re-analysis of Owen's 

data for simple seawalls possessing uniform seaward slopes of 1:1, 1:2 

and 1:4, subjected to random waves approaching normal to the slope. 

Both models represent part of the input to a FORTRAN Level II program, 

developed as part of this research, PARASODE. It is suggested that the 

regression coefficients contained within the models should be 

established using a robust regression technique such as the Least 

Absolute Deviations (LAD) method. The LAD regression coefficients are 

recommended for use both in the H&R and Owen models.  

 

• For Owen's test results, the H&R model is little different from Owen’s 

model in its ability to represent the data, except for small discharges for 

which the H&R model is better suited. An example of the application of 

the two models in predicting the freeboards necessary to limit 

overtopping to specified values shows that, for the small allowable 

discharges associated with normal design conditions, the H&R model 

predicts seawall crest elevations which may be several metres lower 

than values from Owen's model. Such differences may have very 

significant financial and environmental consequences and are worthy of 

further investigation. 

 

• Whilst it is possible to use Owen’s data to show the validity of the 

approach adopted in developing the new wave overtopping model, the 

data are far from ideal. Consequently, it is recommended that the 

present study on overtopping is extended: 
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• to encompass both the very small allowable discharges associated 

with normal design conditions and to permit proper evaluation of 
the empirical coefficients in the equations used to describe 
overtopping; 

• to allow evaluation both of the probability distributions of the 
parameters involved in overtopping and of the horizontal distribution 
of the total overtopping volume; 

• to collect data on the effects of wind on wave overtopping with the 
objective of permitting further development of overtopping 
equations. 

 

• It is believed that the environmental, social and economic benefits likely 

to derive from implementing these recommendations would provide a 

very valuable return for the investment of the time, effort and costs 

involved, particularly for those countries with an exposed coast such as 

the United Kingdom, The Netherlands and Portugal. An important  

socio-economic justification for the work is the possibility of including 

information on the variability of overtopping volumes and their horizontal 

distribution not only in detailed design but also in political  

decision-making relating to urban planning issues such as the location of 

housing and basic infrastructure. 

 

 

Dune erosion during a surge 

 

• Dutch experience with regard to the probabilistic design of dunes has 

been examined. The computational model currently used throughout The 

Netherlands is based on Vellinga's equilibrium profile model. The more 

sophisticated time-dependent model developed by Steetzel is not yet 

used as the basis for probabilistic calculations. 

 

• The Dutch programs are not directly applicable to conditions along 

coasts such as that in Sefton, UK, where there is a much weaker 

correlation than in The Netherlands between wave heights and water 

levels. Consequently, it was decided to introduce Vellinga's model and 

some features of the Dutch programs into PARASODE, and to carry out 

new probabilistic calculations. 
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PARASODE 

 

• PARASODE concentrates on the failure modes of random wave 

overtopping of simple seawalls and dune erosion. The quantity of wave 

overtopping is calculated using both the H&R formula and Owen's 

formula. Dune erosion is calculated using Vellinga's model. However, 

much of the program is generic and can be adapted to other failure 

modes without undue difficulty. PARASODE has been applied to several 

different examples in order to illustrate the use of some of its features. 

 

• The program has been used in a study of wave overtopping of a seawall 

to show the differences between the results of the H&R overtopping 

model and Owen's formulation. Two main points are worth noting: 

 
• The choice of overtopping model is very important in the probability 

assessment of the safety of seawalls. The two models lead to quite 
different results. Use of Owen's model in design would be more 
conservative than use of the H&R model. However, the 
conservative nature of Owen's model also implies that its use in 
design would result in more expensive structures than those 
designed using the H&R formulation. 

• For both overtopping models, the sensitivity parameters show that 
the main influence on the variability of the probability of failure is 
generally provided by the uncertainty in the sea state. 

 

• The accuracy of the Level II (FORM) reliability algorithms used in 

PARASODE has been evaluated by comparison with the results 

provided by the Level III method of Latin Hypercube Sampling (LHS) 

available in the commercial software package @Risk. The two methods 

give comparable results. However, as the seawall crest level decreases, 

the FORM results diverge from the LHS results, generally overestimating 

the probability of failure. The differences in the probabilities of failure 

suggest that the failure surfaces for both overtopping models are curved 

near the design point. 

 

• PARASODE has been used to study general examples of dune erosion 

during a storm surge. In these examples, movements of sand have been 

allowed only seaward. Four profiles have been considered for illustration 

of the main erosion situations which can be studied using PARASODE. 

Some examples illustrate how nourishment can be used to decrease the 
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dune's failure probability caused by erosion during a storm surge. The 

adopted characteristics of the random variables are typical of Dutch 

conditions. PARASODE has been run both in mode 1 (a nourishment 

width has been chosen and the corresponding probability of failure 

calculated) and in mode 2 (a probability of failure has been input and a 

corresponding nourishment width has been computed). These tests 

demonstrate the converse nature of modes 1 and 2 and show 

consistency between the results obtained. 

 

• An attempt has been made to apply PARASODE in a study of dune 

erosion on the Sefton coast, UK, due to the storm surge of February 

1990. The study allowed the retreat distance associated with this storm 

surge to be estimated. However, due to lack of data, PARASODE could 

be applied only in a deterministic fashion. 

 

The above conclusions demonstrate that the principal objective of the 

research has been accomplished. Arrangements are already in hand to 

extend the work described here through international collaboration involving 

the University of Liverpool, the National Laboratory of Civil Engineering 

(LNEC), Portugal, and other partners. 
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APPENDIX A1 - Regression Theory 

 

Those concepts of regression analysis applied in this study to the  

re-analysis of Owen's data are presented here. The main references are 

Lewis-Beck (1980), Gunst & Mason (1980), Draper & Smith (1981), 

Rousseeuw & Leroy (1987), McKean & Schrader (1987), Freund & Littell 

(1991), Law & Kelton (1991), SPSS (1993), Groebner & Shannon (1993), 

Ataa (1994) and Everitt (1995). 

 

The linear model with one independent variable, X, can be written as follows 

(Gunst & Mason, 1980): 

 

 Y X= + +β β ε0 1  (A1.1) 

 
where Y is the dependent variable, and β0  and β1  are unknown 

parameters of the model. Sometimes X is called the predictor or regressor 
variable, Y the predicted or response variable, and β0  and β1  the intercept 

and the slope, respectively. β β0 1+ X represents the systematic component of 
the variability of Y, and ε  is a random error term which takes into account 

the fact that the model does not exactly describe the behaviour of the 

response. The linear model can be expressed as follows: 

 

 Y b b X e= + +0 1  (A1.2) 

 

where, based on a sample of N observed (X,Y) values, b0 and b1 are 
estimates of parameters β0  and β1 . These estimates are used to construct 

the fitted model (also called the predictive or prediction equation, or the linear 

regression line for Y on X) as follows: 

 

 Y b b X
∧

= +0 1  (A1.3) 

 

where Y
∧

 is the predictive value of Y. From eqs. (A1.2) and (A1.3), the 

residual from the regression is defined by e Y Y= −
∧

 (see Figure A1.1). 
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 Figure A1.1: Regression residuals and error term for a 

regression model with a single independent 
variable (modified after Berry, 1993). 

 
 
A1.1 Least-Squares (LS) Method 
 
A1.1.1 Basic LS Principle 

There are many criteria for determining the regression line which best fits the 

observed data, i.e. for determining estimates b0 and b1 (Draper & Smith, 

1981; Dodge, 1987). The most common criterion, the basis of the  

least-squares method, minimises the sum of the squares of the residuals. b0 

and b1 are then calculated as follows (Gunst & Mason, 1980): 

 

 b
X X Y Y

X X
b Y b X

i i
i

N

i
i

N1
1

2

1

0 1=
− −

−
= −=

=

∑
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 (A1.4) 

where 

 

 X
N

X and Y
N

Yi
i

N

i
i

N

= =
= =
∑ ∑

1 1

1 1
 (A1.5) 

 

are the mean values of X and Y, respectively. b0 and b1 are called the LS 

estimates. The slope estimate, b1, represents the estimated change in Y 
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associated with a unit change in X. The intercept, b0, estimates the value of 

Y when X equals zero. Substituting b0 into eq. (A1.3): 

 

 Y Y b X X
∧

= + −1 ( )  (A1.6) 

 

Note that when X X= , Y Y
∧

=  so that ( , )X Y  lies on the fitted line. 

 

In determining the LS estimates, b0 and b1, the following assumptions have 

to be made (Lewis-Beck, 1980): 

 
1) No specification error: 

i. the relationship between X and Y is linear 
ii. no relevant independent variables have been excluded 
iii. no irrelevant independent variables have been included 

2) No measurement error, i.e. X and Y are accurately measured. 

3) For each observation, the expected value of the error term is zero 
( E i[ ]ε = 0 ). 

4) The variance of the error term is constant for all values of X 
( E i[ ]ε σ2 2= , known as homoscedasticity). 

5) The error terms for different observations are uncorrelated 
( E for i ji j[ ]ε ε = ≠0 ). 

6) The independent variable is uncorrelated with the error term 
( E Xi i[ ]ε = 0 ). 

 

Assumption 1 asserts that the theoretical model embodied in the equation is 

correct, or almost so, over the range of observed values; that is, the 

functional form of the relationship is actually a straight line and no variables 

have been improperly included or excluded. The need for assumption 2 is 

self-evident: if the measurements are inaccurate, then the estimates could 

be inaccurate. If only the dependent variable is measured with error, then the 

LS estimates may remain unbiased1, provided the error is random  

(Lewis-Beck, 1980). If the independent variable is measured with any error, 

then the LS estimates will be biased. However, if the variance of the error is 

small compared to the variance of the true X values, this error is usually 

ignored (Draper & Smith, 1981) and this policy is adopted in this study. 

Assumption 3 is not restrictive for regression models containing an intercept, 

                                                 
1 An unbiased estimator correctly estimates the population parameter on average, i.e. 

E[b]= β  (Beaumont, 1986). 
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because if the intercept term is included in the equation, the mean of the 

residuals is always zero so that the mean of the residuals provides no 

information about the mean of the errors (Gunst & Mason, 1980; SPSS, 

1993). If this assumption is not met and the model includes the intercept, the 

intercept is biased but the slope estimate is unchanged. If assumption 4 is 

violated, the LS estimates remain unbiased, but they do not have minimum 

variance and the significance tests and confidence intervals, usually given in 

statistical packages, are invalid (Lewis-Beck, 1980). Assumption 5 requires 

that there is no correlation between errors. If correlation is present, the LS 

estimates are still unbiased but the significance tests and confidence 

intervals are invalid (Lewis-Beck, 1980). However, if the number of 

observations is large when compared to the number of independent 

variables, the dependency can be ignored for practical purposes (SPSS, 

1993) and this is the case for Owen's data set. Note that since the sum of the 

residuals is constrained to be zero, the residuals cannot be strictly 

independent. If assumption 6 does not hold, the LS estimates are biased. 

 

In general terms, when assumptions 1 to 6 are met, desirable estimates of 
the population parameters β0  and β1  are obtained, i.e. they are unbiased 

and, of all the estimates that are unbiased, they have minimum variance 
(Lewis-Beck, 1980; Everitt & Dunn, 1991). Furthermore, if the error term, ε i , 

is normally distributed, or almost so, the estimates are maximum likelihood 

estimates. In this case, significance tests carried out in order to determine 

how likely it is that the population parameter values differ from zero, are 

reliable. Confidence intervals can also be relied upon. If the error term is not 

normally distributed, significance tests and confidence intervals should not 

be interpreted in the usual fashion (Lewis-Beck, 1980; SPSS, 1993). Rarely 

are assumptions not violated in one way or another in regression analyses 

(SPSS, 1993). However, ignoring the assumptions can lead to results which 

are improperly used and interpreted. One should not rush into using statistics 

lightly without proper understanding and without verifying the underlying 

assumptions (Carvalho, 1982). 

 

Knowing the estimates of the parameters, Y can be predicted for a given X 

value. It is important to know how good is a prediction of Y provided by the 

prediction equation, i.e. how well does the equation account for variations in 

the dependent variable. The total observed variability in the dependent 
variable from its mean value, Y  (Figure A1.2), can be divided conveniently 
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into two components (Lewis-Beck, 1980; Freund & Littell, 1991; SPSS, 

1993): 

 

i) Y Yi

∧
− , the variability accounted for by the regression line; 

ii) Y Yi i−
∧

, the variability unexplained by regression. 

 

 

X

Y

Total
Variability

in Y

Residual

Regression

Y=b + b X0         1
^

(X,Y)

(X  ,Y )i      i

(X  ,Y )i      i
^

 
 Figure A1.2: Components of the variability in the 

dependent variable, Y , for the LS method 
(modified after SPSS, 1993). 

 

 

It can be shown (Gunst & Mason, 1980; Draper & Smith, 1981) that: 
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 (A1.7) 

 

The quantity before the equals sign is the total sum of squares, TSS, and it is 

invariant for a given set of data (Xi,Yi). The first quantity following the equals 

sign is the regression sum of squares, SSReg, and the second quantity is the 

residual sum of squares, SSRes. It is recalled here that the LS method 

guarantees that SSRes is at its minimum. Clearly, SSReg should be large 

relative to SSRes, since then the regression line is explaining the majority of 

the variability in Y about its mean. The sum of squares has associated with it 

the degrees of freedom, DF. DF indicates how many independent pieces of 

information involving the N independent numbers, Y1,...,YN, are needed to 
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compile the sum of squares (Draper & Smith, 1981). These definitions form 

the basis of some of the tests used to establish the goodness of fit of the 

regression line. 

 

 

A1.1.2 Goodness Of Fit 

 

Summary Statistics For The Regression Line 

A commonly used measure of the goodness of fit of the regression line 

(Gunst & Mason, 1980; Draper & Smith, 1981; Groebner & Shannon, 1993) 

is the coefficient of determination, R2: 
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R2 measures the proportion of total variation about the mean of Y explained 

by the regression line. The possible values of R2 range from 0 to 1. If R2=1, 

all observations fall on the regression line, so that Y can be predicted from X 

without error. If R2=0, there is no linear relationship between X and Y. The 

closer R2 is to unity, the better the fit of the regression line to the data points. 

 

R2 tends to be an optimistic estimate of how well the model fits the 

population (SPSS, 1993). The model usually does not fit the population as 

well as it fits the sample from which it is derived. The adjusted statistic Ra
2  

attempts to correct R2 to more closely reflect the goodness of fit of the model 

in the population (Freund & Littell, 1991; SPSS, 1993): 

 

 R R
p R
N pa

2 2
21
1

= −
−

− −
( )

 (A1.9) 

 

where p is the number of independent variables in the model. 

 

The square root of R2, R, equals the correlation coefficient between X and Y, 

ρXY , and that between Y and Y
∧

, ρ
Y Y

∧ . The sign of the square root is the sign 

of b1. 
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Another commonly used measure of the goodness of fit of the regression line 

is the sample standard error of the estimate, S: 
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The population variance of the residuals, σ2 , is generally not known and S2 

is its usual estimate (SPSS, 1993). S is the measure of deviation of the 

observed Y values around the regression line and so the smaller S is, the 

more reliable are the predictions (Gunst & Mason, 1980). S2 is also known as 

the mean square residual, MSRes (see Table A1.1). 

 

 

Analysis Of Variance - ANOVA Table 

One method of testing if the regression line is statistically significant (i.e. that 

predicting Y based on X and using the LS regression line is preferable to just 

using the overall mean of Y) is to use analysis of variance of Y from its mean 

value, as shown in Table A1.1. 

 

 

Source of 
Variation 

Degrees of 
Freedom, DF 

Sum of Squares Mean Square F 

Regression p SS Y Yg i
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Residual N-p-1 SS Y Ys i i
i

N

Re = −
∧









=
∑

2
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 MS S
SS
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s

Re
Re= =

− −
2

1
 ______ 

 Table A1.1: ANOVA table (modified after Draper & Smith, 1981). 

 

 

If the regression assumptions are met, the ratio of the mean square 

regression to the mean square residual is distributed as a one tailed  

F statistic with p and N-p-1 degrees of freedom (SPSS, 1993). Generally,  

F is a statistic used to test the null hypothesis (Figure A1.3)  

Ho: the regression model does not explain any of the total variation in the 

dependent variable (Groebner & Shannon, 1993). In the case of a single 
independent variable, it tests the null hypothesis Ho: β1 0=  (SPSS, 1993). If 

F = MSReg / S2
 > FCrit = F(p, N-p-1; 1- α ), the null hypothesis can be rejected at 
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the α  level of significance on the basis of the data used and it can be 

inferred that the LS equation appears to be a suitable predictor (see  

Figure A1.4). Very often α  is chosen as 0.05 (Hutchinson, 1993), although 

there is no logical reason for using this convention (see Appendix A5 for 

more details on significance level, α ). 

 

 

HYPOTHESIS TESTING 

 

Basic idea 

• State a particular hypothesis (known as the null hypothesis and 
denoted Ho). 

• Assume that the hypothesis is true and determine the probability 
of getting a result at least as far from the hypothesised value as is 
the observed value. 

• If this probability is very low, say less than α , then reject the 
hypothesis ( α  is known as the significance level). 

 

Type I and Type II errors 

• In reality, the null hypothesis is either true or false. 

• The conclusion at the end of a hypothesis test is to reject or not 
reject Ho. 

• Type I error: Ho is rejected when it is true (the probability of doing 
this, given that Ho is correct, is the significance level, α ). 

• Type II error: Ho is not rejected when it is false. 

• Choosing a very low value of α  gives a very low probability of a 
Type I error, but gives a high probability of a Type II error. 

 

Figure A1.3: Hypothesis testing. 
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 Figure A1.4: The F distribution used as a significance test 

for LS regression (modified after Groebner & 
Shannon, 1993). 

 

 

Statistics Of The Parameters In The Regression Line 

Since b0 and b1 are estimates of the population's parameters, they typically 

differ from the population values and vary from sample to sample  

(SPSS, 1993). When the assumptions of linear regression are met, the 

distributions of b0 and b1 are Normal, with means β0  and β1 . The standard 

deviations of the parameters are, respectively: 

 

 SEb
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where SX is the standard deviation of the X values. SEb0 and SEb1 are 

commonly referred to as the standard errors of b0 and b1, respectively. They 

are useful measures of the dispersion of the parameters' estimates 

(Groebner & Shannon, 1993). Since σ  is usually not known, S is used 

instead and SEb0 and SEb1 are then called estimates of the standard errors 

of b0 and b1 (Figure A1.5). As SX
2  is the sample variance, 
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X

Y

Sample 1

Sample 2

Sample 3

X

Y

Sample 1 Sample 2

Sample 3

(b)

(a)

+ 0         1 XY= β     ββ     ββ     ββ     β

+ 0         1 XY= β     ββ     ββ     ββ     β

 

 Figure A1.5: Large (a) and small (b) standard error of the 
slope of the LS regression line (modified 
after Groebner & Shannon, 1993). 

 

 

Another way of testing if the intercept and/or the slope of the regression line 
are zero, i.e. Ho: β0 0=  and/or Ho: β1 0= , is to use the following statistic 

(SPSS, 1993): 

 

 t
b

SEb
or t

b
SEb

= =0

0

1

1
 (A1.13) 

 

The distribution of the statistic, when the assumptions are met, is Student's t 

distribution with N-p-1 degrees of freedom, and is used in a two-tailed test 
(Lewis-Beck, 1980). So if t t t N pCrit> = − − −( ; . )1 1 0 5α , then the parameter 

estimate is significant and Ho can be rejected at the α  level of significance 

(Figure A1.6). 
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 Figure A1.6: Student's t distribution used as a significance test 

for LS regression (modified after Groebner & 
Shannon, 1993). 

 

 

The values of b0 and b1 are point estimates of the unknown parameters. 

However, if the assumptions of regression are not violated, a range of values 

can be calculated for each parameter which, within a designated likelihood, 
α , includes the population value. This range is called the confidence interval 

(Groebner & Shannon, 1993). A ( )%1− α  confidence interval for the 

parameters is defined as follows: 

 

 b t N p SEb± − − −( ; . )1 1 0 5α  (A1.14) 

 

where b is the parameter considered (b0 or b1) and SEb is its standard error. 

The most widely used interval is a two-tailed 95% confidence interval, 
i.e. α = 0 05. : if repeated samples are drawn from a population under the 

same conditions and if 95% confidence intervals are calculated from each 

sample, then 95% of the intervals will contain the unknown parameter, β  

(Law & Kelton, 1991). As there is no logical reason for using specifically a 

95% confidence interval, the 90, 95 and 99% confidence intervals are given 

here for completeness. 

 

The confidence interval not only allows an interval estimate of the 

parameters (as opposed to a point estimate) but also provides a test of the 
null hypothesis Ho: β = 0 , where β  can be either β0  or β1 . If the value of 

zero does not fall within the interval, the null hypothesis can be rejected on 
the basis of the data used, and β ≠ 0  is accepted (Draper & Smith, 1981). 
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Predicted Values And Their Standard Errors 

A major use of regression is prediction (Gunst & Mason, 1980). However, the 

fact that a regression model explains a significant proportion of variation in 

the dependent variable, does not mean that it is satisfactory for prediction 

(Groebner & Shannon, 1993). It is important to know how useful the 

independent variable is for predicting Y. Furthermore, it must be stressed 

that inferences made from a regression line only apply over the range of the 

data contained in the sample. 

 

One may wish to predict the mean of Y for all cases with a given value of X, 

Xo, or to predict the value of Y for a single case. In both instances, the 

predicted value is the same (Draper & Smith, 1981); what differs is the 

standard error (Groebner & Shannon, 1993). The standard error of the 

predicted mean value of Y at a specific value Xo of X is: 

 

 SEY
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Replacement of σ  by S provides the corresponding estimated standard 
error. It can be seen that the smallest value occurs when Xo X= . The larger 

the distance from the mean, the greater the standard error. Thus, the mean 

of Y for a given value of X is better estimated for central values of the 

observed X's than for extreme values (Draper & Smith, 1981). Prediction 

intervals for the mean predicted Y at Xo are calculated in the standard way: 

Y t N p SEY
∧ ∧

± − − −( ; . )1 1 0 5α . 

 

The variance of the individual prediction is the variance of the mean 

prediction plus the variance of Y, for a given X (Groebner & Shannon, 1993). 

Hence, the standard error of the individual prediction for a given value of X, 

Xo, is: 
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with the corresponding estimated value obtained by inserting S for σ . 

Prediction intervals for the value of Y at Xo are calculated in the standard 

way: Y t N p SEIndY
∧ ∧

± − − −( ; . )1 1 0 5α . 
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Finally, note that a regression equation is determined from data which 

"cover" certain areas of the X-space. Suppose the point Xo lies outside the 

region covered by the original data. While a predicted value at the point Xo 

can be obtained mathematically, reliance on such a prediction is dangerous. 

It becomes increasingly so the further Xo lies from the original region, unless 

there is additional knowledge indicating that the regression equation is valid 

over a wider region of the X-space. 

 

 

Searching For Violation Of Assumptions 

Testing the goodness of fit of the regression model includes detecting 

possible violations of the assumptions relating to the data being analysed  

(SPSS, 1993). The most common way to look for evidence that the 

necessary assumptions are violated is a search focused on residuals  

(Everitt & Dunn, 1991). As noted earlier, a residual is the difference between 

an observed value and the value predicted by the regression equation. It 

represents the amount which the regression equation has not been able to 

explain. In performing the regression analysis, certain assumptions about the 

errors have been made. Thus if the fitted model is correct, the residuals 

should exhibit tendencies confirming the assumptions made for the errors. At 

the very least, they should not negate these assumptions. 

 

There are several different types of residuals (Gunst & Mason, 1980), 

although each is a function of the difference between the observed and 

predicted values. For example, the standardised residuals, ZResid, are the 

values of the residuals divided by the sample standard deviation of the 

residuals. They have a mean of zero and a standard deviation of 1. These 

residuals are used in this study for plotting purposes. 

 

The behaviour of the residuals can be analysed numerically and/or 

graphically. Certain statistics provide a numerical check on some of the 

assumptions (see, for example, Anscombe, 1961, Anscombe & Tukey, 1963, 

Gunst & Mason, 1980, and Draper & Smith, 1981). However, this study 

generally adopts the graphical approach as it is good at revealing violations 

of the assumptions. The lack of emphasis on numerical tests is deliberate, 

since a detailed examination of the plots of the residuals is usually more 

informative. Plots reveal violations of the assumptions serious enough to 

require corrective action (Draper & Smith, 1981). 
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A plot of the residuals against the predicted values and against the values of 

the independent variable can be used to check the assumptions of 

homoscedasticity and the linear relationship between X and Y (SPSS, 1993). 

The reason the residuals are plotted against the predicted values, Yi

∧
, and 

not the measured values, Yi, is because the residuals and the measured 

values are usually correlated. The residuals and the predicted values are not 

correlated, for prediction equations with intercepts (Gunst & Mason, 1980; 

Draper & Smith, 1981). A satisfactory residuals plot should give the overall 

impression of a horizontal "band" equally spread about the horizontal line 

through the zero value of the residuals. Systematic patterns in these plots 

indicate a changing variance or inadequate model. 

 

In detecting homoscedasticity, it is also helpful to plot squared residuals 

versus Yi

∧
 and Xi. The advantage of plotting the squared residuals instead of 

the residuals is that such a plot can accentuate some types of trends existing 

between the residuals and Yi

∧
 or Xi (Gunst & Mason, 1980). 

 

The normality of the residuals can be checked by superimposing the 

probability density function (PDF) of a Normal distribution on the histogram of 

the residuals. A major problem of using PDF (or cumulative distribution 

function, CDF) plots to judge the correctness of a specific distribution is the 

curvature of these functions. It is easier to assess departures from a straight 

line. In probability plots of the data, the points lie on a straight line if the 

hypothesised distribution is the actual underlying distribution (D'Agostino & 

Stephens, 1986). There are several possible probability plots. In this study, 

the P-P (probability-probability) and the Q-Q (quantile-quantile) plots are 

used to compare the observed distribution of residuals with the expected 

distribution under the assumption of normality. 

 
A P-P plot is a graph of the fitted cumulative distribution function, FX

F , versus 

the input data cumulative distribution function, FX . The basis of this type of 

plot is illustrated in Figure A1.7 and examples are shown in Appendices A2 

and A5. If the two cumulative distribution functions are close together, then 

the P-P plot will be approximately linear with an intercept  

of 0 and a slope of 1. The P-P plot amplifies differences between the two 

distributions in the middle values (Law & Kelton, 1991). 
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 Figure A1.7: Definition of P-P and Q-Q plots (modified 
after Law & Kelton, 1991). 

 

 
A Q-Q plot is a graph of the Xq

F  quantile of a fitted cumulative distribution 

function versus the Xq  quantile of the input data cumulative distribution 

function. The basis of this type of graph is also illustrated in Figure A1.7 and 

examples are shown in Appendices A2 and A5. If the hypothesised 

distribution is the actual distribution of the input data and if the sample size is 

large, then the Q-Q plot will also be approximately linear. The Q-Q plot 

amplifies differences in the tails between the two distributions (Law & Kelton, 

1991). 

 

The linearity, or lack of linearity, in a P-P or Q-Q graph, can be used as a 

basis for determining whether the input data could reasonably have been 

drawn from the hypothesised distribution. The variance of the points in the 

tails of the P-P or Q-Q plots is generally larger than that of the points at the 

centre of the distribution. Thus the relative linearity of the plots near the tails 

of the distributions will often seem poorer than at the centre, even if the 

“correct” model has been chosen (Hahn & Shapiro, 1967; Gunst & Mason, 

1980). As the plotted points are ordered, they are not independent, and so 

they are not randomly scattered about the straight line. Therefore, even if the 

chosen model is appropriate, the plots may consist of a series of successive 

points above and below the straight line (Hahn & Shapiro, 1967; D'Agostino 

& Stephens, 1986). Finally, it is unreasonable to expect the observed 
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residuals to be exactly Normal; some deviation is expected because of 

sampling variation (SPSS, 1993). Even if the errors are normally distributed 

in the population, sample residuals are only approximately Normal. 

 

Residuals are also used to detect outliers in the Y direction. An outlier in the 

Y direction among residuals is one that is far greater than the rest in absolute 

value and lies some standard deviations from the mean of the residuals 

(Draper & Smith, 1981). In this study, data with absolute standardised 

residual values greater than 2.5 are considered outliers (Rousseeuw & 

Leroy, 1987; Hadi, 1992; Gilbert & Antille, 1992) although other limits, such 

as 3, have also been suggested (SPSS, 1993). Outliers can be spotted 

readily on residual plots: they are not typical of the rest of the data. The 

presence of these outliers can bias the estimates of the regression 

parameters and make the resulting analysis less useful (Daniel & Wood, 

1980; D'Agostino & Stephens, 1986; Freund & Littel, 1991).  

 

Residuals can also be used to detect points that have unusual values for the 

independent variable and which can have a substantial impact on the results 

of the analysis (SPSS, 1993). These points are known as leverage points, 

outliers in the X direction, or influential points. 

 

Basically, there are two ways of dealing with outliers (Rousseeuw & Leroy, 

1987). The first is to use regression diagnostics in which certain statistics are 

computed from the data to detect deviating points, after which the outliers 

are deleted or corrected. An LS analysis is carried out on the remaining data. 

Rules exist for rejecting outliers (D'Agostino & Stephens, 1986). However, 

automatic rejection is not always wise, because the outliers might provide 

information which other data points do not. They might arise from an unusual 

combination of circumstances which are of vital interest and require further 

investigation rather than rejection. As a general rule, outliers should be 

rejected only if they can be traced to causes such as recording errors or 

mistakes in setting up the apparatus (Anscombe, 1960). When there is only 

a single outlier, some of these methods work quite well by looking at the 

effect of deleting one point at a time. Unfortunately, it is much more difficult 

to diagnose outliers when there are several of them  

(Portnoy, 1987). 
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Using LS residuals is not a good way of identifying real outliers (Rousseeuw 

& Leroy, 1987): the LS fit is pulled considerably in the direction of the 

deviating points and so the real outliers may possess quite small LS 

residuals. The alternative approach is to use robust regression, i.e.  

data-fitting procedures which are less sensitive than LS to typical departures 

from the idealised assumptions for which the estimators are optimised, and 

where possible outliers among the data points are identified and given less 

weight (Madsen & Nielsen, 1989). Hence, when LS assumptions are not met 

and/or when outliers are present, a more robust technique should be applied 

to confirm or refute LS results. There are several robust regression 

techniques (Rousseeuw & Leroy, 1987). 

 
 
A1.2 Least Absolute Deviations Method (LAD) 
 

A1.2.1 Basic LAD Principle 

To define more robust regression alternatives, statisticians have exploited 

the fact that the median is a better measure of central tendency than the 

mean if the variable can take very large or very small values. Extreme values 

can greatly affect the mean even if they are very unlikely to occur; this is not 

the case with the median (Law & Kelton, 1991). 

 
Suppose that errors ε i i N, ,...,= 1  are independent and follow the Double 

Exponential (or Laplace) distribution: 
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rather than the Normal distribution: 
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as is assumed for the LS method. The Double Exponential probability density 

function has a pointed peak of height 1/2 σ  at εi = 0  and tails off to zero as 
εi  goes to both plus and minus infinity. Then, application of the maximum 

likelihood principle for estimating the parameters β0  and β1 , assuming σ  
fixed, involves minimisation of the sum of absolute errors, ε i∑ , i=1,...,N, 
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and not the minimisation of the sum of squares of errors, εi
2∑ , i=1,...,N 

(Draper & Smith, 1981). Since the errors are not squared, the influence of 

the outliers in the estimators is less. 

 

The method of robust regression which minimises the sum of the absolute 

deviations is known as the least absolute deviations method or the l1-norm. 

The LAD method does not rely upon the Normal error assumption: it 

assumes a Double Exponential distribution of the errors which has thicker 

tails than the Normal distribution. Hence, the LAD method provides 

maximum likelihood estimates when the errors follow a Double Exponential 

distribution with zero mean and with mean absolute deviation σ . This 

method can be seen as a generalisation of the concept of the median, 

because minimisation of the sum of the absolute errors defines the median 

of N observations of Y (Rousseeuw & Leroy, 1987). 

 

Figure A1.8 illustrates the different results obtained from using the LS and 

LAD methods. Figure A1.8(a) is a plot of five points which lie almost on a 

straight line: the LS fit and the LAD fit are essentially the same.  

Figure A1.8(b) displays a situation where, for some reason, point 4 has been 

wrongly moved from its original position (indicated by the dashed circle). This 

point is an outlier in the Y direction and it has a rather strong influence on the 

LS line, which is quite different from the line in Figure A1.8(a).  

Figure A1.8(c) shows the robustness of the LAD fit with respect to such an 

outlier: the line remains approximately where it was when observation 4 was 

correct. 

 

The LAD method is recommended when outliers exist in the Y direction but it 

does not accommodate outliers in the X direction (Rousseeuw & Leroy, 

1987). Since, in Owen's data set, outliers in the Y direction are the most 

important, the LAD method is used here. There is no need to use a robust 

technique which is computationally more costly (Rousseeuw & Leroy, 1987). 

 

LAD is probably the oldest of all robust methods for estimating regression 

coefficients1 (McKean & Schrader, 1987). However, two major difficulties 

have impeded its general adoption (Dodge, 1987). These are computational 

difficulties due, firstly, to the lack of closed form formulae for estimating the 

                                                 
1 A brief review and comprehensive bibliography of LAD estimation until 1977 is given in 

Gentle (1977). 
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parameters and, secondly, to the lack of accompanying statistical inference 

procedures (e.g. for testing the general linear hypothesis, for obtaining 

confidence intervals and for constructing analysis of variance tables). 

Fortunately, interest has increased recently in developing statistical methods 

based on LAD rather than on LS (McKean & Schrader, 1987; Gentle et al, 

1987; Sposito, 1990; Armstrong & Beck, 1990; Bai et al, 1990; Ataa, 1994). 

The motivation for this interest has arisen largely from the recognition that 

many real data sets do not conform to the Normal error assumption, but also 

from the conceptual simplicity of the LAD estimates and their increasingly 

competitive computational cost (Ataa, 1994). 

 

 
(a) 

 
(b) 

 
(c) 

 
 

 Figure A1.8: LS and LAD regression lines 
(modified after Rousseeuw & 
Leroy, 1987). 
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To infer accurately the values of β0  and β1  from the LAD values of b0 and 

b1, respectively, the six assumptions mentioned in Section A1.1.1 have to be 

valid. For further details, see McKean & Schrader (1987) and Koenker 

(1987). 

 

 

A1.2.2 Goodness Of Fit 

 

Summary Statistics For The Regression Line 

The measure of the goodness of fit of the LAD regression line is the sample 

standard error of the estimate, S, defined as (McKean & Schrader, 1987): 
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1
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where SADRes is the sum of the absolute deviations of the residuals (see 

Table A1.2). Since the population variance of the residuals, σ2 , is generally 

not known, S2  is its usual estimate. 

 

 

Analysis Of Variance - ANOLAD Table 

The statistical methods of hypothesis testing associated with the LAD 

method have been discussed recently by a number of authors (McKean & 

Shrader, 1987; Bai et al, 1990) and the suggested tests are similar to those 

for the LS method. For testing a general linear hypothesis, the LS 

minimisation in sums of squared residuals is replaced by minimisation in 

sums of absolute deviations. By using such a direct analogy, an analysis of 

variance table based on the LAD method (an ANOLAD table) can be 

constructed (Table A1.2). It summarises the tests of the hypothesis in a form 

similar to an ANOVA table. The ANOLAD table shows whether predicting Y 

based on X using the LAD regression line is preferable to just using the 

overall median of Y, Ymed. Note that in the LAD method, the median is used 

as the centre of location instead of the mean used in the LS method. 
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Source of 
Variation  

Degrees of 
Freedom, DF  

Sum of Absolute 
Deviations 

Mean Absolute 
Deviations 

χχχχ2
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Re = −
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=
∑
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S SAD

N ps
s

Re
Re= =

− −2 1
 ______ 

Table A1.2:  ANOLAD table (modified after McKean & Schrader, 1987). 

 

 

If the assumptions are met, the ratio of the mean absolute regression to the 

mean absolute residual is distributed as a χ2  statistic with N-p-1 degrees of 

freedom (McKean & Schrader, 1987; Koenker, 1987; Ataa, 1994). χ2  is a 

statistic used to test the null hypothesis Ho: the regression model does not 

explain any of the total variation in the dependent variable. For a single 

independent variable, it tests the null hypothesis Ho: β1 0= . If  
χ2

 = 2MADReg / S> χ χCrit
2 2= (N-p-1; α ), the null hypothesis can be rejected 

at the α  level of significance on the basis of the data used and it can be 

inferred that the LAD equation appears to be a good predictor, running a risk 

of less than α  of being wrong (Figure A1.9). 

 

 

 
Figure A1.9:  The χ2 distribution used as a significance 

test for LAD regression (modified after 
Bendat & Piersol, 1971). 
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Statistics Of The Parameters In The Regression Line 

Under the above assumptions, Bassett & Koenker (1978) showed that the 

distributions of b0 and b1 are approximately Normal, with means of β0  and 
β1  and with standard deviations (or standard errors of the estimates) as 

defined in eq. (A1.11), where σ  is estimated by S calculated from  

eq. (A1.19). 

 

Another way of testing if the intercept and/or the slope of the regression line 

are zero, i.e. Ho: β0 0=  and/or Ho: β1 0= , is to use the following statistic: 

 

 z
b

SEb
or z

b
SEb

= =0

0

1

1

 (A1.20) 

 

The distribution of the statistic, when the assumptions are met, is standard 
Normal. So if z z zCrit> = ( / )α 2 , then the parameter estimate is 

significantly non-zero at the α  level (Figure A1.10): that is, Ho can be 

rejected at the α  level of significance. 

 

 

 
 Figure A1.10:  The standard Normal distribution used as a 

significance test for LAD regression (modified 
after Bendat & Piersol, 1971). 

 

 

Based on the LAD estimates of  b0 and b1, and on the underlying 

assumptions, a ( )%1− α  confidence interval similar to the LS counterparts 

can be calculated for each parameter. Here, SEb is calculated as for  

eq. (A1.20) and the t-critical values in eq. (A1.14) are replaced by z-critical 

values (Stangenhaus, 1987): 
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 b z SEb± ( / )α 2  (A1.21) 

 

where z( / )α 2  is the upper tailed standard Normal critical value  

(Figure A1.10). As for the LS method, the confidence intervals can be used 

to test the null hypothesis Ho: β = 0 , where β  can be either β0  or β1 . If 

zero does not fall within the interval, the null hypothesis can be rejected. 

 

 

Searching For Violation Of Assumptions 

Analogous to plots of the LS residuals, the LAD residuals may also be 

plotted. If ε  follows a Double Exponential distribution with zero mean and 

mean absolute deviation σ , then the probability density function of ε  

follows an Exponential distribution with a mean and standard deviation equal 

to σ  (Ataa, 1994): 

 

 f ε σ
ε
σ

= −










1
exp  (A1.22) 

 

This fact can be exploited by plotting the absolute values of the residuals 

against a theoretical Exponential fit, allowing the suitability of the Double 

Exponential distribution to be assessed visually. 
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APPENDIX A2 - Examples Of Regression Analysis 

 

This appendix describes how regression equations have been fitted to 

Owen's data. The H&R model (employing both (Rmax)37% and (Rmax)99% in 

defining the value of C) and Owen's model have been considered. Similar 

inferences were made in all cases. Here, an illustrative example is given for 

each model using data for the embankment slope of 1:2. 

 

The H&R and Owen models are represented by eqs. (3.16) and (3.6), 

respectively (Chapter 3). These equations contain the parameters A and B to 

be estimated by regression. They can be expressed, by suitable 

transformation, in the form of the standard linear regression model (see  

eq. (A1.3) in Appendix A1): 

 

 

H R Model Ln Q LnA B Ln R

Owen s Model Ln Q LnA BR

& : ( ) ( )

' : ( )

* *

* *

= + −

= −

1

 (A2.1) 

 
For both models, Ln Q( )*  is the dependent variable, LnA  is the intercept 

and B the slope; for the H&R model, Ln R( )*1−  is the independent variable 

and for Owen's model, R*  is the independent variable. Note that R* and Q* 

are defined differently in the two models (see Chapter 3). 

 

In this study, regression analysis has started by applying the least-squares 

(LS) method (see Appendix A1). The following results have been obtained 

using the statistical software package SPSS for Windows (SPSS, 1993). 

 
 
A2.1 LS Regression 
 

A2.1.1 H&R Model 
From the scatterplot in Figure A2.1, the relationship between Ln Q( )*  and 

Ln R( )*1−  appears to be approximately linear and the values of R2 and Ra
2  

in Table A2.1 suggest that no relevant independent variable has been 
excluded: these values reveal that Ln R( )*1−  accounts for about 81% of the 

variation in Ln Q( )* , which can be considered satisfactory. This is reflected in 

the ANOVA results (Table A2.1) where the mean square regression is much 

bigger than the mean square residual. 
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 Figure A2.1:  Scatterplot and LS regression line for the 

H&R model, (Rmax)37%, slope 1:2. 

 

 

SUMMARY STATISTICS 

Coefficient of 
Determination, R 2 

Adjusted Coefficient of 
Determination, Ra

2  
Standard Error of the 

Estimate, S 

0.811 0.809 0.523 

ANOVA  

Source of 
Variation 

Degrees of 
Freedom, DF  

Sum of Squares  Mean Square F 

Regression 1 109.239 109.239 399.588 

Residual 93 25.424 0.273 ---------- 

STATISTICS OF LS PARAMETERS 

 Parameter, Estimated Standard  Confidence Interval of b t 
 b Error of b, SEb 90% 95% 99%  

b0 -4.841 0.120 -5.041 
-4.641 

-5.079 
-4.603 

-5.157 
-4.525 -40.466 

b1 4.548 0.228 4.168 
4.928 

4.095 
5.000 

3.947 
5.149 19.990 

Table A2.1:  Summary of LS statistics for the H&R model, (Rmax)37%,  
slope 1:2. 
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Since F>FCrit for α  equal to 0.01, 0.05 and 0.1 (as tabulated in statistical 
books) and t tCrit>  for b1 for any value of α  between 0.001 and 0.9 (as 

tabulated in statistical books), the slope estimate b1=4.548 differs 

significantly from zero. Equivalently, the 90, 95 and 99% confidence intervals 

in Table A2.1 do not include zero. The same conclusions apply to the 

parameter b0. 

 

The above results, although pleasing, should not be accepted too readily, 

because the applicability of the LS method has not yet been assessed. This 

analysis should be an indispensable part of regression, even when R2  
(or Ra

2 ) is large and the statistical tests are significant (Rousseeuw &  

Leroy, 1987). 

 

Figure A2.2 appears to show a tendency for the variation (or spread) in the 
standardised residuals to decrease as the predicted values of Ln Q( )*  and 

Ln R( )*1−  increase. The assumption of homoscedasticity is unlikely to be 

valid. Although unbiased, the estimated parameters would not have 

minimum variance and the confidence intervals and significance tests 

obtained from regression are not reliable (see Appendix A1). 

 

Figure A.2.3, a plot of the squared standardised residuals versus the 

predicted values of the dependent variable and versus the independent 

variable, accentuates the fact that there does not appear to be a constancy 

of the error variances. Yet what is most evident from this figure is that three 

of the standardised residuals look suspiciously large in magnitude. These 

points are clearly outliers (see Table 2.2). 
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 Figure A2.2:  Scatterplots of the standardised residuals 
against the predicted values of Ln Q( )*  and 
against Ln R( )*1− : LS regression for the H&R 
model, (Rmax)37%, slope 1:2. 
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 Figure A2.3:  Scatterplots of the squared standardised 
residuals against the predicted values of 
Ln Q( )*  and against Ln R( )*1− : LS 
regression for the H&R model, (Rmax)37%, 
slope 1:2. 

 

 

Independent 
Variable 

Dependent 
Variable 

Predicted 
Dependent Variable  

Residuals  Standardised 
Residuals 

-0.683 -10.061 -7.949 -2.113 -4.041 
-0.683 -9.765 -7.949 -1.816 -3.473 
-1.075 -11.200 -9.734 -1.466 -2.804 
-0.687 -6.790 -7.966 1.176 2.249 

 Table A2.2:  Details of the four highest residuals from LS regression for the 
H&R model, (Rmax)37%, slope 1:2. 
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From Figures A2.4 to A2.6, it seems that the Normal distribution fits the 

residuals poorly; the residuals appear to follow a distribution with thicker tails 

than the Normal distribution. The non-normality has been confirmed by the 

results of three goodness-of-fit tests available in the software package 

BestFit (see Appendices A4 and A5 for more details of BestFit and 

goodness-of-fit tests, respectively) which all rejected the hypothesis of the 

residuals being Normal distributed at any α  level of significance considered 

(these results are not presented here, but similar analyses are shown in 

Appendix A5). Since the assumption of normality seems to be violated, the 

confidence intervals and results of significance tests are unreliable. Even if 

the parameters are still unbiased, the violation of assumptions can be 

important (Draper & Smith, 1981). 
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 Figure A2.4:  Comparison of the Normal probability density function 

for standardised residuals with data from LS regression 
for the H&R model, (Rmax)37%, slope 1:2. 
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Figure A2.5:  Comparison of the Normal cumulative 

distribution function for standardised 
residuals with data from LS regression 
for the H&R model, (Rmax)37%, slope 1:2. 

 
 

Normal Q-Q Plot For Z Resid

-5

-4

-3

-2

-1
0

1

2

3

4

-5 -4 -3 -2 -1 0 1 2 3 4

Actual Result 
Perfect Fit

H&R Model - (R max)37%               Slope 1:2

Normal 
quantiles 

for Z Resid

Input quantiles for Z Resid

 
 Figure A2.6:  Comparison of the Normal quantiles for 

standardised residuals with data from 
LS regression for the H&R model, 
(Rmax)37%, slope 1:2. 

 
 
A2.1.2 Owen's Model 

Since the results obtained for the Owen model are very similar to those for 

the H&R model, they are not discussed here. Nevertheless, the 

corresponding figures are presented for completeness. 
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 Figure A2.7:  Scatterplot and LS regression line for 

Owen's model, slope 1:2. 

 

 

SUMMARY STATISTICS 

Coefficient of 
Determination, R 2 

Adjusted Coefficient of 
Determination, R a

2  
Standard Error of the 

Estimate, S 

0.814 0.812 0.522 

ANOVA 

Source of 
Variation 

Degrees of 
Freedom, DF  

Sum of Squares  Mean Square F 

Regression  1 111.198 111.198 407.613 

Residual  93 25.371 0.273 ---------- 

STATISTICS OF LS PARAMETERS 

 Parameter, Estimated Standard  Confidence Interval of b t 
 b Error of b, SEb 90% 95% 99%  

b0 -4.385 0.155 -4.643 
-4.126 

-4.693 
-4.077 

-4.793 
-3.976 -28.325 

b1 -22.798 1.129 -24.685 
-20.912 

-25.046 
-20.551 

-25.780 
-19.817 -20.189 

 Table A2.3:  Summary of LS statistics for Owen's model, slope 1:2. 
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 Figure A2.8:  Scatterplots of the standardised residuals 
against the predicted values of Ln Q( )*  and 
against R* : LS regression for Owen's model, 
slope 1:2. 
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 Figure A2.9:  Scatterplots of the squared standardised 
residuals against the predicted values of 
Ln Q( )*  and against R* : LS regression for 
Owen's model, slope 1:2. 

 

 

Independent 
Variable 

Dependent 
Variable 

Predicted 
Dependent Variable  

Residuals  Standardised 
Residuals 

0.177 -10.404 -8.425 -1.979 -3.790 
0.239 -11.530 -9.824 -1.706 -3.267 
0.177 -10.107 -8.425 -1.682 -3.221 
0.152 -6.666 -7.839 1.173 2.247 

 Table A2.4:  Details of the four highest residuals from LS regression for 
Owen's model, slope 1:2. 
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Figure A2.10:  Comparison of the Normal probability density function 

for standardised residuals with data from LS 
regression for Owen's model, slope 1:2. 
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Figure A2.11:  Comparison of the Normal cumulative 

distribution function for standardised 
residuals with data from LS regression 
for Owen's model, slope 1:2. 
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Figure A2.12:  Comparison of the Normal quantiles 

for standardised residuals with data 
from LS regression for Owen's model, 
slope 1:2. 

 
 
A2.2 LAD Regression 
 

From the above LS regression results, the H&R and Owen models appear to 

perform equally well. This is not surprising. The main differences between 

the models are expected to exist for very small discharges (see Chapter 3) 

which are not part of Owen’s measured conditions. 

 

The above departures from the idealised LS assumptions and the 

occurrence of several outliers suggest that it might be appropriate to apply 

robust regression. In this study, the least absolute deviations (LAD) method 

has been adopted (see Appendix A1). It is more likely than the LS method to 

accommodate outlying data points and to provide reliable estimates of the 

parameters. The results for the illustrative example given here have been 

obtained using the statistical software package SAS for Windows  

(Freund & Littell, 1991) and using the program presented in Appendix A3 

written in SAS/IML language (SAS Institute Inc, 1988). 
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A2.2.1 H&R Model 
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Figure A2.13:  Scatterplot and LAD regression line for the 

H&R model, (Rmax)37%, slope 1:2. 

 

 

Standard Error of the Estimate, S 

0.726 

ANOLAD 

Source of 
Variation 

Degrees of 
Freedom, DF  

Sum of Absolute 
Deviations 

Mean Absolute 
Deviations 

χχχχ2

 

Regression 1 68.623 68.623 189.109 

Residual 93 33.747 0.363  ---------- 

STATISTICS OF LAD PARAMETERS 

 Parameter, Estimated Standard Confidence Interval of b z 
 b Error of b, SEb 90% 95% 99%  

b0 -4.889 0.166 -5.162 
-4.616 

-5.214 
-4.563 

-5.316 
-4.461 -29.440 

b1 4.174 0.316 3.654 
4.693 

3.555 
4.793 

3.361 
4.987 13.217 

Table A2.5:  Summary of LAD statistics for the H&R model, (Rmax)37%, 
slope 1:2. 
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 Figure A2.14:  Scatterplots of the standardised residuals 
against the predicted values of Ln Q( )*  and 
against Ln R( )*1− : LAD regression for the 
H&R model, (Rmax)37%, slope 1:2. 
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Figure A2.15:  Scatterplots of the squared standardised 
residuals against the predicted values of Ln Q( )*  
and against Ln R( )*1− : LAD regression for the 
H&R model, (Rmax)37%, slope 1:2. 

 

 

Independent 
Variable 

Dependent 
Variable 

Predicted 
Dependent Variable  

Residuals  Standardised 
Residuals 

-0.683 -10.061 -7.741 -2.321 -3.163 
-0.683 -9.765 -7.741 -2.024 -2.758 
-1.076 -11.200 -9.379 -1.821 -2.482 
-0.683 -8.984 -7.741 -1.243 -1.694 

 Table A2.6:  Details of the four highest residuals from LAD regression for the 
H&R model, (Rmax)37%, slope 1:2. 
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 Figure A2.16:  Comparison of the Exponential probability density 

function for absolute values of the standardised 
residuals with data from LAD regression for the H&R 
model, (Rmax)37%, slope 1:2. 
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Figure A2.17:  Comparison of the Exponential 

cumulative distribution function for 
absolute values of the standardised 
residuals with data from LAD 
regression for the H&R model, 
(Rmax)37%, slope 1:2. 
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Figure A2.18:  Comparison of the Exponential 
quantiles for absolute values of the 
standardised residuals with data 
from LAD regression for the H&R 
model, (Rmax)37%, slope 1:2. 

 

 

A number of points are worth noting in relation to the H&R model: 

 
• The LAD results support a linear relationship between Ln Q( )*  and 

Ln R( )*1−  (see Figure A2.13; χ χ2 2> Crit  for any value of α  and 
SADReg>>SADRes in Table A2.5). 

• The facts that χ χ2 2> Crit  for any value of α , z zCrit>  for b1 for any 
value of α  and the 90, 95 and 99% confidence intervals for b1 do 
not contain the value zero (Table A2.5), confirm that the slope 
estimate b1=4.174 is significantly different from zero. For the same 
reasons, the results in Table A2.5 also confirm that b0 0≠ . 

• The LAD estimates b0 and b1 (Table A2.5) differ from the 
corresponding LS estimates (Table A2.1), showing the influence of 
the outlying data points in the LS results. 

• Comparison of Figure A2.2 with Figure A2.14 and of Figure A2.3 
with Figure A2.15 shows that the LAD method accommodated 
extreme points much better than the LS method. Figure A2.14 also 
shows points being better balanced above and below the zero line. 
This is reflected in the smaller values of the standardised residuals 
shown in Table A2.6 compared with the corresponding values in 
Table A2.2. 
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• Figures A2.16 to A2.18 indicate that the absolute errors may follow 
an Exponential distribution (i.e. the errors may follow a Double 
Exponential distribution, as hypothesised). In view of the 
approximately linear behaviour shown in the P-P and the Q-Q 
graphs, the LAD method seems suitable for fitting the H&R model 
to this data set. When similar graphs have been constructed as a 
diagnostic tool for the LS method, some systematic non-linear 
behaviour has clearly been identified (see Figures A2.5 and A2.6). 
This improvement has been confirmed by running BestFit to check 
the goodness of fit of the Exponential distribution. 

 

 

A2.2.2 Owen's Model 

The remarks made with regard to the H&R model also seem to apply to 

Owen's model. Indeed, the improvement obtained with the LAD method for 

the latter is even more evident (see Figures A2.22 to A2.24) than for the 

former. 

 

As in the case of the LS analysis, the difference in performance between the 

H&R model and the Owen model does not seem important for the range of 

discharges tested, as expected. 
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Figure A2.19:  Scatterplot and LAD regression line for 

Owen's model, slope 1:2. 
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Standard Error of the Estimate, S 

0.718 

ANOLAD 

Source of 
Variation 

Degrees of 
Freedom, DF  

Sum of Absolute 
Deviations 

Mean Absolute 
Deviations 

χχχχ2

 

Regression 1 73.742 73.742 205.350 

Residual 93 33.397 0.359  ---------- 

STATISTICS OF LAD PARAMETERS 

 Parameter, Estimated Standard  Confidence Interval of b z 
 b Error of b, SEb 90% 95% 99%  

b0 -4.445 0.213 -4.795 
-4.095 

-4.862 
-4.028 

-4.993 
-3.897 -20.883 

b1 -21.706 1.553 -24.260 
-19.152 

-24.749 
-18.663 

-25.703 
-17.709 -13.979 

 Table A2.7:  Summary of LAD statistics for Owen's model, slope 1:2. 
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Figure A2.20:  Scatterplots of the standardised residuals 
against the predicted values of Ln Q( )*  and 
against R* : LAD regression for Owen's model, 
slope 1:2. 
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Figure A2.21:  Scatterplots of the squared standardised 
residuals against the predicted values of 
Ln Q( )*  and against R* : LAD regression for 
Owen's model, slope 1:2. 

 

 

Independent 
Variable 

Dependent 
Variable 

Predicted 
Dependent Variable  

Residuals  Standardised 
Residuals 

0.177 -10.404 -8.291 -2.112 -2.910 
0.239 -11.530 -9.624 -1.906 -2.626 
0.177 -10.107 -8.291 -1.816 -2.501 
0.152 -6.666 -7.734 1.068 1.472 

 Table A2.8:  Details of the four highest residuals from LAD regression for 
Owen's model, slope 1:2. 
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 Figure A2.22:  Comparison of the Exponential probability density 

function for absolute values of the standardised 
residuals with data from LAD regression for Owen's 
model, slope 1:2. 
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Figure A2.23:  Comparison of the Exponential 

cumulative distribution function for 
absolute values of the standardised 
residuals with data from LAD 
regression for Owen's model, slope 
1:2. 
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Figure A2.24:  Comparison of the Exponential 

quantiles for absolute values of the 
standardised residuals with data from 
LAD regression for Owen's model, 
slope 1:2. 

 

 

A2.3 Main Conclusions Of The Analysis 
 
Regression equations were fitted to Owen's data using the LS method. The 

presence of outliers and violation of the Normal error LS assumption lead to 

the subsequent use of the more robust technique of LAD. The LAD 

assumption that errors have a Double Exponential distribution appears much 

more plausible than the Normal error assumption for Owen's data set. The 

results obtained from the LAD regression seem to be more sensible than 

those of the LS method. As expected, the parameters are less affected by 

the outliers identified in the diagnostic plots. Thus, the LAD estimates of the 

coefficients are recommended both for the H&R and Owen models. 

 

The LAD regression results suggest that the H&R model and the Owen 

model perform almost equally well for the range of conditions tested. This is 

not surprising since the main differences between the two models are 

expected to exist for very small discharges in the ranges of practical interest. 

These conditions are not covered by Owen's data set. 
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LS parameter values can be calculated explicitly from the data but the LAD 

parameters cannot. However, efficient algorithms have now eliminated this 

computational difficulty. Statistical inference procedures for LAD have 

recently been developed but not completely implemented in the usual 

statistical packages. LAD forms an attractive robust alternative to LS for data 

sets with outlying observations which violate the LS assumption of normality. 

The author hopes that this study will encourage engineers to use robust 

techniques in general; in particular, the LAD method is an attractive 

alternative to the classical LS technique. 
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APPENDIX A3 - SAS/IML Program 

 
################################################### ################################## 
 
SAS/IML PROGRAM FOR REGRESSION 
 
################################################### ################################## 
 
This program uses the SAS/IML language (SAS Institu te Inc, 1988) to perform 
regression analysis on Owen's data, using the least -squares (LS) method and the 
least-absolute-deviations (LAD) method. Both the H& R model and Owen's model are used 
in the analyses. For the program to work, two files  are needed on the A drive: 

 
i) file SLOPE12.POR which is the data file that has  to contain the X and Y values 

for each regression line. Here, for the H&R model, X is called "lnkrstar" and 
Y is called "lnkqstar"; for the Owen model, X is ca lled "rstarow" and Y is 
called "lnqstow". The file must contain the values of these four variables. 
The extension *.POR allows this file to be used as a data file in SAS and 
SPSS. 

ii) file CODE.SAS which contains this program. 
 
Also needed on the A drive are two directories call ed A:\SASFILES and A:\SASDESC. 
 
When this program has been run in SAS, two files ca lled A:\REG_RES.DBF and 
A:\SASDESC\EXCHANGE.SA2 have been created. The form er consists of variables saved 
during the regression process and which are then us ed for plotting purposes (plots 
can be done, for example, in Excel). The latter is of no importance for the user. 
These two files cannot be overwritten, so after eac h run of the program, the user has 
to rename the file A:\REG_RES.DBF and has to delete  the file A:\SASDESC\EXCHANGE.SA2. 
 
Note that the C drive can be used instead of the A drive if the code in this program 
is changed accordingly. 
 
For more details on this program, the user is refer red to SAS Institute Inc (1988) 
and Freund & Littel (1991). 
 
################################################### ################################## 
 
 
libname slope12 spss 'a:slope12.por'; 
libname tete1 'a:\sasfiles'; 
libname tete2 'a:\sasfiles'; 
libname tete3 'a:\sasfiles'; 
libname tete5 'a:\sasfiles'; 
libname tete6 'a:\sasfiles'; 
libname tete4 'a:\sasdesc'; 
data sastemp; 
   set slope12._f_; 
run; 
 
 
=================================================== ================================== 
rq performs the LAD calculations. 
=================================================== ================================== 
proc iml; 
        start rq(yname,Y,xname,X,b,predict,error,zr es,q); 
        bound=1.0e10; 
        coef=X`; 
        m=nrow(coef); 
        n=ncol(coef); 
        r=repeat(0,m+2,1); 
        L=repeat(q-1,1,n) || repeat(0,1,m) || -boun d || -bound ; 
        u=repeat(q,1,n) || repeat(.,1,m) || {..} ; 
        a=(y` || repeat(0,1,m) || {-1 0}) // 
          (repeat(0,1,n) || repeat(-1,1,m) || {0 -1 }) // 
          (coef || I(m) || repeat(0,m,2)); 
        basis=n+m+2-(0:n+m+1); 
        call lp(rc,p,d,a,r,,u,L,basis); 
        L=repeat(q-1,1,n) || repeat(0,1,m) || -boun d || {0}; 
        u=repeat(q,1,n) || repeat(0,1,m) || {. 0}; 
        call lp(rc,p,d,a,r,n+m+1,u,L,basis); 
        variable=xname`;b=d[3:m+2]; 
        predict=X*b; 
        error=y-predict; 
        wsum=sum(choose(error<0,(q-1)*error,q*error )); 
        SA=2*wsum; 
        MSA=SA/(n-m); 
        s1=2*MSA; 
        zres=error/s1; 
        OBS=X[,2]||Y||predict||error||zres; 
        print ,,,,'LEAST ABSOLUTE REGRESSION', 
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                  'Dependent Variable: ' yname, 
                  'Regression Quantile: ' q, 
                  'Number of Observations: ' n, 
                  'Sum of Absolute Errors: ' wsum, 
                  'Mean Absolute Deviations: ' MSA,  
                  'Estimate of s: ' s1, 
                   variable b,,, 
                  'PREDICTED VALUES AND RESIDUALS',  
                   OBS (|colname={X Y YPred Resid Z Resid} format=9.5|); 
        finish; 
 
 
=================================================== ================================== 
Calls rq to perform the LAD calculations for the H& R model. 
=================================================== ================================== 
        use sastemp; 
        read all var {'lnkrstar'} into X; 
        read all var {'lnkqstar'} into Y; 
        n=nrow(X); 
        m=ncol(X); 
        X=repeat(1,n,1) || X; 
        run rq('lnkqstar',Y,{'lnA' 'ln(1-R*)'},X,b, pre,res,zres,.5); 
 
 
=================================================== ================================== 
LS calculations for the H&R model. 
=================================================== ================================== 
        c=inv(X`*X); 
        b=c*X`*Y; 
        dfe=n-m-1; 
        SSE=Y`*Y-b`*X`*Y; 
        MSSE=SSE/dfe; 
        s2=sqrt(MSSE); 
        L={0 1}; 
        dfr=m; 
        SSR=(L*b)`*inv(L*c*L`)*(L*b); 
        MSSR=SSR/dfr; 
        F=MSSR/MSSE; 
        ProbF=1-PROBF(F#F,dfr,dfe); 
        SOURCE=(m||SSR||MSSR||F||ProbF)//(dfe||SSE| |MSSE||{.}||{.}); 
        seb=sqrt(vecdiag(c)#MSSE); 
        T=b/seb; 
        ProbT=1-PROBF(T#T,1,dfe); 
        VARIABLE=b||seb||T||ProbT; 
        pre2=X*b; 
        stpre2=pre2; 
        create tete1.new var{pre2}; 
        append; 
        summary var {pre2} stat {mean std} opt {sav e}; 
        zpre2=(stpre2-pre2[,1])/pre2[,2]; 
        close tete1.new sastemp; 
        res2=Y-stpre2; 
        zres2=res2/s2; 
        OBS=X[,2]||Y||stpre2||zpre2||res2||zres2; 
        print ,,,'LEAST SQUARES REGRESSION - HR Mod el', 
              SOURCE (|colname={DF SS MSS F ProbF} rowname={Reg Resid} format=9.5|),, 
             'PARAMETER ESTIMATES', 
             VARIABLE (|colname={B SEB T ProbT} row name={Int Slope} format=10.6|),,, 
             'PREDICTED VALUES AND RESIDUALS', 
             OBS (|colname={X Y YPred ZYPred Resid ZResid} format=9.5|); 
        create tete5.new var{stpre2 zpre2 res2 zres 2}; 
        append; 
        sstpre2=stpre2; 
        szpre2=zpre2; 
        sres2=res2; 
        szres2=zres2; 
        summary var {stpre2 zpre2 res2 zres2} opt { save}; 
        close tete5.new sastemp; 
 
 
=================================================== ================================== 
Calls rq to perform the LAD calculations for the Ow en model. 
=================================================== ================================== 
        use sastemp; 
        read all var {'rstarow'} into XOW; 
        read all var {'lnqstow'} into YOW; 
        n=nrow(XOW); 
        m=ncol(XOW); 
        XOW=repeat(1,n,1) || XOW; 
        run rq('lnqstow',YOW,{'lnA' 'R*'},XOW,b,pre ow,resow,zresow,.5); 
 
 
=================================================== ================================== 
LS calculations for the Owen model. 
=================================================== ================================== 
        cow=inv(XOW`*XOW); 
        bow=cow*XOW`*YOW; 
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        dfeow=n-m-1; 
        SSEow=YOW`*YOW-bow`*XOW`*YOW; 
        MSSEow=SSEow/dfeow; 
        s2ow=sqrt(MSSEow); 
        L={0 1}; 
        dfrow=m; 
        SSRow=(L*bow)`*inv(L*cow*L`)*(L*bow); 
        MSSRow=SSRow/dfrow; 
        Fow=MSSRow/MSSEow; 
        ProbFow=1-PROBF(Fow#Fow,dfrow,dfeow); 
        SOURCE=(m||SSRow||MSSRow||Fow||ProbFow)//(d feow||SSEow||MSSEow||{.}||{.}); 
        sebow=sqrt(vecdiag(cow)#MSSEow); 
        Tow=bow/sebow; 
        ProbTow=1-PROBF(Tow#Tow,1,dfeow); 
        VARIABLE=bow||sebow||Tow||ProbTow; 
        pre2ow=XOW*bow; 
        stpre2ow=pre2ow; 
        create tete3.new var{pre2ow}; 
        append; 
        summary var {pre2ow} stat {mean std} opt {s ave}; 
        zpre2ow=(stpre2ow-pre2ow[,1])/pre2ow[,2]; 
        close tete3.new sastemp; 
        res2ow=YOW-stpre2ow; 
        zres2ow=res2ow/s2ow; 
        OBS=XOW[,2]||YOW||stpre2ow||zpre2ow||res2ow ||zres2ow; 
        print ,,,'LEAST SQUARES REGRESSION - Owen M odel', 
              SOURCE (|colname={DF SS MSS F ProbF} rowname={Reg Resid} format=9.5|),, 
              'PARAMETER ESTIMATES', 
              VARIABLE (|colname={B SEB T ProbT} ro wname={Int Slope} format=10.6|),,, 
              'PREDICTED VALUES AND RESIDUALS', 
              OBS (|colname={X Y YPred ZYPred Resid  ZResid} format=9.5|); 
        create tete6.new var{stpre2ow zpre2ow res2o w zres2ow}; 
        append; 
        sspre2ow=stpre2ow; 
        szpre2ow=zpre2ow; 
        sres2ow=res2ow; 
        szres2ow=zres2ow; 
        summary var {stpre2ow zpre2ow res2ow zres2o w} opt {save}; 
        close tete6.new sastemp; 
 
 
=================================================== ================================== 
Creates the results file A:\REG_RES.DBF. 
=================================================== ================================== 
        create tete2.new var{Y pre res zres sstpre2  szpre2 sres2 szres2 YOW preow 
        resow zresow sspre2ow szpre2ow sres2ow szre s2ow}; 
        append; 
        close tete2.new sastemp; 
proc dbload dbms=dbf data=tete2.new; 
        path='a:\reg_res.dbf'; 
        accdesc=tete4.exchange; 
        load; 
run; 
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APPENDIX A4 - BestFit 

 

BestFit is a software package for fitting probability distributions to data 

(Palisade Corporation, 1996). Selected statistical distributions can be fitted to 

a maximum of 30 000 data points. Results may be displayed numerically and 

graphically. The package allows the user to transfer all results, including 

graphs, statistics and distribution functions, to other programs (e.g. Excel, 

@Risk) for further analysis and presentation. Examples of output which can 

be generated are given in Appendix A5. 

 

BestFit goes through the following steps when attempting to find the “best fit” 

to the input data: 

 
• For each distribution type selected, a first guess for its parameters 

is made using Maximum Likelihood Estimators - MLEs (Bury, 1975; 
Law & Kelton, 1991; Walpole & Myers, 1993; Palisade Corporation, 
1996). 

• The fit is optimised (if the user wishes) using the  
Levenberg-Marquardt method (Press et al, 1992; Palisade 
Corporation, 1996). Otherwise, the maximum likelihood estimates 
for the parameters are adopted. The Levenberg-Marquardt method 
takes an iterative approach to minimise a goodness-of-fit statistic. 
The goodness-of-fit test used by BestFit for optimisation is the  
Chi-Square test. Note that the Levenberg-Marquardt method does 
not necessarily find the absolute minimum for the Chi-Square 
value; rather, it may find a local minimum. 

• The goodness of fit is measured for the distribution functions. For 
continuous distributions, BestFit can use the Kolmogorov-Smirnov 
(K-S) statistic and the Anderson-Darling (A-D) statistic, as well as 
the Chi-Square statistic (Bendat & Piersol, 1971; D'Agostino & 
Stephens, 1986; Law & Kelton, 1991; Press et al, 1992; Groebner 
& Shannon, 1993; Walpole & Myers, 1993; Palisade Corporation, 
1996). These tests provide an idea of how well a certain distribution 
fits the input data. 

• For continuous distributions, twenty distribution functions are 
compared and the one with the lowest goodness-of-fit value can be 
considered the “best fit” to the input data. Including continuous and 
discrete distributions, there are 26 statistical distributions available 
in BestFit (Evans et al, 1993; Palisade Corporation, 1996). 
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Despite its name, BestFit does not provide an absolute answer to the 

question of which distribution best fits the data. It identifies the likelihood that 

the input data is taken from a selected distribution. Before employing any 

fitted distribution obtained from BestFit, the user should assess the results 

quantitatively and qualitatively by examining the summary statistics and the 

results of the goodness-of-fit tests which BestFit produces, and by 

considering the graphs. 
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APPENDIX A5 - Fitting A Distribution To Data 

 

The choice of probability distribution to describe the randomness of a 

variable can have a large impact on the accuracy of the results of 

probabilistic calculations and on the quality of the decisions made using 

these results (Burcharth, 1992). Consequently, the task of selecting a 

distribution deserves special consideration, particularly if a sensitivity 

analysis of the problem confirms a significant contribution of the distribution 

to the final results (see Chapters 2 and 6). 

 

If it is possible to collect data on the input random variable of interest, these 

data can be used in one of the following two ways to specify a distribution 

(Law & Kelton, 1991): 

 
• The data values themselves are used to define an empirical 

distribution function. 

• Standard techniques of statistical inference are used to "fit" a 
theoretical distribution (e.g. Normal, Log-Normal) to the data, to 
calculate its parameters and to determine its goodness of fit. 

 

If a theoretical distribution can be found that fits the observed data 

reasonably well, then this approach is preferable to using an empirical 

distribution (Law & Kelton, 1991): i) a theoretical distribution "smooths out" 

the data and may provide information on the overall underlying distribution; ii) 

with a fitted theoretical distribution, values outside the range of the observed 

data can be generated, though care should be taken when considering 

extrapolated values (Copeiro, 1978; Carvalho, 1992b). 

 

This appendix investigates which distributions (if any) available in 

PARASODE and BestFit (Normal, Log-Normal, Gumbel, Rectangular, 

Gamma, Beta, Exponential, Rayleigh and Weibull) provide a reasonable 

model for the eB variable (Chapter 3). It discusses the three basic steps in 

specifying theoretical distributions on the basis of field and/or laboratory data 

(Law & Kelton, 1991): 

 
Step I To hypothesise the form of the distributions. 
Step II To estimate the parameters of the distributions. 
Step III To test the appropriateness of the fitted distributions. 
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The theoretical distribution of eB has been separately analysed for the three 

slopes of 1:1, 1:2 and 1:4, both for the H&R model and for Owen's model. 

The H&R model employed both (Rmax)37% and (Rmax)99% in defining the value 

of C. Similar conclusions were drawn in all cases. In this appendix, an 

illustrative example is provided for the H&R model, (Rmax)37%, for slope 1:1. 

 
 
A5.1 Hypothesise The Form Of The Distributions 
 

In modelling the physical world, the form of the probability distribution of a 

random variable may be deduced theoretically on the basis of assumptions 

about the reality. However, the process is often difficult. Firstly, the 

probability model needed to describe a physical phenomenon may not be 

formulated readily (Ang & Tang, 1975). Secondly, the functional form of the 

probability distribution may not be easily derived, although under certain 

circumstances, the properties of the physical process may suggest the form 

of the distribution. Therefore, on many occasions, the required probability 

distribution has to be inferred empirically, that is, based entirely on available 

observational data. This is the case in this study in hypothesising the form of 

the distribution of eB. 

 

In practice, the choice of the probability distribution may also be dictated by 

mathematical tractability and convenience. For example, because of the 

mathematical simplifications possible with the Normal distribution, and the 

wide availability of information associated with this distribution, it is frequently 

used to model non-deterministic problems, even when there is no clear basis 

for such a choice (Ang & Tang, 1975). 

 

The first stage in hypothesising a particular form of distribution from 

observed data is to decide what general characteristics the distribution is 

expected to have. In the second column of Table A5.1, summary statistics 

are presented for the input data corresponding to the H&R model, (Rmax)37%, 

slope 1:1. In Figure A5.1, a corresponding histogram based on 11 classes of 

width 0.23 is shown. Other graphs could have been used for general 

guidance (see, for example, Law & Kelton, 1991, for further details). 
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 INPUT 
DISTRIBUTION 

LOG 
NORMAL 

MAXIMA 
TYPE I 

(GUMBEL) 

 
GAMMA 

Parameter 1  -0.02065 0.888504 10.08094 
Parameter 2  0.318767 0.269917 0.102194 
Minimum 0.358773    
Maximum 2.879325    
Mean 1.030215 1.030615 1.044302 1.030215 
Mode 0.931626 0.884916 0.888504 0.928021 
Median 1 0.979562 0.987432 0.996358 
Standard Deviation 0.345835 0.337051 0.346182 0.324472 
Variance 0.119602 0.113603 0.119842 0.105282 
Skewness 2.560238 1.016094 1.139547 0.629911 
Kurtosis 10.41889 4.890328 5.4 3.595182 
Minimum 0.358773 0.358773 0.358773 0.358773 
Maximum 2.879325 2.879325 2.879325 2.879325 
P1 5 4.263141 3.569606 5.289339 
P2 20 22.51086 21.91579 20.26023 
P3 31 28.88299 29.31184 27.94029 
P4 26 20.36826 20.42403 21.86319 
P5 6 10.73151 10.76643 11.92440 
P6 4 4.857546 5.036838 5.063927 
P7 1 2.028647 2.239037 1.789538 
P8 1 0.813057 0.973808 0.549417 
P9 0 0.319959 0.419589 0.150933 
P10 0 0.125347 0.180068 0.037892 
P11 1 0.049301 0.077145 8.83E-02 
#Classes 11    
Interval Width 0.229141    

Results 
Chi-Square Test Value  23.69993 17.00955 116.4673 
Confidence  Rejected >0.07 Rejected 
Rank  2 1 3 
Kolmogorov-Smirnov Test Value  0.077729 0.086047 0.086107 
Confidence  >0.15 * >0.05 >0.15 * 
Rank  1 2 3 
Anderson-Darling Test Value  0.845229 0.811245 0.782497 
Confidence  >0.15 * >0.025 >0.15 * 
Rank  3 2 1 
Confidence     
Chi-Square Adjusted Value  23.69993 17.00955 116.4673 
Critical Value @ .75  6.737201 6.737201 6.737201 
Critical Value @ .5  9.341818 9.341818 9.341818 
Critical Value @ .25  12.54886 12.54886 12.54886 
Critical Value @ .1  15.98717 15.98717 15.98717 
Critical Value @ .05  18.30703 18.30703 18.30703 
Critical Value @ .025  20.48317 20.48317 20.48317 
Critical Value @ .01  23.20925 23.20925 23.20925 
Kolmogorov-Smirnov Adjusted Value  0.767816 0.838685 0.850573 
Critical Value @ .15  1.138 0 1.138 
Critical Value @ .1  1.224 0.803 1.224 
Critical Value @ .05  1.358 0.874 1.358 
Critical Value @ .025  1.48 0.939 1.48 
Critical Value @ .01  1.628 1.007 1.628 
Anderson-Darling Adjusted Value  0.845229 0.81291 0.782497 
Critical Value @ .15  1.61 0.474 1.61 
Critical Value @ .1  1.933 0.637 1.933 
Critical Value @ .05  2.492 0.757 2.492 
Critical Value @ .025  3.07 0.877 3.07 
Critical Value @ .01  3.857 1.038 3.857 
Targets     
#1 Value 0.683968 0.651058 0.663384 0.642357 
#1 Percentile% 10% 10% 10% 10% 
#2 Value 0.852544 0.828771 0.8384 0.838712 
#2 Percentile% 30% 30% 30% 30% 
#3 Value 1 0.979562 0.987432 0.996358 
#3 Percentile% 50% 50% 50% 50% 
#4 Value 1.133459 1.157788 1.166769 1.172682 
#4 Percentile% 70% 70% 70% 70% 
#5 Value 1.382523 1.473818 1.495916 1.461741 
#5 Percentile% 90% 90% 90% 90% 
#6 Value 1.571693 1.654788 1.69021 1.61543 
#6 Percentile% 95% 95% 95% 95% 

 Table A5.1: Statistical report obtained from BestFit for the H&R model, 
(Rmax)37%, slope 1:1. 
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 Figure A5.1: Histogram of the input data for the H&R model, 

(Rmax)37%, slope 1:1. 

 

 

The shape of the histogram strongly suggests that the actual underlying 

distribution is skewed to the right (i.e. its right tail is longer than its left tail). 

This fact is supported by the values in Table A5.1 which show that the mean 

(1.0302) is 10.6% bigger than the mode (0.9316), and the skewness is 2.56 

(the skewness is zero for a symmetric distribution). These characteristics of 

the input data appear to rule out symmetric distributions (in this case, the 

Normal and the Rectangular distributions). Furthermore, the kurtosis of the 

input distribution is 10.42, bigger than 3, which indicates distributions with 

"thicker" tails than for a Normal distribution. The coefficient of variation, 
σ µ/ .= 0 336 , makes it fairly unlikely that the actual distribution could be 

Exponential (Law & Kelton, 1991) which has a coefficient of variation of 1. 

On the other hand, the Log-Normal, Gumbel, Gamma, Beta, Rayleigh and 

Weibull distributions can all take on shapes similar to that of the histogram 

shown in Figure A5.1. So, it seems that, potentially, eB may be described by 

any of these distributions and they are proposed here as candidate 

distributions. 

 
 
A5.2 Estimate The Parameters Of The Distributions 
 

After one or more candidate distributions have been hypothesised, the 

values of the parameters of these distributions are estimated so that the 



Fitting A Distribution To Data 

A5-5 

distributions may be used in the FORM analysis and in simulation. BestFit 

uses both the Maximum Likelihood Estimators (MLEs) and the  

Levenberg-Marquardt method to estimate the parameters of the distributions 

from the input data (see Appendix A4 for further details). 

 
 
A5.3 Test The Appropriateness Of The Fitted Distributions 
 

After identifying the candidate distributions and estimating their parameters, 

they must be examined to assess how well they represent the data. If an 

objective assessment is desired, statistical goodness-of-fit tests should be 

used in conjunction with probability plots (Ang & Tang, 1975). This approach 

has been used here. The Log-Normal, the Gumbel and the Gamma 

distributions performed better than the others in describing eB. So, for 

convenience, the results shown below are limited to these three distributions. 

The fact that the analysis did not suggest one "best" distribution is not 

surprising: there are insufficient data to identify unambiguously one 

distribution as the most appropriate (Melchers, 1987). 

 

 

A5.3.1 Probability Plots 

First, graphs comparing the histogram of the data with the probability density 

functions of the fitted distributions have been plotted (Figure A5.2). In 

general, the agreement between the theoretical distributions and the input 

data seems good. 

 

Figures A5.3 and A5.4 show the P-P and the Q-Q graphs plotted for the 

three distributions (see Appendix A1 for explanations of P-P and Q-Q plots). 

Clearly, the three hypothesised distributions appear to fit the input data 

equally well both in the body and at the tails. As expected (Appendix A1), the 

data points are not randomly scattered about the straight lines. 
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 Figure A5.2: Comparison of theoretical probability density functions 
for eB with input data. 
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Figure A5.3: Comparison of theoretical cumulative distribution 
functions for eB with input data. 
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Figure A5.4: Comparison of theoretical quantiles for eB with input data 
quantiles. 
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A5.3.2 Goodness-Of-Fit Tests 

A graphical approach for testing hypothesised distributions should always be 

complemented by statistical goodness-of-fit tests. A goodness-of-fit test 

assesses formally whether the observations X1,...,XN can be considered to 

be a sample from a particular distribution with cumulative distribution function 
FX

F . It can be used to test the null hypothesis Ho: The Xi's are independent 

random variables with cumulative distribution function FX
F  (Law & Kelton, 

1991). The acceptance or rejection of Ho depends on the significance level, 
α . Ho is accepted at the α  level of significance if the test value is less than 

or equal to the critical value associated with α . If the test value is greater 

than the critical value, then the assumed distribution is rejected at the α  

level of significance. A distribution that is acceptable at one significance level 

may be unacceptable at another significance level. 

 

The choice of α  is largely a subjective matter (Ang & Tang, 1975). If the 
chosen α  is very small (say, 0.001), the null hypothesis might not be 

rejected even if appreciable differences exist between the two distributions 
(type II error). If the chosen α  is large (say, 0.20), rejection of the null 

hypothesis could well occur even when the two distributions are almost 

identical (type I error). So, there is the need to compromise between type I 

and type II errors when choosing a significance level (Groebner & Shannon, 

1993). α  is commonly set at 0.05 (Hutchinson, 1993), although there is no 

logical reason to select this particular value. Preferably, goodness-of-fit tests 
should be performed for several values of α , allowing the user to determine, 

approximately, the highest level of significance at which the hypothesised 
distribution should not be rejected. In BestFit the significance level, α , is 

indicated as "confidence" and the critical values for each test are indicated 
as "Critical Value @ α " (see Table A5.1). 

 

Importantly, goodness-of-fit tests may reject a model as inadequate, but they 

can never prove that a model is correct. 

 

Sample size is crucial in influencing decisions based on statistical tests. 

Such tests are often not very powerful for small to moderate sample sizes: 

they might not be sensitive to subtle disagreements between the data and 

the fitted distribution. They should be regarded as a systematic approach for 

detecting fairly gross differences. On the other hand, if the sample is very 

large, these tests will almost always reject Ho (Law & Kelton, 1991). Since 



Fitting A Distribution To Data 

A5-10 

Ho is virtually never exactly true, even a minor departure from the fitted 

distribution will be detected for large samples. 

 

The tests mentioned here are those used by BestFit: the Chi-Square test, the 

Kolmogorov-Smirnov (K-S) test and the Anderson-Darling (A-D) test. 

D'Agostino & Stephens (1986) describe other goodness-of-fit tests and 

stress that no one test is optimal for all possible deviations from the 

hypothesised distribution. In fact, tests might not provide a unique answer. 

The ranking of the distributions for one test is unlikely to be identical with that 

from another test due to their different characteristics: 

 
• The Chi-Square test is the most common goodness-of-fit test due 

to its flexibility and ease of use; but it requires the input data to be 
grouped into classes and there are no firm guide-lines for selecting 
the number and size of these classes. Unfortunately, results 
depend, to some degree, on the number and size of the classes 
adopted. BestFit uses, as the default, Scott's Normal approximation 
(Law & Kelton, 1991) to calculate the number of classes, k, from 
the number of data points, N: k=(4N)2/5. But other formulations can 
be applied (see, for example, Hahn & Shapiro, 1967; Law & Kelton, 
1991). For the Chi-Square test, the distribution which has the 
smallest value of the test statistic is ranked in first place. The  
Chi-Square statistic is defined as (Law & Kelton, 1991): 

 

  χ2
2

1
=

−
=
∑

( )N Np

Np
j j

jj

k

 (A5.1) 

 

where Nj is the number of Xi's in the jth class (note that N Nj
j

k

=∑
=1

); 

pj is the expected proportion of the Xi's that would fall in the jth 
class if sampling was done from the fitted distribution. 

 

• The K-S test does not require the data to be grouped into classes 
but is poor of detecting tail discrepancies. The K-S statistic is  
(Law & Kelton, 1991): 

 

  [ ]D F x F xN X X
F= −sup ( ) ( )  (A5.2) 

 
 where F xX

F( )  is the hypothesised cumulative distribution function 
evaluated at X=x; FX(x)=NX/N is the empirical cumulative 
distribution; NX is the number of Xi's less than or equal to x, 
i=1,...,N; "sup" means the smallest upper bound on members of the 
set [...]. "sup" is used here instead of the more familiar "max" since, 
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in some cases, the maximum may not be well defined (Law & 
Kelton, 1991). 

• The A-D test does not require the data to be grouped into classes 
and places more emphasis on tail values than the K-S test. The 
form of the A-D statistic used for computations is (Law & Kelton, 
1991): 
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 where Z F xi X

F
i= ( )  and the other variables are defined as 

previously. 

 

For the K-S and the A-D tests, the distribution which has the smallest value 

of the adjusted test statistic is ranked in first place (see Table A5.1). The 

adjustment performed to the actual test statistic depends on the distribution 

(for more details, see Law & Kelton, 1991; Palisade Corporation, 1996). 

 

In BestFit, no account is taken of the fact that the parameters of the 

distributions are estimated from the input data: for the Chi-Square test, the 

critical value used for comparison with the actual value of the test  

is the upper α  critical point for a Chi-Square distribution with k-1  

degrees of freedom, χ α2 1(k ; )− , and not k-m-1 degrees of freedom 

(Palisade Corporation, 1996), where k is the number of classes and m is the 

number of parameters of the distribution estimated from the data. Ho is 
rejected only if χ χ α2 2 1> −(k ; ) . This is often recommended (Law & Kelton, 

1991) since it is conservative. Thus, the actual probability of rejecting Ho 

when it is true (type I error) is at least as small as the stated probability, α . 

On the other hand, the probability of a type II error (the probability of not 

rejecting a false Ho) is increased. 

 

Note that, unlike the Chi-Square test, where the critical values are the same 

for all distributions, the K-S and the A-D tests include special cases 

depending on the distribution (for more details, see Palisade Corporation, 

1996). 

 

In Table A5.1, the Chi-Square test rejects the Log-Normal and the Gamma 
distributions at any of the usual α  levels. On the other hand, the values of 

χ α2 10( ; )  for α < 0 07.  for the Gumbel distribution, are not exceeded by the 
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test value χ2 17= ; so, Ho for the Gumbel distribution should not be rejected 

at the α < 0 07. level. Thus, this test gives no reason to conclude that the 

input data is poorly fitted by the Gumbel(0.889, 0.270) distribution but it 

suggests that the probability is very low that the input data came from the 

Log-Normal(-0.021, 0.319) or the Gamma(10.08, 0.102) distributions. 

 

According to the K-S test, the Log-Normal and the Gamma distributions 

should not be rejected for any of the levels of significance listed ( α < 015. ) 

and the Gumbel distribution should not be rejected for α < 0 05. . Thus this 

test gives no reason to conclude that the input data is poorly fitted by any of 

the three distributions. 

 

The A-D test also suggests that the Log-Normal and the Gamma 

distributions should not be rejected at any of the levels of significance listed 

( α < 015. ). The Gumbel distribution should not be rejected at the 2.5% level 

(since the adjusted value 0.813 is less than the critical A-D test value for 
α < 0 025. ) but it should be rejected for larger values of α . 

 
 
A5.4 Main Conclusions Of The Analysis 
 

This appendix provides some guidance on how a theoretical distribution 

should be fitted to data. An illustrative example is given for the H&R model, 

(Rmax)37%, slope 1:1. 

 

From the statistics presented in Table A5.1 and from Figures A5.1 to A5.4, it 

can be inferred that the Log-Normal, Gumbel and Gamma distributions 

provide reasonable representations of the input data. It can also be inferred 

that there is little to choose between the three distributions since they 

perform almost equally well. 

 

In summary, there is no reason to believe, based on the figures shown 

above and on the statistical tests performed, that any of the three 

distributions should be rejected as adequate models for describing the 

randomness of eB. Similar conclusions may be drawn by looking at all other 

cases. 
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Example Of Input And Output For 
DUNEPROB And DUNE 
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The computer programs DUNEPROB and DUNE introduced in Chapter 4 

have been run for the same data set representing conditions near Hook of 

Holland (Figure B.1). 

 

 

 

 Figure B.1: Exceedance curve for the maximum storm surge level, Hook 
of Holland (modified after Van de Graaff, 1983). 

 

 

The main purpose of this appendix is to show, with an example, that the 

input data related to the seven main erosion parameters is strongly 

orientated to conditions in The Netherlands. For this reason, only the data 

related to these seven parameters is shown in detail. Any additional input is 

mentioned only briefly. Results for the current example which are relevant to 

the discussion are also presented and compared. 

 

 

DUNEPROB 

 

The program starts by asking the user for a filename (e.g. Hook). It uses this 

information to name the four required input files: 

 
 Hook.Pro - contains the pairs of coordinates (X,Y) of the initial profile. 

 Hook.For - contains the information required for a FORM calculation 
(e.g. maximum number of iterations, number of FORM 
calculations). 
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 Hook.Ran - contains the random variables and their statistical 
properties. 

 Hook.AB - contains the parameters required to define the distribution 
of the significant wave height as a function of the surge 
level during storm conditions. 

 

Table B.1 shows the data provided in this example for the input file 

Hook.Ran. 

 

 

Variable Distribution µµµµ  σσσσ  

h (m) Exponential 2.1894 0.3322 
D50 (m) Deterministic 225E-6 0 
HS_Inacc (m) Normal 0 0.6 
Surcharge (-) Normal 0 1 

 Table B.1: Input file Hook.Ran for the current example. 

 

 

The following data have been provided for the input file Hook.AB (see  

Figure B.1 and eqs. (4.5) and (4.6) in Section 4.5.2.2 of the main text): 

 
• a=3.795 
• b=0.444 
• Hwavemax=10m 

 

Table B.2 shows the main results obtained for a retreat distance with a 

probability of exceedance of approximately 10-5/year. The retreat distance is 

118.5m. From the sensitivity parameters, α2 , the most important 

contribution to the resulting variance is given by the surge parameter, a 

figure of 95%, indicating that this parameter is by far the most important one. 

The minor contribution of HS to the resulting variance seems strange. Note, 

however, that due to the relationship between the maximum surge level and 
the significant wave height, αH Inaccs _ .2 0 01=  represents only the effect of the 

variability in HS about its expected value. In this case, σHS
m= 0 60. . 
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Variable Design Point ∂∂∂∂ ∂∂∂∂Z X/  αααα2
 

h (m) 5.483E+00  -3.484E+01 0.95 

HS_Inacc (m) 1.652E-01  -5.592E+00 0.01 

Surcharge (-)  8.083E-01  -9.861E+00 0.04 

 Target Coordinate = -1.185E+02 
 P(Z ≤ 0) = 3.367E-05 

Table B.2: Relevant DUNEPROB results for the current example. 

 

 

DUNEPROB can also output results in the form of figures. For example, the 

probability of failure can be plotted as a function of the retreat distance. 

 

 

DUNE 

 

To run the program DUNE for the present example, the following two input 

data files are required: 

 
 Hook.Pro - contains the pairs of coordinates (X,Y) of the initial profile. 

 Hook.In - contains the values adopted for the maximum water level 
during surge, significant wave height, peak wave period and 
sand diameter (see Section 4.5.3); it also contains the 
parameter GO which allows longshore transport to be 
considered (see Table 4.4); some settings for the dune 
erosion calculation are also part of this file. 

 

For the present example (Ministerie van Verkeer en Waterstaat, 1994): 

 
• Maximum water level during surge 5.7m 
• Significant wave height   8.6m 
• Peak wave period   12s 
• Sand diameter   225E-06m 
• GO   0m3/m 

 

The main results are presented in Table B.3. 
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Erosion Quantities (m3/m) 
 

 Erosion above surge level      = -219.52 
 Surcharge above surge level     = -74.88 

 

 
Distances (m) 

 
 Erosion distance       = 88.34 
 Shift distance for the surcharge    = 30.53 
 Total retreat distance     = 118.87 

 

Table B.3: Relevant DUNE results for the current example. 

 

 

DUNE gives a retreat distance of 118.87m associated with a probability of 

failure of 10-5/year. As expected, this value is almost the same as the one 

obtained with DUNEPROB (118.5m). 

 

Note that DUNE produces more numerical output than is illustrated here. It 

also provides graphical output showing the initial dune profile, Vellinga's 

post-storm profile and the limiting profile. 
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PARASODE 
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APPENDIX C1 - Flowcharts Of The Program 

 

 

 Figure C1.1: Simplified flowchart of PARASODE for Mode 1. 
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 Figure C1.2: Simplified flowchart of PARASODE for Mode 2. 
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APPENDIX C2 - Flowchart Of Subroutines 

 

 
 Figure C2.1: Flowchart showing the subroutines used in PARASODE. 
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APPENDIX C3 - Tables Of Pre-Defined Distributions 
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APPENDIX C4 - User-Defined Distributions 

 

C4.1 Observed Water Levels At Liverpool 
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Figure C4.1:  Probability density function and cumulative 
distribution function of observed water levels  
at Liverpool (LBD=Liverpool Bay Datum; 
OD=Ordnance Datum; OD=LBD-4.93m). 

 

 

The PDF and CDF are based upon 45992 values collected into classes of 

0.1m interval by Proudman Oceanographic Laboratory (POL), UK. Results 

have been smoothed using a nine-point moving average. 
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Figure C4.2:  Probability density function and cumulative 
distribution function of observed extreme water 
levels at Liverpool (LBD=Liverpool Bay Datum; 
OD=Ordnance Datum; OD=LBD-4.93m). 

 

 

The distributions of extreme water levels are based on information provided 

by Blackman (1997), POL. 
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C4.2 Predicted Tide Levels At Liverpool 
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Figure C4.3:  Probability density function and cumulative 
distribution function of predicted tide levels  
at Liverpool (LBD=Liverpool Bay Datum; 
OD=Ordnance Datum; OD=LBD-4.93m). 

 

 

The PDF and CDF are based upon 47076 values collected into classes of 

0.1m interval by POL. Results have been smoothed using a nine-point 

moving average. 
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APPENDIX C5 - Details Of Dune Erosion Calculations 

 

In PARASODE, the methods used to calculate the areas of erosion and 

accretion and to test the required balance between these areas depend on 

the direction of the sand movements: 

 
• If movements are allowed only seaward (see Figures C5.1 and 

C5.2), PARASODE: 

1) Calculates area C which lies between the surge level, the 
nourished profile above surge level and the gradient 1:md. Note 
that if (S1,T1)=(S3,T3) then area C is zero (see  
Figures C5.1(a) and C5.2(a)). 

2) Calculates area B which lies between the surge level and the 
gradient 1:mt. Note that if (S9,T9) is below the nourished 
profile, area B is zero (see Figure C5.2). 

3) Calculates area E which lies between points (S9,T9), (S2,T2), 
the surge level and the nourished profile. Note that if (S9,T9) is 
below the nourished profile, area E is zero (see Figure C5.2). 

4) Calculates the Y-coordinates, YPV, of Vellinga's points, 
(XPV,YPV), corresponding to the X-values of the points in the 
nourished profile; the total number of points in Vellinga's profile 
is NPV. 

5) Determines the intersection points between the two profiles. 
Where the nourished profile is above Vellinga's profile, it is 
considered a hump. A hump starts at (XHStart,YHStart) and 
finishes landward at (XHEnd,YHEnd). If the nourished profile is 
below Vellinga's profile, it is considered a depression. A 
depression starts at (XDStart,YDStart) and finishes landward at 
(XDEnd,YDEnd). The total number of humps is NumHump and 
the total number of depressions is NumDep. 

6) Calculates the areas of the humps, BH, and of the depressions, 
BD. The corresponding cumulative areas, SHump and SDep, 
from the seaward to the landward limits of the profiles, are also 
calculated. These areas include area C and area E-B. Note that 
if (S9,T9) is below the nourished profile (see Figure C5.2), 
since movements of sand are allowed only seaward, the first 
hump and its area have to be neglected, and the number of 
humps, together with areas BH and SHump have to be 
adjusted. 

7) Calculates the error, Err, in the balance between erosion and 
accretion, i.e. determines the difference in the areas of the 
humps and the areas of the depressions. The idea is that sand 
in a hump is used to fill the depressions situated seaward of the 
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hump until it is depleted. A value for the absolute error of less 
than 1m3/m is required. If Err>1m3/m, then accretion exceeds 
erosion and Vellinga's profile has to be moved landward. If 
Err<-1m3/m, then erosion exceeds accretion and Vellinga's 
profile has to be moved seaward if S S8 1≠ ; if S8=S1, no 
erosion of the nourished profile is expected (C=0). 

8) If a balance has not yet been achieved, the new X-coordinate 
of the starting point of the parabolic part of the profile, S8, is 
calculated, along with the new points (S9,T9), (S2,T2), and 
(S3,T3). Calculations 1) to 7) are then repeated until a balance 
is achieved. 

 
• If movements are allowed in both directions (see Figures C5.3  

and C5.4), PARASODE: 

1) Calculates area A which lies between the surge level and the 
parabolic part of Vellinga's profile. 

2) Calculates area C which lies between the surge level, the 
nourished profile above surge level and the gradient 1:md. Note 
that if (S1,T1)=(S3,T3) then area C is zero (see  
Figures C5.3(a) and C5.4(a)). 

3) Calculates area B which lies between the surge level and the 
gradient 1:mt. Note that if (S9,T9) is below the nourished 
profile, area B is zero (see Figure C5.4). 

4) Calculates area Q which lies between the surge level and the 
nourished profile below surge level. 

5) Calculates the error, Err, in the balance between erosion and 
accretion (Err=Q-B-A-C). A value for the absolute error of less 
than 1m3/m is required. If Err>1m3/m, then accretion exceeds 
erosion and Vellinga's profile has to be moved landward. If 
Err<-1m3/m, then erosion exceeds accretion and Vellinga's 
profile has to be moved seaward if S S8 1≠ ; if S8=S1, no 
erosion of the nourished profile is expected (C=0). 

6) If a balance has not yet been achieved, the new X-coordinate 
of the starting point of the parabolic part of the profile, S8, is 
calculated, along with the new points (S9,T9), (S2,T2), and 
(S3,T3). Calculations 1) to 5) are then repeated until a balance 
is achieved. 

 

Once the final position of Vellinga's profile and erosion area C are known, a 

surcharge on C, TSurch, is required (see Figure C5.5) as follows: 

 

 TSurch SurchEros SurchLongT= +  (C5.1) 
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SurchEros is a surcharge on erosion area C which takes account of the 

effects of the storm surge duration, of the gust bumps, and of the accuracy 

of the computation (see Section 4.5.2). SurchLongT is a surcharge on 

erosion area C which accounts for the effect of a gradient in the longshore 

transport rate (according to eq.(4.9)). These surcharges are expressed as an 

additional movement, SurD, of the dune face. Note that TSurch can be 

positive (see Figure C5.5(a)) or negative (see Figure C5.5(b)) since the 

effects of the surge duration and of the accuracy of the computation can take 

positive or negative values. 

 

The surcharge distance, SurD, is determined such that the area D between 

the two 1:md gradients, the surge level and the nourished profile, is equal to 

TSurch. An absolute error, Err1, of 1m3/m in the difference between D and 

the absolute value of TSurch is allowed. If Err1>1m3/m, then the surcharge 

distance is too big, and a new calculation of D is required for a smaller value 

of SurD. If Err1<-1m3/m, then the surcharge distance is too small, and a new 

calculation of D is required for a bigger value of SurD. 

 

The X-coordinate of the point of intersection between the surge level and the 

gradient 1:md of the surcharge is S10. The intersection point between the 

nourished profile and the surcharge gradient 1:md has coordinates (S4,T4). 
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 Figure C5.1:  Notation used for sand balance when movements of sand 
are allowed only seaward - example 1. 
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 Figure C5.2:  Notation used for sand balance when movements of sand 
are allowed only seaward - example 2. 
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 Figure C5.3:  Notation used for sand balance when movements of sand 
are allowed seaward and landward - example 1. 
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 Figure C5.4:  Notation used for sand balance when movements of sand 
are allowed seaward and landward - example 2. 
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 Figure C5.5:  Surcharge on erosion area C. 
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APPENDIX C6 - Contents Of Input And Output Files 

 

In all five input data files required by PARASODE, each piece of information 

has to be typed on a different line, except if otherwise specified. Data 

provided on the same line should be separated by a few blanks. The decimal 

places are separated by "." . In all input files, the character "!" is followed by 

a comment. It describes the input given on that line and the following lines, 

until the next comment appears. Examples of input files are given in 

Appendices D1 and D3. 

 

PARASODE contains pre-set constants. The user must be aware of these 

values when providing input data. They are tabulated below. 

 

 

PRE-SET CONSTANTS IN PARASODE 

Definition Limit 

Maximum number of FORM calculations 10 

Maximum number of iterations in each FORM calculation 200 

Maximum number of time-varying actions 5 

Maximum number of combinations of actions 16 

Maximum number of random variables describing the 
failure mode 15 

Maximum number of points defining the initial dune profile 100 

Maximum number of iterations to find the position of 
Vellinga's profile 999 

Maximum number of iterations to find the position of the 
dune final face 999 

Table C6.1:  Pre-set constants in PARASODE. 

 

 

Note that the program execution may be terminated at any time by pressing 

simultaneously the keys "Ctrl" and "Pause". 

 

 



Contents Of Input And Output Files 

C6-2 

general.dad 

 

The file general.dad should contain the following information in the order 

shown below. 

• Choose the failure mode to be studied by giving a number as follows: 

1 - Overtopping (H&R) 
2 - Overtopping (Owen) 
3 - Dune Erosion (Vellinga) 

• Choose how the still-water-level is defined by giving a number as 
follows: 

1 - Total level 
2 - Tide + Surge 

• If "Overtopping (H&R)" is selected, choose the confidence value of 
the maximum run-up to be considered by giving a number as 
follows: 

1 - 37% 
2 - 99% 

• If "Overtopping (H&R)" or "Overtopping (Owen)" are selected, 
choose the method of calculation of the first partial derivatives of 
the failure function by answering “Y” or “N” to the following 
question: 

“Are the first derivatives of the failure function supplied (Y/N) ?” 

• If "Dune Erosion (Vellinga)" is selected, choose the direction of the 
sand movements occurring during a storm surge by giving a 
number as follows: 

1 - Movements of sand in both directions 
2 - Movements of sand only seaward 

• Choose the purpose of the analysis by giving a number as follows: 

1 - Reliability analysis for a specified design (Mode 1) 
2 - Design for a specified reliability level  (Mode 2) 

• Input the design life of the structure (in years). 

• If Mode 1 has been selected, choose whether combinations of 
actions are to be considered or not by answering “Y” or “N” to the 
following question: 

“Would you like to consider combinations of actions (Y/N) ?” 
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If “Y” is selected: 

• Choose the number of combinations of actions to be 
considered by giving a number as follows: 

1 - The number of time-varying actions (k) 
2 - 2k-1 

• Choose which distributions should be provided for each 
combination of actions by giving a number as follows: 

1 - The basic distributions 
2 - The modified distributions 

• Give the number of time-varying actions (the maximum number 
allowed by the program is 5). 

• If the distributions provided are the basic distributions, give the 
number of time-varying actions and corresponding repetitions in 
the design life of the structure. For each time-varying action, 
these two pieces of data are given on the same line. The 
number of lines taken is equal to the number of time-varying 
actions and they are presented in increasing order of the 
number of repetitions. 

• If the program is to be run for Mode 1, give the value of the design 
parameter for which the failure probability is to be found. 

• If the program is to be run for Mode 2, give: 

• A starting value of the design parameter. 

• The target probability of failure. 

 

 

form.dad 

 

The file form.dad should contain the specifications required for a FORM 

calculation: 

 
• If no combinations of actions are considered, choose the starting 

point for the FORM calculations by giving a number as follows: 

1 - Default values (mean values) 
2 - User specified values 

If "User specified values" are chosen, give the starting values of the 
random variables (deterministic variables should be ignored). 

• If combinations of actions are considered and the distributions 
provided are the modified distributions, then either "Default values 
(mean values)" or "User specified values" should be supplied for 
each combination of actions. 
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• If no combinations of actions are considered, choose the limiting 
values for the variables by giving a number as follows: 

1 - Default values (+/- 1E25) 
2 - User specified values 

If "User specified values" are chosen, give, in the same line, the 
minimum value and the maximum value for each random variable 
(deterministic variables should be ignored). 

• If combinations of actions are considered and the distributions 
specified are the basic ones, give the same information as above. 
The program assumes, subsequently, that the limiting values are the 
same for all combinations of actions. 

• If combinations of actions are considered and the distributions 
specified are the modified ones, give the same information as above 
as many times as the number of combinations of actions considered. 

• Give the maximum number of iterations allowed for each FORM 
calculation (the maximum number allowed by the program is 200). 

• Give the number of FORM calculations to be performed (the 
maximum number allowed by the program is 10). 

• Give the target values for the FORM calculations. 

• Choose the required relative accuracy of the reliability index by 
giving a number as follows: 

1 - Default value (1%) 
2 - User specified value 

If "User specified value" is chosen, give a value within the range 
[0,1]. 

• Choose the required smoothing coefficient for the iteration process 
by giving a number as follows: 

1 - Default value (0) 
2 - User specified value 

If "User specified value" is chosen, give a value within the range 
[0,1]. 

• Choose the required accuracy of the failure function by giving a 
number as follows: 

1 - Default value (1%) 
2 - User specified value 

If "User specified value" is chosen, give a value within the range 
[0,1]. 
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meandev.dad 

 

The file meandev.dad should contain the characteristics of the random 

variables. For each variable, the following input is required: 

 
• The type of distribution - Specify a number as follows: 

Pre-Defined Distributions 

0 - Deterministic   "Det" 
1 - Normal    "Nor" 
2 - Log-Normal   "LgN" 
3 - Maxima Type I (Gumbel) "Gum" 
4 - Rectangular (Uniform)  "Uni" 
5 - Gamma    "Gam" 
6 - Beta    "Bet" 
7 - Maxima Type II (Frechet) "Fre" 
8 - Exponential   "Exp" 
9 - Rayleigh    "Ray" 
10 - Minima Type III (Weibull) "Wei" 

User-Defined Distributions 

11 - Water Levels   "UD1" 
12 - Extreme Water Levels  "UD2" 
13 - Tide Levels   “UD3” 

The abbreviations used in the program are given above in inverted 
commas. 

• If the variable is deterministic, give its constant value. 

• If the variable has a user-defined distribution, the mean and the 
standard deviation are required in the same line. Note that in this 
case, an ASCII data file has to be prepared containing the values of 
the variable, Xi, and the corresponding values of the PDF and the 
CDF. Intermediate values are obtained by linear interpolation. 

• If the variable is not deterministic or it does not have a user-defined 
distribution, choose the type of truncation, by giving a number as 
follows: 

0 - Not truncated 
1 - Truncated for X above Xo 
2 - Truncated for X below Xo 

• For the failure mode overtopping, if the variable is the significant 
wave height, the seawall toe level, TL, has to be given. In this case, 
if the distribution is truncated on the right side, Xo is calculated from 
eq. (5.4). If the distribution is truncated on the left side, give the 
value of Xo. 

• For other truncated distributions, give the value of Xo. 
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• If the variable is described by a Weibull distribution then the mean, 
the standard deviation and the lower limit have to be specified in 
this order, in the same line. 

• If the variable is described by a Beta distribution then the mean, the 
standard deviation, the lower limit and the upper limit have to be 
specified in this order, in the same line. 

• If the variable is not Weibull or Beta distributed, only the mean and 
the standard deviation are required, in the same line. 

 

If combinations of actions are considered with modified distributions, then the 

input data for all the variables have to be repeated for each combination of 

actions. Alternatively, if basic distributions are given, the input data for all the 

variables are required only once. This is because the characteristics of the 

variables are the same for all combinations of actions; what differs in each 

combination is the power to which each distribution is raised  

(see Section 2.3.3.3). 

 

 

coefcor.dad 

 
The file coefcor.dad should contain the correlation coefficients, ρij , of the 

random variables. For example, for i=1,...,3 and j=1,...,3, they should be 

listed in the following order: 

 
 ρ11  
 ρ12  
 ρ13  
 ρ21  
 ρ22  
 ρ23  
 ρ31  
 ρ32  
 ρ33  
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perfil.dad 

 

The file perfil.dad should contain the following dune erosion parameters: 

 
• Coastal curvature in degrees per 1000m. 

• Number of points defining the initial profile (the maximum number 
allowed by the program is 100). 

• Beach profile coordinates, (XP,YP). The coordinates of each point 
should be provided in the same line, with the Y-coordinate following 
the X-coordinate. The coordinates should be given, starting at the 
most landward location and moving seaward. Note that the X values 
are positive seaward and the Y values are positive upward, with 
respect to the origin of coordinates. 

• Number of points to be changed in the initial profile. 

• Number of the first point to be changed. 

• Gradient of the eroded dune face, 1:md (md should be provided). 

• Gradient of the toe of the post-storm profile, 1:mt (mt should be 
provided). 

• Nourishment top level. 

• Gradient of the nourished face, 1:mnour (mnour should be provided). 
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C       ########################################### ##################### 
C 
C       PARASODE (Probabilistic Assessment of Risks  Associated with  
C                 Seawall Overtopping & Dune Erosio n) 
C 
C       ########################################### #####################        
C       
C       PARASODE is a Level II FORTRAN 77 program w hich uses the First  
C       Order Reliability Method (FORM) for assessi ng the safety of  
C       coastal structures. In particular, it conce ntrates on the  
C       potential failure mechanisms associated wit h wave overtopping of  
C       seawalls & dune erosion. The amount of wave  overtopping is  
C       calculated by both the H&R equation & Owen' s formula; dune  
C       erosion is calculated using Vellinga's mode l. Although the  
C       program incorporates these two specific fai lure mechanisms, the  
C       majority of the code is generic & can be ad apted to other types 
C       of failure without undue difficulty.  
C       PARASODE incorporates routines for transfor ming the correlated  
C       variables to a set of non-correlated variab les & for mapping 
C       non-Normal distributions to equivalent Norm al distributions. 
C       PARASODE operates in two modes: 1) Mode 1, the analysis mode, 
C       in which the failure probability is calcula ted for a given value 
C       of the design parameter; 2) Mode 2: the des ign mode, in which  
C       the value of a specific design parameter is  calculated for a  
C       target probability of failure. Mode 1 allow s for combinations of   
C       time-varying actions using the method of Fe rry Borges &  
C       Castanheta (1983). 
C       SI units are used within the program, excep t if otherwise  
C       specified. 
C       The program execution may be terminated at any time by pressing, 
C       simultaneously, the keys "Ctrl" and "Pause" . 
C      
C       ########################################### #####################        
C 
C       INPUT VARIABLES: 
C       Optio - Data source 
C       Opti - End the run of the program or restar t calculations 
C 
C       MODELING VARIABLES: 
C       Opt - Failure mode 
C       TL - Seawall toe level 
C       FDer - Method of calculation of the first p artial derivatives of  
C              the failure function for overtopping  
C       DSWL - Definition of the SWL 
C       Mode - Purpose of the analysis 
C       Comb - Consideration or not of combination of actions 
C       NCombAc, CombAc - Number of combinations of  actions 
C       Q - Maximum number of combinations of actio ns allowed by the  
C           program 
C       NR - Power to which each distribution is ra ised for each  
C            combination of actions 
C       Distr - Distributions provided for the comb ination of actions 
C       N - Number of variables 
C       L - Maximum number of variables allowed by the program 
C       Ext - Abbreviation of the name of the varia ble 
C       ExtExt - Description of the variable 
C       ParamDesc - Description of the design param eter 
C       Rho - Correlation coefficient 
C       Mux - Mean of X 
C       Sigmax - Standard deviation of X 
C       VarDis - Type of distribution 
C       Abrev - Abbreviation of the name of the dis tribution 
C       Trunc - Type of truncation 
C       Xo - Point of truncation (if the distributi on is truncated) 
C       XMin - Minimum value of X 
C       XMax - Maximum value of X 
C       StartPt - Starting value of the variables 
C       MaxIter - Maximum number of iterations 
C       NumCalc - Number of FORM calculations 
C       L2 - Maximum number of FORM calculations al lowed by the program 
C       ReqBetaAcc - Required relative accuracy of the reliability index 
C       Smooth - Smoothing coefficient for the iter ation process 
C       ReqOBJFAcc- Required accuracy of the failur e function 
C       Life - Design life of the structure 
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C       StartParam - For Mode=1, it is the prescrib ed value of the  
C                    design parameter; For Mode=2, it is the starting  
C                    value of the design parameter (from which the  
C                    program iterates to find the r equired value of the 
C                    design parameter)   
C       Pf - Design target failure probability  
C       RelInd - Reliability index which correspond s to Pf 
C       Prob - Probability of failure for a specifi c FORM calculation 
C       Pro - Probability of failure for a specific  FORM calculation &  
C             for a specific combination of actions  
C       j, k0, Ex, Aux - Auxiliary variables 
C       TR, Zeta, Lamda, Eta, x1, x2, NPD, t, NPch,  NPDOld, MuxN, XP,  
C       YP, md, mt, mnour, nourtlev, ctcurv, XPOld,  YPOld, Ac, GB, SD,  
C       It, AuxRstar, C, C1,  
C       T3, OptC, OptD - Variables mentioned in the  Common statements  
C                        but not used here 
C 
C       OUTPUT VARIABLES: 
C       PFTotal - Total probability of failure cons idering all the  
C                 combinations of actions 
C       Reliab - Reliability associated with PFTota l 
C 
C       ########################################### #####################         
C         
 Implicit None 
 Integer*4 j,k0,Q,L,L2,N,NPD,Mode,Opt,Optio,FDer,Li fe,t,NPch, 
     1            NPDOld,OptD,Comb,CombAc,NCombAc,D istr,MaxIter, 
     1            NumCalc,Aux,It,AuxRstar,Ex,DSWL 
 Parameter (L=15) 
 Parameter (L2=10) 
 Parameter (Q=16) 
 Character*1 Opti 
 Character*3 Abrev(Q,L),Ext(L) 
 Character*17 ExtExt(L) 
 Character*19 ParamDesc 
 Integer*4 VarDis(Q,L),Trunc(Q,L) 
 Real*8 Mux(Q,L),Sigmax(Q,L),Zeta(Q,L),Lamda(Q,L),E ta(Q,L), 
     1         x1(Q,L),x2(Q,L),Rho(L,L),Prob(Q),PFT otal(L2),Reliab(L2), 
     1         Pro(Q,L2),StartParam,Pf,RelInd,MuxN, XP,YP,md,mt,mnour, 
     1         XPOld,YPOld,nourtlev,Ac,GB,SD,C,T3,c tcurv,TR(L2), 
     1         StartPt(Q,L),Xo(Q,L),XMax(Q,L),XMin( Q,L),ReqBetaAcc, 
     1         Smooth,ReqOBJFAcc,NR(Q,L),TL,C1 
 Common/BLOCK1/NPD,XP(100),YP(100) 
 Common/BLOCK2/t,NPch,XPOld(100),YPOld(100),NPDOld 
 Common/BLOCK3/MuxN(15),C,T3 
 Common/BLOCK4/md,mt,mnour,nourtlev,ctcurv 
 Common/BLOCK5/Ac,GB,SD 
 Common/BLOCK6/OptD 
 Common/BLOCK7/TR 
 Common/BLOCK8/Zeta,Lamda,Eta,x1,x2 
 Common/BLOCK9/k0,It,AuxRstar 
 Common/BLOCK10/C1 
 Common/BLOCK11/DSWL,TL 
  
 Open(Unit=40, File='summary.dat', Status='unknown' ) 
 Open(Unit=50, File='results.dat', Status='unknown' ) 
  
C       =========================================== ===================== 
C       Definition of the data source. 
C       =========================================== ===================== 
 80     Write(*,21) 
 Write(40,21) 
 Write(50,21) 
 21     Format(/ 3X,'WHAT IS THE DATA SOURCE ? ' //  11X, 
     1         'The Screen ..... [ 1 ]' / 11X, 
     1         'A Datafile ..... [ 2 ]'/) 
 878    Write(*,99)        
 99     Format(3X,'Select Option: ',$) 
 Read(*,*) Optio 
 If (Optio.NE.1.AND.Optio.NE.2) goto 878 
 Write(40,2387) Optio 
 Write(50,2387) Optio 
 2387   Format(3X,'Select Option: ',I1) 
  
C       =========================================== ===================== 
C       Definition of the input data. 
C       =========================================== ===================== 
 If (Optio.EQ.1) then 
   Call Dadscreen(NCombAc,Distr,Comb,Mode,Opt,N,Mux ,Sigmax, 
     1                   VarDis,Abrev,Ext,ParamDesc ,Trunc,Xo,MaxIter, 
     1                   NumCalc,StartPt,XMax,XMin, ReqBetaAcc,Smooth, 
     1                   ReqOBJFAcc,NR,Rho,Life,Com bAc,StartParam,Pf, 
     1                   RelInd,ExtExt,FDer)  
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 else   
   Call Dadfile(NCombAc,Distr,Comb,Mode,Opt,N,Mux,S igmax,VarDis, 
     1                 Abrev,Ext,ParamDesc,Trunc,Xo ,MaxIter,NumCalc, 
     1                 StartPt,XMax,XMin,ReqBetaAcc ,Smooth,ReqOBJFAcc, 
     1                 NR,Rho,Life,CombAc,StartPara m,Pf,RelInd, 
     1                 ExtExt,FDer)  
 Endif   
        
C       =========================================== ===================== 
C       Level II calculations for Mode 1 & Mode 2. 
C       =========================================== ===================== 
 If (Mode.EQ.1) then 
   Do 3010 j=1,NCombAc 
     If ((NCombAc).GT.1) then 
       Write(*,713) j 
       Write(40,713) j 
       Write(50,713) j 
 713          Format(//// 3X,'COMBINATION No.',I2) 
     Endif 
     Do 5950 k0=1,NumCalc 
       Ex=0 
       Call D1Point(j,N,Opt,Mux,Sigmax,VarDis,Abrev ,Rho,FDer, 
     1                     NR,StartParam,Prob,Ext,E xtExt,ParamDesc, 
     1                     Trunc,Xo,MaxIter,StartPt ,XMax,XMin, 
     1                     ReqBetaAcc,Smooth,ReqOBJ FAcc,Comb,Ex) 
       If (Ex.EQ.0) then 
  Pro(j,k0)=Prob(j) 
  PAUSE 
       Endif 
 5950       continue 
 3010     continue         
C         ---------- 
C         Calculation of the total probability of f ailure, PFTotal,  
C         considering all the combinations of actio ns. 
C         ---------- 
   If (Ex.EQ.0) then 
     Do 6400 k0=1,NumCalc 
       PFTotal(k0)=0. 
       Do 6868 j=1,NCombAc 
  PFTotal(k0)=PFTotal(k0)+Pro(j,k0) 
 6868         continue 
       Reliab(k0)=1.-PFTotal(k0) 
       Aux=1 
       Write(*,133)  
       Write(40,133)  
       Write(50,133)  
 133          Format(/)  
       Call Allowed(Opt,Aux) 
       Write(*,68) Life,(100.*PFTotal(k0)),Reliab(k 0) 
       Write(40,68) Life,(100.*PFTotal(k0)),Reliab( k0) 
       Write(50,68) Life,(100.*PFTotal(k0)),Reliab( k0) 
 68           Format(3X,'DESIGN LIFE OF THE STRUCTU RE = ',I3 
     1               / 3X,'TOTAL PROBABILITY OF FAI LURE (%) = ',F10.6 / 
     1               3X,'RELIABILITY = ',E17.10) 
 6400       continue 
   Endif 
 else 
   Do 5960 k0=1,NumCalc 
     j=1 
     Call D2Point(j,N,Opt,Mux,Sigmax,VarDis,Abrev,R ho,FDer, 
     1                   NR,StartParam,Pf,Ext,ExtEx t,ParamDesc,Trunc, 
     1                   Xo,RelInd,MaxIter,StartPt, XMax,XMin,Smooth, 
     1                   ReqOBJFAcc,Comb) 
     PAUSE 
 5960     continue        
 Endif 
  
C       =========================================== ===================== 
C       End of the main program. 
C       =========================================== ===================== 
 1122   Write(*,14) 
 14     Format(// 3X,'WOULD YOU LIKE TO RESTART (Y/ N) ? ',$) 
 Read(*,2244) Opti 
 2244   Format(A1) 
 If (Opti.NE.'Y'.AND.Opti.NE.'y'.AND. 
     1      Opti.NE.'N'.AND.Opti.NE.'n') goto 1122 
 Write(*,5677)  
 5677   Format(//) 
 Write(40,256) Opti 
 Write(50,256) Opti 
 256    Format(/// 3X,'WOULD YOU LIKE TO RESTART (Y /N) ? ',A1 ///)     
 If (Opti.EQ.'Y'.OR.Opti.EQ.'y') goto 80 
 End 
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C       ########################################### #####################        
C 
 Subroutine Dadscreen(NCombAc,Distr,Comb,Mode,Opt,N ,Mux,Sigmax, 
     1                       VarDis,Abrev,Ext,Param Desc,Trunc,Xo, 
     1                       MaxIter,NumCalc,StartP t,XMax,XMin, 
     1                       ReqBetaAcc,Smooth,ReqO BJFAcc,NR,Rho,Life, 
     1                       CombAc,StartParam,Pf,R elInd,ExtExt,FDer) 
C         
C       ########################################### #####################        
C 
C       Reads the required input data from the scre en. 
C 
C       ########################################### ##################### 
C 
C       MODELING VARIABLES: 
C       OptC - Confidence value of the maximum run- up 
C       Der - Method of calculation of the first pa rtial derivatives of  
C             the failure function for overtopping 
C       CAcc - Consideration or not of combination of actions 
C       Q - Maximum number of combinations of actio ns allowed by the  
C           program 
C       NumTVAc - Number of time-varying actions 
C       r - Repetitions of each action in the desig n life 
C       TVAc - Number of the time-varying actions i n increasing order of  
C              the number of repetitions 
C       L - Maximum number of variables allowed by the program 
C       Carac - Name of the distribution 
C       Def1 - Definition of the limiting values of  X 
C       Def - Definition of the starting point for the FORM calculations 
C       L2 - Maximum number of FORM calculations al lowed by the program 
C       Def2 - Definition of the required relative accuracy of the  
C              reliability index 
C       Def3 - Definition of the required smoothing  coefficient for the 
C              iteration process 
C       Def4 - Definition of the required accuracy of the failure  
C              function 
C       i, j, k, k0, Aux - Auxiliary variables 
C       It, AuxRstar - Variables mentioned in the C ommon statements but  
C                      not used here 
C 
C       OUTPUT VARIABLES: 
C       Opt - Failure mode 
C       DSWL - Definition of the SWL 
C       OptD - Direction of the sand movements in d une erosion 
C       C1 - Parameter used in the H&R model to cal culate C; it depends  
C            on the confidence value assigned to th e maximum run-up 
C       TL - Seawall toe level 
C       Mode - Purpose of the analysis 
C       FDer - Method of calculation of the first p artial derivatives of  
C              the failure function for overtopping  
C       Comb - Consideration or not of combination of actions 
C       NCombAc, CombAc - Number of combinations of  actions 
C       NR - Power to which each distribution is ra ised for each  
C            combination of actions 
C       Distr - Distributions provided for the comb ination of actions 
C       N - Number of variables 
C       Ext - Abbreviation of the name of the varia ble 
C       ExtExt - Description of the variable 
C       ParamDesc - Description of the design param eter 
C       Rho - Correlation coefficient 
C       Mux - Mean of X 
C       Sigmax - Standard deviation of X 
C       VarDis - Type of distribution 
C       Abrev - Abbreviation of the name of the dis tribution 
C       Trunc - Type of truncation 
C       Xo - Point of truncation (if the distributi on is truncated) 
C       XMin - Minimum value of X 
C       XMax - Maximum value of X 
C       Zeta, Lamda, Eta - Parameters of a distribu tion 
C       x1 - Lower limit on X for a Beta distributi on 
C       x2 - Upper limit on X for a Beta distributi on 
C       StartPt - Starting value of the variables 
C       MaxIter - Maximum number of iterations 
C       NumCalc - Number of FORM calculations 
C       TR - Target values for each FORM calculatio n 
C       ReqBetaAcc - Required relative accuracy of the reliability index 
C       Smooth - Smoothing coefficient for the iter ation process 
C       ReqOBJFAcc- Required accuracy of the failur e function 
C       Life - Design life of the structure 
C       StartParam - For Mode=1, it is the prescrib ed value of the  
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C                    design parameter; For Mode=2, it is the starting  
C                    value of the design parameter (from which the  
C                    program iterates to find the r equired value of the 
C                    design parameter)   
C       Pf - Design target failure probability  
C       RelInd - Reliability index which correspond s to Pf 
C       ctcurv - Coastal curvature in degrees per 1 000m 
C       NPD, NPDOld - Number of points defining the  initial profile 
C       (XP,YP), (XPOld,YPOld) - Coordinates of the  points defining the  
C                                initial profile 
C       NPch - Number of points to be changed in th e initial profile 
C       t - First point to be changed in the initia l profile, point no.t 
C       1:md - Gradient of the eroded dune face 
C       1:mt - Gradient of the toe of the post-stor m profile 
C       nourtlev - Nourishment top level 
C       1:mnour - Gradient of the nourished face 
C 
C       ########################################### #####################         
C         
 Integer*4 i,j,k,k0,L,N,NPD,Mode,Opt,NCombAc,Q,t,NP ch,NPDOld,Aux, 
     1            MaxIter,NumCalc,Def,Def1,Def2,Def 3,Def4,Comb,Distr,L2, 
     1            Life,CombAc,NumTVAc,It,AuxRstar,O ptC,OptD,FDer,DSWL 
 Parameter (L=15) 
 Parameter (L2=10) 
 Parameter (Q=16) 
 Character*3 Abrev(Q,L),Ext(L) 
 Character*1 Der,CAcc 
 Character*17 ExtExt(L) 
 Character*30 Carac(Q,L) 
 Character*19 ParamDesc 
 Integer*4 VarDis(Q,L),Trunc(Q,L),TVAC(L) 
 Real*8 Mux(Q,L),Sigmax(Q,L),Zeta(Q,L),Lamda(Q,L),E ta(Q,L), 
     1         x1(Q,L),x2(Q,L),XP,YP,md,mt,mnour,XP Old,YPOld,nourtlev, 
     1         ctcurv,TR(L2),StartPt(Q,L),Xo(Q,L),X Max(Q,L),XMin(Q,L), 
     1         ReqBetaAcc,Smooth,ReqOBJFAcc,NR(Q,L) ,Rho(L,L),StartParam, 
     1         Pf,RelInd,TL,r(L),C1 
 Common/BLOCK1/NPD,XP(100),YP(100) 
 Common/BLOCK2/t,NPch,XPOld(100),YPOld(100),NPDOld 
 Common/BLOCK4/md,mt,mnour,nourtlev,ctcurv 
 Common/BLOCK6/OptD 
 Common/BLOCK7/TR 
 Common/BLOCK8/Zeta,Lamda,Eta,x1,x2 
 Common/BLOCK9/k0,It,AuxRstar 
 Common/BLOCK10/C1 
 Common/BLOCK11/DSWL,TL 
  
 Aux=0 
 
C       =========================================== ===================== 
C       Definition of the failure mode to be studie d.                                      
C       =========================================== ===================== 
 Write(*,2) 
 Write(40,2) 
 Write(50,2) 
 2      Format(// 3X,'WHAT IS THE FAILURE MODE TO B E STUDIED: '//  
     1         11X, 'Overtopping (H&R) ............ ........ [ 1 ]' / 
     1         11X, 'Overtopping (Owen) ........... ........ [ 2 ]' / 
     1         11X, 'Dune Erosion (Vellinga) ...... ........ [ 3 ]' /) 
 9778   Write(*,97) 
 97     Format(3X,'Select Option: ',$) 
 Read(*,*) Opt 
 If (Opt.NE.1.AND.Opt.NE.2.AND.Opt.NE.3) goto 9778 
 Write(40,9779) Opt 
 Write(50,9779) Opt 
 9779   Format(3X,'Select Option: ',I2) 
  
C       ---------- 
C       Definition of the still-water-level. 
C       ---------- 
 If (Opt.EQ.1.OR.Opt.EQ.2.OR.Opt.EQ.3) then   
   Write(*,9320) 
   Write(40,9320) 
   Write(50,9320) 
 9320     Format(// 3X,'HOW IS THE STILL-WATER-LEVE L DEFINED ?' 
     1           // 11X, 'Total Level .... [ 1 ]' /   
     1              11X, 'Tide + Surge ... [ 2 ]' / ) 
 3925     Write(*,9473) 
 9473     Format(3X,'Select Option: ',$) 
   Read(*,*) DSWL 
   If (DSWL.NE.1.AND.DSWL.NE.2) goto 3925 
   Write(40,1437) DSWL 
   Write(50,1437) DSWL 
 1437     Format(3X,'Select Option: ',I1) 
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 Endif 
  
C       ---------- 
C       Definition of the confidence value of the m aximum run-up to be 
C       considered. 
C       ---------- 
 If (Opt.EQ.1) then 
   Write(*,1324) 
   Write(40,1324) 
   Write(50,1324) 
 1324     Format(// 3X,'WHAT IS THE CONFIDENCE VALU E OF THE MAXIMUM',  
     1           1X,'RUN-UP' / 3X,'THAT YOU WOULD L IKE TO CONSIDER ?' 
     1           // 11X, '37 % ... [ 1 ]' /  
     1              11X, '99 % ... [ 2 ]' /) 
 3225     Write(*,9373) 
 9373     Format(3X,'Select Option: ',$) 
   Read(*,*) OptC 
   If (OptC.NE.1.AND.OptC.NE.2) goto 3225 
   Write(40,1037) OptC 
   Write(50,1037) OptC 
 1037     Format(3X,'Select Option: ',I1) 
   If (OptC.EQ.1) then  
     C1=1.52 
   else 
     C1=2.15 
   Endif 
 Endif 
 
C       ---------- 
C       Definition of the method of calculation of the first partial  
C       derivatives of the failure function for ove rtopping. 
C       ---------- 
 2255   If (Opt.NE.3) then 
   Write(*,333) 
 333      Format(// 3X,'ARE THE FIRST DERIVATIVES O F THE FAILURE',1X, 
     1           'FUNCTION SUPPLIED (Y/N) ? ',$) 
   Read(*,3377) Der 
 3377     Format(A1) 
   If (Der.NE.'Y'.AND.Der.NE.'y'.AND.Der.NE.'N'.AND .Der.NE.'n')  
     1        goto 2255 
   Write(40,6681) Der 
   Write(50,6681) Der 
 6681     Format(// 3X,'ARE THE FIRST DERIVATIVES O F THE FAILURE',1X, 
     1           'FUNCTION SUPPLIED (Y/N) ? ',A1) 
   If ((Der.EQ.'Y').OR.(Der.EQ.'y')) FDer=1 
   If ((Der.EQ.'N').OR.(Der.EQ.'n')) FDer=2           
 else 
   FDer=2 
 Endif 
 
C       ---------- 
C       Definition of the direction of the sand mov ements occurring  
C       during a storm surge. 
C       ---------- 
 OptD=0 
 If (Opt.EQ.3) then 
   Write(*,1329) 
   Write(40,1329) 
   Write(50,1329) 
 1329     Format(// 3X,'DURING A STORM SURGE, WOULD  YOU LIKE TO TAKE', 
     1           1X,'INTO ACCOUNT: '//  
     1           11X, 'Movements of Sand in Both Di rections ?',  
     1           1X,'... [ 1 ]' / 11X, 'Movements o f Sand',  
     1           1X,'only Seaward ? ......... [ 2 ] ' /) 
 3115     Write(*,937) 
 937      Format(3X,'Select Option: ',$) 
   Read(*,*) OptD 
   If (OptD.NE.1.AND.OptD.NE.2) goto 3115 
   Write(40,1937) OptD 
   Write(50,1937) OptD 
 1937     Format(3X,'Select Option: ',I1) 
 Endif 
       
C       ---------- 
C       If the failure mode is dune erosion the fol lowing quantities 
C       have to be read: 
C       - coastal curvature in degrees per 1000m, c tcurv 
C       - number of points defining the initial pro file, NPD  
C       - beach profile coordinates, (XP,YP) 
C       - number of points to be changed in the ini tial profile, NPch 
C       - first point to be changed, point no. t 
C       - gradient of the eroded dune face, 1:md 
C       - gradient of the toe of the post-storm pro file, 1:mt 
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C       - nourishment top level, nourtlev 
C       - gradient of the nourished face, 1:mnour 
C       ---------- 
 If (Opt.EQ.3) then 
 8667     Write(*,7668) 
 7668     Format(// 3X,'DUNE EROSION' // 11X, 
     1           'Coastal Curvature (Deg/1000m) = ' ,$) 
   Read(*,*) ctcurv 
   If (ctcurv.LT.0.OR.ctcurv.GT.24) then 
     Write(*,3278) 
 3278       Format(// 3X,'ERROR: The Coastal Curvat ure is not',1X,  
     1             'Within [0,24] !') 
     goto 8667 
   Endif 
   Write(40,7669) ctcurv 
   Write(50,7669) ctcurv 
 7669     Format(// 3X,'DUNE EROSION' // 11X, 
     1           'Coastal Curvature (Deg/1000m) = ' ,E17.10) 
 7070     Write(*,7700) 
 7700     Format(/ 11X,'Number of Points Defining t he Initial',1X,  
     1           'Profile (Max=100) = ',$) 
   Read(*,*) NPD 
   If (NPD.GT.100.OR.NPD.LE.0) then 
     Write(*,3251) 
 3251       Format(// 3X, 
     1             'ERROR: The Maximum Number of Po ints Defining the' / 
     1             3X,'       Initial Profile is no t Within ]0,100] !') 
     goto 7070 
   Endif 
   Write(40,7701) NPD 
   Write(50,7701) NPD 
 7701     Format(/ 11X,'Number of Points Defining t he Initial',1X,  
     1           'Profile (Max=100) = ',I3) 
   Write(*,0211)  
 0211     Format(/ 23X, 'Initial Profile' /) 
   Write(40,0511)  
   Write(50,0511)  
 0511     Format(/ 23X, 'Initial Profile' // 19X,'X ',18X,'Y' /) 
   Do 3120 i=1,NPD 
 9090       Write(*,0311) i 
 0311       Format(26X,'X(',I3,') = ',$) 
     Read(*,*) XP(i) 
     If (i.GE.2) then 
       If (XP(i).LT.XP(i-1)) then 
  Write(*,1466) i,(i-1) 
 1466           Format(// 3X,'ERROR: XP(',I3,') < X P(',I3,') !' /) 
  goto 9090 
       Endif 
     Endif 
     Write(*,0317) i 
 0317       Format(26X,'Y(',I3,') = ',$) 
     Read(*,*) YP(i) 
     Write(40,0011) XP(i),YP(i) 
     Write(50,0011) XP(i),YP(i) 
 0011       Format(11X,E17.10,2X,E17.10) 
     XPOld(i)=XP(i) 
     YPOld(i)=YP(i) 
 3120     continue 
   NPDOld=NPD 
 
 9072     Write(*,5325)  
 5325     Format(/ 11X,'Number of Points to be Chan ged in the Initial', 
     1           1X,'Profile ? ',$) 
   Read(*,*) NPch 
   If (NPch.LT.1.OR.NPch.GT.NPD) then 
     Write(*,1366) NPD  
 1366       Format(// 3X,'ERROR: The Number of Poin ts to be Changed',  
     1             1X,'in the'/10X,'Initial Profile  is not Within [1,', 
     1             I3,'] !') 
     goto 9072 
   Endif 
 6305     Write(*,5036)  
 5036     Format(/ 11X,'First Point to be Changed ?  Point No.',$) 
   Read(*,*) t 
   If (t.LT.1.OR.t.GT.NPD) then 
     Write(*,1322) NPD  
 1322       Format(// 3X,'ERROR: The First Point to  be Changed in the' / 
     1                3X,'       Initial Profile is  not Within [1,', 
     1             I3,'] !') 
     goto 6305 
   Endif 
   Write(40,7917) NPch,t 
   Write(50,7917) NPch,t 
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 7917     Format(/ 11X,'Number of Points to be Chan ged in the Initial',  
     1           1X,'Profile = ',I3 // 11X,'First P oint to be Changed',  
     1           1X,'= Point No.',I3)                                 
    
 4546     Write(*,3007) 
 3007     Format(/ 11X,'Gradient of the Eroded Dune  Face = 1:',$) 
   Read(*,*) md 
   If (md.LE.0) then 
     Write(*,1311)   
 1311       Format(// 3X,'ERROR: The Gradient of th e Eroded Dune', 
     1             1X,'Face is <= 1:0 !') 
     goto 4546 
   Endif 
    
 4547     Write(*,4396) 
 4396     Format(/ 11X,'Gradient of the Toe of the Post-Storm Profile',  
     1           1X,'= 1:',$)  
   Read(*,*) mt 
   If (mt.LE.0) then 
     Write(*,1151)   
 1151       Format(// 3X,'ERROR: The Gradient of th e Toe of the', 
     1             1X,'Post-Storm Profile is <= 1:0  !') 
     goto 4547 
   Endif 
    
   Write(*,3407) 
 3407     Format(/ 11X,'Nourishment Top Level = ',$ ) 
   Read(*,*) nourtlev 
    
 5599     Write(*,4346) 
 4346     Format(/ 11X,'Gradient of the Nourished F ace = 1:',$) 
   Read(*,*) mnour 
   If (mnour.LE.0) then 
     Write(*,7103)  
 7103       Format(// 3X,'ERROR: The Gradient of th e Nourished', 
     1             1X,'Face is <= 1:0 !') 
     goto 5599 
   Endif 
    
   Write(40,7933) md,mt,nourtlev,mnour 
   Write(50,7933) md,mt,nourtlev,mnour 
 7933     Format(/ 11X,'Gradient of the Eroded Dune  Face = 1:',F4.1  
     1           // 11X,'Gradient of the Toe of the  Post-Storm Profile',  
     1           1X,'= 1:',F4.1 // 11X,'Nourishment  Top Level = ',E17.10  
     1           // 11X,'Gradient of the Nourished Face = 1:',F4.1) 
 Endif 
 
C       =========================================== ===================== 
C       Definition of the number, N, of variables f or each failure mode. 
C       =========================================== ===================== 
 If (Opt.EQ.2.OR.Opt.EQ.3) then 
   N=7 
 else 
   N=8 
 Endif 
 
 If (DSWL.EQ.2) then 
   If (Opt.EQ.2.OR.Opt.EQ.3) N=8 
   If (Opt.EQ.1) N=9 
 Endif 
 
C       =========================================== ===================== 
C       Description of each variable for the failur e mode chosen. 
C       =========================================== ===================== 
 Call VarExt(N,Opt,Ext,ExtExt,ParamDesc) 
 Write(*,1009) 
 Write(40,1009) 
 Write(50,1009) 
 1009   Format(// 3X,'DESCRIPTION OF THE VARIABLES'  /) 
 Do 1603 i=1,N 
   Write(*,1018) i,Ext(i),ExtExt(i) 
   Write(40,1018) i,Ext(i),ExtExt(i) 
   Write(50,1018) i,Ext(i),ExtExt(i) 
 1018     Format(11X,'X(',I3,') = ',A3,' = ',A17) 
 1603   continue         
 
C       =========================================== ===================== 
C       Definition of the purpose of the analysis. 
C       =========================================== ===================== 
 Write(*,1017) 
 Write(40,1017) 
 Write(50,1017) 
 1017   Format(// 3X,'WHAT IS THE PURPOSE OF THE AN ALYSIS ? ' // 11X, 
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     1        'Reliability Analysis for a Specified  Design ... [ 1 ]'  
     1        / 11X,  
     1        'Design for a Specified Reliability L evel ...... [ 2 ]' /) 
 7101   Write(*,96)        
 96     Format(3X,'Select Option: ',$) 
 Read(*,*) Mode 
 If (Mode.NE.1.AND.Mode.NE.2) goto 7101 
 Write(40,9696) Mode 
 Write(50,9696) Mode 
 9696   Format(3X,'Select Option: ',I1) 
 
C       =========================================== ===================== 
C       Reads the design life of the structure, Lif e. 
C       =========================================== ===================== 
 888    Write(*,091)  
 091    Format(// 3X,'DESIGN LIFE OF THE STRUCTURE = ',$) 
 Read(*,*) Life 
 If (Life.LE.0) then 
   Write(*,7882) 
 7882     Format(// 3X,'ERROR: The Design Life of t he Structure <= 0 !') 
   goto 888 
 Endif 
 Write(40,791) Life 
 Write(50,791) Life 
 791    Format(// 3X,'DESIGN LIFE OF THE STRUCTURE = ',I3) 
 
C       =========================================== ===================== 
C       Definition of the combination of actions fo r Mode 1. 
C       =========================================== ===================== 
 If (Mode.EQ.1) then 
 4901     Write(*,3334) 
 3334     Format(// 3X,'WOULD YOU LIKE TO CONSIDER' ,1X, 
     1           'COMBINATION OF ACTIONS (Y/N) ? ', $) 
   Read(*,3335) CAcc 
 3335     Format(A1) 
   If (CAcc.NE.'Y'.AND.CAcc.NE.'y'.AND. 
     1        CAcc.NE.'N'.AND.CAcc.NE.'n') goto 490 1 
   Write(40,6622) CAcc 
   Write(50,6622) CAcc 
 6622     Format(// 3X,'WOULD YOU LIKE TO CONSIDER' ,1X, 
     1           'COMBINATION OF ACTIONS (Y/N) ? ', A1) 
   If ((CAcc.EQ.'Y').OR.(CAcc.EQ.'y')) Comb=1 
   If ((CAcc.EQ.'N').OR.(CAcc.EQ.'n')) Comb=2           
 else 
   Comb=2 
 Endif 
  
C       ---------- 
C       Definition of the number of combination of actions, NCombAc. 
C       ---------- 
 If (Comb.EQ.2) then 
   NCombAc=1 
   Do 2388 i=1,N 
     NR(1,i)=1 
 2388     continue         
 else  
   Write(*,1320) 
   Write(40,1320) 
   Write(50,1320) 
 1320     Format(// 3X,'HOW MANY COMBINATIONS WOULD  YOU LIKE TO',  
     1           1X,'CONSIDER ? ' // 11X, 
     1           'The Number of Time-Varying Action s (k) ... [ 1 ]' /  
     1        11X, '2^(k-1) ....................... ........... [ 2 ]' /) 
 8832     Write(*,9370) 
 9370     Format(3X,'Select Option: ',$) 
   Read(*,*) CombAc 
   If (CombAc.NE.1.AND.CombAc.NE.2) goto 8832 
   Write(40,1007) CombAc 
   Write(50,1007) CombAc 
 1007     Format(3X,'Select Option: ',I1) 
    
C         ---------- 
C         Definition of the distributions provided for each combination        
C         of actions. 
C         ---------- 
   Write(*,1550) 
   Write(40,1550) 
   Write(50,1550) 
 1550     Format(// 3X,'WHICH DISTRIBUTIONS WOULD Y OU LIKE TO',  
     1           1X,'PROVIDE ? ' // 11X, 
     1           'The Basic Distributions ...... [ 1 ]' / 11X,  
     1           'The Modified Distributions ... [ 2 ]' /) 
 551      Write(*,9550) 



Program Listing 

C7-10 

 9550     Format(3X,'Select Option: ',$) 
   Read(*,*) Distr 
   If (Distr.NE.1.AND.Distr.NE.2) goto 551 
   Write(40,1557) Distr 
   Write(50,1557) Distr 
 1557     Format(3X,'Select Option: ',I1) 
 Endif 
  
 If (Comb.EQ.1) then 
C         ---------- 
C         Reads the number of time-varying actions,  NumTVAc (maximum=5)  
C         & calculates the number of combinations o f actions, NCombAc. 
C         ---------- 
 290      Write(*,092)  
 092      Format(/ 3X,'NUMBER OF TIME-VARYING ACTIO NS (Max=5) = ',$) 
   Read(*,*) NumTVAc 
   If (NumTVAc.GT.5.OR.NumTVAc.LE.0) then 
     Write(*,7887) 
 7887       Format(// 3X,'ERROR: The Maximum Number  of Time Varying' / 
     1                3X,'       Actions is not Wit hin ]0,5] !') 
     goto 290 
   Endif 
   Write(40,7991) NumTVAc 
   Write(50,7991) NumTVAc 
 7991     Format(// 3X,'NUMBER OF TIME-VARYING ACTI ONS (Max=5) = ',I1) 
   If (CombAc.EQ.1) then 
     NCombAc=NumTVAc 
   else 
     NCombAc=2**(NumTVAc-1) 
   Endif 
    
   If (Distr.EQ.1) then 
C           ---------- 
C           Reads the number of the time-varying ac tions, TVAC, in  
C           increasing order of the number of repet itions, r. Reads the  
C           number of repetitions of each action in  the design life of  
C           the structure. 
C           ---------- 
     Write(*,7833)  
 7833       Format(// 3X,'NUMBER OF THE TIME-VARYIN G ACTIONS IN' / 3X, 
     1             'INCREASING ORDER OF THE NUMBER OF REPETITIONS' /) 
     Do 140 i=1,NumTVAc 
 2377         Write(*,7832) i 
 7832         Format(11X,'Action (',I2,') = ',$) 
       Read(*,*) TVAc(i) 
       If (TVAc(i).GT.N.OR.TVAc(i).LE.0) then 
  Write(*,7697) N 
 7697           Format(//3X,'ERROR: The Value of th e Number of the Time'  
     1                 /3X,'       Varying Action i s not Within ]0,', 
     1                 I2,'] !' /) 
  goto 2377 
       Endif 
 140        continue 
     Write(*,782)  
     Write(40,782)  
     Write(50,782)  
 782        Format(//3X,'REPETITIONS OF EACH ACTION  IN THE DESIGN LIFE',  
     1             /) 
 3390       Do 1409 i=1,NumTVAc 
 2379         Write(*,7834) TVAc(i) 
 7834         Format(11X,'r (',I2,') = ',$) 
       Read(*,*) r(TVAc(i)) 
       If (r(TVAc(i)).LE.0) then 
  Write(*,6884)  
 6884           Format(//3X,'ERROR: The Number of R epetitions',1X,  
     1                 'is <= 0 !' /) 
  goto 2379 
       Endif 
       If (r(TVAc(i)).LT.r(TVAC(i-1))) then 
  Write(*,6334)  
 6334           Format(// 3X, 
     1                 'ERROR: The Actions are not Listed in Increasing'  
     1                 /3X,'       Order of the Num ber of Repetitions !'  
     1                 /) 
  goto 3390 
       Endif 
 1409       continue 
     Do 4000 i=1,NumTVAc    
       Write(40,788) Ext(TVAc(i)),r(TVAc(i)) 
       Write(50,788) Ext(TVAc(i)),r(TVAc(i)) 
 788          Format(11X,'r(',A3,') = ',F8.0) 
 4000       continue            
     Call Combination(N,NumTVAc,CombAc,NCombAc,r,TV Ac,NR) 
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     Do 8711 i=1,NCombAc 
       Do 8712 j=1,N 
  Write(50,*) 'NR(i,j)=',i,j,NR(i,j) 
 8712         continue 
 8711       continue 
   else 
     Do 87 i=1,NCombAc 
       Do 88 j=1,N 
  NR(i,j)=1 
 88           continue 
 87         continue 
   Endif 
 Endif 
  
 If (Mode.EQ.1) then 
C         ========================================= ===================== 
C         Reads the value of the design parameter, StartParam, for which  
C         the failure probability (or reliability) is to be found. 
C         ========================================= ===================== 
 2009     Write(*,9002) ParamDesc  
 9002     Format(// 3X,'PRESCRIBED VALUE OF THE DES IGN PARAMETER' //  
     1             11X,A19,' = ',$) 
   Read(*,*) StartParam 
   If (StartParam.LT.0) then 
     Write(*,6554)  
 6554       Format(// 3X,'ERROR: The Prescribed Val ue of the', 
     1                1X,'Design Parameter < 0 !') 
     goto 2009 
   Endif 
   Write(40,7891) ParamDesc,StartParam 
   Write(50,7891) ParamDesc,StartParam 
 7891     Format(// 3X,'PRESCRIBED VALUE OF THE DES IGN PARAMETER' //  
     1           11X,A19,' = ',E17.10 /) 
 else 
C         ========================================= ===================== 
C         Reads the design target failure probabili ty, Pf, & starting  
C         value of the design parameter, StartParam , from which the  
C         program iterates to find the required val ue of the design  
C         parameter for the given failure probabili ty (or reliability). 
C         ========================================= ===================== 
 2101     Write(*,1044)  
 1044     Format(// 3X, 'DESIGN TARGET FAILURE PROB ABILITY [0,1] = ',$) 
   Read(*,*) Pf 
   If (Pf.LT.0.OR.Pf.GT.1) then 
     Write(*,6234)  
 6234       Format(//3X,'ERROR: The Value of the De sign Target Failure', 
     1              /3X,'       Probability is not Within [0,1] !') 
     goto 2101 
   Endif 
 2099     Write(*,9022) ParamDesc 
 9022     Format(// 3X, 'STARTING VALUE OF THE DESI GN PARAMETER - ',  
     1           A19 / 3X,'(to start iteration) = ' ,$) 
   Read(*,*) StartParam 
   If (StartParam.LT.0) then 
     Write(*,6224)  
 6224       Format(// 3X,'ERROR: The Prescribed Val ue of the', 
     1                1X,'Design Parameter < 0 !') 
     goto 2099 
   Endif 
   If (StartParam.EQ.0.) then 
     Write(*,874)   
 874        Format(// 5X, 
     1            'NOTE: In design for a specified reliability level,', 
     1            1X,'the starting' / 11X,'value of  the design',1X, 
     1            'parameter should not be set to z ero !' / 11X,  
     1            'So, the program assumes a starti ng value of 5m.') 
     Write(40,7791) (100.*Pf),ParamDesc,StartParam 
     Write(50,7791) (100.*Pf),ParamDesc,StartParam 
 7791       Format(// 3X,'DESIGN TARGET FAILURE PRO BABILITY (%) = ', 
     1             F10.6 // 3X, 
     1             'STARTING VALUE OF THE DESIGN PA RAMETER - ',A19 /  
     1                3X, '(to start iteration) = ' ,E17.10 // 5X, 
     1            'NOTE: In design for a specified reliability level,', 
     1            1X,'the starting' / 11X,'value of  the design',1X, 
     1            'parameter should not be set to z ero !' / 11X,  
     1            'So, the program assumes a starti ng value of 5m.') 
     StartParam=5. 
   else 
     Write(40,7751) (100.*Pf),ParamDesc,StartParam 
     Write(50,7751) (100.*Pf),ParamDesc,StartParam 
 7751       Format(// 3X,'DESIGN TARGET FAILURE PRO BABILITY (%) = ', 
     1             F10.6 // 3X, 
     1             'STARTING VALUE OF THE DESIGN PA RAMETER - ',A19  
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     1             / 3X,'(to start iteration) = ',E 17.10) 
   Endif 
 
C         ========================================= ===================== 
C         Calculation of the reliability index, Rel Ind, which  
C         corresponds to the target failure probabi lity, Pf. 
C         ========================================= ===================== 
   Call InvNormal(Pf,RelInd) 
   Write(40,8792) RelInd 
   Write(50,8792) RelInd 
 8792     Format(/ 3X,'Reliability Index = ',E17.10  /) 
 Endif 
 
C       =========================================== ===================== 
C       Reads the characteristics of the variables:  
C       - Type of distribution, VarDist 
C       - Type of truncation, Trunc 
C       - Point of truncation, Xo (if the distribut ion is truncated)        
C       - Mean, Mux, standard deviation, Sigmax, & lower limit, Zeta 
C       =========================================== ===================== 
 Do 6633 j=1,NCombAc 
   If ((NCombAC.GT.1).AND.(Distr.EQ.2)) then 
     Write(*,7073) j 
     Write(40,7073) j 
     Write(50,7073) j 
 7073       Format(/// 3X,'COMBINATION No.',I2) 
   Endif 
   Write(*,8777) 
   Write(40,8777)  
   Write(50,8777)  
 8777     Format(// 3X, 'CHARACTERISTICS OF THE VAR IABLES ') 
   Write(40,8222)  
   Write(50,8222)  
 8222     Format(/) 
   Do 18 i=1,N 
     Write(*,717) Ext(i) 
 717        Format(// 11X,'What is the Probability Distribution of ', 
     1             A3,' ? ' // 19X, 
     1             'Pre-Defined Distributions' / 27 X,  
     1             'Deterministic .............. [ 0 ]' / 27X, 
     1             'Normal ..................... [ 1 ]' / 27X,  
     1             'Log-Normal ................. [ 2 ]' / 27X, 
     1             'Maxima Type I (Gumbel) ..... [ 3 ]' / 27X, 
     1             'Rectangular (Uniform) ...... [ 4 ]' / 27X, 
     1             'Gamma ...................... [ 5 ]' / 27X, 
     1             'Beta ....................... [ 6 ]' / 27X, 
     1             'Maxima Type II (Frechet) ... [ 7 ]' / 27X, 
     1             'Exponential ................ [ 8 ]' / 27X, 
     1             'Rayleigh ................... [ 9 ]' / 27X, 
     1             'Minima Type III (Weibull) .. [ 10]' // 19X, 
     1             'User-Defined Distributions' / 2 7X, 
     1             'Water Levels ............... [ 11]' / 27X, 
     1             'Extreme Water Levels ....... [ 12]' / 27X, 
     1             'Tide Levels ................ [ 13]' /) 
 697        Write(*,796)        
 796        Format(11X,'Select Option: ',$) 
     Read(*,*) VarDis(j,i) 
     If (VarDis(j,i).NE.0.AND.VarDis(j,i).NE.1.AND.  
     1          VarDis(j,i).NE.2.AND.VarDis(j,i).NE .3.AND. 
     1          VarDis(j,i).NE.4.AND.VarDis(j,i).NE .5.AND. 
     1          VarDis(j,i).NE.6.AND.VarDis(j,i).NE .7.AND. 
     1          VarDis(j,i).NE.8.AND.VarDis(j,i).NE .9.AND. 
     1          VarDis(j,i).NE.10.AND.VarDis(j,i).N E.11.AND. 
     1          VarDis(j,i).NE.12.AND.VarDis(j,i).N E.13) goto 697 
     If (VarDis(j,i).NE.0.AND.VarDis(j,i).LE.10) th en 
       Write(*,275) Ext(i) 
 275          Format(/ 11X,'Is the Distribution of ',A3,' Truncated ? '/  
     1               19X,'Not Truncated ........... ...... [ 0 ]' / 
     1               19X,'Truncated for Xi above Xo  ..... [ 1 ]' /  
     1               19X,'Truncated for Xi below Xo  ..... [ 2 ]') 
 6971         Write(*,1796)        
 1796         Format(11X,'Select Option: ',$) 
       Read(*,*) Trunc(j,i) 
       If (Trunc(j,i).NE.0.AND.Trunc(j,i).NE.1.AND.  
     1            Trunc(j,i).NE.2) goto 6971 
     Endif 
     Xo(j,i)=0. 
     If (Trunc(j,i).NE.0) then 
C             ----------               
C             For the failure mode of overtopping, if the variable is   
C             the significant wave height, Hs, & if  Hs is limited by the 
C             available water depth, then the point  of truncation is  
C             Xo=0.6(SWL-TL) or Xo=0.6(Tide+Surge-T L), where TL is the  
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C             seawall toe level. 
C             ----------               
       If ((Opt.EQ.1.OR.Opt.EQ.2).AND.(i.EQ.2).AND.  
     1            (Trunc(j,i).EQ.1)) then 
  Write(*,7511)  
 7511           Format(/ 11X,'Seawall Toe Level (TL ) = ',$) 
  Read(*,*) TL 
  goto 5555 
       Endif 
       Write(*,751) i 
 751          Format(/ 11X,'Value of X(',I2, 
     1              ') at which the distribution is  to be truncated = ', 
     1              $) 
       Read(*,*) Xo(j,i) 
     Endif 
     If ((Opt.EQ.1.OR.Opt.EQ.2).AND.(i.EQ.2)) then 
       Write(*,7561)  
 7561         Format(/ 11X,'Seawall Toe Level (TL) = ',$) 
       Read(*,*) TL 
       Write(40,7881) TL 
       Write(50,7881) TL 
 7881         Format(11X,'Seawall Toe Level (TL) = ',E17.10) 
     Endif 
 5555       If (VarDis(j,i).NE.0) then 
       Write(*,75) Ext(i) 
 75           Format(/ 11X,'Mean Value of ',A3,' = ',$) 
       Read(*,*) Mux(j,i) 
       Write(*,775) Ext(i) 
 775          Format(11X,'Standard Deviation of ',A 3,' = ',$) 
       Read(*,*) Sigmax(j,i) 
     else 
       Write(*,7533) Ext(i) 
 7533         Format(/ 11X,'Value of ',A3,' = ',$) 
       Read(*,*) Mux(j,i) 
       Sigmax(j,i)=0 
     Endif 
     If (VarDis(j,i).EQ.6) then 
 1313         Write(*,9952) Ext(i) 
 9952         Format(11X,'Insert Limit a (a <= ',A3 ,' <= b): ',$) 
       Read(*,*) x1(j,i) 
       Write(*,9953) Ext(i) 
 9953         Format(11X,'Insert Limit b (a <= ',A3 ,' <= b): ',$) 
       Read(*,*) x2(j,i) 
       If (x1(j,i).GE.x2(j,i)) then 
  Write(*,8703)  
 8703           Format(// 11X,'ERROR: a >= b !' /) 
  goto 1313 
       Endif 
     Endif 
     If (VarDis(j,i).EQ.10) then 
       Write(*,7501) Ext(i) 
 7501         Format(11X,'Lower Limit on ',A3,' = ' ,$) 
       Read(*,*) Zeta(j,i) 
     Endif 
     Call WhatDist(i,j,VarDis,Abrev,Carac) 
     Call WriCharVar(i,j,VarDis,Trunc,Ext,Carac,Xo, Mux,Sigmax, 
     1                      Opt) 
 18       continue 
 
C         ========================================= ===================== 
C         Calculation of the distribution's paramet ers, Zeta, Lamda &  
C         Eta, for each variable. 
C         ========================================= ===================== 
   Write(50,4495)  
 4495     Format(// 6X,'DISTRIBUTION`S PARAMETERS')  
   Do 6070 i=1,N 
     Call Parameters(i,j,Mux,Sigmax,VarDis,Ext) 
 6070     continue 
   If (Distr.EQ.1) then 
     If (NCombAc.GT.1) then 
       Call EqCharac(N,NCombAc,Abrev,Carac,VarDis,T runc,Xo,Mux, 
     1                      Sigmax) 
       Write(*,9911) 
       Write(40,9911) 
       Write(50,9911) 
 9911         Format(// 11X,'THE CHARACTERISTICS OF  THE VARIABLES ARE ', 
     1                / 11X,'THE SAME FOR ALL COMBI NATIONS OF ACTIONS.',  
     1               //) 
     Endif 
     goto 1314 
   Endif 
 6633   continue     
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C       =========================================== ===================== 
C       Reads the correlation coefficients, Rho, of  the variables.   
C       =========================================== ===================== 
 1314   Write(*,971) 
 Write(40,971) 
 Write(50,971) 
 971    Format(// 3X, 'CORRELATION COEFFICIENTS ' / ) 
 Do 38 i=1,N 
   Do 37 j=1,N 
     Write(*,74) Ext(i),Ext(j) 
 74         Format(11X,'(',A3,',',A3,') = ',$) 
     Read(*,*) Rho(i,j) 
     Write(40,536) Ext(i),Ext(j),Rho(i,j) 
     Write(50,536) Ext(i),Ext(j),Rho(i,j) 
 536        Format(11X,'(',A3,',',A3,') = ',E17.10)  
 37       continue   
 38     continue 
 9988   Do 4005 i=1,N 
   Do 4050 j=1,N 
     If ((Rho(i,j).NE.Rho(j,i)).OR.(ABS(Rho(i,j)).G T.1)) then 
       If (Rho(i,j).NE.Rho(j,i)) then 
  Write(*,7801) i,j,j,i 
  Write(50,7801) i,j,j,i 
 7801           Format(// 11X,'ERROR: Rho(',I2,',', I2, 
     1                 ') is not equal to Rho(',I2, ',',I2,') !' //) 
  Write(*,7444) i,j 
 7444           Format(11X,'Rho(',I2,',',I2,') = ', $) 
  Read(*,*) Rho(i,j) 
  Write(*,7445) j,i 
 7445           Format(11X,'Rho(',I2,',',I2,') = ', $) 
  Read(*,*) Rho(j,i) 
  Write(40,36) Ext(i),Ext(j),Rho(i,j), 
     1                       Ext(j),Ext(i),Rho(j,i)  
  Write(50,36) Ext(i),Ext(j),Rho(i,j), 
     1                       Ext(j),Ext(i),Rho(j,i)  
 36             Format(11X,'(',A3,',',A3,') = ',E17 .10 / 
     1                 11X,'(',A3,',',A3,') = ',E17 .10) 
       else 
  Write(*,7901) i,j 
  Write(50,7901) i,j 
 7901           Format(// 11X,'ERROR: |Rho(',I2,',' ,I2,')| > 1 !' //) 
  Write(*,7455) i,j 
 7455           Format(11X,'Rho(',I2,',',I2,') = ', $) 
  Read(*,*) Rho(i,j) 
  Write(40,362) Ext(i),Ext(j),Rho(i,j) 
  Write(50,362) Ext(i),Ext(j),Rho(i,j) 
 362            Format(11X,'(',A3,',',A3,') = ',E17 .10) 
       Endif 
       goto 9988 
     Endif 
 4050     continue   
 4005   continue 
 
C       =========================================== ===================== 
C       Reads the characteristics of the FORM calcu lations: 
C       - starting value of the variables, StartPt 
C       - minimum value, XMin, & maximum value, XMa x, of the variables 
C       - maximum number of iterations, MaxIter 
C       - number of FORM calculations, NumCalc 
C       - target values for each FORM calculation, TR 
C       - required accuracy of the reliability inde x, ReqBetaAcc 
C       - smoothing coefficient for the iteration p rocess, Smooth  
C       - required accuracy of the failure function , ReqOBJFAcc 
C       =========================================== ===================== 
 
C       ---------- 
C       Starting value of the variables, StartPt. 
C       ---------- 
 Do 78 j=1,NCombAC 
   If (NCombAC.GT.1) then 
     If (Distr.EQ.2) Write(*,7079) j 
     Write(40,7079) j 
     Write(50,7079) j 
 7079       Format(/// 3X,'COMBINATION No.',I2) 
   Endif 
 4455     If ((Distr.EQ.2).OR.(Comb.EQ.2)) then 
     Write(*,1328)        
     Write(40,1328)        
     Write(50,1328) 
 1328       Format(/ 3X,'STARTING POINT FOR THE FOR M CALCULATIONS: '//  
     1             11X, 'Default Values (mean value s) ... [ 1 ]' /  
     1             11X, 'User Specified Values .... ...... [ 2 ]' /) 
 739        Write(*,9477) 
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 9477       Format(3X,'Select Option: ',$) 
     Read(*,*) Def 
     If (Def.NE.1.AND.Def.NE.2) goto 739 
     Write(40,8833) Def 
     Write(50,8833) Def 
 8833       Format(3X,'Select Option: ',I1) 
     Write(*,5671)  
     Write(40,5671)  
     Write(50,5671)  
 5671       Format(/ 3X,'STARTING POINT' /) 
     If (Def.EQ.1) then 
       Do 2156 i=1,N 
  StartPt(j,i)=Mux(j,i) 
  Write(*,5670) Ext(i),StartPt(j,i) 
  Write(40,5670) Ext(i),StartPt(j,i) 
  Write(50,5670) Ext(i),StartPt(j,i) 
 5670           Format(11X,A3,' = ',E17.10) 
 2156         continue        
     else 
       Do 2155 i=1,N 
  If (VarDis(j,i).NE.0) then 
    Write(*,1132) Ext(i)                                          
 1132             Format(11X,A3,' = ',$) 
    Read(*,*) StartPt(j,i) 
    Write(40,5680) Ext(i),StartPt(j,i) 
    Write(50,5680) Ext(i),StartPt(j,i) 
 5680             Format(11X,A3,' = ',E17.10) 
  else 
    StartPt(j,i)=Mux(j,i) 
  Endif 
 2155         continue        
     Endif 
   Endif 
   If (Distr.EQ.1) then 
     Write(40,5636)  
     Write(50,5636)  
 5636       Format(/ 3X,'STARTING POINT' /) 
     Do 2956 i=1,N 
       If (NR(j,i).NE.1.) then 
  Call Inverse(j,i,Mux,NR,VarDis,StartPt) 
       else 
  StartPt(j,i)=Mux(j,i) 
       Endif 
       Write(40,5629) Ext(i),StartPt(j,i) 
       Write(50,5629) Ext(i),StartPt(j,i) 
 5629         Format(11X,A3,' = ',E17.10) 
 2956       continue        
   Endif 
   If (Aux.EQ.1) goto 115 
 78     continue 
 
C       ---------- 
C       Minimum value, XMin, & maximum value, XMax,  of the variables. 
C       ---------- 
 115    Do 789 j=1,NCombAc 
   If ((NCombAC.GT.1).AND.(Distr.EQ.2)) then 
     Write(*,7074) j 
     Write(40,7074) j 
     Write(50,7074) j 
 7074       Format(/// 3X,'COMBINATION No.',I2) 
   Endif 
   Write(*,1327) 
   Write(40,1327) 
   Write(50,1327) 
 1327     Format(/ 3X,'LIMITING VALUES FOR THE VARI ABLES: '//  
     1           11X, 'Default Values (+/- 1E25) .. . [ 1 ]' /  
     1           11X, 'User Specified Values ...... . [ 2 ]' /) 
 7397     Write(*,7937) 
 7937     Format(3X,'Select Option: ',$) 
   Read(*,*) Def1 
   If (Def1.NE.1.AND.Def1.NE.2) goto 7397 
   Write(40,9375) Def1 
   Write(50,9375) Def1 
 9375     Format(3X,'Select Option: ',I1) 
   If (Def1.EQ.1) then 
     Do 2176 i=1,N 
       If (VarDis(j,i).NE.0) then 
  XMin(j,i)=-1E25 
  XMax(j,i)=+1E25 
  If ((Opt.EQ.1.OR.Opt.EQ.2).AND.(DSWL.EQ.1)) then 
      XMin(j,5)=TL 
      XMax(j,5)=StartParam 
      If (XMin(j,5).GT.XMax(j,5)) then 
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        Write(*,8653)  
        Write(50,8653)  
 8653                 Format(// 11X,'ERROR: The Toe  Level is Above the', 
     1                       1X,'Seawall Crest Leve l !') 
        STOP 
      Endif 
  Endif           
       else 
  XMin(j,i)=Mux(j,i) 
  XMax(j,i)=Mux(j,i) 
       Endif 
 2176       continue        
   else 
     Write(*,7974)  
 7974       Format(/ 3X,'LIMITING VALUES FOR THE VA RIABLES') 
     Do 2175 i=1,N 
       If (VarDis(j,i).NE.0) then 
 1310           Write(*,7874) Ext(i) 
 7874           Format(/ 11X,'XMin(',A3,') = ',$) 
  Read(*,*) XMin(j,i) 
  Write(*,7978) Ext(i) 
 7978           Format(11X,'XMax(',A3,') = ',$) 
  Read(*,*) XMax(j,i) 
  If (XMin(j,i).GT.XMax(j,i)) then 
    Write(*,8733) i,i 
 8733             Format(// 11X,'ERROR: XMin(',I2,' ) > XMax(',I2,') !') 
    goto 1310 
  Endif 
  If ((Opt.EQ.1.OR.Opt.EQ.2).AND.(DSWL.EQ.1)) then 
    XMin(j,5)=TL 
    XMax(j,5)=StartParam 
    If (XMin(j,5).GT.XMax(j,5)) then 
      Write(*,8153)  
      Write(50,8153)  
 8153               Format(// 11X,'ERROR: The Toe L evel is Above the', 
     1                         1X,'Seawall Crest Le vel !') 
      STOP 
    Endif 
  Endif           
       else 
  XMin(j,i)=Mux(j,i) 
  XMax(j,i)=Mux(j,i) 
       Endif 
 2175       continue        
   Endif 
   Write(40,5678)  
   Write(50,5678)  
 5678     Format(/ 3X,'LIMITING VALUES FOR THE VARI ABLES' /) 
   Do 2788 i=1,N 
     Call MinMax(i,j,Opt,VarDis,Ext,Trunc,Xo,Mux,Si gmax,XMin, 
     1                  XMax) 
     If (StartPt(j,i).LT.XMin(j,i)) then 
       Write(*,8977) Ext(i),StartPt(j,i),Ext(i),XMi n(j,i) 
 8977         Format(// 3X,'ERROR: Starting Value o f ',A3,' = ',E17.10 
     1               / 10X,'< Minimum of ',A3,' = ' ,E17.10,' !' /) 
       Aux=1 
       If (Distr.EQ.1) then 
  StartPt(j,i)=XMin(j,i) 
       else 
  goto 4455 
       Endif 
     Endif 
     If (StartPt(j,i).GT.XMax(j,i)) then 
       Write(*,8477) Ext(i),StartPt(j,i),Ext(i),XMa x(j,i) 
 8477         Format(// 3X,'ERROR: Starting Value o f ',A3,' = ',E17.10 
     1               / 10X,'> Maximum of ',A3,' = ' ,E17.10,' !' /) 
       Aux=1 
       If (Distr.EQ.1) then 
  StartPt(j,i)=XMax(j,i) 
       else 
  goto 4455 
       Endif 
     Endif 
 2788     continue 
   If (Distr.EQ.1) then 
     If (NCombAc.GT.1) then 
       Do 8001 k=2,NCombAc 
  Do 7001 i=1,N 
    XMin(k,i)=XMin(1,i) 
    XMax(k,i)=XMax(1,i) 
 7001           continue 
 8001         continue     
       Write(40,9111) 
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       Write(50,9111) 
 9111         Format(// 11X, 
     1               'THE MINIMUM AND MAXIMUM VALUE S OF THE VARIABLES' /  
     1               11X,'ARE THE SAME FOR ALL COMB INATIONS OF ACTIONS.'  
     1               //) 
     Endif 
     goto 1315 
   Endif 
 789    continue          
 
C       ---------- 
C       Maximum number of iterations, MaxIter. 
C       ---------- 
 1315   Write(*,5925)  
 5925   Format(// 3X,'MAXIMUM NUMBER OF ITERATIONS (Max=200) = ',$) 
 Read(*,*) MaxIter 
 If (MaxIter.GT.200.OR.MaxIter.LE.0) then 
   Write(*,7851) 
 7851     Format(// 3X,'ERROR: The Maximum Number o f Iterations' /  
     1              3X,'       is not Within ]0,200 ] !') 
   goto 1315 
 Endif 
 Write(40,5905) MaxIter 
 Write(50,5905) MaxIter 
 5905   Format(// 3X,'MAXIMUM NUMBER OF ITERATIONS (Max=200) = ',I3) 
  
C       ---------- 
C       Number of FORM calculations, NumCalc. 
C       ---------- 
 7979   Write(*,5095)  
 5095   Format(/ 3X,'NUMBER OF FORM CALCULATIONS (M ax=10) = ',$) 
 Read(*,*) NumCalc 
 If (NumCalc.GT.10.OR.NumCalc.LE.0) then 
   Write(*,3279) 
 3279     Format(// 3X,'ERROR: The Maximum Number o f FORM Calculations'   
     1            / 3X,'       is not Within ]0,10]  !') 
   goto 7979 
 Endif 
 Write(40,5005) NumCalc 
 Write(50,5005) NumCalc 
 5005   Format(/ 3X,'NUMBER OF FORM CALCULATIONS (M ax=10) = ',I2 /) 
  
C       ---------- 
C       Target values for each FORM calculation, TR . 
C       ---------- 
 If (Opt.NE.3) then 
   If ((Opt.EQ.1).OR.(Opt.EQ.2)) then 
     Write(*,5023)  
     Write(40,5023)  
     Write(50,5023)  
 5023       Format(/ 3X,'ALLOWABLE DISCHARGE (m3/s/ m)' /) 
     Do 2007 k0=1,NumCalc 
 8799         Write(*,5021) k0 
 5021         Format(11X,'Qa(',I2,') = ',$) 
       Read(*,*) TR(k0) 
       If (TR(k0).LT.0) then 
  Write(*,3271) 
 3271           Format(// 3X,'ERROR: The Allowable Discharge is < 0 !'/) 
  goto 8799 
       Endif 
       Write(40,6023) k0,TR(k0) 
       Write(50,6023) k0,TR(k0) 
 6023         Format(11X,'Qa(',I2,') = ',E17.10) 
 2007       continue 
   else 
     Write(*,5055)  
     Write(40,5055)  
     Write(50,5055)  
 5055       Format(/ 3X,'ALLOWABLE TARGET' /) 
     Do 2055 k0=1,NumCalc 
       Write(*,5033) k0 
 5033         Format(11X,'Target(',I2,') = ',$) 
       Read(*,*) TR(k0) 
       Write(40,6055) k0,TR(k0) 
       Write(50,6055) k0,TR(k0) 
 6055         Format(11X,'Target(',I2,') = ',E17.10 ) 
 2055       continue 
   Endif 
 else 
   Write(*,5022)  
   Write(40,5022)  
   Write(50,5022)  
 5022     Format(/ 3X,'ALLOWABLE EROSION DISTANCE ( m)' /) 



Program Listing 

C7-18 

   Do 2006 k0=1,NumCalc 
 9975       Write(*,6022) k0 
 6022       Format(11X,'Eda(',I2,') = ',$) 
     Read(*,*) TR(k0) 
     If (TR(k0).LT.0) then 
       Write(*,3244) 
 3244         Format(// 3X, 
     1               'ERROR: The Allowable Erosion Distance is < 0 !' /) 
       goto 9975 
     Endif 
     Write(40,6062) k0,TR(k0)  
     Write(50,6062) k0,TR(k0)  
 6062       Format(11X,'Eda (',I2,') = ',E17.10) 
 2006     continue 
 Endif 
 
C       ---------- 
C       Required accuracy of the reliability index,  ReqBetaAcc. 
C       ---------- 
 Write(*,1997) 
 Write(40,1997) 
 Write(50,1997) 
 1997   Format(// 3X, 
     1         'REQUIRED RELATIVE ACCURACY OF THE R ELIABILITY INDEX: '//  
     1         11X, 'Default Value (1%) ......... [  1 ]' /  
     1         11X, 'User Specified Value ....... [  2 ]' /) 
 9000   Write(*,7977) 
 7977   Format(3X,'Select Option: ',$) 
 Read(*,*) Def2 
 If (Def2.NE.1.AND.Def2.NE.2) goto 9000 
 Write(40,9399) Def2 
 Write(50,9399) Def2 
 9399   Format(3X,'Select Option: ',I1) 
 If (Def2.EQ.1) then 
   ReqBetaAcc=1.        
 else        
 4788     Write(*,8874)  
 8874     Format(// 3X,'REQUIRED RELATIVE ACCURACY OF THE RELIABILITY',  
     1           1X,'INDEX [0,1] = ',$) 
   Read(*,*) ReqBetaAcc 
   If ((ReqBetaAcc.LT.(0.)).OR.(ReqBetaAcc.GT.1.)) then 
     Write(*,5577)  
 5577       Format(// 3X,'ERROR: The Required Relat ive Accuracy of the',  
     1             / 10X,'Reliability Index is not Within [0,1] ! ') 
     goto 4788 
   Endif 
   Write(40,9971) ReqBetaAcc 
   Write(50,9971) ReqBetaAcc 
 9971     Format(// 3X,'Required Relative Accuracy of the' / 
     1              3X,'Reliability Index [0,1] = ' ,E17.10 /) 
 Endif 
 
C       ---------- 
C       Smoothing of the iteration process (0<=Smoo th<=1). 
C       If Smooth=0 then there is no smoothing; if Smooth=0.5 then there  
C       is averaging between the last two calculate d values of X. 
C       ---------- 
 Write(*,1227) 
 Write(40,1227) 
 Write(50,1227) 
 1227   Format(// 3X,'REQUIRED SMOOTHING COEFFICIEN T FOR THE',1X, 
     1         'ITERATION PROCESS: '//  
     1         11X, 'Default Value (0) .......... [  1 ]' /  
     1         11X, 'User Specified Value ....... [  2 ]' /) 
 2792   Write(*,2972) 
 2972   Format(3X,'Select Option: ',$) 
 Read(*,*) Def3 
 If (Def3.NE.1.AND.Def3.NE.2) goto 2792 
 Write(40,9229) Def3 
 Write(50,9229) Def3 
 9229   Format(3X,'Select Option: ',I1) 
 If (Def3.EQ.1) then 
   Smooth=0.        
 else 
 2288     Write(*,8822)  
 8822     Format(// 3X,'REQUIRED SMOOTHING COEFFICI ENT FOR', 
     1              1X,'THE ITERATION PROCESS [0,1]  = ',$) 
   Read(*,*) Smooth 
   If ((Smooth.LT.(0.)).OR.(Smooth.GT.1.)) then 
     Write(*,1177)  
 1177       Format(//3X,'ERROR: The Required Smooth ing Coefficient for',   
     1             1X,'the' / 10X, 
     1             'Iteration Process is not Within  [0,1] !') 
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     goto 2288 
   else 
     Write(40,1178) Smooth 
     Write(50,1178) Smooth 
 1178       Format(// 3X,'Required Smoothing Coeffi cient for' / 
     1                3X,'the Iteration Process [0, 1] = ',E17.10 /) 
   Endif 
 Endif 
 
C       ---------- 
C       Required accuracy of the failure function O BJF, ReqOBJFAcc. 
C       If ReqOBJFAcc=1% then ABS(OBJF)<0.01SigmaOB JF, where SigmaOBJF 
C       is the standard deviation of the failure fu nction. 
C       ---------- 
 Write(*,3397) 
 Write(40,3397) 
 Write(50,3397) 
 3397   Format(// 3X,'REQUIRED ACCURACY OF THE FAIL URE FUNCTION: '//  
     1         11X, 'Default Value (1%) ......... [  1 ]' /  
     1         11X, 'User Specified Value ....... [  2 ]' /) 
 2744   Write(*,4472) 
 4472   Format(3X,'Select Option: ',$) 
 Read(*,*) Def4 
 If (Def4.NE.1.AND.Def4.NE.2) goto 2744 
 Write(40,4499) Def4 
 Write(50,4499) Def4 
 4499   Format(3X,'Select Option: ',I1) 
 If (Def4.EQ.1) then 
   ReqOBJFAcc=1.        
 else 
 5588     Write(*,8855)  
 8855     Format(// 3X,'REQUIRED ACCURACY OF THE FA ILURE',1X, 
     1           'FUNCTION [0,1] = ',$) 
   Read(*,*) ReqOBJFAcc 
   If ((ReqOBJFAcc.LT.(0.)).OR.(ReqOBJFAcc.GT.1.)) then 
     Write(*,5544)  
 5544       Format(// 3X,'ERROR: The Required Accur acy of the',1X, 
     1             'Failure' / 10X, 
     1             'Function is not Within [0,1] !' ) 
     goto 5588 
   Endif 
   Write(40,9448) ReqOBJFAcc 
   Write(50,9448) ReqOBJFAcc 
 9448     Format(// 3X,'Required Accuracy of the Fa ilure' /  
     1              3X,'Function [0,1] = ',E17.10 / ) 
 Endif 
  
 return 
 End 
 
 
 
C       ########################################### ##################### 
C 
 Subroutine Dadfile(NCombAc,Distr,Comb,Mode,Opt,N,M ux,Sigmax, 
     1                     VarDis,Abrev,Ext,ParamDe sc,Trunc,Xo, 
     1                     MaxIter,NumCalc,StartPt, XMax,XMin, 
     1                     ReqBetaAcc,Smooth,ReqOBJ FAcc,NR,Rho,Life, 
     1                     CombAc,StartParam,Pf,Rel Ind,ExtExt,FDer) 
C 
C       ########################################### ##################### 
C 
C       Reads the required input data from data fil es. 
C 
C       ########################################### ##################### 
C 
C       MODELING VARIABLES: 
C       OptC - Confidence value of the maximum run- up 
C       CAcc - Consideration or not of combination of actions 
C       Q - Maximum number of combinations of actio ns allowed by the  
C           program 
C       NumTVAc - Number of time-varying actions 
C       r - Repetitions of each action in the desig n life 
C       TVAc - Number of the time-varying actions i n increasing order of  
C              the number of repetitions 
C       L - Maximum number of variables allowed by the program 
C       Der - Method of calculation of the first pa rtial derivatives of  
C             the failure function for overtopping 
C       Carac - Name of the distribution 
C       Def1 - Definition of the limiting values of  X 
C       Def - Definition of the starting point for the FORM calculations 
C       L2 - Maximum number of FORM calculations al lowed by the program 
C       Def2 - Definition of the required relative accuracy of the  
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C              reliability index 
C       Def3 - Definition of the required smoothing  coefficient for the 
C              iteration process 
C       Def4 - Definition of the required accuracy of the failure  
C              function 
C       i, j, k, k0, Aux - Auxiliary variables 
C       It, AuxRstar - Variables mentioned in the C ommon statements but  
C                      not used here 
C 
C       OUTPUT VARIABLES: 
C       Opt - Failure mode 
C       DSWL - Definition of the SWL 
C       TL - Seawall toe level 
C       OptD - Direction of the sand movements in d une erosion 
C       C1 - Parameter used in the H&R model to cal culate C; it depends  
C            on the confidence value assigned to th e maximum run-up 
C       Mode - Purpose of the analysis 
C       Comb - Consideration or not of combination of actions 
C       NCombAc, CombAc - Number of combinations of  actions 
C       NR - Power to which each distribution is ra ised for each  
C            combination of actions 
C       Distr - Distributions provided for the comb ination of actions 
C       N - Number of variables 
C       FDer - Method of calculation of the first p artial derivatives of  
C              the failure function for overtopping  
C       Ext - Abbreviation of the name of the varia ble 
C       ExtExt - Description of the variable 
C       ParamDesc - Description of the design param eter 
C       Rho - Correlation coefficient 
C       Mux - Mean of X 
C       Sigmax - Standard deviation of X 
C       VarDis - Type of distribution 
C       Abrev - Abbreviation of the name of the dis tribution 
C       Trunc - Type of truncation 
C       Xo - Point of truncation (if the distributi on is truncated) 
C       XMin - Minimum value of X 
C       XMax - Maximum value of X 
C       Zeta, Lamda, Eta - Parameters of a distribu tion 
C       x1 - Lower limit on X for a Beta distributi on 
C       x2 - Upper limit on X for a Beta distributi on 
C       StartPt - Starting value of the variables 
C       MaxIter - Maximum number of iterations 
C       NumCalc - Number of FORM calculations 
C       TR - Target values for each FORM calculatio n 
C       ReqBetaAcc - Required relative accuracy of the reliability index 
C       Smooth - Smoothing coefficient for the iter ation process 
C       ReqOBJFAcc- Required accuracy of the failur e function 
C       Life - Design life of the structure 
C       StartParam - For Mode=1, it is the prescrib ed value of the  
C                    design parameter; For Mode=2, it is the starting  
C                    value of the design parameter (from which the  
C                    program iterates to find the r equired value of the 
C                    design parameter)   
C       Pf - Design target failure probability  
C       RelInd - Reliability index which correspond s to Pf 
C       ctcurv - Coastal curvature in degrees per 1 000m 
C       NPD, NPDOld - Number of points defining the  initial profile 
C       (XP,YP), (XPOld,YPOld) - Coordinates of the  points defining the  
C                                initial profile 
C       NPch - Number of points to be changed in th e initial profile 
C       t - First point to be changed in the initia l profile, point no.t 
C       1:md - Gradient of the eroded dune face 
C       1:mt - Gradient of the toe of the post-stor m profile 
C       nourtlev - Nourishment top level 
C       1:mnour - Gradient of the nourished face 
C 
C       ########################################### #####################         
C         
 Integer*4 i,j,k,k0,L,L2,N,NPD,Mode,Opt,NCombAc,Q,t ,NPch,NPDOld, 
     1            Life,MaxIter,NumCalc,Def,Def1,Def 2,Def3,Def4,Comb, 
     1            Distr,Aux,CombAc,NumTVAc,It,AuxRs tar,OptC,OptD,FDer, 
     1            DSWL 
 Parameter (L=15) 
 Parameter (L2=10) 
 Parameter (Q=16) 
 Character*1 Der,CAcc 
 Character*3 Abrev(Q,L),Ext(L) 
 Character*17 ExtExt(L) 
 Character*30 Carac(Q,L) 
 Character*19 ParamDesc 
 Integer*4 VarDis(Q,L),Trunc(Q,L),TVAC(L) 
 Real*8 Mux(Q,L),Sigmax(Q,L),Zeta(Q,L),Lamda(Q,L),E ta(Q,L), 
     1         x1(Q,L),x2(Q,L),XP,YP,md,mt,mnour,XP Old,YPOld,nourtlev, 
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     1         ctcurv,Xo(Q,L),XMax(Q,L),XMin(Q,L),T R(L2),ReqBetaAcc, 
     1         Smooth,ReqOBJFAcc,NR(Q,L),StartPt(Q, L),Rho(L,L), 
     1         StartParam,Pf,RelInd,r(L),TL,C1 
 Common/BLOCK1/NPD,XP(100),YP(100) 
 Common/BLOCK2/t,NPch,XPOld(100),YPOld(100),NPDOld 
 Common/BLOCK4/md,mt,mnour,nourtlev,ctcurv 
 Common/BLOCK6/OptD 
 Common/BLOCK7/TR 
 Common/BLOCK8/Zeta,Lamda,Eta,x1,x2 
 Common/BLOCK9/k0,It,AuxRstar 
 Common/BLOCK10/C1 
 Common/BLOCK11/DSWL,TL 
  
 Open(Unit=15, File='general.dad', Status='Old') 
 Open(Unit=30, File='meandev.dad', Status='Old') 
 Open(Unit=35, File='coefcor.dad', Status='Old') 
 Open(Unit=45, File='perfil.dad', Status='Old') 
 Open(Unit=65, File='form.dad', Status='Old') 
    
C       =========================================== ===================== 
C       Definition of the failure mode to be studie d.                                      
C       =========================================== ===================== 
 Read(15,*) Opt 
 If (Opt.NE.1.AND.Opt.NE.2.AND.Opt.NE.3) then 
   Write(*,3370) 
   Write(50,3370) 
 3370     Format(// 3X,'ERROR: Wrong Value for the Failure',1X, 
     1           'Mode to be Studied !') 
   STOP 
 Endif 
 Write(40,2) 
 Write(50,2) 
 2      Format(// 3X,'WHAT IS THE FAILURE MODE TO B E STUDIED: '//  
     1         11X, 'Overtopping (H&R) ............ ........ [ 1 ]' / 
     1         11X, 'Overtopping (Owen) ........... ........ [ 2 ]' / 
     1         11X, 'Dune Erosion (Vellinga) ...... ........ [ 3 ]' /) 
 Write(40,9779) Opt 
 Write(50,9779) Opt 
 9779   Format(3X,'Select Option: ',I2) 
  
C       ---------- 
C       Definition of the still-water-level. 
C       ---------- 
 If (Opt.EQ.1.OR.Opt.EQ.2.OR.Opt.EQ.3) then   
   Read(15,*) DSWL 
   If (DSWL.NE.1.AND.DSWL.NE.2) then 
     Write(*,3017) 
     Write(50,3017) 
 3017       Format(// 3X,'ERROR: Wrong Value for th e Definition of' / 
     1                10X,'the Still-Water-Level !' ) 
     STOP 
   Endif 
   Write(40,9320) 
   Write(50,9320) 
 9320     Format(// 3X,'HOW IS THE STILL-WATER-LEVE L DEFINED ?' 
     1           // 11X, 'Total Level .... [ 1 ]' /   
     1              11X, 'Tide + Surge ... [ 2 ]' / ) 
   Write(40,9473) DSWL 
   Write(50,9473) DSWL 
 9473     Format(3X,'Select Option: ',I1) 
 Endif 
 
C       ---------- 
C       Definition of the confidence value of the m aximum run-up to be 
C       considered. 
C       ---------- 
 If (Opt.EQ.1) then 
   Read(15,*) OptC 
   If (OptC.NE.1.AND.OptC.NE.2) then 
     Write(*,3317) 
     Write(50,3317) 
 3317       Format(// 3X,'ERROR: Wrong Value for th e Confidence Value' / 
     1                10X,'of the Maximum Run-Up !' ) 
     STOP 
   Endif 
   Write(40,1324) 
   Write(50,1324) 
 1324     Format(// 3X,'WHAT IS THE CONFIDENCE VALU E OF THE MAXIMUM',  
     1           1X,'RUN-UP' / 3X,'THAT YOU WOULD L IKE TO CONSIDER ?' 
     1           // 11X, '37 % ... [ 1 ]' /  
     1              11X, '99 % ... [ 2 ]' /) 
   Write(40,1037) OptC 
   Write(50,1037) OptC 
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 1037     Format(3X,'Select Option: ',I1) 
   If (OptC.EQ.1) then  
     C1=1.52 
   else 
     C1=2.15 
   Endif 
 Endif 
 
C       ---------- 
C       Definition of the method of calculation of the first partial  
C       derivatives of the failure function for ove rtopping. 
C       ---------- 
 If (Opt.NE.3) then 
   Read(15,3377) Der 
 3377     Format(A1) 
   If (Der.NE.'Y'.AND.Der.NE.'y'.AND.Der.NE.'N'.AND .Der.NE.'n')  
     1        then 
     Write(*,3373) 
     Write(50,3373) 
 3373       Format(// 3X, 
     1             'ERROR: Wrong Value for the Meth od of Calculation' / 
     1             10X,'of the First Partial Deriva tives of the' / 
     1             10X,'Failure Function for Overto pping !') 
     STOP 
   Endif 
   Write(40,6681) Der 
   Write(50,6681) Der 
 6681     Format(// 3X,'ARE THE FIRST DERIVATIVES O F THE FAILURE',1X, 
     1           'FUNCTION SUPPLIED (Y/N) ? ',A1) 
   If ((Der.EQ.'Y').OR.(Der.EQ.'y')) FDer=1 
   If ((Der.EQ.'N').OR.(Der.EQ.'n')) FDer=2           
 else 
   FDer=2 
 Endif 
 
C       ---------- 
C       Definition of the direction of the sand mov ements occurring  
C       during a storm surge. 
C       ---------- 
 OptD=0 
 If (Opt.EQ.3) then 
   Read(15,*) OptD 
   If (OptD.NE.1.AND.OptD.NE.2) then 
     Write(*,3372) 
     Write(50,3372) 
 3372       Format(// 3X,'ERROR: Wrong Value for th e Direction' / 
     1                10X,'of the Sand Movements !' ) 
     STOP 
   Endif 
   Write(40,1302) 
   Write(50,1302) 
 1302     Format(// 3X,'DURING A STORM SURGE, WOULD  YOU LIKE TO TAKE', 
     1           1X,'INTO ACCOUNT: '//  
     1           11X, 'Movements of Sand in Both Di rections ?',  
     1           1X,'... [ 1 ]' / 11X, 'Movements o f Sand',  
     1           1X,'only Seaward ? ......... [ 2 ] ' /) 
   Write(40,1937) OptD 
   Write(50,1937) OptD 
 1937     Format(3X,'Select Option: ',I1) 
 Endif 
  
C       ---------- 
C       If the failure mode is dune erosion the fol lowing quantities 
C       have to be read: 
C       - coastal curvature in degrees per 1000m, c tcurv 
C       - number of points defining the initial pro file, NPD  
C       - beach profile coordinates, (XP,YP)  
C       - number of points to be changed in the ini tial profile, NPch 
C       - first point to be changed, point no. t 
C       - gradient of the eroded dune face, 1:md 
C       - gradient of the toe of the post-storm pro file, 1:mt 
C       - nourishment top level, nourtlev 
C       - gradient of the nourished face, 1:mnour 
C       ---------- 
 If (Opt.EQ.3) then 
   Read(45,*) ctcurv 
   If (ctcurv.LT.0.OR.ctcurv.GT.24) then 
     Write(*,3278) 
     Write(50,3278) 
 3278       Format(// 3X,'ERROR: The Coastal Curvat ure is not',1X,  
     1             'Within [0,24] !') 
     STOP 
   Endif 
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   Write(40,7522) ctcurv 
   Write(50,7522) ctcurv 
 7522     Format(/ 3X,'DUNE EROSION' // 11X, 
     1           'Coastal Curvature (Deg/1000m) = ' ,E17.10 /) 
    
   Read(45,*) NPD 
   If (NPD.GT.100.OR.NPD.LE.0) then 
     Write(*,3251) 
     Write(50,3251) 
 3251       Format(// 3X, 
     1             'ERROR: The Maximum Number of Po ints Defining the' / 
     1             3X,'       Initial Profile is no t Within ]0,100] !') 
     STOP 
   Endif 
   Write(40,6011) NPD 
   Write(50,6011) NPD 
 6011     Format(11X,'Number of Points Defining the  Initial Profile',1X,  
     1           '(Max=100) = ',I3 // 23X, 'Initial  Profile ' // 19X,  
     1           'X', 18X, 'Y') 
   Do 3120 i=1,NPD 
     Read(45,*) XP(i),YP(i) 
     If (i.GE.2) then 
       If (XP(i).LT.XP(i-1)) then 
  Write(*,1466) i,(i-1) 
  Write(50,1466) i,(i-1) 
 1466           Format(// 3X,'ERROR: XP(',I3,') < X P(',I3,') !') 
  STOP 
       Endif 
     Endif 
     Write(40,9011) XP(i),YP(i) 
     Write(50,9011) XP(i),YP(i) 
 9011       Format(11X,E17.10,2X,E17.10) 
     XPOld(i)=XP(i) 
     YPOld(i)=YP(i) 
 3120     continue 
   NPDOld=NPD 
 
   Read(45,*) NPch 
   If (NPch.LT.1.OR.NPch.GT.NPD) then 
     Write(*,1366) NPD  
     Write(50,1366) NPD  
 1366       Format(// 3X,'ERROR: The Number of Poin ts to be Changed',  
     1             1X,'in the'/10X,'Initial Profile  is not Within [1,', 
     1             I3,'] !') 
     STOP 
   Endif 
   Read(45,*) t 
   If (t.LT.1.OR.t.GT.NPD) then 
     Write(*,1322) NPD  
     Write(50,1322) NPD  
 1322       Format(// 3X,'ERROR: The First Point to  be Changed in the' / 
     1                3X,'       Initial Profile is  not Within [1,', 
     1             I3,'] !') 
     STOP 
   Endif 
   Write(40,7517) NPch,t 
   Write(50,7517) NPch,t 
 7517     Format(/ 11X,'Number of Points to be Chan ged in the Initial',  
     1           1X,'Profile = ',I3 // 11X,'First P oint to be Changed',  
     1           1X,'= Point No.',I3) 
   
   Read(45,*) md 
   If (md.LE.0) then 
     Write(*,1311)   
     Write(50,1311)   
 1311       Format(// 3X,'ERROR: The Gradient of th e Eroded Dune', 
     1             1X,'Face is <= 1:0 !') 
     STOP 
   Endif 
    
   Read(45,*) mt 
   If (mt.LE.0) then 
     Write(*,1151)   
     Write(50,1151)   
 1151       Format(// 3X,'ERROR: The Gradient of th e Toe of the', 
     1             1X,'Post-Storm Profile is <= 1:0  !') 
     STOP 
   Endif 
    
   Read(45,*) nourtlev 
    
   Read(45,*) mnour 
   If (mnour.LE.0) then 
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     Write(*,7103)  
     Write(50,7103)  
 7103       Format(// 3X,'ERROR: The Gradient of th e Nourished', 
     1             1X,'Face is <= 1:0 !') 
     STOP 
   Endif 
    
   Write(40,7913) md,mt,nourtlev,mnour 
   Write(50,7913) md,mt,nourtlev,mnour 
 7913     Format(/ 11X,'Gradient of the Eroded Dune  Face = 1:',F4.1 //  
     1         11X,'Gradient of the Toe of the Post -Storm Profile = 1:',  
     1         F4.1 // 11X,'Nourishment Top Level =  ',E17.10 // 11X, 
     1          'Gradient of the Nourished Face = 1 :',F4.1) 
 Endif 
 
C       =========================================== ===================== 
C       Definition of the number, N, of variables f or each failure mode. 
C       =========================================== ===================== 
 If (Opt.EQ.1) then 
   N=8 
 else 
   N=7 
 Endif 
 
 If (DSWL.EQ.2) then 
   If (Opt.EQ.2.OR.Opt.EQ.3) N=8 
   If (Opt.EQ.1) N=9 
 Endif 
 
C       =========================================== ===================== 
C       Description of each variable for the failur e mode chosen. 
C       =========================================== ===================== 
 Call VarExt(N,Opt,Ext,ExtExt,ParamDesc) 
 Write(40,1009) 
 Write(50,1009) 
 1009   Format(// 3X,'DESCRIPTION OF THE VARIABLES'  /) 
 Do 1603 i=1,N 
   Write(40,1018) i,Ext(i),ExtExt(i) 
   Write(50,1018) i,Ext(i),ExtExt(i) 
 1018     Format(11X,'X(',I3,') = ',A3,' = ',A17) 
 1603   continue         
 
C       =========================================== ===================== 
C       Definition of the purpose of the analysis. 
C       =========================================== ===================== 
 Read(15,*) Mode 
 If (Mode.NE.1.AND.Mode.NE.2) then 
   Write(*,3374) 
   Write(50,3374) 
 3374     Format(// 3X,'ERROR: Wrong Value for the Definition' / 
     1              10X,'of the Purpose of the Anal ysis !') 
   STOP 
 Endif 
 Write(40,1017) 
 Write(50,1017) 
 1017   Format(// 3X,'WHAT IS THE PURPOSE OF THE AN ALYSIS ? ' // 11X, 
     1        'Reliability Analysis for a Specified  Design ... [ 1 ]'  
     1        / 11X,  
     1        'Design for a Specified Reliability L evel ...... [ 2 ]' /) 
 Write(40,9696) Mode 
 Write(50,9696) Mode 
 9696   Format(3X,'Select Option: ',I1) 
 
C       =========================================== ===================== 
C       Reads the design life of the structure, Lif e. 
C       =========================================== ===================== 
 Read(15,*) Life 
 If (Life.LE.0) then 
   Write(*,7882) 
   Write(50,7882) 
 7882     Format(// 3X, 
     1           'ERROR: The Design Life of the Str ucture is <= 0 !') 
   STOP 
 Endif 
 Write(40,791) Life 
 Write(50,791) Life 
 791    Format(// 3X,'DESIGN LIFE OF THE STRUCTURE = ',I3) 
 
C       =========================================== ===================== 
C       Definition of the combination of actions fo r Mode 1. 
C       =========================================== ===================== 
 If (Mode.EQ.1) then 
   Read(15,3335) CAcc 
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 3335     Format(A1) 
   If (CAcc.NE.'Y'.AND.CAcc.NE.'y'.AND. 
     1        CAcc.NE.'N'.AND.CAcc.NE.'n') then 
     Write(*,3357) 
     Write(50,3357) 
 3357       Format(// 3X,'ERROR: Wrong Value for th e Definition of the'/ 
     1                10X,'Combination of Actions f or Mode 1 !') 
     STOP 
   Endif 
   Write(40,6622) CAcc 
   Write(50,6622) CAcc 
 6622     Format(// 3X,'WOULD YOU LIKE TO CONSIDER' ,1X, 
     1           'COMBINATION OF ACTIONS (Y/N) ? ', A1) 
   If ((CAcc.EQ.'Y').OR.(CAcc.EQ.'y')) Comb=1 
   If ((CAcc.EQ.'N').OR.(CAcc.EQ.'n')) Comb=2           
 else 
   Comb=2 
 Endif 
  
C       ---------- 
C       Definition of the number of combination of actions, NCombAc. 
C       ---------- 
 If (Comb.EQ.2) then 
   NCombAc=1 
   Do 2388 i=1,N 
     NR(1,i)=1 
 2388     continue         
 else  
   Read(15,*) CombAc 
   If (CombAc.NE.1.AND.CombAc.NE.2) then 
     Write(*,3367) 
     Write(50,3367) 
 3367       Format(// 3X,'ERROR: Wrong Value for th e Definition of the'/ 
     1                10X,'Number of Combination of  Actions !') 
     STOP 
   Endif 
   Write(40,1320) 
   Write(50,1320) 
 1320     Format(// 3X,'HOW MANY COMBINATIONS WOULD  YOU LIKE TO',  
     1           1X,'CONSIDER ? ' // 11X, 
     1           'The Number of Time-Varying Action s (k) ... [ 1 ]' /  
     1        11X, '2^(k-1) ....................... ........... [ 2 ]' /) 
   Write(40,1007) CombAc 
   Write(50,1007) CombAc 
 1007     Format(3X,'Select Option: ',I1) 
    
C         ---------- 
C         Definition of the distributions provided for each combination        
C         of actions. 
C         ---------- 
   Read(15,*) Distr 
   If (Distr.NE.1.AND.Distr.NE.2) then 
     Write(*,9977) 
     Write(50,9977) 
 9977       Format(// 3X,'ERROR: Wrong Value for th e Definition of the'/ 
     1                10X,'Distributions Provided f or Each' / 
     1                10X,'Combination of Actions ! ') 
     STOP 
   Endif 
   Write(40,1550) 
   Write(50,1550) 
 1550     Format(// 3X,'WHICH DISTRIBUTIONS WOULD Y OU LIKE TO',  
     1           1X,'PROVIDE ? ' // 11X, 
     1           'The Basic Distributions ...... [ 1 ]' / 11X,  
     1           'The Modified Distributions ... [ 2 ]' /) 
   Write(40,1557) Distr 
   Write(50,1557) Distr 
 1557     Format(3X,'Select Option: ',I1) 
 Endif 
       
 If (Comb.EQ.1) then 
C         ---------- 
C         Reads the number of time-varying actions,  NumTVAc (maximum=5)  
C         & calculates the number of combinations o f actions, NCombAc. 
C         ---------- 
   Read(15,*) NumTVAc 
   If (NumTVAc.GT.5.OR.NumTVAc.LE.0) then 
     Write(*,7887) 
     Write(50,7887) 
 7887       Format(// 3X,'ERROR: The Maximum Number  of Time Varying' / 
     1                3X,'       Actions is not Wit hin ]0,5] !') 
     STOP 
   Endif 
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   Write(40,7911) NumTVAc 
   Write(50,7911) NumTVAc 
 7911     Format(// 3X, 'NUMBER OF TIME-VARYING ACT IONS (Max=5) = ',I1) 
   If (CombAc.EQ.1) then 
     NCombAc=NumTVAc 
   else 
     NCombAc=2**(NumTVAc-1) 
   Endif 
  
   If (Distr.EQ.1) then 
C           ---------- 
C           Reads the number of the time-varying ac tions, TVAC, in  
C           increasing order of the number of repet itions, r. Reads the  
C           number of repetitions of each action in  the design life of  
C           the structure. 
C           ---------- 
     Write(40,782)  
     Write(50,782)  
 782        Format(//3X,'REPETITIONS OF EACH ACTION  IN THE DESIGN LIFE',  
     1             /) 
     Do 140 i=1,NumTVAc 
       Read(15,*) TVAc(i),r(TVAc(i)) 
       If (TVAc(i).GT.N.OR.TVAc(i).LE.0) then 
  Write(*,4886) N 
  Write(50,4886) N 
 4886           Format(//3X,'ERROR: The Value of th e Number of the Time'  
     1                  /3X,'       Varying Action is not Within ]0,', 
     1                  I3,'] !') 
  STOP 
       Endif 
       If (r(TVAc(i)).LE.0) then 
  Write(*,6884)  
  Write(50,6884)  
 6884           Format(// 3X,'ERROR: The Number of Repetitions is',1X,  
     1                 '<= 0 !') 
  STOP 
       Endif 
       If (r(TVAc(i)).LT.r(TVAC(i-1))) then 
  Write(*,6334)  
  Write(50,6334)  
 6334           Format(// 3X, 
     1                 'ERROR: The Actions are not Listed in Increasing'  
     1                /3X,'       Order of the Numb er of Repetitions !') 
  STOP 
       Endif 
       Write(40,788) Ext(TVAc(i)),r(TVAc(i)) 
       Write(50,788) Ext(TVAc(i)),r(TVAc(i)) 
 788          Format(11X,'r(',A3,') = ',F8.0) 
 140        continue 
     Call Combination(N,NumTVAc,CombAc,NCombAc,r,TV Ac,NR) 
     Do 8711 i=1,NCombAc 
       Do 8712 j=1,N 
  Write(50,*) 'NR(i,j)=',i,j,NR(i,j) 
 8712         continue 
 8711       continue 
   else 
     Do 87 i=1,NCombAc 
       Do 88 j=1,N 
  NR(i,j)=1 
 88           continue 
 87         continue 
   Endif 
 Endif 
  
 If (Mode.EQ.1) then 
C         ========================================= ===================== 
C         Reads the value of the design parameter, StartParam, for which  
C         the failure probability (or reliability) is to be found. 
C         ========================================= ===================== 
   Read(15,*) StartParam 
   If (StartParam.LT.0) then 
     Write(*,6554)  
     Write(50,6554)  
 6554       Format(// 3X,'ERROR: The Prescribed Val ue of the', 
     1                1X,'Design Parameter is < 0 ! ') 
     STOP 
   Endif 
   Write(40,7781) ParamDesc,StartParam 
   Write(50,7781) ParamDesc,StartParam 
 7781     Format(// 3X,'PRESCRIBED VALUE OF THE DES IGN PARAMETER' //  
     1           11X,A19,' = ',E17.10) 
 else 
C         ========================================= ===================== 
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C         Reads the design target failure probabili ty, Pf, & starting  
C         value of the design parameter, StartParam , from which the  
C         program iterates to find the required val ue of the design  
C         parameter for the given failure probabili ty (or reliability). 
C         ========================================= ===================== 
   Read(15,*) StartParam 
   If (StartParam.LT.0) then 
     Write(*,6224)  
     Write(50,6224)  
 6224       Format(// 3X,'ERROR: The Prescribed Val ue of the', 
     1                1X,'Design Parameter is < 0 ! ') 
     STOP 
   Endif 
   Read(15,*) Pf 
   If (Pf.LT.0.OR.Pf.GT.1) then 
     Write(*,6234)  
     Write(50,6234)  
 6234       Format(//3X,'ERROR: The Value of the De sign Target Failure', 
     1              /3X,'       Probability is not Within [0,1] !') 
     STOP 
   Endif 
   If (StartParam.EQ.0.) then 
     Write(40,7191) (100.*Pf),ParamDesc,StartParam 
     Write(50,7191) (100.*Pf),ParamDesc,StartParam 
 7191       Format(// 3X,'DESIGN TARGET FAILURE PRO BABILITY (%) = ', 
     1             F10.6 // 3X, 
     1             'STARTING VALUE OF THE DESIGN PA RAMETER - ',A19/  
     1                3X, '(to start iteration) = ' ,E17.10 // 5X, 
     1            'NOTE: In design for a specified reliability level,', 
     1            1X,'the starting' / 11X,'value of  the design',1X, 
     1            'parameter should not be set to z ero !' / 11X,  
     1            'So, the program assumes a starti ng value of 5m.') 
     StartParam=5. 
   else 
     Write(40,7791) (100.*Pf),ParamDesc,StartParam 
     Write(50,7791) (100.*Pf),ParamDesc,StartParam 
 7791       Format(// 3X,'DESIGN TARGET FAILURE PRO BABILITY (%) = ', 
     1             F10.6 // 3X, 
     1             'STARTING VALUE OF THE DESIGN PA RAMETER - ',A19 /  
     1             3X, '(to start iteration) = ',E1 7.10)  
   Endif 
 
C         ========================================= ===================== 
C         Calculation of the reliability index, Rel Ind, which  
C         corresponds to the target failure probabi lity, Pf. 
C         ========================================= ===================== 
   Call InvNormal(Pf,RelInd) 
   Write(40,8792) RelInd 
   Write(50,8792) RelInd 
 8792     Format(/ 3X,'Reliability Index = ',E17.10  /) 
 Endif 
 
C       =========================================== ===================== 
C       Reads the characteristics of the variables:  
C       - Type of distribution, VarDist 
C       - Type of truncation, Trunc 
C       - Point of truncation, Xo (if the distribut ion is truncated)        
C       - Mean, Mux, standard deviation, Sigmax, & lower limit, Zeta 
C       =========================================== ===================== 
 Do 6633 j=1,NCombAc 
   If ((NCombAC.GT.1).AND.(Distr.EQ.2)) then 
     Write(40,7073) j 
     Write(50,7073) j 
 7073       Format(/// 3X,'COMBINATION No.',I2) 
   Endif 
   Write(40,8777)  
   Write(50,8777)  
 8777     Format(// 3X, 'CHARACTERISTICS OF THE VAR IABLES ' /) 
   Do 13 i=1,N 
     Read(30,*) VarDis(j,i) 
     If (VarDis(j,i).NE.0.AND.VarDis(j,i).NE.1.AND.  
     1          VarDis(j,i).NE.2.AND.VarDis(j,i).NE .3.AND. 
     1          VarDis(j,i).NE.4.AND.VarDis(j,i).NE .5.AND. 
     1          VarDis(j,i).NE.6.AND.VarDis(j,i).NE .7.AND. 
     1          VarDis(j,i).NE.8.AND.VarDis(j,i).NE .9.AND. 
     1          VarDis(j,i).NE.10.AND.VarDis(j,i).N E.11.AND. 
     1          VarDis(j,i).NE.12.AND.VarDis(j,i).N E.13) then 
       Write(*,3375) Ext(i) 
       Write(50,3375) Ext(i) 
 3375         Format(// 3X,'ERROR: Wrong Value for the Type of',1X,  
     1               'Distribution for ',A3,' !') 
       STOP 
     Endif 



Program Listing 

C7-28 

     Trunc(j,i)=0 
     If (VarDis(j,i).NE.0.AND.VarDis(j,i).LE.10)  
     1         Read(30,*) Trunc(j,i) 
     If (Trunc(j,i).NE.0.AND.Trunc(j,i).NE.1.AND. 
     1          Trunc(j,i).NE.2) then 
       Write(*,3376) Ext(i) 
       Write(50,3376) Ext(i) 
 3376         Format(// 3X,'ERROR: Wrong Value for the Type of',1X, 
     1               'Truncation for ',A3,' !') 
       STOP 
     Endif 
     Xo(j,i)=0. 
     If (Trunc(j,i).NE.0) then 
C             ----------               
C             For the failure mode of overtopping, if the variable is  
C             the significant wave height, Hs, & if  Hs is limited by the 
C             available water depth, then the point  of truncation is  
C             Xo=0.6(SWL-TL) or Xo=0.6(Tide+Surge-T L), where TL is the  
C             seawall toe level. 
C             ----------               
       If ((Opt.EQ.1.OR.Opt.EQ.2).AND.(i.EQ.2).AND.  
     1            (Trunc(j,i).EQ.1)) then 
  Read(30,*) TL 
  goto 5553 
       Endif 
       Read(30,*) Xo(j,i) 
     Endif 
     If ((Opt.EQ.1.OR.Opt.EQ.2).AND.(i.EQ.2)) then 
       Read(30,*) TL 
       Write(40,7881) TL  
       Write(50,7881) TL 
 7881         Format(11X,'Seawall Toe Level (TL) = ',E17.10) 
     Endif 
 5553       If (VarDis(j,i).NE.0) then 
       If (VarDis(j,i).EQ.6) then 
  Read(30,*) Mux(j,i),Sigmax(j,i),x1(j,i),x2(j,i) 
  If (x1(j,i).GE.x2(j,i)) then 
    Write(*,8703)  
    Write(50,8703)  
 8703             Format(// 11X,'ERROR: a >= b !') 
    STOP 
  Endif 
  goto 5555 
       Endif 
       If (VarDis(j,i).EQ.10) then 
  Read(30,*) Mux(j,i),Sigmax(j,i),Zeta(j,i) 
  goto 5555 
       Endif 
       Read(30,*) Mux(j,i),Sigmax(j,i) 
     else 
       Read(30,*) Mux(j,i) 
     Endif 
 5555       Call WhatDist(i,j,VarDis,Abrev,Carac) 
     Call WriCharVar(i,j,VarDis,Trunc,Ext,Carac,Xo, Mux,Sigmax, 
     1                      Opt) 
 13       continue 
 
C         ========================================= ===================== 
C         Calculation of the distribution's paramet ers, Zeta, Lamda &  
C         Eta, for each variable. 
C         ========================================= ===================== 
   Write(50,4495)  
 4495     Format(// 6X,'DISTRIBUTION`S PARAMETERS')  
   Do 6070 i=1,N 
     Call Parameters(i,j,Mux,Sigmax,VarDis,Ext) 
 6070     continue 
   If (Distr.EQ.1) then 
     If (NCombAc.GT.1) then 
       Call EqCharac(N,NCombAc,Abrev,Carac,VarDis,T runc,Xo,Mux, 
     1                      Sigmax) 
       Write(40,9911) 
       Write(50,9911) 
 9911         Format(// 11X,'THE CHARACTERISTICS OF  THE VARIABLES ARE ', 
     1                / 11X,'THE SAME FOR ALL COMBI NATIONS OF ACTIONS.',  
     1               //) 
     Endif 
     goto 1314 
   Endif 
 6633   continue     
 
C       =========================================== ===================== 
C       Reads the correlation coefficients, Rho, of  the variables.         
C       =========================================== ===================== 
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 1314   Write(40,870) 
 Write(50,870) 
 870    Format(// 3X, 'CORRELATION COEFFICIENTS ' / ) 
 Do 40 i=1,N 
   Do 45 j=1,N 
     Read(35,*) Rho(i,j) 
     Write(40,78) Ext(i),Ext(j),Rho(i,j) 
     Write(50,78) Ext(i),Ext(j),Rho(i,j) 
 78         Format(11X,'(',A3,',',A3,') = ',E17.10)  
 45       continue   
 40     continue 
 Do 4005 i=1,N 
   Do 4050 j=1,N 
     If ((Rho(i,j).NE.Rho(j,i)).OR.(ABS(Rho(i,j)).G T.1)) then 
       If (Rho(i,j).NE.Rho(j,i)) then 
  Write(*,7801) i,j,j,i 
  Write(50,7801) i,j,j,i 
 7801           Format(// 11X,'ERROR: Rho(',I2,',', I2, 
     1                 ') is not equal to Rho(',I2, ',',I2,') !') 
       else 
  Write(*,7901) i,j 
  Write(50,7901) i,j 
 7901           Format(// 11X,'ERROR: |Rho(',I2,',' ,I2,')| > 1 !') 
       Endif 
       STOP 
     Endif 
 4050     continue   
 4005   continue 
 Write(40,*) ' ' 
 Write(50,*) ' ' 
 
C       =========================================== ===================== 
C       Reads the characteristics of the FORM calcu lations: 
C       - starting value of the variables, StartPt 
C       - minimum value, XMin, & maximum value, XMa x, of the variables 
C       - maximum number of iterations, MaxIter 
C       - number of FORM calculations, NumCalc 
C       - target values for each FORM calculation, TR 
C       - required accuracy of the reliability inde x, ReqBetaAcc 
C       - smoothing coefficient for the iteration p rocess, Smooth  
C       - required accuracy of the failure function , ReqOBJFAcc 
C       =========================================== ===================== 
 
C       ---------- 
C       Starting value of the variables, StartPt. 
C       ---------- 
 Do 678 j=1,NCombAC 
   If (NCombAC.GT.1) then 
     Write(40,7079) j 
     Write(50,7079) j 
 7079       Format(/// 3X,'COMBINATION No.',I2) 
   Endif 
   If ((Distr.EQ.2).OR.(Comb.EQ.2)) then 
     Write(40,132)        
     Write(50,132) 
 132        Format(/ 3X,'STARTING POINT FOR THE FOR M CALCULATIONS: '//  
     1             11X, 'Default Values (mean value s) ... [ 1 ]' /  
     1             11X, 'User Specified Values .... ...... [ 2 ]' /) 
     Read(65,*) Def 
     If (Def.NE.1.AND.Def.NE.2) then 
       Write(*,3307) 
       Write(50,3307) 
 3307         Format(// 3X,'ERROR: Wrong Value for the Type of',1X, 
     1               'Starting Point !') 
       STOP 
     Endif 
     Write(40,937) Def 
     Write(50,937) Def 
 937        Format(3X,'Select Option: ',I1) 
     Write(40,5666)  
     Write(50,5666)  
 5666       Format(/ 3X,'STARTING POINT' /) 
     If (Def.EQ.1) then 
       Do 2156 i=1,N 
  StartPt(j,i)=Mux(j,i) 
  Write(40,5620) Ext(i),StartPt(j,i) 
  Write(50,5620) Ext(i),StartPt(j,i) 
 5620           Format(11X,A3,' = ',E17.10) 
 2156         continue        
     else 
       Do 2155 i=1,N 
  If (VarDis(j,i).NE.0) then 
    Read(65,*) StartPt(j,i) 
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    Write(40,5600) Ext(i),StartPt(j,i) 
    Write(50,5600) Ext(i),StartPt(j,i) 
 5600             Format(11X,A3,' = ',E17.10) 
  else 
    StartPt(j,i)=Mux(j,i) 
  Endif 
 2155         continue        
     Endif 
   Endif 
   If (Distr.EQ.1) then 
     Write(40,5636)  
     Write(50,5636)  
 5636       Format(/ 3X,'STARTING POINT' /) 
     Do 2956 i=1,N 
       If (NR(j,i).NE.1.) then 
  Call Inverse(j,i,Mux,NR,VarDis,StartPt) 
       else 
  StartPt(j,i)=Mux(j,i) 
       Endif 
       Write(40,5629) Ext(i),StartPt(j,i) 
       Write(50,5629) Ext(i),StartPt(j,i) 
 5629         Format(11X,A3,' = ',E17.10) 
 2956       continue        
   Endif 
 678    continue           
 
C       ---------- 
C       Minimum value, XMin, & maximum value, XMax,  of the variables. 
C       ---------- 
 Do 789 j=1,NCombAC 
   If ((NCombAC.GT.1).AND.(Distr.EQ.2)) then 
     Write(40,7074) j 
     Write(50,7074) j 
 7074       Format(/// 3X,'COMBINATION No.',I2) 
   Endif 
   Write(40,1327) 
   Write(50,1327) 
 1327     Format(/ 3X,'LIMITING VALUES FOR THE VARI ABLES: '//  
     1           11X, 'Default Values (+/- 1E25) .. . [ 1 ]' /  
     1           11X, 'User Specified Values ...... . [ 2 ]' /) 
   Read(65,*) Def1 
   If (Def1.NE.1.AND.Def1.NE.2) then 
     Write(*,3371) 
     Write(50,3371) 
 3371       Format(// 3X,'ERROR: Wrong Value for th e Type of',1X, 
     1             'Limiting Values for the Variabl es !') 
     STOP 
   Endif 
   Write(40,9377) Def1 
   Write(50,9377) Def1 
 9377     Format(3X,'Select Option: ',I1) 
   If (Def1.EQ.1) then 
     Do 2176 i=1,N 
       If (VarDis(j,i).NE.0) then 
  XMin(j,i)=-1E25 
  XMax(j,i)=+1E25 
  If ((Opt.EQ.1.OR.Opt.EQ.2).AND.(DSWL.EQ.1)) then 
    XMin(j,5)=TL 
    XMax(j,5)=StartParam 
    If (XMin(j,5).GT.XMax(j,5)) then 
      Write(*,8653)  
      Write(50,8653)  
 8653               Format(// 11X,'ERROR: The Toe L evel is Above the', 
     1                     1X,'Seawall Crest Level !') 
      STOP 
    Endif 
  Endif           
       else 
  XMin(j,i)=Mux(j,i) 
  XMax(j,i)=Mux(j,i) 
       Endif  
 2176       continue        
   else 
     Do 2175 i=1,N 
       If (VarDis(j,i).NE.0) then 
  Read(65,*) XMin(j,i),XMax(j,i) 
  If (XMin(j,i).GT.XMax(j,i)) then 
    Write(*,8733) i,i 
    Write(50,8733) i,i 
 8733             Format(// 11X,'ERROR: XMin(',I2,' ) > XMax(',I2,') !') 
    STOP 
  Endif 
  If ((Opt.EQ.1.OR.Opt.EQ.2).AND.(DSWL.EQ.1)) then 



Program Listing 

C7-31 

    XMin(j,5)=TL 
    XMax(j,5)=StartParam 
    If (XMin(j,5).GT.XMax(j,5)) then 
      Write(*,8153)  
      Write(50,8153)  
 8153               Format(// 11X,'ERROR: The Toe L evel is Above the', 
     1                     1X,'Seawall Crest Level !') 
      STOP 
    Endif 
  Endif           
       else 
  XMin(j,i)=Mux(j,i) 
  XMax(j,i)=Mux(j,i) 
       Endif 
 2175       continue        
   Endif 
   Write(40,5678)  
   Write(50,5678)  
 5678     Format(/ 3X,'LIMITING VALUES FOR THE VARI ABLES' /) 
   Do 2788 i=1,N 
     Call MinMax(i,j,Opt,VarDis,Ext,Trunc,Xo,Mux,Si gmax,XMin, 
     1                  XMax) 
     If (StartPt(j,i).LT.XMin(j,i)) then 
       Write(*,8477) Ext(i),StartPt(j,i),Ext(i),XMi n(j,i) 
       Write(50,8477) Ext(i),StartPt(j,i),Ext(i),XM in(j,i) 
 8477         Format(// 3X,'ERROR: Starting Value o f ',A3,' = ',E17.10 
     1               / 10X,'< Minimum of ',A3,' = ' ,E17.10,' !') 
       STOP 
     Endif 
     If (StartPt(j,i).GT.XMax(j,i)) then 
       Write(*,8977) Ext(i),StartPt(j,i),Ext(i),XMa x(j,i) 
       Write(50,8977) Ext(i),StartPt(j,i),Ext(i),XM ax(j,i) 
 8977         Format(// 3X,'ERROR: Starting Value o f ',A3,' = ',E17.10 
     1               / 10X,'> Maximum of ',A3,' = ' ,E17.10,' !') 
       STOP 
     Endif 
 2788     continue 
   If (Distr.EQ.1) then 
     If (NCombAc.GT.1) then 
       Do 8001 k=2,NCombAc 
  Do 7001 i=1,N 
    XMin(k,i)=XMin(1,i) 
    XMax(k,i)=XMax(1,i) 
 7001           continue 
 8001         continue     
       Write(40,9111) 
       Write(50,9111) 
 9111         Format(// 11X, 
     1               'THE MINIMUM AND MAXIMUM VALUE S OF THE VARIABLES' /  
     1               11X,'ARE THE SAME FOR ALL COMB INATIONS OF ACTIONS.'  
     1               //) 
     Endif 
     goto 1315 
   Endif 
 789    continue           
 
C       ---------- 
C       Maximum number of iterations, MaxIter. 
C       ---------- 
 1315   Read(65,*) MaxIter 
 If (MaxIter.GT.200.OR.MaxIter.LE.0) then 
   Write(*,7851) 
   Write(50,7851) 
 7851     Format(// 3X,'ERROR: The Maximum Number o f Iterations' /  
     1              3X,'       is not Within ]0,200 ] !') 
   STOP 
 Endif 
 Write(40,5995) MaxIter 
 Write(50,5995) MaxIter 
 5995   Format(// 3X,'MAXIMUM NUMBER OF ITERATIONS (Max=200) = ',I3) 
  
C       ---------- 
C       Number of FORM calculations, NumCalc. 
C       ---------- 
 Read(65,*) NumCalc 
 If (NumCalc.GT.10.OR.NumCalc.LE.0) then 
   Write(*,3279) 
   Write(50,3279) 
 3279     Format(// 3X,'ERROR: The Maximum Number o f FORM Calculations' 
     1            / 3X,'       is not Within ]0,10]  !') 
   STOP 
 Endif 
 Write(40,5005) NumCalc 
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 Write(50,5005) NumCalc 
 5005   Format(/ 3X,'NUMBER OF FORM CALCULATIONS (M ax=10) = ',I2 /) 
  
C       ---------- 
C       Target values for each FORM calculation, TR . 
C       ---------- 
 Aux=2 
 Do 2007 k0=1,NumCalc 
   Read(65,*) TR(k0) 
   If (TR(k0).LT.0) then 
     Write(*,3244) 
     Write(50,3244) 
 3244       Format(// 3X, 
     1             'ERROR: The Allowable Target Val ue is < 0 !') 
     STOP 
   Endif 
   Call Allowed(Opt,Aux) 
 2007   continue 
 
C       ---------- 
C       Required accuracy of the reliability index,  ReqBetaAcc. 
C       ---------- 
 Write(40,1997) 
 Write(50,1997) 
 1997   Format(// 3X, 
     1         'REQUIRED RELATIVE ACCURACY OF THE R ELIABILITY INDEX: '//  
     1         11X, 'Default Value (1%) ......... [  1 ]' /  
     1         11X, 'User Specified Value ....... [  2 ]' /) 
 Read(65,*) Def2 
 If (Def2.NE.1.AND.Def2.NE.2) then 
   Write(*,3461) 
   Write(50,3461) 
 3461     Format(// 3X,'ERROR: Wrong Value for the Type of',1X, 
     1           'Accuracy of the Reliability Index  ! ') 
   STOP 
 Endif 
 Write(40,9399) Def2 
 Write(50,9399) Def2 
 9399   Format(3X,'Select Option: ',I1) 
 If (Def2.EQ.1) then 
   ReqBetaAcc=1.        
 else 
   Read(65,*) ReqBetaAcc 
   If ((ReqBetaAcc.LT.(0.)).OR.(ReqBetaAcc.GT.1.)) then 
     Write(*,6677)  
     Write(50,6677)  
 6677       Format(// 3X,'ERROR: The Required Relat ive Accuracy of the',  
     1             / 10X,'Reliability Index is not Within [0,1] % !') 
     STOP 
   Endif 
   Write(40,9978) ReqBetaAcc 
   Write(50,9978) ReqBetaAcc 
 9978     Format(// 3X,'Required Relative Accuracy of the',1X, 
     1           'Reliability Index [0,1] = ',E17.1 0 /) 
 Endif 
 
C       ---------- 
C       Smoothing of the iteration process (0<=Smoo th<=1). 
C       If Smooth=0 then there is no smoothing; if Smooth=0.5 then there 
C       is averaging between the last two calculate d values of X. 
C       ---------- 
 Write(40,1197) 
 Write(50,1197) 
 1197   Format(// 3X,'REQUIRED SMOOTHING COEFFICIEN T FOR THE',1X, 
     1         'ITERATION PROCESS: '//  
     1         11X, 'Default Value (0) .......... [  1 ]' /  
     1         11X, 'User Specified Value ....... [  2 ]' /) 
 Read(65,*) Def3 
 If (Def3.NE.1.AND.Def3.NE.2) then 
   Write(*,3462) 
   Write(50,3462) 
 3462     Format(// 3X,'ERROR: Wrong Value for the Type of',1X, 
     1           'Smoothing Coefficient' / 10X, 
     1           'for the Iteration Process ! ') 
   STOP 
 Endif 
 Write(40,9799) Def3 
 Write(50,9799) Def3 
 9799   Format(3X,'Select Option: ',I1) 
 If (Def3.EQ.1) then 
   Smooth=0.        
 else 
   Read(65,*) Smooth 
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   If ((Smooth.LT.(0.)).OR.(Smooth.GT.1.)) then 
     Write(*,1177)  
     Write(50,1177)  
 1177       Format(// 3X,'ERROR: The Required Smoot hing',1X, 
     1             'Coefficient for the' / 10X, 
     1             'Iteration Process is not Within  [0,1] !') 
     STOP 
   Endif 
   Write(40,1178) Smooth 
   Write(50,1178) Smooth 
 1178     Format(// 3X,'Required Smoothing Coeffici ent for',1X, 
     1           'the Iteration Process [0,1] = ',E 17.10 /) 
 Endif 
 
C       ---------- 
C       Required accuracy of the failure function O BJF, ReqOBJFAcc. 
C       If ReqOBJFAcc=1% then ABS(OBJF)<0.01SigmaOB JF, where SigmaOBJF 
C       is the standard deviation of the failure fu nction. 
C       ---------- 
 Write(40,3397) 
 Write(50,3397) 
 3397   Format(// 3X,'REQUIRED ACCURACY OF THE FAIL URE FUNCTION: '//  
     1         11X, 'Default Value (1%) ......... [  1 ]' /  
     1         11X, 'User Specified Value ....... [  2 ]' /) 
 Read(65,*) Def4 
 If (Def4.NE.1.AND.Def4.NE.2) then 
   Write(*,3463) 
   Write(50,3463) 
 3463     Format(// 3X,'ERROR: Wrong Value for the Type of',1X, 
     1           'Accuracy of the Failure Function ! ') 
   STOP 
 Endif 
 Write(40,4499) Def4 
 Write(50,4499) Def4 
 4499   Format(3X,'Select Option: ',I1) 
 If (Def4.EQ.1) then 
   ReqOBJFAcc=1.        
 else 
   Read(65,*) ReqOBJFAcc 
   If ((ReqOBJFAcc.LT.(0.)).OR.(ReqOBJFAcc.GT.1.)) then 
     Write(*,5544)  
     Write(50,5544)  
 5544       Format(// 3X,'ERROR: The Required Accur acy of the',1X,  
     1             'Failure' / 10X, 
     1             'Function is not Within [0,1] % !') 
     STOP 
   Endif 
   Write(40,9448) ReqOBJFAcc 
   Write(50,9448) ReqOBJFAcc 
 9448     Format(// 3X,'Required Accuracy of the Fa ilure',1X,  
     1           'Function [0,1] = ',E17.10 /) 
 Endif 
 
 Close (Unit=35) 
 Close (Unit=15) 
 Close (Unit=30) 
 Close (Unit=45) 
 Close (Unit=65) 
 return 
 End 
 
 
  
C       ########################################### #####################        
C 
 Subroutine D1Point(j,N,Opt,Mux,Sigmax,VarDis,Abrev ,Rho,FDer, 
     1                     NR,StartParam,Prob,Ext,E xtExt,ParamDesc, 
     1                     Trunc,Xo,MaxIter,StartPt ,XMax,XMin, 
     1                     ReqBetaAcc,Smooth,ReqOBJ FAcc,Comb,Ex) 
C        
 
C       ########################################### #####################        
C 
C       Returns the failure probability, Prob, for a given value of the 
C       design parameter, StartParam - Mode 1 (anal ysis mode). 
C 
C       ########################################### ##################### 
C 
C       INPUT VARIABLES: 
C       Opt - Failure mode 
C       DSWL - Definition of the SWL 
C       TL - Seawall toe level 
C       Comb - Consideration or not of combination of actions 
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C       j - Number of the combination of actions 
C       NR - Power to which each distribution is ra ised for each  
C            combination of actions 
C       N - Number of variables 
C       Ext - Abbreviation of the name of the varia ble 
C       ExtExt - Description of the variable 
C       ParamDesc - Description of the design param eter 
C       Rho - Correlation coefficient 
C       Mux - Mean of X 
C       Sigmax - Standard deviation of X 
C       VarDis - Type of distribution 
C       Abrev - Abbreviation of the name of the dis tribution 
C       Trunc - Type of truncation 
C       Xo - Point of truncation (if the distributi on is truncated) 
C       XMin - Minimum value of X 
C       XMax - Maximum value of X 
C       Zeta - Parameter of a distribution 
C       StartPt - Starting value of the variables 
C       FDer - Method of calculation of the first p artial derivatives of  
C              the failure function for overtopping  
C       MaxIter - Maximum number of iterations 
C       k0 - Number of the FORM calculation 
C       TR - Target values for each FORM calculatio n 
C       ReqBetaAcc - Required relative accuracy of the reliability index 
C       Smooth - Smoothing coefficient for the iter ation process 
C       ReqOBJFAcc- Required accuracy of the failur e function 
C       StartParam - Prescribed value of the design  parameter  
C 
C       MODELING VARIABLES: 
C       Q - Maximum number of combinations of actio ns allowed by the  
C           program 
C       L - Maximum number of variables allowed by the program 
C       L1 - Maximum number of iterations allowed b y the program 
C       X - Variables of the failure mode 
C       XOld - X in the previous iteration 
C       MuxN - Mean of the equivalent Normal distri bution of X 
C       SigmaxN - Standard deviation of the equival ent Normal  
C                 distribution of X 
C       Y - Non-correlated, Normal transformed vari ables 
C       YOld - Y in the previous iteration 
C       Muy - Mean of Y 
C       Sigmay - Standard deviation of Y 
C       V - Matrix of eigenvectors 
C       Vt - Transpose of V 
C       OBJF - Failure function 
C       MuOBJF - Mean of OBJF 
C       SigmaOBJF - Standard deviation of OBJF 
C       VarOBJF - Variance of OBJF 
C       OBJGRD - First partial derivatives of OBJF 
C       NSTATE - Variable used by subroutine EO4XAF  (for more details  
C                see NAG, 1993) 
C       It - Iteration number 
C       L2 - Maximum number of FORM calculations al lowed by the program 
C       BetaAcc -  Relative accuracy of the reliabi lity index 
C       Inf - Influence of each variable on the rel iability index 
C       Alpha - Sensitivity factors 
C       Step - Change in X if Smooth=0 & if the ite ration process is in 
C              a loop 
C       k1 - Number of times that X is changed if S mooth=0 & if the 
C            iteration process is in a loop 
C       OBJFAcc - Accuracy of the failure function 
C       Count - Number of variables for which OBJGR D=0 
C       RelInd - Reliability index 
C       Prob2 - Probability of failure which corres ponds to RelInd 
C       RelOld - Reliabiliy index in the previous i teration 
C       Prob1 - Probability of failure which corres ponds to RelOld 
C       DifProb - Difference in Prob between the la st two iterations 
C       nourtlev - Nourishment top level 
C       1:mnour - Gradient of the nourished face 
C       Pi - 3.14159... 
C       i, ii, iii, k, Aux, Aux1, AuxRstar,  
C       Out, OBJGRDPrev, Mu1OBJF, Sin - Auxiliary v ariables 
C       ctcurv, md, mt, C, T3,  
C       Lamda, Eta, x1, x2 - Variables mentioned in  the Common  
C                            statements but not use d here 
C 
C       OUTPUT VARIABLES: 
C       Prob - Probability of failure which corresp onds to RelInd 
C       Ex - Auxiliary variable 
C 
C       ########################################### #####################         
C         
 Integer*4 i,j,k,k0,L,L2,N,Opt,L1,It,FDer,NSTATE,Q, MaxIter,Count, 
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     1            Aux,Comb,Aux1,AuxRstar,Ex,DSWL,ii ,iii 
 Parameter (L=15) 
 Parameter (L2=10) 
 Parameter (Q=16) 
 Parameter (L1=200) 
 Character*3 Abrev(Q,L),Ext(L) 
 Character*17 ExtExt(L) 
 Character*19 ParamDesc 
 Integer*4 VarDis(Q,L),Trunc(Q,L),Out(L),k1(L),Sin( L1,L) 
 Real*8 X(L),XOld(L,L1),Mux(Q,L),MuOBJF,Mu1OBJF,Sig max(Q,L), 
     1         Xo(Q,L),SigmaOBJF,Prob(Q),OBJGRD(L), OBJF,VarOBJF, 
     1         Rho(L,L),Alpha(L),V(L,L),Vt(L,L),Sig may(L),Muy(L),Y(L), 
     1         Inf(L), OBJGRDPrev(L),Zeta(Q,L),Lamd a(Q,L),Pi,SigmaxN(L), 
     1         YOld(L,L1),x1(Q,L),x2(Q,L),Eta(Q,L), RelInd,Startparam, 
     1         MuxN,TL,C,T3,md,mt,mnour,nourtlev,ct curv,TR(L2),Step(L), 
     1         StartPt(Q,L),XMax(Q,L),XMin(Q,L),Bet aAcc,ReqBetaAcc, 
     1         RelOld,Smooth,Prob1,Prob2,DifProb,Re qOBJFAcc,OBJFAcc, 
     1         NR(Q,L) 
 Common/BLOCK3/MuxN(15),C,T3 
 Common/BLOCK4/md,mt,mnour,nourtlev,ctcurv 
 Common/BLOCK7/TR 
 Common/BLOCK8/Zeta,Lamda,Eta,x1,x2 
 Common/BLOCK9/k0,It,AuxRstar 
 Common/BLOCK11/DSWL,TL 
  
 Pi=4.*ATAN(1.) 
 RelInd=0. 
 Do 3325 i=1,N 
   Sin(1,i)=0 
   Step(i)=0.001 
   Out(i)=0 
   k1(i)=1 
 3325   continue 
 
 Write(*,25)  
 Write(40,25)  
 Write(50,25)  
 25     Format(/) 
 Aux1=1 
 Call Allowed(Opt,Aux1) 
 
 Do 7855 i=1,N 
   X(i)=StartPt(j,i) 
 7855   continue 
 
C       =========================================== ===================== 
C       Definition of the iteration number, It. 
C       =========================================== ===================== 
 It=1 
 53     Write(*,86) It 
 Write(50,86) It 
 86     Format(/ 6X,'ITERATION No.',I3) 
 54     It=It+1 
 
C       =========================================== ===================== 
C       For the failure mode of overtopping, if the  variable is the  
C       significant wave height, Hs=X(2), & if Hs i s limited by the  
C       available water depth, then the point of tr uncation is  
C       Xo=0.6(SWL-TL) or Xo=0.6(Tide+Surge-TL). 
C       =========================================== ===================== 
 If ((Opt.EQ.1.OR.Opt.EQ.2).AND.(Trunc(j,2).EQ.1)) then 
   If (DSWL.EQ.1) then 
     Xo(j,2)=0.6*(X(5)-TL) 
   else 
     Xo(j,2)=0.6*(X(5)+X(6)-TL) 
   Endif   
   Write(50,4444) Ext(2),Xo(j,2) 
 4444     Format(// 16X,'Xo(',A3,') = ',E17.10) 
   If (XMax(j,2).NE.Xo(j,2)) then 
     XMax(j,2)=Xo(j,2) 
     Write(50,5971) Ext(2),XMax(j,2) 
 5971       Format(16X,'XMax(',A3,') = ',E17.10) 
     If (XMin(j,2).GT.XMax(j,2)) then 
       Write(*,8703)  
       Write(50,8703)  
 8703         Format(// 11X,'ERROR: XMin(2) > XMax( 2) !') 
       STOP 
     Endif 
     If (X(2).GT.XMax(j,2)) then 
       Write(*,8367) Ext(2),X(2),XMax(j,2) 
       Write(50,8367) Ext(2),X(2),XMax(j,2) 
 8367         Format(/ 11X,A3,' = ',E17.10,' > ',E1 7.10, ' ! ' /) 
       X(2)=XMax(j,2) 
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       Write(*,8471) Ext(2),X(2) 
       Write(50,8471) Ext(2),X(2) 
 8471         Format(11X,A3,' = ',E17.10 /) 
     Endif 
   Endif 
 Endif 
 
C       =========================================== ===================== 
C       Transformation of non-Normal correlated var iables (X with  
C       mean=Mux & standard deviation=Sigmax) to No rmal correlated  
C       variables (X with mean=MuxN & standard devi ation=SigmaxN). 
C       =========================================== ===================== 
 Write(50,4395)  
 4395   Format(// 11X,'EQUIVALENT NORMAL DISTRIBUTI ON`S PARAMETERS') 
 Do 7870 i=1,N 
   Call EqNorDis(i,j,N,X,VarDis,NR,Ext,MuxN,SigmaxN ,Trunc,Xo) 
 7870   continue 
 If (Opt.EQ.23) SigmaxN(5)=0.11*(X(4)-2.25) 
  
C       =========================================== ===================== 
C       Transformation of correlated Normal variabl es (X with mean=MuxN  
C       & standard deviation=SigmaxN) to non-correl ated Normal variables 
C       (Y with mean=Muy & standard deviation=Sigma y). 
C       =========================================== ===================== 
 Call Correlated(N,Ext,MuxN,SigmaxN,Rho,Sigmay,Muy, V,Vt) 
 Write(50,*) ' ' 
 Do 635 i=1,N 
   Y(i)=0. 
   Do 637 k=1,N 
     Y(i)=Vt(i,k)*X(k)+Y(i) 
 637      continue 
   Write(50,1998) Ext(i),Y(i) 
 1998     Format(11X,'Y(',A3,') = ',E17.10) 
 635    continue 
 Write(50,*) ' ' 
  
C       =========================================== ===================== 
C       Calculation of the failure function, OBJF, & its derivatives,  
C       OBJGRD, at the design point. 
C       =========================================== ===================== 
 If (FDer.EQ.2) then 
   Call Derivadas(StartParam,N,X,Ext,Opt,FDer,OBJF, OBJGRD)       
 else 
   Call OBJFUN(FDer,N,X,OBJF,OBJGRD,NSTATE,Opt,Star tParam) 
   Do 5690 i=1,N 
     Write(50,9995) Ext(i),OBJGRD(i) 
 9995       Format(11X,'dZ/d',A3,' = ',E17.10) 
 5690     continue    
 Endif 
  
 If (AuxRstar.EQ.1) then 
   If (It.NE.2) X(1)=(X(1)+XOld(1,It-1))/2. 
   If ((X(1).LT.XMin(j,1)).OR.(X(1).GT.XMax(j,1))) then 
     If (X(1).LT.XMin(j,1)) then 
       Write(*,8976) Ext(1),X(1),XMin(j,1) 
       Write(50,8976) Ext(1),X(1),XMin(j,1) 
 8976         Format(/ 11X,A3,' = ',E17.10,' < ',E1 7.10, ' ! ' /) 
       X(1)=1.001*XMin(j,1) 
C              X(1)=XMin(j,1)+(XOld(1,It-1)-XMin(j, 1))/2. 
     else 
       Write(*,8461) Ext(1),X(1),XMax(j,1) 
       Write(50,8461) Ext(1),X(1),XMax(j,1) 
 8461         Format(/ 3X,A3,' = ',E17.10,' > ',E17 .10, ' ! ' /) 
       X(1)=1.001*XMax(j,1) 
C              X(1)=XOld(1,It-1)+(XMax(j,1)-XOld(1, It-1))/2. 
     Endif 
     Write(50,8109) Ext(1),X(1) 
 8109       Format(/ 11X,A3,' = ',E17.10 /) 
     goto 53 
   Endif 
   Write(50,8277) Ext(1),X(1) 
 8277     Format(/ 11X,A3,' = ',E17.10 /) 
   goto 53  
 Endif 
  
 Write(50,9312) OBJF 
 9312   Format(/ 11X,'Z = ',E17.10 /) 
 Count=0 
 Do 409 i=1,N 
   OBJGRDPrev(i)=OBJGRD(i) 
   If (ABS(OBJGRDPrev(i)).LT.(1E-25)) Count=Count+1  
 409    continue 
 If (Count.EQ.N) then 
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   Write(*,99) 
   Write(50,99) 
 99       Format(// 11X,'ERROR: The derivatives are  zero !') 
   STOP 
 Endif 
 Do 402 i=1,N 
   OBJGRD(i)=0. 
   Do 450 k=1,N 
     OBJGRD(i)=OBJGRDPrev(k)*V(k,i)+OBJGRD(i) 
 450      continue 
   Write(50,810) i,OBJGRD(i) 
 810      Format(11X, 'dZ/dY(',I2,') = ',E17.10) 
 402    continue 
  
C       =========================================== ===================== 
C       Calculation of the mean value, MuOBJF, & th e standard deviation,  
C       SigmaOBJF, of the failure function. Calcula tion of the  
C       reliability index, RelInd. 
C       =========================================== ===================== 
 Mu1OBJF=0 
 VarOBJF=0 
 Do 84 i=1,N 
   Mu1OBJF=(Muy(i)-Y(i))*OBJGRD(i)+Mu1OBJF 
   VarOBJF=((OBJGRD(i)*Sigmay(i))**2)+VarOBJF 
 84     continue 
 MuOBJF=OBJF+Mu1OBJF 
 SigmaOBJF=SQRT(VarOBJF) 
 RelOld=RelInd 
 RelInd=MuOBJF/SigmaOBJF 
 Write(50,33) MuOBJF,SigmaOBJF,RelInd,RelOld 
 33     Format(/ 11X,'Mean Value of Z = ',E17.10 / 11X,  
     1           'Standard Deviation of Z = ',E17.1 0 / 11X,  
     1           'New Reliability Index = ',E17.10 / 11X, 
     1           'Old Reliability Index = ',E17.10 / )  
  
C       =========================================== ===================== 
C       Calculation of the sensitivity factors, Alp ha, & the new design  
C       point, Y (& consequently X). 
C       =========================================== ===================== 
 Do 9009 i=1,N 
   Alpha(i)=(Sigmay(i)/SigmaOBJF)*OBJGRD(i) 
   YOld(i,It-1)=Y(i) 
   Y(i)=Muy(i)-Alpha(i)*RelInd*Sigmay(i) 
 9009   continue 
  
 Do 1635 i=1,N 
   XOld(i,It-1)=X(i) 
   X(i)=0. 
   Do 1637 k=1,N 
     X(i)=V(i,k)*Y(k)+X(i) 
 1637     continue 
   Write(50,1187) Ext(i),XOld(i,It-1),Ext(i),X(i) 
 1187     Format(11X,'XOld(',A3,') = ',E17.10,3X,A3 ,' = ',E17.10) 
 1635   continue 
 Write(50,*) ' ' 
 Do 88 i=1,N 
   Write(50,87) i,Alpha(i) 
 87       Format(11X,'Alpha(Y',I2,') = ',E17.10) 
 88     continue 
 
C       =========================================== ===================== 
C       If the new calculated design point lies out side [XMin,XMax], the 
C       program continues calculations using a new design point between  
C       the last computed design point & the bounda ry which was  
C       exceeded. 
C       =========================================== ===================== 
 Do 9895 i=1,N 
   If ((X(i).LT.XMin(j,i)).OR.(X(i).GT.XMax(j,i))) then 
     If (X(i).LT.XMin(j,i)) then 
       Write(*,8977) Ext(i),X(i),XMin(j,i) 
       Write(50,8977) Ext(i),X(i),XMin(j,i) 
 8977         Format(/ 11X,A3,' = ',E17.10,' < ',E1 7.10, ' ! ' /) 
       X(i)=XMin(j,i)+(XOld(i,It-1)-XMin(j,i))/2. 
     else 
       Write(*,8467) Ext(i),X(i),XMax(j,i) 
       Write(50,8467) Ext(i),X(i),XMax(j,i) 
 8467         Format(/ 3X,A3,' = ',E17.10,' > ',E17 .10, ' ! ' /) 
       X(i)=XOld(i,It-1)+(XMax(j,i)-XOld(i,It-1))/2 . 
     Endif 
     Write(50,8166) Ext(i),X(i) 
 8166       Format(/ 11X,A3,' = ',E17.10 /) 
     Aux=1 
   else  



Program Listing 

C7-38 

     Aux=0 
   Endif 
 9895   continue 
 If (Aux.NE.0) goto 53 
 
C       =========================================== ===================== 
C       Check convergence at the design point. 
C       =========================================== ===================== 
 Do 85 i=1,N 
   If (((ABS(XOld(i,It-1)/X(i)-1).GT.0.0001).AND.(X (i).NE.0.)) 
     1       .OR.((X(i).EQ.0.).AND.(X(i)-XOld(i,It- 1).GT.0.00001))) then 
     If (It.GT.MaxIter) then 
       Write(*,9049)  
       Write(40,9049)  
       Write(50,9049)  
 9049         Format(/ 11X,'Not converging at the d esign point !'/// 
     1               6X,'CONVERGENCE NOT FOUND WITH IN THE MAXIMUM', 
     1               1X,'NUMBER OF ITERATIONS !')  
       goto 9999 
     else 
       goto 13 
     Endif 
   Endif 
 85     continue 
 goto 23 
 
C       =========================================== ===================== 
C       Smoothing of the iteration process (0<=Smoo th<=1). 
C       =========================================== ===================== 
 13     Write(50,*) ' ' 
 Do 4488 i=1,N 
   If (Smooth.EQ.0.) then 
     If (It.GT.3) then 
       If (((ABS(XOld(i,It-1)/X(i)-1).GT.0.0001).AN D. 
     1           (X(i).NE.0.)).OR.((X(i).EQ.0.).AND . 
     1           (X(i)-XOld(i,It-1).GT.0.00001)).OR .(Out(i).EQ.1)) then 
  If (((ABS(XOld(i,It-2)/X(i)-1).LE.0.0001).AND. 
     1            (X(i).NE.0.)).OR.((X(i).EQ.0.).AN D. 
     1            (X(i)-XOld(i,It-2).LE.0.00001)).O R.  
     1            ((ABS(XOld(i,It-3)/X(i)-1).LE.0.0 001) 
     1            .AND.(X(i).NE.0.)).OR.((X(i).EQ.0 .).AND. 
     1           (X(i)-XOld(i,It-3).LE.0.00001)).OR .(Out(i).EQ.1)) then 
    Write(*,*) '*****' 
    Write(50,*) '*****' 
    k1(i)=k1(i)+1 
    If (X(i).GT.XOld(i,It-1)) then 
      Sin(k1(i),i)=4              
      If (((Sin(k1(i)-1,i)-Sin(k1(i),i)).NE.0).AND.  
     1                (k1(i).GT.2)) Step(i)=Step(i) /10. 
      X(i)=XOld(i,It-1)+Step(i)*ABS(XOld(i,It-1)-X( i)) 
    Endif 
    If (X(i).LT.XOld(i,It-1)) then  
      Sin(k1(i),i)=1   
      If (((Sin(k1(i)-1,i)-Sin(k1(i),i)).NE.0).AND.  
     1                 (k1(i).GT.2)) Step(i)=Step(i )/10.   
      X(i)=X(i)+Step(i)*ABS(XOld(i,It-1)-X(i)) 
    Endif 
    Write(50,2237) Ext(i),X(i) 
 2237             Format(11X,A3,' = ',E17.10) 
    Out(i)=1 
  Endif 
       Endif 
     Endif 
   else 
     X(i)=(1.-Smooth)*X(i)+Smooth*XOld(i,It-1) 
     Write(50,2287) Ext(i),X(i) 
 2287       Format(11X,A3,' = ',E17.10) 
   Endif 
 4488   continue        
 If (Smooth.EQ.0.) then 
   Do 8509 i=1,N 
     If (((ABS(XOld(i,It-1)/X(i)-1).GT.0.0001).AND. (X(i).NE.0.)) 
     1       .OR.((X(i).EQ.0.).AND.(X(i)-XOld(i,It- 1).GT.0.00001))) then 
       Write(*,949) It 
       Write(50,949) It 
 949          Format(/ 11X,'Not converging at the d esign point !' /// 
     1               6X,'ITERATION No.',I3)  
       goto 54 
     Endif 
 8509     continue 
 else 
   Write(*,9491) It 
   Write(50,9491) It 
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 9491     Format(/ 11X,'Not converging at the desig n point !' /// 
     1           6X,'ITERATION No.',I3)  
   goto 54 
 Endif 
  
C       =========================================== ===================== 
C       Check value of the failure function at the design point. 
C       =========================================== ===================== 
 23     OBJFAcc=ReqOBJFAcc*SigmaOBJF/100. 
 If (ABS(OBJF).GT.OBJFAcc) then 
   If (It.GT.MaxIter) then 
     Write(*,9339) 
     Write(40,9339) 
     Write(50,9339) 
 9339       Format(/ 11X,'The accuracy of the failu re function'   
     1             / 11X,'is less than the required  value !'  
     1             /// 6X,'CONVERGENCE NOT FOUND WI THIN THE MAXIMUM', 
     1             1X,'NUMBER OF ITERATIONS !')  
     goto 9999 
   Endif 
   Write(*,3394) It 
   Write(50,3394) It 
 3394     Format(/ 11X,'The accuracy of the failure  function'   
     1          / 11X,'is less than the required va lue !'  
     1          /// 6X,'ITERATION No.',I3)  
   goto 54 
 Endif 
 
C       =========================================== ===================== 
C       Check relative accuracy of the reliability index. 
C       =========================================== ===================== 
 BetaAcc=100.*ABS((RelInd-RelOld)/RelInd) 
 If (BetaAcc.GT.ReqBetaAcc) then 
   If (It.GT.MaxIter) then 
     Write(*,9419) 
     Write(40,9419) 
     Write(50,9419) 
 9419       Format(/11X,'The relative accuracy of t he reliability index'   
     1             / 11X,'is less than the required  value !'  
     1             /// 6X,'CONVERGENCE NOT FOUND WI THIN THE MAXIMUM', 
     1             1X,'NUMBER OF ITERATIONS !')  
     goto 9999 
   Endif 
   Write(*,2394) It 
   Write(50,2394) It 
 2394     Format(/11X,'The relative accuracy of the  reliability index' 
     1           / 11X,'is less than the required v alue !'  
     1          /// 6X,'ITERATION No.',I3)  
   goto 54 
 Endif 
 
C       =========================================== ===================== 
C       Calculation of the probability of failure &  of the difference in  
C       Pf between the last 2 iterations. 
C       =========================================== ===================== 
 Call NormalDist(j,RelOld,Prob) 
 Prob1=Prob(j) 
 Call NormalDist(j,RelInd,Prob) 
 Prob2=Prob(j) 
 DifProb=ABS(Prob1-Prob2) 
 Write(50,1009) (100.*Prob(j)),DifProb 
 1009   Format(// 11X,'Probability of Failure (%) =  ', E17.10 /  
     1         11X,'Difference in Pf Between the La st 2 Iterations = ', 
     1         E17.10 /) 
 
C       =========================================== ===================== 
C       Print the final results. 
C       =========================================== ===================== 
 It=It-1 
 Write(40,8860)  
 Write(50,8860)  
 8860   Format(// 3X,'FINAL RESULTS' //) 
 Write(40,100) It,OBJF,MuOBJF,SigmaOBJF,RelInd,Beta Acc, 
     1                (100.*Prob(j)),DifProb 
 Write(50,100) It,OBJF,MuOBJF,SigmaOBJF,RelInd,Beta Acc, 
     1                (100.*Prob(j)),DifProb 
 100    Format(11X,'Total Number of Iterations = ', I3 / 11X, 
     1         'Failure Function Z (X) = ',E17.10 /  11X, 
     1         'Mean Value of Z = ', E17.10 / 11X,  
     1         'Standard Deviation of Z = ', E17.10  / 11X,  
     1         'Reliability Index = ', E17.10 / 11X , 
     1         'Relative Accuracy of the Reliabilit y Index (%) = ', 
     1          E17.10 / 11X,'Probability of Failur e (%) = ', F10.6 /  
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     1         11X,'Difference in Pf Between the La st 2 Iterations = ', 
     1         E17.10) 
 Write(40,922) 
 Write(50,922) 
 922    Format(// 11X, 'DESIGN POINT COORDINATES' / ) 
 Do 539 i=1,N 
   Write(40,726) Ext(i),X(i) 
   Write(50,726) Ext(i),X(i) 
 726      Format(19X,A3,' = ',E17.10) 
 539    continue  
 Write(40,1677) 
 Write(50,1677) 
 1677   Format(/) 
 iii=0 
 Do 444 i=1,N 
   Inf(i)=((Alpha(i))**2)*100 
   Do 3359 ii=1,N 
     If (i.NE.ii) then  
       If (Rho(i,ii).NE.0.) iii=1 
     Endif 
 3359     continue           
   If (iii.EQ.1) then 
     Write(40,459) i,Alpha(i),Ext(i),Inf(i) 
     Write(50,459) i,Alpha(i),Ext(i),Inf(i) 
 459        Format(11X,'Alpha(Y',I2,') = ',E17.10 /  11X, 
     1             'Influence of Y(',A3,') on the R eliability',1X, 
     1             'Index = ',E14.7 /) 
     iii=0 
   else 
     Write(40,449) Ext(i),Alpha(i),Ext(i),Inf(i) 
     Write(50,449) Ext(i),Alpha(i),Ext(i),Inf(i) 
 449        Format(11X,'Alpha(',A3,') = ',E17.10 / 11X, 
     1             'Influence of ',A3,' on the Reli ability',1X, 
     1             'Index = ',E14.7 /) 
   Endif 
 444    continue 
 9999   Ex=1        
 return 
 End 
 
 
 
C       ########################################### #####################        
C 
 Subroutine Allowed(Opt,Aux)     
C 
C       ########################################### #####################        
C 
C       Writes the target value, TR, for each failu re mode in the files 
C       summary.dat & results.dat . 
C 
C       ########################################### #####################        
C 
C       INPUT VARIABLES: 
C       Opt - Failure mode 
C       TR - Target values for each FORM calculatio n 
C       k0 - Number of the FORM calculation 
C       Aux - Auxiliary variable 
C 
C       MODELING VARIABLES: 
C       L2 - Maximum number of FORM calculations al lowed by the program 
C       It, AuxRstar - Variables mentioned in the C ommon statements but  
C                      not used here 
C 
C       ########################################### #####################         
C         
 Integer*4 Opt,L2,k0,Aux,It,AuxRstar 
 Parameter (L2=10) 
 Real*8 TR(L2) 
 Common/BLOCK7/TR 
 Common/BLOCK9/k0,It,AuxRstar 
 If (Opt.NE.3) then 
   If ((Opt.EQ.1).OR.(Opt.EQ.2)) then 
     If (Aux.EQ.1) Write(*,5023) k0,TR(K0) 
     Write(40,5023) k0,TR(K0) 
     Write(50,5023) k0,TR(K0) 
 5023       Format(3X,'ALLOWABLE DISCHARGE - m3/s/m  (',I2,') = ', 
     1             E10.3) 
   else 
     If (Aux.EQ.1) Write(*,5077) k0,TR(K0) 
     Write(40,5077) k0,TR(K0) 
     Write(50,5077) k0,TR(K0) 
 5077       Format(3X,'ALLOWABLE TARGET (',I2,') = ',E10.3) 
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   Endif 
 else 
   If (Aux.EQ.1) Write(*,5022) k0,TR(K0) 
   Write(40,5022) k0,TR(K0) 
   Write(50,5022) k0,TR(K0) 
 5022     Format(3X,'ALLOWABLE EROSION DISTANCE - m  (',I2,') = ',F6.2) 
 Endif         
 return 
 End 
 
 
 
C       ########################################### #####################        
C 
 Subroutine D2Point(j,N,Opt,Mux,Sigmax,VarDis,Abrev ,Rho,FDer, 
     1                     NR,StartParam,Pf,Ext,Ext Ext,ParamDesc,Trunc, 
     1                     Xo,RelInd,MaxIter,StartP t,XMax,XMin,Smooth, 
     1                     ReqOBJFAcc,Comb) 
C        
C       ########################################### #####################        
C 
C       Calculates the value of the design paramete r, Param, for a  
C       target value of the failure probability, Pf  - Mode 2  
C       (design mode). 
C 
C       ########################################### #####################        
C 
C       INPUT VARIABLES: 
C       Opt - Failure mode 
C       DSWL - Definition of the SWL 
C       TL - Seawall toe level 
C       Comb - Consideration or not of combination of actions 
C       j - Number of the combination of actions 
C       NR - Power to which each distribution is ra ised for each  
C            combination of actions 
C       N - Number of variables 
C       Ext - Abbreviation of the name of the varia ble 
C       ExtExt - Description of the variable 
C       ParamDesc - Description of the design param eter 
C       Rho - Correlation coefficient 
C       Mux - Mean of X 
C       Sigmax - Standard deviation of X 
C       VarDis - Type of distribution 
C       Abrev - Abbreviation of the name of the dis tribution 
C       Trunc - Type of truncation 
C       Xo - Point of truncation (if the distributi on is truncated) 
C       XMin - Minimum value of X 
C       XMax - Maximum value of X 
C       Zeta - Parameter of a distribution 
C       StartPt - Starting value of the variables 
C       FDer - Method of calculation of the first p artial derivatives of  
C              the failure function for overtopping  
C       MaxIter - Maximum number of iterations 
C       TR - Target values for each FORM calculatio n 
C       k0 - Number of the FORM calculation 
C       Smooth - Smoothing coefficient for the iter ation process 
C       ReqOBJFAcc- Required accuracy of the failur e function 
C       Pf - Design target failure probability  
C       RelInd - Reliability index which correspond s to Pf 
C       StartParam - Starting value of the design p arameter (to start  
C                    iteration) 
C 
C       MODELING VARIABLES: 
C       Q - Maximum number of combinations of actio ns allowed by the  
C           program 
C       L - Maximum number of variables allowed by the program 
C       L1 - Maximum number of iterations allowed b y the program 
C       X - Variables of the failure mode 
C       XOld - X in the previous iteration 
C       MuxN - Mean of the equivalent Normal distri bution of X 
C       SigmaxN - Standard deviation of the equival ent Normal  
C                 distribution of X 
C       Y - Non-correlated, Normal transformed vari ables 
C       YOld - Y in the previous iteration 
C       Muy - Mean of Y 
C       Sigmay - Standard deviation of Y 
C       V - Matrix of eigenvectors 
C       Vt - Transpose of V 
C       OBJF, OBJFOld - Failure function 
C       MuOBJF - Mean of OBJF 
C       SigmaOBJF - Standard deviation of OBJF 
C       VarOBJF - Variance of OBJF 
C       OBJGRD - First partial derivatives of OBJF 
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C       NSTATE - Variable used by subroutine EO4XAF  (for more details 
C                see NAG, 1993) 
C       ItInt - Total number of iterations 
C       It - Iteration number for each value of Par am 
C       L2 - Maximum number of FORM calculations al lowed by the program 
C       Inf - Influence of each variable on the rel iability index 
C       Alpha - Sensitivity factors 
C       Step - Change in X if Smooth=0 & if the ite ration process is in 
C              a loop 
C       k1 - Number of times that X is changed if S mooth=0 & if the 
C            iteration process is in a loop 
C       OBJFAcc - Accuracy of the failure function 
C       Count - Number of variables for which OBJGR D=0 
C       Param - Value of the design parameter which  corresponds to Pf  
C       dparamdOBJF - Inverse of the first partial derivative of OBJF 
C                     with respect to Param 
C       nourtlev - Nourishment top level 
C       1:mnour - Gradient of the nourished face 
C       Pi - 3.14159... 
C       i, ii, iii, k, Aux, Aux1, Out, OBJGRDPrev,  
C       Mu1OBJF, Sin, AuxRstar - Auxiliary variable s 
C       ctcurv, md, mt, C, T3, Lamda,  
C       Eta, x1, x2 - Variables mentioned in the Co mmon statements but  
C                     not used here 
C 
C       ########################################### #####################         
C         
 Integer*4 i,j,k,k0,L,L1,L2,N,Opt,It,FDer,NSTATE,Q, MaxIter,ItInt, 
     1            Count,Aux,Comb,Aux1,AuxRstar,DSWL ,ii,iii 
 Parameter (L=15) 
 Parameter (L2=10) 
 Parameter (L1=200) 
 Parameter (Q=16) 
 Character*3 Ext(L),Abrev(Q,L) 
 Character*17 ExtExt(L) 
 Character*19 ParamDesc 
 Integer*4 VarDis(Q,L),Trunc(Q,L),Sin(L1,L),Out(L), k1(L) 
 Real*8 X(L),XOld(L,L1),Mux(Q,L),MuOBJF,Mu1OBJF,Sig max(Q,L), 
     1         SigmaOBJF,VarOBJF,Rho(L,L),Alpha(L), Inf(L),V(L,L), 
     1         Vt(L,L),Sigmay(L),Muy(L),Y(L),YOld(L ,L1),OBJGRD(L), 
     1         OBJGRDPrev(L),Zeta(Q,L),Lamda(Q,L),E ta(Q,L),x1(Q,L), 
     1         x2(Q,L),Pi,OBJF,Param,Pf,StartParam, RelInd,MuxN, 
     1         SigmaxN(L),dparamdOBJF,OBJFOld,TL,Xo (Q,L),TR(L2), 
     1         StartPt(Q,L),XMax(Q,L),XMin(Q,L),Smo oth,ReqOBJFAcc, 
     1         OBJFAcc,Step(L),NR(Q,L),md,mt,mnour, nourtlev,C,T3 
 Common/BLOCK3/MuxN(15),C,T3 
 Common/BLOCK4/md,mt,mnour,nourtlev,ctcurv 
 Common/BLOCK7/TR 
 Common/BLOCK8/Zeta,Lamda,Eta,x1,x2 
 Common/BLOCK9/k0,It,AuxRstar 
 Common/Block11/DSWL,TL 
 
 Pi=4.*ATAN(1.) 
 ItInt=0 
 Do 3325 i=1,N 
   Sin(1,i)=0 
   Step(i)=0.001 
   Out(i)=0 
   k1(i)=1 
 3325   continue 
 Param=StartParam 
 
 Write(*,8877)  
 Write(40,8877)  
 Write(50,8877)  
 8877   Format(/) 
 Aux1=1 
 Call Allowed(Opt,Aux1) 
  
 Do 7855 i=1,N 
   X(i)=StartPt(j,i) 
 7855   continue 
 
C       =========================================== ===================== 
C       Definition of the iteration number, It. 
C       =========================================== ===================== 
 It=1 
 5399   Write(*,860) It 
 Write(50,860) It 
 860    Format(/ 6X,'ITERATION No.',I3) 
 5499   It=It+1 
 XMax(j,5)=Param 
 If (Opt.EQ.1.OR.Opt.EQ.2) then 
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   If (VarDis(j,5).EQ.11) XMax(j,5)=5.77 
   If (VarDis(j,5).EQ.12) XMax(j,5)=6.995 
   If (VarDis(j,5).EQ.13) XMax(j,5)=5.57 
 Endif 
 If (Opt.EQ.3) then 
   If (VarDis(j,1).EQ.11) XMax(j,1)=5.77 
   If (VarDis(j,1).EQ.12) XMax(j,1)=6.995 
   If (VarDis(j,1).EQ.13) XMax(j,1)=5.57 
 Endif 
 
C       =========================================== ===================== 
C       For the failure mode of overtopping, if the  variable is the  
C       significant wave height, Hs=X(2), & if Hs i s limited by the  
C       available water depth, then the point of tr uncation is  
C       Xo=0.6(SWL-TL) or Xo=0.6(Tide+Surge-TL). 
C       =========================================== ===================== 
 If ((Opt.EQ.1.OR.Opt.EQ.2).AND.(Trunc(j,2).EQ.1)) then 
   If (DSWL.EQ.1) then 
     Xo(j,2)=0.6*(X(5)-TL) 
   else 
     Xo(j,2)=0.6*(X(5)+X(6)-TL) 
   Endif   
   Write(50,4444) Ext(2),Xo(j,2) 
 4444     Format(// 16X,'Xo(',A3,') = ',E17.10) 
   If (XMax(j,2).NE.Xo(j,2)) then 
     XMax(j,2)=Xo(j,2) 
     Write(50,5971) Ext(2),XMax(j,2) 
 5971       Format(16X,'XMax(',A3,') = ',E17.10) 
     If (XMin(j,2).GT.XMax(j,2)) then 
       Write(*,8703)  
       Write(50,8703)  
 8703         Format(// 11X,'ERROR: XMin(2) > XMax( 2) !') 
       STOP 
     Endif 
     If (X(2).GT.XMax(j,2)) then 
       Write(*,8367) Ext(2),X(2),XMax(j,2) 
       Write(50,8367) Ext(2),X(2),XMax(j,2) 
 8367         Format(/ 11X,A3,' = ',E17.10,' > ',E1 7.10, ' ! ' /) 
       X(2)=XMax(j,2) 
       Write(*,8471) Ext(2),X(2) 
       Write(50,8471) Ext(2),X(2) 
 8471         Format(11X,A3,' = ',E17.10 /) 
     Endif 
   Endif 
 Endif 
 
C       =========================================== ===================== 
C       Transformation of non-Normal correlated var iables (X with  
C       mean=Mux & standard deviation=Sigmax) to No rmal correlated  
C       variables (X with mean=MuxN & standard devi ation=SigmaxN). 
C       =========================================== ===================== 
 Write(50,4395)  
 4395   Format(// 11X,'EQUIVALENT NORMAL DISTRIBUTI ON`S PARAMETERS') 
 Do 7870 i=1,N   
   Call EqNorDis(i,j,N,X,VarDis,NR,Ext,MuxN,SigmaxN ,Trunc,Xo) 
 7870   continue 
 
C       =========================================== ===================== 
C       Transformation of correlated Normal variabl es (X with mean=MuxN  
C       & standard deviation=SigmaxN) to non-correl ated Normal variables 
C       (Y with mean=Muy & standard deviation=Sigma y). 
C       =========================================== ===================== 
 Call Correlated(N,Ext,MuxN,SigmaxN,Rho,Sigmay,Muy, V,Vt) 
 Write(50,*) ' ' 
 Do 6351 i=1,N 
   Y(i)=0. 
   Do 6371 k=1,N 
     Y(i)=Vt(i,k)*X(k)+Y(i) 
 6371     continue 
   Write(50,2998) Ext(i),Y(i) 
 2998     Format(11X,'Y(',A3,') = ',E17.10) 
 6351   continue 
 
C       =========================================== ===================== 
C       Calculation of the failure function, OBJF, & its derivatives,  
C       OBJGRD, at the design point. 
C       =========================================== ===================== 
 If (FDer.EQ.2) then 
   Call Derivadas(Param,N,X,Ext,Opt,FDer,OBJF,OBJGR D)       
 else 
   Call OBJFUN(FDer,N,X,OBJF,OBJGRD,NSTATE,Opt,Para m) 
   Do 5691 i=1,N 
     Write(50,9905) Ext(i),OBJGRD(i) 



Program Listing 

C7-44 

 9905       Format(11X,'dZ/d',A3,' = ',E17.10) 
 5691     continue    
 Endif 
  
 If (AuxRstar.EQ.1) then 
   If (It.NE.2) X(1)=(X(1)+XOld(1,It-1))/2. 
   If ((X(1).LT.XMin(j,1)).OR.(X(1).GT.XMax(j,1))) then 
     If (X(1).LT.XMin(j,1)) then 
       Write(*,1076) Ext(1),X(1),XMin(j,1) 
       Write(50,1076) Ext(1),X(1),XMin(j,1) 
 1076         Format(/ 11X,A3,' = ',E17.10,' < ',E1 7.10, ' ! ' /) 
       X(1)=XMin(j,1)+(XOld(1,It-1)-XMin(j,1))/2. 
     else 
       Write(*,8401) Ext(1),X(1),XMax(j,1) 
       Write(50,8401) Ext(1),X(1),XMax(j,1) 
 8401         Format(/ 3X,A3,' = ',E17.10,' > ',E17 .10, ' ! ' /) 
       X(1)=XOld(1,It-1)+(XMax(j,1)-XOld(1,It-1))/2 . 
     Endif 
     Write(50,8100) Ext(1),X(1) 
 8100       Format(/ 11X,A3,' = ',E17.10 /) 
     goto 5399 
   Endif 
   Write(50,8244) Ext(1),X(1) 
 8244     Format(/ 11X,A3,' = ',E17.10 /) 
   goto 5399  
 Endif 
  
 Write(50,9312) OBJF 
 9312   Format(/ 11X,'Z=',E17.10 /) 
 OBJFOld=OBJF 
C        Write(50,8822) OBJFOld 
C 8822   Format(11X,'ZOld=Z=',E17.10) 
 Count=0 
 Do 1409 i=1,N 
   OBJGRDPrev(i)=OBJGRD(i) 
   If (ABS(OBJGRDPrev(i)).LT.(1E-25)) Count=Count+1  
 1409   continue 
 If (Count.EQ.N) then 
   Write(*,99) 
   Write(50,99) 
 99       Format(// 11X,'ERROR: The derivatives are  zero !') 
   STOP 
 Endif 
 Do 4012 i=1,N 
   OBJGRD(i)=0. 
   Do 4501 k=1,N 
     OBJGRD(i)=OBJGRDPrev(k)*V(k,i)+OBJGRD(i) 
 4501     continue 
   Write(50,8108) i,OBJGRD(i) 
 8108     Format(11X,'dZ/dY(',I2,') = ',E17.10) 
 4012   continue 
 Write(50,*) ' ' 
 
C       =========================================== ===================== 
C       Calculation of the mean value, MuOBJF, & th e standard deviation,  
C       SigmaOBJF, of the failure function. 
C       =========================================== ===================== 
 Mu1OBJF=0 
 VarOBJF=0 
 Do 844 i=1,N 
   Mu1OBJF=(Muy(i)-Y(i))*OBJGRD(i)+Mu1OBJF 
   VarOBJF=((OBJGRD(i)*Sigmay(i))**2)+VarOBJF 
 844    continue 
 MuOBJF=OBJFOld+Mu1OBJF 
 SigmaOBJF=SQRT(VarOBJF) 
  
C       =========================================== ===================== 
C       Calculation of the sensitivity factors, Alp ha, & the new design  
C       point, Y (& consequently X). 
C       =========================================== ===================== 
 Do 9019 i=1,N 
   Alpha(i)=(Sigmay(i)/SigmaOBJF)*OBJGRD(i) 
   YOld(i,It-1)=Y(i) 
   Y(i)=Muy(i)-Alpha(i)*RelInd*Sigmay(i) 
 9019   continue 
  
 Do 2635 i=1,N 
   XOld(i,It-1)=X(i) 
   X(i)=0. 
   Do 1657 k=1,N 
     X(i)=V(i,k)*Y(k)+X(i) 
 1657     continue 
   Write(50,1987) Ext(i),XOld(i,It-1),Ext(i),X(i) 
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 1987     Format(11X,'XOld(',A3,') = ',E17.10,3X,A3 ,' = ',E17.10) 
 2635   continue 
 Write(50,*) ' ' 
 Do 889 i=1,N 
   Write(50,879) i,Alpha(i) 
 879      Format(11X,'Alpha(Y',I2,') = ',E17.10) 
 889    continue 
  
C       =========================================== ===================== 
C       If the new calculated design point lies out side [XMin,XMax], the 
C       program continues calculations using a new design point between  
C       the last computed design point & the bounda ry which was 
C       exceeded. 
C       =========================================== ===================== 
 Do 9895 i=1,N 
   If ((X(i).LT.XMin(j,i)).OR.(X(i).GT.XMax(j,i))) then 
     If (X(i).LT.XMin(j,i)) then 
       Write(*,8977) Ext(i),X(i),XMin(j,i) 
       Write(50,8977) Ext(i),X(i),XMin(j,i) 
 8977         Format(/ 11X,A3,' = ',E17.10,' < ',E1 7.10, ' ! ' /) 
       X(i)=XMin(j,i)+(XOld(i,It-1)-XMin(j,i))/2. 
       Write(50,8177) Ext(i),X(i) 
 8177         Format(/ 11X,A3,' = ',E17.10 /) 
     else 
       Write(*,8477) Ext(i),X(i),XMax(j,i) 
       Write(50,8477) Ext(i),X(i),XMax(j,i) 
 8477         Format(/ 3X,A3,' = ',E17.10,' > ',E17 .10, ' ! ' /) 
       X(i)=XOld(i,It-1)+(XMax(j,i)-XOld(i,It-1))/2 . 
       Write(50,8166) Ext(i),X(i) 
 8166         Format(/ 11X,A3,' = ',E17.10 /) 
     Endif 
     Aux=1 
   else 
     Aux=0 
   Endif 
 9895   continue 
 If (Aux.NE.0) goto 5399 
 
C       =========================================== ===================== 
C       Check convergence at the design point. 
C       =========================================== ===================== 
 Do 859 i=1,N 
   If (((ABS(XOld(i,It-1)/X(i)-1).GT.0.0001).AND.(X (i).NE.0.)) 
     1       .OR.((X(i).EQ.0.).AND.(X(i)-XOld(i,It- 1).GT.0.00001))) then 
     If (It.GT.MaxIter) then 
       Write(*,9049)  
       Write(40,9049)  
       Write(50,9049)  
 9049         Format(/ 11X,'Not converging at the d esign point !'/// 
     1               6X,'CONVERGENCE NOT FOUND WITH IN THE MAXIMUM', 
     1               1X,'NUMBER OF ITERATIONS !')  
       goto 9999 
     else 
       goto 13 
     Endif 
   Endif 
 859    continue 
 goto 23 
 
C       =========================================== ===================== 
C       Smoothing of the iteration process (0<=Smoo th<=1). 
C       =========================================== ===================== 
 13     Write(50,*) ' ' 
 Do 4488 i=1,N 
   If (Smooth.EQ.0.) then 
     If (It.GT.3) then 
       If (((ABS(XOld(i,It-1)/X(i)-1).GT.0.0001).AN D. 
     1           (X(i).NE.0.)).OR.((X(i).EQ.0.).AND . 
     1           (X(i)-XOld(i,It-1).GT.0.00001)).OR .(Out(i).EQ.1)) then 
  If (((ABS(XOld(i,It-2)/X(i)-1).LE.0.0001).AND. 
     1            (X(i).NE.0.)).OR.((X(i).EQ.0.).AN D. 
     1            (X(i)-XOld(i,It-2).LE.0.00001)).O R.  
     1            ((ABS(XOld(i,It-3)/X(i)-1).LE.0.0 001) 
     1            .AND.(X(i).NE.0.)).OR.((X(i).EQ.0 .).AND. 
     1           (X(i)-XOld(i,It-3).LE.0.00001)).OR .(Out(i).EQ.1)) then 
    Write(*,*) '*****' 
    Write(50,*) '*****' 
    k1(i)=k1(i)+1 
    If (X(i).GT.XOld(i,It-1)) then 
      Sin(k1(i),i)=4              
      If (((Sin(k1(i)-1,i)-Sin(k1(i),i)).NE.0).AND.  
     1                (k1(i).GT.3)) Step(i)=Step(i) /10. 
      X(i)=XOld(i,It-1)+Step(i)*ABS(XOld(i,It-1)-X( i)) 
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    Endif 
    If (X(i).LT.XOld(i,It-1)) then  
      Sin(k1(i),i)=1   
      If (((Sin(k1(i)-1,i)-Sin(k1(i),i)).NE.0).AND.  
     1                (k1(i).GT.3)) Step(i)=Step(i) /10.   
      X(i)=X(i)+Step(i)*ABS(XOld(i,It-1)-X(i)) 
    Endif 
    Write(50,2237) Ext(i),X(i) 
 2237             Format(11X,A3,' = ',E17.10) 
    Out(i)=1 
  Endif 
       Endif 
     Endif 
   else 
     X(i)=(1.-Smooth)*X(i)+Smooth*XOld(i,It-1) 
     Write(50,2287) Ext(i),X(i) 
 2287       Format(11X,A3,' = ',E17.10) 
   Endif 
 4488   continue        
 If (Smooth.EQ.0.) then 
   Do 8509 i=1,N 
     If (((ABS(XOld(i,It-1)/X(i)-1).GT.0.0001).AND. (X(i).NE.0.)) 
     1       .OR.((X(i).EQ.0.).AND.(X(i)-XOld(i,It- 1).GT.0.00001))) then 
       Write(*,949) It 
       Write(50,949) It 
 949          Format(/ 11X,'Not converging at the d esign point !' /// 
     1               6X,'ITERATION No.',I3)  
       goto 5499 
     Endif 
 8509     continue 
 else 
   Write(*,9491) It 
   Write(50,9491) It 
 9491      Format(/ 11X,'Not converging at the desi gn point !' /// 
     1           6X,'ITERATION No.',I3)  
   goto 5499 
 Endif 
 
C       =========================================== ===================== 
C       Check value of the failure function at the design point. If  
C       ABS(OBJFOld)>OBJFAcc, calculate a better es timate of the design  
C       parameter, Param. 
C       =========================================== ===================== 
 23     ItInt=ItInt+(It-1) 
 OBJFAcc=ReqOBJFAcc*SigmaOBJF/100. 
 If (ABS(OBJFOld).GT.OBJFAcc) then 
   If (It.GT.MaxIter) then 
     Write(*,9419) 
     Write(40,9419) 
     Write(50,9419) 
 9419       Format(/ 11X,'The accuracy of the failu re function'   
     1             / 11X,'is less than the required  value !'  
     1             /// 6X,'CONVERGENCE NOT FOUND WI THIN THE MAXIMUM', 
     1             1X,'NUMBER OF ITERATIONS !')  
     goto 9999 
   Endif 
   It=1 
   Do 3295 i=1,N 
     Step(i)=0.001 
     Out(i)=0 
     k1(i)=1 
 3295     continue 
   Write(*,2394) It 
   Write(50,2394) It 
 2394     Format(/ 11X,'The accuracy of the failure  function'   
     1           / 11X,'is less than the required v alue !'  
     1           /// 6X,'ITERATION No.',I3)  
 
C         ---------- 
C         Calculation of dparam/dOBJF. 
C         ---------- 
   N=N+1 
   X(N)=Param 
   If (FDer.EQ.2) then 
     Call Derivadas(Param,N,X,Ext,Opt,FDer,OBJF,OBJ GRD)       
     Write(50,9995) N,OBJGRD(N) 
 9995       Format(// 11X,'dZ/dX(',I2,') = ',E17.10 ) 
   else 
     Call OBJFUN(FDer,N,X,OBJF,OBJGRD,NSTATE,Opt,Pa ram) 
     Do 4690 i=1,N 
       Write(50,9095) Ext(i),OBJGRD(i) 
 9095         Format(11X,'dZ/d',A3,' = ',E17.10) 
 4690       continue    
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   Endif 
    
   If (AuxRstar.EQ.1) then 
     If (It.NE.2) X(1)=(X(1)+XOld(1,It-1))/2. 
     If ((X(1).LT.XMin(j,1)).OR.(X(1).GT.XMax(j,1)) ) then 
       If (X(1).LT.XMin(j,1)) then 
  Write(*,5975) Ext(1),X(1),XMin(j,1) 
  Write(50,5975) Ext(1),X(1),XMin(j,1) 
 5975           Format(/ 11X,A3,' = ',E17.10,' < ', E17.10, ' ! ' /) 
  X(1)=XMin(j,1)+(XOld(1,It-1)-XMin(j,1))/2. 
       else 
  Write(*,8551) Ext(1),X(1),XMax(j,1) 
  Write(50,8551) Ext(1),X(1),XMax(j,1) 
 8551           Format(/ 3X,A3,' = ',E17.10,' > ',E 17.10, ' ! ' /) 
  X(1)=XOld(1,It-1)+(XMax(j,1)-XOld(1,It-1))/2. 
       Endif 
       Write(50,8116) Ext(1),X(1) 
 8116         Format(/ 11X,A3,' = ',E17.10 /) 
       goto 5399 
     Endif 
     Write(50,8233) Ext(1),X(1) 
 8233       Format(/ 11X,A3,' = ',E17.10 /) 
     goto 5399 
   Endif 
  
   dparamdOBJF=1./OBJGRD(N) 
   Write(50,9772) OBJFOld 
 9772     Format(/ 11X,'Z=',E17.10) 
   Write(50,9395) dparamdOBJF 
 9395     Format(11X,'dparamdOBJF = ',E17.10) 
 
C         ---------- 
C         New estimate of the value of the design p arameter, param. 
C         ---------- 
   Param=Param-OBJFOld*dparamdOBJF 
C          If (Param.LT.0) Param=0 
   If (Param.LT.0) then 
     If (Opt.EQ.3) then 
       Write(*,4007)  
       Write(50,4007)  
 4007         Format(// 11X,'ERROR: Nourishment Wid th < 0 !') 
       STOP 
     else 
       Write(*,4037)  
       Write(50,4037)  
 4037         Format(// 11X,'ERROR: Crest Level < 0  !') 
       STOP 
     Endif 
   Endif 
   Write(50,5599) Param 
 5599     Format(/ 11X,'New Value of the Design Par ameter = ',E17.10) 
   N=N-1 
   goto 5499 
 Endif   
          
C       =========================================== ===================== 
C       Print the final results. 
C       =========================================== ===================== 
 It=ItInt 
 Write(40,8760) 
 Write(50,8760) 
 8760   Format(// 3X,'FINAL RESULTS' //) 
 Write(40,100) It,OBJFOLD,MuOBJF,SigmaOBJF,RelInd,( 100.*Pf),Param 
 Write(50,100) It,OBJFOLD,MuOBJF,SigmaOBJF,RelInd,( 100.*Pf),Param 
 100    Format(11X,'Total Number of Iterations = ', I3 / 11X, 
     1         'Failure Function Z (X) = ',E17.10 /  11X, 
     1         'Mean Value of Z = ', E17.10 / 11X,  
     1         'Standard Deviation of Z = ', E17.10  / 11X,  
     1         'Reliability Index = ', E17.10 / 11X , 
     1         'Target Probability of Failure (%) =  ', F10.6 / 11X, 
     1         'Design Parameter = ', E17.10)  
 Write(40,922) 
 Write(50,922) 
 922    Format(// 11X, 'DESIGN POINT COORDINATES' / ) 
 Do 539 i=1,N 
   Write(40,726) Ext(i),X(i) 
   Write(50,726) Ext(i),X(i) 
 726      Format(19X,A3,' = ',E17.10) 
 539    continue  
 Write(40,1677) 
 Write(50,1677) 
 1677   Format(/) 
 iii=0 
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 Do 444 i=1,N 
   Inf(i)=((Alpha(i))**2)*100 
   Do 3359 ii=1,N 
     If (i.NE.ii) then  
       If (Rho(i,ii).NE.0.) iii=1 
     Endif 
 3359     continue           
   If (iii.EQ.1) then 
     Write(40,459) i,Alpha(i),Ext(i),Inf(i) 
     Write(50,459) i,Alpha(i),Ext(i),Inf(i) 
 459        Format(11X,'Alpha(Y',I2,') = ',E17.10 /  11X, 
     1             'Influence of Y(',A3,') on the R eliability',1X, 
     1             'Index = ',E14.7 /) 
     iii=0 
   else 
     Write(40,449) Ext(i),Alpha(i),Ext(i),Inf(i) 
     Write(50,449) Ext(i),Alpha(i),Ext(i),Inf(i) 
 449        Format(11X,'Alpha(',A3,') = ',E17.10 / 11X, 
     1             'Influence of ',A3,' on the Reli ability',1X, 
     1             'Index = ',E14.7 /) 
   Endif 
 444    continue 
 9999   return 
 End 
  
 
 
C       ########################################### #####################        
C       
 Subroutine VarExt(N,Opt,Ext,ExtExt,ParamDesc) 
C 
C       ########################################### #####################        
C       
C       Defines the variables specific to each fail ure mode, ExtExt,  
C       their abbreviation, Ext, & the design param eter, ParamDesc. 
C        
C       ########################################### #####################        
C 
C       INPUT VARIABLES: 
C       Opt - Failure mode 
C       N - Number of variables 
C       DSWL - Definition of the SWL 
C 
C       MODELING VARIABLE: 
C       L - Maximum number of variables allowed by the program 
C       TL - Variable mentioned in the Common state ments but not used  
C            here 
 
C       OUTPUT VARIABLES: 
C       Ext - Abbreviation of the name of the varia ble 
C       ExtExt - Description of the variable 
C       ParamDesc - Description of the design param eter 
C 
C       ########################################### #####################         
C         
 Integer*4 L,N,Opt,DSWL 
 Character*3 Ext(L) 
 Character*17 ExtExt(L) 
 Character*19 ParamDesc 
 Parameter (L=15) 
 Real*8 TL 
 Common/BLOCK11/DSWL,TL 
  
 If (Opt.EQ.1) then 
   Ext(1)='Tp ' 
   Ext(2)='Hs ' 
   Ext(3)='A  ' 
   Ext(4)='B  '  
   Ext(5)='SWL' 
   Ext(6)='TAl' 
   Ext(7)='r  '     
   Ext(8)='eB '     
   ExtExt(1)='Peak Wave Period ' 
   ExtExt(2)='Wave Height      ' 
   ExtExt(3)='H&R Parameter    ' 
   ExtExt(4)='H&R Parameter    ' 
   ExtExt(5)='Still-Water-Level' 
   ExtExt(6)='Seawall Slope    ' 
   ExtExt(7)='Roughness        ' 
   ExtExt(8)='Model Parameter  ' 
   If (DSWL.EQ.2) then 
     Ext(5)='Tid' 
     Ext(6)='Sur' 
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     Ext(7)='TAl' 
     Ext(8)='r  ' 
     Ext(9)='eB ' 
     ExtExt(5)='Tide Level       ' 
     ExtExt(6)='Surge            ' 
     ExtExt(7)='Seawall Slope    ' 
     ExtExt(8)='Roughness        ' 
     ExtExt(9)='Model Parameter  ' 
   Endif 
   ParamDesc='Seawall Crest Level' 
 elseif (Opt.EQ.2) then 
   Ext(1)='Tm ' 
   Ext(2)='Hs ' 
   Ext(3)='A  ' 
   Ext(4)='B  '  
   Ext(5)='SWL' 
   Ext(6)='r  ' 
   Ext(7)='eB '     
   ExtExt(1)='Mean Wave Period ' 
   ExtExt(2)='Wave Height      ' 
   ExtExt(3)='Owen Parameter   ' 
   ExtExt(4)='Owen Parameter   ' 
   ExtExt(5)='Still-Water-Level' 
   ExtExt(6)='Roughness        ' 
   ExtExt(7)='Model Parameter  ' 
   If (DSWL.EQ.2) then 
     Ext(5)='Tid' 
     Ext(6)='Sur' 
     Ext(7)='r  ' 
     Ext(8)='eB ' 
     ExtExt(5)='Tide Level       ' 
     ExtExt(6)='Surge            ' 
     ExtExt(7)='Roughness        ' 
     ExtExt(8)='Model Parameter  ' 
   Endif 
   ParamDesc='Seawall Crest Level' 
 elseif (Opt.EQ.3) then 
   Ext(1)='Hs ' 
   Ext(2)='D50' 
   Ext(3)='DP ' 
   Ext(4)='SD ' 
   Ext(5)='GB ' 
   Ext(6)='Ac ' 
   Ext(7)='h  ' 
   ExtExt(1)='Wave Height     ' 
   ExtExt(2)='Particle Size   ' 
   ExtExt(3)='Initial Profile ' 
   ExtExt(4)='Surge Duration  ' 
   ExtExt(5)='Gust Bumps      ' 
   ExtExt(6)='Accuracy Comput.' 
   ExtExt(7)='Surge Level     ' 
   If (DSWL.EQ.2) then 
c            Ext(1)='Tid' 
c            Ext(2)='Sur' 
c            Ext(3)='Hs ' 
c            Ext(4)='D50' 
c            Ext(5)='DP ' 
c            Ext(6)='SD ' 
c            Ext(7)='GB ' 
c            Ext(8)='Ac ' 
c            ExtExt(1)='Tide Level       ' 
c            ExtExt(2)='Surge            ' 
c            ExtExt(3)='Wave Height     ' 
c            ExtExt(4)='Particle Size   ' 
c            ExtExt(5)='Initial Profile ' 
c            ExtExt(6)='Surge Duration  ' 
c            ExtExt(7)='Gust Bumps      ' 
c            ExtExt(8)='Accuracy Comput.' 
      
     Ext(7)='Tid' 
     Ext(8)='Sur' 
     ExtExt(7)='Tide Level       ' 
     ExtExt(8)='Surge            ' 
   Endif 
   ParamDesc='Nourishment Width' 
 else 
   ParamDesc='Nothing' 
   If (N.GE.1) then 
     Ext(1)='X1 ' 
     ExtExt(1)='X(1)' 
     If (N.GE.2) then 
       Ext(2)='X2 ' 
       ExtExt(2)='X(2)' 
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       If (N.GE.3) then 
  Ext(3)='X3 ' 
  ExtExt(3)='X(3)' 
  If (N.GE.4) then   
    Ext(4)='X4 ' 
    ExtExt(4)='X(4)' 
    If (N.GE.5) then   
      Ext(5)='X5 ' 
      ExtExt(5)='X(5)' 
      If (N.GE.6) then   
        Ext(6)='X6 ' 
        ExtExt(6)='X(6)' 
        If (N.GE.7) then   
   Ext(7)='X7 ' 
   ExtExt(7)='X(7)' 
   If (N.GE.8) then   
     Ext(8)='X8 ' 
     ExtExt(8)='X(8)' 
     If (N.GE.9) then   
       Ext(9)='X9 ' 
       ExtExt(9)='X(9)' 
       If (N.GE.10) then   
         Ext(10)='X10' 
         ExtExt(10)='X(10)' 
         If (N.GE.11) then   
    Ext(11)='X11' 
    ExtExt(11)='X(11)' 
    If (N.GE.12) then   
      Ext(12)='X12' 
      ExtExt(12)='X(12)' 
      If (N.GE.13) then   
        Ext(13)='X13' 
        ExtExt(13)='X(13)' 
        If (N.GE.14) then   
          Ext(14)='X14' 
          ExtExt(14)='X(14)' 
          If (N.GE.15) then   
     Ext(15)='X15' 
     ExtExt(15)='X(15)' 
          Endif 
        Endif 
      Endif 
    Endif 
         Endif  
       Endif 
     Endif               
   Endif 
        Endif 
      Endif   
    Endif   
  Endif 
       Endif 
     Endif 
   Endif 
 Endif 
 return 
 End 
 
 
 
C       ########################################### #####################        
C 
 Subroutine Combination(N,NumTVAc,CombAc,NCombAc,r, TVAc,NR) 
C        
C       ########################################### #####################        
C 
C       Returns, for each combination of actions, t he power, NR, to  
C       which each distribution is raised. 
C        
C       ########################################### #####################        
C 
C       INPUT VARIABLES: 
C       N - Number of variables 
C       NCombAc, CombAc - Number of combinations of  actions 
C       NumTVAc - Number of time-varying actions 
C       r - Repetitions of each action in the desig n life 
C       TVAc - Number of the time-varying actions i n increasing order of  
C              the number of repetitions 
C 
C       MODELING VARIABLES: 
C       Q - Maximum number of combinations of actio ns allowed by the  
C           program 
C       L - Maximum number of variables allowed by the program 
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C       i, j, Aux - Auxiliary variables 
C 
C       OUTPUT VARIABLE: 
C       NR - Power to which each distribution is ra ised for each  
C            combination of actions 
C 
C       ########################################### #####################         
C         
 Integer*4 j,i,L,Q,Aux,NumTVAc,NCombAc,CombAc,N 
 Parameter (L=15) 
 Parameter (Q=16) 
 Integer*4 TVAc(L) 
 Real*8 NR(Q,L),r(L) 
 Aux=-1 
 If (CombAc.EQ.2) then 
   Do 144 i=1,N 
     Do 199 j=1,NCombAc 
       NR(j,i)=1 
 199        continue 
 144      continue 
   Do 14 i=1,NumTVAc 
     Do 13 j=1,NCombAc 
       If (i.EQ.1) then 
  Aux=Aux*(-1) 
  If (Aux.LT.0) then 
    NR(j,TVac(1))=1 
  else 
    NR(j,TVac(1))=r(TVAc(1)) 
  Endif 
       elseif (i.EQ.2) then 
  If (j.EQ.1.OR.j.EQ.5.OR.j.EQ.9.OR.j.EQ.13) then 
    NR(j,TVac(2))=r(TVAc(2))/r(TVAc(1)) 
  elseif (j.EQ.2.OR.j.EQ.6.OR.j.EQ.10.OR.j.EQ.14) t hen 
    NR(j,TVac(2))=r(TVAc(2)) 
  else   
    NR(j,TVac(2))=1 
  Endif 
       elseif (i.EQ.3) then 
  If (j.EQ.1.OR.j.EQ.2.OR.j.EQ.9.OR.j.EQ.10) then 
    NR(j,TVac(3))=r(TVAc(3))/r(TVAc(2)) 
  elseif (j.EQ.3.OR.j.EQ.11) then 
    NR(j,TVac(3))=r(TVAc(3))/r(TVAc(1)) 
  elseif (j.EQ.4.OR.j.EQ.12) then  
    NR(j,TVac(3))=r(TVAc(3)) 
  else  
    NR(j,TVac(3))=1 
  Endif 
       elseif (i.EQ.4) then 
  If (j.EQ.1.OR.j.EQ.2.OR.j.EQ.3.OR.j.EQ.4) then 
    NR(j,TVac(4))=r(TVAc(4))/r(TVAc(3)) 
  elseif (j.EQ.5.OR.j.EQ.6) then 
    NR(j,TVac(4))=r(TVAc(4))/r(TVAc(2)) 
  elseif (j.EQ.7) then  
    NR(j,TVac(4))=r(TVAc(4))/r(TVAc(1)) 
  elseif (j.EQ.8) then  
    NR(j,TVac(4))=r(TVAc(4))  
  else  
    NR(j,TVac(4))=1 
  Endif 
       else 
  If (j.EQ.9.OR.j.EQ.10.OR.j.EQ.11.OR.j.EQ.12) then  
    NR(j,TVac(5))=r(TVAc(5))/r(TVAc(3)) 
  elseif (j.EQ.13.OR.j.EQ.14) then 
    NR(j,TVac(5))=r(TVAc(5))/r(TVAc(2)) 
  elseif (j.EQ.15) then  
    NR(j,TVac(5))=r(TVAc(5))/r(TVAc(1)) 
  elseif (j.EQ.16) then  
    NR(j,TVac(5))=r(TVAc(5)) 
  else  
    NR(j,TVac(5))=r(TVAc(5))/r(TVAc(4)) 
  Endif 
       Endif 
 13         continue 
 14       continue 
 else 
   Do 15 i=1,NCombAc 
     Do 17 j=1,N 
       NR(i,j)=1 
 17         continue 
     Do 16 j=1,NumTVAc 
       If (i.EQ.j) then  
  NR(i,TVAc(j))=r(TVAc(j)) 
       elseif (i.GT.j) then  
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  NR(i,TVAc(j))=1 
       else  
  NR(i,TVAc(j))=(r(TVAc(j)))/(r(TVAc(j-1))) 
       Endif 
 16         continue 
 15       continue 
 Endif 
 return 
 End 
 
 
  
C       ########################################### #####################         
C         
 Subroutine InvNormal(C,Rel) 
C 
C       ########################################### #####################         
C         
C       Returns the reliability level, Rel, for a s pecific value, C, of  
C       the exceedance cumulative distribution func tion of the standard  
C       Normal distribution (tabulated in statistic al books, e.g.  
C       Abramowitz & Stegun, 1964). It uses the dat a file distnorm.dad  
C       which contains the tabulated values.  
C 
C       ########################################### #####################         
C         
C       INPUT VARIABLE: 
C       C - Value of the exceedance cumulative dist ribution function of  
C           the standard Normal distribution 
C 
C       MODELING VARIABLES: 
C       M - Number of points of the standard Normal  distribution  
C           tabulated in file distnorm.dad 
C       Phi - Value tabulated in file distnorm.dad of the exceedance  
C             cumulative distribution function of t he standard Normal  
C             distribution 
C       Beta - Standard Normal variable, tabulated in file distnorm.dad, 
C              which corresponds to Phi  
C       k - Auxiliary variable 
C 
C       OUTPUT VARIABLE: 
C       Rel - Standard Normal variable which corres ponds to C  
C 
C       ########################################### #####################         
C         
 Integer*4 k,M 
 Parameter (M=453) 
 Real*8 C,Rel,Beta(M),Phi(M) 
 Open(Unit=20, File='distnorm.dad', Status='Old') 
 Do 910 k=1,M 
   Read(20,*) Beta(k), Phi(k) 
 910    continue 
 Do 1132 k=1,M 
   If (C.LE.0.5) then 
     If (Phi(k).LE.C) then 
       If (Phi(k).LT.C) then 
  Rel=((C-Phi(k))*((Beta(k+1))-Beta(k)))/ 
     1               ((Phi(k+1))-Phi(k))+Beta(k) 
  goto 1150 
       else   
  Rel=Beta(k) 
  goto 1150 
       Endif 
     Endif 
   else 
     If (Phi(k).LE.(1.-C)) then 
       If (Phi(k).LT.(1.-C)) then 
  Rel=-((((1.-C)-Phi(k))*((Beta(k+1))-Beta(k)))/ 
     1               ((Phi(k+1))-Phi(k))+Beta(k)) 
  goto 1150 
       else   
  Rel=-Beta(k) 
  goto 1150 
       Endif 
     Endif 
   Endif   
 1132   continue 
 1150   Close (Unit=20) 
 return 
 End 
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C       ########################################### #####################        
C 
 Subroutine WhatDist(i,j,VarDis,Abrev,Carac)           
C        
C       ########################################### #####################        
C 
C       Returns the name, Carac, & the abbreviation , Abrev, of the  
C       chosen statistical distribution, VarDis. 
C 
C       ########################################### ##################### 
C 
C       INPUT VARIABLES: 
C       i - Number of the variable 
C       j - Number of the combination of actions 
C       VarDis - Type of distribution 
C 
C       MODELING VARIABLES: 
C       L - Maximum number of variables allowed by the program 
C       Q - Maximum number of combinations of actio ns allowed by the  
C           program 
C 
C       OUTPUT VARIABLES: 
C       Carac - Name of the distribution 
C       Abrev - Abbreviation of the name of the dis tribution 
C 
C       ########################################### #####################         
C         
 Integer*4 L,Q,i,j 
 Parameter (L=15) 
 Parameter (Q=16) 
 Character*30 Carac(Q,L) 
 Character*3 Abrev(Q,L) 
 Integer*4 VarDis(Q,L) 
 If (VarDis(j,i).EQ.0) then 
   Carac(j,i)='Deterministic' 
   Abrev(j,i)='Det' 
 elseif (VarDis(j,i).EQ.1) then 
   Carac(j,i)='Normal (Gaussian)' 
   Abrev(j,i)='Nor' 
 elseif (VarDis(j,i).EQ.2) then 
   Carac(j,i)='Log-Normal' 
   Abrev(j,i)='LgN' 
 elseif (VarDis(j,i).EQ.3) then 
   Carac(j,i)='Maxima Type I (Gumbel)' 
   Abrev(j,i)='Gum' 
 elseif (VarDis(j,i).EQ.4) then 
   Carac(j,i)='Rectangular (Uniform)' 
   Abrev(j,i)='Uni' 
 elseif (VarDis(j,i).EQ.5) then 
   Carac(j,i)='Gamma' 
   Abrev(j,i)='Gam' 
 elseif (VarDis(j,i).EQ.6) then 
   Carac(j,i)='Beta' 
   Abrev(j,i)='Bet' 
 elseif (VarDis(j,i).EQ.7) then 
   Carac(j,i)='Maxima Type II (Frechet)' 
   Abrev(j,i)='Fre' 
 elseif (VarDis(j,i).EQ.8) then 
   Carac(j,i)='Exponential' 
   Abrev(j,i)='Exp' 
 elseif (VarDis(j,i).EQ.9) then 
   Carac(j,i)='Rayleigh' 
   Abrev(j,i)='Ray' 
 elseif (VarDis(j,i).EQ.10) then 
   Carac(j,i)='Minima Type III (Weibull)' 
   Abrev(j,i)='Wei' 
 elseif (VarDis(j,i).EQ.11) then 
   Carac(j,i)='User-Defined Distribution' 
   Abrev(j,i)='UD1' 
 elseif (VarDis(j,i).EQ.12) then 
   Carac(j,i)='User-Defined Distribution' 
   Abrev(j,i)='UD2' 
 else 
   Carac(j,i)='User-Defined Distribution' 
   Abrev(j,i)='UD3' 
 Endif 
 return       
 End 
 
 
  
C       ########################################### #####################        
C 
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 Subroutine WriCharVar(i,j,VarDis,Trunc,Ext,Carac,X o,Mux,Sigmax, 
     1                        Opt) 
C        
C       ########################################### #####################        
C 
C       Writes the following characteristics of the  variables in the 
C       files summary.dat & results.dat : 
C       - Type of distribution 
C       - Type of truncation & point of truncation,  Xo (if the  
C         distribution is truncated)        
C       - Mean, Mux, standard deviation, Sigmax, & lower limit, Zeta 
C 
C       ########################################### ##################### 
C 
C       INPUT VARIABLES: 
C       Opt - Failure mode 
C       TL - Seawall toe level 
C       DSWL -  Definition of the SWL 
C       i - Number of the variable 
C       j - Number of the combination of actions 
C       Ext - Abbreviation of the name of the varia ble 
C       Mux - Mean of X 
C       Sigmax - Standard deviation of X 
C       VarDis - Type of distribution 
C       Carac - Name of the distribution 
C       Trunc - Type of truncation 
C       Xo - Point of truncation (if the distributi on is truncated) 
C       Zeta - Parameter of a distribution 
C       x1 - Lower limit on X for a Beta distributi on 
C       x2 - Upper limit on X for a Beta distributi on 
C 
C       MODELING VARIABLES: 
C       L - Maximum number of variables allowed by the program 
C       Q - Maximum number of combinations of actio ns allowed by the  
C           program 
C       Lamda, Eta - Variables mentioned in the Com mon statement but not  
C                    used here 
C 
C       ########################################### #####################         
C         
 Integer*4 i,j,L,Q,Opt,DSWL 
 Parameter (L=15) 
 Parameter (Q=16) 
 Character*3 Ext(L) 
 Character*30 Carac(Q,L) 
 Integer*4 VarDis(Q,L),Trunc(Q,L) 
 Real*8 Xo(Q,L),Mux(Q,L),Sigmax(Q,L),Zeta(Q,L),Lamd a(Q,L), 
     1         Eta(Q,L),x1(Q,L),x2(Q,L),TL 
 Common/BLOCK8/Zeta,Lamda,Eta,x1,x2 
 Common/BLOCK11/DSWL,TL 
  
 Write(40,8020) Ext(i),Carac(j,i) 
 Write(50,8020) Ext(i),Carac(j,i) 
 8020   Format(11X,'Probability Distribution of ',A 3,' = ',A30) 
 
 If (Trunc(j,i).NE.0) then 
   If (Trunc(j,i).EQ.1) then 
     If ((Opt.EQ.1.OR.Opt.EQ.2).AND.(i.EQ.2)) then 
       If (DSWL.EQ.1) then 
  Write(40,802) Ext(i),TL 
  Write(50,802) Ext(i),TL 
 802            Format(11X,'The Distribution of ',A 3, 
     1                 ' is truncated above Xo = 0. 6(SWL-TL)' / 11X, 
     1                 'Seawall Toe Level (TL) = ', E17.10)  
       else 
  Write(40,8029) Ext(i),TL 
  Write(50,8029) Ext(i),TL 
 8029           Format(11X,'The Distribution of ',A 3, 
     1                 ' is truncated above Xo = 0. 6(Tide+Surge-TL)' /  
     1                 11X,'Seawall Toe Level (TL) = ',E17.10)  
       Endif 
     else   
       Write(40,82) Ext(i),Xo(j,i) 
       Write(50,82) Ext(i),Xo(j,i) 
 82           Format(11X,'The Distribution of ',A3,  
     1               ' is truncated above Xo = ',E1 7.10) 
     Endif 
   else 
     Write(40,829) Ext(i),Xo(j,i) 
     Write(50,829) Ext(i),Xo(j,i) 
 829        Format(11X,'The Distribution of ',A3, 
     1             ' is truncated below Xo = ',E17. 10) 
   Endif 
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 Endif 
 
 Write(40,8299) Ext(i),Mux(j,i),Ext(i),Sigmax(j,i) 
 Write(50,8299) Ext(i),Mux(j,i),Ext(i),Sigmax(j,i) 
 8299   Format(11X,'Mean Value of ',A3,' = ',E17.10  / 11X, 
     1         'Standard Deviation of ',A3,' = ',E1 7.10) 
 
 If (VarDis(j,i).EQ.6) then 
   Write(40,2198) Ext(i),x1(j,i),x2(j,i) 
   Write(50,2198) Ext(i),x1(j,i),x2(j,i) 
 2198     Format(11X,'Limits a and b of ',A3,' = [' , 
     1           E17.10,',',E17.10,']') 
 Endif   
  
 If (VarDis(j,i).EQ.10) then 
   Write(40,4198) Ext(i),Zeta(j,i) 
   Write(50,4198) Ext(i),Zeta(j,i) 
 4198     Format(11X,'Lower Limit on ',A3,' = ',E17 .10) 
 Endif   
        
 Write(40,4598)  
 Write(50,4598)  
 4598   Format(/) 
        
 return 
 End 
 
 
 
C       ########################################### #####################        
C 
        Subroutine Parameters(i,j,Mux,Sigmax,VarDis ,Ext) 
C        
C       ########################################### #####################        
C 
C       Calls the subroutines required to calculate  the distribution's  
C       parameters, Zeta, Lamda & Eta, for each var iable. 
C 
C       ########################################### ##################### 
C 
C       INPUT VARIABLES: 
C       i - Number of the variable 
C       j - Number of the combination of actions 
C       Ext - Abbreviation of the name of the varia ble 
C       Mux - Mean of X 
C       Sigmax - Standard deviation of X 
C       VarDis - Type of distribution 
C       x1 - Lower limit on X for a Beta distributi on 
C       x2 - Upper limit on X for a Beta distributi on 
C 
C       MODELING VARIABLES: 
C       L - Maximum number of variables allowed by the program 
C       Q - Maximum number of combinations of actio ns allowed by the  
C           program 
C 
C       OUTPUT VARIABLES: 
C       Zeta, Lamda, Eta - Parameters of a distribu tion 
C 
C       ########################################### #####################         
C         
        Integer*4 i,j,L,Q 
        Parameter (L=15) 
        Parameter (Q=16) 
        Character*3 Ext(L) 
        Integer*4 VarDis(Q,L) 
        Real*8 Mux(Q,L),Sigmax(Q,L),Zeta(Q,L),Lamda (Q,L),Eta(Q,L), 
     1         x1(Q,L),x2(Q,L) 
        Common/BLOCK8/Zeta,Lamda,Eta,x1,x2 
 
        If (VarDis(j,i).EQ.0.OR.VarDis(j,i).GT.10) then 
          Zeta(j,i)=Mux(j,i) 
          Lamda(j,i)=Sigmax(j,i) 
          Write(50,2245) Ext(i),Zeta(j,i),Ext(i),La mda(j,i) 
 2245     Format(/ 16X,'Mean (',A3,') = ',E17.10 / 
     1             16X,'Standard Deviation (',A3,')  = ',E17.10) 
        elseif (VarDis(j,i).EQ.1) then 
          Call PNormal(j,i,Ext,Mux,Sigmax,Zeta,Lamd a) 
        elseif (VarDis(j,i).EQ.2) then 
          Call PLogNormal(j,i,Ext,Mux,Sigmax,Zeta,L amda) 
        elseif (VarDis(j,i).EQ.3) then 
          Call PGumbel(j,i,Ext,Mux,Sigmax,Zeta,Lamd a) 
        elseif (VarDis(j,i).EQ.4) then 
          Call PRectangular(j,i,Ext,Mux,Sigmax,Zeta ,Lamda) 
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        elseif (VarDis(j,i).EQ.5) then 
          Call PGamma(j,i,Ext,Mux,Sigmax,Zeta,Lamda ) 
        elseif (VarDis(j,i).EQ.6) then 
          Call PBeta(j,i,Ext,Mux,Sigmax,Zeta,Lamda, x1,x2) 
        elseif (VarDis(j,i).EQ.7) then 
          Call PFrechet(j,i,Ext,Mux,Sigmax) 
        elseif (VarDis(j,i).EQ.8) then 
          Call PExponential(j,i,Ext,Mux,Sigmax,Zeta ,Lamda) 
        elseif (VarDis(j,i).EQ.9) then 
          Call PRayleigh(j,i,Ext,Mux,Sigmax,Zeta) 
        else 
          Call PWeibull(j,i,Ext,Mux,Sigmax) 
        Endif 
        return 
        End 
 
 
 
C       ########################################### #####################        
C 
        Subroutine EqCharac(N,NCombAc,Abrev,Carac,V arDis,Trunc,Xo,Mux, 
     1                      Sigmax) 
C 
C       ########################################### #####################        
C 
C       If the distributions provided for the varia bles are the basic  
C       distributions, then the characteristics of the variables are the 
C       same for all the combinations considered. W hat differs in each 
C       combination is the power to which each dist ribution is raised. 
C       This subroutine gives to the variables in a ll combinations of 
C       actions the same characteristics which the variables have in  
C       combination 1. 
C        
C       ########################################### ##################### 
C 
C       INPUT VARIABLES: 
C       N - Number of variables 
C       NCombAc - Number of combinations of actions  
C 
C       INPUT/OUTPUT VARIABLES: 
C       Mux - Mean of X 
C       Sigmax - Standard deviation of X 
C       VarDis - Type of distribution 
C       Carac - Name of the distribution 
C       Abrev - Abbreviation of the name of the dis tribution 
C       Trunc - Type of truncation 
C       Xo - Point of truncation (if the distributi on is truncated) 
C       Zeta, Lamda, Eta - Parameters of a distribu tion 
C       x1 - Lower limit on X for a Beta distributi on 
C       x2 - Upper limit on X for a Beta distributi on 
C        
C       MODELING VARIABLES: 
C       L - Maximum number of variables allowed by the program 
C       Q - Maximum number of combinations of actio ns allowed by the  
C           program 
C       i, k - Auxiliary variables 
C 
C       ########################################### #####################         
C         
        Integer*4 i,k,L,N,Q,NCombAc 
        Parameter (L=15) 
        Parameter (Q=16) 
        Character*3 Abrev(Q,L) 
        Character*30 Carac(Q,L) 
        Integer*4 VarDis(Q,L),Trunc(Q,L) 
        Real*8 Xo(Q,L),Mux(Q,L),Sigmax(Q,L),Zeta(Q, L),Lamda(Q,L), 
     1         Eta(Q,L),x1(Q,L),x2(Q,L) 
        Common/BLOCK8/Zeta,Lamda,Eta,x1,x2 
         
        Do 8000 k=2,NCombAc 
          Do 7000 i=1,N 
            Abrev(k,i)=Abrev(1,i) 
            Carac(k,i)=Carac(1,i) 
            VarDis(k,i)=VarDis(1,i)   
            Trunc(k,i)=Trunc(1,i) 
            Xo(k,i)=Xo(1,i) 
            Mux(k,i)=Mux(1,i) 
            Sigmax(k,i)=Sigmax(1,i) 
            Zeta(k,i)=Zeta(1,i) 
            If (VarDis(1,i).NE.9) Lamda(k,i)=Lamda( 1,i) 
            If (VarDis(1,i).EQ.10) Eta(k,i)=Eta(1,i ) 
            If (VarDis(1,i).EQ.6) then 
              x1(k,i)=x1(1,i) 
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              x2(k,i)=x2(1,i) 
            Endif 
 7000     continue 
 8000   continue     
        return 
        End 
 
 
 
C       ########################################### #####################        
C 
        Subroutine Inverse(j,i,Mux,NR,VarDis,StartP t) 
C         
C       ########################################### #####################        
C 
C       Returns the argument, StartPt, correspondin g to a value of 0.5  
C       of a chosen cumulative distribution functio n, i.e.  
C       CDF(StartPt)=0.5 . 
C 
C       ########################################### ##################### 
C 
C       INPUT VARIABLES: 
C       i - Number of the variable 
C       j - Number of the combination of actions 
C       NR - Power to which each distribution is ra ised for each  
C            combination of actions 
C       Mux - Mean of X 
C       VarDis - Type of distribution 
C       Zeta, Lamda, Eta - Parameters of a distribu tion 
C 
C       MODELING VARIABLES: 
C       L - Maximum number of variables allowed by the program 
C       Q - Maximum number of combinations of actio ns allowed by the  
C           program 
C       CDF - Value of the cumulative distribution function 
C       C - Value of the exceedance cumulative dist ribution function 
C       Rel - Standard Normal variable which corres ponds to C  
C       x1, x2 - Variables mentioned in the Common statement but not  
C                used here 
C 
C       OUTPUT VARIABLE: 
C       StartPt - Starting value of the variables 
C 
C       ########################################### #####################         
C         
        Integer*4 i,j,L,Q 
        Parameter (L=15) 
        Parameter (Q=16) 
        Integer*4 VarDis(Q,L) 
        Real*8 Mux(Q,L),Zeta(Q,L),Lamda(Q,L),Eta(Q, L),x1(Q,L),x2(Q,L), 
     1         Rel,CDF,C,StartPt(Q,L),NR(Q,L) 
        Common/BLOCK8/Zeta,Lamda,Eta,x1,x2 
 
        CDF=0.5**(1./NR(j,i)) 
        If (VarDis(j,i).EQ.0) then 
          StartPt(j,i)=Mux(j,i) 
        elseif (VarDis(j,i).EQ.1) then 
          C=1.-CDF 
          Call InvNormal(C,Rel) 
          StartPt(j,i)=Rel*Lamda(j,i)+Zeta(j,i) 
        elseif (VarDis(j,i).EQ.2) then 
          C=1.-CDF 
          Call InvNormal(C,Rel) 
          StartPt(j,i)=EXP(Rel*Lamda(j,i)+Zeta(j,i) ) 
        elseif (VarDis(j,i).EQ.3) then 
          StartPt(j,i)=Lamda(j,i)-(LOG(-LOG(CDF)))/ (Zeta(j,i)) 
        elseif (VarDis(j,i).EQ.4) then 
          StartPt(j,i)=Zeta(j,i)+(Lamda(j,i)-Zeta(j ,i))*CDF 
        elseif (VarDis(j,i).EQ.5) then 
          Call InvGamma(j,i,CDF,StartPt) 
        elseif (VarDis(j,i).EQ.6) then 
          Call InvBeta(j,i,CDF,StartPt) 
        elseif (VarDis(j,i).EQ.7) then 
          StartPt(j,i)=Lamda(j,i)*((-LOG(CDF))**(-1 ./Zeta(j,i))) 
        elseif (VarDis(j,i).EQ.8) then 
          StartPt(j,i)=Zeta(j,i)-Lamda(j,i)*LOG(1.- CDF) 
        elseif (VarDis(j,i).EQ.9) then 
          StartPt(j,i)=Zeta(j,i)*SQRT(-2.*LOG(1.-CD F)) 
        elseif (VarDis(j,i).EQ.10) then  
          StartPt(j,i)=Zeta(j,i)+Lamda(j,i)*((-LOG( 1.-CDF))** 
     1                 (1./Eta(j,i))) 
        elseif (VarDis(j,i).EQ.11) then 
          Call InvUser1(j,i,CDF,StartPt) 
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        elseif (VarDis(j,i).EQ.12) then 
          Call InvUser2(j,i,CDF,StartPt) 
        else 
          Call InvUser3(j,i,CDF,StartPt) 
        Endif 
        return 
        End 
 
 
 
C       ########################################### #####################        
C 
        Subroutine MinMax(i,j,Opt,VarDis,Ext,Trunc, Xo,Mux,Sigmax,XMin, 
     1                    XMax) 
C 
C       ########################################### #####################        
C 
C       Defines the minimum value, XMin, & the maxi mum value, XMax, for  
C       each variable depending on the type of dist ribution & on whether 
C       or not the distribution is truncated. 
C 
C       ########################################### ##################### 
C 
C       INPUT VARIABLES: 
C       Opt - Failure mode 
C       i - Number of the variable 
C       j - Number of the combination of actions 
C       Ext - Abbreviation of the name of the varia ble 
C       Mux - Mean of X 
C       Sigmax - Standard deviation of X 
C       VarDis - Type of distribution 
C       Trunc - Type of truncation 
C       Xo - Point of truncation (if the distributi on is truncated) 
C       Zeta, Lamda - Parameters of a distribution 
C       x1 - Lower limit on X for a Beta distributi on 
C       x2 - Upper limit on X for a Beta distributi on 
C 
C       INPUT/OUTPUT VARIABLES: 
C       XMin - Minimum value of X 
C       XMax - Maximum value of X 
C 
C       MODELING VARIABLES: 
C       L - Maximum number of variables allowed by the program 
C       Q - Maximum number of combinations of actio ns allowed by the  
C           program 
C       Eta - Variable mentioned in the Common stat ement but not used  
C             here 
C 
C       ########################################### ##################### 
C 
        Integer*4 i,j,L,Q,Opt 
        Parameter (L=15) 
        Parameter (Q=16) 
        Character*3 Ext(L) 
        Integer*4 VarDis(Q,L),Trunc(Q,L) 
        Real*8 Xo(Q,L),XMin(Q,L),XMax(Q,L),Mux(Q,L) ,Sigmax(Q,L), 
     1         Zeta(Q,L),Lamda(Q,L),Eta(Q,L),x1(Q,L ),x2(Q,L) 
        Common/BLOCK8/Zeta,Lamda,Eta,x1,x2 
         
        If (Trunc(j,i).NE.0) then 
          If ((Trunc(j,i).EQ.1).AND.(XMax(j,i).NE.X o(j,i))) then  
            If ((Opt.EQ.1.OR.Opt.EQ.2).AND.(i.EQ.2) ) goto 11 
            XMax(j,i)=Xo(j,i) 
          Endif 
 11       If ((Trunc(j,i).EQ.2).AND.(XMin(j,i).NE.X o(j,i)))  
     1      XMin(j,i)=Xo(j,i) 
        Endif 
        If ((VarDis(j,i).EQ.2).AND.(XMin(j,i).LE.0. )) XMin(j,i)=1E-25 
        If (VarDis(j,i).EQ.4) then 
          If (XMin(j,i).LT.Zeta(j,i)) XMin(j,i)=Zet a(j,i) 
          If (XMax(j,i).GT.Lamda(j,i)) XMax(j,i)=La mda(j,i) 
        Endif 
        If ((VarDis(j,i).EQ.5).AND.(XMin(j,i).LT.0. )) XMin(j,i)=0. 
        If (VarDis(j,i).EQ.6) then 
          If (XMin(j,i).LT.x1(j,i)) XMin(j,i)=x1(j, i) 
          If (XMax(j,i).GT.x2(j,i)) XMax(j,i)=x2(j, i) 
        Endif 
        If ((VarDis(j,i).EQ.7).AND.(XMin(j,i).LE.0. )) XMin(j,i)=1E-25 
        If ((VarDis(j,i).EQ.8).AND.(XMin(j,i).LT.Ze ta(j,i)))  
     1    XMin(j,i)=Zeta(j,i) 
        If ((VarDis(j,i).EQ.9).AND.(XMin(j,i).LT.0. )) XMin(j,i)=0. 
        If ((VarDis(j,i).EQ.10).AND.(XMin(j,i).LT.Z eta(j,i)))  
     1      XMin(j,i)=Zeta(j,i) 
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        If (VarDis(j,i).EQ.11) then 
          If (XMin(j,i).LT.(-5.53)) XMin(j,i)=-5.53  
          If (XMax(j,i).GT.(5.77)) XMax(j,i)=5.77 
        Endif 
        If (VarDis(j,i).EQ.12) then 
          If (XMin(j,i).LT.(5.45)) XMin(j,i)=5.45 
          If (XMax(j,i).GT.(6.995)) XMax(j,i)=6.995  
        Endif 
        If (VarDis(j,i).EQ.13) then 
          If (XMin(j,i).LT.(-5.33)) XMin(j,i)=-5.33  
          If (XMax(j,i).GT.(5.57)) XMax(j,i)=5.57 
        Endif 
        Write(40,5971) Ext(i),XMin(j,i),Ext(i),XMax (j,i) 
        Write(50,5971) Ext(i),XMin(j,i),Ext(i),XMax (j,i) 
 5971   Format(11X,'XMin(',A3,') = ',E17.10,3X,'XMa x(',A3,') = ', 
     1         E17.10) 
        return 
        End 
         
 
 
C       ########################################### #####################        
C 
        Subroutine EqNorDis(i,j,N,X,VarDis,NR,Ext,M uxN,SigmaxN,Trunc,Xo) 
C         
C       ########################################### #####################        
C 
C       Calls the subroutines required to calculate  the mean, MuxN, &  
C       the standard deviation, SigmaxN, of the equ ivalent Normal  
C       distribution for each variable. 
C         
C       ########################################### ##################### 
C 
C       INPUT VARIABLES: 
C       j - Number of the combination of actions 
C       NR - Power to which each distribution is ra ised for each  
C            combination of actions 
C       N - Number of variables 
C       i - Number of the variable 
C       Ext - Abbreviation of the name of the varia ble 
C       X - Variables of the failure mode 
C       VarDis - Type of distribution 
C       Trunc - Type of truncation 
C       Xo - Point of truncation (if the distributi on is truncated) 
C       Zeta, Lamda, Eta - Parameters of a distribu tion 
C       x1 - Lower limit on X for a Beta distributi on 
C       x2 - Upper limit on X for a Beta distributi on 
C 
C       MODELING VARIABLES: 
C       Q - Maximum number of combinations of actio ns allowed by the  
C           program 
C       L - Maximum number of variables allowed by the program 
C 
C       OUTPUT VARIABLES: 
C       MuxN - Mean of the equivalent Normal distri bution of X 
C       SigmaxN - Standard deviation of the equival ent Normal  
C                 distribution of X 
C 
C       ########################################### #####################         
C         
        Integer*4 i,j,L,N,Q 
        Parameter (L=15) 
        Parameter (Q=16) 
        Character*3 Ext(L) 
        Integer*4 VarDis(Q,L),Trunc(Q,L) 
        Real*8 X(L),MuxN(L),SigmaxN(L),Xo(Q,L),x1(Q ,L),x2(Q,L), 
     1         Zeta(Q,L),Lamda(Q,L),Eta(Q,L),NR(Q,L ) 
        Common/BLOCK8/Zeta,Lamda,Eta,x1,x2 
             
        If (VarDis(j,i).EQ.0) then 
          MuxN(i)=Zeta(j,i) 
          SigmaxN(i)=Lamda(j,i) 
          Call NorWrite(i,Ext,MuxN,SigmaxN) 
        elseif (VarDis(j,i).EQ.1) then 
          Call NormalD(i,j,Ext,X,Zeta,Lamda,MuxN,Si gmaxN,Trunc,Xo, 
     1                 NR) 
        elseif (VarDis(j,i).EQ.2) then 
          Call LogNormal(i,j,Ext,X,Zeta,Lamda,MuxN, SigmaxN,Trunc,Xo, 
     1                   NR) 
        elseif (VarDis(j,i).EQ.3) then 
          Call Gumbel(i,j,Ext,X,Zeta,Lamda,MuxN,Sig maxN,Trunc,Xo,NR) 
        elseif (VarDis(j,i).EQ.4) then 
          Call Rectangular(i,j,Ext,X,Zeta,Lamda,Mux N,SigmaxN,Trunc,Xo, 
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     1                     NR) 
        elseif (VarDis(j,i).EQ.5) then 
          Call Gamma(i,j,Ext,X,Zeta,Lamda,MuxN,Sigm axN,Trunc,Xo,NR) 
        elseif (VarDis(j,i).EQ.6) then 
          Call BetaDis(i,j,Ext,X,Zeta,Lamda,x1,x2,M uxN,SigmaxN,Trunc, 
     1                 Xo,NR) 
        elseif (VarDis(j,i).EQ.7) then 
          Call Frechet(i,j,Ext,X,Zeta,Lamda,MuxN,Si gmaxN,Trunc,Xo,NR) 
        elseif (VarDis(j,i).EQ.8) then 
          Call Exponential(i,j,Ext,X,Zeta,Lamda,Mux N,SigmaxN,Trunc,Xo, 
     1                     NR) 
        elseif (VarDis(j,i).EQ.9) then 
          Call Rayleigh(i,j,Ext,X,Zeta,MuxN,SigmaxN ,Trunc,Xo,NR) 
        elseif (VarDis(j,i).EQ.10) then  
          Call Weibull(i,j,Ext,X,Zeta,Lamda,Eta,Mux N,SigmaxN,Trunc, 
     1                 Xo,NR) 
        elseif (VarDis(j,i).EQ.11) then  
          Call User1(i,j,Ext,X,MuxN,SigmaxN,NR) 
        elseif (VarDis(j,i).EQ.12) then  
          Call User2(i,j,Ext,X,MuxN,SigmaxN,NR) 
        else 
          Call User3(i,j,Ext,X,MuxN,SigmaxN,NR) 
        Endif 
        return 
        End 
 
 
         
C       ########################################### #####################        
C 
        Subroutine Correlated(N,Ext,MuxN,SigmaxN,Rh o,Sigmay,Muy,V,Vt) 
C         
C       ########################################### #####################        
C 
C       Returns the means, Muy, & the standard devi ations, Sigmay, of   
C       the non-correlated Normal variables, Y. It also returns the  
C       matrix V & its transpose, Vt, required to t ransform the  
C       variables X into Y & vice versa. 
C 
C       ########################################### ##################### 
C 
C       INPUT VARIABLES: 
C       N - Number of variables 
C       Ext - Abbreviation of the name of the varia ble 
C       Rho - Correlation coefficient 
C       MuxN - Mean of the equivalent Normal distri bution of X 
C       SigmaxN - Standard deviation of the equival ent Normal  
C                 distribution of X 
C 
C       MODELING VARIABLES: 
C       L - Maximum number of variables allowed by the program 
C       Covx - Covariance matrix 
C       D - Vector of eigenvalues 
C       i, k - Auxiliary variables 
C 
C       OUTPUT VARIABLES: 
C       Muy - Mean of Y (non-correlated, Normal tra nsformed variables) 
C       Sigmay - Standard deviation of Y 
C       V - Matrix of eigenvectors 
C       Vt - Transpose of V 
C 
C       ########################################### #####################         
C         
        Integer*4 i,k,L,N 
        Parameter (L=15) 
        Character*3 Ext(L) 
        Real*8 MuxN(L),SigmaxN(L),Rho(L,L),Covx(L,L ),D(L),V(L,L), 
     1         Sigmay(L),Vt(L,L),Muy(L) 
         
        Do 701 i=1,N 
          Do 702 k=1,N 
            Covx(i,k)=Rho(i,k)*SigmaxN(i)*SigmaxN(k ) 
 702      continue 
 701    continue 
        Call Algebra(N,Covx,D,V) 
        Write(50,400)  
 400    Format(/ 11X,'EIGENVALUES' /) 
        Do 93 i=1,N 
          Write(50,35) Ext(i),D(i) 
 35       Format(11X,'D(',A3,') = ',E17.10) 
 93     continue 
        Write(50,500)  
 500    Format(/ 11X,'EIGENVECTORS' /) 
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        Write(50,*) ' ' 
        Do 138 k=1,N 
          Do 139 i=1,N 
            Write(50,392) Ext(i),Ext(k),V(i,k) 
 392        Format(11X,'V(',A3,',',A3,') = ',E17.10 ) 
 139      continue 
 138    continue 
        Write(50,*) ' ' 
        Do 492 i=1,N 
          Do 551 k=1,N 
            Vt(i,k)=V(k,i) 
            Write(50,9891) Ext(i),Ext(k),Vt(i,k) 
 9891       Format(11X,'Vt(',A3,',',A3,') = ',E17.1 0) 
 551      continue 
 492    continue 
        Do 235 i=1,N 
          Muy(i)=0. 
          Do 237 k=1,N 
            Muy(i)=Vt(i,k)*MuxN(k)+Muy(i) 
 237      continue 
 235    continue 
        Write(50,*) ' ' 
        Do 333 i=1,N 
          Sigmay(i)=SQRT(D(i)) 
          Write(50,992) Ext(i),Muy(i),Ext(i),Sigmay (i) 
 992      Format(11X,'Muy(',A3,') = ',E17.10,3X,'Si gmay(',A3,') = ', 
     1           E17.10) 
 333    continue 
        return 
        End 
 
 
 
C       ########################################### ##################### 
C       
        Subroutine Derivadas(Par,N,X,Ext,Opt,FDer,O BJF,OBJGRD) 
C 
C       ########################################### #####################        
C       
C       Returns the value of the failure function, OBJF, & the values of 
C       the first partial derivatives, OBJGRD. If t he expressions for  
C       the first partial derivatives are given (FD er=1), they are used  
C       to calculate OBJGRD; subroutine OBJFUN is c alled for this  
C       purpose. Oherwise (FDer=2), the derivatives  have to be  
C       calculated using the subroutine E04XAF. E04 XAF is a NAG Fortran  
C       subroutine.  
C       ---------- 
C       For more details see NAG (1993). 
C 
C       ########################################### #####################        
C 
C       INPUT VARIABLES: 
C       Opt - Failure mode 
C       Ext - Abbreviation of the name of the varia ble 
C       N - Number of variables 
C       X - Variables of the failure mode 
C       FDer - Method of calculation of the first p artial derivatives of  
C              the failure function for overtopping  
C       Par - For Mode=1 it is the prescribed value  of the design  
C             parameter (Param); for Mode=2 it is t he starting value of  
C             the design parameter (StartParam) 
C 
C       MODELING VARIABLES: 
C       IUSER - Failure mode 
C       L - Maximum number of variables allowed by the program 
C       LHES, NSTATE, IFAIL, IWARN, MSGLVL, INFO, E PSRF, HCNTRL, HESIAN,  
C       HFORW, WORK - Variables used by subroutine EO4XAF (for more  
C                     details see NAG, 1993) 
C       E04XAF, OBJFUN - External subroutines 
C       USER - For Mode=1 it is the prescribed valu e of the design  
C              parameter (Param); for Mode=2 it is the starting value of  
C              the design parameter (StartParam) 
C       i - Auxiliary variable 
C 
C       OUTPUT VARIABLES: 
C       OBJF - Failure function 
C       OBJGRD - First partial derivatives of OBJF 
C 
C       ########################################### #####################         
C         
        Integer*4 N,L,i 
        Parameter (L=15) 
        Character*3 Ext(L) 
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        Integer*4 LHES,IFAIL,IWARN,FDer,MSGLVL,NSTA TE, 
     1            INFO(L),IUSER(1),Opt 
        Real*8 EPSRF,OBJF,HCNTRL(L),HESIAN(L,L),HFO RW(L),OBJGRD(L), 
     1         USER(1),WORK(L*L+L),X(L),Par 
        External E04XAF,OBJFUN 
         
        LHES=N 
        MSGLVL=1 
        EPSRF=-1. 
        Do 20 i=1,N 
          HFORW(i)=-1. 
 20     continue 
        IFAIL=1 
        IUSER(1)=Opt 
        USER(1)=Par 
 
        If (FDer.EQ.2) then 
          Call E04XAF(MSGLVL,N,EPSRF,X,FDer,OBJFUN, LHES,HFORW,OBJF, 
     1                OBJGRD,HCNTRL,HESIAN,IWARN,WO RK,IUSER, 
     1                USER,INFO,IFAIL) 
          If ((IFAIL.EQ.0).OR.(IFAIL.EQ.2)) then 
          else 
            Write(*,9997) IFAIL 
            Write(50,9997) IFAIL 
 9997       Format(/ 11X,'On exit from E04XAF IFAIL  = ',I2) 
            PAUSE 
          Endif  
        else 
          Call OBJFUN(FDer,N,X,OBJF,OBJGRD,NSTATE,I USER,USER) 
          Do 5691 i=1,N 
            Write(50,9095) Ext(i),OBJGRD(i) 
 9095       Format(11X,'dZ/d',A3,' = ',E17.10) 
 5691     continue    
        Endif   
        return 
        End 
 
 
 
C       ########################################### #####################        
C       
        Subroutine OBJFUN(FDer,N,X,OBJF,OBJGRD,NSTA TE,IUSER,USER) 
C 
C       ########################################### #####################        
C       
C       Calls the subroutines which contain the fai lure function. For 
C       the failure mode of overtopping, they also contain the first  
C       partial derivatives of the failure function . 
C 
C       ########################################### #####################        
C 
C       INPUT VARIABLES: 
C       IUSER - Failure mode 
C       OptD - Direction of the sand movements in d une erosion 
C       N - Number of variables 
C       X - Variables of the failure mode 
C       FDer - Method of calculation of the first p artial derivatives of  
C              the failure function for overtopping  
C       USER - For Mode=1 it is the value of the pr escribed design  
C              parameter (Param); for Mode=2 it is the starting value of  
C              the design parameter (StartParam) 
C 
C       MODELING VARIABLES: 
C       Opt - Failure mode 
C       NSTATE - Variable used by subroutine EO4XAF  (for more details  
C                see NAG, 1993) 
C 
C       OUTPUT VARIABLES: 
C       OBJF - Failure function 
C       OBJGRD - First partial derivatives of OBJF 
C 
C       ########################################### #####################         
C         
        Integer*4 FDer,N,NSTATE,IUSER(1),Opt,OptD 
        Real*8 OBJF,OBJGRD(N),USER(1),X(N) 
        Common/BLOCK6/OptD 
         
        Opt=IUSER(1) 
        If (Opt.EQ.1) then 
          Call HandR(FDer,N,X,OBJF,OBJGRD,USER) 
        elseif (Opt.EQ.2) then 
          Call Owen(FDer,N,X,OBJF,OBJGRD,USER) 
        else 



Program Listing 

C7-63 

          If (OptD.EQ.2) then 
            Call SDunes(N,X,OBJF,USER) 
          else  
            Call LDunes(N,X,OBJF,USER) 
          Endif 
        Endif 
        return         
        End 
 
 
 
C       ########################################### #####################         
C         
        Subroutine NormalDist(j,RelInd,Prob) 
C 
C       ########################################### #####################         
C         
C       Returns the value of the exceedance cumulat ive distribution  
C       function of the standard Normal distributio n, Prob (tabulated in  
C       statistical books, e.g. Abramowitz & Stegun , 1964), for a given  
C       RelInd value. It uses the data file distnor m.dad which contains  
C       the tabulated values.  
C 
C       ########################################### #####################         
C 
C       INPUT VARIABLES: 
C       RelInd - Standard Normal variable which cor responds to Prob 
C       j - Number of the combination of actions 
C 
C       MODELING VARIABLES: 
C       M - Number of points of the standard Normal  distribution  
C           tabulated in file distnorm.dad 
C       Phi - Value tabulated in file distnorm.dad of the exceedance  
C             cumulative distribution function of t he standard Normal  
C             distribution 
C       Beta - Standard Normal variable, tabulated in file distnorm.dad, 
C              which corresponds to Phi  
C       Q - Maximum number of combinations of actio ns allowed by the  
C           program 
C       Pi - 3.14159... 
C       i - Auxiliary variable 
C 
C       OUTPUT VARIABLES: 
C       Prob - Value of the exceedance cumulative d istribution function  
C              of the standard Normal distribution 
C 
C       ########################################### #####################         
C 
        Integer*4 j,i,M,Q 
        Parameter (M=453) 
        Parameter (Q=16) 
        Real*8 RelInd,Prob(Q),Beta(M),Phi(M),Pi 
        Open(Unit=20, File='distnorm.dad', Status=' Old') 
        Pi=4.*ATAN(1.) 
        Do 10 i=1,M 
          Read(20,*) Beta(i), Phi(i) 
 10     continue 
        Do 32 i=1,M 
          If (Beta(i).GE.ABS(RelInd)) then 
            If (Beta(i).GT.ABS(RelInd)) then 
              If (RelInd.GE.0.) then 
                Prob(j)= 
     1               ((Beta(i)-RelInd)/(Beta(i)-Bet a(i-1)))*Phi(i-1)+ 
     1               ((RelInd-Beta(i-1))/(Beta(i)-B eta(i-1)))*Phi(i)  
                goto 50 
              else 
                Prob(j)= 
     1               1.-(((Beta(i)-ABS(RelInd))/(Be ta(i)-Beta(i-1))) 
     1               *Phi(i-1)+((ABS(RelInd)-Beta(i -1))/ 
     1               (Beta(i)-Beta(i-1)))*Phi(i))  
                goto 50 
              Endif 
            else 
              If (RelInd.GE.0.) then 
                Prob(j)=Phi(i) 
                goto 50 
              else 
                Prob(j)=1.-Phi(i) 
                goto 50         
              Endif 
            Endif 
          Endif 
 32     continue 
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 50     Close (Unit=20) 
        return 
        End 
 
 
 
C       ########################################### #####################         
C 
        Subroutine PNormal(j,i,Ext,Mux,Sigmax,Zeta, Lamda) 
C 
C       ########################################### #####################         
C         
C       Returns the parameters, Zeta & Lamda, of a Normal distribution. 
C 
C       ########################################### #####################         
C 
C       INPUT VARIABLES: 
C       Ext - Abbreviation of the name of the varia ble 
C       Mux - Mean of X 
C       Sigmax - Standard deviation of X 
C       i - Number of the variable 
C       j - Number of the combination of actions 
C 
C       MODELING VARIABLES: 
C       L - Maximum number of variables allowed by the program 
C       Q - Maximum number of combinations of actio ns allowed by the  
C           program 
C 
C       OUTPUT VARIABLES: 
C       Zeta, Lamda - Parameters of the Normal dist ribution 
C 
C       ########################################### #####################         
C         
        Integer*4 j,i,L,Q 
        Parameter (L=15) 
        Parameter (Q=16) 
        Character*3 Ext(L) 
        Real*8 Mux(Q,L),Sigmax(Q,L),Zeta(Q,L),Lamda (Q,L) 
        Zeta(j,i)=Mux(j,i) 
        Lamda(j,i)=Sigmax(j,i) 
        If (Lamda(j,i).GT.0.) then 
          Write(50,2245) Ext(i),Zeta(j,i),Ext(i),La mda(j,i) 
 2245     Format(/ 16X,'Zeta(',A3,') = ',E17.10 / 
     1             16X,'Lamda(',A3,') = ',E17.10) 
        else 
          Write(*,5777) Ext(i) 
          Write(50,5777) Ext(i) 
 5777     Format(// 16X,'ERROR - Normal distributio n'/ 19X, 
     1           'Lamda(',A3,') <= 0 !' /)      
          STOP 
        Endif   
        return 
        End 
         
         
         
C       ########################################### #####################         
C         
        Subroutine PLogNormal(j,i,Ext,Mux,Sigmax,Ze ta,Lamda) 
C 
C       ########################################### #####################         
C         
C       Returns the parameters, Zeta & Lamda, of a Log-Normal  
C       distribution. 
C 
C       ########################################### #####################         
C 
C       INPUT VARIABLES: 
C       Ext - Abbreviation of the name of the varia ble 
C       Mux - Mean of X 
C       Sigmax - Standard deviation of X 
C       i - Number of the variable 
C       j - Number of the combination of actions 
C 
C       MODELING VARIABLES: 
C       L - Maximum number of variables allowed by the program 
C       Q - Maximum number of combinations of actio ns allowed by the  
C           program 
C 
C       OUTPUT VARIABLES: 
C       Zeta, Lamda - Parameters of the Log-Normal distribution 
C 
C       ########################################### #####################         
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C         
        Integer*4 j,i,L,Q 
        Parameter (L=15) 
        Parameter (Q=16) 
        Character*3 Ext(L) 
        Real*8 Mux(Q,L),Sigmax(Q,L),Zeta(Q,L),Lamda (Q,L) 
        Lamda(j,i)=SQRT(LOG(1.+((Sigmax(j,i)**2)/(M ux(j,i)**2)))) 
        Zeta(j,i)=LOG(Mux(j,i))-((Lamda(j,i)**2)/2. ) 
        If (Lamda(j,i).GT.0.) then   
          Write(50,2245) Ext(i),Zeta(j,i),Ext(i),La mda(j,i) 
 2245     Format(/ 16X,'Zeta(',A3,') = ',E17.10 / 
     1             16X,'Lamda(',A3,') = ',E17.10) 
        else 
          Write(*,5202) Ext(i) 
          Write(50,5202) Ext(i) 
 5202     Format(// 16X,'ERROR - Log-Normal distrib ution'/ 19X, 
     1           'Lamda(',A3,') <= 0 !' /)      
          STOP 
        Endif 
        return 
        End 
         
         
 
C       ########################################### #####################         
C         
        Subroutine PGumbel(j,i,Ext,Mux,Sigmax,Zeta, Lamda) 
C 
C       ########################################### #####################         
C         
C       Returns the parameters, Zeta & Lamda, of a Gumbel distribution. 
C 
C       ########################################### #####################         
C 
C       INPUT VARIABLES: 
C       Ext - Abbreviation of the name of the varia ble 
C       Mux - Mean of X 
C       Sigmax - Standard deviation of X 
C       i - Number of the variable 
C       j - Number of the combination of actions 
C 
C       MODELING VARIABLES: 
C       L - Maximum number of variables allowed by the program 
C       Q - Maximum number of combinations of actio ns allowed by the  
C           program 
C       Pi - 3.14159... 
C 
C       OUTPUT VARIABLES: 
C       Zeta, Lamda - Parameters of the Gumbel dist ribution 
C 
C       ########################################### #####################         
C         
        Integer*4 j,i,L,Q 
        Parameter (L=15) 
        Parameter (Q=16) 
        Character*3 Ext(L) 
        Real*8 Pi,Mux(Q,L),Sigmax(Q,L),Zeta(Q,L),La mda(Q,L) 
        Pi=4.*ATAN(1.) 
        Zeta(j,i)=Pi/((SQRT(6.))*Sigmax(j,i)) 
        Lamda(j,i)=Mux(j,i)-0.57722/(Zeta(j,i)) 
        If (Zeta(j,i).GT.0.) then   
          Write(50,6890) Ext(i),Zeta(j,i),Ext(i),La mda(j,i) 
 6890     Format(/ 16X,'Zeta(',A3,') = ',E17.10 / 
     1             16X,'Lamda(',A3,') = ',E17.10) 
        else 
          Write(*,5202) Ext(i) 
          Write(50,5202) Ext(i) 
 5202     Format(// 16X,'ERROR - Gumbel distributio n'/ 19X, 
     1           'Zeta(',A3,') <= 0 !' /)      
          STOP 
        Endif 
        return 
        End 
 
         
         
C       ########################################### #####################         
C         
        Subroutine PRectangular(j,i,Ext,Mux,Sigmax, Zeta,Lamda) 
C 
C       ########################################### #####################         
C         
C       Returns the parameters, Zeta & Lamda, of a Rectangular  
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C       distribution. 
C 
C       ########################################### #####################         
C 
C       INPUT VARIABLES: 
C       Ext - Abbreviation of the name of the varia ble 
C       Mux - Mean of X 
C       Sigmax - Standard deviation of X 
C       i - Number of the variable 
C       j - Number of the combination of actions 
C 
C       MODELING VARIABLES: 
C       L - Maximum number of variables allowed by the program 
C       Q - Maximum number of combinations of actio ns allowed by the  
C           program 
C 
C       OUTPUT VARIABLES: 
C       Zeta, Lamda - Parameters of the Rectangular  distribution 
C 
C       ########################################### #####################         
C         
        Integer*4 j,i,L,Q 
        Parameter (L=15) 
        Parameter (Q=16) 
        Character*3 Ext(L) 
        Real*8 Mux(Q,L),Sigmax(Q,L),Zeta(Q,L),Lamda (Q,L) 
        Zeta(j,i)=Mux(j,i)-SQRT(3.)*Sigmax(j,i) 
        Lamda(j,i)=Mux(j,i)+SQRT(3.)*Sigmax(j,i) 
        If (Zeta(j,i).LT.Lamda(j,i)) then 
          Write(50,6871) Ext(i),Zeta(j,i),Ext(i),La mda(j,i) 
 6871     Format(/ 16X,'Zeta(',A3,') = ',E17.10 / 
     1             16X,'Lamda(',A3,') = ',E17.10) 
        else 
          Write(*,5202) Ext(i),Ext(i) 
          Write(50,5202) Ext(i),Ext(i) 
 5202     Format(// 16X,'ERROR - Rectangular distri bution'/ 19X, 
     1           'Zeta(',A3,') >= Lamda(',A3,') !' /)      
          STOP 
        Endif 
        return 
        End 
 
 
 
C       ########################################### #####################         
C         
        Subroutine PGamma(j,i,Ext,Mux,Sigmax,Zeta,L amda) 
C 
C       ########################################### #####################         
C         
C       Returns the parameters, Zeta & Lamda, of a Gamma distribution. 
C 
C       ########################################### #####################         
C 
C       INPUT VARIABLES: 
C       Ext - Abbreviation of the name of the varia ble 
C       Mux - Mean of X 
C       Sigmax - Standard deviation of X 
C       i - Number of the variable 
C       j - Number of the combination of actions 
C 
C       MODELING VARIABLES: 
C       L - Maximum number of variables allowed by the program 
C       Q - Maximum number of combinations of actio ns allowed by the  
C           program 
C 
C       OUTPUT VARIABLES: 
C       Zeta, Lamda - Parameters of the Gamma distr ibution 
C 
C       ########################################### #####################         
C         
        Integer*4 j,i,L,Q 
        Parameter (L=15) 
        Parameter (Q=16) 
        Character*3 Ext(L) 
        Real*8 Mux(Q,L),Sigmax(Q,L),Zeta(Q,L),Lamda (Q,L) 
        Zeta(j,i)=(Mux(j,i)/Sigmax(j,i))**2 
        Lamda(j,i)=Mux(j,i)/(Sigmax(j,i)**2) 
        If ((Zeta(j,i).GT.0.0).AND.(Lamda(j,i).GT.0 .0)) then 
          Write(50,6820) Ext(i),Zeta(j,i),Ext(i),La mda(j,i) 
 6820     Format(/ 16X,'Zeta(',A3,') = ',E17.10 / 
     1             16X,'Lamda(',A3,') = ',E17.10) 
        else 
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          If (Zeta(j,i).EQ.0.0) then 
            Write(*,5670) Ext(i) 
            Write(50,5670) Ext(i) 
 5670       Format(/ 16X,'ERROR - Gamma distributio n' / 19X, 
     1             'Zeta(',A3,') = 0 !' /) 
          Endif 
          If (Lamda(j,i).LE.0.0) then 
            Write(*,5689) Ext(i) 
            Write(50,5689) Ext(i) 
 5689       Format(// 16X,'ERROR - Gamma distributi on' / 19X, 
     1              'Lamda(',A3,') <= 0 !' /) 
          Endif 
          STOP 
        Endif 
        return 
        End 
 
 
         
C       ########################################### #####################         
C         
        Subroutine PBeta(j,i,Ext,Mux,Sigmax,Zeta,La mda,x1,x2) 
C 
C       ########################################### #####################         
C         
C       Returns the parameters, Zeta & Lamda, of a Beta distribution.  
C 
C       ########################################### #####################         
C 
C       INPUT VARIABLES: 
C       Ext - Abbreviation of the name of the varia ble 
C       x1 - Lower limit on X 
C       x2 - Upper limit on X 
C       Mux - Mean of X 
C       Sigmax - Standard deviation of X 
C       i - Number of the variable 
C       j - Number of the combination of actions 
C 
C       MODELING VARIABLES: 
C       L - Maximum number of variables allowed by the program 
C       Q - Maximum number of combinations of actio ns allowed by the  
C           program 
C 
C       OUTPUT VARIABLES: 
C       Zeta, Lamda - Parameters of the Beta distri bution 
C 
C       ########################################### #####################         
C         
        Integer*4 j,i,L,Q 
        Parameter (L=15) 
        Parameter (Q=16) 
        Character*3 Ext(L) 
        Real*8 Mux(Q,L),Sigmax(Q,L),x1(Q,L),x2(Q,L) ,Zeta(Q,L),Lamda(Q,L) 
        Zeta(j,i)=(x1(j,i)-Mux(j,i))/(x2(j,i)-x1(j, i))+(x2(j,i)- 
     1            Mux(j,i))*((Mux(j,i)-x1(j,i))**2) /((Sigmax(j,i)**2)* 
     1            (x2(j,i)-x1(j,i))) 
        Lamda(j,i)=((x2(j,i)-x1(j,i))*Zeta(j,i)/(Mu x(j,i)-x1(j,i)))- 
     1             Zeta(j,i) 
        If ((Zeta(j,i).GT.0.0).AND.(Lamda(j,i).GT.0 .0)) then 
          Write(50,6861) Ext(i),Zeta(j,i),Ext(i),La mda(j,i) 
 6861     Format(/ 16X,'Zeta(',A3,') = ',E17.10 / 
     1             16X,'Lamda(',A3,') = ',E17.10) 
        else 
          If (Zeta(j,i).LE.0.0) then 
            Write(*,5673) Ext(i) 
            Write(50,5673) Ext(i) 
 5673       Format(/ 16X,'ERROR - Beta distribution '/ 19X, 
     1              'Zeta(',A3,') <= 0 !' /) 
          Endif  
          If (Lamda(j,i).LE.0.0) then 
            Write(*,5682) Ext(i) 
            Write(50,5682) Ext(i) 
 5682       Format(// 16X,'ERROR - Beta distributio n'/ 19X, 
     1              'Lamda(',A3,') <= 0 !' /) 
          Endif 
          STOP 
        Endif 
        return 
        End 
 
         
         
C       ########################################### ##################### 
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C         
        Subroutine PFrechet(j,i,Ext,Mux,Sigmax) 
C 
C       ########################################### #####################         
C         
C       Returns the parameters, Zeta & Lamda, of a Frechet distribution. 
C       Since there is no explicit form for calcula ting Zeta, it uses  
C       subroutine Zbrent to evaluate it. 
C 
C       ########################################### #####################         
C 
C       INPUT VARIABLES: 
C       Ext - Abbreviation of the name of the varia ble 
C       Mux - Mean of X 
C       Sigmax - Standard deviation of X 
C       i - Number of the variable 
C       j - Number of the combination of actions 
C 
C       MODELING VARIABLES: 
C       VarDis - Type of distribution 
C       L - Maximum number of variables allowed by the program 
C       Q - Maximum number of combinations of actio ns allowed by the  
C           program 
C       Zbrent, Gammln - External functions 
C       a1 - Lower limit on Zbrent  
C       a2 - Upper limit on Zbrent  
C       Tol - Accuracy of Zbrent 
C       T, Aux1, Aux2 - Auxiliary variables 
C       Eta, x1, x2 - Variables mentioned in the Co mmon statement but  
C                     not used here 
C 
C       OUTPUT VARIABLES: 
C       Zeta, Lamda - Parameters of the Frechet dis tribution 
C 
C       ########################################### #####################         
C         
        Integer*4 j,i,L,Q 
        Parameter (L=15) 
        Parameter (Q=16) 
        Character*3 Ext(L) 
        Real*8 Mux(Q,L),Sigmax(Q,L),a1,a2,Tol,Zeta( Q,L),Lamda(Q,L), 
     1         Eta(Q,L),x1(Q,L),x2(Q,L),VarDis(Q,L) ,T,Aux1,Aux2,Zbrent, 
     1         Gammln 
        Common/BLOCK8/Zeta,Lamda,Eta,x1,x2 
        External Zbrent 
        External Gammln         
        Aux1=Mux(j,i) 
        Aux2=Sigmax(j,i) 
        a1=2.05 
        a2=99999999.0 
        Tol=0.00000001 
        VarDis(j,i)=7 
        Zeta(j,i)=Zbrent(j,i,Aux1,Aux2,a1,a2,Tol,Va rDis) 
        T=1.-1./Zeta(j,i) 
        Lamda(j,i)=Mux(j,i)/EXP(Gammln(T)) 
        If ((Zeta(j,i).GT.2.0).AND.(Lamda(j,i).GT.0 .0)) then 
          Write(50,8889) Ext(i),Zeta(j,i),Ext(i),La mda(j,i) 
 8889     Format(/ 16X,'Zeta(',A3,') = ',E17.10 / 
     1             16X,'Lamda(',A3,') = ',E17.10) 
        else 
          If (Zeta(j,i).LE.2.0) then 
            Write(*,5699) Ext(i) 
            Write(50,5699) Ext(i) 
 5699       Format(/ 16X,'ERROR - Frechet distribut ion'/ 19X, 
     1             'Zeta(',A3,') <= 2 !' /) 
          Endif  
          If (Lamda(j,i).LE.0.0) then 
            Write(*,9989) Ext(i) 
            Write(50,9989) Ext(i) 
 9989       Format(// 16X,'ERROR - Frechet distribu tion'/ 19X, 
     1             'Lamda(',A3,') <= 0 !') 
          Endif 
          STOP 
        Endif 
        return 
        End 
 
 
         
C       ########################################### #####################         
C         
        Subroutine PExponential(j,i,Ext,Mux,Sigmax, Zeta,Lamda) 
C 
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C       ########################################### #####################         
C         
C       Returns the parameters, Zeta & Lamda, of an  Exponential  
C       distribution. 
C 
C       ########################################### #####################         
C 
C       INPUT VARIABLES: 
C       Ext - Abbreviation of the name of the varia ble 
C       Mux - Mean of X 
C       Sigmax - Standard deviation of X 
C       i - Number of the variable 
C       j - Number of the combination of actions 
C 
C       MODELING VARIABLES: 
C       L - Maximum number of variables allowed by the program 
C       Q - Maximum number of combinations of actio ns allowed by the  
C           program 
C 
C       OUTPUT VARIABLES: 
C       Zeta, Lamda - Parameters of the Exponential  distribution 
C 
C       ########################################### #####################         
C         
        Integer*4 j,i,L,Q 
        Parameter (L=15) 
        Parameter (Q=16) 
        Character*3 Ext(L) 
        Real*8 Mux(Q,L),Sigmax(Q,L),Zeta(Q,L),Lamda (Q,L) 
        Zeta(j,i)=Mux(j,i)-Sigmax(j,i) 
        Lamda(j,i)=Sigmax(j,i) 
        If (Lamda(j,i).GT.0.0) then 
          Write(50,6869) Ext(i),Zeta(j,i),Ext(i),La mda(j,i) 
 6869     Format(/ 16X,'Zeta(',A3,') = ',E17.10 / 
     1             16X,'Lamda(',A3,') = ',E17.10) 
        else 
          Write(*,9979) Ext(i) 
          Write(50,9979) Ext(i) 
 9979     Format(// 16X,'ERROR - Exponential distri bution'/ 19X, 
     1            'Lamda(',A3,') <= 0 !' /) 
          STOP 
        Endif 
        return 
        End 
         
         
         
C       ########################################### #####################         
C         
        Subroutine PRayleigh(j,i,Ext,Mux,Sigmax,Zet a) 
C 
C       ########################################### #####################         
C         
C       Returns the parameter, Zeta, of a Rayleigh distribution. 
C 
C       ########################################### #####################         
C 
C       INPUT VARIABLES: 
C       Ext - Abbreviation of the name of the varia ble 
C       Mux - Mean of X 
C       Sigmax - Standard deviation of X 
C       i - Number of the variable 
C       j - Number of the combination of actions 
C 
C       MODELING VARIABLES: 
C       L - Maximum number of variables allowed by the program 
C       Q - Maximum number of combinations of actio ns allowed by the  
C           program 
C       Pi - 3.14159... 
C 
C       OUTPUT VARIABLES: 
C       Zeta - Parameter of the Rayleigh distributi on 
C 
C       ########################################### #####################         
C         
        Integer*4 j,i,L,Q 
        Parameter (L=15) 
        Parameter (Q=16) 
        Character*3 Ext(L) 
        Real*8 Pi,Mux(Q,L),Sigmax(Q,L),Zeta(Q,L) 
        Pi=4.*ATAN(1.) 
        If (ABS(((Sigmax(j,i)/Mux(j,i))**2)-(4./Pi- 1.)).LE. 
     1      0.0000001) then 



Program Listing 

C7-70 

          Zeta(j,i)=Mux(j,i)*SQRT(2.)/SQRT(Pi) 
          If (Zeta(j,i).GT.0.) then 
            Write(50,6879) Ext(i),Zeta(j,i) 
 6879       Format(/ 16X,'Zeta(',A3,') = ',E17.10) 
          else 
            Write(*,8133) Ext(i) 
            Write(50,8133) Ext(i) 
 8133       Format(// 16X,'ERROR - Rayleigh distrib ution'/ 19X, 
     1             'Zeta(',A3,') <= 0 !'/) 
            STOP 
          Endif 
        else 
          Write(*,8132) Ext(i),Ext(i) 
          Write(50,8132) Ext(i),Ext(i) 
 8132     Format(// 16X,'ERROR - Rayleigh distribut ion'/ 19X, 
     1           '(Mux(',A3,')/Sigmax(',A3, 
     1           ')) not equal to SQRT(4/Pi-1) !'/)  
          STOP 
        Endif 
        return 
        End 
         
         
 
C       ########################################### #####################         
C         
        Subroutine PWeibull(j,i,Ext,Mux,Sigmax) 
C 
C       ########################################### #####################         
C         
C       Returns the parameters, Lamda & Eta, of a W eibull distribution 
C       for a given Zeta parameter. Since there is no explicit form for 
C       calculating Eta, it uses subroutine Zbrent to evaluate it. 
C 
C       ########################################### #####################         
C 
C       INPUT VARIABLES: 
C       Ext - Abbreviation of the name of the varia ble 
C       Mux - Mean of X 
C       Sigmax - Standard deviation of X 
C       Zeta - Parameter of the Weibull distributio n 
C       i - Number of the variable 
C       j - Number of the combination of actions 
C 
C       MODELING VARIABLES: 
C       VarDis - Type of distribution 
C       L - Maximum number of variables allowed by the program 
C       Q - Maximum number of combinations of actio ns allowed by the  
C           program 
C       Zbrent, Gammln - External functions 
C       a1 - Lower limit on Zbrent  
C       a2 - Upper limit on Zbrent  
C       Tol - Accuracy of Zbrent 
C       T, Aux1, Aux2 - Auxiliary variables 
C       x1, x2 - Variables mentioned in the Common statement but not  
C                used here 
C 
C       OUTPUT VARIABLES: 
C       Lamda, Eta - Parameters of the Weibull dist ribution 
C 
C       ########################################### #####################         
C         
        Integer*4 j,i,L,Q 
        Parameter (L=15) 
        Parameter (Q=16) 
        Character*3 Ext(L) 
        Real*8 Mux(Q,L),Sigmax(Q,L),a1,a2,Tol,Zeta( Q,L),Lamda(Q,L), 
     1         Eta(Q,L),x1(Q,L),x2(Q,L),VarDis(Q,L) ,T,Aux1,Aux2,Zbrent, 
     1         Gammln 
        Common/BLOCK8/Zeta,Lamda,Eta,x1,x2 
        External Zbrent 
        External Gammln 
        Aux1=Mux(j,i) 
        Aux2=Sigmax(j,i) 
        a1=0.012 
        a2=9999.0 
        Tol=0.00000001 
        VarDis(j,i)=10 
        Eta(j,i)=Zbrent(j,i,Aux1,Aux2,a1,a2,Tol,Var Dis) 
        T=1.+1./Eta(j,i) 
        Lamda(j,i)=(Mux(j,i)-Zeta(j,i))/EXP(Gammln( T)) 
        If ((Lamda(j,i).GT.0.0).AND.(Eta(j,i).GT.0. 0)) then 
          Write(50,8880) Ext(i),Zeta(j,i),Ext(i),La mda(j,i), 



Program Listing 

C7-71 

     1                   Ext(i),Eta(j,i) 
 8880     Format(/ 16X,'Zeta(',A3,') = ',E17.10  
     1           / 16X,'Lamda(',A3,') = ',E17.10  
     1           / 16X,'Eta(',A3,') = ',E17.10) 
        else 
          If (Lamda(j,i).LE.0.0) then 
            Write(*,5679) Ext(i) 
            Write(50,5679) Ext(i) 
 5679       Format(// 16X,'ERROR - Weibull distribu tion'/ 19X, 
     1             'Lamda(',A3,') <= 0 !') 
          Endif  
          If (Eta(j,i).LE.0.0) then 
            Write(*,9239) Ext(i) 
            Write(50,9239) Ext(i) 
 9239       Format(// 16X,'ERROR - Weibull distribu tion'/ 19X, 
     1             'Eta(',A3,') <= 0 !') 
          Endif 
          STOP 
        Endif 
        return 
        End 
 
 
         
C       ########################################### #####################         
C         
        Subroutine InvGamma(j,i,CDF,StartPt)  
C 
C       ########################################### #####################         
C         
C       Returns StartPt for a specific value CDF of  the cumulative  
C       distribution function of a Gamma distributi on. Since there is no  
C       explicit form for the inverse function of a  Gamma distribution,  
C       it uses subroutine Zbrent to evaluate it. 
C 
C       ########################################### #####################         
C 
C       INPUT VARIABLES: 
C       Lamda - Parameter of the Gamma distribution  
C       CDF - Value of the cumulative distribution function of a Gamma  
C             distribution 
C       i - Number of the variable 
C       j - Number of the combination of actions 
C 
C       MODELING VARIABLES: 
C       VarDis - Type of distribution 
C       L - Maximum number of variables allowed by the program 
C       Q - Maximum number of combinations of actio ns allowed by the  
C           program 
C       Zbrent - External function 
C       a1 - Lower limit on Zbrent  
C       a2 - Upper limit on Zbrent  
C       Tol - Accuracy of Zbrent 
C       Aux1, Aux2 - Auxiliary variables 
C       Zeta, Eta, x1, x2 - Variables mentioned in the Common statement  
C                           but not used here 
C 
C       OUTPUT VARIABLE: 
C       StartPt - Value of the inverse function of a Gamma distribution 
C 
C       ########################################### #####################         
C         
        Integer*4 j,i,L,Q 
        Parameter (L=15) 
        Parameter (Q=16) 
        Real*8 a1,a2,Tol,Zeta(Q,L),Lamda(Q,L),Eta(Q ,L),x1(Q,L),x2(Q,L), 
     1         CDF,StartPt(Q,L),VarDis(Q,L),Aux1,Au x2,Zbrent 
        Common/BLOCK8/Zeta,Lamda,Eta,x1,x2 
        External Zbrent 
        Aux1=CDF 
        Aux2=0. 
        a1=0.0 
        a2=1E25 
        Tol=0.00000001 
        VarDis(j,i)=5 
        StartPt(j,i)=(Zbrent(j,i,Aux1,Aux2,a1,a2,To l,VarDis))/Lamda(j,i) 
        return 
        End 
 
 
 
C       ########################################### #####################         
C         
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        Subroutine InvBeta(j,i,CDF,StartPt) 
C 
C       ########################################### #####################         
C         
C       Returns StartPt for a specific value CDF of  the cumulative  
C       distribution function of a Beta distributio n. Since there is no 
C       explicit form for the inverse function of a  Beta distribution,  
C       it uses subroutine Zbrent to evaluate it. 
C 
C       ########################################### #####################         
C 
C       INPUT VARIABLES: 
C       x1 - Lower limit on X 
C       x2 - Upper limit on X 
C       CDF - Value of the cumulative distribution function of a Beta 
C             distribution 
C       i - Number of the variable 
C       j - Number of the combination of actions 
C 
C       MODELING VARIABLES: 
C       VarDis - Type of distribution 
C       Zbrent - External function 
C       a1 - Lower limit on Zbrent  
C       a2 - Upper limit on Zbrent  
C       Tol - Accuracy of Zbrent 
C       L - Maximum number of variables allowed by the program 
C       Q - Maximum number of combinations of actio ns allowed by the  
C           program 
C       Aux1, Aux2 - Auxiliary variables 
C       Zeta, Lamda, Eta - Variables mentioned in t he Common statement  
C                          but not used here 
C 
C       OUTPUT VARIABLE: 
C       StartPt - Value of the inverse function of a Beta distribution 
C 
C       ########################################### #####################         
C         
        Integer*4 j,i,L,Q 
        Parameter (L=15) 
        Parameter (Q=16) 
        Real*8 a1,a2,Tol,Zeta(Q,L),Lamda(Q,L),Eta(Q ,L),x1(Q,L),x2(Q,L), 
     1         StartPt(Q,L),VarDis(Q,L),CDF,Zbrent, Aux1,Aux2 
        Common/BLOCK8/Zeta,Lamda,Eta,x1,x2 
        External Zbrent 
        Aux1=CDF 
        Aux2=0. 
        a1=0 
        a2=1 
        Tol=0.00000001 
        VarDis(j,i)=6 
        StartPt(j,i)=x1(j,i)+(x2(j,i)-x1(j,i))* 
     1               Zbrent(j,i,Aux1,Aux2,a1,a2,Tol ,VarDis) 
        return 
        End 
         
 
 
C       ########################################### #####################         
C         
        Subroutine InvUser1(j,i,CDF1,StartPt) 
C 
C       ########################################### #####################         
C         
C       Returns the value of the water level, Start Pt, for a specific  
C       value, CDF1, of the user-defined distributi on of water levels.   
C       It uses the data file wldata.dad which cont ains the tabulated  
C       values.  
C 
C       ########################################### #####################         
C         
C       INPUT VARIABLE: 
C       i - Number of the variable 
C       j - Number of the combination of actions 
C       CDF1 - Value of the cumulative distribution  function of the  
C              user-defined distribution of water l evels 
C 
C       MODELING VARIABLES: 
C       M - Number of points of the user-defined di stribution tabulated 
C           in file wldata.dad 
C       WL - Value tabulated in file wldata.dad of the water level of  
C            the user-defined distribution 
C       PDF - Value tabulated in file wldata.dad of  the probability  
C             density function of the user-defined distribution  
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C       CDF - Value tabulated in file wldata.dad of  the cumulative  
C             distribution function of the user-def ined distribution  
C       L - Maximum number of variables allowed by the program 
C       Q - Maximum number of combinations of actio ns allowed by the  
C           program 
C       k - Auxiliary variable 
C 
C       OUTPUT VARIABLE: 
C       StartPt - Value of the inverse function of the user-defined  
C                 distribution of water levels whic h corresponds to CDF1  
C 
C       ########################################### #####################         
C         
        Integer*4 i,j,k,M,Q,L 
        Parameter (M=126) 
        Parameter (Q=16) 
        Parameter (L=15) 
        Real*8 WL(M),PDF(M),CDF(M),CDF1,StartPt(Q,L ) 
        Open(Unit=70, File='wldata.dad', Status='Ol d') 
        Do 10 k=1,M 
          Read(70,*) WL(k),PDF(k),CDF(k) 
 10     continue 
        Do 32 k=1,M 
          If (CDF(k).LE.CDF1) then 
            If (CDF(k).LT.CDF1) then 
              StartPt(j,i)=((CDF1-CDF(k))*((WL(k+1) )-WL(k)))/ 
     1             ((CDF(k+1))-CDF(k))+WL(k) 
              goto 1150 
            else   
              StartPt(j,i)=WL(k) 
              goto 1150 
            Endif 
          Endif 
 32     continue 
 1150   Close (Unit=70) 
        return 
        End 
 
 
 
C       ########################################### #####################         
C         
        Subroutine InvUser2(j,i,CDF1,StartPt) 
C 
C       ########################################### #####################         
C         
C       Returns the value of the extreme water leve l, StartPt, for a  
C       specific value, CDF1, of the user-defined d istribution of  
C       extreme water levels. It uses the data file  extwldat.dad which  
C       contains the tabulated values.  
C 
C       ########################################### #####################         
C         
C       INPUT VARIABLE: 
C       i - Number of the variable 
C       j - Number of the combination of actions 
C       CDF1 - Value of the cumulative distribution  function of the  
C              user-defined distribution of extreme  water levels 
C 
C       MODELING VARIABLES: 
C       M - Number of points of the user-defined di stribution tabulated 
C           in file extwldat.dad 
C       ExtWL - Value tabulated in file extwldat.da d of the extreme  
C               water level of the user-defined dis tribution 
C       PDF - Value tabulated in file extwldat.dad of the probability  
C             density function of the user-defined distribution  
C       CDF - Value tabulated in file extwldat.dad of the cumulative  
C             distribution function of the user-def ined distribution  
C       L - Maximum number of variables allowed by the program 
C       Q - Maximum number of combinations of actio ns allowed by the  
C           program 
C       k - Auxiliary variable 
C 
C       OUTPUT VARIABLE: 
C       StartPt - Value of the inverse function of the user-defined  
C                 distribution of extreme water lev els which corresponds  
C                 to CDF1  
C 
C       ########################################### #####################         
C         
        Integer*4 i,j,k,M,Q,L 
        Parameter (M=17) 
        Parameter (Q=16) 
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        Parameter (L=15) 
        Real*8 ExtWL(M),PDF(M),CDF(M),CDF1,StartPt( Q,L) 
        Open(Unit=75, File='extwldat.dad', Status=' Old') 
        Do 10 k=1,M 
          Read(75,*) ExtWL(k),PDF(k),CDF(k) 
 10     continue 
        Do 32 k=1,M 
          If (CDF(k).LE.CDF1) then 
            If (CDF(k).LT.CDF1) then 
              StartPt(j,i)=((CDF1-CDF(k))*((ExtWL(k +1))-ExtWL(k)))/ 
     1             ((CDF(k+1))-CDF(k))+ExtWL(k) 
              goto 1150 
            else   
              StartPt(j,i)=ExtWL(k) 
              goto 1150 
            Endif 
          Endif 
 32     continue 
 1150   Close (Unit=75) 
        return 
        End 
 
 
 
C       ########################################### #####################         
C         
        Subroutine InvUser3(j,i,CDF1,StartPt) 
C 
C       ########################################### #####################         
C         
C       Returns the value of the tide level, StartP t, for a specific  
C       value, CDF1, of the user-defined distributi on of tide levels.   
C       It uses the data file tide.dad which contai ns the tabulated  
C       values.  
C 
C       ########################################### #####################         
C         
C       INPUT VARIABLE: 
C       i - Number of the variable 
C       j - Number of the combination of actions 
C       CDF1 - Value of the cumulative distribution  function of the  
C              user-defined distribution of tide le vels 
C 
C       MODELING VARIABLES: 
C       M - Number of points of the user-defined di stribution tabulated 
C           in file tide.dad 
C       Tide - Value tabulated in file tide.dad of the tide level of  
C              the user-defined distribution 
C       PDF - Value tabulated in file tide.dad of t he probability  
C             density function of the user-defined distribution  
C       CDF - Value tabulated in file tide.dad of t he cumulative  
C             distribution function of the user-def ined distribution  
C       L - Maximum number of variables allowed by the program 
C       Q - Maximum number of combinations of actio ns allowed by the  
C           program 
C       k - Auxiliary variable 
C 
C       OUTPUT VARIABLE: 
C       StartPt - Value of the inverse function of the user-defined  
C                 distribution of tide levels which  corresponds to CDF1  
C 
C       ########################################### #####################         
C         
        Integer*4 i,j,k,M,Q,L 
        Parameter (M=122) 
        Parameter (Q=16) 
        Parameter (L=15) 
        Real*8 Tide(M),PDF(M),CDF(M),CDF1,StartPt(Q ,L) 
        Open(Unit=80, File='tide.dad', Status='Old' ) 
        Do 10 k=1,M 
          Read(80,*) Tide(k),PDF(k),CDF(k) 
 10     continue 
        Do 32 k=1,M 
          If (CDF(k).LE.CDF1) then 
            If (CDF(k).LT.CDF1) then 
              StartPt(j,i)=((CDF1-CDF(k))*((Tide(k+ 1))-Tide(k)))/ 
     1             ((CDF(k+1))-CDF(k))+Tide(k) 
              goto 1150 
            else   
              StartPt(j,i)=Tide(k) 
              goto 1150 
            Endif 
          Endif 
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 32     continue 
 1150   Close (Unit=80) 
        return 
        End 
 
 
 
C       ########################################### ##################### 
C         
        Subroutine NorWrite(i,Ext,MuxN,SigmaxN) 
C 
C       ########################################### #####################         
C         
C       Writes the mean, MuxN, & the standard devia tion, SigmaxN, of the  
C       equivalent Normal distribution of X in the file results.dat . 
C 
C       ########################################### #####################         
C 
C       INPUT VARIABLES: 
C       Ext - Abbreviation of the name of the varia ble 
C       MuxN - Mean of the equivalent Normal distri bution of X 
C       SigmaxN - Standard deviation of the equival ent Normal  
C                 distribution of X 
C       i - Number of the variable 
C 
C       MODELING VARIABLE: 
C       L - Maximum number of variables allowed by the program 
C 
C       ########################################### #####################         
C         
        Integer*4 i,L 
        Parameter (L=15) 
        Character*3 Ext(L) 
        Real*8 MuxN(L),SigmaxN(L) 
         
        Write(50,8709) Ext(i),MuxN(i),Ext(i),Sigmax N(i) 
 8709   Format(/ 16X,'Mean Value N(',A3,') = ',E17. 10 /  
     1           16X,'Standard Deviation N(',A3,') = ',E17.10) 
        return 
        End 
         
 
         
C       ########################################### #####################         
C         
        Subroutine NormalD(i,j,Ext,X,Zeta,Lamda,Mux N,SigmaxN,Trunc, 
     1                     Xo,NR) 
C 
C       ########################################### #####################         
C         
C       Calculates the value of the probability den sity function, PDFx,  
C       at X & the value of the cumulative distribu tion function, CDFx,  
C       at X of a Normal distribution (CDFx is calc ulated using  
C       subroutine NormalDist). If the Normal distr ibution is truncated  
C       at X=Xo, it also calculates the value of th e cumulative  
C       distribution function at X=X0, CDFx0. These  values are used to  
C       return the mean, MuxN, & the standard devia tion, SigmaxN, of the  
C       equivalent Normal distribution through subr outine Truncation. 
C 
C       ########################################### #####################         
C 
C       INPUT VARIABLES: 
C       X - Variable 
C       Ext - Abbreviation of the name of the varia ble 
C       Trunc - Type of truncation 
C       Xo - Point of truncation (if the distributi on is truncated) 
C       NR - Power to which each distribution is ra ised for each  
C            combination of actions 
C       Zeta, Lamda - Parameters of the Normal dist ribution 
C       i - Number of the variable 
C       j - Number of the combination of actions 
C 
C       MODELING VARIABLES: 
C       PDFx - Value of the probability density fun ction of a Normal  
C              distribution at X 
C       CDFx - Value of the cumulative distribution  function of a  
C              Normal distribution at X 
C       CDFx0 - Value of the cumulative distributio n function of a  
C               Normal distribution at X=X0 
C       SNX - Standard Normal variable  
C       Prob - Value of the exceedance cumulative d istribution function  
C              of the standard Normal distribution which corresponds to  
C              SNX 
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C       L - Maximum number of variables allowed by the program 
C       Q - Maximum number of combinations of actio ns allowed by the  
C           program 
C       Pi - 3.14159... 
C 
C       OUTPUT VARIABLES: 
C       MuxN - Mean of the equivalent Normal distri bution of X 
C       SigmaxN - Standard deviation of the equival ent Normal  
C                 distribution of X 
C 
C       ########################################### #####################         
C         
        Integer*4 i,j,L,Q 
        Parameter (L=15) 
        Parameter (Q=16) 
        Character*3 Ext(L) 
        Integer*4 Trunc(Q,L) 
        Real*8 X(L),MuxN(L),SigmaxN(L),Zeta(Q,L),La mda(Q,L),CDFx(L), 
     1         CDFx0(L),PDFx(L),Xo(Q,L),Pi,Prob(Q), SNX,NR(Q,L) 
         
        Pi=4.*ATAN(1.) 
        SNX=(X(i)-Zeta(j,i))/Lamda(j,i) 
        Call NormalDist(j,SNX,Prob) 
        CDFx(i)=1.-Prob(j) 
        PDFx(i)=(EXP(-(((X(i)-Zeta(j,i))**2))/ 
     1          (2.*(Lamda(j,i)**2))))/ 
     1          (Lamda(j,i)*SQRT(2.*Pi)) 
C        Write(50,9824) SNX,Prob(j),CDFx(i),PDFx(i)  
C 9824   Format(16X,'Normd X=',E17.10,3X,'Prob=',E1 7.10 / 
C     1         16X,'CDFX=',E17.10,3X,'PDFX=',E17.1 0 /) 
        If (Trunc(j,i).NE.0) then 
          SNX=(Xo(j,i)-Zeta(j,i))/Lamda(j,i) 
          Call NormalDist(j,SNX,Prob) 
          CDFx0(i)=1.-Prob(j) 
C          Write(50,9724) SNX,Prob(j),CDFx0(i) 
C 9724     Format(16X,'Normd X=',E17.10,3X,'Prob=', E17.10 / 
C     1           16X,'CDFX0=',E17.10 /) 
        Endif 
        Call Truncation(i,j,Ext,X,MuxN,SigmaxN,Trun c,Xo,CDFx,CDFx0, 
     1                  PDFx,NR) 
        If ((Trunc(j,i).EQ.0).AND.(NR(j,i).EQ.1)) t hen 
          MuxN(i)=Zeta(j,i) 
          SigmaxN(i)=Lamda(j,i) 
          Call NorWrite(i,Ext,MuxN,SigmaxN) 
        Endif 
        return 
        End 
         
         
         
C       ########################################### #####################         
C         
        Subroutine LogNormal(i,j,Ext,X,Zeta,Lamda,M uxN, 
     1                       SigmaxN,Trunc,Xo,NR) 
C 
C       ########################################### #####################         
C         
C       Calculates the value of the probability den sity function, PDFx,  
C       at X & the value of the cumulative distribu tion function, CDFx,  
C       at X of a Log-Normal distribution (CDFx is calculated using  
C       subroutine NormalDist). If the Log-Normal d istribution is  
C       truncated at X=Xo, it also calculates the v alue of the  
C       cumulative distribution function at X=X0, C DFx0. It uses these  
C       values to return the mean, MuxN, & the stan dard deviation,  
C       SigmaxN, of the equivalent Normal distribut ion through  
C       subroutine Truncation. 
C 
C       ########################################### #####################         
C 
C       INPUT VARIABLES: 
C       X - Variable 
C       Ext - Abbreviation of the name of the varia ble 
C       Trunc - Type of truncation 
C       Xo - Point of truncation (if the distributi on is truncated) 
C       NR - Power to which each distribution is ra ised for each  
C            combination of actions 
C       Zeta, Lamda - Parameters of the Log-Normal distribution 
C       i - Number of the variable 
C       j - Number of the combination of actions 
C 
C       MODELING VARIABLES: 
C       PDFx - Value of the probability density fun ction of a Log-Normal  
C              distribution at X 
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C       CDFx - Value of the cumulative distribution  function of a  
C              Log-Normal distribution at X 
C       CDFx0 - Value of the cumulative distributio n function of a  
C               Log-Normal distribution at X=X0 
C       SNX - Standard Normal Variable  
C       Prob - Value of the exceedance cumulative d istribution function   
C              of the standard Normal distribution which corresponds to  
C              SNX 
C       L - Maximum number of variables allowed by the program 
C       Q - Maximum number of combinations of actio ns allowed by the  
C           program 
C       Pi - 3.14159... 
C 
C       OUTPUT VARIABLES: 
C       MuxN - Mean of the equivalent Normal distri bution of X 
C       SigmaxN - Standard deviation of the equival ent Normal  
C                 distribution of X 
C 
C       ########################################### #####################         
C         
        Integer*4 i,j,L,Q 
        Parameter (L=15) 
        Parameter (Q=16) 
        Character*3 Ext(L) 
        Integer*4 Trunc(Q,L) 
        Real*8 X(L),MuxN(L),SigmaxN(L),Zeta(Q,L),La mda(Q,L),CDFx(L), 
     1         CDFx0(L),PDFx(L),Prob(Q),Pi,SNX,Xo(Q ,L),NR(Q,L) 
        Pi=4.*ATAN(1.) 
        If (X(i).GT.0.) then 
          SNX=(LOG(X(i))-Zeta(j,i))/(Lamda(j,i)) 
          Call NormalDist(j,SNX,Prob)            
          CDFx(i)=1.-Prob(j) 
          PDFx(i)=(1./(X(i)*Lamda(j,i)))*(EXP(-(SNX **2)/2.))/SQRT(2.*Pi) 
          If (Trunc(j,i).NE.0) then 
            SNX=(LOG(Xo(j,i))-Zeta(j,i))/(Lamda(j,i )) 
            Call NormalDist(j,SNX,Prob)            
            CDFx0(i)=1.-Prob(j) 
          Endif 
          Call Truncation(i,j,Ext,X,MuxN,SigmaxN,Tr unc,Xo,CDFx, 
     1                    CDFx0,PDFx,NR) 
          If ((Trunc(j,i).EQ.0).AND.(NR(j,i).EQ.1))  then 
            MuxN(i)=X(i)*(1.-LOG(X(i))+Zeta(j,i)) 
            SigmaxN(i)=X(i)*Lamda(j,i) 
            Call NorWrite(i,Ext,MuxN,SigmaxN) 
          Endif 
        else 
          Write(*,5209) Ext(i) 
          Write(50,5209) Ext(i) 
 5209     Format(// 16X,'ERROR - Log-Normal distrib ution'/ 19X, 
     1           A3,' <= 0 !' /)      
          STOP 
        Endif 
        return 
        End 
 
         
         
C       ########################################### #####################         
C         
        Subroutine Gumbel(i,j,Ext,X,Zeta,Lamda,MuxN ,SigmaxN,Trunc,Xo,NR) 
C 
C       ########################################### #####################         
C         
C       Calculates the value of the probability den sity function, PDFx,  
C       at X & the value of the cumulative distribu tion function, CDFx,  
C       at X of a Gumbel distribution. If the Gumbe l distribution is  
C       truncated at X=Xo, it also calculates the v alue of the  
C       cumulative distribution function at X=X0, C DFx0. It uses these  
C       values to return the mean, MuxN, & the stan dard deviation,  
C       SigmaxN, of the equivalent Normal distribut ion through  
C       subroutine Truncation. 
C 
C       ########################################### #####################         
C 
C       INPUT VARIABLES: 
C       X - Variable 
C       Ext - Abbreviation of the name of the varia ble 
C       Trunc - Type of truncation 
C       Xo - Point of truncation (if the distributi on is truncated) 
C       NR - Power to which each distribution is ra ised for each  
C            combination of actions 
C       Zeta, Lamda - Parameters of the Gumbel dist ribution 
C       i - Number of the variable 
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C       j - Number of the combination of actions 
C 
C       MODELING VARIABLES: 
C       PDFx - Value of the probability density fun ction of a Gumbel  
C              distribution at X 
C       CDFx - Value of the cumulative distribution  function of a Gumbel  
C              distribution at X 
C       CDFx0 - Value of the cumulative distributio n function of a  
C               Gumbel distribution at X=X0 
C       L - Maximum number of variables allowed by the program 
C       Q - Maximum number of combinations of actio ns allowed by the  
C           program 
C 
C       OUTPUT VARIABLES: 
C       MuxN - Mean of the equivalent Normal distri bution of X 
C       SigmaxN - Standard deviation of the equival ent Normal  
C                 distribution of X 
C 
C       ########################################### #####################         
C         
        Integer*4 i,j,L,Q 
        Parameter (L=15) 
        Parameter (Q=16) 
        Character*3 Ext(L) 
        Integer*4 Trunc(Q,L) 
        Real*8 X(L),MuxN(L),SigmaxN(L),Zeta(Q,L),La mda(Q,L), 
     1         CDFx(L),CDFx0(L),PDFx(L),Xo(Q,L),NR( Q,L) 
        CDFx(i)=EXP(-EXP(-Zeta(j,i)*(X(i)-Lamda(j,i )))) 
        PDFx(i)=Zeta(j,i)*EXP(-Zeta(j,i)*(X(i)-Lamd a(j,i)))*CDFx(i)  
        If (Trunc(j,i).NE.0) CDFx0(i)=EXP(-EXP(-Zet a(j,i)* 
     1                                (Xo(j,i)-Lamd a(j,i)))) 
        Call Truncation(i,j,Ext,X,MuxN,SigmaxN,Trun c,Xo,CDFx,CDFx0, 
     1                  PDFx,NR) 
        return 
        End 
 
 
 
C       ########################################### #####################         
C         
        Subroutine Rectangular(i,j,Ext,X,Zeta,Lamda ,MuxN,SigmaxN,Trunc, 
     1                         Xo,NR) 
C 
C       ########################################### #####################         
C         
C       Calculates the value of the probability den sity function, PDFx,  
C       at X & the value of the cumulative distribu tion function, CDFx,  
C       at X of a Rectangular distribution. If the Rectangular  
C       distribution is truncated at X=Xo, it also calculates the value  
C       of the cumulative distribution function at X=X0, CDFx0. It uses  
C       these values to return the mean, MuxN, & th e standard deviation,  
C       SigmaxN, of the equivalent Normal distribut ion through  
C       subroutine Truncation. 
C 
C       ########################################### #####################         
C 
C       INPUT VARIABLES: 
C       X - Variable 
C       Ext - Abbreviation of the name of the varia ble 
C       Trunc - Type of truncation 
C       Xo - Point of truncation (if the distributi on is truncated) 
C       NR - Power to which each distribution is ra ised for each  
C            combination of actions 
C       Zeta, Lamda - Parameters of the Rectangular  distribution 
C       i - Number of the variable 
C       j - Number of the combination of actions 
C 
C       MODELING VARIABLES: 
C       PDFx - Value of the probability density fun ction of a  
C              Rectangular distribution at X 
C       CDFx - Value of the cumulative distribution  function of a  
C              Rectangular distribution at X 
C       CDFx0 - Value of the cumulative distributio n function of a  
C               Rectangular distribution at X=X0 
C       L - Maximum number of variables allowed by the program 
C       Q - Maximum number of combinations of actio ns allowed by the  
C           program 
C 
C       OUTPUT VARIABLES: 
C       MuxN - Mean of the equivalent Normal distri bution of X 
C       SigmaxN - Standard deviation of the equival ent Normal  
C                 distribution of X 
C 
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C       ########################################### #####################         
C         
        Integer*4 i,j,L,Q 
        Parameter (L=15) 
        Parameter (Q=16) 
        Character*3 Ext(L) 
        Integer*4 Trunc(Q,L) 
        Real*8 X(L),MuxN(L),SigmaxN(L),Zeta(Q,L),La mda(Q,L), 
     1         CDFx(L),CDFx0(L),PDFx(L),Xo(Q,L),NR( Q,L) 
        If ((X(i).LE.Lamda(j,i)).AND.(X(i).GE.Zeta( j,i)).AND. 
     1      (Zeta(j,i).LT.Lamda(j,i))) then  
          CDFx(i)=(X(i)-Zeta(j,i))/(Lamda(j,i)-Zeta (j,i)) 
          PDFx(i)=1./(Lamda(j,i)-Zeta(j,i)) 
          If (Trunc(j,i).NE.0) CDFx0(i)=(Xo(j,i)-Ze ta(j,i))/ 
     1                                  (Lamda(j,i) -Zeta(j,i)) 
          Call Truncation(i,j,Ext,X,MuxN,SigmaxN,Tr unc,Xo,CDFx,CDFx0, 
     1                    PDFx,NR) 
        else 
          Write(*,5679) Ext(i),Zeta(j,i),Lamda(j,i)  
          Write(50,5679) Ext(i),Zeta(j,i),Lamda(j,i ) 
 5679     Format(// 16X,'ERROR - Rectangular distri bution'/ 19X, 
     1           A3,' is not in the required range [',E17.10,',', 
     1           E17.10,'] !' /)      
          STOP 
        Endif   
        return 
        End 
         
           
 
C       ########################################### #####################         
C         
        Subroutine Gamma(i,j,Ext,X,Zeta,Lamda,MuxN, SigmaxN,Trunc,Xo,NR) 
C 
C       ########################################### #####################         
C         
C       Calculates the value of the probability den sity function, PDFx,  
C       at X & the value of the cumulative distribu tion function, CDFx,  
C       at X of a Gamma distribution (it uses the f unctions Gammln &  
C       Gammp to calculate, respectively, the Gamma  function & the  
C       incomplete Gamma function). If the Gamma di stribution is  
C       truncated at X=Xo, it also calculates the v alue of the  
C       cumulative distribution function at X=X0, C DFx0. It uses these  
C       values to return the mean, MuxN, & the stan dard deviation,  
C       SigmaxN, of the equivalent Normal distribut ion through  
C       subroutine Truncation. 
C 
C       ########################################### #####################         
C 
C       INPUT VARIABLES: 
C       X - Variable 
C       Ext - Abbreviation of the name of the varia ble 
C       Trunc - Type of truncation 
C       Xo - Point of truncation (if the distributi on is truncated) 
C       NR - Power to which each distribution is ra ised for each  
C            combination of actions 
C       Zeta, Lamda - Parameters of the Gamma distr ibution 
C       i - Number of the variable 
C       j - Number of the combination of actions 
C 
C       MODELING VARIABLES: 
C       PDFx - Value of the probability density fun ction of a Gamma  
C              distribution at X 
C       CDFx - Value of the cumulative distribution  function of a Gamma  
C              distribution at X 
C       CDFx0 - Value of the cumulative distributio n function of a Gamma  
C               distribution at X=X0 
C       L - Maximum number of variables allowed by the program 
C       Q - Maximum number of combinations of actio ns allowed by the  
C           program 
C       Gam - Gamma function 
C       Gammln, Gammp - External functions 
C       XX, T, T1 - Auxiliary variables 
C 
C       OUTPUT VARIABLES: 
C       MuxN - Mean of the equivalent Normal distri bution of X 
C       SigmaxN - Standard deviation of the equival ent Normal  
C                 distribution of X 
C 
C       ########################################### #####################         
C         
        Integer*4 i,j,L,Q 
        Parameter (L=15) 
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        Parameter (Q=16) 
        Character*3 Ext(L) 
        Integer*4 Trunc(Q,L) 
        Real*8 Zeta(Q,L),X(L),Lamda(Q,L),T,T1,Gam,M uxN(L),SigmaxN(L), 
     1         CDFx(L),CDFx0(L),PDFx(L),Xo(Q,L),Gam mln,Gammp,NR(Q,L),XX 
        External Gammln         
        External Gammp         
        If (X(i).GE.0.0) then  
          XX=Zeta(j,i) 
          Gam=EXP(Gammln(XX)) 
          T=Lamda(j,i)*X(i) 
          Write(50,9230) Zeta(j,i),Gam 
 9230     Format(16X,'Gamma(',E17.10,') = ',E17.10)  
          PDFx(i)=(Lamda(j,i)*(T**(Zeta(j,i)-1.))*( EXP(-T)))/Gam 
          CDFx(i)=Gammp(XX,T) 
          If (Trunc(j,i).NE.0) then 
            T1=Lamda(j,i)*Xo(j,i) 
            CDFx0(i)=Gammp(XX,T1) 
          Endif 
          Call Truncation(i,j,Ext,X,MuxN,SigmaxN,Tr unc,Xo,CDFx,CDFx0, 
     1                    PDFx,NR) 
        else 
          Write(*,5679) Ext(i) 
          Write(50,5679) Ext(i) 
 5679     Format(// 16X,'ERROR - Gamma distribution '/ 19X,A3,' < 0 !' /) 
          STOP 
        Endif   
        return 
        End 
 
         
         
C       ########################################### #####################         
C         
        Subroutine BetaDis(i,j,Ext,X,Zeta,Lamda,x1, x2,MuxN,SigmaxN, 
     1                     Trunc,Xo,NR) 
C 
C       ########################################### #####################         
C         
C       Calculates the value of the probability den sity function, PDFx,  
C       at X & the value of the cumulative distribu tion function, CDFx,  
C       at X of a Beta distribution (it uses the fu nctions Beta & Betai  
C       to calculate, respectively, the Beta functi on & the incomplete  
C       Beta function). If the Beta distribution is  truncated at X=Xo,  
C       it also calculates the value of the cumulat ive distribution  
C       function at X=X0, CDFx0. It uses these valu es to return the  
C       mean, MuxN, & the standard deviation, Sigma xN, of the equivalent  
C       Normal distribution through subroutine Trun cation. 
C 
C       ########################################### #####################         
C 
C       INPUT VARIABLES: 
C       X - Variable 
C       Ext - Abbreviation of the name of the varia ble 
C       Trunc - Type of truncation 
C       Xo - Point of truncation (if the distributi on is truncated) 
C       NR - Power to which each distribution is ra ised for each  
C            combination of actions 
C       Zeta, Lamda - Parameters of the Beta distri bution 
C       i - Number of the variable 
C       j - Number of the combination of actions 
C       x1 - Lower limit on X 
C       x2 - Upper limit on X 
C 
C       MODELING VARIABLES: 
C       PDFx - Value of the probability density fun ction of a Beta  
C              distribution at X 
C       CDFx - Value of the cumulative distribution  function of a Beta  
C              distribution at X 
C       CDFx0 - Value of the cumulative distributio n function of a Beta  
C               distribution at X=X0 
C       L - Maximum number of variables allowed by the program 
C       Q - Maximum number of combinations of actio ns allowed by the  
C           program 
C       Beta, Betai - External functions 
C       XX, YY, T, BetaAux - Auxiliary variables 
C 
C       OUTPUT VARIABLES: 
C       MuxN - Mean of the equivalent Normal distri bution of X 
C       SigmaxN - Standard deviation of the equival ent Normal  
C                 distribution of X 
C 
C       ########################################### #####################         
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C         
        Integer*4 i,j,L,Q 
        Parameter (L=15) 
        Parameter (Q=16) 
        Character*3 Ext(L) 
        Integer*4 Trunc(Q,L) 
        Real*8 Zeta(Q,L),X(L),Lamda(Q,L),x1(Q,L),x2 (Q,L),BetaAux(Q,L),T, 
     1         MuxN(L),SigmaxN(L),CDFx(L),CDFx0(L), PDFx(L),Xo(Q,L), 
     1         Betai,Beta,NR(Q,L),XX,YY 
        External Beta 
        External Betai        
        If ((X(i).LE.x2(j,i)).AND.(X(i).GE.x1(j,i)) .AND. 
     1      (x1(j,i).LT.x2(j,i))) then  
          XX=Zeta(j,i) 
          YY=Lamda(j,i) 
          BetaAux(j,i)=Beta(XX,YY) 
          PDFx(i)=((X(i)-x1(j,i))**(Zeta(j,i)-1.))* ((x2(j,i)-X(i))** 
     1            (Lamda(j,i)-1.))/(BetaAux(j,i)*(( x2(j,i)-x1(j,i))** 
     1            (Zeta(j,i)+Lamda(j,i)-1.))) 
          T=(X(i)-x1(j,i))/(x2(j,i)-x1(j,i)) 
          CDFx(i)=Betai(XX,YY,T) 
          If (Trunc(j,i).NE.0) then 
            T=(Xo(j,i)-x1(j,i))/(x2(j,i)-x1(j,i)) 
            CDFx0(i)=Betai(XX,YY,T) 
          Endif 
          Call Truncation(i,j,Ext,X,MuxN,SigmaxN,Tr unc,Xo,CDFx,CDFx0, 
     1                    PDFx,NR) 
        else 
          Write(*,5579) Ext(i),x1(j,i),x2(j,i) 
          Write(50,5579) Ext(i),x1(j,i),x2(j,i) 
 5579     Format(// 16X,'ERROR - Beta distribution' / 19X, 
     1           A3,' is not in the specified range  '/ 19X,  
     1           '[',E17.10,',',E17.10,'] !' /)      
          STOP 
        Endif   
        return 
        End 
 
 
 
C       ########################################### #####################         
C         
        Subroutine Frechet(i,j,Ext,X,Zeta,Lamda,Mux N,SigmaxN,Trunc,Xo, 
     1                     NR) 
C 
C       ########################################### #####################         
C         
C       Calculates the value of the probability den sity function, PDFx,  
C       at X & the value of the cumulative distribu tion function, CDFx,  
C       at X of a Frechet distribution. If the Frec het distribution is  
C       truncated at X=Xo, it also calculates the v alue of the  
C       cumulative distribution function at X=X0, C DFx0. It uses these  
C       values to return the mean, MuxN, & the stan dard deviation,  
C       SigmaxN, of the equivalent Normal distribut ion through  
C       subroutine Truncation. 
C 
C       ########################################### #####################         
C 
C       INPUT VARIABLES: 
C       X - Variable 
C       Ext - Abbreviation of the name of the varia ble 
C       Trunc - Type of truncation 
C       Xo - Point of truncation (if the distributi on is truncated) 
C       NR - Power to which each distribution is ra ised for each  
C            combination of actions 
C       Zeta, Lamda - Parameters of the Frechet dis tribution 
C       i - Number of the variable 
C       j - Number of the combination of actions 
C 
C       MODELING VARIABLES: 
C       PDFx - Value of the probability density fun ction of a Frechet  
C              distribution at X 
C       CDFx - Value of the cumulative distribution  function of a  
C              Frechet distribution at X 
C       CDFx0 - Value of the cumulative distributio n function of a  
C               Frechet distribution at X=X0 
C       L - Maximum number of variables allowed by the program 
C       Q - Maximum number of combinations of actio ns allowed by the  
C           program 
C 
C       OUTPUT VARIABLES: 
C       MuxN - Mean of the equivalent Normal distri bution of X 
C       SigmaxN - Standard deviation of the equival ent Normal  
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C                 distribution of X 
C 
C       ########################################### #####################         
C         
        Integer*4 i,j,L,Q 
        Parameter (L=15) 
        Parameter (Q=16) 
        Character*3 Ext(L) 
        Integer*4 Trunc(Q,L) 
        Real*8 Zeta(Q,L),X(L),Lamda(Q,L),MuxN(L),Si gmaxN(L),CDFx(L), 
     1         CDFx0(L),PDFx(L),Xo(Q,L),NR(Q,L) 
        If (X(i).GT.0.0) then  
          CDFx(i)=EXP(-((Lamda(j,i)/X(i))**Zeta(j,i )))          
          PDFx(i)=(Zeta(j,i)/Lamda(j,i))*((Lamda(j, i)/X(i))** 
     1            (Zeta(j,i)+1.))*CDFx(i) 
          If (Trunc(j,i).NE.0) CDFx0(i)=EXP(-((Lamd a(j,i)/ 
     1                                  Xo(j,i))**Z eta(j,i)))          
          Call Truncation(i,j,Ext,X,MuxN,SigmaxN,Tr unc,Xo,CDFx,CDFx0, 
     1                    PDFx,NR) 
        else 
          Write(*,9979) Ext(i) 
          Write(50,9979) Ext(i) 
 9979     Format(// 16X,'ERROR - Frechet distributi on'/ 19X, 
     1            A3,' <= 0 !' /) 
          STOP 
        Endif   
        return 
        End 
 
 
             
C       ########################################### #####################         
C         
        Subroutine Exponential(i,j,Ext,X,Zeta,Lamda ,MuxN,SigmaxN,Trunc, 
     1                         Xo,NR) 
C 
C       ########################################### #####################         
C         
C       Calculates the value of the probability den sity function, PDFx,  
C       at X & the value of the cumulative distribu tion function, CDFx,  
C       at X of an Exponential distribution. If the  Exponential  
C       distribution is truncated at X=Xo, it also calculates the value  
C       of the cumulative distribution function at X=X0, CDFx0. It uses  
C       these values to return the mean, MuxN, & th e standard deviation,  
C       SigmaxN, of the equivalent Normal distribut ion through  
C       subroutine Truncation. 
C 
C       ########################################### #####################         
C 
C       INPUT VARIABLES: 
C       X - Variable 
C       Ext - Abbreviation of the name of the varia ble 
C       Trunc - Type of truncation 
C       Xo - Point of truncation (if the distributi on is truncated) 
C       NR - Power to which each distribution is ra ised for each  
C            combination of actions 
C       Zeta, Lamda - Parameters of the Exponential  distribution 
C       i - Number of the variable 
C       j - Number of the combination of actions 
C 
C       MODELING VARIABLES: 
C       PDFx - Value of the probability density fun ction of an  
C              Exponential distribution at X 
C       CDFx - Value of the cumulative distribution  function of an  
C              Exponential distribution at X 
C       CDFx0 - Value of the cumulative distributio n function of an  
C               Exponential distribution at X=X0 
C       L - Maximum number of variables allowed by the program 
C       Q - Maximum number of combinations of actio ns allowed by the  
C           program 
C 
C       OUTPUT VARIABLES: 
C       MuxN - Mean of the equivalent Normal distri bution of X 
C       SigmaxN - Standard deviation of the equival ent Normal  
C                 distribution of X 
C 
C       ########################################### #####################         
C         
        Integer*4 i,j,L,Q 
        Parameter (L=15) 
        Parameter (Q=16) 
        Character*3 Ext(L) 
        Integer*4 Trunc(Q,L) 
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        Real*8 X(L),Zeta(Q,L),MuxN(L),SigmaxN(L),CD Fx(L),CDFx0(L), 
     1         PDFx(L),Xo(Q,L),Lamda(Q,L),NR(Q,L) 
        If (X(i).GE.Zeta(j,i)) then  
          CDFx(i)=1.-EXP(-((X(i)-Zeta(j,i))/Lamda(j ,i))) 
          PDFx(i)=(1./Lamda(j,i))*(1.-CDFx(i)) 
          If (Trunc(j,i).NE.0) CDFx0(i)=1.-EXP(-((X o(j,i)-Zeta(j,i))/ 
     1                                  Lamda(j,i)) )          
          Call Truncation(i,j,Ext,X,MuxN,SigmaxN,Tr unc,Xo,CDFx,CDFx0, 
     1                    PDFx,NR) 
        else 
          Write(*,8889) Ext(i),Zeta(j,i) 
          Write(50,8889) Ext(i),Zeta(j,i) 
 8889     Format(// 16X,'ERROR - Exponential distri bution'/ 19X, 
     1            A3,' < ',E17.10,' !' /) 
          STOP 
        Endif   
        return 
        End 
 
             
             
C       ########################################### #####################         
C         
        Subroutine Rayleigh(i,j,Ext,X,Zeta,MuxN,Sig maxN,Trunc,Xo,NR) 
C 
C       ########################################### #####################         
C         
C       Calculates the value of the probability den sity function, PDFx,  
C       at X & the value of the cumulative distribu tion function, CDFx,  
C       at X of a Rayleigh distribution. If the Ray leigh distribution is  
C       truncated at X=Xo, it also calculates the v alue of the  
C       cumulative distribution function at X=X0, C DFx0. It uses these  
C       values to return the mean, MuxN, & the stan dard deviation,  
C       SigmaxN, of the equivalent Normal distribut ion through  
C       subroutine Truncation. 
C 
C       ########################################### #####################         
C 
C       INPUT VARIABLES: 
C       X - Variable 
C       Ext - Abbreviation of the name of the varia ble 
C       Trunc - Type of truncation 
C       Xo - Point of truncation (if the distributi on is truncated) 
C       NR - Power to which each distribution is ra ised for each  
C            combination of actions 
C       Zeta - Parameter of the Rayleigh distributi on 
C       i - Number of the variable 
C       j - Number of the combination of actions 
C 
C       MODELING VARIABLES: 
C       PDFx - Value of the probability density fun ction of a Rayleigh  
C              distribution at X 
C       CDFx - Value of the cumulative distribution  function of a  
C              Rayleigh distribution at X 
C       CDFx0 - Value of the cumulative distributio n function of a  
C               Rayleigh distribution at X=X0 
C       L - Maximum number of variables allowed by the program 
C       Q - Maximum number of combinations of actio ns allowed by the  
C           program 
C 
C       OUTPUT VARIABLES: 
C       MuxN - Mean of the equivalent Normal distri bution of X 
C       SigmaxN - Standard deviation of the equival ent Normal  
C                 distribution of X 
C 
C       ########################################### #####################         
C         
        Integer*4 i,j,L,Q 
        Parameter (L=15) 
        Parameter (Q=16) 
        Character*3 Ext(L) 
        Integer*4 Trunc(Q,L) 
        Real*8 X(L),Zeta(Q,L),MuxN(L),SigmaxN(L),CD Fx(L),CDFx0(L), 
     1         PDFx(L),Xo(Q,L),NR(Q,L) 
        If (X(i).GE.0.0) then  
          CDFx(i)=1.-EXP(-(X(i)**2)/(2.*(Zeta(j,i)* *2)))          
          PDFx(i)=(X(i)/(Zeta(j,i)**2))*EXP(-(X(i)* *2)/ 
     1            (2.*(Zeta(j,i)**2)))          
          If (Trunc(j,i).NE.0) CDFx0(i)=1.-EXP(-(Xo (j,i)**2)/ 
     1                                  (2.*(Zeta(j ,i)**2)))          
          Call Truncation(i,j,Ext,X,MuxN,SigmaxN,Tr unc,Xo,CDFx,CDFx0, 
     1                    PDFx,NR) 
        else 
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          Write(*,8779) Ext(i) 
          Write(50,8779) Ext(i) 
 8779     Format(// 16X,'ERROR - Rayleigh distribut ion'/ 19X, 
     1            A3,' < 0 !' /) 
          STOP 
        Endif   
        return 
        End 
         
         
         
C       ########################################### #####################         
C         
        Subroutine Weibull(i,j,Ext,X,Zeta,Lamda,Eta , 
     1                     MuxN,SigmaxN,Trunc,Xo,NR ) 
C 
C       ########################################### #####################         
C         
C       Calculates the value of the probability den sity function, PDFx,  
C       at X & the value of the cumulative distribu tion function, CDFx,  
C       at X of a Weibull distribution. If the Weib ull distribution is  
C       truncated at X=Xo, it also calculates the v alue of the  
C       cumulative distribution function at X=X0, C DFx0. It uses these  
C       values to return the mean, MuxN, & the stan dard deviation,  
C       SigmaxN, of the equivalent Normal distribut ion through  
C       subroutine Truncation. 
C 
C       ########################################### #####################         
C 
C       INPUT VARIABLES: 
C       X - Variable 
C       Ext - Abbreviation of the name of the varia ble 
C       Trunc - Type of truncation 
C       Xo - Point of truncation (if the distributi on is truncated) 
C       NR - Power to which each distribution is ra ised for each  
C            combination of actions 
C       Zeta, Lamda, Eta - Parameters of the Weibul l distribution 
C       i - Number of the variable 
C       j - Number of the combination of actions 
C 
C       MODELING VARIABLES: 
C       PDFx - Value of the probability density fun ction of a Weibull  
C              distribution at X 
C       CDFx - Value of the cumulative distribution  function of a  
C              Weibull distribution at X 
C       CDFx0 - Value of the cumulative distributio n function of a  
C               Weibull distribution at X=X0 
C       L - Maximum number of variables allowed by the program 
C       Q - Maximum number of combinations of actio ns allowed by the  
C           program 
C 
C       OUTPUT VARIABLES: 
C       MuxN - Mean of the equivalent Normal distri bution of X 
C       SigmaxN - Standard deviation of the equival ent Normal  
C                 distribution of X 
C 
C       ########################################### #####################         
C         
        Integer*4 i,j,L,Q 
        Parameter (L=15) 
        Parameter (Q=16) 
        Character*3 Ext(L) 
        Integer*4 Trunc(Q,L) 
        Real*8 Zeta(Q,L),X(L),Lamda(Q,L),Eta(Q,L),M uxN(L),SigmaxN(L), 
     1         CDFx(L),CDFx0(L),PDFx(L),Xo(Q,L),NR( Q,L) 
        If (X(i).GE.Zeta(j,i)) then  
          CDFx(i)=1.-EXP(-(((X(i)-Zeta(j,i))/Lamda( j,i))**Eta(j,i))) 
          PDFx(i)=(Eta(j,i)/Lamda(j,i))*(1.-CDFx(i) )* 
     1            (((X(i)-Zeta(j,i))/Lamda(j,i))**( Eta(j,i)-1)) 
          If (Trunc(j,i).NE.0) CDFx0(i)=1.-EXP(-((( Xo(j,i)-Zeta(j,i)) 
     1                                  /Lamda(j,i) )**Eta(j,i))) 
          Call Truncation(i,j,Ext,X,MuxN,SigmaxN,Tr unc,Xo,CDFx, 
     1                    CDFx0,PDFx,NR) 
        else 
          Write(*,9979) Ext(i) 
          Write(50,9979) Ext(i) 
 9979     Format(// 16X,'ERROR - Weibull distributi on'/ 19X, 
     1            A3,' < Zeta !' /) 
          STOP 
        Endif   
        return 
        End 
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C       ########################################### #####################         
C         
        Subroutine User1(i,j,Ext,X,MuxN,SigmaxN,NR)  
C 
C       ########################################### #####################         
C         
C       Returns the value of the probability densit y function, PDFx,  
C       & the value of the cumulative distribution function, CDFx, of  
C       the user-defined distribution of water leve ls, for a given value  
C       of the water level, X. It uses the data fil e wldata.dad which  
C       contains the tabulated values. It uses thes e values to return 
C       the mean, MuxN, & the standard deviation, S igmaxN, of the  
C       equivalent Normal distribution through subr outine PCDF. 
C 
C       ########################################### #####################         
C 
C       INPUT VARIABLES: 
C       X - Variable 
C       Ext - Abbreviation of the name of the varia ble 
C       NR - Power to which each distribution is ra ised for each  
C            combination of actions 
C       i - Number of the variable 
C       j - Number of the combination of actions 
C 
C       MODELING VARIABLES: 
C       M - Number of points of the user-defined di stribution tabulated 
C           in file wldata.dad 
C       WL - Value tabulated in file wldata.dad of the water level of  
C            the user-defined distribution 
C       PDF - Value tabulated in file wldata.dad of  the probability  
C             density function of the user-defined distribution  
C       CDF - Value tabulated in file wldata.dad of  the cumulative  
C             distribution function of the user-def ined distribution  
C       L - Maximum number of variables allowed by the program 
C       Q - Maximum number of combinations of actio ns allowed by the  
C           program 
C       PDFx - Value of the probability density fun ction of the  
C              user-defined distribution at X  
C       CDFx - Value of the cumulative distribution  function of the  
C              user-defined distribution at X  
C       k - Auxiliary variable 
C 
C       OUTPUT VARIABLES: 
C       MuxN - Mean of the equivalent Normal distri bution of X 
C       SigmaxN - Standard deviation of the equival ent Normal  
C                 distribution of X 
C 
C       ########################################### #####################         
C         
        Integer*4 i,j,k,M,Q,L 
        Parameter (M=126) 
        Parameter (Q=16) 
        Parameter (L=15) 
        Character*3 Ext(L) 
        Real*8 WL(M),PDF(M),CDF(M),X(L),PDFx(L),CDF x(L),MuxN(L), 
     1         SigmaxN(L),NR(Q,L) 
        Open(Unit=70, File='wldata.dad', Status='Ol d') 
        Do 10 k=1,M 
          Read(70,*) WL(k),PDF(k),CDF(k) 
 10     continue 
        Do 32 k=1,M 
          If (WL(k).GE.X(i)) then 
            If (WL(k).GT.X(i)) then 
              PDFx(i)=((WL(k)-X(i))/(WL(k)-WL(k-1)) )*PDF(k-1)+ 
     1                ((X(i)-WL(k-1))/(WL(k)-WL(k-1 )))*PDF(k)  
              CDFx(i)=((WL(k)-X(i))/(WL(k)-WL(k-1)) )*CDF(k-1)+ 
     1                ((X(i)-WL(k-1))/(WL(k)-WL(k-1 )))*CDF(k)  
              goto 50 
            else 
              PDFx(i)=PDF(k) 
              CDFx(i)=CDF(k) 
              goto 50 
            Endif 
          Endif 
 32     continue 
 50     Call PCDF(i,j,Ext,X,MuxN,SigmaxN,PDFx,CDFx, NR) 
        Close (Unit=70) 
        return 
        End 
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C       ########################################### #####################         
C         
        Subroutine User2(i,j,Ext,X,MuxN,SigmaxN,NR)  
C 
C       ########################################### #####################         
C         
C       Returns the value of the probability densit y function, PDFx,  
C       & the value of the cumulative distribution function, CDFx, of  
C       the user-defined distribution of extreme wa ter levels, for a  
C       given value of the extreme water level, X. It uses the data file  
C       extwldat.dad which contains the tabulated v alues. It uses these  
C       values to return the mean, MuxN, & the stan dard deviation,  
C       SigmaxN, of the equivalent Normal distribut ion through  
C       subroutine PCDF. 
C 
C       ########################################### #####################         
C 
C       INPUT VARIABLES: 
C       X - Variable 
C       Ext - Abbreviation of the name of the varia ble 
C       NR - Power to which each distribution is ra ised for each  
C            combination of actions 
C       i - Number of the variable 
C       j - Number of the combination of actions 
C 
C       MODELING VARIABLES: 
C       M - Number of points of the user-defined di stribution tabulated 
C           in file extwldat.dad 
C       ExtWL - Value tabulated in file extwldat.da d of the extreme  
C               water level of the user-defined dis tribution 
C       PDF - Value tabulated in file extwldat.dad of the probability  
C             density function of the user-defined distribution  
C       CDF - Value tabulated in file extwldat.dad of the cumulative  
C             distribution function of the user-def ined distribution  
C       L - Maximum number of variables allowed by the program 
C       Q - Maximum number of combinations of actio ns allowed by the  
C           program 
C       PDFx - Value of the probability density fun ction of the  
C              user-defined distribution at X  
C       CDFx - Value of the cumulative distribution  function of the  
C              user-defined distribution at X  
C       k - Auxiliary variable 
C 
C       OUTPUT VARIABLES: 
C       MuxN - Mean of the equivalent Normal distri bution of X 
C       SigmaxN - Standard deviation of the equival ent Normal  
C                 distribution of X 
C 
C       ########################################### #####################         
C         
        Integer*4 i,j,k,M,Q,L 
        Parameter (M=17) 
        Parameter (Q=16) 
        Parameter (L=15) 
        Character*3 Ext(L) 
        Real*8 ExtWL(M),PDF(M),CDF(M),X(L),PDFx(L), CDFx(L),MuxN(L), 
     1         SigmaxN(L),NR(Q,L) 
        Open(Unit=75, File='extwldat.dad', Status=' Old') 
        Do 10 k=1,M 
          Read(75,*) ExtWL(k),PDF(k),CDF(k) 
 10     continue 
        Do 32 k=1,M 
          If (ExtWL(k).GE.X(i)) then 
            If (ExtWL(k).GT.X(i)) then 
              PDFx(i)=((ExtWL(k)-X(i))/(ExtWL(k)-Ex tWL(k-1)))*PDF(k-1)+ 
     1                ((X(i)-ExtWL(k-1))/(ExtWL(k)- ExtWL(k-1)))*PDF(k)  
              CDFx(i)=((ExtWL(k)-X(i))/(ExtWL(k)-Ex tWL(k-1)))*CDF(k-1)+ 
     1                ((X(i)-ExtWL(k-1))/(ExtWL(k)- ExtWL(k-1)))*CDF(k)  
              goto 50 
            else 
              PDFx(i)=PDF(k) 
              CDFx(i)=CDF(k) 
              goto 50 
            Endif 
          Endif 
 32     continue 
 50     Call PCDF(i,j,Ext,X,MuxN,SigmaxN,PDFx,CDFx, NR) 
        Close (Unit=75) 
        return 
        End 
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C       ########################################### #####################         
C         
        Subroutine User3(i,j,Ext,X,MuxN,SigmaxN,NR)  
C 
C       ########################################### #####################         
C         
C       Returns the value of the probability densit y function, PDFx,  
C       & the value of the cumulative distribution function, CDFx, of  
C       the user-defined distribution of tide level s, for a given value  
C       of the tide level, X. It uses the data file  tide.dad which  
C       contains the tabulated values. It uses thes e values to return 
C       the mean, MuxN, & the standard deviation, S igmaxN, of the  
C       equivalent Normal distribution through subr outine PCDF. 
C 
C       ########################################### #####################         
C 
C       INPUT VARIABLES: 
C       X - Variable 
C       Ext - Abbreviation of the name of the varia ble 
C       NR - Power to which each distribution is ra ised for each  
C            combination of actions 
C       i - Number of the variable 
C       j - Number of the combination of actions 
C 
C       MODELING VARIABLES: 
C       M - Number of points of the user-defined di stribution tabulated 
C           in file tide.dad 
C       Tide - Value tabulated in file tide.dad of the tide level of  
C              the user-defined distribution 
C       PDF - Value tabulated in file tide.dad of t he probability  
C             density function of the user-defined distribution  
C       CDF - Value tabulated in file tide.dad of t he cumulative  
C             distribution function of the user-def ined distribution  
C       L - Maximum number of variables allowed by the program 
C       Q - Maximum number of combinations of actio ns allowed by the  
C           program 
C       PDFx - Value of the probability density fun ction of the  
C              user-defined distribution at X  
C       CDFx - Value of the cumulative distribution  function of the  
C              user-defined distribution at X  
C       k - Auxiliary variable 
C 
C       OUTPUT VARIABLES: 
C       MuxN - Mean of the equivalent Normal distri bution of X 
C       SigmaxN - Standard deviation of the equival ent Normal  
C                 distribution of X 
C 
C       ########################################### #####################         
C         
        Integer*4 i,j,k,M,Q,L 
        Parameter (M=122) 
        Parameter (Q=16) 
        Parameter (L=15) 
        Character*3 Ext(L) 
        Real*8 Tide(M),PDF(M),CDF(M),X(L),PDFx(L),C DFx(L),MuxN(L), 
     1         SigmaxN(L),NR(Q,L) 
        Open(Unit=80, File='tide.dad', Status='Old' ) 
        Do 10 k=1,M 
          Read(80,*) Tide(k),PDF(k),CDF(k) 
 10     continue 
        Do 32 k=1,M 
          If (Tide(k).GE.X(i)) then 
            If (Tide(k).GT.X(i)) then 
              PDFx(i)=((Tide(k)-X(i))/(Tide(k)-Tide (k-1)))*PDF(k-1)+ 
     1                ((X(i)-Tide(k-1))/(Tide(k)-Ti de(k-1)))*PDF(k)  
              CDFx(i)=((Tide(k)-X(i))/(Tide(k)-Tide (k-1)))*CDF(k-1)+ 
     1                ((X(i)-Tide(k-1))/(Tide(k)-Ti de(k-1)))*CDF(k)  
              goto 50 
            else 
              PDFx(i)=PDF(k) 
              CDFx(i)=CDF(k) 
              goto 50 
            Endif 
          Endif 
 32     continue 
 50     Call PCDF(i,j,Ext,X,MuxN,SigmaxN,PDFx,CDFx, NR) 
        Close (Unit=80) 
        return 
        End 
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C       ########################################### #####################        
C         
        Subroutine Algebra(N,Covx,D,V) 
C 
C       ########################################### #####################        
C         
C       Returns the eigenvalues, D, & the eigenvect ores, V, of the  
C       matrix Covx. It uses subroutines Tred2 & TQ LI to calculate these 
C       values. 
C 
C       ########################################### #####################        
C         
C       INPUT VARIABLES: 
C       Covx - Covariance matrix 
C       N - Number of variables 
C 
C       MODELING VARIABLES: 
C       E - Off-diagonal elements of the orthogonal  matrix, Q, obtained  
C           from Covx 
C       i, k, NP - Auxiliary variables 
C 
C       OUTPUT VARIABLES: 
C       D - Eigenvalues 
C       V - Eigenvectors 
C 
C       ########################################### #####################        
C 
        Integer*4 i,k,N,NP 
        Parameter (NP=15) 
        Real*8  D(NP),E(NP),V(NP,NP),Covx(NP,NP) 
        Call Tred2(Covx,N,NP,D,E) 
        Do 128 k=1,N 
          Do 129 i=1,N 
            V(i,k)=Covx(i,k) 
 129      continue 
 128    continue 
        Call TQLI(D,E,N,NP,V) 
        return 
        End 
         
         
         
C       ########################################### #####################         
C         
        Function Zbrent(j,i,Aux1,Aux2,a1,a2,Tol,Var Dis)         
C 
C       ########################################### #####################         
C         
C       Using Brent`s method, it returns the root o f a function (e.g.  
C       GG, TT, MM, BB) known to lie between a1 & a 2. The root, returned  
C       as Zbrent, is refined until its accuracy is  within Tol. 
C       ---------- 
C       For more details, see Press et al (1992), p p.354. 
C 
C       ########################################### #####################         
C         
        Integer*4 j,i,L,Q,Itmax,Iter 
        Parameter (L=15) 
        Parameter (Q=16) 
        Real*8 Aux1,Aux2,VarDis(Q,L),A,B,C,D,E,a1,a 2,FA,FB, 
     1         FC,Eps,Tol,Tol1,S,P,T,R,XM,GG,TT,MM, BB,Zbrent 
        Parameter (Itmax=100,Eps=3.0E-8) 
        External GG 
        External TT 
        External MM 
        External BB 
        A=a1 
        B=a2 
        If (VarDis(j,i).EQ.7) then 
          FA=GG(Aux1,Aux2,A) 
          FB=GG(Aux1,Aux2,B) 
        elseif (VarDis(j,i).EQ.10) then 
          FA=TT(i,j,Aux1,Aux2,A) 
          FB=TT(i,j,Aux1,Aux2,B) 
        elseif (VarDis(j,i).EQ.5) then 
          FA=MM(i,j,Aux1,A) 
          FB=MM(i,j,Aux1,B) 
        elseif (VarDis(j,i).EQ.6) then 
          FA=BB(i,j,Aux1,A) 
          FB=BB(i,j,Aux1,B) 
        Endif 
        If (((FA.GT.0.).AND.(FB.GT.0.)).OR.((FA.LT. 0.).AND. 
     1    (FB.LT.0.))) PAUSE 'Root must be brackete d for Zbrent.' 
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        C=B 
        FC=FB 
        Do 11 Iter=1,Itmax 
          If (((FB.GT.0.).AND.(FC.GT.0.)).OR.((FB.L T.0.).AND. 
     1      (FC.LT.0.))) then 
            C=A 
            FC=FA 
            D=B-A 
            E=D 
          Endif 
          If ((ABS(FC)).LT.(ABS(FB))) then 
            A=B 
            B=C 
            C=A 
            FA=FB 
            FB=FC 
            FC=FA 
          Endif 
          Tol1=2.*Eps*ABS(B)+0.5*Tol 
          XM=0.5*(C-B) 
          If (((ABS(XM)).LE.Tol1).OR.(FB.EQ.0.)) th en 
            Zbrent=B 
            return 
          Endif 
          If (((ABS(E)).GE.Tol1).AND.((ABS(FA)).GT. (ABS(FB)))) then 
            S=FB/FA 
            If (A.EQ.C) then 
              P=2.*XM*S 
              T=1.-S 
            else 
              T=FA/FC 
              R=FB/FC 
              P=S*(2.*XM*T*(T-R)-(B-A)*(R-1.)) 
              T=(T-1.)*(R-1.)*(S-1.) 
            Endif 
            If (P.GT.0.) T=-T 
            P=ABS(P) 
            If ((2.*P).LT.(DMIN1((3.*XM*T-ABS(Tol1* T)),(ABS(E*T)))))  
     1        then 
              E=D 
              D=P/T 
            else 
              D=XM 
              E=D 
            Endif 
          else 
            D=XM 
            E=D 
          Endif 
          A=B 
          FA=FB 
          If ((ABS(D)).GT.Tol1) then 
            B=B+D 
          else 
            B=B+SIGN(Tol1,XM) 
          Endif 
          If (VarDis(j,i).EQ.7) then 
            FB=GG(Aux1,Aux2,B) 
          elseif (VarDis(j,i).EQ.10) then 
            FB=TT(i,j,Aux1,Aux2,B) 
          elseif (VarDis(j,i).EQ.5) then 
            FB=MM(i,j,Aux1,B) 
          elseif (VarDis(j,i).EQ.6) then 
            FB=BB(i,j,Aux1,B) 
          Endif 
 11     continue 
        PAUSE 'Zbrent exceeding maximum iterations. ' 
        Zbrent=B 
        return 
        End 
 
 
 
C       ########################################### #####################         
C         
        Function Gammln(XX) 
C 
C       ########################################### #####################         
C         
C       Returns the value ln(Gamma(XX)) for XX>0. F ull accuracy is  
C       obtained for XX>1. For 0<XX<1, the reflecti on formula can be  
C       used first. 
C       ---------- 
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C       For more details, see Press et al (1992), p p.207.         
C 
C       ########################################### #####################         
C         
        Integer*4 k 
        Real*8 XX,COF(6),STP,X,TMP,SER,Y,Gammln 
        Save COF,STP 
        Data   COF,STP/76.18009172947146D0,-86.5053 2032941677D0, 
     1         24.01409824083091D0,-1.2317395724501 55D0, 
     1         0.1208650973866179D-2,-0.53952393849 53D-5, 
     1         2.5066282746310005D0/ 
        X=XX 
        Y=X 
        TMP=X+5.5D0 
        TMP=(X+0.5D0)*LOG(TMP)-TMP 
        SER=1.000000000190015D0 
        Do 11 k=1,6 
          Y=Y+1.0D0 
          SER=SER+COF(k)/Y 
 11     continue 
        Gammln=TMP+LOG(STP*SER/X) 
        return 
        End 
 
 
 
C       ########################################### #####################         
C         
        Subroutine Truncation(i,j,Ext,X,MuxN,Sigmax N,Trunc,Xo,CDFx, 
     1                        CDFx0,PDFx,NR) 
C 
C       ########################################### #####################         
C         
C       Returns the value of the probability densit y function, PDFx, at  
C       X & the value of the cumulative distributio n function, CDFx, at  
C       X of a distribution truncated at X=Xo & wit h a CDFx=CDFx0 at  
C       X=X0. It also returns the mean, MuxN, & the  standard deviation,  
C       SigmaxN, of the equivalent Normal distribut ion through  
C       subroutine PCDF. 
C 
C       ########################################### #####################         
C 
C       INPUT VARIABLES: 
C       X - Variable 
C       Ext - Abbreviation of the name of the varia ble 
C       Trunc - Type of truncation 
C       Xo - Point of truncation (if the distributi on is truncated) 
C       NR - Power to which each distribution is ra ised for each  
C            combination of actions 
C       CDFx0 - Value of the cumulative distributio n function at X=X0 
C       i - Number of the variable 
C       j - Number of the combination of actions 
C 
C       INPUT/OUTPUT VARIABLES: 
C       PDFx - Value of the probability density fun ction at X 
C       CDFx - Value of the cumulative distribution  function at X 
C 
C       MODELING VARIABLES: 
C       L - Maximum number of variables allowed by the program 
C       Q - Maximum number of combinations of actio ns allowed by the  
C           program 
C 
C       OUTPUT VARIABLES: 
C       MuxN - Mean of the equivalent Normal distri bution of X 
C       SigmaxN - Standard deviation of the equival ent Normal  
C                 distribution of X 
C 
C       ########################################### #####################         
C         
        Integer*4 i,j,L,Q      
        Parameter (L=15) 
        Parameter (Q=16) 
        Character*3 Ext(L) 
        Integer*4 Trunc(Q,L) 
        Real*8 X(L),MuxN(L),SigmaxN(L),CDFx(L),CDFx 0(L),PDFx(L),Xo(Q,L), 
     1         NR(Q,L) 
        If (Trunc(j,i).NE.0) then 
          If (Trunc(j,i).EQ.1) then 
            If (X(i).GT.Xo(j,i)) then 
              PDFx(i)=0. 
              CDFx(i)=1. 
            else 
              PDFx(i)=PDFx(i)/CDFx0(i) 



Program Listing 

C7-91 

              CDFx(i)=CDFx(i)/CDFx0(i) 
            Endif 
          else 
            If (X(i).LT.Xo(j,i)) then 
              PDFx(i)=0. 
              CDFx(i)=0. 
            else 
              PDFx(i)=PDFx(i)/(1.-CDFx0(i)) 
              CDFx(i)=(CDFx(i)-CDFx0(i))/(1.-CDFx0( i)) 
            Endif 
          Endif 
        Endif 
        Call PCDF(i,j,Ext,X,MuxN,SigmaxN,PDFx,CDFx, NR) 
        return 
        End 
 
                        
         
C       ########################################### #####################         
C         
        Function Gammp(XX,X) 
C 
C       ########################################### #####################         
C         
C       Returns the incomplete Gamma function, gamm a(XX,X)/Gamma(XX). 
C       ---------- 
C       For more details, see Press et al (1992), p p.211. 
C 
C       ########################################### #####################         
C         
        Real*8 XX,X,Gamser,Gln,Gammcf,Gammp 
        If ((X.LT.0.).OR.(XX.LE.0.)) PAUSE 'Bad arg uments in Gammp' 
        If (X.LT.(XX+1.)) then 
          Call GSER(Gamser,XX,X,Gln) 
          Gammp=Gamser 
        else 
          Call GCF(Gammcf,XX,X,Gln) 
          Gammp=1.-Gammcf 
        Endif 
        return 
        End 
 
 
 
C       ########################################### #####################         
C         
        Function Beta(XX,YY) 
C 
C       ########################################### #####################         
C         
C       Returns the value of the Beta function, B(X X,YY). 
C       ---------- 
C       For more details, see Press et al (1992), p p.209. 
C 
C       ########################################### #####################         
C         
        Real*8 XX,YY,XY,Beta,Gammln 
        External Gammln 
        XY=XX+YY 
        Beta=EXP(Gammln(XX)+Gammln(YY)-Gammln(XY)) 
        return 
        End 
 
 
 
C       ########################################### #####################         
C         
        Function Betai(XX,YY,U) 
C 
C       ########################################### #####################         
C         
C       Returns the incomplete Beta function, Bu(XX ,YY)/B(XX,YY). 
C       ---------- 
C       For more details, see Press et al (1992), p p.220. 
C 
C       ########################################### #####################         
C         
        Real*8 XX,YY,XY,U,BT,Gammln,Betacf,Betai 
        External Gammln 
        External Betacf 
        If ((U.LT.0.).OR.(U.GT.1.)) PAUSE 'Bad argu ment U in Betai' 
        If ((U.EQ.0.).OR.(U.EQ.1.)) then 
          BT=0. 
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        else 
          XY=XX+YY 
          BT=EXP(Gammln(XY)-Gammln(XX)-Gammln(YY)+X X 
     1       *LOG(U)+YY*LOG(1.-U)) 
        Endif 
        If (U.LT.((XX+1.)/(XX+YY+2.))) then 
          Betai=BT*Betacf(XX,YY,U)/XX 
          return 
        else 
          XY=1.-U 
          Betai=1.-BT*Betacf(YY,XX,XY)/YY 
          return 
        Endif 
        End 
 
 
 
C       ########################################### #####################        
C         
        Subroutine Tred2(Covx,N,NP,D,E) 
C 
C       ########################################### #####################        
C 
C       Householder reduction of a real symmetric N  by N matrix Covx, 
C       stored in an NP by NP physical array. On ou tput, Covx is  
C       replaced by the orthogonal matrix Q effecti ng the  
C       transformation. D returns the diagonal elem ents of the  
C       tridiagonal matrix, & E the off-diagonal el ements, with  
C       E(1)=0.  
C       ---------- 
C       For more details, see Press et al (1992), p p.467. 
C 
C       ########################################### #####################        
C         
        Integer*4 i,t,K,L,N,NP 
        Real*8  H,Scale,F,G,HH,Covx(NP,NP),D(NP),E( NP) 
        Do 18 i=N,2,-1 
          L=i-1 
          H=0. 
          Scale=0. 
          If (L.GT.1) then 
            Do 11 K=1,L 
              Scale=Scale+DABS(Covx(i,K)) 
 11         continue 
            If (Scale.EQ.0.) then 
              E(i)=Covx(i,L) 
            else 
              Do 12 K=1,L 
                Covx(i,K)=Covx(i,K)/Scale 
                H=H+(Covx(i,K)**2) 
 12           continue 
              F=Covx(i,L) 
              G=-DSIGN(DSQRT(H),F) 
              E(i)=Scale*G 
              H=H-F*G 
              Covx(i,L)=F-G 
              F=0. 
              Do 15 t=1,L 
                Covx(t,i)=Covx(i,t)/H 
                G=0. 
                Do 13 K=1,t 
                  G=G+Covx(t,K)*Covx(i,K) 
 13             continue 
                Do 14 K=t+1,L 
                  G=G+Covx(K,t)*Covx(i,K) 
 14             continue 
                E(t)=G/H 
                F=F+E(t)*Covx(i,t) 
 15           continue 
              HH=F/(H+H) 
              Do 17 t=1,L 
                F=Covx(i,t) 
                G=E(t)-HH*F 
                E(t)=G 
                Do 16 K=1,t 
                  Covx(t,K)=Covx(t,K)-F*E(K)-G*Covx (i,K) 
 16             continue 
 17           continue 
            Endif 
          else 
            E(i)=Covx(i,L) 
          Endif 
          D(i)=H 
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 18     continue 
        D(1)=0. 
        E(1)=0. 
        Do 24 i=1,N 
          L=i-1 
          If (D(i).NE.0.) then 
            Do 22 t=1,L 
              G=0. 
              Do 19 K=1,L 
                G=G+Covx(i,K)*Covx(K,t) 
 19           continue 
              Do 21 K=1,L 
                Covx(K,t)=Covx(K,t)-G*Covx(K,i) 
 21           continue 
 22         continue 
          Endif 
          D(i)=Covx(i,i) 
          Covx(i,i)=1. 
          Do 23 t=1,L 
            Covx(i,t)=0. 
            Covx(t,i)=0. 
 23       continue 
 24     continue 
        return 
        End 
 
 
 
C       ########################################### #####################        
C         
        Subroutine TQLI(D,E,N,NP,V) 
C 
C       ########################################### #####################        
C         
C       QL algorithm with implicit shifts, to deter mine the eingenvalues  
C       & eigenvectors of a real, symmetric, tridia gonal matrix, or of  
C       a real, symmetric matrix previously reduced  by TRED2. D is a  
C       vector of length NP. On input, its first N elements are the 
C       diagonal elements of the tridiagonal matrix . On output, it  
C       returns the eingenvalues. The vector E inpu ts the subdiagonal  
C       elements of the tridiagonal matrix, with E( 1) arbitrary. On  
C       output E is destroyed. The matrix V(N by N matrix stored in an   
C       NP by NP array) is input as the identity ma trix.If the  
C       eigenvectors of a matrix that has been redu ced by TRED2 are  
C       required, then V is input as the matrix out put by TRED2. In  
C       either case, the Kth column of V returns th e normalized  
C       eigenvector corresponding to D(K). 
C       ---------- 
C       For more details, see Press et al (1992), p p.473. 
C 
C       ########################################### #####################        
C 
        Integer*4 i,K,L,M,N,NP,Iter 
        Real*8  B,C,DD,F,G,P,R,S,D(NP),E(NP),V(NP,N P),Minha,Pythag 
        External Pythag 
        Open(Unit=100, File='lixo.dat', Status='unk nown') 
        Do 11 i=2,N 
          E(i-1)=E(i) 
 11     continue 
        E(N)=0. 
        Do 15 L=1,N 
          Iter=0 
 1        Do 12 M=L,N-1 
            DD=DABS(D(M))+DABS(D(M+1)) 
            Write(100,*)  
            If (DABS(E(M))+DD.EQ.DD) goto 2 
 12       continue 
          M=N 
 2        If (M.NE.L) then 
            If (Iter.EQ.30) Pause 'Too many iterati ons in TQLI' 
            Iter=Iter+1 
            G=(D(L+1)-D(L))/(2.*E(L)) 
            Write(100,*)  
            Minha=1.0 
            R=Pythag(G,Minha) 
            G=D(M)-D(L)+E(L)/(G+DSIGN(R,G)) 
            S=1. 
            C=1. 
            P=0. 
            Do 14 i=M-1,L,-1 
              F=S*E(i) 
              B=C*E(i) 
              R=Pythag(F,G) 
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              E(i+1)=R 
              If (R.EQ.0.) then 
                D(i+1)=D(i+1)-P 
                E(M)=0. 
                goto 1 
              Endif 
              S=F/R 
              C=G/R 
              G=D(i+1)-P 
              R=(D(i)-G)*S+2.*C*B 
              P=S*R 
              D(i+1)=G+P 
              G=C*R-B 
              Do 13 K=1,N 
                F=V(K,i+1) 
                V(K,i+1)=S*V(K,i)+C*F 
                V(K,i)=C*V(K,i)-S*F 
 13           continue 
 14         continue 
            D(L)=D(L)-P 
            E(L)=G 
            E(M)=0. 
            goto 1 
          Endif   
 15     continue 
        return 
        End 
 
         
 
C       ########################################### #####################         
C         
        Function GG(Aux1,Aux2,AB) 
C 
C       ########################################### #####################         
C         
C       GG is a function for which the root is to b e calculated using 
C       subroutine Zbrent. The root of GG gives the  value of the  
C       parameter Zeta of a Frechet distribution. 
C 
C       ########################################### #####################         
C 
C       INPUT VARIABLES: 
C       Aux1, Aux2, AB - Auxiliary variables 
C 
C       MODELING VARIABLES: 
C       Gammln - External function 
C       AB1, AB2 - Auxiliary variables 
C 
C       ########################################### #####################         
C         
        Real*8 Aux1,Aux2,AB,AB1,AB2,Gammln,GG 
        External Gammln 
        AB1=1.-(1./AB) 
        AB2=1.-(2./AB) 
        GG=(Aux2**2)+(Aux1**2)-((Aux1**2)* 
     1     (EXP(Gammln(AB2))))/((EXP(Gammln(AB1)))* *2) 
        return 
        End 
         
 
 
C       ########################################### #####################         
C         
        Function TT(i,j,Aux1,Aux2,AB) 
C 
C       ########################################### #####################         
C         
C       TT is a function for which the root is to b e calculated using 
C       subroutine Zbrent. The root of TT gives the  value of the  
C       parameter Eta of a Weibull distribution. 
C 
C       ########################################### #####################         
C 
C       INPUT VARIABLES: 
C       Zeta - Parameter of a Weibull distribution 
C       i - Number of the variable 
C       j - Number of the combination of actions 
C       Aux1, Aux2, AB - Auxiliary variables 
C 
C       MODELING VARIABLES: 
C       Gammln - External function 
C       L - Maximum number of variables allowed by the program 
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C       Q - Maximum number of combinations of actio ns allowed by the  
C           program 
C       AB1, AB2 - Auxiliary variables 
C       Lamda, Eta, x1, x2 - Variables mentioned in  the Common statement  
C                            but not used here 
C 
C       ########################################### #####################         
C         
        Integer*4 i,j,Q,L 
        Parameter (Q=16) 
        Parameter (L=15) 
        Real*8 Aux1,Aux2,Zeta(Q,L),Lamda(Q,L),Eta(Q ,L),x1(Q,L),x2(Q,L), 
     1         Gammln,TT,AB,AB1,AB2 
        Common/BLOCK8/Zeta,Lamda,Eta,x1,x2 
        External Gammln 
        AB1=1.+(1./AB) 
        AB2=1.+(2./AB) 
        TT=Aux2-((Aux1-Zeta(j,i))/EXP(Gammln(AB1))) * 
     1     SQRT((EXP(Gammln(AB2)))-((EXP(Gammln(AB1 )))**2)) 
        return 
        End 
         
 
 
C       ########################################### #####################         
C         
        Function MM(i,j,Aux1,AB) 
C 
C       ########################################### #####################         
C         
C       MM is a function for which the root is to b e calculated using 
C       subroutine Zbrent. The root of MM gives a v alue used by  
C       subroutine InvGamma to calculate the invers e function of a Gamma  
C       distribution. 
C 
C       ########################################### #####################         
C 
C       INPUT VARIABLES: 
C       Zeta - Parameter of a Gamma distribution 
C       i - Number of the variable 
C       j - Number of the combination of actions 
C       Aux1, AB - Auxiliary variables 
C 
C       MODELING VARIABLES: 
C       Gammp - External function 
C       L - Maximum number of variables allowed by the program 
C       Q - Maximum number of combinations of actio ns allowed by the  
C           program 
C       Aux2 - Auxiliary variable 
C       Lamda, Eta, x1, x2 - Variables mentioned in  the Common statement  
C                            but not used here 
C 
C       ########################################### #####################         
C         
        Integer*4 j,i,L,Q 
        Parameter (Q=16) 
        Parameter (L=15) 
        Real*8 Zeta(Q,L),Lamda(Q,L),Eta(Q,L),x1(Q,L ),x2(Q,L), 
     1         AB,Aux1,Aux2,Gammp,MM 
        Common/BLOCK8/Zeta,Lamda,Eta,x1,x2 
        External Gammp 
        Aux2=Zeta(j,i) 
        MM=Aux1-Gammp(Aux2,AB) 
        return 
        End 
         
 
 
C       ########################################### #####################         
C         
        Function BB(i,j,Aux1,AB) 
C 
C       ########################################### #####################         
C         
C       BB is a function for which the root is to b e calculated using 
C       subroutine Zbrent. The root of BB gives a v alue used by  
C       subroutine InvBeta to calculate the inverse  function of a Beta  
C       distribution. 
C 
C       ########################################### #####################         
C 
C       INPUT VARIABLES: 
C       Zeta, Lamda - Parameters of a Beta distribu tion 
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C       i - Number of the variable 
C       j - Number of the combination of actions 
C       Aux1, AB - Auxiliary variables 
C 
C       MODELING VARIABLES: 
C       L - Maximum number of variables allowed by the program 
C       Q - Maximum number of combinations of actio ns allowed by the  
C           program 
C       Betai - External function 
C       Aux2, Aux3 - Auxiliary variables 
C       Eta, x1, x2 - Variables mentioned in the Co mmon statement but  
C                     not used here 
C 
C       ########################################### #####################         
C         
        Integer*4 j,i,L,Q 
        Parameter (Q=16) 
        Parameter (L=15) 
        Real*8 Zeta(Q,L),Lamda(Q,L),Eta(Q,L),x1(Q,L ),x2(Q,L), 
     1         AB,Aux1,Betai,BB,Aux2,Aux3 
        Common/BLOCK8/Zeta,Lamda,Eta,x1,x2 
        External Betai 
        Aux2=Zeta(j,i) 
        Aux3=Lamda(j,i) 
        BB=Aux1-Betai(Aux2,Aux3,AB) 
        return 
        End 
 
 
 
C       ########################################### #####################         
C         
        Subroutine PCDF(i,j,Ext,X,MuxN,SigmaxN,PDFx ,CDFx,NR) 
C 
C       ########################################### #####################         
C         
C       Returns the mean, MuxN, & the standard devi ation, SigmaxN,  
C       of the equivalent Normal distribution accor ding to the Rackwitz  
C       & Fiessler (1978) approximation for non-Nor mal variables. It  
C       writes these values in the file results.dat  through subroutine  
C       NorWrite. 
C 
C       ########################################### #####################         
C 
C       INPUT VARIABLES: 
C       X - Variable 
C       Ext - Abbreviation of the name of the varia ble 
C       NR - Power to which each distribution is ra ised for each  
C            combination of actions 
C       PDFx - Value of the probability density fun ction at X 
C       CDFx - Value of the cumulative distribution  function at X 
C       i - Number of the variable 
C       j - Number of the combination of actions 
C 
C       MODELING VARIABLES: 
C       SNX - Standard Normal variable  
C       C - Value of the exceedance cumulative dist ribution function of  
C           the standard Normal distribution which corresponds to SNX 
C       C1, C2 - Value of the cumulative distributi on function at X 
C       L - Maximum number of variables allowed by the program 
C       Q - Maximum number of combinations of actio ns allowed by the  
C           program 
C       Pi - 3.14159... 
C 
C       OUTPUT VARIABLES: 
C       MuxN - Mean of the equivalent Normal distri bution of X 
C       SigmaxN - Standard deviation of the equival ent Normal  
C                 distribution of X 
C 
C       ########################################### #####################         
C         
        Integer*4 i,j,Q,L 
        Parameter (L=15) 
        Parameter (Q=16) 
        Character*3 Ext(L) 
        Real*8 Pi,X(L),CDFx(L),PDFx(L),MuxN(L),Sigm axN(L),C,C1,C2,SNX, 
     1         NR(Q,L) 
        Pi=4.*ATAN(1.) 
        C1=CDFx(i)**NR(j,i) 
        C2=CDFx(i)**(NR(j,i)-1) 
        C=1.-C1 
        Call InvNormal(C,SNX) 
        SigmaxN(i)=(EXP(-(SNX**2)/2.))/(NR(j,i)*C2* PDFx(i)*SQRT(2.*Pi)) 
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        MuxN(i)=X(i)-SigmaxN(i)*SNX 
        Call NorWrite(i,Ext,MuxN,SigmaxN) 
        return 
        End 
 
 
 
C       ########################################### #####################         
C         
        Subroutine GSER(Gamser,XX,X,Gln) 
C 
C       ########################################### #####################         
C         
C       Returns the incomplete Gamma function, gamm a(XX,X)/Gamma(XX),  
C       evaluated by its series representation as G amser. Also returns  
C       ln(Gamma(XX)) as Gln. 
C       ---------- 
C       For more details, see Press et al (1992), p p.212. 
C 
C       ########################################### #####################         
C         
        Integer*4 Itmax,N 
        Real*8 Eps 
        Parameter (Itmax=100,Eps=3.0E-7) 
        Real*8 XX,X,Gamser,Gln,AP,SUM,DEL,Gammln 
        External Gammln 
        Gln=Gammln(XX) 
        If (X.LE.0.) then 
          If (X.LT.0.) Pause 'x < 0 in GSER' 
          Gamser=0. 
          return 
        Endif 
        AP=XX 
        SUM=1./XX 
        DEL=SUM 
        Do 11 N=1,Itmax 
          AP=AP+1. 
          DEL=DEL*X/AP 
          SUM=SUM+DEL 
          If ((ABS(DEL)).LT.(ABS(SUM)*Eps)) goto 1 
 11     continue 
        PAUSE 'XX too large; Itmax too small in GSE R'         
 1      Gamser=SUM*EXP(-X+XX*LOG(X)-Gln) 
        return 
        End 
         
         
         
C       ########################################### #####################         
C         
        Subroutine GCF(Gammcf,XX,X,Gln) 
C 
C       ########################################### #####################         
C         
C       Returns the incomplete Gamma function, gamm a(XX,X)/Gamma(XX),  
C       evaluated by its continued fraction represe ntation as Gammcf.  
C       Also returns ln(Gamma(XX)) as Gln. 
C       ---------- 
C       For more details, see Press et al (1992), p p.212.        
C 
C       ########################################### #####################         
C         
        Integer*4 Itmax,i 
        Real*8 Eps,Fpmin 
        Parameter (Itmax=100,Eps=3.0E-7,Fpmin=1.0E- 30) 
        Real*8 XX,X,Gammcf,Gln,an,b,c,d,del,h,Gamml n 
        External Gammln 
        Gln=Gammln(XX) 
        b=X+1.-XX 
        c=1./Fpmin 
        d=1./b 
        h=d 
        Do 11 i=1,Itmax 
          an=-i*(i-XX) 
          b=b+2.      
          d=an*d+b           
          If (ABS(d).LT.Fpmin) d=Fpmin 
          c=b+an/c 
          If (ABS(c).LT.Fpmin) c=Fpmin 
          d=1./d 
          del=d*c 
          h=h*del 
          If (ABS(del-1.).LT.Eps) goto 1 
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 11     continue 
        PAUSE 'XX too large; Itmax too small in GCF '         
 1      Gammcf=EXP(-X+XX*LOG(X)-Gln)*h 
        return 
        End 
 
 
 
C       ########################################### #####################         
C         
        Function Betacf(ZZ,WW,VV) 
C 
C       ########################################### #####################         
C         
C       Returns continued fraction for the incomple te Beta function by  
C       modified Lentz's method. 
C       ---------- 
C       For more details, see Press et al (1992), p p.221. 
C 
C       ########################################### #####################         
C         
        Integer*4 Maxit,M,M2 
        Real*8 Eps,Fpmin 
        Parameter (Maxit=100,Eps=3.0E-7,Fpmin=1.0E- 30) 
        Real*8 ZZ,WW,VV,aa,c,d,del,h,qab,qam,qap,Be tacf 
        qab=ZZ+WW 
        qap=ZZ+1. 
        qam=ZZ-1. 
        c=1. 
        d=1.-qab*VV/qap 
        If (ABS(d).LT.Fpmin) d=Fpmin 
        d=1./d 
        h=d 
        Do 11 M=1,Maxit 
          M2=2*M 
          aa=M*(WW-M)*VV/((qam+M2)*(ZZ+M2)) 
          d=1.+aa*d 
          If (ABS(d).LT.Fpmin) d=Fpmin 
          c=1.+aa/c 
          If (ABS(c).LT.Fpmin) c=Fpmin 
          d=1./d 
          h=h*d*c 
          aa=-(ZZ+M)*(qab+M)*VV/((ZZ+M2)*(qap+M2)) 
          d=1.+aa*d 
          If (ABS(d).LT.Fpmin) d=Fpmin 
          c=1.+aa/c 
          If (ABS(c).LT.Fpmin) c=Fpmin 
          d=1./d 
          del=d*c 
          h=h*del 
          If ((ABS(del-1.)).LT.Eps) goto 1 
 11     continue 
        PAUSE 'ZZ or WW too big, or Maxit too small  in Betacf' 
 1      Betacf=h 
        return 
        End 
         
         
         
C       ########################################### #####################        
C         
        Function Pythag(a,b) 
C 
C       ########################################### #####################        
C         
C       Computes SQRT(a*a+b*b) without destructive underflow or  
C       overflow. 
C       ---------- 
C       For more details, see Press et al (1992), p p.62. 
C 
C       ########################################### #####################        
C         
        Real*8 a,b,aa,ab,Pythag 
        aa=DABS(a) 
        ab=DABS(b) 
        If (aa.GT.ab) then 
          Pythag=aa*DSQRT(1.+(ab/aa)**2) 
        else 
          If (ab.EQ.0.) then 
            Pythag=0. 
          else 
            Pythag=ab*DSQRT(1.+(aa/ab)**2) 
          Endif 
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        Endif 
        return 
        End 
 
 
 
C       ########################################### #####################        
C       
        Subroutine HandR(FDer,N,X,OBJF,OBJGRD,Par) 
C 
C       ########################################### #####################        
C       
C       Returns the failure function, OBJF, & its f irst partial  
C       derivatives, OBJGRD, for the failure mode o f overtopping using  
C       the H&R model. 
C        
C       ########################################### #####################        
C 
C       INPUT VARIABLES: 
C       It - Iteration number 
C       FDer - Method of calculation of the first p artial derivatives of  
C              the failure function overtopping 
C       N - Number of variables 
C       DSWL - Definition of the SWL 
C       X - Variables of the failure mode 
C       Par - For Mode=1, it is the prescribed seaw all crest level; for  
C             Mode=2, it is the starting seawall cr est level (from which 
C             the program iterates to find the requ ired value of the  
C             seawall crest level)   
C       C1 - Parameter used in the H&R model to cal culate C; it depends  
C            on the confidence value assigned to th e maximum run-up 
C       TR - Allowable discharge for each FORM calc ulation 
C       k0 - Number of the FORM calculation 
C        
C       MODELING VARIABLES: 
C       L - Maximum number of variables allowed by the program 
C       Tp - Wave period of peak spectral density 
C       Hs - Significant height of the incident wav es 
C       A - Model coefficient 
C       B - Model coefficient 
C       SWL - Still-water-level 
C       Tide - Tide level 
C       Surge - Surge 
C       TangAlpha - Tangent of the seawall slope  
C       r - Roughness of the seawall's front slope 
C       eB - Model parameter 
C       Ep - Surf similarity parameter 
C       C - Parameter in the H&R model 
C       CL - Seawall crest level 
C       TL - Seawall toe level 
C       Rc - Seawall freeboard 
C       Rstar - Dimensionless freeboard 
C       Q - Mean overtopping discharge over unit le ngth of seawall 
C       Pi - 3.14159... 
C       AuxRstar - Variable mentioned in the Common  statements but  
C                  not used here 
C        
C       OUTPUT VARIABLES: 
C       OBJF - Failure function 
C       OBJGRD - First partial derivatives of OBJF 
C 
C       ########################################### #####################         
C         
        Integer*4 N,k0,L,FDer,It,AuxRstar,DSWL 
        Parameter (L=15) 
        Real*8 X(N),Par,OBJF,OBJGRD(N),TR(L) 
        Real*8 Tp,Hs,A,B,C,C1,SWL,Tide,Surge,TangAl pha,r,eB,Q,CL,Rc, 
     1         Rstar,Ep,Pi,TL 
        Common/BLOCK7/TR 
        Common/BLOCK9/k0,It,AuxRstar 
        Common/BLOCK10/C1 
        Common/BLOCK11/DSWL,TL 
         
        Pi=4.*ATAN(1.) 
        Tp=X(1) 
        Hs=X(2) 
        A=X(3) 
        B=X(4) 
        If (DSWL.EQ.1) then 
          SWL=X(5) 
          TangAlpha=X(6) 
          r=X(7) 
          eB=X(8) 
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        else 
          Tide=X(5) 
          Surge=X(6) 
          SWL=Tide+Surge 
          If (SWL.LT.TL) then 
            Write(*,789) SWL,TL 
            Write(50,789) SWL,TL 
 789        Format(// 3X,'ERROR: SWL Below Toe Leve l !' 
     1             / 10X,'SWL=',E17.10,3X,'TL=',E17 .10 /) 
            STOP 
          Endif 
          TangAlpha=X(7) 
          r=X(8) 
          eB=X(9) 
        Endif 
 
C       =========================================== ===================== 
C       Definition of the seawall crest level, CL. CL has the value of  
C       the design parameter (in Mode 1: if DSWL=1,  X=8; if DSWL=2, X=9)  
C       or it is the new variable (in Mode 2: if DS WL=1, X=9; if DSWL=2, 
C       X=10). 
C       =========================================== ===================== 
         
        If ((N.EQ.9.AND.DSWL.EQ.1).OR.(N.EQ.10.AND. DSWL.EQ.2)) then 
          CL=X(N) 
        else 
          CL=Par 
        Endif 
        If (CL.LT.SWL) then 
          Write(*,78) SWL,CL 
          Write(50,78) SWL,CL 
 78       Format(// 3X,'ERROR: SWL Above Crest Leve l !' 
     1           / 10X,'SWL=',E17.10,3X,'CL=',E17.1 0 /) 
          STOP 
        Endif 
         
C       =========================================== ===================== 
C       Calculation of C. 
C       =========================================== ===================== 
C         
C       ----------         
C       Calculation of the surf similarity paramete r, Ep. 
C       ---------- 
        Ep=TangAlpha/SQRT((2.*Pi*Hs)/(9.81*(Tp**2)) )  
        If (Ep.LE.2.) then 
          C=C1*1.35*Ep 
        else 
          C=C1*(3.-0.15*Ep) 
        Endif 
         
C       =========================================== ===================== 
C       Calculation of the dimensionless freeboard,  Rstar. 
C       =========================================== ===================== 
        Rc=CL-SWL 
        Rstar=Rc/(r*C*Hs) 
 
C       =========================================== ===================== 
C       Calculation, for Mode=2, of the first parti al derivative of the  
C       failure function in relation to CL=X(N), OB JGRD(N). 
C       =========================================== ===================== 
        If ((N.EQ.9.AND.DSWL.EQ.1).OR.(N.EQ.10.AND. DSWL.EQ.2)) then 
          If (FDer.EQ.1) then 
            If ((Rstar.LT.1.).AND.(Rstar.GE.0.)) th en 
              If (Ep.LE.2) then 
                OBJGRD(N)=((A*eB*B*SQRT(C1*1.35*Tp* TangAlpha) 
     1                    *(9.81**(3./4.))*(Hs**(1. /4.)))/ 
     1                    (r*((2.*Pi)**(1./4.))))*( (1.-Rstar)**(eB*B-1)) 
                goto 15 
              else 
                OBJGRD(N)=(A*eB*B*SQRT(9.81*Hs*C)/r )*((1-Rstar)** 
     1                    (eB*B-1)) 
                goto 15 
              Endif 
            Endif 
            If (Rstar.GE.1.) then 
              OBJGRD(N)=0. 
              goto 15 
            Endif 
            Write(*,8700) 
            Write(50,8700) 
 8700       Format(// 11X,'ERROR: Mode 2 - R* < 0 ! ') 
            STOP 
          Endif 
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        Endif 
         
C       =========================================== ===================== 
C       Calculation of the mean overtopping dischar ge over unit length  
C       of seawall, Q.         
C       =========================================== ===================== 
        If (Rstar.GE.1.) then 
          Q=0. 
        Endif 
        If ((Rstar.LT.1.).AND.(Rstar.GE.0.)) then 
          Q=A*SQRT(9.81*((C*Hs)**3))*((1.-Rstar)**( eB*B)) 
        Endif 
        If (Rstar.LT.0.) then 
          If (Rc.LT.0.) then 
            Write(*,8730)  
            Write(50,8730)  
 8730       Format(/ 11X,'ERROR: Rc < 0 - R* < 0 !'  /) 
          Endif 
          If (C.LT.0.) then 
            Write(*,8720)  
            Write(50,8720)  
 8720       Format(// 11X,'ERROR: C < 0 - R* < 0 !' ) 
          Endif 
          STOP 
        Endif 
         
C       =========================================== ===================== 
C       Calculation of the failure function, OBJF, & of its first  
C       partial derivatives, OBJGRD (if required). 
C       =========================================== ===================== 
        OBJF=TR(k0)-Q 
        If (FDer.EQ.1) then 
          If ((Rstar.LT.1.).AND.(Rstar.GE.0.)) then  
            If (Ep.LE.2) then 
              OBJGRD(1)=-((1.5*A*SQRT(Tp*(9.81**(5. /2.))*(Hs**(3./2.))* 
     1                  (C1**3)*(1.35**3)*(TangAlph a**3)*((2.*Pi)** 
     1                  (-3./2.))))*((1.-Rstar)**(e B*B))+(A*eB*B* 
     1                  ((1.-Rstar)** 
     1                  (eB*B-1)))*((Rc*(9.81**(3./ 4.))*(Hs**(1./4.))* 
     1                  SQRT(C1*1.35*TangAlpha))/(r *SQRT(Tp)*((2.*Pi) 
     1                  **(1./4.))))) 
              OBJGRD(2)=-(((3./4.)*A*(Hs**(-1./4.)) *SQRT((9.81**(5./2.)) 
     1                  *(C1**3)*(1.35**3)*(Tp**3)* (TangAlpha**3)* 
     1                  ((2.*Pi)**(-3./2.))))*((1.- Rstar)**(eB*B))+ 
     1                  (A*eB*B*((1.-Rstar)**(eB*B- 1)))* 
     1                  ((Rc*SQRT(C1*1.35*Tp*TangAl pha)*(9.81**(3./4.))) 
     1                  /(2.*r*(Hs**(3./4.))*((2.*P i)**(1./4.))))) 
              OBJGRD(3)=-SQRT((9.81**(5./2.))*(Hs** (3./2.))*(C1**3)* 
     1                  (1.35**3)*(TangAlpha**3)*(T p**3)*((2.*Pi)** 
     1                  (-3./2.)))*((1.-Rstar)**(eB *B)) 
              OBJGRD(4)=-A*eB*SQRT((9.81**(5./2.))* (Hs**(3./2.))*(C1**3) 
     1                  *(1.35**3)*(Tp**3)*(TangAlp ha**3)*((2.*Pi)** 
     1                  (-3./2.)))*((1.-Rstar)**(eB *B))*LOG(1.-Rstar) 
              If (DSWL.EQ.1) then 
                OBJGRD(5)=-((A*eB*B*SQRT(C1*1.35*Tp *TangAlpha)* 
     1                    (9.81**(3./4.))*(Hs**(1./ 4.)))/(r*((2.*Pi)** 
     1                    (1./4.))))*((1.-Rstar)**( eB*B-1)) 
                OBJGRD(6)=-(((3.*A*SQRT((9.81**(5./ 2.))*(Hs**(3./2.))* 
     1                    (C1**3)*(1.35**3)*(Tp**3) *((2.*Pi)**(-3./2.))* 
     1                    TangAlpha))/2.)*((1.-Rsta r)**(eB*B))+ 
     1                    ((A*eB*B*Rc*(Hs**(1./4.)) *(9.81**(3./4.))* 
     1                    SQRT(C1*1.35*Tp))/(r*((2. *Pi)**(1./4.))* 
     1                    SQRT(TangAlpha)))*((1.-Rs tar)**(eB*B-1))) 
                OBJGRD(7)=-A*eB*B*((1.-Rstar)**(eB* B-1))*((Rc* 
     1                    SQRT(C1*1.35*Tp*TangAlpha )*(9.81**(3./4.)) 
     1                    *(Hs**(1./4.)))/((r**2)*( (2.*Pi)**(1./4.)))) 
                OBJGRD(8)=-A*B*SQRT((9.81**(5./2.)) *(Hs**(3./2.))* 
     1                    (C1**3)*(1.35**3)*(Tp**3) *(TangAlpha**3)* 
     1                    ((2.*Pi)**(-3./2.)))*((1. -Rstar)**(eB*B))* 
     1                    LOG(1.-Rstar) 
              else 
                OBJGRD(5)=-((A*eB*B*SQRT(C1*1.35*Tp *TangAlpha)* 
     1                    (9.81**(3./4.))*(Hs**(1./ 4.)))/(r*((2.*Pi)** 
     1                    (1./4.))))*((1.-Rstar)**( eB*B-1)) 
                OBJGRD(6)=-((A*eB*B*SQRT(C1*1.35*Tp *TangAlpha)* 
     1                    (9.81**(3./4.))*(Hs**(1./ 4.)))/(r*((2.*Pi)** 
     1                    (1./4.))))*((1.-Rstar)**( eB*B-1)) 
                OBJGRD(7)=-(((3.*A*SQRT((9.81**(5./ 2.))*(Hs**(3./2.))* 
     1                    (C1**3)*(1.35**3)*(Tp**3) *((2.*Pi)**(-3./2.))* 
     1                    TangAlpha))/2.)*((1.-Rsta r)**(eB*B))+ 
     1                    ((A*eB*B*Rc*(Hs**(1./4.)) *(9.81**(3./4.))* 
     1                    SQRT(C1*1.35*Tp))/(r*((2. *Pi)**(1./4.))* 
     1                    SQRT(TangAlpha)))*((1.-Rs tar)**(eB*B-1))) 
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                OBJGRD(8)=-A*eB*B*((1.-Rstar)**(eB* B-1))*((Rc* 
     1                    SQRT(C1*1.35*Tp*TangAlpha )*(9.81**(3./4.)) 
     1                    *(Hs**(1./4.)))/((r**2)*( (2.*Pi)**(1./4.)))) 
                OBJGRD(9)=-A*B*SQRT((9.81**(5./2.)) *(Hs**(3./2.))* 
     1                    (C1**3)*(1.35**3)*(Tp**3) *(TangAlpha**3)* 
     1                    ((2.*Pi)**(-3./2.)))*((1. -Rstar)**(eB*B))* 
     1                    LOG(1.-Rstar) 
              Endif 
            else 
              OBJGRD(1)=((3.*A*9.81*C1*0.15*Hs*SQRT (C)*TangAlpha)/ 
     1                  (2.*SQRT(2.*Pi)))*((1.-Rsta r)**(eB*B))+(A*eB*B)* 
     1                  ((1.-Rstar)**(eB*B-1))*((Rc *0.15*TangAlpha*9.81* 
     1                  C1)/(r*SQRT(2.*Pi*C))) 
              OBJGRD(2)=-((3.*A*(C**(3./2.))*SQRT(9 .81*Hs))/2.)*((1.- 
     1                  Rstar)**(eB*B))-((3.*A*9.81 *0.15*Tp*SQRT(C)*C1* 
     1                  TangAlpha)/(4.*SQRT(2.*Pi)) )*((1.-Rstar)** 
     1                  (eB*B))-((A*eB*B*SQRT(9.81* (Hs**3)*(C**3))))* 
     1                  ((1.-Rstar)**(eB*B-1))*((Rc *(C+0.15*C1*Tp* 
     1                  TangAlpha*SQRT(9.81)/(2.*SQ RT(2.*Pi*Hs))))/ 
     1                  ((Hs**2)*r*(C**2))) 
              OBJGRD(3)=-SQRT(9.81*(Hs**3)*(C**3))* ((1.-Rstar)**(eB*B)) 
              OBJGRD(4)=-A*eB*SQRT(9.81*(Hs**3)*(C* *3))*((1.-Rstar)** 
     1                  (eB*B))*LOG(1.-Rstar) 
              If (DSWL.EQ.1) then 
                OBJGRD(5)=-A*eB*B*SQRT(9.81*Hs*C)*( (1.-Rstar)**(eB*B-1)) 
     1                     /r 
                OBJGRD(6)=((3.*A*Hs*9.81*0.15*Tp*C1 *SQRT(C))/(2.* 
     1                    SQRT(2.*Pi)))*((1.-Rstar) **(eB*B))+(A*eB*B)* 
     1                    ((1.-Rstar)**(eB*B-1))*(( Rc*0.15*Tp*9.81*C1)/ 
     1                    (r*SQRT(2.*Pi*C))) 
                OBJGRD(7)=-A*eB*B*Rc*SQRT(9.81*Hs*C )*((1.-Rstar)** 
     1                    (eB*B-1))/(r**2) 
                OBJGRD(8)=-A*B*SQRT(9.81*(Hs**3)*(C **3))*((1.-Rstar)** 
     1                    (eB*B))*LOG(1.-Rstar) 
              else 
                OBJGRD(5)=-A*eB*B*SQRT(9.81*Hs*C)*( (1.-Rstar)**(eB*B-1)) 
     1                     /r 
                OBJGRD(6)=-A*eB*B*SQRT(9.81*Hs*C)*( (1.-Rstar)**(eB*B-1)) 
     1                     /r 
                OBJGRD(7)=((3.*A*Hs*9.81*0.15*Tp*C1 *SQRT(C))/(2.* 
     1                    SQRT(2.*Pi)))*((1.-Rstar) **(eB*B))+(A*eB*B)* 
     1                    ((1.-Rstar)**(eB*B-1))*(( Rc*0.15*Tp*9.81*C1)/ 
     1                    (r*SQRT(2.*Pi*C))) 
                OBJGRD(8)=-A*eB*B*Rc*SQRT(9.81*Hs*C )*((1.-Rstar)** 
     1                    (eB*B-1))/(r**2) 
                OBJGRD(9)=-A*B*SQRT(9.81*(Hs**3)*(C **3))*((1.-Rstar)** 
     1                    (eB*B))*LOG(1.-Rstar) 
              Endif 
            Endif 
          Endif 
          If (Rstar.GE.1.) then 
            Do 2342 i=1,N 
              OBJGRD(i)=0. 
 2342       continue 
          Endif 
          If (Rstar.LT.0.) then 
            Write(*,8701) 
            Write(50,8701) 
 8701       Format(// 11X,'ERROR: R* < 0 !') 
            STOP 
          Endif 
        Endif 
 15     return 
        End 
         
         
         
C       ########################################### #####################        
C       
        Subroutine Owen(FDer,N,X,OBJF,OBJGRD,Par) 
C 
C       ########################################### #####################        
C       
C       Returns the failure function, OBJF, & its f irst partial  
C       derivatives, OBJGRD, for the failure mode o f overtopping using  
C       Owen's model. 
C 
C       ########################################### #####################        
C 
C       INPUT VARIABLES: 
C       FDer - Method of calculation of the first p artial derivatives of  
C              the failure function of overtopping 
C       N - Number of variables 
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C       DSWL - Definition of the SWL 
C       X - Variables of the failure mode 
C       Par - For Mode=1, it is the prescribed seaw all crest level; for  
C             Mode=2, it is the starting seawall cr est level (from which 
C             the program iterates to find the requ ired value of the  
C             seawall crest level)   
C       TR - Allowable discharge for each FORM calc ulation 
C       k0 - Number of the FORM calculation 
C        
C       MODELING VARIABLES: 
C       L - Maximum number of variables allowed by the program 
C       Tm - Mean zero-crossing wave period 
C       Hs - Significant height of the incident wav es 
C       S - Incident wave steepness 
C       A - Model coefficient 
C       B - Model coefficient 
C       SWL - Still-water-level 
C       Tide - Tide level 
C       Surge - Surge 
C       r - Roughness of the seawall's front slope 
C       eB - Model parameter 
C       CL - Seawall crest level 
C       TL - Seawall toe level 
C       Q - Mean overtopping discharge over unit le ngth of seawall 
C       Pi - 3.14159... 
C       It, AuxRstar - Variables mentioned in the C ommon statements but  
C                      not used here 
C        
C       OUTPUT VARIABLES: 
C       OBJF - Failure function 
C       OBJGRD - First partial derivatives of OBJF 
C 
C       ########################################### #####################         
C         
        Integer*4 N,L,k0,FDer,It,AuxRstar,DSWL 
        Parameter (L=15) 
        Real*8 X(N),Par,OBJF,OBJGRD(N),TR(L) 
        Real*8 Pi,Tm,Hs,A,B,SWL,Tide,Surge,r,eB,S,C L,Q,TL 
        Common/BLOCK7/TR 
        Common/BLOCK9/k0,It,AuxRstar 
        Common/BLOCK11/DSWL,TL 
         
        Pi=4.*ATAN(1.) 
        Tm=X(1) 
        Hs=X(2) 
        A=X(3) 
        B=X(4) 
        If (DSWL.EQ.1) then 
          SWL=X(5) 
          r=X(6) 
          eB=X(7) 
        else 
          Tide=X(5) 
          Surge=X(6) 
          SWL=Tide+Surge 
          If (SWL.LT.TL) then 
            Write(*,789) SWL,TL 
            Write(50,789) SWL,TL 
 789        Format(// 3X,'ERROR: SWL Below Toe Leve l !' 
     1             / 10X,'SWL=',E17.10,3X,'TL=',E17 .10 /) 
            STOP 
          Endif 
          r=X(7) 
          eB=X(8) 
        Endif 
        S=(2.*Pi*Hs)/(9.81*(Tm**2)) 
 
C       =========================================== ===================== 
C       Definition of the seawall crest level, CL. CL has the value of  
C       the design parameter (in Mode 1: if DSWL=1,  X=7; if DSWL=2, X=8)  
C       or it is the new variable (in Mode 2: if DS WL=1, X=8; if DSWL=2, 
C       X=9). For Mode=2, the first partial derivat ive of the failure  
C       function in relation to CL=X(N), OBJGRD(N),  has to be calculated. 
C       =========================================== ===================== 
         
        If ((N.EQ.8.AND.DSWL.EQ.1).OR.(N.EQ.9.AND.D SWL.EQ.2)) then 
          CL=X(N) 
          If (FDer.EQ.1) then 
            OBJGRD(N)=(A*eB*B*SQRT(9.81*Hs)/(r))* 
     1                EXP((-eB*B*SQRT(S)*(CL-SWL))/ (r*Hs*SQRT(2.*Pi))) 
            goto 15 
          Endif 
        else 
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          CL=Par 
        Endif 
        If (CL.LT.SWL) then 
          Write(*,78) SWL,CL 
          Write(50,78) SWL,CL 
 78       Format(// 3X,'ERROR: SWL Above Crest Leve l !' / 
     1           10X,'SWL=',E17.10,3X,'CL=',E17.10)  
          STOP 
        Endif 
         
C       =========================================== ===================== 
C       Calculation of the mean overtopping dischar ge over unit length  
C       of seawall, Q.         
C       =========================================== ===================== 
        Q=A*SQRT((9.81*(Hs**3))/(S/(2.*Pi)))* 
     1    EXP((-eB*B*SQRT(S)*(CL-SWL))/(r*Hs*SQRT(2 .*Pi))) 
         
C       =========================================== ===================== 
C       Calculation of the failure function, OBJF, & of its first  
C       partial derivatives, OBJGRD (if required). 
C       =========================================== ===================== 
        OBJF=TR(k0)-Q 
        If (FDer.EQ.1) then 
          OBJGRD(1)=((A*SQRT((9.81*2.*Pi*(Hs**3))/( S))/(2.*S))* 
     1              EXP((-eB*B*SQRT(S)*(CL-SWL))/(r *Hs*SQRT(2.*Pi)))+ 
     1              (A*eB*B*(CL-SWL)*SQRT(9.81*Hs)/ (2.*r*S))* 
     1              EXP((-eB*B*SQRT(S)*(CL-SWL))/(r *Hs*SQRT(2.*Pi))))* 
     1              ((-4.*Pi*Hs)/(9.81*(Tm**3))) 
          OBJGRD(2)=-(A*9.81*Tm)*EXP((-eB*B*(CL-SWL ))/ 
     1               (r*Tm*SQRT(9.81*Hs))) 
     1              -(A*eB*B*(CL-SWL)*SQRT(9.81)/(2 .*r*SQRT(Hs)))* 
     1              EXP((-eB*B*(CL-SWL))/(r*Tm*SQRT (9.81*Hs))) 
          OBJGRD(3)=-SQRT((9.81*(Hs**3))/(S/(2.*Pi) ))* 
     1              EXP((-eB*B*SQRT(S)*(CL-SWL))/(r *Hs*SQRT(2.*Pi))) 
          OBJGRD(4)=(A*eB*(CL-SWL)*SQRT(9.81*Hs)/r) * 
     1              EXP((-eB*B*SQRT(S)*(CL-SWL))/(r *Hs*SQRT(2.*Pi))) 
          If (DSWL.EQ.1) then 
            OBJGRD(5)=-(A*eB*B*SQRT(9.81*Hs)/r)* 
     1                EXP((-eB*B*SQRT(S)*(CL-SWL))/ (r*Hs*SQRT(2.*Pi))) 
            OBJGRD(6)=-(A*eB*B*(CL-SWL)*SQRT(9.81*H s)/(r**2))* 
     1                EXP((-eB*B*SQRT(S)*(CL-SWL))/ (r*Hs*SQRT(2.*Pi))) 
            OBJGRD(7)=(A*B*(CL-SWL)*SQRT(9.81*Hs)/r )* 
     1                EXP((-eB*B*SQRT(S)*(CL-SWL))/ (r*Hs*SQRT(2.*Pi))) 
          else 
            OBJGRD(5)=-(A*eB*B*SQRT(9.81*Hs)/r)* 
     1                EXP((-eB*B*SQRT(S)*(CL-SWL))/ (r*Hs*SQRT(2.*Pi))) 
            OBJGRD(6)=-(A*eB*B*SQRT(9.81*Hs)/r)* 
     1                EXP((-eB*B*SQRT(S)*(CL-SWL))/ (r*Hs*SQRT(2.*Pi))) 
            OBJGRD(7)=-(A*eB*B*(CL-SWL)*SQRT(9.81*H s)/(r**2))* 
     1                EXP((-eB*B*SQRT(S)*(CL-SWL))/ (r*Hs*SQRT(2.*Pi))) 
            OBJGRD(8)=(A*B*(CL-SWL)*SQRT(9.81*Hs)/r )* 
     1                EXP((-eB*B*SQRT(S)*(CL-SWL))/ (r*Hs*SQRT(2.*Pi))) 
          Endif 
        Endif 
 15     return 
        End 
 
 
 
C       ########################################### #####################        
C       
        Subroutine SDunes(N,X,OBJF,Par) 
C 
C       ########################################### #####################        
C       
C       Returns the failure function, OBJF, for the  failure mode of dune 
C       erosion using Vellinga's method & allowing for movements of  
C       sand only seaward during the storm surge. 
C 
C       ########################################### #####################        
C 
C       INPUT VARIABLES: 
C       N - Number of variables 
C       X - Variables of the failure mode 
C       DSWL - Definition of the SWL 
C       Par - For Mode=1, it is the prescribed nour ishment width; for  
C             Mode=2, it is the starting nourishmen t width (from which 
C             the program iterates to find the requ ired value of the  
C             nourishment width)   
C       TR - Allowable erosion distance for each FO RM calculation 
C       k0 - Number of the FORM calculation 
C       ctcurv - Coastal curvature in degrees per 1 000m  
C                (0<=ctcurv<=24Deg/1000m) 



Program Listing 

C7-105 

C       NPD - Initially, the number of points defin ing the initial  
C             profile; then, the number of points d efining the  
C             nourished profile 
C       NPDOld - Number of points defining the init ial profile 
C       (XP,YP) - Initially, the coordinates of the  points defining the  
C                 initial profile; then, the coordi nates of the points  
C                 defining the changed profile; fin ally, the coordinates  
C                 of the points defining the nouris hed profile 
C       (XPOld,YPOld) - Coordinates of the points d efining the initial  
C                       profile 
C       NPch - Number of points to be changed in th e initial profile 
C       t - First point to be changed in the initia l profile, point no.t 
C        
C       MODELING VARIABLES: 
C       L - Maximum number of variables allowed by the program 
C       ka - Maximum number of iterations allowed b y the program to find  
C            the final position of Vellinga's profi le & the final  
C            location of the surcharge face 
C       je - Number of the iteration to find the fi nal position of  
C            Vellinga's profile 
C       j - Number of the iteration to find the fin al location of the 
C           surcharge face 
C       Er - Maximum number of points (XP,YP) allow ed by the program 
C       h - Storm surge level 
C       Tide - Tide level 
C       Surge - Surge 
C       Hs - Offshore significant wave height 
C       DP - Change in the initial profile 
C       D50 - Particle size: D50 of the dune sand 
C       Ac - Accuracy of the computation 
C       GB - Gust bumps 
C       SD - Storm surge duration 
C       MuHs - Mean of Hs expressed as a function o f h 
C       W - Fall velocity of dune sand in seawater 
C       Depth - Depth of Vellinga's parabolic post- storm profile 
C       Le - Length of Vellinga's parabolic post-st orm profile 
C       nourwidt - Nourishment width at top level 
C       (S1,T1) - Intersection point between the no urished profile & the  
C                 surge level 
C       (S9,T9) - Point where the parabolic part of  Vellinga's profile  
C                 finishes 
C       YPT9 - Y-coordinate of the point in the nou rished profile which 
C              has X=S9 
C       (S2,T2) - Intersection point between the no urished profile & the 
C                 gradient 1:mt of Vellinga's profi le 
C       S8 - X-coordinate of the starting point of the parabolic part of 
C            Vellinga's post-storm profile 
C       (S3,T3) - Intersection point between the no urished profile & the  
C                 gradient 1:md of Vellinga's profi le 
C       NumHump - Number of humps 
C       NumDep - Number of depressions 
C       BH - Area of a hump 
C       SHump - Cumulative area of the humps starti ng from the seaward  
C               end of the profiles 
C       BD - Area of a depression 
C       SDep - Cumulative area of the depressions s tarting from the  
C              seaward end of the profiles 
C       C - Area of erosion between the surge level , the nourished  
C           profile above surge & the gradient 1:md  
C       B - Area between the surge level & the grad ient 1:mt of  
C           Vellinga's profile 
C       E - Area between points (S9,T9) & (S2,T2), between the surge  
C           level & the nourished profile 
C       (S4,T4) - Intersection point between the no urished profile & the  
C                 surcharge gradient, 1:md 
C       S10 - X-coordinate of the point of intersec tion between the  
C             surge level & the gradient 1:md of th e surcharge 
C       SurchEros - Surcharge on erosion area C abo ve surge level to  
C                   take into account the effects o f the accuracy of  
C                   the computation, of the storm s urge duration & of  
C                   the gust bumps 
C       SurchLongT - Surcharge on erosion area C ab ove surge level to  
C                    take into account the effect o f a gradient in the  
C                    longshore transport 
C       TSurch - Total surcharge on erosion area C which is the sum of  
C                the surcharges SurchEros plus Surc hLongT 
C       SurD - Surcharge distance 
C       Err - Error in the balance between erosion & accretion (assuming  
C             movements of sand only seaward during  the storm surge) 
C       Mov - Value by which S8 is changed in each iteration performed  
C             to find the final position of Velling a's parabolic profile 
C       i, M1, Q1, Q3, LD, BE, AL, Aux1, Sin, Fim -  Auxiliary variables 
C       It, AuxRstar, MuxN,  
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C       md, mt, nourtlev, mnour, TL  - Variables me ntioned in the Common  
C                                      statements b ut not used here 
C        
C       OUTPUT VARIABLE: 
C       OBJF - Failure function 
C 
C       ########################################### #####################         
C         
        Integer*4 N,L,NPD,t,k0,ka,je,j,i,M1,Q1,NPch ,NPDOld,Aux1,Fim, 
     1            NumDep,NumHump,Er,It,AuxRstar,DSW L 
        Parameter (L=15) 
        Parameter (Er=100) 
        Parameter (ka=999) 
        Real*8 X(L),DP,h,Tide,Surge,Hs,D50,XP,YP,LD ,W,BE,AL,Depth,Le,S1, 
     1         T1,S9,T9,B,E,S2,T2,S8(0:Ka),C,S3,T3, SurchEros,OBJF,MuxN, 
     1         Par,md,mt,XPOld,YPOld,SurD(0:ka),mno ur,nourtlev,SD,Ac,GB, 
     1         S4,T4,nourwidt,Err(0:ka),S10(0:ka),M ov,Sin(0:ka),YPT9, 
     1         BD(Er),BH(Er),SDep(0:Er),SHump(0:Er) ,ctcurv,SurchLongT, 
     1         TSurch,TR(L),TL,MuHs 
        Common/BLOCK1/NPD,XP(100),YP(100) 
        Common/BLOCK2/t,NPch,XPOld(100),YPOld(100), NPDOld 
        Common/BLOCK3/MuxN(15),C,T3 
        Common/BLOCK4/md,mt,mnour,nourtlev,ctcurv 
        Common/BLOCK5/Ac,GB,SD 
        Common/BLOCK7/TR 
        Common/BLOCK9/k0,It,AuxRstar 
        Common/BLOCK11/DSWL,TL 
         
        Q1=0 
        Aux1=0 
        Mov=10. 
        S8(0)=0. 
        Err(0)=1 
        Sin(0)=-1. 
        je=1 
        j=1 
        MuHs=0. 
         
        If (DSWL.EQ.1) then 
          If (X(7).GE.3.0.AND.X(7).LT.7.0)  
     1      MuHs=0.6*X(7)+4.82-0.0063*((7.-X(7))**3 .13) 
          If (X(7).GT.7.0) MuHs=0.6*X(7)+4.82 
          Hs=X(1)+MuHs 
          D50=X(2) 
          DP=X(3) 
          SD=X(4) 
          GB=X(5) 
          Ac=X(6) 
          h=X(7) 
        else 
          If ((X(7)+X(8)).GE.3.0.AND.(X(7)+X(8)).LT .7.0)  
     1      MuHs=0.6*(X(7)+X(8))+4.82-0.0063*((7.-( X(7)+X(8)))**3.13) 
          If ((X(7)+X(8)).GT.7.0) MuHs=0.6*(X(7)+X( 8))+4.82 
          Hs=X(1)+MuHs 
          D50=X(2) 
          DP=X(3) 
          SD=X(4) 
          GB=X(5) 
          Ac=X(6) 
          Tide=X(7) 
          Surge=X(8) 
          h=Tide+Surge 
        Endif 
 
        NPD=NPDOld 
        Do 3610 i=1,NPD 
          XP(i)=XPOld(i) 
          YP(i)=YPOld(i) 
 3610   continue 
 
        Call Profile(t,NPch,DP,h,X,S1,T1,N,Par,nour widt) 
         
C       =========================================== ===================== 
C       Calculation of the shape of Vellinga's para bolic post-storm  
C       profile & of the position of the offshore p oint where the  
C       parabolic profile terminates: from the star ting point of the  
C       profile, the length is Le & the depth is De pth. 
C       =========================================== ===================== 
        LD=LOG10(D50)/LOG10(10.) 
        W=1./(10**(0.476*(LD**2)+2.18*LD+3.226)) 
        BE=Hs/7.6 
        AL=((Hs/7.6)**1.28)*((0.0268/W)**0.56) 
        Le=250.*AL 
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        Depth=5.717*BE 
         
C       =========================================== ===================== 
C       Definition of the position of Vellinga's pr ofile relative to the  
C       nourished profile in order to obtain a bala nce between the area  
C       of erosion & the area of accretion. 
C       =========================================== ===================== 
C 
        Do 2005 i=NPD,1,-1 
          If (YP(i).GE.T1) then 
            M1=i 
            goto 3069 
          Endif 
 2005   continue 
        Write(*,9929) 
        Write(50,9929) 
 9929   Format(// 6X,'ERROR: Surge Level Above the Dune Height !') 
        STOP 
 3069   If (YP(M1).NE.T1) M1=M1+1 
 
C       ----------                                                       
C       Definition of S8 which is the X-coordinate of the starting  
C       point of the parabolic part of Vellinga's p rofile. As a first 
C       approximation, S8=S1. 
C       ----------                                                       
        S8(je)=S1 
 7557   Call LandProf(je,S8,T1,M1,S1,C,S3,T3) 
 
C       ----------                                                       
C       Calculation of the coordinates, (S9,T9), of  the point where the  
C       parabolic profile finishes. 
C       ----------                                                       
        S9=S8(je)+Le 
        T9=T1-Depth 
        Call SeaProf(S9,T9,T1,B,E,S2,T2,YPT9) 
        Call HumpDep(je,BE,AL,S1,T1,S2,T2,S3,T3,S8, S9,T9,B,C,E,md,YPT9, 
     1               NumDep,NumHump,BD,BH,SDep,SHum p) 
 
C       =========================================== ===================== 
C       Calculation of the balance of erosion & acc retion. 
C       =========================================== ===================== 
        If (NumDep.GE.1) then 
          If (NumDep.GT.NumHump) then 
            If (NumHump.EQ.0) then 
              Err(je)=BD(NumDep) 
              Call Balance(je,Err,T2,T3,S8,Q1,Fim,M ov,Sin,Aux1) 
            else 
              Call Error(Q1,BH,BD,NumDep,NumHump,SD ep,SHump,Fim,je, 
     1                     Err,T2,T3,S8,Mov,Sin,Aux 1) 
            Endif 
          Endif 
          If (NumDep.EQ.NumHump) then 
            Call Error(Q1,BH,BD,NumDep,NumHump,SDep ,SHump,Fim,je,Err, 
     1                 T2,T3,S8,Mov,Sin,Aux1) 
          Endif 
          If (Fim.EQ.3) then 
            S4=0. 
            SurchEros=0. 
            SurchLongT=0. 
            TSurch=0. 
            SurD(j)=0. 
            goto 3355 
          else 
            If (Fim.EQ.1) goto 7557 
            If (Fim.EQ.2) goto 999 
          Endif 
        Endif 
        If ((NumDep.EQ.0).AND.(NumHump.EQ.0)) then 
          S4=0. 
          SurchEros=0. 
          SurchLongT=0. 
          TSurch=0. 
          SurD(j)=0. 
          Fim=3 
          goto 3355 
        Endif 
 
 999    S8(1)=S8(je) 
 
        Call SurchC(ctcurv,BE,W,S8,T1,S3,S4,T4,S10, SurD,SurchEros, 
     1              SurchLongT,TSurch) 
 
C       =========================================== ===================== 
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C       Calculation of the failure function, OBJF. 
C       =========================================== ===================== 
 3355   OBJF=TR(k0)+S4 
 
        return 
        End 
 
 
 
C       ########################################### #####################        
C       
        Subroutine LDunes(N,X,OBJF,Par) 
C 
C       ########################################### #####################        
C       
C       Returns the failure function, OBJF, for the  failure mode of dune 
C       erosion using Vellinga's method & allowing for movements of  
C       sand in both directions during the storm su rge. 
C 
C       ########################################### #####################        
C 
C       INPUT VARIABLES: 
C       N - Number of variables 
C       X - Variables of the failure mode 
C       DSWL - Definition of the SWL 
C       Par - For Mode=1, it is the prescribed nour ishment width; for  
C             Mode=2, it is the starting nourishmen t width (from which  
C             the program iterates to find the requ ired value of the  
C             nourishment width)   
C       TR - Allowable erosion distance for each FO RM calculation 
C       k0 - Number of the FORM calculation 
C       ctcurv - Coastal curvature in degrees per 1 000m  
C                (0<=ctcurv<=24Deg/1000m) 
C       NPD - Initially, the number of points defin ing the initial  
C             profile; then, the number of points d efining the  
C             nourished profile 
C       NPDOld - Number of points defining the init ial profile 
C       (XP,YP) - Initially, the coordinates of the  points defining the  
C                 initial profile; then, the coordi nates of the points  
C                 defining the changed profile; fin ally, the coordinates  
C                 of the points defining the nouris hed profile 
C       (XPOld,YPOld) - Coordinates of the points d efining the initial  
C                       profile 
C       NPch - Number of points to be changed in th e initial profile 
C       t - First point to be changed in the initia l profile, point no.t 
C        
C       MODELING VARIABLES: 
C       L - Maximum number of variables allowed by the program 
C       ka - Maximum number of iterations allowed b y the program to find  
C            the final position of Vellinga's profi le & the final  
C            location of the surcharge face 
C       je - Number of the iteration to find the fi nal position of  
C            Vellinga's profile 
C       j - Number of the iteration to find the fin al location of the 
C           surcharge face 
C       h - Storm surge level 
C       Tide - Tide level 
C       Surge - Surge 
C       Hs - Offshore significant wave height 
C       DP - Change in the initial profile 
C       D50 - Particle size: D50 of the dune sand 
C       Ac - Accuracy of the computation 
C       GB - Gust bumps 
C       SD - Storm surge duration 
C       MuHs - Mean of Hs expressed as a function o f h 
C       W - Fall velocity of dune sand in seawater 
C       Depth - Depth of Vellinga's parabolic post- storm profile 
C       Le - Length of Vellinga's parabolic post-st orm profile 
C       nourwidt - Nourishment width at top level 
C       (S1,T1) - Intersection point between the no urished profile & the  
C                 surge level 
C       (S9,T9) - Point where the parabolic part of  Vellinga's profile  
C                 finishes 
C       (S2,T2) - Intersection point between the no urished profile & the 
C                 gradient 1:mt of Vellinga's profi le 
C       S8 - X-coordinate of the starting point of the parabolic part of 
C            Vellinga's post-storm profile 
C       (S3,T3) - Intersection point between the no urished profile & the  
C                 gradient 1:md of Vellinga's profi le 
C       A - Area between the surge level & the para bolic part of  
C           Vellinga's profile 
C       C - Area of erosion between the surge level , the nourished  
C           profile above surge & the gradient 1:md  
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C       B - Area between the surge level & the grad ient 1:mt of  
C           Vellinga's profile 
C       Q - Area between the surge level & the nour ished profile below  
C           surge 
C       (S4,T4) - Intersection point between the no urished profile & the  
C                 surcharge gradient, 1:md 
C       S10 - X-coordinate of the point of intersec tion between the  
C             surge level & the gradient 1:md of th e surcharge 
C       SurchEros - Surcharge on erosion area C abo ve surge level to  
C                   take into account the effects o f the accuracy of  
C                   the computation, of the storm s urge duration & of  
C                   the gust bumps 
C       SurchLongT - Surcharge on erosion area C ab ove surge level to  
C                    take into account the effect o f a gradient in the  
C                    longshore transport 
C       TSurch - Total surcharge on erosion area C which is the sum of  
C                the surcharges SurchEros plus Surc hLongT 
C       SurD - Surcharge distance 
C       Err - Error in the balance between erosion & accretion (assuming  
C             movements of sand in both directions during the storm  
C             surge) 
C       Mov - Value by which S8 is changed in each iteration performed  
C             to find the final position of Velling a's parabolic profile 
C       i, M1, Q1, Q3, LD, BE, AL, Aux1,  
C       Sin, Fim, DS - Auxiliary variables 
C       It, AuxRstar, MuxN,  
C       md, mt, nourtlev, mnour, TL  - Variables me ntioned in the Common  
C                                      statements b ut not used here 
C        
C       OUTPUT VARIABLE: 
C       OBJF - Failure function 
C 
C       ########################################### #####################         
C         
        Integer*4 N,L,NPD,t,ka,k0,j,i,M1,NPch,NPDOl d,Aux1,je,Q1,Fim,It, 
     1            AuxRstar,DSWL 
        Parameter (L=15) 
        Parameter (ka=999) 
        Real*8 X(L),DP,h,Tide,Surge,Hs,D50,XP,YP,LD ,W,BE,AL,Depth,Le,A, 
     1         S1,T1,S9,T9,Q,B,S2,T2,S8(0:Ka),DS,C, S3,T3,SurchEros,OBJF, 
     1         MuxN,Par,md,mt,XPOld,YPOld,SurD(0:ka ),SD,Ac,GB,mnour, 
     1         nourtlev,S10(0:ka),S4,T4,nourwidt,Er r(0:ka),Mov, 
     1         Sin(0:ka),ctcurv,SurchLongT,TSurch,T R(L),TL,MuHs 
        Common/BLOCK1/NPD,XP(100),YP(100) 
        Common/BLOCK2/t,NPch,XPOld(100),YPOld(100), NPDOld 
        Common/BLOCK3/MuxN(15),C,T3 
        Common/BLOCK4/md,mt,mnour,nourtlev,ctcurv 
        Common/BLOCK5/Ac,GB,SD 
        Common/BLOCK7/TR 
        Common/BLOCK9/k0,It,AuxRstar 
        Common/BLOCK11/DSWL,TL 
         
        Fim=0 
        Q1=0 
        Aux1=0 
        Mov=10. 
        S8(0)=0. 
        Err(0)=1 
        Sin(0)=0. 
        j=1 
        je=1 
        MuHs=0. 
         
        If (DSWL.EQ.1) then 
          If (X(7).GE.3.0.AND.X(7).LT.7.0)  
     1      MuHs=0.6*X(7)+4.82-0.0063*((7.-X(7))**3 .13) 
          If (X(7).GT.7.0) MuHs=0.6*X(7)+4.82 
          Hs=X(1)+MuHs 
          D50=X(2) 
          DP=X(3) 
          SD=X(4) 
          GB=X(5) 
          Ac=X(6) 
          h=X(7) 
        else 
          If ((X(7)+X(8)).GE.3.0.AND.(X(7)+X(8)).LT .7.0)  
     1      MuHs=0.6*(X(7)+X(8))+4.82-0.0063*((7.-( X(7)+X(8)))**3.13) 
          If ((X(7)+X(8)).GT.7.0) MuHs=0.6*(X(7)+X( 8))+4.82 
          Hs=X(1)+MuHs 
          D50=X(2) 
          DP=X(3) 
          SD=X(4) 
          GB=X(5) 
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          Ac=X(6) 
          Tide=X(7) 
          Surge=X(8) 
          h=Tide+Surge 
        Endif 
 
        NPD=NPDOld 
        Do 3610 i=1,NPD 
          XP(i)=XPOld(i) 
          YP(i)=YPOld(i) 
 3610   continue 
 
        Call Profile(t,NPch,DP,h,X,S1,T1,N,Par,nour widt) 
 
C       =========================================== ===================== 
C       Calculation of the shape of Vellinga's para bolic post-storm  
C       profile & of the position of the offshore p oint where the  
C       parabolic profile terminates: from the star ting point of the  
C       profile, the length is Le & the depth is De pth. Calculation of  
C       the area A between the surge level & the pa rabolic part of  
C       Vellinga's profile. 
C       =========================================== ===================== 
        LD=LOG10(D50)/LOG10(10.) 
        W=1./(10**(0.476*(LD**2)+2.18*LD+3.226)) 
        BE=Hs/7.6 
        AL=((Hs/7.6)**1.28)*((0.0268/W)**0.56) 
        Le=250.*AL 
        Depth=5.717*BE 
        A=AL*BE*854.8 
 
C       =========================================== ===================== 
C       Definition of the position of Vellinga's pr ofile relative to the  
C       nourished profile in order to obtain a bala nce between the area  
C       of erosion & the area of accretion. 
C       =========================================== ===================== 
C 
        Do 2005 i=NPD,1,-1 
          If (YP(i).GE.T1) then 
            M1=i 
            goto 3069 
          Endif 
 2005   continue 
        Write(*,9929) 
        Write(50,9929) 
 9929   Format(// 6X,'ERROR: Surge Level Above the Dune Height !') 
        STOP 
 3069   If (YP(M1).NE.T1) M1=M1+1 
 
C       ----------                                                       
C       Definition of S8 which is the X-coordinate of the starting  
C       point of the parabolic part of Vellinga's p rofile. As a first 
C       approximation, S8=S1. 
C       ----------                                                       
        S8(je)=S1 
 6556   Call LandProf(je,S8,T1,M1,S1,C,S3,T3) 
 
C       ----------                                                       
C       Calculation of the coordinates, (S9,T9), of  the point where the  
C       parabolic profile finishes. 
C       ----------                                                       
        S9=S8(je)+Le 
        T9=T1-Depth 
        Call LSeaProf(S9,T9,S1,M1,T1,B,Q,S2,T2) 
 
C       =========================================== ===================== 
C       Calculation of Err. Err is the error in the  balance between  
C       erosion & accretion (assuming movements of sand in both 
C       directions during the storm surge). 
C       If |Err|>=1 then the balance between erosio n & accretion is 
C       not satisfactory. If Err>1, then accretion exceeds erosion  
C       (Vellinga's profile has to be moved landwar d); if Err<-1,  
C       then erosion exceeds accretion (Vellinga's profile has to be  
C       moved seaward, if S8 not equal to S1; if S8 =S1, no erosion is  
C       expected). After Vellinga's profile is move d, the new  
C       X-coordinate of the starting point of the p arabolic part of the  
C       profile, S8, is calculated. 
C       =========================================== ===================== 
        Err(je)=Q-B-A-C 
        If ((Err(je).LE.0.).AND.(Q1.EQ.0)) then 
          SurchEros=0. 
          SurchLongT=0. 
          TSurch=0. 
          SurD(j)=0. 
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          S4=0. 
          Fim=3 
          goto 3355 
        Endif 
        If (Err(je).LT.0.) then 
          Sin(je)=1. 
        else 
          Sin(je)=-1. 
        Endif 
        If (ABS(Err(je)).GE.1.) then 
          DS=Err(je)/(T3-T2) 
          je=je+1 
          If (je.GT.999) then 
            Write(*,9987) 
            Write(50,9987) 
 9987       Format(// 6X, 
     1          'ERROR: The maximum number of itera tions allowed by' /  
     1          6X,'       the program to find the final position of'/ 
     1          6X,'       Vellinga`s profile has b een exceeded !') 
            STOP 
          Endif 
          S8(je)=S8(je-1)-DS 
          If ((ABS(S8(je)-S8(je-2)).LT.0.0001).OR.( Aux1.EQ.1)) then 
            If (Sin(je-1).NE.Sin(je-2)) then 
              Mov=Mov/10. 
            Endif 
            S8(je)=S8(je-1)+Sin(je-1)*Mov 
            Aux1=1 
          Endif 
          Q1=1 
          goto 6556 
        Endif 
         
        S8(1)=S8(je) 
 
        Call SurchC(ctcurv,BE,W,S8,T1,S3,S4,T4,S10, SurD,SurchEros, 
     1              SurchLongT,TSurch) 
 
C       =========================================== ===================== 
C       Calculation of the failure function OBJF. 
C       =========================================== ===================== 
 3355   OBJF=TR(k0)+S4 
 
        return 
        End 
 
 
 
C       ########################################### #####################        
C       
        Subroutine Profile(t,NPch,DP,h,X,S1,T1,N,Pa r,nourwidt) 
C 
C       ########################################### #####################        
C       
C       Returns the coordinates of the nourished pr ofile, which is used  
C       for comparison with Vellinga's profile. 
C 
C       ########################################### #####################        
C 
C       INPUT VARIABLES: 
C       N - Number of variables 
C       X - Variables of the failure mode 
C       Par - For Mode=1, it is the prescribed nour ishment width; for  
C             Mode=2, it is the starting nourishmen t width (from which 
C             the program iterates to find the requ ired value of the  
C             nourishment width)   
C       DSWL - Definition of the SWL 
C       DP - Change in the initial profile 
C       h - Storm surge level 
C       NPch - Number of points to be changed in th e initial profile 
C       t - First point to be changed in the initia l profile, point no.t 
C       nourtlev - Nourishment top level 
C       1:mnour - Gradient of the nourished face 
C 
C       INPUT/OUTPUT VARIABLES: 
C       NPD - Initially, the number of points defin ing the initial  
C             profile; then, the number of points d efining the  
C             nourished profile 
C       (XP,YP) - Initially, the coordinates of the  points defining the  
C                 initial profile; then, the coordi nates of the points  
C                 defining the changed profile; fin ally, the coordinates  
C                 of the points defining the nouris hed profile 
C               
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C       MODELING VARIABLES: 
C       L - Maximum number of variables allowed by the program 
C       (XN,YN) - Intersection point between the ch anged profile & the 
C                 nourishment top level 
C       (XM,YM) - The most seaward point at the nou rishment top level 
C       (XQ,YQ) - Intersection point between the no urishment slope  
C                 1:mnour & the changed profile 
C       (XB,YB) - Intersection point between the ch anged profile & the  
C                 surge level 
C       i, k, M, M1, M2, M3, Q3,  
C       Zes, G, XPOld, YPOld - Auxiliary variables 
C       md, mt, ctcurv, TL - Variables mentioned in  the Common  
C                            statements but not use d here 
C        
C       OUTPUT VARIABLES: 
C       nourwidt - Nourishment width at top level 
C       (S1,T1) - Intersection point between the no urished profile & the  
C                 surge level 
C 
C       ########################################### #####################         
C         
        Integer*4 M,N,L,NPD,t,i,M1,M2,M3,Q3,NPch,k, DSWL 
        Parameter (L=15) 
        Parameter (M=100) 
        Real*8 X(L),DP,h,XP,YP,S1,T1,Par,XB,YB,md,m t,mnour,nourtlev, 
     1         nourwidt,ctcurv,XN,YN,XM,YM,XQ,YQ,Ze s,G,TL,XPOld(M), 
     1         YPOld(M) 
        Common/BLOCK1/NPD,XP(100),YP(100) 
        Common/BLOCK4/md,mt,mnour,nourtlev,ctcurv 
        Common/BLOCK11/DSWL,TL 
         
        Q3=0 
 
C       =========================================== ===================== 
C       Change in the Y-coordinate, YP, of NPch poi nts of the initial  
C       profile (YP(t),YP(t+1),...,YP(t+NPch-1)). T he change is DP & the 
C       new profile is referred to as the changed p rofile. 
C       =========================================== ===================== 
        Do 2291 i=t,(t+NPch-1)                     
          YP(i)=YP(i)+DP 
 2291   continue 
 
        Do 3499 i=1,NPD 
          XPOld(i)=XP(i) 
          YPOld(i)=YP(i) 
 3499   continue 
 
C       =========================================== ===================== 
C       Calculation of the intersection point, (XB, YB), between the  
C       changed profile & the surge level. 
C       =========================================== ===================== 
        Do 2305 i=NPD,1,-1 
          If (YP(i).GE.h) then 
            M1=i 
            goto 2306 
          Endif 
 2305   continue 
        Write(*,589)  
        Write(50,589)  
 589    Format(// 6X,'ERROR: Surge Level Above the Dune Height !') 
        STOP 
 2306   XB=XP(M1)+(XP(M1+1)-XP(M1))*(h-YP(M1))/(YP( M1+1)-YP(M1)) 
        YB=h 
      
C       =========================================== ===================== 
C       Calculation of a new profile based on nouri shment  
C       characteristics (gradient of the nourished face, 1:mnour, &  
C       nourishment top level, nourtlev), on the gi ven value of the  
C       design parameter (nourishment width at top level, nourwidt) & on  
C       the mode to be studied. The new profile is referred to as the 
C       nourished profile. 
C       =========================================== ===================== 
 
C       ---------- 
C       First, the width of the nourishment will ha ve the value of the  
C       design parameter (in Mode 1: if DSWL=1, X=7 ; if DSWL=2, X=8) or  
C       it is the new variable (in Mode 2: if DSWL= 1, X=8; if DSWL=2, 
C       X=9). For Mode=2, the first partial derivat ive of the failure  
C       function in relation to nourwidt=X(N), OBJG RD(N), has to be  
C       calculated. 
C       ---------- 
        If ((N.EQ.8.AND.DSWL.EQ.1).OR.(N.EQ.9.AND.D SWL.EQ.2)) then 
          nourwidt=X(N) 
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        else 
          nourwidt=Par 
        Endif 
        If (nourwidt.EQ.0.) then 
          S1=XB 
          T1=YB 
          return 
        Endif 
        If (nourwidt.LT.0.) then  
          Write(*,2155) nourwidt 
          Write(50,2155) nourwidt 
 2155     Format(// 11X,'ERROR: Nourishment Width =  ',E17.10,' < 0 !') 
          STOP 
        Endif 
 
C       ---------- 
C       Second, calculation of the intersection poi nt, (XN,YN), between   
C       the changed profile & the nourishment top l evel. 
C       ---------- 
        Do 2375 i=NPD,1,-1 
          If (YP(i).GT.nourtlev) then 
            M2=i 
            goto 2386 
          Endif 
          If (YP(i).EQ.nourtlev) then 
            M2=i 
            Q3=1 
            goto 2386 
          Endif 
 2375   continue 
        Write(*,1589) 
        Write(50,1589) 
 1589   Format(// 6X,'ERROR: Nourishment Top Level Above the',  
     1         1X,'Dune Height !') 
        STOP 
 2386   XN=XP(M2)+(XP(M2+1)-XP(M2))*(nourtlev-YP(M2 ))/(YP(M2+1)-YP(M2)) 
        YN=nourtlev 
         
C       ---------- 
C       Third, extension of the nourishment seaward  by distance nourwidt  
C       at the nourishment top level gives point (X M,YM). 
C       ---------- 
        XM=XN+nourwidt 
        YM=YN 
 
C       ---------- 
C       Fourth, extension of the nourishment downwa rds at a slope of  
C       1:mnour until it intersects the changed pro file gives point  
C       (XQ,YQ). 
C       ---------- 
        Do 4499 i=M2,NPD 
          If (XP(i).GT.XM) then 
            M3=i 
            goto 4398 
          Endif 
 4499   continue 
        Write(*,8225) 
        Write(50,8225) 
 8225   Format(// 11X,'Extend the Initial Profile S eaward !') 
        STOP 
 4398   Zes=XP(M3)-XM 
        G=YM-Zes/mnour 
        If (G.GT.YP(M3)) then 
          M3=M3+1 
          If (M3.GT.NPD) then 
            Write(*,9225) 
            Write(50,9225) 
 9225       Format(// 11X,'The Nourished Face Does Not Intersect the' / 
     1             11X,'Profile! Extend the Initial  Profile Seaward !') 
            STOP 
          Endif 
          goto 4398 
        Endif 
        XQ=XP(M3)-Zes*(YP(M3)-G)/(YM-G-(Zes*(YP(M3- 1)-YP(M3))/ 
     1     (XP(M3)-XP(M3-1)))) 
        YQ=YP(M3)+(XP(M3)-XQ)*(YP(M3-1)-YP(M3))/(XP (M3)-XP(M3-1)) 
 
C       ---------- 
C       Fifth, if the top level of the nourishment is above the surge  
C       level, & the nourished profile intersects t he changed profile  
C       below surge level, then the new coordinates  of the point  
C       (XB,YB) in the nourished profile have to be  calculated, (S1,T1). 
C       ---------- 
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        If ((nourtlev.GE.h).AND.(YQ.LT.YB)) then 
          S1=XM+mnour*(YM-YB) 
        else 
          S1=XB 
        Endif 
        T1=YB 
 
C       ---------- 
C       Finally, definition of the points, (XP,YP),  of the whole profile 
C       after the nourishment. 
C       ---------- 
        If ((M2-Q3).GE.1) then 
          Do 2381 i=1,(M2-Q3) 
            XP(i)=XPOld(i) 
            YP(i)=YPOld(i) 
 2381     continue 
        Endif 
        XP(M2-Q3+1)=XN 
        YP(M2-Q3+1)=YN 
        XP(M2-Q3+2)=XM 
        YP(M2-Q3+2)=YM 
        XP(M2-Q3+3)=XQ 
        YP(M2-Q3+3)=YQ 
         
        NPD=(M2-Q3+3)+(NPD-M3+1) 
        k=0 
        Do 2997 i=(M2-Q3+4),NPD 
          XP(i)=XPOld(M3+k) 
          YP(i)=YPOld(M3+k) 
          k=k+1 
 2997   continue 
         
        return 
        End 
         
 
 
C       ########################################### #####################        
C       
        Subroutine LandProf(je,S8,T1,M1,S1,C,S3,T3)  
C 
C       ########################################### #####################        
C       
C       Returns the intersection point, (S3,T3), be tween the nourished  
C       profile & the gradient 1:md of Vellinga's p rofile. It also  
C       returns the area, C, between the surge leve l, the nourished  
C       profile above surge & the gradient 1:md.  
C 
C       ########################################### #####################        
C 
C       INPUT VARIABLES: 
C       je - Number of the iteration to find the fi nal position of  
C            Vellinga's profile 
C       NPD - Number of points defining the nourish ed profile 
C       1:md - Gradient of the eroded dune face 
C       (XP,YP) - Coordinates of the points definin g the nourished  
C                 profile 
C       (S1,T1) - Intersection point between the no urished profile & the  
C                 surge level 
C       M1 - Number of the point, (XP(M1),YP(M1)), from seaward for  
C            which YP(M1)<=T1 
C       S8 - X-coordinate of the starting point of the parabolic part of 
C            Vellinga's post-storm profile 
C        
C       MODELING VARIABLES: 
C       ka - Maximum number of iterations allowed b y the program to find  
C            the final position of Vellinga's profi le & the final  
C            location of the surcharge face 
C       i, M3, U, V - Auxiliary variables 
C       mt, nourtlev, mnour, ctcurv - Variables men tioned in the Common  
C                                     statements bu t not used here 
C        
C       OUTPUT VARIABLES: 
C       (S3,T3) - Intersection point between the no urished profile & the  
C                 gradient 1:md of Vellinga's profi le 
C       C - Area of erosion between the surge level , the nourished  
C           profile above surge & the gradient 1:md  
C 
C       ########################################### #####################         
C       
        Integer*4 NPD,i,je,M1,M3,ka 
        Parameter (ka=999) 
        Real*8 T1,XP,YP,S1,S8(0:ka),C,S3,T3,U,V,md, mt,mnour,nourtlev, 
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     1         ctcurv 
        Common/BLOCK1/NPD,XP(100),YP(100) 
        Common/BLOCK4/md,mt,mnour,nourtlev,ctcurv 
 
C       =========================================== ===================== 
C       Calculation of the intersection point, (S3, T3), between the  
C       nourished profile & the gradient 1:md of Ve llinga's profile. 
C       =========================================== ===================== 
        If (S8(je).LT.XP(1)) then 
          Write(*,8625) 
          Write(50,8625) 
 8625     Format(// 11X,'Extend the Initial Profile  Landward !') 
          STOP 
        Endif 
        Do 0903 i=1,NPD 
          If (XP(i).GT.S8(je)) then 
            M3=i 
            goto 4977 
          Endif 
 0903   continue 
        Write(*,8925) 
        Write(50,8925) 
 8925   Format(// 11X,'Extend the Initial Profile S eaward !') 
        STOP 
 4977   U=S8(je)-XP(M3-1) 
        V=T1+U/md 
        If (V.LT.YP(M3-1)) then 
          M3=M3-1 
          If (M3.LE.1) then 
            Write(*,8225) 
            Write(50,8225) 
 8225       Format(// 11X,'Extend the Initial Profi le Landward !') 
            STOP 
          Endif 
          goto 4977 
        Endif 
        S3=XP(M3-1)+U*(V-YP(M3-1))/(V-T1-(U*(YP(M3- 1)-YP(M3))/ 
     1     (XP(M3)-XP(M3-1)))) 
        If (S3.LT.S8(je)) then 
          T3=YP(M3-1)-(S3-XP(M3-1))*(YP(M3-1)-YP(M3 ))/(XP(M3)-XP(M3-1)) 
        else 
          S3=S8(je) 
          T3=T1 
          C=0. 
          goto 2591 
        Endif 
 
C       =========================================== ===================== 
C       Calculation of area, C, between the surge l evel, the nourished  
C       profile above surge & the gradient 1:md.  
C       =========================================== ===================== 
        If ((XP(M3).LE.S1).AND.(XP(M1-1).LE.S1)) th en 
          C=0.5*(XP(M3)-S3)*((T3-T1)+(YP(M3)-T1))+ 
     1      0.5*(S1-XP(M1-1))*(YP(M1-1)-T1) 
        else  
          C=0.5*(S1-S3)*(T3-T1) 
        Endif 
        If ((M1-2).GE.M3) then 
          Do 4701 i=M3,(M1-2) 
            C=C+0.5*(XP(i+1)-XP(i))*((YP(i+1)-T1)+( YP(i)-T1)) 
 4701     continue 
        Endif 
        C=C-0.5*(S8(je)-S3)*(T3-T1) 
 2591   return 
        End 
 
         
 
C       ########################################### #####################        
C       
        Subroutine SeaProf(S9,T9,T1,B,E,S2,T2,YPT9)  
C 
C       ########################################### #####################        
C       
C       Returns the point of intersection, (S2,T2),  between the  
C       nourished profile & the gradient 1:mt of Ve llinga's profile. It  
C       also returns the area, B, between the surge  level & the gradient  
C       1:mt; & the area, E, between points (S9,T9)  & (S2,T2), between  
C       the surge level & the nourished profile. 
C        
C       ########################################### #####################        
C 
C       INPUT VARIABLES: 
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C       NPD - Number of points defining the nourish ed profile 
C       (XP,YP) - Coordinates of the points definin g the nourished  
C                 profile 
C       1:mt - Gradient of the toe of the post-stor m profile 
C       T1 - Y-coordinate of the intersection point  between the  
C            nourished profile & the surge level 
C       (S9,T9) - Point where the parabolic part of  Vellinga's profile  
C                 finishes 
C        
C       MODELING VARIABLES: 
C       i, M2, R1, R2, Zes, G - Auxiliary variables  
C       md, nourtlev, mnour, ctcurv - Variables men tioned in the Common  
C                                     statements bu t not used here 
C        
C       OUTPUT VARIABLES: 
C       YPT9 - Y-coordinate of the point in the nou rished profile which 
C              has X=S9 
C       (S2,T2) - Intersection point between the no urished profile & the 
C                 gradient 1:mt of Vellinga's profi le 
C       B - Area between the surge level & the grad ient 1:mt of  
C           Vellinga's profile 
C       E - Area between points (S9,T9) & (S2,T2), between the surge  
C           level & the nourished profile 
C 
C       ########################################### #####################         
C       
        Integer*4 NPD,i,M2,R1,R2 
        Real*8 XP,YP,T1,S2,T2,S9,T9,B,E,Zes,G,md,mt ,mnour, 
     1         nourtlev,YPT9,ctcurv 
        Common/BLOCK1/NPD,XP(100),YP(100) 
        Common/BLOCK4/md,mt,mnour,nourtlev,ctcurv 
 
C       =========================================== ===================== 
C       Calculation of the point of intersection, ( S2,T2), between the  
C       nourished profile & the gradient 1:mt of Ve llinga's profile. 
C       =========================================== ===================== 
        Do 4499 i=1,NPD 
          If (XP(i).GT.S9) then 
            M2=i 
            R1=M2 
            YPT9=YP(M2-1)+(YP(M2)-YP(M2-1))*(S9-XP( M2-1))/ 
     1           (XP(M2)-XP(M2-1)) 
            If (YPT9.GE.T9) then 
              S2=S9 
              T2=YPT9 
              B=0. 
              E=0. 
              M2=M2-1 
              return    
            else 
              goto 4398 
            Endif 
          Endif 
 4499   continue 
        Write(*,8275) 
        Write(50,8275) 
 8275   Format(// 11X,'Extend the Initial Profile S eaward !') 
        STOP 
 4398   Zes=XP(M2)-S9 
        G=T9-Zes/mt 
        If (G.GT.YP(M2)) then 
          M2=M2+1 
          If (M2.GT.NPD) then 
            Write(*,8225) 
            Write(50,8225) 
 8225       Format(// 11X,'Extend the Initial Profi le Seaward !') 
            STOP 
          Endif 
          goto 4398 
        Endif 
        S2=XP(M2)-Zes*(YP(M2)-G)/(T9-G-(Zes*(YP(M2- 1)-YP(M2))/ 
     1     (XP(M2)-XP(M2-1)))) 
        T2=YP(M2)+(XP(M2)-S2)*(YP(M2-1)-YP(M2))/(XP (M2)-XP(M2-1)) 
        M2=M2-1 
 
C       =========================================== ===================== 
C       Calculation of the area, B, between the sur ge level & the  
C       gradient 1:mt. 
C       =========================================== ===================== 
        B=0.5*(S2-S9)*((T1-T2)+(T1-T9)) 
 
C       =========================================== ===================== 
C       Calculation of the area, E, between points (S9,T9) & (S2,T2),  
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C       between the surge level & the nourished pro file. 
C       =========================================== ===================== 
        Do 101 i=1,NPD 
          If (XP(i).GT.S2) then 
            R2=i-1 
            goto 102 
          Endif 
 101    continue 
        Write(*,8925) 
        Write(50,8925) 
 8925   Format(// 11X,'Extend the Initial Profile S eaward !') 
        STOP 
 102    If ((R2.GT.S9).AND.(R1.LT.S2)) then 
          E=0.5*(XP(R1)-S9)*((T1-YP(R1))+(T1-YPT9)) +0.5*(S2-XP(R2))* 
     1      ((T1-T2)+(T1-YP(R2))) 
        else 
          E=0.5*(S2-S9)*((T1-T2)+(T1-YPT9)) 
        Endif 
        If (R2.GT.R1) then 
          Do 3781 i=R1,(R2-1) 
            E=E+0.5*(XP(i+1)-XP(i))*((T1-YP(i))+(T1 -YP(i+1))) 
 3781     continue 
        Endif 
        return 
        End 
         
 
 
C       ########################################### #####################        
C       
        Subroutine HumpDep(je,BE,AL,S1,T1,S2,T2,S3, T3,S8,S9,T9,B,C,E, 
     1                     md,YPT9,NumDep,NumHump,B D,BH,SDep,SHump) 
C 
C       ########################################### #####################        
C       
C       Returns the number of humps, Numhump, the n umber of depressions,  
C       NumDep, & the corresponding areas, BH & BD.  SHump & SDep are the  
C       corresponding cumulatives areas starting fr om the seaward end of  
C       the profiles. 
C 
C       ########################################### #####################        
C 
C       INPUT VARIABLES: 
C       je - Number of the iteration to find the fi nal position of  
C            Vellinga's profile 
C       NPD - Number of points defining the nourish ed profile 
C       (XP,YP) - Coordinates of the points definin g the nourished  
C                 profile 
C       (S1,T1) - Intersection point between the no urished profile & the  
C                 surge level 
C       (S9,T9) - Point where the parabolic part of  Vellinga's profile  
C                 finishes 
C       YPT9 - Y-coordinate of the point in the nou rished profile which 
C              has X=S9 
C       (S2,T2) - Intersection point between the no urished profile & the 
C                 gradient 1:mt of Vellinga's profi le 
C       S8 - X-coordinate of the starting point of the parabolic part of 
C            Vellinga's post-storm profile 
C       (S3,T3) - Intersection point between the no urished profile & the  
C                 gradient 1:md of Vellinga's profi le 
C       1:md - Gradient of the eroded dune face 
C       C - Area of erosion between the surge level , the nourished  
C           profile above surge & the gradient 1:md  
C       B - Area between the surge level & the grad ient 1:mt of  
C           Vellinga's profile 
C       E - Area between points (S9,T9) & (S2,T2), between the surge  
C           level & the nourished profile 
C       BE, AL - Auxiliary variables 
C        
C       MODELING VARIABLES: 
C       ka - Maximum number of iterations allowed b y the program to find  
C            the final position of Vellinga's profi le & the final  
C            location of the surcharge face 
C       Er - Maximum number of points (XP,YP) allow ed by the program 
C       (XPOld1,YPOld1) - Coordinates of the points  defining the  
C                         nourished profile 
C       NPV - Number of points defining Vellinga's profile 
C       (XPV,YPV) - Coordinates of the points defin ing Vellinga's  
C                   profile 
C       (XHStart,YHStart) - Coordinates of the star ting point of a hump 
C       (XHEnd,YHEnd) - Coordinates of the end poin t of a hump 
C       BH1 - Area between Vellinga's profile & the  surge level at the 
C             location of a hump. If it is the last  hump & the area C>0,  
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C             then BH1 is the area as defined previ ously plus the area C 
C       BH2 - Area between the nourished profile & the surge level at  
C             the location of a hump 
C       (XDStart,YDStart) - Coordinates of the star ting point of a  
C                           depression 
C       (XDEnd,YDEnd) - Coordinates of the end poin t of a depression 
C       BD1 - Area between Vellinga's profile & the  surge level at the 
C             location of a depression. If it is th e first depression &  
C             the area B>0, then BD1 is the area as  defined previously  
C             plus the area B  
C       BD2 - Area between the nourished profile & the surge level at  
C             the location of a depression. If it i s the first  
C             depression & the area B>0, then BD2 i s the area as defined  
C             previously plus the area E 
C       (XFUNC,YFUNC) - Coordinates of intersection  point between the  
C                       nourished profile & Velling a's profile 
C       i, j, k, N1, N2, N3, D0, D1, D2, D3, H0, H1 , H2, H3,  
C       Aux3, Aux4 - Auxiliary variables 
C        
C       OUTPUT VARIABLES: 
C       NumHump - Number of humps 
C       NumDep - Number of depressions 
C       BH - Area of a hump 
C       SHump - Cumulative area of the humps starti ng from the seaward  
C               end of the profiles 
C       BD - Area of a depression 
C       SDep - Cumulative area of the depressions s tarting from the  
C              seaward end of the profiles 
C 
C       ########################################### #####################         
C       
        Integer*4 NPD,k,ka,Er,j,je,i,N1,N2,N3,D0,D1 ,D2,D3,H0,H1,H2,H3, 
     1            Aux3,Aux4,NumDep,NumHump,NPV 
        Parameter (Er=100) 
        Parameter (ka=999) 
        Real*8 XP,YP,BE,AL,S1,T1,S2,T2,S3,T3,S8(0:K a),S9,T9,B,C,E, 
     1         md,YPT9,BD(Er),BD1(Er),BD2(Er),BH(Er ),BH1(Er),BH2(Er), 
     1         SDep(0:Er),SHump(0:Er),XPV(Er),YPV(E r),XHStart(Er), 
     1         XHEnd(Er),YHStart(Er),YHEnd(Er),XDSt art(Er),XDEnd(Er), 
     1         YDStart(Er),YDEnd(Er),XFunc,YFunc,XP Old1(Er),YPOld1(Er) 
        Common/BLOCK1/NPD,XP(100),YP(100) 
 
        Do 367 k=1,NPD 
          XPOld1(k)=XP(k) 
          YPOld1(k)=YP(k) 
 367    continue 
 
C       =========================================== ===================== 
C       Calculation of the Y-coordinate, YPV, of Ve llinga's points,  
C       (XPV,YPV), corresponding to the X-values of  the points in the  
C       nourished profile (XP,YP). The total number  of points in  
C       Vellinga's profile is NPV. 
C       =========================================== ===================== 
        Do 11 i=1,NPD 
          If (XP(i).GT.S3) then 
            N1=i 
            goto 15 
          Endif 
 11     continue 
 15     Do 12 i=NPD,1,-1 
          If (XP(i).LT.S9) then 
            N2=i 
            goto 16 
          Endif 
 12     continue 
 16     Do 13 i=1,NPD 
          If (XP(i).GT.S8(je)) then 
            N3=i 
            goto 17 
          Endif 
 13     continue 
 17     If (N2.GE.N1) then 
          NPV=N2-N1+4 
        else 
          NPV=3 
        Endif 
        XPV(1)=S3 
        YPV(1)=T3 
        XPV(NPV)=S2 
        YPV(NPV)=T2 
        XPV(NPV-1)=S9 
        YPV(NPV-1)=T9 
        If ((N3-1).GE.N1) then 
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          Do 14 i=2,(N3-1-N1+2) 
            XPV(i)=XP(N1+i-2) 
            YPV(i)=YPV(i-1)-(XPV(i)-XPV(i-1))/md 
 14       continue 
        Endif 
        If ((N3-N1+2).LE.(NPV-2)) then 
          Do 18 i=(N3-N1+2),(NPV-2) 
            XPV(i)=XP(N1+i-2) 
            YPV(i)=T1-(0.4714*Be*SQRT((AL**(-1))*(X PV(i)-S8(je))+18) 
     1             -2.*BE) 
 18       continue 
        Endif 
 
C       =========================================== ===================== 
C       Determination of the intersection points be tween the two  
C       profiles. Where the nourished profile is ab ove Vellinga's  
C       profile it is a hump. A hump starts at (XHS tart,YHStart) &  
C       finishes landward at (XHEnd,YHEnd). If the nourished profile is  
C       below Vellinga's profile, it is a depressio n. A depression  
C       starts at (XDStart,YDStart) & finishes land ward at  
C       (XDEnd,YDEnd). The total number of humps is  Numhump & the total  
C       number of depressions is NumDep. 
C       =========================================== ===================== 
        NumDep=0 
        NumHump=0 
        If (NPV.EQ.3) then 
          If (YPT9.GE.T9) then 
            NumHump=1 
            XHStart(1)=S9 
            YHStart(1)=YPT9 
            XHEnd(1)=S3 
            YHEnd(1)=T3 
            Write(*,*) 'Only 1 hump; Nao sei se ist o esta bem !' 
            Write(50,*) 'Only 1 hump; Nao sei se is to esta bem !' 
          else 
            NumDep=1 
            XDStart(1)=S9 
            YDStart(1)=YPT9 
            XDEnd(1)=S3 
            YDEnd(1)=T3 
            Write(*,*) 'Only 1 depression; Nao sei se isto esta bem !' 
            Write(50,*) 'Only 1 depression; Nao sei  se isto esta bem !' 
          Endif 
          goto 2950 
        Endif   
        Do 19 i=(NPV-2),2,-1 
          If ( 
     1        (YPV(i).GT.YP(N1+i-2)).OR. 
     1        ( 
     1         (YPV(i).EQ.YP(N1+i-2)).AND. 
     1         (( 
     1           (YPV(i+1).GT.YP(N1+i-1)).AND.(i.NE .(NPV-2))).OR. 
     1           ((B.GT.0.).AND.(i.EQ.(NPV-2))) 
     1         )) 
     1       ) then 
            If ((((YPV(i+1).LE.YP(N1+i-1)).AND.(i.N E.(NPV-2))).OR. 
     1         ((B.EQ.0.).AND.(i.EQ.(NPV-2)))).OR. 
     1         ((i+1).EQ.(NPV-1))) then 
              NumDep=NumDep+1 
              If (((i+1).EQ.(NPV-1)).AND.(B.EQ.0.))  then 
                XP(N1+i-1)=S9 
                YP(N1+i-1)=YPT9 
              Endif 
              If (((i+1).EQ.(NPV-1)).AND.(B.GT.0.))  then 
                XDStart(NumDep)=S9 
                YDStart(NumDep)=YPT9 
                goto 20 
              Endif 
              Aux3=0 
              Call XYFunc(je,i,N1,Aux3,BE,AL,T1,S8, XFunc,YFunc) 
              XDStart(NumDep)=XFunc 
              YDStart(NumDep)=YFunc 
              Do 3673 k=1,NPD 
                XP(k)=XPOld1(k) 
                YP(k)=YPOld1(k) 
 3673         continue 
            Endif 
 20         If ((YPV(i-1).LE.YP(N1+i-3)).AND.((i-1) .NE.1)) then 
              Aux3=1 
              Call XYFunc(je,i,N1,Aux3,BE,AL,T1,S8, XFunc,YFunc) 
              XDEnd(NumDep)=XFunc 
              YDEnd(NumDep)=YFunc 
            Endif 
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            If ((i-1).EQ.1) then 
              XDEnd(NumDep)=S3 
              YDEnd(NumDep)=T3 
            Endif 
            If (((i+1).EQ.(NPV-1)).AND.(B.EQ.0.)) t hen 
              NumHump=NumHump+1 
              XHStart(NumHump)=S2 
              YHStart(NumHump)=T2 
              XHEnd(NumHump)=XDStart(NumDep) 
              YHEnd(NumHump)=YDStart(NumDep) 
            Endif 
          Endif 
          If ( 
     1        (YPV(i).LT.YP(N1+i-2)).OR. 
     1        ( 
     1         (YPV(i).EQ.YP(N1+i-2)).AND. 
     1         (( 
     1           (YPV(i+1).LT.YP(N1+i-1)).AND.(i.NE .(NPV-2))).OR. 
     1           ((B.EQ.0.).AND.(i.EQ.(NPV-2))) 
     1         )) 
     1       ) then 
            If ((((YPV(i+1).GE.YP(N1+i-1)).AND.(i.N E.(NPV-2))).OR. 
     1         ((B.GT.0.).AND.(i.EQ.(NPV-2)))).OR. 
     1         ((i+1).EQ.(NPV-1))) then 
              NumHump=NumHump+1 
              If (((i+1).EQ.(NPV-1)).AND.(B.EQ.0.))  then 
                XHStart(NumHump)=S2 
                YHStart(NumHump)=T2 
                goto 21 
              Endif 
              If (((i+1).EQ.(NPV-1)).AND.(B.GT.0.))  then 
                XP(N1+i-1)=S9 
                YP(N1+i-1)=YPT9 
              Endif 
              Aux3=0 
              Call XYFunc(je,i,N1,Aux3,BE,AL,T1,S8, XFunc,YFunc) 
              XHStart(NumHump)=XFunc 
              YHStart(NumHump)=YFunc 
              Do 1367 k=1,NPD 
                XP(k)=XPOld1(k) 
                YP(k)=YPOld1(k) 
 1367         continue 
            Endif 
 21         If ((YPV(i-1).GE.YP(N1+i-3)).AND.((i-1) .NE.1)) then 
              Aux3=1 
              Call XYFunc(je,i,N1,Aux3,BE,AL,T1,S8, XFunc,YFunc) 
              XHEnd(NumHump)=XFunc 
              YHEnd(NumHump)=YFunc 
            Endif 
            If ((i-1).EQ.1) then 
              XHEnd(NumHump)=S3 
              YHEnd(NumHump)=T3 
            Endif 
            If (((i+1).EQ.(NPV-1)).AND.(B.GT.0.)) t hen 
              NumDep=NumDep+1 
              XDStart(NumDep)=S9 
              YDStart(NumDep)=YPT9 
              XDEnd(NumDep)=XHStart(NumHump) 
              YDEnd(NumDep)=YHStart(NumHump) 
            Endif 
          Endif 
 19     continue 
 
C       =========================================== ===================== 
C       Calculation of the areas of the humps, BH. SHump is the  
C       cumulative area of the humps calculated fro m the seaward end of 
C       the profiles. 
C       =========================================== ===================== 
C  
C       ----------  
C       Calculation of BH1 & BH2. BH1 is the area b etween Vellinga's  
C       profile & the surge level at the location o f a hump. If it is  
C       the last hump & the area C>0, then BH1 is t he area as defined  
C       previously plus the area C. BH2 is the area  between the  
C       nourished profile & the surge level at the location of a hump.  
C       BH is the difference between BH1 & BH2. 
C       ----------  
 2950   If (NumHump.GE.1) then 
          SHump(0)=0. 
          Do 27 j=1,NumHump 
            If ((C.GT.0.).AND.(j.EQ.NumHump)) then 
              BH1(j)=((2.*0.4714*BE*AL/3.)* 
     1               ((((XHStart(j)-S8(je))/AL+18)* *(3./2.))- 
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     1               (18**(3./2.)))- 
     1               (2.*BE*(XHStart(j)-S8(je))))+C  
              Aux4=0 
              H0=0 
              Do 32 i=NPD,1,-1 
                If (XP(i).LE.XHStart(j)) then 
                  H1=i 
                  If (XP(i).EQ.XHStart(j)) H0=1 
                  goto 33 
                Endif 
 32           continue 
 33           H2=0 
              Do 34 i=1,NPD 
                If (XP(i).GE.S1) then 
                  H3=i 
                  If (XP(i).EQ.S1) H2=1 
                  goto 35 
                Endif 
 34           continue 
 35           BH2(j)=0.             
              If ((H0.NE.1).AND.(XP(H1).GE.S1)) the n 
                If ((YPT9.GE.T9).AND.(j.EQ.1)) then  
                  BH2(j)=BH2(j)+0.5*(XHStart(j)-XP( H1))* 
     1                            ((T1-YHStart(j))+ (T1-YP(H1))) 
                  goto 36 
                Endif 
                BH2(j)=BH2(j)+0.5*(XHStart(j)-XP(H1 ))* 
     1                            ((T1-YHStart(j))+ (T1-YP(H1))) 
 36             Aux4=1 
              Endif 
              If ((H2.NE.1).AND.(XP(H3).LE.XHStart( j))) then  
                BH2(j)=BH2(j)+0.5*(XP(H3)-S1)*(T1-Y P(H3)) 
                Aux4=1 
              Endif 
              BH1(j)=(2.*0.4714*BE*AL/3.)* 
     1               ((((XHStart(j)-S8(je))/AL+18)* *(3./2.))- 
     1               (((XHEnd(j)-S8(je))/AL+18)**(3 ./2.)))+ 
     1               2.*BE*(XHEnd(j)-XHStart(j)) 
              Aux4=1 
              H0=0 
              Do 28 i=NPD,1,-1 
                If (XP(i).LE.XHStart(j)) then 
                  H1=i 
                  If (XP(i).EQ.XHStart(j)) H0=1 
                  goto 29 
                Endif 
 28           continue 
 29           H2=0 
              Do 30 i=1,NPD 
                If (XP(i).GE.XHEnd(j)) then 
                  H3=i 
                  If (XP(i).EQ.XHEnd(j)) H2=1 
                  goto 31 
                Endif 
 30           continue 
 31           BH2(j)=0.             
              If ((H0.NE.1).AND.(H1.GE.H3))  
     1          BH2(j)=BH2(j)+0.5*(XHStart(j)-XP(H1 ))* 
     1                        ((T1-YHStart(j))+(T1- YP(H1))) 
              If ((H2.NE.1).AND.(H1.GE.H3))  
     1          BH2(j)=BH2(j)+0.5*(XP(H3)-XHEnd(j)) * 
     1                        ((T1-YP(H3))+(T1-YHEn d(j))) 
            Endif 
            If (H1.GT.H3) then 
              Aux4=1 
              Do 37 i=H3,(H1-1) 
                BH2(j)=BH2(j)+0.5*(XP(i+1)-XP(i))* 
     1                            ((T1-YP(i))+(T1-Y P(i+1))) 
 37           continue 
            Endif 
            If (Aux4.EQ.0) BH2(j)=0.5*(XHStart(j)-S 1)*(T1-YHStart(j)) 
            If (Aux4.EQ.1.AND.H1.LT.H3) BH2(j)=0.5* (XHStart(j)- 
     1              XHEnd(j))*((T1-YHStart(j))+(T1- YHEnd(j))) 
            BH(j)=BH1(j)-BH2(j) 
            SHump(j)=SHump(j-1)+BH(j) 
 27       continue 
        Endif 
 
C       =========================================== ===================== 
C       Calculation of the areas of the depressions , BD. SDep is the  
C       cumulative area of the depressions calculat ed from the seaward  
C       end of the profiles. 
C       =========================================== ===================== 



Program Listing 

C7-122 

C  
C       ----------  
C       Calculation of BD1 & BD2. BD1 is the area b etween Vellinga's  
C       profile & the surge level at the location o f a depression. If it  
C       is the first depression & the area B>0, the n BD1 is the area as  
C       defined previously plus the area B. BD2 is the area between the  
C       nourished profile & the surge level at the location of a  
C       depression. If it is the first depression &  the area B>0, then  
C       BD2 is the area as defined previously plus the area E. BD is the  
C       difference between BD2 & BD1. 
C       ----------  
        If (NumDep.GE.1) then 
          SDep(0)=0. 
          Do 39 j=1,NumDep 
            If ((YPT9.LT.T9).AND.(j.EQ.1)) then  
              BD1(j)=((2.*0.4714*BE*AL/3.)* 
     1               ((((XDStart(j)-S8(je))/AL+18)* *(3./2.))- 
     1               (((XDEnd(j)-S8(je))/AL+18)**(3 ./2.)))- 
     1               (2.*BE*(XDStart(j)-XDEnd(j)))) +B 
              Aux4=0 
              D0=0 
              Do 44 i=NPD,1,-1 
                If (XP(i).LE.XDStart(j)) then 
                  D1=i 
                  If (XP(i).EQ.XDStart(j)) D0=1 
                  goto 45 
                Endif 
 44           continue 
 45           D2=0 
              Do 46 i=1,NPD 
                If (XP(i).GE.XDEnd(j)) then 
                  D3=i 
                  If (XP(i).EQ.XDEnd(j)) D2=1 
                  goto 47 
                Endif 
 46           continue 
 47           BD2(j)=0.             
              If ((D0.NE.1).AND.(D1.GE.D3)) then 
                BD2(j)=BD2(j)+0.5*(XDStart(j)-XP(D1 ))* 
     1                          ((T1-YDStart(j))+(T 1-YP(D1))) 
                Aux4=1 
              Endif 
              If ((D2.NE.1).AND.(D1.GE.D3)) then  
                BD2(j)=BD2(j)+0.5*(XP(D3)-XDEnd(j)) *((T1-YP(D3))+ 
     1                            (T1-YDEnd(j))) 
                Aux4=1 
              Endif 
              BD2(j)=BD2(j)+E 
            else 
              BD1(j)=(2.*0.4714*BE*AL/3.)* 
     1               ((((XDStart(j)-S8(je))/AL+18)* *(3./2.))- 
     1               (((XDEnd(j)-S8(je))/AL+18)**(3 ./2.)))- 
     1               (2.*BE*(XDStart(j)-XDEnd(j))) 
              Aux4=1 
              D0=0 
              Do 40 i=NPD,1,-1 
                If (XP(i).LE.XDStart(j)) then 
                  D1=i 
                  If (XP(i).EQ.XDStart(j)) D0=1 
                  goto 41 
                Endif 
 40           continue 
 41           D2=0 
              Do 42 i=1,NPD 
                If (XP(i).GE.XDEnd(j)) then 
                  D3=i 
                  If (XP(i).EQ.XDEnd(j)) D2=1 
                  goto 43 
                Endif 
 42           continue 
 43           BD2(j)=0.             
              If (D0.NE.1) BD2(j)=BD2(j)+0.5*(XDSta rt(j)-XP(D1))* 
     1                            ((T1-YDStart(j))+ (T1-YP(D1))) 
              If (D2.NE.1) BD2(j)=BD2(j)+0.5*(XP(D3 )-XDEnd(j))* 
     1                            ((T1-YP(D3))+(T1- YDEnd(j))) 
            Endif 
            If (D1.GT.D3) then 
              Aux4=1 
              Do 48 i=D3,(D1-1) 
                BD2(j)=BD2(j)+0.5*(XP(i+1)-XP(i))* 
     1                            ((T1-YP(i))+(T1-Y P(i+1))) 
 48           continue 
            Endif 
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            If (Aux4.EQ.0) BD2(j)=BD2(j)+0.5*(XDSta rt(j)-XDEnd(j))* 
     1                                ((T1-YDStart( j))+(T1-YDEnd(j))) 
            BD(j)=BD2(j)-BD1(j) 
            SDep(j)=SDep(j-1)+BD(j) 
 39       continue 
        Endif 
 
C       =========================================== ===================== 
C       Since sand movements are only allowed seawa rd during the storm 
C       surge, the first hump & its area have to be  neglected for the 
C       case B=0 & the number of humps, the areas B H & SHump have to be 
C       adjusted. 
C       =========================================== ===================== 
        If (B.EQ.0.) then        
          NumHump=NumHump-1 
          If (NumHump.GE.1) then 
            Do 50 j=1,NumHump 
              SHump(j)=SHump(j+1)-BH(1) 
 50         continue 
            Do 51 j=1,NumHump 
              BH(j)=BH(j+1) 
 51         continue 
          Endif 
        Endif 
        return 
        End 
 
         
         
C       ########################################### #####################        
C       
        Subroutine Balance(je,Err,T2,T3,S8,Q1,Fim,M ov,Sin,Aux1) 
C 
C       ########################################### #####################        
C       
C       If |Err|>=1 then the balance between erosio n & accretion is 
C       not satisfactory (assuming movements of san d only seaward 
C       during the storm surge).  
C       If Err>1, then accretion exceeds erosion (V ellinga's profile  
C       has to be moved landward); if Err<-1, then erosion exceeds  
C       accretion (Vellinga's profile has to be mov ed seaward, if S8  
C       not equal to S1; if S8=S1, no erosion is ex pected). If  
C       Vellinga's profile is moved, the new X-coor dinate of the  
C       starting point of the parabolic part of the  profile, S8, is  
C       returned. 
C 
C       ########################################### #####################        
C 
C       INPUT VARIABLES: 
C       T2 - Y-coordinate of the intersection point  between the  
C            nourished profile & the gradient 1:mt of Vellinga's profile 
C       T3 - Y-coordinate of the intersection point  between the  
C            nourished profile & the gradient 1:md of Vellinga's profile 
C       Err - Error in the balance between erosion & accretion (assuming  
C             movements of sand only seaward during  the storm surge) 
C        
C       INPUT/OUTPUT VARIABLES: 
C       je - Number of the iteration to find the fi nal position of  
C            Vellinga's profile 
C       S8 - X-coordinate of the starting point of the parabolic part of 
C            Vellinga's post-storm profile 
C       Mov - Value by which S8 is changed in each iteration performed  
C             to find the final position of Velling a's parabolic profile 
C       Q1, Sin, Aux1 - Auxiliary variables 
C 
C       MODELING VARIABLES: 
C       ka - Maximum number of iterations allowed b y the program to find  
C            the final position of Vellinga's profi le & the final  
C            location of the surcharge face 
C       DS - Auxiliary variables 
C        
C       OUTPUT VARIABLE: 
C       Fim - Auxiliary variable 
C 
C       ########################################### #####################         
C       
        Integer*4 je,ka,Aux1,Q1,Fim 
        Parameter (ka=999) 
        Real*8 Err(0:ka),Sin(0:ka),T2,T3,DS,S8(0:Ka ),Mov 
         
        If (Err(je).LT.0.) then 
          Sin(je)=1. 
        else 
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          Sin(je)=-1. 
        Endif 
        If (ABS(Err(je)).GE.1.) then 
          DS=Err(je)/(T3-T2) 
          je=je+1 
          If (je.GT.999) then 
            Write(*,9987) 
            Write(50,9987) 
 9987       Format(// 6X, 
     1          'ERROR: The maximum number of itera tions allowed by' /  
     1          6X,'       the program to find the final position of'/ 
     1          6X,'       Vellinga`s profile has b een exceeded !') 
            STOP 
          Endif 
          S8(je)=S8(je-1)-DS 
          If ((ABS(S8(je)-S8(je-2)).LT.0.001).OR.(A ux1.EQ.1)) then 
            If (Sin(je-1).NE.Sin(je-2)) then 
              Mov=Mov/10. 
            Endif 
            S8(je)=S8(je-1)+Sin(je-1)*Mov 
            Aux1=1 
          Endif 
          Q1=1 
          Fim=1 
        else 
          If (Q1.EQ.0) then 
            Fim=3 
          else 
            Fim=2 
          Endif 
        Endif 
        return 
        End 
 
 
         
C       ########################################### #####################        
C       
        Subroutine Error(Q1,BH,BD,NumDep,NumHump,SD ep,SHump,Fim,je,Err, 
     1                   T2,T3,S8,Mov,Sin,Aux1)         
C 
C       ########################################### #####################        
C       
C       Returns Err. Err is the error in the balanc e between erosion &  
C       accretion (assuming movements of sand only seaward during the  
C       storm surge). Then, subroutine Balance is c alled to move  
C       Vellinga's profile depending on the value o f Err. 
C 
C       ########################################### #####################        
C 
C       INPUT VARIABLES: 
C       T2 - Y-coordinate of the intersection point  between the  
C            nourished profile & the gradient 1:mt of Vellinga's profile 
C       T3 - Y-coordinate of the intersection point  between the  
C            nourished profile & the gradient 1:md of Vellinga's profile 
C 
C       INPUT/OUTPUT VARIABLES: 
C       je - Number of the iteration to find the fi nal position of  
C            Vellinga's profile 
C       S8 - X-coordinate of the starting point of the parabolic part of 
C            Vellinga's post-storm profile 
C       Mov - Value by which S8 is changed in each iteration performed  
C             to find the final position of Velling a's parabolic profile 
C       NumHump - Number of humps 
C       NumDep - Number of depressions 
C       BH - Area of a hump 
C       BD - Area of a depression 
C       SDep - Cumulative area of the depressions s tarting from the  
C              seaward end of the profiles 
C       SHump - Cumulative area of the humps starti ng from the seaward  
C               end of the profiles 
C       Q1, Sin, Aux1 - Auxiliary variables 
C        
C       MODELING VARIABLES: 
C       ka - Maximum number of iterations allowed b y the program to find  
C            the final position of Vellinga's profi le & the final  
C            location of the surcharge face 
C       Er - Maximum number of points (XP,YP) allow ed by the program 
C       SHumpOld - Cumulative area of the humps sta rting from the  
C                  seaward end of the profiles 
C       SDepOld - Cumulative area of the depression s starting from the  
C                 seaward end of the profiles 
C       i, j, k - Auxiliary variables 
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C        
C       OUTPUT VARIABLES: 
C       Err - Error in the balance between erosion & accretion (assuming  
C             movements of sand only seaward during  the storm surge) 
C       Fim - Auxiliary variable 
C 
C       ########################################### #####################         
C        
        Integer*4 i,j,je,k,ka,Er,Q1,NumDep,NumHump, Fim,Aux1 
        Parameter (Er=100) 
        Parameter (ka=999) 
        Real*8 SHump(0:Er),SDep(0:Er),SHumpOld(Er), SDepOld(Er),BH(Er), 
     1         BD(Er),Err(0:ka),T2,T3,S8(0:ka),Mov, Sin(0:ka) 
         
        Fim=0 
        i=1 
 15     If (ABS(BH(i)).GE.ABS(BD(i))) then  
          If (i.NE.NumDep) then 
            NumHump=NumHump-1 
            NumDep=NumDep-1 
            Do 2399 j=1,NumDep 
              SDep(j)=SDep(j+1)-BD(1) 
 2399       continue 
            Do 2299 j=1,NumDep 
              BD(j)=BD(j+1) 
 2299       continue 
            If (NumHump.GE.1) then 
              Do 9522 j=1,NumHump 
                SHump(j)=SHump(j+1)-BH(1) 
 9522         continue 
              Do 9922 j=1,NumHump 
                BH(j)=BH(j+1) 
 9922         continue 
              goto 15 
            else 
              Err(je)=BD(NumDep) 
              Call Balance(je,Err,T2,T3,S8,Q1,Fim,M ov,Sin,Aux1) 
              If (Fim.NE.0) return 
            Endif 
          else 
            Fim=0 
            If (Q1.EQ.0) then 
              Fim=3 
            Endif 
            If (Q1.GE.1) then 
              Err(je)=BD(i)-BH(i) 
              Call Balance(je,Err,T2,T3,S8,Q1,Fim,M ov,Sin,Aux1) 
            Endif 
            If (Fim.NE.0) return 
          Endif 
        Endif 
         
        If (ABS(BH(i)).LT.ABS(BD(i))) then 
          If (i.EQ.NumDep) then 
            Fim=0 
            If (Q1.EQ.0) then 
              Fim=3 
            Endif 
            If (Q1.GE.1) then 
              Err(je)=BD(i)-BH(i) 
              Call Balance(je,Err,T2,T3,S8,Q1,Fim,M ov,Sin,Aux1) 
            Endif 
            If (Fim.NE.0) return 
          else 
            Do 108 j=(i+1),NumDep 
              If (j.NE.NumDep) then 
                If (ABS(SHump(j)).GE.ABS(SDep(j))) then 
                  SDepOld(j)=SDep(j) 
                  SHumpOld(j)=SHump(j) 
                  NumHump=NumHump-j 
                  NumDep=NumDep-j 
                  Do 2033 k=1,NumDep 
                    BD(k)=BD(j+k) 
                    SDep(k)=SDep(j+k)-SDepOld(j) 
 2033             continue 
                  If (NumHump.GE.1) then 
                    Do 3320 k=1,NumHump 
                      BH(k)=BH(j+k) 
                      SHump(k)=SHump(j+k)-SHumpOld( j) 
 3320               continue 
                    goto 15 
                  else  
                    Err(je)=BD(NumDep) 
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                    Call Balance(je,Err,T2,T3,S8,Q1 ,Fim,Mov,Sin,Aux1) 
                    If (Fim.NE.0) return 
                  Endif 
                else 
                  If (NumHump.GT.j) then 
                    goto 108 
                  else 
                    Err(je)=SDep(NumDep)-SHump(NumH ump) 
                    Call Balance(je,Err,T2,T3,S8,Q1 ,Fim,Mov,Sin,Aux1) 
                    If (Fim.NE.0) return 
                  Endif 
                Endif 
              else 
                If (NumHump.EQ.NumDep) then 
                  Err(je)=SDep(j)-SHump(j) 
                  Call Balance(je,Err,T2,T3,S8,Q1,F im,Mov,Sin,Aux1) 
                  If (Fim.NE.0) return 
                else 
                  Err(je)=SDep(j)-SHump(j-1) 
                  Call Balance(je,Err,T2,T3,S8,Q1,F im,Mov,Sin,Aux1) 
                  If (Fim.NE.0) return 
                Endif 
              Endif 
 108        continue 
          Endif 
        Endif 
        return 
        End 
 
 
 
C       ########################################### #####################        
C       
        Subroutine SurchC(ctcurv,BE,W,S8,T1,S3,S4,T 4,S10,SurD,SurchEros, 
     1                    SurchLongT,TSurch) 
C 
C       ########################################### #####################        
C       
C       Returns the total surcharge on erosion area  C, TSurch, & the  
C       corresponding surcharge distance, SurD, & t he intersection  
C       point, (S4,T4), between the nourished profi le & the surcharge  
C       gradient, 1:md (through subroutine Surcharg e). It also returns  
C       the surcharge, SurchEros, on erosion area C  above surge level to  
C       take into account the effects of the accura cy of the  
C       computation, Ac, of the storm surge duratio n, SD, & of the gust  
C       bumps, GB, respectively. It also returns th e surcharge,  
C       SurchLongT, on erosion area C above surge l evel to take into  
C       account the effect of a gradient in the lon gshore transport. 
C 
C       ########################################### #####################        
C 
C       INPUT VARIABLES: 
C       MuxN - Mean of the equivalent Normal distri bution of X 
C       Ac - Accuracy of the computation 
C       GB - Gust bumps 
C       SD - Storm surge duration 
C       W - Fall velocity of dune sand in seawater (m/s) 
C       ctcurv - Coastal curvature in degrees per 1 000m  
C                (0<=ctcurv<=24Deg/1000m) 
C       T1 - Y-coordinate of the intersection point  between the  
C            nourished profile & the surge level 
C       S8 - X-coordinate of the starting point of the parabolic part of 
C            Vellinga's post-storm profile 
C       (S3,T3) - Intersection point between the no urished profile & the  
C                 gradient 1:md of Vellinga's profi le 
C       C - Area of erosion between the surge level , the nourished  
C           profile above surge & the gradient 1:md  
C       BE - Auxiliary variable 
C        
C       MODELING VARIABLES: 
C       ka - Maximum number of iterations allowed b y the program to find  
C            the final position of Vellinga's profi le & the final  
C            location of the surcharge face 
C       j - Number of the iteration to find the fin al location of the 
C           surcharge face 
C       G0 - Coefficient used in the calculation of  SurchLongT 
C       CTotal - Sum of the erosion area C plus the  surcharge SurchEros 
C       D - Area between the two 1:md gradients, th e surge level & the  
C           nourished profile 
C       Err1 - Error in the balance between the req uired surcharge,  
C              TSurch, & D 
C       Jump - Value by which SurD is changed in ea ch iteration  
C              performed to find the final location  of the surcharge  
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C              face 
C       Q2, Aux2, Sinal - Auxiliary variables 
C        
C       OUTPUT VARIABLES: 
C       (S4,T4) - Intersection point between the no urished profile & the  
C                 surcharge gradient, 1:md 
C       S10 - X-coordinate of the point of intersec tion between the  
C             surge level & the gradient 1:md of th e surcharge 
C       SurchEros - Surcharge on erosion area C abo ve surge level to  
C                   take into account the effects o f the accuracy of  
C                   the computation, of the storm s urge duration, & of  
C                   the gust bumps 
C       SurchLongT - Surcharge on erosion area C ab ove surge level to  
C                    take into account the effect o f a gradient in the  
C                    longshore transport 
C       TSurch - Total surcharge on erosion area C which is the sum of  
C                the surcharges SurchEros plus Surc hLongT 
C       SurD - Surcharge distance 
C 
C       ########################################### #####################         
C         
        Integer*4 ka,j,Q2,Aux2 
        Parameter (ka=999) 
        Real*8 W,BE,T1,S8(0:Ka),C,S3,T3,SurchEros,M uxN,SurD(0:ka),SD,Ac, 
     1         GB,S4,T4,D,S10(0:ka),Err1(0:ka),Jump ,Sinal(0:ka),ctcurv, 
     1         CTotal,SurchLongT,TSurch,G0 
        Common/BLOCK3/MuxN(15),C,T3 
        Common/BLOCK5/Ac,GB,SD 
 
C       =========================================== ===================== 
C       Calculation of the surcharge, SurchEros, on  erosion area C above  
C       surge level to take into account the effect s of the accuracy of  
C       the computation, Ac, of the storm surge dur ation, SD, & of the  
C       gust bumps, GB, respectively. 
C       =========================================== ===================== 
        SurchEros=(20.+0.1*C)*Ac+0.1*C*SD+0.05*C*GB /MuxN(5) 
         
C       =========================================== ===================== 
C       Calculation of the surcharge, SurchLongT, o n erosion area C  
C       above surge level to take into account the effect of a gradient  
C       in the longshore transport for not too stro ngly curved coastal  
C       sections (the coastal curvature, 0<=ctcurv< =24Deg/1000m). 
C       =========================================== ===================== 
        If ((ctcurv.LE.24.).AND.(ctcurv.GT.6.)) the n 
          If ((ctcurv.LE.24.).AND.(ctcurv.GT.18.)) G0=100. 
          If ((ctcurv.LE.18.).AND.(ctcurv.GT.12.)) G0=75. 
          If ((ctcurv.LE.12.).AND.(ctcurv.GT.6.)) G 0=50. 
          CTotal=C+SurchEros 
          SurchLongT=CTotal*(BE**0.72)*((W/0.0268)* *0.56)*G0/300. 
        else 
          SurchLongT=0. 
        Endif 
 
C       =========================================== ===================== 
C       Calculation of the total surcharge on erosi on area C, TSurch,  
C       which is the sum of the surcharges SurchEro s plus SurchLongT. 
C       =========================================== ===================== 
        TSurch=SurchEros+SurchLongT 
 
C       =========================================== ===================== 
C       Calculation of the surcharge distance, SurD . 
C       =========================================== ===================== 
        Jump=10. 
        Sinal(0)=0. 
        Aux2=0 
        Q2=1 
        j=1 
        S10(0)=S8(1) 
        SurD(0)=0. 
        Err1(0)=0. 
        If (TSurch.LT.0.) Q2=-1 
 
C       ---------- 
C       Calculation of a first approximation for Su rD. Calculation of  
C       the point, X=S10, of intersection between t he surge level &  
C       the gradient 1:md of the surcharge. 
C       ---------- 
        SurD(j)=TSurch/(T3-T1) 
 2319   S10(j)=S8(1)-SurD(j) 
        If ((S10(j).GT.S8(1)).AND.(TSurch.GT.0.)) t hen 
          S10(j)=(S10(j-1)+S10(j-2))/2. 
          SurD(j)=S8(1)-S10(j) 
          Aux2=1 
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        Endif 
        If ((S10(j).LT.S8(1)).AND.(TSurch.LT.0.)) t hen 
          S10(j)=(S10(j-1)+S10(j-2))/2. 
          SurD(j)=S8(1)-S10(j) 
          Aux2=1 
        Endif 
 
C       ---------- 
C       Calculation of the surcharge erosion, D, co rresponding to SurD. 
C       ---------- 
        Call Surcharge(j,S8,S10,T1,D,S3,T3,S4,T4,TS urch) 
 
C       ---------- 
C       Calculation of Err1. Err1 is the error in t he balance between  
C       the required surcharge, TSurch, & D. If |Er r1|>=1 then the  
C       balance between TSurch & D is not satisfact ory. If Err1>1  
C       then the surcharge distance is too big (dec rease it). If  
C       Err1<-1 then the surcharge distance is too small (increase  
C       it). If the face of the surcharge is moved,  the new surcharge  
C       distance, SurD, is returned. 
C       ---------- 
        Err1(j)=D-ABS(TSurch) 
        If (Err1(j).LT.0.) then 
          Sinal(j)=-1. 
        else 
          Sinal(j)=1. 
        Endif 
        If (ABS(Err1(j)).GE.1.) then 
          j=j+1 
          If (j.GT.999) then 
            Write(*,9987) 
            Write(50,9987) 
 9987       Format(// 6X, 
     1      'ERROR: The maximum number of iteration s allowed by' 
     1      / 6X,'       the program to find the fi nal location of the' 
     1      / 6X,'       surcharge face has been ex ceeded !') 
            STOP 
          Endif 
          SurD(j)=SurD(j-1)-Err1(j-1)*Q2/(T4-T1) 
          If ((ABS(SurD(j)-SurD(j-2)).LT.0.0001).OR .(Aux2.EQ.1)) then 
            If (j.GT.1) then 
              If (Sinal(j-1).NE.Sinal(j-2)) then 
                Jump=Jump/10. 
              Endif 
              SurD(j)=SurD(j-1)-Sinal(j-1)*Jump 
            Endif 
            Aux2=1 
          Endif 
          goto 2319 
        Endif 
        return 
        End 
 
         
         
C       ########################################### #####################        
C       
        Subroutine LSeaProf(S9,T9,S1,M1,T1,B,Q,S2,T 2) 
C 
C       ########################################### #####################        
C       
C       Returns the intersection point, (S2,T2), be tween the nourished  
C       profile & the gradient 1:mt of Vellinga's p rofile. It also  
C       returns the area, B, between the surge leve l & the gradient  
C       1:mt; & the area, Q, between the surge leve l & the nourished  
C       profile below surge. 
C 
C       ########################################### #####################        
C 
C       INPUT VARIABLES: 
C       NPD - Number of points defining the nourish ed profile 
C       (XP,YP) - Coordinates of the points definin g the nourished  
C                 profile 
C       1:mt - Gradient of the toe of the post-stor m profile 
C       (S1,T1) - Intersection point between the no urished profile & the  
C                 surge level 
C       M1 - Number of the point, (XP(M1),YP(M1)), from seaward for  
C            which YP(M1)<=T1 
C       (S9,T9) - Point where the parabolic part of  Vellinga's profile  
C                 finishes 
C        
C       MODELING VARIABLES: 
C       YPT9 - Y-coordinate of the point in the nou rished profile which 
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C              has X=S9 
C       i, M2, Zes, G - Auxiliary variables 
C       md, nourtlev, mnour, ctcurv - Variables men tioned in the Common  
C                                     statements bu t not used here 
C        
C       OUTPUT VARIABLES: 
C       (S2,T2) - Intersection point between the no urished profile & the 
C                 gradient 1:mt of Vellinga's profi le 
C       B - Area between the surge level & the grad ient 1:mt of  
C           Vellinga's profile 
C       Q - Area between the surge level & the nour ished profile below  
C           surge 
C 
C       ########################################### #####################         
C       
        Integer*4 NPD,i,M1,M2 
        Real*8 XP,YP,S1,T1,S2,T2,S9,T9,B,Q,Zes,G,md ,mt,mnour, 
     1         nourtlev,YPT9,ctcurv 
        Common/BLOCK1/NPD,XP(100),YP(100) 
        Common/BLOCK4/md,mt,mnour,nourtlev,ctcurv 
 
C       =========================================== ===================== 
C       Calculation of the intersection point, (S2, T2), between the  
C       nourished profile & the gradient 1:mt of Ve llinga's profile. 
C       =========================================== ===================== 
        Do 4499 i=1,NPD 
          If (XP(i).GT.S9) then 
            M2=i 
            YPT9=YP(M2-1)+(YP(M2)-YP(M2-1))*(S9-XP( M2-1))/ 
     1           (XP(M2)-XP(M2-1)) 
            If (YPT9.GE.T9) then 
              S2=S9 
              T2=YPT9 
              B=0. 
              M2=M2-1 
              goto 3902 
            else 
              goto 4398 
            Endif 
          Endif 
 4499   continue 
        Write(*,8275) 
        Write(50,8275) 
 8275   Format(// 11X,'Extend the Initial Profile S eaward !') 
        STOP 
 4398   Zes=XP(M2)-S9 
        G=T9-Zes/mt 
        If (G.GT.YP(M2)) then 
          M2=M2+1 
          If (M2.GT.NPD) then 
            Write(*,8225) 
            Write(50,8225) 
 8225       Format(// 11X,'Extend the Initial Profi le Seaward !') 
            STOP 
          Endif 
          goto 4398 
        Endif 
        S2=XP(M2)-Zes*(YP(M2)-G)/(T9-G-(Zes*(YP(M2- 1)-YP(M2))/ 
     1     (XP(M2)-XP(M2-1)))) 
        T2=YP(M2)+(XP(M2)-S2)*(YP(M2-1)-YP(M2))/(XP (M2)-XP(M2-1)) 
        M2=M2-1 
 
C       =========================================== ===================== 
C       Calculation of the area, B, between the sur ge level & the  
C       gradient 1:mt. 
C       =========================================== ===================== 
        B=0.5*(S2-S9)*((T1-T9)+(T1-T2)) 
 
C       =========================================== ===================== 
C       Calculation of area, Q, between the surge l evel & the nourished 
C       profile below surge. 
C       =========================================== ===================== 
 3902   If ((XP(M2).GT.S1).AND.(XP(M1).LT.S2)) then  
          Q=0.5*(XP(M1)-S1)*(T1-YP(M1))+0.5*(S2-XP( M2))* 
     1      ((T1-T2)+(T1-YP(M2))) 
        else 
          Q=0.5*(S2-S1)*(T1-T2) 
        Endif 
        If ((M2-1).GE.M1) then 
          Do 3381 i=M1,(M2-1) 
            Q=Q+0.5*(XP(i+1)-XP(i))*((T1-YP(i))+(T1 -YP(i+1))) 
 3381     continue 
        Endif 
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        return 
        End 
 
 
 
C       ########################################### #####################        
C       
C        Subroutine XYFunc(i,N1,Aux3,XPV,YPV,XFunc, YFunc) 
        Subroutine XYFunc(je,i,N1,Aux3,BE,AL,T1,S8, XFunc,YFunc) 
C 
C       ########################################### #####################        
C       
C       Returns the intersection point (XFunc,YFunc ) between the part of 
C       Vellinga's profile defined by the points:  
C                       (XPV(i-Aux3),YPV(i-Aux3))  
C                       (XPV(i-Aux3+1),YPV(i-Aux3+1 ))  
C       & the part of the nourished profile defined  by the points: 
C                       (XP(N1+i-Aux3-1),YP(N1+i-Au x3-1)) 
C                       (XP(N1+i-Aux3-2),YP(N1+i-Au x3-2)) 
C 
C       Returns the intersection point (XFunc,YFunc ) between the  
C       parabolic part of Vellinga's profile & the part of the nourished  
C       profile defined by the points: 
C                       (XP(N1+i-Aux3-1),YP(N1+i-Au x3-1)) 
C                       (XP(N1+i-Aux3-2),YP(N1+i-Au x3-2)) 
C 
C       ########################################### #####################        
C 
C       INPUT VARIABLES: 
C       (XP,YP) - Coordinates of the points definin g the nourished  
C                 profile 
C       (XPV,YPV) - Coordinates of the points defin ing Vellinga's  
C                   profile 
C       T1 - Y-coordinate of the intersection point  between the  
C            nourished profile & the surge level 
C       S8 - X-coordinate of the starting point of the parabolic part of 
C            Vellinga's post-storm profile 
C       i, je, N1, Aux2, Aux3, BE, AL - Auxiliary v ariables 
C        
C       MODELING VARIABLES: 
C       L - Maximum number of points (XP,YP) & (XPV ,YPV) allowed by the  
C           program 
C       ka - Maximum number of iterations allowed b y the program to find  
C            the final position of Vellinga's profi le & the final  
C            location of the surcharge face 
C       A, B, C, Aux1, 
C       XFunc1, XFunc2, YFunc1, YFunc2 - Auxiliary variables 
C       NPD - Variable mentioned in the Common stat ement but not used  
C             here 
C        
C       OUTPUT VARIABLES: 
C       (XFUNC,YFUNC) - Coordinates of an intersect ion point between the  
C                       nourished profile & Velling a's profile 
C 
C       ########################################### #####################         
C       
        Integer*4 i,N1,Aux3,NPD,L,ka,je 
        Parameter (L=100) 
        Parameter (ka=999) 
        Real*8  XP,YP,XFunc,YFunc,XFunc1,YFunc1,XFu nc2,YFunc2,A,B,C,AL, 
     1          BE,S8(0:Ka),T1,Aux1,Aux2 
        Common/BLOCK1/NPD,XP(100),YP(100) 
         
 
          A=-((YP(N1+i-Aux3-1)-YP(N1+i-Aux3-2))**2) / 
     1       ((0.4714*BE*(XP(N1+i-Aux3-1)-XP(N1+i-A ux3-2)))**2) 
          If (A.EQ.0.) then 
            YFunc=YP(N1+i-Aux3-1) 
            XFunc=S8(je)+AL*(((T1-YFunc+2.*BE)/(0.4 714*BE))**2)-18.*AL 
            return 
          Endif 
          B=(AL**(-1))+ 
     1      ((2.*T1*(YP(N1+i-Aux3-1)-YP(N1+i-Aux3-2 ))- 
     1      2.*(YP(N1+i-Aux3-1)-YP(N1+i-Aux3-2))*YP (N1+i-Aux3-2))/ 
     1      ((XP(N1+i-Aux3-1)-XP(N1+i-Aux3-2))*((0. 4714*BE)**2)))+ 
     1      ((4.*(YP(N1+i-Aux3-1)-YP(N1+i-Aux3-2))) / 
     1      (BE*(0.4714**2)*(XP(N1+i-Aux3-1)-XP(N1+ i-Aux3-2))))+ 
     1      ((2.*XP(N1+i-Aux3-2)*((YP(N1+i-Aux3-1)-  
     1      YP(N1+i-Aux3-2))**2))/(((0.4714*BE)**2) *((XP(N1+i-Aux3-1)- 
     1      XP(N1+i-Aux3-2))**2))) 
          C=-(4./(0.4714**2))- 
     1       (4.*T1-4.*YP(N1+i-Aux3-2))/(BE*(0.4714 **2))- 
     1       (T1*T1-2.*T1*YP(N1+i-Aux3-2)+((YP(N1+i -Aux3-2))**2))/ 



Program Listing 

C7-131 

     1       ((0.4714*BE)**2)- 
     1       S8(je)*(AL**(-1))+18.- 
     1       (4.*XP(N1+i-Aux3-2)*(YP(N1+i-Aux3-1)-Y P(N1+i-Aux3-2)))/ 
     1       (BE*(0.4714**2)*(XP(N1+i-Aux3-1)-XP(N1 +i-Aux3-2)))- 
     1       ((XP(N1+i-Aux3-2)**2)*((YP(N1+i-Aux3-1 ) 
     1       -YP(N1+i-Aux3-2))**2))/(((0.4714*BE)** 2)*((XP(N1+i-Aux3-1)- 
     1       XP(N1+i-Aux3-2))**2))- 
     1       (2.*T1*XP(N1+i-Aux3-2)*(YP(N1+i-Aux3-1 )-YP(N1+i-Aux3-2))- 
     1       2.*XP(N1+i-Aux3-2)*YP(N1+i-Aux3-2)*(YP (N1+i-Aux3-1)- 
     1       YP(N1+i-Aux3-2)))/((XP(N1+i-Aux3-1)-XP (N1+i-Aux3-2))* 
     1       ((0.4714*BE)**2)) 
          If ((B*B-4.*A*C).LT.0.) then 
            Write(*,9997) 
            Write(50,9997) 
 9997       Format(// 6X,'ERROR: (B^2-4AC) negative  in the quadratic'  
     1              / 6X,'       equation AX^2+BX+C =0 ! Roots of the' 
     1              / 6X,'       equation are compl ex conjugate! ') 
            STOP 
          Endif 
          Aux2=1. 
          Aux1=-0.5*(B+DSIGN(Aux2,B)*SQRT(B*B-4.*A* C)) 
          XFunc1=Aux1/A 
          XFunc2=C/Aux1 
          If (XFunc1.GT.XP(N1+i-Aux3-2).AND.XFunc1. LT. 
     1        XP(N1+i-Aux3-1).AND.XFunc1.GT.S8(je))  then  
            YFunc1=YP(N1+i-Aux3-2)+(XFunc1-XP(N1+i- Aux3-2))* 
     1             (YP(N1+i-Aux3-1)-YP(N1+i-Aux3-2) )/ 
     1             (XP(N1+i-Aux3-1)-XP(N1+i-Aux3-2) ) 
            If ((YFunc1.GT.YP(N1+i-Aux3-1).AND. 
     1          YFunc1.LT.YP(N1+i-Aux3-2).AND.YFunc 1.LE.T1).OR. 
     1          (YFunc1.LT.YP(N1+i-Aux3-1).AND. 
     1          YFunc1.GT.YP(N1+i-Aux3-2).AND.YFunc 1.LE.T1)) then  
              XFunc=XFunc1 
              YFunc=YFunc1 
            Endif 
          Endif 
          If (XFunc2.GT.XP(N1+i-Aux3-2).AND. 
     1        XFunc2.LT.XP(N1+i-Aux3-1).AND.XFunc2. GT.S8(je)) then 
            YFunc2=YP(N1+i-Aux3-2)+(XFunc2-XP(N1+i- Aux3-2))* 
     1             (YP(N1+i-Aux3-1)-YP(N1+i-Aux3-2) )/ 
     1             (XP(N1+i-Aux3-1)-XP(N1+i-Aux3-2) ) 
            If ((YFunc2.GT.YP(N1+i-Aux3-1).AND. 
     1          YFunc2.LT.YP(N1+i-Aux3-2).AND.YFunc 2.LE.T1).OR. 
     1          (YFunc2.LT.YP(N1+i-Aux3-1).AND. 
     1          YFunc2.GT.YP(N1+i-Aux3-2).AND.YFunc 2.LE.T1)) then  
              XFunc=XFunc2 
              YFunc=YFunc2 
            Endif 
          Endif 
        return 
        End 
         
 
 
C       ########################################### #####################        
C       
        Subroutine Surcharge(j,S8,S10,T1,D,S3,T3,S4 ,T4,TSurch) 
C 
C       ########################################### #####################        
C       
C       Returns the intersection point, (S4,T4), be tween the nourished  
C       profile & the surcharge gradient, 1:md.  It  also returns the  
C       area D between the two 1:md gradients, the surge level & the  
C       nourished profile. 
C 
C       ########################################### #####################        
C 
C       INPUT VARIABLES: 
C       j - Number of the iteration to find the fin al location of the 
C           surcharge face 
C       NPD - Number of points defining the nourish ed profile 
C       (XP,YP) - Coordinates of the points definin g the nourished  
C                 profile 
C       T1 - Y-coordinate of the intersection point  between the  
C            nourished profile & the surge level 
C       1:md - Gradient of the eroded dune face 
C       S8 - X-coordinate of the starting point of the parabolic part of 
C            Vellinga's post-storm profile 
C       (S3,T3) - Intersection point between the no urished profile & the  
C                 gradient 1:md of Vellinga's profi le 
C       S10 - X-coordinate of the point of intersec tion between the  
C             surge level & the gradient 1:md of th e surcharge 
C       TSurch - Total surcharge on erosion area C which is the sum of  
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C                the surcharges SurchEros plus Surc hLongT 
C        
C       MODELING VARIABLES: 
C       ka - Maximum number of iterations allowed b y the program to find  
C            the final position of Vellinga's profi le & the final  
C            location of the surcharge face 
C       i, M3, M31, U, V - Auxiliary variables 
C       mt, nourtlev, mnour, ctcurv - Variables men tioned in the Common  
C                                     statements bu t not used here 
C        
C       OUTPUT VARIABLES: 
C       (S4,T4) - Intersection point between the no urished profile & the  
C                 surcharge gradient, 1:md 
C       D - Area between the two 1:md gradients, th e surge level & the  
C           nourished profile 
C 
C       ########################################### #####################         
C       
        Integer*4 NPD,i,j,M3,M31,ka 
        Parameter (ka=999) 
        Real*8 D,XP,YP,T1,S3,T3,S8(0:ka),S4,T4,S10( 0:ka),U,V,md,mt, 
     1         mnour,nourtlev,TSurch,ctcurv 
        Common/BLOCK1/NPD,XP(100),YP(100) 
        Common/BLOCK4/md,mt,mnour,nourtlev,ctcurv 
 
C       =========================================== ===================== 
C       Calculation of the intersection point, (S4, T4), between the  
C       nourished profile & the surcharge gradient,  1:md. 
C       =========================================== ===================== 
        If (S10(j).LT.XP(1)) then 
          Write(*,8925) 
          Write(50,8925) 
 8925     Format(// 11X,'Extend the Initial Profile  Landward !') 
          STOP 
        Endif 
        Do 0903 i=1,NPD 
          If (XP(i).GT.S10(j)) then 
            M3=i 
            goto 4977 
          Endif 
 0903   continue 
        Write(*,8825) 
        Write(50,8825) 
 8825   Format(// 11X,'Extend the Initial Profile S eaward !') 
        STOP 
 4977   U=S10(j)-XP(M3-1) 
        V=T1+U/md 
        If (V.LT.YP(M3-1)) then 
          M3=M3-1 
          If (M3.LE.1) then 
            Write(*,8625) 
            Write(50,8625) 
 8625       Format(// 11X,'Extend the Initial Profi le Landward !') 
            STOP 
          Endif 
          goto 4977 
        Endif 
        S4=XP(M3-1)+U*(V-YP(M3-1))/(V-T1-(U*(YP(M3- 1)-YP(M3))/ 
     1     (XP(M3)-XP(M3-1)))) 
        If (S4.LT.S10(j)) then 
          T4=YP(M3-1)-(S4-XP(M3-1))*(YP(M3-1)-YP(M3 ))/(XP(M3)-XP(M3-1)) 
        else 
          D=0. 
          goto 2591 
        Endif 
 
C       =========================================== ===================== 
C       Calculation of area D between the two 1:md faces, the surge  
C       level & the nourished profile. 
C       =========================================== ===================== 
C 
C       ---------- 
C       TSurch>0         
C       ---------- 
        If (TSurch.GT.0.) then 
          Do 0309 i=1,NPD 
            If (XP(i).GT.S3) then 
              M31=i-1 
              goto 7794 
            Endif 
 0309     continue           
          Write(*,8695) 
          Write(50,8695) 
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 8695     Format(// 11X,'Extend the Initial Profile  Seaward !') 
          STOP 
  
 7794     If ((XP(M31).GT.S4).AND.(XP(M3).LT.S3)) t hen 
            D=0.5*(S8(1)-S3)*(T3-T1)+0.5*(XP(M3)-S4 )* 
     1        ((T4-T1)+(YP(M3)-T1))+ 
     1        0.5*(S3-XP(M31))*((YP(M31)-T1)+(T3-T1 )) 
          else 
            D=0.5*(S8(1)-S3)*(T3-T1)+0.5*(S3-S4)*(( T3-T1)+(T4-T1)) 
          Endif 
          If (M31.GT.M3) then 
            Do 4701 i=M3,(M31-1) 
              D=D+0.5*(XP(i+1)-XP(i))*((YP(i+1)-T1) +(YP(i)-T1)) 
 4701       continue 
          Endif 
          D=D-0.5*(S10(j)-S4)*(T4-T1) 
        Endif 
 
C       ---------- 
C       TSurch<0 
C       ---------- 
        If (TSurch.LT.0.) then 
          Do 5137 i=1,NPD 
            If (XP(i).GT.S3) then 
              M31=i 
              goto 7549 
            Endif 
 5137     continue           
          Write(*,8629) 
          Write(50,8629) 
 8629     Format(// 11X,'Extend the Initial Profile  Seaward !') 
          STOP 
  
 7549     If ((XP(M31).LT.S4).AND.(XP(M3-1).GT.S3))  then 
            D=0.5*(S10(j)-S4)*(T4-T1)+0.5*(S4-XP(M3 -1))* 
     1        ((T4-T1)+(YP(M3-1)-T1))+0.5*(XP(M31)- S3)* 
     1        ((YP(M31)-T1)+(T3-T1)) 
          else 
            D=0.5*(S10(j)-S4)*(T4-T1)+0.5*(S4-S3)*( (T4-T1)+(T3-T1)) 
          Endif 
          If (M3.GT.M31) then 
            Do 7410 i=M31,(M3-1) 
              D=D+0.5*(XP(i+1)-XP(i))*((YP(i+1)-T1) +(YP(i)-T1)) 
 7410       continue 
          Endif 
          D=D-0.5*(S8(1)-S3)*(T3-T1) 
        Endif 
 2591   return         
        End 
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APPENDIX D1 - Examples Of Input And Output Files For 
Wave Overtopping 

 

Input File general.dad: H&R Model 

 
1               ! Failure mode of overtopping (H&R model) 

2               ! Tide + Surge 

1               ! (Rmax)37% 

Y               ! Derivatives of the failure function supplied 

1               ! Mode 1 - Reliability analysis for a specified design 

1               ! Design life (in years) 

N               ! No combinations of actions considered 

10              ! Target design parameter - seawall crest level 

 

 

Input File form.dad: H&R Model 

 
2               ! Starting point: user specified values 

4.5 

2 

4 

1 

0.5 

0.95 

1.049 

2               ! [XMin,XMax]: user specified values 

1       20 

0       20 

-5.33   5.57 

-5      5 

0.25    1 

0.5     1 

-1E25   1E25 

200             ! Maximum number of iterations 

6               ! Number of FORM calculations 

1E-1 

1E-2 

1E-3 

1E-4 

1E-5 

1E-6 

1               ! Accuracy on Beta (%): default value (1%) 

2               ! Smoothing of the iteration: user specified value 

0.9 

1               ! Accuracy on Z0 (%): default value (1%) 
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Input File meandev.dad: H&R Model 

 
10                              !Type of distribution (Weibull) 
0                               !Not truncated 
6.4     1.152   4.224           !Mean; stand. dev.; lower limit 
10                              !Type of distribution (Weibull) 
1                               !Truncated for X above Xo 
0                               !Toe level 
1.2     0.7     0.45            !Mean; stand. dev.; lower limit 
0                               !Type of distribution (Deterministic) 
0.00753                         !Value 
0                               !Type of distribution (Deterministic) 
4.17                            !Value 
13                              !Type of distribution (User-Defined) 
0.2749          2.3619          !Mean value; standard deviation 
3                               !Type of distribution (Gumbel) 
0                               !Not truncated 
0.019483        0.192382475     !Mean value; standard deviation 
1                               !Type of distribution (Normal) 
0                               !Not truncated 
0.5             0.05            !Mean value; standard deviation 
6                               !Type of distribution (Beta) 
0                               !Not truncated 
0.95    0.01    0.9     1       !Mean; stand. dev.; lower & upper limits 
2                               !Type of distribution (Log-Normal) 
0                               !Not truncated 
1.049           0.241           !Mean value; standard deviation 

 

 

Input File coefcor.dad: H&R Model 

 
1       ! Rho(1,1) 

0.6     ! Rho(1,2) 

0       ! Rho(1,3) 

0       !   . 

0       !   . 

0       !   . 

0        

0 

0 

0.6 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 
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0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 
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Output File summary.dat: H&R Model 

 
   WHAT IS THE DATA SOURCE ? 

  

           The Screen ..... [ 1 ] 

           A Datafile ..... [ 2 ] 

  

   Select Option: 2 

  

  

   WHAT IS THE FAILURE MODE TO BE STUDIED: 

  

           Overtopping (H&R) .................... [ 1 ] 

           Overtopping (Owen) ................... [ 2 ] 

           Dune Erosion (Vellinga) .............. [ 3 ] 

  

   Select Option:  1 

  

  

   HOW IS THE STILL-WATER-LEVEL DEFINED ? 

  

           Total Level .... [ 1 ] 

           Tide + Surge ... [ 2 ] 

  

   Select Option: 2 

  

  

   WHAT IS THE CONFIDENCE VALUE OF THE MAXIMUM RUN-UP 

   THAT YOU WOULD LIKE TO CONSIDER ? 

  

           37 % ... [ 1 ] 

           99 % ... [ 2 ] 

  

   Select Option: 1 

  

  

   ARE THE FIRST DERIVATIVES OF THE FAILURE FUNCTION SUPPLIED (Y/N) ? Y 

  

  

   DESCRIPTION OF THE VARIABLES 

  

           X(  1) = Tp  = Peak Wave Period 

           X(  2) = Hs  = Wave Height 

           X(  3) = A   = H&R Parameter 

           X(  4) = B   = H&R Parameter 

           X(  5) = Tid = Tide Level 

           X(  6) = Sur = Surge 

           X(  7) = TAl = Seawall Slope 

           X(  8) = r   = Roughness 

           X(  9) = eB  = Model Parameter 
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   WHAT IS THE PURPOSE OF THE ANALYSIS ? 

  

           Reliability Analysis for a Specified Design ... [ 1 ] 

           Design for a Specified Reliability Level ...... [ 2 ] 

  

   Select Option: 1 

  

  

   DESIGN LIFE OF THE STRUCTURE =   1 

  

  

   WOULD YOU LIKE TO CONSIDER COMBINATION OF ACTIONS (Y/N) ? N 

  

  

   PRESCRIBED VALUE OF THE DESIGN PARAMETER 

  

           Seawall Crest Level =  0.1000000000E+02 

  

  

   CHARACTERISTICS OF THE VARIABLES 

  

           Probability Distribution of Tp  = Minima Type III (Weibull) 

           Mean Value of Tp  =  0.6400000000E+01 

           Standard Deviation of Tp  =  0.1152000000E+01 

           Lower Limit on Tp  =  0.4224000000E+01 

  

  

           Probability Distribution of Hs  = Minima Type III (Weibull) 

           The Distribution of Hs  is truncated above Xo = 0.6(Tide+Surge-TL) 

           Seawall Toe Level (TL) =  0.0000000000E+00 

           Mean Value of Hs  =  0.1200000000E+01 

           Standard Deviation of Hs  =  0.7000000000E+00 

           Lower Limit on Hs  =  0.4500000000E+00 

  

  

           Probability Distribution of A   = Deterministic 

           Mean Value of A   =  0.7530000000E-02 

           Standard Deviation of A   =  0.0000000000E+00 

  

  

           Probability Distribution of B   = Deterministic 

           Mean Value of B   =  0.4170000000E+01 

           Standard Deviation of B   =  0.0000000000E+00 

  

  

           Probability Distribution of Tid = User-Defined Distribution 

           Mean Value of Tid =  0.2749000000E+00 

           Standard Deviation of Tid =  0.2361900000E+01 

  

  

           Probability Distribution of Sur = Maxima Type I (Gumbel) 

           Mean Value of Sur =  0.1948300000E-01 

           Standard Deviation of Sur =  0.1923824750E+00 

  

  

           Probability Distribution of TAl = Normal (Gaussian) 

           Mean Value of TAl =  0.5000000000E+00 

           Standard Deviation of TAl =  0.5000000000E-01
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           Probability Distribution of r   = Beta 

           Mean Value of r   =  0.9500000000E+00 

           Standard Deviation of r   =  0.1000000000E-01 

           Limits a and b of r   = [ 0.9000000000E+00, 0.1000000000E+01] 

  

  

           Probability Distribution of eB  = Log-Normal 

           Mean Value of eB  =  0.1049000000E+01 

           Standard Deviation of eB  =  0.2410000000E+00 

  

  

  

  

   CORRELATION COEFFICIENTS 

  

           (Tp ,Tp ) =  0.1000000000E+01 

           (Tp ,Hs ) =  0.6000000000E+00 

           (Tp ,A  ) =  0.0000000000E+00 

           (Tp ,B  ) =  0.0000000000E+00 

           (Tp ,Tid) =  0.0000000000E+00 

           (Tp ,Sur) =  0.0000000000E+00 

           (Tp ,TAl) =  0.0000000000E+00 

           (Tp ,r  ) =  0.0000000000E+00 

           (Tp ,eB ) =  0.0000000000E+00 

           (Hs ,Tp ) =  0.6000000000E+00 

           (Hs ,Hs ) =  0.1000000000E+01 

           (Hs ,A  ) =  0.0000000000E+00 

           (Hs ,B  ) =  0.0000000000E+00 

           (Hs ,Tid) =  0.0000000000E+00 

           (Hs ,Sur) =  0.0000000000E+00 

           (Hs ,TAl) =  0.0000000000E+00 

           (Hs ,r  ) =  0.0000000000E+00 

           (Hs ,eB ) =  0.0000000000E+00 

           (A  ,Tp ) =  0.0000000000E+00 

           (A  ,Hs ) =  0.0000000000E+00 

           (A  ,A  ) =  0.1000000000E+01 

           (A  ,B  ) =  0.0000000000E+00 

           (A  ,Tid) =  0.0000000000E+00 

           (A  ,Sur) =  0.0000000000E+00 

           (A  ,TAl) =  0.0000000000E+00 

           (A  ,r  ) =  0.0000000000E+00 

           (A  ,eB ) =  0.0000000000E+00 

           (B  ,Tp ) =  0.0000000000E+00 

           (B  ,Hs ) =  0.0000000000E+00 

           (B  ,A  ) =  0.0000000000E+00 

           (B  ,B  ) =  0.1000000000E+01 

           (B  ,Tid) =  0.0000000000E+00 

           (B  ,Sur) =  0.0000000000E+00 

           (B  ,TAl) =  0.0000000000E+00 

           (B  ,r  ) =  0.0000000000E+00 

           (B  ,eB ) =  0.0000000000E+00 

           (Tid,Tp ) =  0.0000000000E+00 

           (Tid,Hs ) =  0.0000000000E+00 

           (Tid,A  ) =  0.0000000000E+00 

           (Tid,B  ) =  0.0000000000E+00 

           (Tid,Tid) =  0.1000000000E+01 

           (Tid,Sur) =  0.0000000000E+00 

           (Tid,TAl) =  0.0000000000E+00 
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           (Tid,r  ) =  0.0000000000E+00 

           (Tid,eB ) =  0.0000000000E+00 

           (Sur,Tp ) =  0.0000000000E+00 

           (Sur,Hs ) =  0.0000000000E+00 

           (Sur,A  ) =  0.0000000000E+00 

           (Sur,B  ) =  0.0000000000E+00 

           (Sur,Tid) =  0.0000000000E+00 

           (Sur,Sur) =  0.1000000000E+01 

           (Sur,TAl) =  0.0000000000E+00 

           (Sur,r  ) =  0.0000000000E+00 

           (Sur,eB ) =  0.0000000000E+00 

           (TAl,Tp ) =  0.0000000000E+00 

           (TAl,Hs ) =  0.0000000000E+00 

           (TAl,A  ) =  0.0000000000E+00 

           (TAl,B  ) =  0.0000000000E+00 

           (TAl,Tid) =  0.0000000000E+00 

           (TAl,Sur) =  0.0000000000E+00 

           (TAl,TAl) =  0.1000000000E+01 

           (TAl,r  ) =  0.0000000000E+00 

           (TAl,eB ) =  0.0000000000E+00 

           (r  ,Tp ) =  0.0000000000E+00 

           (r  ,Hs ) =  0.0000000000E+00 

           (r  ,A  ) =  0.0000000000E+00 

           (r  ,B  ) =  0.0000000000E+00 

           (r  ,Tid) =  0.0000000000E+00 

           (r  ,Sur) =  0.0000000000E+00 

           (r  ,TAl) =  0.0000000000E+00 

           (r  ,r  ) =  0.1000000000E+01 

           (r  ,eB ) =  0.0000000000E+00 

           (eB ,Tp ) =  0.0000000000E+00 

           (eB ,Hs ) =  0.0000000000E+00 

           (eB ,A  ) =  0.0000000000E+00 

           (eB ,B  ) =  0.0000000000E+00 

           (eB ,Tid) =  0.0000000000E+00 

           (eB ,Sur) =  0.0000000000E+00 

           (eB ,TAl) =  0.0000000000E+00 

           (eB ,r  ) =  0.0000000000E+00 

           (eB ,eB ) =  0.1000000000E+01 

  

  

   STARTING POINT FOR THE FORM CALCULATIONS: 

  

           Default Values (mean values) ... [ 1 ] 

           User Specified Values .......... [ 2 ] 

  

   Select Option: 2 

  

   STARTING POINT 

  

           Tp  =  0.4500000000E+01 

           Hs  =  0.2000000000E+01 

           Tid =  0.4000000000E+01 

           Sur =  0.1000000000E+01 

           TAl =  0.5000000000E+00 

           r   =  0.9500000000E+00 

           eB  =  0.1049000000E+01
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   LIMITING VALUES FOR THE VARIABLES: 

  

           Default Values (+/- 1E25) ... [ 1 ] 

           User Specified Values ....... [ 2 ] 

  

   Select Option: 2 

  

   LIMITING VALUES FOR THE VARIABLES 

  

           XMin(Tp ) =  0.4224000000E+01   XMax(Tp ) =  0.2000000000E+02 

           XMin(Hs ) =  0.4500000000E+00   XMax(Hs ) =  0.2000000000E+02 

           XMin(A  ) =  0.7530000000E-02   XMax(A  ) =  0.7530000000E-02 

           XMin(B  ) =  0.4170000000E+01   XMax(B  ) =  0.4170000000E+01 

           XMin(Tid) = -0.5330000000E+01   XMax(Tid) =  0.5570000000E+01 

           XMin(Sur) = -0.5000000000E+01   XMax(Sur) =  0.5000000000E+01 

           XMin(TAl) =  0.2500000000E+00   XMax(TAl) =  0.1000000000E+01 

           XMin(r  ) =  0.9000000000E+00   XMax(r  ) =  0.1000000000E+01 

           XMin(eB ) =  0.1000000020E-24   XMax(eB ) =  0.1000000000E+26 

  

  

   MAXIMUM NUMBER OF ITERATIONS (Max=200) = 200 

  

   NUMBER OF FORM CALCULATIONS (Max=10) =  6 

  

   ALLOWABLE DISCHARGE - m3/s/m ( 1) =  0.100E+00 

   ALLOWABLE DISCHARGE - m3/s/m ( 2) =  0.100E-01 

   ALLOWABLE DISCHARGE - m3/s/m ( 3) =  0.100E-02 

   ALLOWABLE DISCHARGE - m3/s/m ( 4) =  0.100E-03 

   ALLOWABLE DISCHARGE - m3/s/m ( 5) =  0.100E-04 

   ALLOWABLE DISCHARGE - m3/s/m ( 6) =  0.100E-05 

  

  

   REQUIRED RELATIVE ACCURACY OF THE RELIABILITY INDEX: 

  

           Default Value (1%) ......... [ 1 ] 

           User Specified Value ....... [ 2 ] 

  

   Select Option: 1 

  

  

   REQUIRED SMOOTHING COEFFICIENT FOR THE ITERATION PROCESS: 

  

           Default Value (0) .......... [ 1 ] 

           User Specified Value ....... [ 2 ] 

  

   Select Option: 2 

  

  

   Required Smoothing Coefficient for the Iteration Process [0,1] =  0.9000000000E+00 

  

  

  

   REQUIRED ACCURACY OF THE FAILURE FUNCTION: 

  

           Default Value (1%) ......... [ 1 ] 

           User Specified Value ....... [ 2 ] 

  

   Select Option: 1
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   ALLOWABLE DISCHARGE - m3/s/m ( 1) =  0.100E+00 

  

  

   FINAL RESULTS 

  

  

           Total Number of Iterations = 65 

           Failure Function Z (X) =  0.2620132425E-06 

           Mean Value of Z =  0.3434493330E+00 

           Standard Deviation of Z =  0.8345014442E-01 

           Reliability Index =  0.4115622992E+01 

           Relative Accuracy of the Reliability Index (%) =  0.2358248898E-05 

           Probability of Failure (%) =   0.001940 

           Difference in Pf Between the Last 2 Iterations =  0.7829946879E-11 

  

  

           DESIGN POINT COORDINATES 

  

                   Tp  =  0.7563663838E+01 

                   Hs  =  0.2622799378E+01 

                   A   =  0.7530000000E-02 

                   B   =  0.4170000000E+01 

                   Tid =  0.4460740834E+01 

                   Sur =  0.1081726008E+00 

                   TAl =  0.4805044288E+00 

                   r   =  0.9517390888E+00 

                   eB  =  0.6076173730E+00 

  

  

           Alpha(Y 1) = -0.2539299171E+00 

           Influence of Y(Tp ) on the Reliability Index =  0.6448040E+01 

  

           Alpha(Y 2) = -0.5427487582E+00 

           Influence of Y(Hs ) on the Reliability Index =  0.2945762E+02 

  

           Alpha(A  ) =  0.0000000000E+00 

           Influence of A   on the Reliability Index =  0.0000000E+00 

  

           Alpha(B  ) =  0.0000000000E+00 

           Influence of B   on the Reliability Index =  0.0000000E+00 

  

           Alpha(Tid) = -0.5447375721E+00 

           Influence of Tid on the Reliability Index =  0.2967390E+02 

  

           Alpha(Sur) = -0.1509738752E+00 

           Influence of Sur on the Reliability Index =  0.2279311E+01 

  

           Alpha(TAl) =  0.9473934424E-01 

           Influence of TAl on the Reliability Index =  0.8975543E+00 

  

           Alpha(r  ) = -0.4098585879E-01 

           Influence of r   on the Reliability Index =  0.1679841E+00 

  

           Alpha(eB ) =  0.5574548101E+00 

           Influence of eB  on the Reliability Index =  0.3107559E+02 
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   ALLOWABLE DISCHARGE - m3/s/m ( 2) =  0.100E-01 

  

  

   FINAL RESULTS 

  

  

           Total Number of Iterations = 66 

           Failure Function Z (X) =  0.1202995422E-08 

           Mean Value of Z =  0.7088017973E-01 

           Standard Deviation of Z =  0.2367117310E-01 

           Reliability Index =  0.2994367007E+01 

           Relative Accuracy of the Reliability Index (%) =  0.7225613349E-06 

           Probability of Failure (%) =   0.137535 

           Difference in Pf Between the Last 2 Iterations =  0.9736262209E-10 

  

  

           DESIGN POINT COORDINATES 

  

                   Tp  =  0.7509955325E+01 

                   Hs  =  0.2256461280E+01 

                   A   =  0.7530000000E-02 

                   B   =  0.4170000000E+01 

                   Tid =  0.4012849932E+01 

                   Sur =  0.5072785074E-01 

                   TAl =  0.4886679945E+00 

                   r   =  0.9511623469E+00 

                   eB  =  0.7826602205E+00 

  

  

           Alpha(Y 1) = -0.3422216243E+00 

           Influence of Y(Tp ) on the Reliability Index =  0.1171156E+02 

  

           Alpha(Y 2) = -0.5978879019E+00 

           Influence of Y(Hs ) on the Reliability Index =  0.3574699E+02 

  

           Alpha(A  ) =  0.0000000000E+00 

           Influence of A   on the Reliability Index =  0.0000000E+00 

  

           Alpha(B  ) =  0.0000000000E+00 

           Influence of B   on the Reliability Index =  0.0000000E+00 

  

           Alpha(Tid) = -0.5919726309E+00 

           Influence of Tid on the Reliability Index =  0.3504316E+02 

  

           Alpha(Sur) = -0.1142617071E+00 

           Influence of Sur on the Reliability Index =  0.1305574E+01 

  

           Alpha(TAl) =  0.7568882121E-01 

           Influence of TAl on the Reliability Index =  0.5728798E+00 

  

           Alpha(r  ) = -0.3764135231E-01 

           Influence of r   on the Reliability Index =  0.1416871E+00 

  

           Alpha(eB ) =  0.3934226912E+00 

           Influence of eB  on the Reliability Index =  0.1547814E+02 
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   ALLOWABLE DISCHARGE - m3/s/m ( 3) =  0.100E-02 

  

  

   FINAL RESULTS 

  

  

           Total Number of Iterations = 67 

           Failure Function Z (X) = -0.7517596647E-09 

           Mean Value of Z =  0.1305319872E-01 

           Standard Deviation of Z =  0.5122525833E-02 

           Reliability Index =  0.2548195782E+01 

           Relative Accuracy of the Reliability Index (%) =  0.2240196757E-06 

           Probability of Failure (%) =   0.541433 

           Difference in Pf Between the Last 2 Iterations =  0.8962282045E-10 

  

  

           DESIGN POINT COORDINATES 

  

                   Tp  =  0.7426464897E+01 

                   Hs  =  0.2064834403E+01 

                   A   =  0.7530000000E-02 

                   B   =  0.4170000000E+01 

                   Tid =  0.3774956652E+01 

                   Sur =  0.3390393578E-01 

                   TAl =  0.4912886033E+00 

                   r   =  0.9509318641E+00 

                   eB  =  0.8709390940E+00 

  

  

           Alpha(Y 1) = -0.3809074754E+00 

           Influence of Y(Tp ) on the Reliability Index =  0.1450905E+02 

  

           Alpha(Y 2) = -0.6205992250E+00 

           Influence of Y(Hs ) on the Reliability Index =  0.3851434E+02 

  

           Alpha(A  ) =  0.0000000000E+00 

           Influence of A   on the Reliability Index =  0.0000000E+00 

  

           Alpha(B  ) =  0.0000000000E+00 

           Influence of B   on the Reliability Index =  0.0000000E+00 

  

           Alpha(Tid) = -0.6139291896E+00 

           Influence of Tid on the Reliability Index =  0.3769090E+02 

  

           Alpha(Sur) = -0.9992632726E-01 

           Influence of Sur on the Reliability Index =  0.9985271E+00 

  

           Alpha(TAl) =  0.6837305630E-01 

           Influence of TAl on the Reliability Index =  0.4674875E+00 

  

           Alpha(r  ) = -0.3545923011E-01 

           Influence of r   on the Reliability Index =  0.1257357E+00 

  

           Alpha(eB ) =  0.2773797840E+00 

           Influence of eB  on the Reliability Index =  0.7693954E+01 
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   ALLOWABLE DISCHARGE - m3/s/m ( 4) =  0.100E-03 

  

  

   FINAL RESULTS 

  

  

           Total Number of Iterations = 50 

           Failure Function Z (X) = -0.7579302935E-09 

           Mean Value of Z =  0.2284606485E-02 

           Standard Deviation of Z =  0.9794443295E-03 

           Reliability Index =  0.2332553690E+01 

           Relative Accuracy of the Reliability Index (%) =  0.2283641497E-06 

           Probability of Failure (%) =   0.983635 

           Difference in Pf Between the Last 2 Iterations =  0.1390272984E-09 

  

  

           DESIGN POINT COORDINATES 

  

                   Tp  =  0.7369449843E+01 

                   Hs  =  0.1958496021E+01 

                   A   =  0.7530000000E-02 

                   B   =  0.4170000000E+01 

                   Tid =  0.3639478043E+01 

                   Sur =  0.2707465900E-01 

                   TAl =  0.4923807471E+00 

                   r   =  0.9508282991E+00 

                   eB  =  0.9214694518E+00 

  

  

           Alpha(Y 1) = -0.3987835981E+00 

           Influence of Y(Tp ) on the Reliability Index =  0.1590284E+02 

  

           Alpha(Y 2) = -0.6316113956E+00 

           Influence of Y(Hs ) on the Reliability Index =  0.3989330E+02 

  

           Alpha(A  ) =  0.0000000000E+00 

           Influence of A   on the Reliability Index =  0.0000000E+00 

  

           Alpha(B  ) =  0.0000000000E+00 

           Influence of B   on the Reliability Index =  0.0000000E+00 

  

           Alpha(Tid) = -0.6238974930E+00 

           Influence of Tid on the Reliability Index =  0.3892481E+02 

  

           Alpha(Sur) = -0.9358862260E-01 

           Influence of Sur on the Reliability Index =  0.8758830E+00 

  

           Alpha(TAl) =  0.6532971068E-01 

           Influence of TAl on the Reliability Index =  0.4267971E+00 

  

           Alpha(r  ) = -0.3443007124E-01 

           Influence of r   on the Reliability Index =  0.1185430E+00 

  

           Alpha(eB ) =  0.1964137825E+00 

           Influence of eB  on the Reliability Index =  0.3857837E+01 
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   ALLOWABLE DISCHARGE - m3/s/m ( 5) =  0.100E-04 

  

  

   FINAL RESULTS 

  

  

           Total Number of Iterations = 59 

           Failure Function Z (X) = -0.3298526059E-09 

           Mean Value of Z =  0.3928047060E-03 

           Standard Deviation of Z =  0.1771568459E-03 

           Reliability Index =  0.2217270826E+01 

           Relative Accuracy of the Reliability Index (%) =  0.4071944254E-06 

           Probability of Failure (%) =   1.330288 

           Difference in Pf Between the Last 2 Iterations =  0.3105839509E-09 

  

  

           DESIGN POINT COORDINATES 

  

                   Tp  =  0.7333707910E+01 

                   Hs  =  0.1897379159E+01 

                   A   =  0.7530000000E-02 

                   B   =  0.4170000000E+01 

                   Tid =  0.3562349375E+01 

                   Sur =  0.2354824851E-01 

                   TAl =  0.4929539674E+00 

                   r   =  0.9507712973E+00 

                   eB  =  0.9541034378E+00 

  

  

           Alpha(Y 1) = -0.4077597518E+00 

           Influence of Y(Tp ) on the Reliability Index =  0.1662680E+02 

  

           Alpha(Y 2) = -0.6362933160E+00 

           Influence of Y(Hs ) on the Reliability Index =  0.4048692E+02 

  

           Alpha(A  ) =  0.0000000000E+00 

           Influence of A   on the Reliability Index =  0.0000000E+00 

  

           Alpha(B  ) =  0.0000000000E+00 

           Influence of B   on the Reliability Index =  0.0000000E+00 

  

           Alpha(Tid) = -0.6298563707E+00 

           Influence of Tid on the Reliability Index =  0.3967190E+02 

  

           Alpha(Sur) = -0.8990601037E-01 

           Influence of Sur on the Reliability Index =  0.8083091E+00 

  

           Alpha(TAl) =  0.6355590418E-01 

           Influence of TAl on the Reliability Index =  0.4039353E+00 

  

           Alpha(r  ) = -0.3372981404E-01 

           Influence of r   on the Reliability Index =  0.1137700E+00 

  

           Alpha(eB ) =  0.1374176447E+00 

           Influence of eB  on the Reliability Index =  0.1888361E+01 
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   ALLOWABLE DISCHARGE - m3/s/m ( 6) =  0.100E-05 

  

  

   FINAL RESULTS 

  

  

           Total Number of Iterations = 73 

           Failure Function Z (X) = -0.8329562325E-10 

           Mean Value of Z =  0.6684666168E-04 

           Standard Deviation of Z =  0.3105163469E-04 

           Reliability Index =  0.2152758216E+01 

           Relative Accuracy of the Reliability Index (%) =  0.9605813979E-06 

           Probability of Failure (%) =   1.566915 

           Difference in Pf Between the Last 2 Iterations =  0.8085487037E-09 

  

  

           DESIGN POINT COORDINATES 

  

                   Tp  =  0.7311668376E+01 

                   Hs  =  0.1861443367E+01 

                   A   =  0.7530000000E-02 

                   B   =  0.4170000000E+01 

                   Tid =  0.3517012419E+01 

                   Sur =  0.2162300799E-01 

                   TAl =  0.4932691935E+00 

                   r   =  0.9507392836E+00 

                   eB  =  0.9760302809E+00 

  

  

           Alpha(Y 1) = -0.4124204710E+00 

           Influence of Y(Tp ) on the Reliability Index =  0.1700906E+02 

  

           Alpha(Y 2) = -0.6384045466E+00 

           Influence of Y(Hs ) on the Reliability Index =  0.4075604E+02 

  

           Alpha(A  ) =  0.0000000000E+00 

           Influence of A   on the Reliability Index =  0.0000000E+00 

  

           Alpha(B  ) =  0.0000000000E+00 

           Influence of B   on the Reliability Index =  0.0000000E+00 

  

           Alpha(Tid) = -0.6329314191E+00 

           Influence of Tid on the Reliability Index =  0.4006022E+02 

  

           Alpha(Sur) = -0.8776866672E-01 

           Influence of Sur on the Reliability Index =  0.7703339E+00 

  

           Alpha(TAl) =  0.6253193176E-01 

           Influence of TAl on the Reliability Index =  0.3910242E+00 

  

           Alpha(r  ) = -0.3329704273E-01 

           Influence of r   on the Reliability Index =  0.1108693E+00 

  

           Alpha(eB ) =  0.9499754891E-01 

           Influence of eB  on the Reliability Index =  0.9024534E+00 

 

 

   WOULD YOU LIKE TO RESTART (Y/N) ? N
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Input File general.dad: Owen's Model 

 
2               ! Failure mode of overtopping (Owen) 

2               ! Tide + Surge 

Y               ! Derivatives of the failure function supplied 

1               ! Mode 1 - Reliability analysis for a specified design 

1               ! Design life (in years) 

N               ! No combinations of actions considered 

10              ! Target design parameter - seawall crest level 

 

 

Input File form.dad: Owen's Model 

 
2               ! Starting point: user specified values 

5 

1.2 

4 

1 

0.95 

1.027 

2               ! [XMin,XMax]: user specified values 

1       20 

0       20 

-5.33   5.57 

-5      5    

0.5     1 

-1E25   1E25 

200             ! Maximum number of iterations 

6               ! Number of FORM calculations 

1E-1 

1E-2 

1E-3 

1E-4 

1E-5 

1E-6 

1               ! Accuracy on Beta (%): default value (1%) 

2               ! Smoothing of the iteration: user specified value 

0.9 

1               ! Accuracy on Z0 (%): default value (1%) 

 

 

Input File meandev.dad: Owen's Model 

 
10                              !Type of distribution (Weibull) 

0                               !Not truncated 

5       0.9     3.3             !Mean; stand. dev.; lower limit 

10                              !Type of distribution (Weibull) 

1                               !Truncated for X above Xo 

0                               !Toe level 

1.2     0.7     0.45            !Mean; stand. dev.; lower limit 

0                               !Type of distribution (Deterministic) 

0.0117                          !Value 

0                               !Type of distribution (Deterministic) 
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21.71                           !Value 

13                              !Type of distribution (User-Defined) 

0.2749          2.3619          !Mean value; standard deviation 

3                               !Type of distribution (Gumbel) 

0                               !Not truncated 

0.019483        0.192382475     !Mean value; standard deviation 

6                               !Type of distribution (Beta) 

0                               !Not truncated 

0.95    0.01    0.9     1       !Mean; stand. dev.; lower & upper limits 

2                               !Type of distribution (Log-Normal) 

0                               !Not truncated 

1.027           0.15            !Mean value; standard deviation 

 

 

Input File coefcor.dad: Owen's Model 

 
1       ! Rho(1,1) 

0.6     ! Rho(1,2) 

0       ! Rho(1,3) 

0       !   . 

0       !   . 

0       !   . 

0 

0 

0.6 

1 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 
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0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

1 

 

 

Output File summary.dat: Owen's Model 

 
   WHAT IS THE DATA SOURCE ? 

  

           The Screen ..... [ 1 ] 

           A Datafile ..... [ 2 ] 

  

   Select Option: 2 

  

  

   WHAT IS THE FAILURE MODE TO BE STUDIED: 

  

           Overtopping (H&R) .................... [ 1 ] 

           Overtopping (Owen) ................... [ 2 ] 

           Dune Erosion (Vellinga) .............. [ 3 ] 

  

   Select Option:  2 

  

  

   HOW IS THE STILL-WATER-LEVEL DEFINED ? 

  

           Total Level .... [ 1 ] 

           Tide + Surge ... [ 2 ] 

  

   Select Option: 2 

  

  

   ARE THE FIRST DERIVATIVES OF THE FAILURE FUNCTION SUPPLIED (Y/N) ? Y 
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   DESCRIPTION OF THE VARIABLES 

  

           X(  1) = Tm  = Mean Wave Period 

           X(  2) = Hs  = Wave Height 

           X(  3) = A   = Owen Parameter 

           X(  4) = B   = Owen Parameter 

           X(  5) = Tid = Tide Level 

           X(  6) = Sur = Surge 

           X(  7) = r   = Roughness 

           X(  8) = eB  = Model Parameter 

  

  

   WHAT IS THE PURPOSE OF THE ANALYSIS ? 

  

           Reliability Analysis for a Specified Design ... [ 1 ] 

           Design for a Specified Reliability Level ...... [ 2 ] 

  

   Select Option: 1 

  

  

   DESIGN LIFE OF THE STRUCTURE =   1 

  

  

   WOULD YOU LIKE TO CONSIDER COMBINATION OF ACTIONS (Y/N) ? N 

  

  

   PRESCRIBED VALUE OF THE DESIGN PARAMETER 

  

           Seawall Crest Level =  0.1000000000E+02 

  

  

   CHARACTERISTICS OF THE VARIABLES 

  

           Probability Distribution of Tm  = Minima Type III (Weibull) 

           Mean Value of Tm  =  0.5000000000E+01 

           Standard Deviation of Tm  =  0.9000000000E+00 

           Lower Limit on Tm  =  0.3300000000E+01 

  

  

           Probability Distribution of Hs  = Minima Type III (Weibull) 

           The Distribution of Hs  is truncated above Xo = 0.6(Tide+Surge-TL) 

           Seawall Toe Level (TL) =  0.0000000000E+00 

           Mean Value of Hs  =  0.1200000000E+01 

           Standard Deviation of Hs  =  0.7000000000E+00 

           Lower Limit on Hs  =  0.4500000000E+00 

  

  

           Probability Distribution of A   = Deterministic 

           Mean Value of A   =  0.1170000000E-01 

           Standard Deviation of A   =  0.0000000000E+00 

  

  

           Probability Distribution of B   = Deterministic 

           Mean Value of B   =  0.2171000000E+02 

           Standard Deviation of B   =  0.0000000000E+00 

  

 



Examples Of Input And Output Files For Wave Overtopping 

D1-19 

           Probability Distribution of Tid = User-Defined Distribution 

           Mean Value of Tid =  0.2749000000E+00 

           Standard Deviation of Tid =  0.2361900000E+01 

  

  

           Probability Distribution of Sur = Maxima Type I (Gumbel) 

           Mean Value of Sur =  0.1948300000E-01 

           Standard Deviation of Sur =  0.1923824750E+00 

  

  

           Probability Distribution of r   = Beta 

           Mean Value of r   =  0.9500000000E+00 

           Standard Deviation of r   =  0.1000000000E-01 

           Limits a and b of r   = [ 0.9000000000E+00, 0.1000000000E+01] 

  

  

           Probability Distribution of eB  = Log-Normal 

           Mean Value of eB  =  0.1027000000E+01 

           Standard Deviation of eB  =  0.1500000000E+00 

  

  

  

  

   CORRELATION COEFFICIENTS 

  

           (Tm ,Tm ) =  0.1000000000E+01 

           (Tm ,Hs ) =  0.6000000000E+00 

           (Tm ,A  ) =  0.0000000000E+00 

           (Tm ,B  ) =  0.0000000000E+00 

           (Tm ,Tid) =  0.0000000000E+00 

           (Tm ,Sur) =  0.0000000000E+00 

           (Tm ,r  ) =  0.0000000000E+00 

           (Tm ,eB ) =  0.0000000000E+00 

           (Hs ,Tm ) =  0.6000000000E+00 

           (Hs ,Hs ) =  0.1000000000E+01 

           (Hs ,A  ) =  0.0000000000E+00 

           (Hs ,B  ) =  0.0000000000E+00 

           (Hs ,Tid) =  0.0000000000E+00 

           (Hs ,Sur) =  0.0000000000E+00 

           (Hs ,r  ) =  0.0000000000E+00 

           (Hs ,eB ) =  0.0000000000E+00 

           (A  ,Tm ) =  0.0000000000E+00 

           (A  ,Hs ) =  0.0000000000E+00 

           (A  ,A  ) =  0.1000000000E+01 

           (A  ,B  ) =  0.0000000000E+00 

           (A  ,Tid) =  0.0000000000E+00 

           (A  ,Sur) =  0.0000000000E+00 

           (A  ,r  ) =  0.0000000000E+00 

           (A  ,eB ) =  0.0000000000E+00 

           (B  ,Tm ) =  0.0000000000E+00 

           (B  ,Hs ) =  0.0000000000E+00 

           (B  ,A  ) =  0.0000000000E+00 

           (B  ,B  ) =  0.1000000000E+01 

           (B  ,Tid) =  0.0000000000E+00 

           (B  ,Sur) =  0.0000000000E+00 

           (B  ,r  ) =  0.0000000000E+00 

           (B  ,eB ) =  0.0000000000E+00 

           (Tid,Tm ) =  0.0000000000E+00 
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           (Tid,Hs ) =  0.0000000000E+00 

           (Tid,A  ) =  0.0000000000E+00 

           (Tid,B  ) =  0.0000000000E+00 

           (Tid,Tid) =  0.1000000000E+01 

           (Tid,Sur) =  0.0000000000E+00 

           (Tid,r  ) =  0.0000000000E+00 

           (Tid,eB ) =  0.0000000000E+00 

           (Sur,Tm ) =  0.0000000000E+00 

           (Sur,Hs ) =  0.0000000000E+00 

           (Sur,A  ) =  0.0000000000E+00 

           (Sur,B  ) =  0.0000000000E+00 

           (Sur,Tid) =  0.0000000000E+00 

           (Sur,Sur) =  0.1000000000E+01 

           (Sur,r  ) =  0.0000000000E+00 

           (Sur,eB ) =  0.0000000000E+00 

           (r  ,Tm ) =  0.0000000000E+00 

           (r  ,Hs ) =  0.0000000000E+00 

           (r  ,A  ) =  0.0000000000E+00 

           (r  ,B  ) =  0.0000000000E+00 

           (r  ,Tid) =  0.0000000000E+00 

           (r  ,Sur) =  0.0000000000E+00 

           (r  ,r  ) =  0.1000000000E+01 

           (r  ,eB ) =  0.0000000000E+00 

           (eB ,Tm ) =  0.0000000000E+00 

           (eB ,Hs ) =  0.0000000000E+00 

           (eB ,A  ) =  0.0000000000E+00 

           (eB ,B  ) =  0.0000000000E+00 

           (eB ,Tid) =  0.0000000000E+00 

           (eB ,Sur) =  0.0000000000E+00 

           (eB ,r  ) =  0.0000000000E+00 

           (eB ,eB ) =  0.1000000000E+01 

  

  

   STARTING POINT FOR THE FORM CALCULATIONS: 

  

           Default Values (mean values) ... [ 1 ] 

           User Specified Values .......... [ 2 ] 

  

   Select Option: 2 

 

   STARTING POINT 

  

           Tm  =  0.5000000000E+01 

           Hs  =  0.1200000000E+01 

           Tid =  0.4000000000E+01 

           Sur =  0.1000000000E+01 

           r   =  0.9500000000E+00 

           eB  =  0.1027000000E+01 

  

   LIMITING VALUES FOR THE VARIABLES: 

  

           Default Values (+/- 1E25) ... [ 1 ] 

           User Specified Values ....... [ 2 ] 

  

   Select Option: 2 
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   LIMITING VALUES FOR THE VARIABLES 

  

           XMin(Tm ) =  0.3300000000E+01   XMax(Tm ) =  0.2000000000E+02 

           XMin(Hs ) =  0.4500000000E+00   XMax(Hs ) =  0.2000000000E+02 

           XMin(A  ) =  0.1170000000E-01   XMax(A  ) =  0.1170000000E-01 

           XMin(B  ) =  0.2171000000E+02   XMax(B  ) =  0.2171000000E+02 

           XMin(Tid) = -0.5330000000E+01   XMax(Tid) =  0.5570000000E+01 

           XMin(Sur) = -0.5000000000E+01   XMax(Sur) =  0.5000000000E+01 

           XMin(r  ) =  0.9000000000E+00   XMax(r  ) =  0.1000000000E+01 

           XMin(eB ) =  0.1000000020E-24   XMax(eB ) =  0.1000000000E+26 

  

  

   MAXIMUM NUMBER OF ITERATIONS (Max=200) = 200 

  

   NUMBER OF FORM CALCULATIONS (Max=10) =  6 

  

   ALLOWABLE DISCHARGE - m3/s/m ( 1) =  0.100E+00 

   ALLOWABLE DISCHARGE - m3/s/m ( 2) =  0.100E-01 

   ALLOWABLE DISCHARGE - m3/s/m ( 3) =  0.100E-02 

   ALLOWABLE DISCHARGE - m3/s/m ( 4) =  0.100E-03 

   ALLOWABLE DISCHARGE - m3/s/m ( 5) =  0.100E-04 

   ALLOWABLE DISCHARGE - m3/s/m ( 6) =  0.100E-05 

  

  

   REQUIRED RELATIVE ACCURACY OF THE RELIABILITY INDEX: 

  

           Default Value (1%) ......... [ 1 ] 

           User Specified Value ....... [ 2 ] 

  

   Select Option: 1 

  

  

   REQUIRED SMOOTHING COEFFICIENT FOR THE ITERATION PROCESS: 

  

           Default Value (0) .......... [ 1 ] 

           User Specified Value ....... [ 2 ] 

  

   Select Option: 2 

  

  

   Required Smoothing Coefficient for the Iteration Process [0,1] =  0.9000000000E+00 

  

  

  

   REQUIRED ACCURACY OF THE FAILURE FUNCTION: 

  

           Default Value (1%) ......... [ 1 ] 

           User Specified Value ....... [ 2 ] 

  

   Select Option: 1 

  

  



Examples Of Input And Output Files For Wave Overtopping 

D1-22 

   ALLOWABLE DISCHARGE - m3/s/m ( 1) =  0.100E+00 

  

  

   FINAL RESULTS 

  

  

           Total Number of Iterations = 64 

           Failure Function Z (X) = -0.3304572431E-07 

           Mean Value of Z =  0.3929601531E+00 

           Standard Deviation of Z =  0.1097844458E+00 

           Reliability Index =  0.3579379120E+01 

           Relative Accuracy of the Reliability Index (%) =  0.8743530582E-06 

           Probability of Failure (%) =   0.017243 

           Difference in Pf Between the Last 2 Iterations =  0.2190748757E-10 

  

  

           DESIGN POINT COORDINATES 

  

                   Tm  =  0.7867682058E+01 

                   Hs  =  0.2288306898E+01 

                   A   =  0.1170000000E-01 

                   B   =  0.2171000000E+02 

                   Tid =  0.3959377043E+01 

                   Sur =  0.4621900285E-01 

                   r   =  0.9511036460E+00 

                   eB  =  0.8250366186E+00 

  

  

           Alpha(Y 1) = -0.7472518744E+00 

           Influence of Y(Tm ) on the Reliability Index =  0.5583854E+02 

  

           Alpha(Y 2) = -0.2005296001E+00 

           Influence of Y(Hs ) on the Reliability Index =  0.4021212E+01 

  

           Alpha(A  ) =  0.0000000000E+00 

           Influence of A   on the Reliability Index =  0.0000000E+00 

  

           Alpha(B  ) =  0.0000000000E+00 

           Influence of B   on the Reliability Index =  0.0000000E+00 

  

           Alpha(Tid) = -0.4816107580E+00 

           Influence of Tid on the Reliability Index =  0.2319489E+02 

  

           Alpha(Sur) = -0.8911581216E-01 

           Influence of Sur on the Reliability Index =  0.7941628E+00 

  

           Alpha(r  ) = -0.2990006018E-01 

           Influence of r   on the Reliability Index =  0.8940136E-01 

  

           Alpha(eB ) =  0.4007716955E+00 

           Influence of eB  on the Reliability Index =  0.1606180E+02 
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   ALLOWABLE DISCHARGE - m3/s/m ( 2) =  0.100E-01 

  

  

   FINAL RESULTS 

  

  

           Total Number of Iterations = 54 

           Failure Function Z (X) =  0.8715043405E-09 

           Mean Value of Z =  0.4954358667E-01 

           Standard Deviation of Z =  0.2093853466E-01 

           Reliability Index =  0.2366143929E+01 

           Relative Accuracy of the Reliability Index (%) =  0.3568124208E-06 

           Probability of Failure (%) =   0.898770 

           Difference in Pf Between the Last 2 Iterations =  0.2051574986E-09 

  

  

           DESIGN POINT COORDINATES 

  

                   Tm  =  0.6714341777E+01 

                   Hs  =  0.1768924154E+01 

                   A   =  0.1170000000E-01 

                   B   =  0.2171000000E+02 

                   Tid =  0.3324831734E+01 

                   Sur =  0.1484800976E-01 

                   r   =  0.9506214224E+00 

                   eB  =  0.9037968322E+00 

  

  

           Alpha(Y 1) = -0.7365302465E+00 

           Influence of Y(Tm ) on the Reliability Index =  0.5424768E+02 

  

           Alpha(Y 2) = -0.2590956446E+00 

           Influence of Y(Hs ) on the Reliability Index =  0.6713055E+01 

  

           Alpha(A  ) =  0.0000000000E+00 

           Influence of A   on the Reliability Index =  0.0000000E+00 

  

           Alpha(B  ) =  0.0000000000E+00 

           Influence of B   on the Reliability Index =  0.0000000E+00 

  

           Alpha(Tid) = -0.5189503568E+00 

           Influence of Tid on the Reliability Index =  0.2693095E+02 

  

           Alpha(Sur) = -0.6424241822E-01 

           Influence of Sur on the Reliability Index =  0.4127088E+00 

  

           Alpha(r  ) = -0.2546293174E-01 

           Influence of r   on the Reliability Index =  0.6483609E-01 

  

           Alpha(eB ) =  0.3410391781E+00 

           Influence of eB  on the Reliability Index =  0.1163077E+02 
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   ALLOWABLE DISCHARGE - m3/s/m ( 3) =  0.100E-02 

  

  

   FINAL RESULTS 

  

  

           Total Number of Iterations = 64 

           Failure Function Z (X) =  0.8701465193E-11 

           Mean Value of Z =  0.5323353420E-02 

           Standard Deviation of Z =  0.3180215221E-02 

           Reliability Index =  0.1673897221E+01 

           Relative Accuracy of the Reliability Index (%) =  0.1547060913E-06 

           Probability of Failure (%) =   4.707768 

           Difference in Pf Between the Last 2 Iterations =  0.2540418154E-09 

  

  

           DESIGN POINT COORDINATES 

  

                   Tm  =  0.6104414348E+01 

                   Hs  =  0.1383504337E+01 

                   A   =  0.1170000000E-01 

                   B   =  0.2171000000E+02 

                   Tid =  0.2805428663E+01 

                   Sur =  0.3618371385E-02 

                   r   =  0.9504050441E+00 

                   eB  =  0.9414699343E+00 

  

  

           Alpha(Y 1) = -0.7203268632E+00 

           Influence of Y(Tm ) on the Reliability Index =  0.5188708E+02 

  

           Alpha(Y 2) = -0.2818109186E+00 

           Influence of Y(Hs ) on the Reliability Index =  0.7941739E+01 

  

           Alpha(A  ) =  0.0000000000E+00 

           Influence of A   on the Reliability Index =  0.0000000E+00 

  

           Alpha(B  ) =  0.0000000000E+00 

           Influence of B   on the Reliability Index =  0.0000000E+00 

  

           Alpha(Tid) = -0.5473526962E+00 

           Influence of Tid on the Reliability Index =  0.2995950E+02 

  

           Alpha(Sur) = -0.5360142620E-01 

           Influence of Sur on the Reliability Index =  0.2873113E+00 

  

           Alpha(r  ) = -0.2346256681E-01 

           Influence of r   on the Reliability Index =  0.5504920E-01 

  

           Alpha(eB ) =  0.3141547983E+00 

           Influence of eB  on the Reliability Index =  0.9869324E+01 
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   ALLOWABLE DISCHARGE - m3/s/m ( 4) =  0.100E-03 

  

  

   FINAL RESULTS 

  

  

           Total Number of Iterations = 68 

           Failure Function Z (X) = -0.1654101392E-10 

           Mean Value of Z =  0.5174503166E-03 

           Standard Deviation of Z =  0.4304664431E-03 

           Reliability Index =  0.1202068883E+01 

           Relative Accuracy of the Reliability Index (%) =  0.1902001380E-06 

           Probability of Failure (%) =  11.467071 

           Difference in Pf Between the Last 2 Iterations =  0.4412629845E-09 

  

  

           DESIGN POINT COORDINATES 

  

                   Tm  =  0.5709854971E+01 

                   Hs  =  0.1112225125E+01 

                   A   =  0.1170000000E-01 

                   B   =  0.2171000000E+02 

                   Tid =  0.2387767135E+01 

                   Sur = -0.2096607008E-02 

                   r   =  0.9502779598E+00 

                   eB  =  0.9643145164E+00 

  

  

           Alpha(Y 1) = -0.6927297329E+00 

           Influence of Y(Tm ) on the Reliability Index =  0.4798745E+02 

  

           Alpha(Y 2) = -0.2879491765E+00 

           Influence of Y(Hs ) on the Reliability Index =  0.8291473E+01 

  

           Alpha(A  ) =  0.0000000000E+00 

           Influence of A   on the Reliability Index =  0.0000000E+00 

  

           Alpha(B  ) =  0.0000000000E+00 

           Influence of B   on the Reliability Index =  0.0000000E+00 

  

           Alpha(Tid) = -0.5867796063E+00 

           Influence of Tid on the Reliability Index =  0.3443103E+02 

  

           Alpha(Sur) = -0.4781748192E-01 

           Influence of Sur on the Reliability Index =  0.2286512E+00 

  

           Alpha(r  ) = -0.2242283715E-01 

           Influence of r   on the Reliability Index =  0.5027836E-01 

  

           Alpha(eB ) =  0.3001852550E+00 

           Influence of eB  on the Reliability Index =  0.9011119E+01 
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   ALLOWABLE DISCHARGE - m3/s/m ( 5) =  0.100E-04 

  

  

   FINAL RESULTS 

  

  

           Total Number of Iterations = 60 

           Failure Function Z (X) = -0.4879941218E-10 

           Mean Value of Z =  0.4701425035E-04 

           Standard Deviation of Z =  0.5477444869E-04 

           Reliability Index =  0.8583244829E+00 

           Relative Accuracy of the Reliability Index (%) =  0.1489272992E-05 

           Probability of Failure (%) =  19.535878 

           Difference in Pf Between the Last 2 Iterations =  0.3538277560E-08 

  

  

           DESIGN POINT COORDINATES 

  

                   Tm  =  0.5432632364E+01 

                   Hs  =  0.9176506972E+00 

                   A   =  0.1170000000E-01 

                   B   =  0.2171000000E+02 

                   Tid =  0.2031448014E+01 

                   Sur = -0.5574932557E-02 

                   r   =  0.9501921396E+00 

                   eB  =  0.9800548223E+00 

  

  

           Alpha(Y 1) = -0.6511433929E+00 

           Influence of Y(Tm ) on the Reliability Index =  0.4239877E+02 

  

           Alpha(Y 2) = -0.2749863860E+00 

           Influence of Y(Hs ) on the Reliability Index =  0.7561751E+01 

  

           Alpha(A  ) =  0.0000000000E+00 

           Influence of A   on the Reliability Index =  0.0000000E+00 

  

           Alpha(B  ) =  0.0000000000E+00 

           Influence of B   on the Reliability Index =  0.0000000E+00 

  

           Alpha(Tid) = -0.6430924749E+00 

           Influence of Tid on the Reliability Index =  0.4135679E+02 

  

           Alpha(Sur) = -0.4388713472E-01 

           Influence of Sur on the Reliability Index =  0.1926081E+00 

  

           Alpha(r  ) = -0.2170666113E-01 

           Influence of r   on the Reliability Index =  0.4711791E-01 

  

           Alpha(eB ) =  0.2905676829E+00 

           Influence of eB  on the Reliability Index =  0.8442958E+01 
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   ALLOWABLE DISCHARGE - m3/s/m ( 6) =  0.100E-05 

  

  

   FINAL RESULTS 

  

  

           Total Number of Iterations = 62 

           Failure Function Z (X) = -0.4468194738E-10 

           Mean Value of Z =  0.4055884630E-05 

           Standard Deviation of Z =  0.6658564046E-05 

           Reliability Index =  0.6091230184E+00 

           Relative Accuracy of the Reliability Index (%) =  0.9391025663E-05 

           Probability of Failure (%) =  27.122233 

           Difference in Pf Between the Last 2 Iterations =  0.1900280305E-07 

  

  

           DESIGN POINT COORDINATES 

  

                   Tm  =  0.5242180513E+01 

                   Hs  =  0.7713292909E+00 

                   A   =  0.1170000000E-01 

                   B   =  0.2171000000E+02 

                   Tid =  0.1698078052E+01 

                   Sur = -0.7783444552E-02 

                   r   =  0.9501336265E+00 

                   eB  =  0.9909332316E+00 

  

  

           Alpha(Y 1) = -0.5999624020E+00 

           Influence of Y(Tm ) on the Reliability Index =  0.3599549E+02 

  

           Alpha(Y 2) = -0.2415765075E+00 

           Influence of Y(Hs ) on the Reliability Index =  0.5835921E+01 

  

           Alpha(A  ) =  0.0000000000E+00 

           Influence of A   on the Reliability Index =  0.0000000E+00 

  

           Alpha(B  ) =  0.0000000000E+00 

           Influence of B   on the Reliability Index =  0.0000000E+00 

  

           Alpha(Tid) = -0.7060358221E+00 

           Influence of Tid on the Reliability Index =  0.4984866E+02 

  

           Alpha(Sur) = -0.4108099036E-01 

           Influence of Sur on the Reliability Index =  0.1687648E+00 

  

           Alpha(r  ) = -0.2127042864E-01 

           Influence of r   on the Reliability Index =  0.4524311E-01 

  

           Alpha(eB ) =  0.2847090553E+00 

           Influence of eB  on the Reliability Index =  0.8105925E+01 

  

  

  

  

   WOULD YOU LIKE TO RESTART (Y/N) ? N 
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APPENDIX D3 - Examples Of Input And Output Files For 
Dune Erosion 

 

Input File general.dad: Example 1 

 
3               ! Failure mode of dune erosion 

1               ! Total level 

2               ! Movements of sand only seaward 

1               ! Mode 1 - Reliability analysis for a specified design 

1               ! Design life (in years) 

N               ! No combinations of actions considered 

0               ! Target design parameter - nourishment width 

 

 

Input File form.dad: Example 1 

 
2               ! Starting point: user specified values 

0 

2.25E-4 

-0.3 

0 

0.4 

0 

4.2 

2               ! [XMin,XMax]: user specified values 

0       1E25 

0       1E25 

-1E25   1E25 

-1E25   1E25 

-1E25   1E25 

-1E25   1E25 

3       1E25 

200             ! Maximum number of iterations 

1               ! Number of FORM calculations 

90 

1               ! Accuracy on Beta (%): default value (1%) 

1               ! Smoothing of the iteration: default value (0) 

1               ! Accuracy on Z0 (%): default value (1%) 

 

 

Input File meandev.dad: Example 1 

 
1                                               ! Type of distribution (Normal) 

0                                               ! Not truncated 

0               0.60                            ! Mean value; standard deviation 

1                                               ! Type of distribution (Normal) 

0                                               ! Not truncated 
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2.25E-4         2.25E-5                         ! Mean value; standard deviation 

1                                               ! Type of distribution (Normal) 

0                                               ! Not truncated 

0.              0.6                             ! Mean value; standard deviation 

1                                               ! Type of distribution (Normal) 

0                                               ! Not truncated 

0.              1                               ! Mean value; standard deviation 

1                                               ! Type of distribution (Normal) 

0                                               ! Not truncated 

0.4             0.1                             ! Mean value; standard deviation 

1                                               ! Type of distribution (Normal) 

0                                               ! Not truncated 

0.              1                               ! Mean value; standard deviation 

10                                              ! Type of distribution (Weibull) 

0                                               ! Not truncated 

2.52            0.33            2.19            ! Mean; stand. dev.; lower limit 

 

 

Input File coefcor.dad: Example 1 

 
1       ! Rho(1,1) 

0       ! Rho(1,2) 

0       ! Rho(1,3) 

0       !   . 

0       !   . 

0       !   . 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 
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0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

1 

 

 

Input File perfil.dad: Example 1 

 
0               !Coastal curvature in degrees per 1000m 
21              !Number of points in the initial profile  
-200    15      !Coordinates of the initial profile (XP,YP)  
-150    13.5 
-100    11 
-75     13.5 
-50     12 
-25     15 
-20     12.68571429 
-10     8.057142857 
0       3.428571429 
10      -1.2 
15      -1.7 
50      -2.082474227 
100     -2.628865979 
150     -3.175257732 
200     -3.721649485 
250     -4.268041237 
300     -4.81443299 
350     -5.360824742 
400     -5.907216495 
450     -6.453608247 
500     -7 
2               !Number of points to be changed in the initial profile 
10              !First point to be changed, point No.  
1.              !Gradient of the eroded dune face, 1:md 
12.5            !Gradient of the toe of the post-storm profile, 1:mt 
15              !Nourishment top level 
1.5             !Gradient of the nourished face, 1:mnour 

 

 
Output File summary.dat: Example 1 
 
   WHAT IS THE DATA SOURCE ? 

  

           The Screen ..... [ 1 ] 

           A Datafile ..... [ 2 ] 

  

   Select Option: 2 

  

  

   WHAT IS THE FAILURE MODE TO BE STUDIED: 

  

           Overtopping (H&R) .................... [ 1 ] 

           Overtopping (Owen) ................... [ 2 ] 

           Dune Erosion (Vellinga) .............. [ 3 ] 
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   Select Option:  3 

  

  

   HOW IS THE STILL-WATER-LEVEL DEFINED ? 

  

           Total Level .... [ 1 ] 

           Tide + Surge ... [ 2 ] 

  

   Select Option: 1 

  

  

   DURING A STORM SURGE, WOULD YOU LIKE TO TAKE INTO ACCOUNT: 

  

           Movements of Sand in Both Directions ? ... [ 1 ] 

           Movements of Sand only Seaward ? ......... [ 2 ] 

  

   Select Option: 2 

  

   DUNE EROSION 

  

           Coastal Curvature (Deg/1000m) =  0.0000000000E+00 

  

           Number of Points Defining the Initial Profile (Max=100) =  21 

  

                       Initial Profile 

  

                   X                  Y 

           -0.2000000000E+03   0.1500000000E+02 

           -0.1500000000E+03   0.1350000000E+02 

           -0.1000000000E+03   0.1100000000E+02 

           -0.7500000000E+02   0.1350000000E+02 

           -0.5000000000E+02   0.1200000000E+02 

           -0.2500000000E+02   0.1500000000E+02 

           -0.2000000000E+02   0.1268571429E+02 

           -0.1000000000E+02   0.8057142857E+01 

            0.0000000000E+00   0.3428571429E+01 

            0.1000000000E+02  -0.1200000000E+01 

            0.1500000000E+02  -0.1700000000E+01 

            0.5000000000E+02  -0.2082474227E+01 

            0.1000000000E+03  -0.2628865979E+01 

            0.1500000000E+03  -0.3175257732E+01 

            0.2000000000E+03  -0.3721649485E+01 

            0.2500000000E+03  -0.4268041237E+01 

            0.3000000000E+03  -0.4814432990E+01 

            0.3500000000E+03  -0.5360824742E+01 

            0.4000000000E+03  -0.5907216495E+01 

            0.4500000000E+03  -0.6453608247E+01 

            0.5000000000E+03  -0.7000000000E+01 

  

           Number of Points to be Changed in the Initial Profile =   2 

  

           First Point to be Changed = Point No. 10 

  

           Gradient of the Eroded Dune Face = 1: 1.0 

  

           Gradient of the Toe of the Post-Storm Profile = 1:12.5 
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           Nourishment Top Level =  0.1500000000E+02 

  

           Gradient of the Nourished Face = 1: 1.5 

  

  

   DESCRIPTION OF THE VARIABLES 

  

           X(  1) = Hs  = Wave Height 

           X(  2) = D50 = Particle Size 

           X(  3) = DP  = Initial Profile 

           X(  4) = SD  = Surge Duration 

           X(  5) = GB  = Gust Bumps 

           X(  6) = Ac  = Accuracy Comput. 

           X(  7) = h   = Surge Level 

  

  

   WHAT IS THE PURPOSE OF THE ANALYSIS ? 

  

           Reliability Analysis for a Specified Design ... [ 1 ] 

           Design for a Specified Reliability Level ...... [ 2 ] 

  

   Select Option: 1 

  

  

   DESIGN LIFE OF THE STRUCTURE =   1 

  

   WOULD YOU LIKE TO CONSIDER COMBINATION OF ACTIONS (Y/N) ? N 

  

  

   PRESCRIBED VALUE OF THE DESIGN PARAMETER 

  

           Nourishment Width   =  0.0000000000E+00 

  

  

   CHARACTERISTICS OF THE VARIABLES 

  

           Probability Distribution of Hs  = Normal (Gaussian) 

           Mean Value of Hs  =  0.0000000000E+00 

           Standard Deviation of Hs  =  0.6000000000E+00 

  

  

           Probability Distribution of D50 = Normal (Gaussian) 

           Mean Value of D50 =  0.2250000000E-03 

           Standard Deviation of D50 =  0.2250000000E-04 

  

  

           Probability Distribution of DP  = Normal (Gaussian) 

           Mean Value of DP  =  0.0000000000E+00 

           Standard Deviation of DP  =  0.6000000000E+00 

  

  

           Probability Distribution of SD  = Normal (Gaussian) 

           Mean Value of SD  =  0.0000000000E+00 

           Standard Deviation of SD  =  0.1000000000E+01 

  

  

           Probability Distribution of GB  = Normal (Gaussian) 

           Mean Value of GB  =  0.4000000000E+00 
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           Standard Deviation of GB  =  0.1000000000E+00 

  

  

           Probability Distribution of Ac  = Normal (Gaussian) 

           Mean Value of Ac  =  0.0000000000E+00 

           Standard Deviation of Ac  =  0.1000000000E+01 

  

  

           Probability Distribution of h   = Minima Type III (Weibull) 

           Mean Value of h   =  0.2520000000E+01 

           Standard Deviation of h   =  0.3300000000E+00 

           Lower Limit on h   =  0.2190000000E+01 

  

  

   CORRELATION COEFFICIENTS 

  

           (Hs ,Hs ) =  0.1000000000E+01 

           (Hs ,D50) =  0.0000000000E+00 

           (Hs ,DP ) =  0.0000000000E+00 

           (Hs ,SD ) =  0.0000000000E+00 

           (Hs ,GB ) =  0.0000000000E+00 

           (Hs ,Ac ) =  0.0000000000E+00 

           (Hs ,h  ) =  0.0000000000E+00 

           (D50,Hs ) =  0.0000000000E+00 

           (D50,D50) =  0.1000000000E+01 

           (D50,DP ) =  0.0000000000E+00 

           (D50,SD ) =  0.0000000000E+00 

           (D50,GB ) =  0.0000000000E+00 

           (D50,Ac ) =  0.0000000000E+00 

           (D50,h  ) =  0.0000000000E+00 

           (DP ,Hs ) =  0.0000000000E+00 

           (DP ,D50) =  0.0000000000E+00 

           (DP ,DP ) =  0.1000000000E+01 

           (DP ,SD ) =  0.0000000000E+00 

           (DP ,GB ) =  0.0000000000E+00 

           (DP ,Ac ) =  0.0000000000E+00 

           (DP ,h  ) =  0.0000000000E+00 

           (SD ,Hs ) =  0.0000000000E+00 

           (SD ,D50) =  0.0000000000E+00 

           (SD ,DP ) =  0.0000000000E+00 

           (SD ,SD ) =  0.1000000000E+01 

           (SD ,GB ) =  0.0000000000E+00 

           (SD ,Ac ) =  0.0000000000E+00 

           (SD ,h  ) =  0.0000000000E+00 

           (GB ,Hs ) =  0.0000000000E+00 

           (GB ,D50) =  0.0000000000E+00 

           (GB ,DP ) =  0.0000000000E+00 

           (GB ,SD ) =  0.0000000000E+00 

           (GB ,GB ) =  0.1000000000E+01 

           (GB ,Ac ) =  0.0000000000E+00 

           (GB ,h  ) =  0.0000000000E+00 

           (Ac ,Hs ) =  0.0000000000E+00 

           (Ac ,D50) =  0.0000000000E+00 

           (Ac ,DP ) =  0.0000000000E+00 

           (Ac ,SD ) =  0.0000000000E+00 

           (Ac ,GB ) =  0.0000000000E+00 

           (Ac ,Ac ) =  0.1000000000E+01 

           (Ac ,h  ) =  0.0000000000E+00 



Examples Of Input And Output Files For Dune Erosion 

D3-7 

           (h  ,Hs ) =  0.0000000000E+00 

           (h  ,D50) =  0.0000000000E+00 

           (h  ,DP ) =  0.0000000000E+00 

           (h  ,SD ) =  0.0000000000E+00 

           (h  ,GB ) =  0.0000000000E+00 

           (h  ,Ac ) =  0.0000000000E+00 

           (h  ,h  ) =  0.1000000000E+01 

  

  

   STARTING POINT FOR THE FORM CALCULATIONS: 

  

           Default Values (mean values) ... [ 1 ] 

           User Specified Values .......... [ 2 ] 

  

   Select Option: 2 

  

   STARTING POINT 

  

           Hs  =  0.0000000000E+00 

           D50 =  0.2250000000E-03 

           DP  = -0.3000000000E+00 

           SD  =  0.0000000000E+00 

           GB  =  0.4000000000E+00 

           Ac  =  0.0000000000E+00 

           h   =  0.4200000000E+01 

  

   LIMITING VALUES FOR THE VARIABLES: 

  

           Default Values (+/- 1E25) ... [ 1 ] 

           User Specified Values ....... [ 2 ] 

  

   Select Option: 2 

  

   LIMITING VALUES FOR THE VARIABLES 

  

           XMin(Hs ) =  0.0000000000E+00   XMax(Hs ) =  0.1000000000E+26 

           XMin(D50) =  0.0000000000E+00   XMax(D50) =  0.1000000000E+26 

           XMin(DP ) = -0.1000000000E+26   XMax(DP ) =  0.1000000000E+26 

           XMin(SD ) = -0.1000000000E+26   XMax(SD ) =  0.1000000000E+26 

           XMin(GB ) = -0.1000000000E+26   XMax(GB ) =  0.1000000000E+26 

           XMin(Ac ) = -0.1000000000E+26   XMax(Ac ) =  0.1000000000E+26 

           XMin(h  ) =  0.3000000000E+01   XMax(h  ) =  0.1000000000E+26 

  

  

   MAXIMUM NUMBER OF ITERATIONS (Max=200) = 200 

  

   NUMBER OF FORM CALCULATIONS (Max=10) =  1 

  

   ALLOWABLE EROSION DISTANCE - m ( 1) =  90.00 

  

  

   REQUIRED RELATIVE ACCURACY OF THE RELIABILITY INDEX: 

  

           Default Value (1%) ......... [ 1 ] 

           User Specified Value ....... [ 2 ] 

  

   Select Option: 1 
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   REQUIRED SMOOTHING COEFFICIENT FOR THE ITERATION PROCESS: 

  

           Default Value (0) .......... [ 1 ] 

           User Specified Value ....... [ 2 ] 

  

   Select Option: 1 

  

  

   REQUIRED ACCURACY OF THE FAILURE FUNCTION: 

  

           Default Value (1%) ......... [ 1 ] 

           User Specified Value ....... [ 2 ] 

  

   Select Option: 1 

  

  

   ALLOWABLE EROSION DISTANCE - m ( 1) =  90.00 

  

  

   FINAL RESULTS 

  

  

           Total Number of Iterations =   6 

           Failure Function Z (X) =  0.5098040390E-07 

           Mean Value of Z =  0.1053991340E+03 

           Standard Deviation of Z =  0.3238986303E+02 

           Reliability Index =  0.3254077794E+01 

           Relative Accuracy of the Reliability Index (%) =  0.1540871846E-03 

           Probability of Failure (%) =   0.056884 

           Difference in Pf Between the Last 2 Iterations =  0.1002823371E-07 

  

  

           DESIGN POINT COORDINATES 

  

                   Hs  =  0.2366829604E+00 

                   D50 =  0.2061481291E-03 

                   DP  = -0.7271166310E-01 

                   SD  =  0.6350647216E+00 

                   GB  =  0.4079383090E+00 

                   Ac  =  0.8719123188E+00 

                   h   =  0.4302783557E+01 

  

  

           Alpha(Hs ) = -0.1212237770E+00 

           Influence of Hs  on the Reliability Index =  0.1469520E+01 

  

           Alpha(D50) =  0.2574803009E+00 

           Influence of D50 on the Reliability Index =  0.6629611E+01 

  

           Alpha(DP ) =  0.3724130548E-01 

           Influence of DP  on the Reliability Index =  0.1386915E+00 

  

           Alpha(SD ) = -0.1951596618E+00 

           Influence of SD  on the Reliability Index =  0.3808729E+01 

  

           Alpha(GB ) = -0.2439495770E-01 

           Influence of GB  on the Reliability Index =  0.5951140E-01 
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           Alpha(Ac ) = -0.2679445219E+00 

           Influence of Ac  on the Reliability Index =  0.7179427E+01 

  

           Alpha(h  ) = -0.8984125452E+00 

           Influence of h   on the Reliability Index =  0.8071451E+02 

 

 

   WOULD YOU LIKE TO RESTART (Y/N) ? N 
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Variable Design Point αααα2 (%)  

HS 0.237 1.47 

D50 0.206E-03 6.63 

DP -0.073 0.14 

SD 0.635 3.81 

GB 0.408 0.06 

Ac 0.872 7.18 

h 4.303 80.71 

           Total Number of Iterations =   6 
           Failure Function Z(X) =  0.5E-07 
           Mean Value of Z =  105.399 
           Standard Deviation of Z =  32.390 
           Reliability Index =  3.254 
           Relative Accuracy of the Reliability Index (%) =  0.2E-03 
           Probability of Failure (%/Year) =   0.056884 
           Difference in Pf Between the Last 2 Iterations =  0.1E-07 

Table D4.1: Summary of PARASODE results for example 1. 

 

 

Variable Design Point αααα2 (%)  

HS -0.029 0.01 

D50 0.215E-03 0.90 

DP -0.135 0.23 

SD 0.779 2.82 

GB 0.410 0.04 

Ac 1.178 6.45 

h 6.207 89.55 

           Total Number of Iterations =  7 
           Failure Function Z(X) =  0.5E-03 
           Mean Value of Z =  168.796 
           Standard Deviation of Z =  36.378 
           Reliability Index =  4.640 
           Relative Accuracy of the Reliability Index (%) =  0.2E-03 
           Probability of Failure (%/Year) =   0.000175 
           Difference in Pf  Between the Last 2 Iterations =  0.7E-10 

Table D4.2: Summary of PARASODE results for example 2. 
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Variable Design Point αααα2 (%)  

HS 0.331 1.62 

D50 0.199E-03 7.07 

DP -0.052 0.04 

SD 0.542 1.57 

GB 0.407 0.02 

Ac 0.780 3.26 

h 5.669 86.42 

           Total Number of Iterations =  20 
           Failure Function Z(X) =  0.8E-04 
           Mean Value of Z =  224.852 
           Standard Deviation of Z =  51.968 
           Reliability Index =  4.327 
           Relative Accuracy of the Reliability Index (%) =  0.3E-04 
           Probability of Failure (%/Year) =   0.000761 
           Difference in Pf  Between the Last 2 Iterations =  0.4E-10 

Table D4.3: Summary of PARASODE results for example 3. 

 

 

Variable Design Point αααα2 (%)  

HS 0.298 1.63 

D50 0.202E-03 7.06 

DP -0.058 0.06 

SD 0.584 2.26 

GB 0.407 0.04 

Ac 0.822 4.48 

h 5.058 84.47 

           Total Number of Iterations =  7 
           Failure Function Z(X) = -0.3E-06 
           Mean Value of Z =  165.857 
           Standard Deviation of Z =  42.682 
           Reliability Index =  3.886 
           Relative Accuracy of the Reliability Index (%) =  0.2E-03 
           Probability of Failure (%/Year) =   0.005083 
           Difference in Pf  Between the Last 2 Iterations =  0.2E-08 

Table D4.4: Summary of PARASODE results for example 4. 
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Variable Design Point αααα2 (%)  

HS 0.337 1.73 

D50 0.198E-03 7.97 

DP 0.000 0.00 

SD 0.607 2.03 

GB 0.408 0.03 

Ac 0.855 4.02 

h 5.512 84.22 

           Total Number of Iterations =  8 
           Failure Function Z(X) = -0.7E-07 
           Mean Value of Z =  204.380 
           Standard Deviation of Z =  47.939 
           Reliability Index =  4.263 
           Relative Accuracy of the Reliability Index (%) =  0.2E-03 
           Probability of Failure (%/Year) =   0.001011 
           Difference in Pf  Between the Last 2 Iterations =  0.4E-09 

Table D4.5: Summary of PARASODE results for example 5. 

 

 

Variable Design Point αααα2 (%)  

HS 0.285 1.17 

D50 0.201E-03 5.82 

DP -0.061 0.05 

SD 0.906 4.26 

GB 0.411 0.07 

Ac 1.177 7.19 

h 5.581 81.44 

           Total Number of Iterations =  14 
           Failure Function Z(X) = -0.03 
           Mean Value of Z =  203.719 
           Standard Deviation of Z =  46.421 
           Reliability Index =  4.388 
           Relative Accuracy of the Reliability Index (%) =  0.6E-03 
           Probability of Failure (%/Year) =   0.000573 
           Difference in Pf  Between the Last 2 Iterations =  0.7E-09 

Table D4.6: Summary of PARASODE results for example 6. 
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Variable Design Point αααα2 (%)  

HS 0.273 1.19 

D50 0.202E-03 5.80 

DP -0.063 0.06 

SD 0.873 4.39 

GB 0.411 0.07 

Ac 1.143 7.52 

h 5.291 80.97 

           Total Number of Iterations =  16 
           Failure Function Z(X) =  0.051 
           Mean Value of Z =  189.313 
           Standard Deviation of Z =  45.425 
           Reliability Index =  4.168 
           Relative Accuracy of the Reliability Index (%) =  0.8E-07 
           Probability of Failure (%/Year) =   0.001547 
           Difference in Pf  Between the Last 2 Iterations =  0.2E-12 

Table D4.7: Summary of PARASODE results for example 7. 

 

 

Variable Design Point αααα2 (%)  

HS 0.264 1.24 

D50 0.203E-03 5.90 

DP -0.065 0.08 

SD 0.805 4.15 

GB 0.410 0.06 

Ac 1.063 7.24 

h 5.043 81.33 

           Total Number of Iterations =  11 
           Failure Function Z(X) =  0.157 
           Mean Value of Z =  183.466 
           Standard Deviation of Z =  46.447 
           Reliability Index =  3.950 
           Relative Accuracy of the Reliability Index (%) =  0.3E-05 
           Probability of Failure (%/Year) =   0.003900 
           Difference in Pf  Between the Last 2 Iterations =  0.2E-10 

Table D4.8: Summary of PARASODE results for example 8. 
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Variable Design Point αααα2 (%)  

HS 0.256 1.30 

D50 0.204E-03 6.09 

DP -0.067 0.09 

SD 0.748 4.00 

GB 0.409 0.06 

Ac 0.997 7.11 

h 4.811 81.35 

           Total Number of Iterations =   9 
           Failure Function Z(X) =  0.4E-06 
           Mean Value of Z =  176.884 
           Standard Deviation of Z =  47.326 
           Reliability Index =  3.738 
           Relative Accuracy of the Reliability Index (%) =  0.2E-03 
           Probability of Failure (%/Year) =   0.009298 
           Difference in Pf  Between the Last 2 Iterations =  0.3E-08 

Table D4.9: Summary of PARASODE results for example 9. 

 

 

Variable Design Point αααα2 (%)  

HS 0.248 1.37 

D50 0.205E-03 6.30 

DP -0.072 0.11 

SD 0.693 3.85 

GB 0.409 0.06 

Ac 0.934 7.01 

h 4.589 81.30 

           Total Number of Iterations =  19 
           Failure Function Z(X) = -0.7E-02 
           Mean Value of Z =  168.325 
           Standard Deviation of Z =  47.707 
           Reliability Index =  3.528 
           Relative Accuracy of the Reliability Index (%) =  0.9E-04 
           Probability of Failure (%/Year) =   0.020938 
           Difference in Pf  Between the Last 2 Iterations =  0.3E-08 

Table D4.10: Summary of PARASODE results for example 10. 



Results From PARASODE For Dune Erosion 

D4-6 

 

 

 

Variable Design Point αααα2 (%)  

HS 0.219 1.59 

D50 0.208E-03 6.96 

DP -0.076 0.19 

SD 0.588 4.12 

GB 0.407 0.06 

Ac 0.830 8.21 

h 3.947 78.87 

           Total Number of Iterations =  6 
           Failure Function Z(X) = -0.2E-07 
           Mean Value of Z =  69.676 
           Standard Deviation of Z =  24.053 
           Reliability Index =  2.897 
           Relative Accuracy of the Reliability Index (%) =  0.8E-04 
           Probability of Failure (%/Year) =   0.188552 
           Difference in Pf  Between the Last 2 Iterations =  0.1E-07 

Table D4.11: Summary of PARASODE results for example 11. 

 

 

Variable Design Point αααα2 (%)  

HS 0.195 1.77 

D50 0.210E-03 7.45 

DP -0.079 0.28 

SD 0.533 4.72 

GB 0.407 0.07 

Ac 0.780 10.13 

h 3.552 75.58 

           Total Number of Iterations =   6 
           Failure Function Z(X) = -0.2E-07 
           Mean Value of Z =  53.567 
           Standard Deviation of Z =  21.858 
           Reliability Index =  2.451 
           Relative Accuracy of the Reliability Index (%) =  1.0E-04 
           Probability of Failure (%/Year) =   0.712880 
           Difference in Pf  Between the Last 2 Iterations =  0.5E-07 

Table D4.12: Summary of PARASODE results for example 12. 
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Variable Design Point αααα2 (%)  

HS 0.169 2.09 

D50 0.212E-03 8.39 

DP -0.079 0.46 

SD 0.463 5.63 

GB 0.406 0.09 

Ac 0.707 13.15 

h 3.178 70.19 

           Total Number of Iterations =   6 
           Failure Function Z(X) = -0.4E-08 
           Mean Value of Z =  35.121 
           Standard Deviation of Z =  18.005 
           Reliability Index =  1.951 
           Relative Accuracy of the Reliability Index (%) =  0.9E-04 
           Probability of Failure (%/Year) =   2.555196 
           Difference in Pf  Between the Last 2 Iterations =  1.0E-07 

Table D4.13: Summary of PARASODE results for example 13. 

 

 

Variable Design Point αααα2 (%)  

HS 0.336 1.73 

D50 0.198E-03 7.98 

DP 0.000 0.00 

SD 0.608 2.05 

GB 0.408 0.03 

Ac 0.857 4.06 

h 5.498 84.15 

           Total Number of Iterations =  18 
           Failure Function Z(X) = -0.3E-02 
           Mean Value of Z =  203.088 
           Standard Deviation of Z =  47.734 
           Target Probability of Failure (%/Year) =   0.001011 
           Reliability Index =  4.255 
           Design Parameter =  74.87 

Table D4.14: Summary of PARASODE results for example 14. 
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Results From @Risk 

E-1 

 

 

 

CONVERGENCE OF Q STATISTICS USING LATIN 
HYPERCUBE SAMPLING 

NORMAL CONDITIONS: H&R MODEL, (R max)37% 
SLOPE 1:2, CL=10m OD 

Number  
Of  

Samples 

Mean  
Of  

Samples 

Standard 
Deviation Of 

Samples 

Coefficient Of 
Variation Of 

Samples 

100 2.59E-06 2.57E-05 9.95E+00 

500 8.51E-05 1.90E-03 2.23E+01 

1000 4.48E-05 7.93E-04 1.77E+01 

2000 2.30E-05 5.12E-04 2.23E+01 

3000 4.80E-05 1.65E-03 3.44E+01 

4000 4.65E-05 1.29E-03 2.78E+01 

5000 4.78E-05 1.03E-03 2.16E+01 

6000 4.28E-05 1.17E-03 2.74E+01 

7000 2.23E-05 7.16E-04 3.21E+01 

8000 3.45E-05 8.82E-04 2.56E+01 

9000 3.15E-05 8.28E-04 2.63E+01 

10000 3.10E-05 6.56E-04 2.12E+01 

20000 2.83E-05 6.83E-04 2.41E+01 

30000 2.95E-05 8.00E-04 2.71E+01 

40000 3.88E-05 1.03E-03 2.65E+01 

50000 4.93E-05 1.52E-03 3.08E+01 

60000 3.78E-05 1.10E-03 2.91E+01 

70000 4.01E-05 1.16E-03 2.90E+01 

80000 4.30E-05 1.40E-03 3.25E+01 

90000 4.11E-05 1.14E-03 2.76E+01 

100000 4.28E-05 1.30E-03 3.03E+01 

 Table E1:  Example of the convergence of the mean, standard 
deviation and coefficient of variation of Q using Latin 
Hypercube Sampling for normal conditions, H&R model, 
(Rmax)37%, slope 1:2, CL=10m OD. 

 



Results From @Risk 

E-2 

 

 

 

CONVERGENCE OF THE PROBABILITY OF FAILURE (%/YEAR) 
USING LATIN HYPERCUBE SAMPLING 

NORMAL CONDITIONS: H&R MODEL, (R max)37% 

SLOPE 1:2, CL=10m OD  

Number Of  Allowable Discharge, Q (m 3/s/m) 

Samples 10-1 10-2 10-3 10-4 10-5 10-6 

10000 0.00E+00 1.00E-01 3.70E-01 7.70E-01 1.03E+00 1.23E+00 

20000 0.00E+00 9.00E-02 3.70E-01 6.45E-01 8.40E-01 1.02E+00 

30000 0.00E+00 7.67E-02 3.27E-01 6.10E-01 7.97E-01 9.77E-01 

40000 0.00E+00 1.05E-01 3.78E-01 6.53E-01 8.80E-01 1.03E+00 

50000 6.00E-03 1.12E-01 3.88E-01 6.84E-01 8.94E-01 1.08E+00 

60000 0.00E+00 8.67E-02 3.67E-01 6.62E-01 9.02E-01 1.08E+00 

70000 1.43E-03 1.00E-01 3.77E-01 6.57E-01 8.57E-01 1.01E+00 

80000 2.50E-03 1.00E-01 3.74E-01 6.44E-01 9.04E-01 1.06E+00 

90000 1.11E-03 1.12E-01 3.86E-01 6.69E-01 9.00E-01 1.08E+00 

100000 3.00E-03 1.15E-01 3.65E-01 6.82E-01 9.45E-01 1.11E+00 

Table E2:  Example of the convergence of the probability of failure for 
different allowable discharges using Latin Hypercube Sampling for 
normal conditions, H&R model, (Rmax)37%, slope 1:2,  
CL=10m OD. 
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CONVERGENCE OF Q STATISTICS USING LATIN 
HYPERCUBE SAMPLING 

NORMAL CONDITIONS: OWEN'S MODEL 
SLOPE 1:2, CL=10m OD 

Number  
Of  

Samples 

Mean  
Of  

Samples 

Standard 
Deviation Of 

Samples 

Coefficient Of 
Variation Of 

Samples 

100 1.57E-04 8.52E-04 5.44E+00 

500 2.62E-04 1.64E-03 6.25E+00 

1000 4.95E-04 7.32E-03 1.48E+01 

2000 2.57E-04 2.12E-03 8.23E+00 

3000 2.76E-04 2.30E-03 8.34E+00 

4000 3.26E-04 3.11E-03 9.54E+00 

5000 2.91E-04 3.09E-03 1.06E+01 

6000 3.77E-04 4.18E-03 1.11E+01 

7000 3.56E-04 4.14E-03 1.16E+01 

8000 3.21E-04 2.84E-03 8.84E+00 

9000 3.64E-04 3.91E-03 1.07E+01 

10000 2.68E-04 2.77E-03 1.03E+01 

20000 3.20E-04 3.50E-03 1.09E+01 

30000 2.91E-04 3.15E-03 1.08E+01 

40000 3.14E-04 3.35E-03 1.07E+01 

50000 3.00E-04 3.10E-03 1.03E+01 

75000 3.01E-04 3.22E-03 1.07E+01 

100000 2.99E-04 3.04E-03 1.02E+01 

 Table E3:  Example of the convergence of the mean, standard 
deviation and coefficient of variation of Q using Latin 
Hypercube Sampling for normal conditions, Owen's 
model, slope 1:2, CL=10m OD. 
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CONVERGENCE OF THE PROBABILITY OF FAILURE (%/YEAR) 
USING LATIN HYPERCUBE SAMPLING 

NORMAL CONDITIONS: OWEN'S MODEL 

SLOPE 1:2, CL=10m OD  

Number Of  Allowable Discharge, Q (m 3/s/m) 

Samples 10-1 10-2 10-3 10-4 10-5 10-6 

10000 1.00E-02 5.60E-01 3.08E+00 8.48E+00 1.50E+01 2.19E+01 

20000 1.50E-02 7.10E-01 3.67E+00 8.69E+00 1.57E+01 2.26E+01 

30000 1.33E-02 6.77E-01 3.58E+00 8.92E+00 1.57E+01 2.27E+01 

40000 2.25E-02 6.95E-01 3.49E+00 8.78E+00 1.53E+01 2.23E+01 

50000 1.60E-02 6.62E-01 3.62E+00 8.99E+00 1.55E+01 2.24E+01 

75000 2.13E-02 6.99E-01 3.50E+00 8.82E+00 1.55E+01 2.25E+01 

100000 2.10E-02 6.67E-01 3.59E+00 8.95E+00 1.55E+01 2.22E+01 

Table E4:  Example of the convergence of the probability of failure for 
different allowable discharges using Latin Hypercube Sampling for 
normal conditions, Owen's model, slope 1:2, CL=10m OD. 

 

 

 

PROBABILITY OF FAILURE (%/YEAR) FOR NORMAL CONDITIO NS 

H&R MODEL, (Rmax)37%, SLOPE 1:2 

CL (m OD) Allowable Discharge, Q (m 3/s/m) 

 10-1 10-2 10-3 10-4 10-5 10-6 

8 0.05666 0.84167 2.15000 3.18166 3.85833 4.33667 

10 0.00000 0.08667 0.36667 0.66167 0.90166 1.07833 

12 0.00000 0.00833 0.04166 0.08667 0.15334 0.19666 

14 0.00000 0.00000 0.00166 0.00833 0.01667 0.02000 

16 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Table E5:  Probabilities of failure produced by @Risk, Latin Hypercube 
Sampling (60000 samples) for normal conditions, H&R model, 
(Rmax)37%, slope 1:2. 
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PROBABILITY OF FAILURE (%/YEAR) FOR NORMAL CONDITIO NS 

H&R MODEL, (Rmax)99%, SLOPE 1:2 

CL (m OD) Allowable Discharge, Q (m 3/s/m) 

 10-1 10-2 10-3 10-4 10-5 10-6 

8 0.23333 3.05334 10.00333 18.73333 26.98666 33.62334 

10 0.01334 0.67667 3.57667 8.92333 15.68000 22.67000 

12 0.00333 0.13000 1.05000 3.94000 8.34333 13.84666 

14 0.00000 0.01667 0.32000 1.54667 4.23000 7.89667 

16 0.00000 0.00333 0.09666 0.61000 1.91333 4.41666 

Table E6:  Probabilities of failure produced by @Risk, Latin Hypercube 
Sampling (60000 samples) for normal conditions, H&R model, 
(Rmax)99%, slope 1:2. 

 

 

 

PROBABILITY OF FAILURE (%/YEAR) FOR NORMAL CONDITIO NS 

OWEN'S MODEL, SLOPE 1:2 

CL (m OD) Allowable Discharge, Q (m 3/s/m) 

 10-1 10-2 10-3 10-4 10-5 10-6 

8 0.23333 3.05334 10.00333 18.73333 26.98666 33.62334 

10 0.01334 0.67667 3.57667 8.92333 15.68000 22.67000 

12 0.00333 0.13000 1.05000 3.94000 8.34333 13.84666 

14 0.00000 0.01667 0.32000 1.54667 4.23000 7.89667 

16 0.00000 0.00333 0.09666 0.61000 1.91333 4.41666 

Table E7:  Probabilities of failure produced by @Risk, Latin Hypercube 
Sampling (30000 samples) for normal conditions, Owen's model, 
slope 1:2. 
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Abstract 
 
Random waves with a significant height Hs produce a maximum run-up of CHs 
on the face of a coastal structure, where coefficient C is determined by the wave 
and wall characteristics. Unless this run-up is greater than RC, the freeboard of 
the structure, then there is no overtopping (apart from wind-blown spray). That is 
1 R / CH > 0c s−  for overtopping to occur. The parameter 1 R / CHc s−  is used in 
an analysis of overtopping data and a new regression model is evaluated which, 
unlike existing expressions, satisfies the relevant physical boundary conditions. 
The new model is inherently suitable for representing the small overtopping 
discharges associated with normal design conditions. 
 
1 Introduction 
 
An important criterion for the design of a seawall is the allowable degree of 
wave overtopping which depends upon the activities normally performed in 
the lee of the structure, the need to prevent erosion of the rear face of the 
seawall, and the economic consequences of flooding. During 1978 and 1979, 
Owen (at HRS1, Wallingford) carried out an extensive series of model tests to 
determine the overtopping discharges for a range of seawall designs subjected 
to different random wave climates. The modelled seawalls were all of the 
same general type: a flat-topped embankment fronted in some cases by a flat 
berm. The tests were aimed at establishing the impact on overtopping 
discharge of the wave climate, the seawall slope, the crest and berm 
elevations, and the berm width. 

This paper presents a re-analysis of some of Owen’s data: the results for 
simple seawalls possessing uniform seaward slopes of 1:1, 1:2 and 1:4, 
subjected to random waves approaching normal to the slope. The purpose has 
been to construct a new regression model to represent the data which is more 



reliable than Owen’s expression. Care has been taken to consider the physical 
boundary conditions. Regression coefficients determined using the least-
absolute-deviations (LAD) method are recommended in preference to those 
obtained using the least-squares (LS) technique. 
 
2 Dimensional analysis 
 
In general, the mean overtopping discharge per unit length of seawall, Q, 
depends upon the wave motion, the seawall profile, the foreshore 
characteristics and the water properties. Written in symbolic form: 

 Q function H T R d gs m c s= ( , , , , , , ,... )β α  (1) 

Hs is the significant height of the incident waves; Tm is the mean  
zero-crossing wave period; β  is the angle of wave approach measured normal 
to the seawall; Rc is the seawall’s freeboard (the height of the crest of the 
structure above the still-water-level); α is the angle of the seawall front slope 
measured from the horizontal; ds is the still-water-depth at the toe of the 
structure; and g is the acceleration due to gravity. Alternatively, 
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H gTs m/ 2  is a measure of the incident wave steepness. Owen combined this 

dimensionless group both with Q gHs/ 3  and with R Hc s/ , to write: 
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However, other arrangements are possible (Hedges & Reis2), including use of 
the wave period of peak spectral density, Tp, rather than the zero-crossing 
period, Tm. The dimensionless groups are generally related using one of the 
two following functions: 

 Q A BR* *exp( )= −  (4) 
 Q A R B

* *( )= −  (5) 

where Q* is the dimensionless overtopping discharge, R* is the dimensionless 
freeboard, and A and B are best-fit coefficients determined from the 
experimental data. 

Dimensional analysis provides no means for determining which sets of 
dimensionless groups may be especially informative or helpful in dealing with 
a particular data set. A possible problem in using certain pairings of groups is 
the potential for spurious correlation. A spurious correlation may arise when 
dimensionless groups plotted against one another contain a common variable. 



Care must be taken in interpreting such plots. Scatter in the data may be 
suppressed simply by the presence of this variable. 
 
3 Regression analysis 

3.1 Introduction 
 
Once experimental data have been collected, they may be used to confirm the 
validity of some theory or, where no satisfactory theory exists, they may be 
used to construct regression models. However, it is always useful to have 
some theoretical basis for choosing amongst the possible models. 
Furthermore, there are many techniques available for fitting regression 
models. In describing a regression model, care should be taken to emphasise 
the range of conditions over which there are data to support its use. 

As a start, let us consider the physical boundary conditions to be met in 
addressing wave overtopping: 
i) when the embankment has a large freeboard (i.e. when its crest elevation 

is well above the level of wave uprush), the predicted overtopping 
discharge should be zero (assuming that the effects of 
wind-blown spray are ignored); 

ii) when the embankment has zero freeboard (i.e. when still-water-level is at 
the crest level of the embankment) then the predicted overtopping 
discharge may be large but should still remain finite. 
Equations (4) and (5) represent two of the more common functions used 

to predict wave overtopping. However, when R* is large, both expressions 
suggest that the discharge will be finite rather than zero (though it is small 
provided that A is not very large and provided also that B>1). When R* is 
zero, the first of these expressions gives Q A* = , a finite quantity, whilst the 
second expression gives Q* = ∞ . Thus neither expression satisfies both 
boundary conditions, with the second of them satisfying neither. Since most 
seawalls are designed to permit only relatively small overtopping discharges, 
the first of the two boundary conditions is likely to be the more important to 
satisfy. 

In addition to considering the boundary conditions, we also need to 
establish the line of “best fit” to the observed data. There are many criteria for 
defining the best fit. One possibility is to minimise the sum of the squared 
deviations of the observations from the values predicted from our expression, 
but real data usually do not completely satisfy the classical assumptions for 
LS fitting. Reliable inferences may be drawn from regression models fitted by 
the LS method only if the assumptions are valid. Furthermore, an LS fitting 
has the disadvantage that the result is not “robust”: it is sensitive to outlying 
data points. Whilst we could remove “outliers”, such a procedure should only 
be considered if there is reason to doubt their validity. Such data must not be 
removed merely because they do not support our regression model: it may be 
the model which is wrong. 



Minimising the sum of the absolute deviations rather than the sum of the 
squared deviations does not rely upon the Gaussian error assumption and 
allows us to retain outliers but prevents these points from exerting a 
disproportionate influence on the values of the regression coefficients. If the 
errors are assumed to follow a double exponential distribution, which has 
thicker tails than the Gaussian distribution, then the parameter values are 
maximum likelihood estimates. In this paper, we have chosen to fit our 
regression lines using the LAD method. However, we have also compared 
these results with an LS fitting. 
 
3.2 A new regression model 

3.2.1 A simple overtopping theory for regular waves 
Let us step back from the complications of random waves to the simpler 
problem of regular waves of height H approaching normal to a seawall. We 
will assume that the instantaneous discharge of water over unit length of the 
seawall, q, is given by the weir formula: 

 q C g R for Rd c c= − >
2
3

2 3 2( ) /η η  (6) 

in which η is the water surface elevation above still-water-level at the seawall 
(a periodic function of time); Cd is a discharge coefficient. Obviously, 
overtopping occurs only when the water surface is above the structure’s crest. 
We will also assume that η = k H F t( )  in which F(t) denotes a function of time, 
t. For simple, sinusoidal, progressive waves, k=0.5 and F(t)=cos(2πt/T), where 
T is the wave period. However, following  
Kikkawa et al3, we will adopt the simpler form for F(t) shown in Figure 1;  
k remains a coefficient determined by the particular wave and wall details. 
Then, the mean discharge, Q, is determined as follows: 
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in which t1<t<t2 corresponds to the interval during each wave period for which 
kHF(t)>Rc. Using the form for F(t) given in Figure 1 then yields: 
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Note that overtopping occurs only when Rc<kH. In other words, kH represents 
the run-up on the face of the seawall. 
 



 
3.2.2 The Hedges & Reis (H&R) overtopping model 
The above theory suggests a regression equation for the random overtopping 
data of the following form: 
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in which 
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Coefficient k in the expression for regular waves has been replaced by C in 
this regression model for random waves characterised by Hs. Note that CHs 
represents Rmax, the maximum run-up induced by the random waves, not the 
run-up induced by a wave of height Hs. Consequently, C will depend upon the 
duration of the incident wave conditions unless the wave heights in front of 
the wall are limited by the available water depth. Until the maximum  
run-up exceeds the freeboard, Rc, there will be no overtopping. It is also clear 
that coefficient B is related, in the case of regular waves, to the shape of the 
function F(t) which describes the water surface variation on the seaward face 
of the wall. There will be a similar dependence on the detailed behaviour of 
the water surface at the face of the wall in the case of random waves. Finally, 
coefficient A represents the dimensionless discharge over the seawall when 
the freeboard is zero. All three coefficients will be influenced by the seaward 
profile of the structure. 

The above model for overtopping has the advantage that Q*=0 when  
R* ≥ 1 and that Q*=A when R*=0, in accordance with our required boundary 
conditions. Figure 2 shows the influences of coefficients A, B and C in the 
new overtopping model. 

 
Figure 1:  Form of function F(t). 



 
Although C (=Rmax/Hs) is not normally evaluated during tests involving 

wave overtopping, its value may be estimated from run-up measurements for 
random waves acting on slopes for which there is no overtopping. We have 
adopted this option rather than including C alongside A and B as a regression 
coefficient. 

Owen recorded his overtopping discharges during tests involving sets of 
five different runs, each of 100 waves, characterised by the same value of Hs. 
Assuming that run-up values may be described by a Rayleigh distribution, 
then the expected maximum run-up, Rmax, during each run is related to the 
significant run-up, Rs, by R R Rs smax (ln ) / ) .= =100 2 1 52 . The CIRIA/CUR4 
manual gives two equations for evaluating Rs for smooth slopes without 
overtopping. Rewritten in our notation and allowing for a printing error, the 
following expressions for C may be derived: 
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Here, ξp is the surf similarity parameter calculated using Tp 

( ξ αp s opH L= tan / / ; L gTop p= 2 2/ π ). Tp was estimated for Owen’s data 
using the relationships between Hs, Tm and Tp provided by Isherwood5. 
 
4 Results of analysis 
 
Figure 3 shows an example of the overtopping data collected by Owen: the 
results for a simple seawall with a uniform front slope of 1:2. The data are 
plotted in the formats required for fitting regression equations using both the 
H&R and the Owen models. Figure 3(a) shows the best-fit lines established 
using LS and LAD procedures for the H&R model. Comparison of the 
regression coefficients shows the relatively stronger influence which outlying 
data points have on the LS values. For example, the magnitude of B obtained 

 
Figure 2: Influences of coefficients A, B and C in 
the new overtopping model. 



from LAD is only about 92% of the LS result. Similar comments may be 
made about the regression lines obtained for Owen’s model. Note, that the 
values of A and B reported in Figure 3(b) for Owen’s model are not those 
which Owen himself recommended. 
 

(a) 

 
(b) 

 
Figure 3: Wave overtopping data for slope 1:2 plotted in 
the formats required for fitting regression equations. 

 
Table 1: Regression coefficients obtained for the H&R model and 
for Owen’s model. Also included are Owen’s recommended values. 

  H&R MODEL OWEN’S MODEL 
  LAD LS LAD LS Recommended 
Slope 
1:1 

A 
B 

0.00703 
3.42 

0.00581 
3.22 

0.00777 
20.44 

0.00758 
21.27 

0.00794 
20.12 

Slope 
1:2 

A 
B 

0.00753 
4.17 

0.00790 
4.55 

0.0117 
21.71 

0.0125 
22.80 

0.0125 
22.06 

Slope 
1:4 

A 
B 

0.0104 
6.27 

0.00792 
5.94 

0.0134 
42.92 

0.0164 
46.12 

0.0192 
46.96 

 
Table 1 gives the regression coefficients for all three slopes which we 

have obtained for the H&R model and for Owen’s model, using both LS and 



LAD fitting. Also included for reference are Owen’s recommended values. 
Owen restricted his analysis to a particular set of conditions whilst we have 
included all available data. These data fell within the following ranges: 
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Figure 4: Wave overtopping data for slope 1:2, showing 
the level of agreement between Q and QPRED. 

 
Earlier, we have mentioned briefly the problem of spurious correlation. 

Along with most other overtopping models, the H&R model employs a 
dimensionless discharge and a dimensionless freeboard which contain a 
common variable (Rmax or CHs). The presence of this common variable may 
reduce the apparent scatter in the data. Consequently, in Figure 4 we show 



directly the level of agreement between Owen’s measured values of Q 
(converted by Owen to full-scale discharges for a seawall in 4m water depth) 
and the predicted values, QPRED. Under random wave conditions, overtopping 
will be dominated by the few waves with large run-ups: most waves will 
contribute no overtopping if the seawall has a substantial freeboard. Thus, 
particularly for short runs of random waves, as in Owen’s tests, we can expect 
some variability in the measured values of Q. Indeed, one of the purposes of 
Owen’s tests was to show this inherent variability. 

In Figure 4, most data points lie within a range for Q/QPRED of 3/4 to 4/3, 
whichever model is adopted. It is not obvious from the figure which model 
best fits the data, nor is it obvious from the plots for simple seawalls with 1:1 
and 1:4 front slopes. However, it should be noted that full-scale discharges 
greater than about 0.001x10-3m3/s/m will be unsafe for vehicles at high speed. 
Conditions become dangerous for pedestrians when the discharge exceeds 
0.03x10-3m3/s/m. Discharges greater than about  
2x10-3m3/s/m may damage embankment seawalls (CIRIA/CUR4). 
Consequently, we have looked in more detail at the data points for discharges 
in the ranges of practical interest. The H&R model appears generally better 
than Owen’s model for discharges of less than  
5x10-3m3/s/m, owing to its ability to predict zero overtopping at finite values 
of freeboard. Furthermore, it tends to give lower required crest levels than 
Owen’s model for small permissible discharges. 

 
5 Concluding remarks 
 
A new regression model has been developed for describing wave overtopping 
data. The important features of the model are as follows: 
i) it satisfies the relevant physical boundary conditions, a feature which is 

especially important when the model is used near these boundaries; 
ii) it explicitly recognises (through its foundations in a simple theoretical 

model for regular waves) that regression coefficient A depends upon the 
shape of the structure since the shape, particularly at its crest, affects the 
discharge coefficient; coefficient A represents the dimensionless 
discharge when the dimensionless freeboard is zero; 

iii) coefficient B depends upon the detailed behaviour of the water surface on 
the face of the structure; it increases as front slopes become flatter; 

iv) coefficient C relates the maximum run-up to the significant height of the 
incident waves and may be chosen to allow for the influences of the 
seawall slope, the surface roughness and porosity, and the incident wave 
steepness; coefficient C can also account for storm duration in influencing 
Rmax. 

Ideally, any test programme would fix coefficient A by measuring the 
discharge over a seawall when the freeboard was zero. Likewise, C could be 
determined from the minimum freeboard giving zero overtopping discharge. 



In the absence of this information, C has been estimated from available data 
on the significant wave run-up on smooth slopes. 

For the present test results, the H&R model is little different from Owen’s 
model in its ability to represent the data, except for small discharges for which 
the H&R model is better suited. However, there are a number of ways in 
which the H&R model could be improved. For example, the period of peak 
spectral density and the maximum run-up could be measured directly, whereas 
we have had to estimate these values. We would then expect more reliable 
estimates for coefficient C and, consequently, a closer agreement between our 
model and the data. 

Finally, one of the purposes of Owen’s tests was to show the variability in 
Q. This property must be considered in design procedures: it is necessary not 
only to model the expected value of Q, but also the distribution of Q about this 
value. As a consequence, approaches to coastal engineering design are shifting 
towards the assessment of the safety of coastal structures using risk analysis 
rather than using a deterministic procedure. One of the major stages of risk 
analysis is the formulation of equations to describe the failure mechanisms of 
a structure. In this connection, the main objective of the present paper has 
been to improve the mathematical description of wave overtopping of simple 
seawalls. 
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Abstract 

Seawalls are expensive, and fixing a seawall freeboard at too large a value has 

both a financial penalty and is unnecessarily damaging to the natural environment 

owing to the increased impact of the structure on its surroundings. On the other hand, 

if the crest of a seawall is set too low, then there are potential problems with structural 

safety and flooding from wave overtopping. Hence, it is important to strike the correct 

balance between satisfying the structural and functional requirements of the project, 

avoiding unnecessary expense, and having undesirable impacts on the surrounding 

environment. 

The prediction of wave overtopping rates is usually based on empirical equations 

fitted to laboratory data.  These equations do not have any theoretical basis.  

However, a new model has now been developed which, unlike existing expressions, 

accounts for the fact that no overtopping (apart from wind-blown spray) occurs if the 

seawall freeboard exceeds the maximum wave run-up on the face of the structure.  

This fact is of practical importance because allowable overtopping discharges to 

ensure the safety of people and property are quite small. 

The paper starts with a brief review of existing overtopping equations, then presents 

the new model, and concludes by giving an example of its practical implications.  It is 

shown that, for some conditions, the new model predicts seawall freeboards which are 

several metres less than those predicted by the well-known expression given by Owen 

(1982). 

 

Notation 

A, B  regression coefficients; 

C  ratio of the maximum run-up to the significant height of the incident 

waves (=Rmax/Hs); 

Cd  discharge coefficient; 

ds  still-water-depth at the toe of the seawall; 

F(t)  a function of time (in the description of water surface elevation); 

g  acceleration due to gravity; 

H  wave height; 

Hs  significant wave height; 

k  coefficient (in the description of water surface elevation); 

Lm  Airy wavelength at the toe of the seawall calculated using the mean zero-

crossing wave period; 



 

 

Lop  Airy wavelength in deep water calculated using the period of peak 

spectral density (= gTp
2 2/ π ); 

Lp  Airy wavelength at the toe of the seawall calculated using the period of 

peak spectral density; 

Ls  Airy wavelength at the toe of the seawall calculated using the significant 

wave period; 

N  number of run-up values; 

q  instantaneous discharge of water over unit length of seawall; 

Q  mean overtopping discharge over unit length of seawall; 

QPRED  predicted mean overtopping discharge over unit length of seawall; 

Q*  dimensionless overtopping discharge; 

Rc  seawall freeboard (the height of the crest of the structure above the still-

water-level); 

Rmax  maximum run-up (=CHs); 

(Rmax)p%  p% confidence value of the estimated maximum run-up; 

Rs  significant wave run-up; 

R2%  run-up exceeded by only 2% of the incident waves; 

R*  dimensionless freeboard; 

t  time; 

T  wave period; 

Tm  mean zero-crossing wave period; 

Tp  wave period corresponding to peak spectral density; 

Ts  significant wave period; 

α  angle of seawall front slope measured from horizontal; 

β  angle of wave approach measured from the normal to the seawall; 

γ  reduction factor to account for influences of berms, roughness, shallow 

water and oblique wave attack on wave run-up and overtopping; 

η  water surface elevation above still-water-level; 

π  3.14159... ; 

ξp  surf similarity parameter calculated using the period of peak spectral 

density (= tan / /α H Ls op ). 

 



 

 

1. Introduction 

An important criterion for the design of a seawall is the allowable degree of wave 

overtopping which depends upon the activities normally performed in the lee of the 

structure, the need to prevent erosion of the rear face of the seawall, and the 

economic consequences of flooding.  During 1978 and 1979, Owen (Hydraulics 

Research Station, 1980; Owen, 1982) carried out an extensive series of model tests to 

determine the overtopping discharges for a range of seawall designs subjected to 

different random wave climates.  The modelled seawalls were all of the same general 

type: a flat-topped embankment fronted in some cases by a flat berm.  The tests were 

aimed at establishing the impact on overtopping discharge of the wave climate 

(including the angle of wave attack and the wave steepness), the seawall slope, the 

crest and berm elevations, and the berm width. 

This paper presents a re-analysis of Owen’s data: the results for simple seawalls 

possessing uniform seaward slopes of 1:1, 1:2 and 1:4, subjected to random waves 

approaching normal to the slope.  The purpose has been to construct a new 

regression model to represent the data which accounts for the fact that there is no 

overtopping (apart from wind-blown spray) if the seawall freeboard exceeds the 

maximum wave run-up on the face of the structure.  The practical implications of using 

the new model are illustrated. 

 

2. Dimensional analysis 

In general, the mean overtopping discharge per unit length of seawall, Q, depends 

upon the wave motion, the seawall profile, the foreshore characteristics and the water 

properties: 

 

 Q funct ion H T R d gs m c s= ( , , , , , , ,...)β α  (1) 

 

Hs is the significant height of the incident waves; Tm is the mean zero-crossing wave 

period; β is the angle of wave approach measured from the normal to the seawall; Rc 

is the seawall’s freeboard (the height of the crest of the structure above the still-water-

level); α is the angle of the seawall front slope measured from the horizontal; ds is the 

still-water-depth at the toe of the structure; and g is the acceleration due to gravity (see 

Figure 1). 

Equation 1 may be rewritten in the form of dimensionless groups: 
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H gTs m/ 2  is a measure of the incident wave steepness.  Owen combined this group 

both with Q gHs/ 3  (or Q Tm/g2 3 ) and with R Hc s/ , to write: 
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However, other arrangements are possible (Aminti & Franco, 1988; Ahrens & Bender, 

1992), including use of the wave period of peak spectral density, Tp, rather than the 

mean zero-crossing period, Tm.  Table 1 summarises some of the options for 

dimensionless discharge, Q*, and dimensionless freeboard, R*. Here, Hs has been 

used to denote the significant wave height calculated either as the mean height of the 

highest one third of the waves in a record or estimated from the zeroth moment of the 

surface elevation spectrum (IAHR, 1989).  Ls is the Airy wavelength calculated using 

the water depth at the toe of the structure and the significant wave period, Ts.  Lm and 

Lp are the corresponding wavelengths calculated using Tm and Tp.  R2% is the run-up 

exceeded by only 2% of the incident waves.  γ is a reduction factor to account for 

influences of berms, roughness, shallow water and oblique wave attack on wave run-

up and overtopping.  ξp is the surf similarity parameter calculated using the wave 

period of peak spectral density ( ξ αp s opH L= tan / /  in which L gTop p= 2 2/ π ).  

Finally, note that R* for De Waal & Van der Meer (1992) is not strictly a dimensionless 

freeboard but the dimensionless excess of the crest level above the 2% run-up level. 

The dimensionless groups in Table 1 are generally related using one of the two 

following functions: 

 

 Q A BR* *exp( )= −  (5) 

 

 Q A R B
* *( )= −  (6) 



 

 

 

where A and B are best-fit coefficients determined from the experimental data.  

Clearly, coefficients A and B must account for all influences on Q* other than R*. 

Dimensional analysis provides no means for determining which sets of 

dimensionless groups may be especially informative or helpful in dealing with a 

particular data set.  A possible problem in using many of the pairings in Table 1 is the 

potential for spurious correlation.  A spurious correlation may arise when 

dimensionless groups plotted against one another contain a common variable 

(Massey, 1971).  There is nothing wrong with the presence of a common variable, but 

care must be taken in interpreting such plots.  Scatter in the data may be suppressed 

simply by the presence of this variable. 

 

3. Regression analysis 

3.1. Introduction 

Once experimental data have been collected, they may be used to confirm the 

validity of some theory or, where no satisfactory theory exists, they may be used to 

construct regression models.  However, it is always useful to have some theoretical 

basis for choosing amongst the possible models.  Furthermore, there are many 

techniques available for fitting regression models (Gunst & Mason, 1980).  Which ones 

are appropriate for a particular study depend upon its objectives.  For example, it may 

be possible to develop a model which is good at predicting values of the response 

variable but which, nevertheless, is incorrectly specified (i.e. the model does not 

include all relevant predictor variables or it has an incorrect functional form).  In 

describing a regression model, care should be taken to emphasise the range of 

conditions over which there are data to support its use.  Unfortunately, it is sometimes 

impossible to collect data on the dependent or response variable (in this instance, 

overtopping) over the entire range of interest of the independent or predictor variables 

(wave height, structure profile, etc). 

As a start, let us consider the physical boundary conditions to be met in addressing 

wave overtopping: 

i) when the embankment has a large freeboard (i.e. when its crest elevation is 

well above the level of wave uprush), the predicted overtopping discharge 

should be zero (assuming that the effects of wind-blown spray are ignored); 

ii) when the embankment has zero freeboard (i.e. when still-water-level is at the 

crest level of the embankment) then the predicted overtopping discharge may 



 

 

be large but should still remain finite. 

Equations 5 and 6 represent two of the more common functions used to predict 

wave overtopping.  However, when R* is large, both expressions suggest that the 

discharge will be finite rather than zero (though it is small provided that A is not very 

large and provided also that B>1).  When R* is zero, the first of these expressions 

gives Q*=A, a finite quantity, whilst the second expression gives Q*=∞.  Thus neither 

expression satisfies both boundary conditions, with the second of them satisfying 

neither.  Since most seawalls are designed to permit only relatively small overtopping 

discharges, it is especially important to satisfy the first of the two boundary conditions. 

In addition to considering the boundary conditions, we also need to establish the 

line of “best fit” to the observed data.  There are many criteria for defining the best fit.  

One possibility is to minimise the sum of the squared deviations of the observations 

from the values predicted from our expression.  But real data usually do not completely 

satisfy the classical assumptions for a least-squares (LS) fitting (Rousseeuw & Leroy, 

1987).  For example, the deviations may not follow a Normal distribution.  Reliable 

inferences may be drawn from regression models fitted by the LS method only if the 

assumptions are valid (Draper & Smith, 1981; Rousseeuw & Leroy, 1987).  

Furthermore, an LS fitting has the disadvantage that the result is not “robust”: it is 

sensitive to outlying data points.  Whilst we could remove “outliers”, such a procedure 

should only be considered if there is reason to doubt their validity.  Such data must not 

be removed merely because they do not support our regression model: it may be the 

model which is wrong. 

Performing a least-absolute-deviations (LAD) fitting, involves minimising the sum of 

the absolute deviations rather than the sum of the squared deviations.  It does not rely 

upon the Normal assumption and allows us to retain outliers but prevents these points 

from exerting a disproportionate influence on the values of the regression coefficients.  

If the deviations are assumed to follow a Double Exponential distribution, which has 

thicker tails than the Normal distribution, then the parameter values are maximum 

likelihood estimates.  Figure 2 shows an example of the different results obtained from 

using the two techniques.  Figure 2(a) is a plot of five points which lie almost on a 

straight line.  Therefore, the LS fit and the LAD fit are essentially the same.  Figure 

2(b) displays a situation where, for some reason, point 4 has been wrongly moved 

from its original position (indicated by the dashed circle).  This point is called an outlier 

in the y-direction; it has a rather strong influence on the LS line, which is quite different 

from the line in Figure 2(a).  Figure 2(c) shows the robustness of the LAD fit with 



 

 

respect to such an outlier; the line remains (approximately) where it was when 

observation 4 was correct.  In this paper, we have chosen to fit our regression lines 

using the LAD method.  However, we have also compared these results with an LS 

fitting. 

 

3.2. A new regression model 

3.2.1. A simple overtopping theory for regular waves 

Let us step back from the complications of random waves to the simpler case of 

regular waves of height H approaching normal to a seawall.  We will assume that the 

instantaneous discharge of water over unit length of the seawall, q, is given by the weir 

formula (Streeter & Wylie, 1979): 

 

 q C g R for Rd c c= − >
2
3

2 3 2( ) /η η  (7) 

 

in which η is the water surface elevation above still-water-level at the seawall (a 

periodic function of time); Cd is a discharge coefficient.  Obviously, overtopping occurs 

only when the water surface is above the structure’s crest. 

We will also assume that: 

 

 η = kHF t( )  (8) 

 

F(t) denotes a function of time, t.  For simple, sinusoidal, progressive waves, k=0.5 

and F(t)=cos(2πt/T), where T is the wave period.  However, following Kikkawa et al 

(1968), we will adopt the simpler form for F(t) shown in Figure 3; k remains a 

coefficient determined by the particular wave and wall details. 

The mean discharge, Q, is determined as follows: 
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in which t1<t<t2 corresponds to the interval during each wave period for which 

kHF(t)>Rc.  Using the form for F(t) given in Figure 3 then yields: 
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Note that overtopping occurs only when Rc<kH.  In other words, kH represents the 

run-up on the face of the seawall.  Since wave run-up is a function of the incident wave 

height and steepness, and of the seawall slope, the overtopping discharge can be 

expected also to depend upon these parameters. 

 

3.2.2. The Hedges & Reis (H&R) overtopping model 

The above theory suggests a regression equation for the random overtopping data 

of the following form: 
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Coefficient k in the expression for regular waves has been replaced by C in this 

regression model for random waves characterised by Hs.  Note that CHs represents 

Rmax, the maximum run-up induced by the random waves, not the run-up induced by a 

wave of height Hs.  Consequently, C will depend upon the duration of the incident 

wave conditions unless the wave heights in front of the wall are limited by the available 

water depth.  Unless the maximum run-up, Rmax, exceeds the freeboard, Rc, there is 

no overtopping (apart from wind-blown spray).  It is also clear that coefficient B is 

related, in the case of regular waves, to the shape of the function F(t) which describes 

the water surface variation on the seaward face of the wall.  There will be a similar 

dependence on the detailed behaviour of the water surface at the face of the wall in 

the case of random waves.  Finally, coefficient A represents the dimensionless 

discharge over the seawall when the freeboard is zero.  All three coefficients will be 



 

 

influenced by the seaward profile of the structure. 

The above model for overtopping has the advantage that Q*=0 when R* ≥ 1 and that 

Q*=A when R*=0, in accordance with our required boundary conditions.  Figure 4 

shows the influences of coefficients A, B and C in the new overtopping model. 

The value of C (=Rmax/Hs) to be adopted would best be determined from 

experimental data.  Unfortunately, Owen’s data set (and others) do not provide an 

adequate number of cases involving zero or very small discharges.  Consequently, its 

value has been estimated from run-up measurements for random waves acting on 

slopes for which there is no overtopping.  Although not ideal for our purposes, these 

additional data on run-up complement Owen's overtopping results, allowing the new 

model to be applied outside the range of his experimental data.  We have adopted this 

option rather than including C alongside A and B as a regression coefficient. 

A number of equations describing random wave run-up are available (CIRIA/CUR, 

1991; Van der Meer & Janssen, 1995).  For example, the CIRIA/CUR (1991) manual 

gives two equations for evaluating the significant wave run-up, Rs, on smooth slopes 

without overtopping.  It notes that the equations, based upon Ahrens' data (Ahrens, 

1981), are probably conservative and that data from Allsop et al (1985) give values 20 

to 30% lower.  Rewritten in our notation and allowing for a printing error, the 

expressions are: 
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Here, ξp is the surf similarity parameter calculated using Tp which was estimated for 

Owen’s data using the relationships between Hs, Tm and Tp provided by Isherwood 

(1987). 

Assuming that run-up may be described by a Rayleigh distribution, then the p% 

confidence value of maximum run-up (defining a level below which p% of the cases 

should lie) is related to the significant wave run-up by (Hogben, 1990): 

 

 ( )max %

/

R N p Rp s= − −⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥

1
2 100

1 2

l l ln n n  (15) 

 



 

 

N is the number of run-up values, here taken conservatively to be equal to the number 

of incident waves. 

Owen recorded his overtopping discharges during tests involving sets of five 

different runs, each of 100 waves, characterised by the same significant wave height.  

The most probable maximum run-up during each run (the value not exceeded in 37% 

of the cases for a Rayleigh distribution of run-ups) is then: 

 

 ( ) ( ) / .maxR R Rs s37% 100 2 152= =ln  (16) 

 

In none of Owen’s cases were there overtoppings for freeboards greater than 

(Rmax)37% if Rs was evaluated using equations 14.  In fact, all nine reported cases of 

zero overtopping were for freeboards of less than this value.  Hence, setting 

C R Hs= ( ) /max 37%  is conservative in this instance and the following expressions for C 

then arise from equations 14 and 16: 
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The fact that these expressions for C are conservative may be a result either of the 

conservative nature of equations 14 or of deficiencies in the assumptions relating to 

the distribution of run-ups.  However, setting C R Hs= ( ) /max 37%  may not always be 

appropriate.  Note that the value of C to be adopted in the regression model depends 

upon the level of confidence associated with the prediction of Rmax.  If C is changed 

then there will be corresponding changes in the values of A and B.  The implications 

for seawall freeboards of adopting different levels of confidence in Rmax are considered 

later. 

 

4. Results of regression analysis 

Figure 5 shows an example of the overtopping data collected by Owen: the results 

for a simple seawall with a uniform front slope of 1:2.  The data are plotted in the 

formats required for fitting regression equations using both the H&R and the Owen 

models.  Figure 5(a) shows the best-fit lines established using LS and LAD procedures 

for the H&R model.  Comparison of the regression coefficients shows the relatively 

stronger influence which outlying data points have on the LS values.  For example, the 



 

 

magnitude of B obtained from the LAD fitting is only about 92% of the LS result.  

Similar comments may be made about the regression lines obtained for Owen’s 

model.  Note, that the values of A and B reported in Figure 5(b) for Owen’s model are 

not those which Owen himself recommended. 

Table 2 gives the regression coefficients for all three slopes which we have 

obtained for the H&R model and for Owen’s model, using both LS and LAD fitting.  

Also included for reference are Owen’s recommended values. 

Owen restricted his analysis to a particular set of conditions whilst we have included 

all available data apart from eleven of the 110 results for the 1:4 slope.  Of these 

eleven, nine had Q=0.  Figure 4 shows that there will be many values of R* for which 

Q*=0 and data points with Q*=0 must be excluded from a regression analysis, 

otherwise a regression line (if it could be fitted) would pass through these data rather 

than defining their lower limit.  The other two excluded values (for which Q was not 

zero) were from a set of five runs with the same dimensionless freeboard, three of 

which had zero overtopping discharge.  Including only two of these five data points 

would have severely biased the positions of the regression lines.  Furthermore, the 

validity of these two data points is doubtful since a full set of five runs at a smaller 

dimensionless freeboard all had Q recorded as zero.  Although removed for the 

purposes of regression analysis, the eleven points were reinstated for inclusion in 

Figure 6 (see later).  The full data set fell within the following ranges: 
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Earlier, we have mentioned briefly the problem of spurious correlation.  Along with 

most other overtopping models (see Table 1), the H&R model employs a 

dimensionless discharge and a dimensionless freeboard which contain a common 

variable (in our case, it is Rmax or CHs).  The presence of this common variable may 

reduce the apparent scatter in the data.  Consequently, in Figure 6 we show directly 

the level of agreement between Owen’s measured values of Q (converted by Owen to 



 

 

full-scale discharges for a seawall in 4m water depth) and the predicted values, QPRED.  

Of course, we could also have attempted to disguise the scatter in the relationship 

between Q and QPRED by plotting against logarithmic scales (Massey, 1971).  But such 

an attempt is both misleading and unnecessary.  Under random wave conditions, 

overtopping will be dominated by the few waves with large run-ups: most waves will 

contribute no overtopping if the seawall has a substantial freeboard (Jensen & Juhl, 

1987). Thus, particularly for short runs of random waves, as in Owen’s tests, we can 

expect some variability in the measured values of Q.  Indeed, one of the purposes of 

Owen’s tests was to show this inherent variability. 

In Figure 6, most data points lie within a range for Q/QPRED of 3/4 to 4/3, whichever 

model is adopted.  It is not obvious from the figure which model best fits the data, nor 

is it obvious from the plots for simple seawalls with 1:1 and 1:4 front slopes.  

Consequently, we have looked in more detail at the data points for discharges in the 

ranges of practical interest. 

Figure 7 shows the critical mean overtopping discharges currently used in the 

design of seawalls.  The main point to note from this figure is that the range of critical 

discharges runs from as little as 0.001x10-3m3/s/m to about 200x10-3m3/s/m.  An 

overtopping rate greater than about 0.001x10-3m3/s/m will be unsafe for vehicles at 

high speed and may cause minor damage to the fittings of buildings.  Conditions 

become dangerous for pedestrians when the discharge exceeds 0.03x10-3m3/s/m.  

Discharges greater than about 2x10-3m3/s/m may damage embankment seawalls, 

whilst 50x10-3m3/s/m is approximately the critical discharge for seawalls without back 

slopes. 

Designers will often wish to know the necessary crest height to limit overtopping to 

the relatively small amounts indicated above.  For these purposes, the H&R model 

appears generally better than Owen’s model owing to its ability to predict zero 

overtopping at finite values of freeboard.  Furthermore, the next section shows that it 

tends to give lower required crest levels than Owen’s model for small permissible 

discharges, offering lower environmental impact and potential cost savings. 

 

5. Some implications for seawall freeboards 

According to Owen’s model, the freeboard, Rc, necessary to limit overtopping to a 

specified value, Q, is given by: 
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The H&R model gives: 
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Note that equation 19 incorporates the mean zero-crossing wave period, Tm, whilst 

equation 20 involves coefficient C which has been described in terms of the period of 

peak spectral density, Tp.  In order to compare the output from the two expressions, it 

has been assumed that the incident waves conform to the Pierson-Moskowitz 

spectrum.  In this case (for Hs in metres, with Tm and Tp in seconds): 

 

 T H T Hm s p s= =3 55 5 00. ; .  (21) 

 

Figure 8 provides a comparison between the freeboards predicted using equations 

19 and 20 for embankments with uniform front slopes of 1:2 subject to random waves 

with a significant height of 2m.  Similar figures could be prepared for embankments 

with seaward slopes of 1:1 and 1:4, for additional incident significant wave heights and 

for different values of the confidence level associated with Rmax. 

Owen stated (Hydraulics Research Station, 1980) that his empirical coefficients A 

and B were determined only for particular ranges of the dimensionless groupings given 

in equation 4.  The conditions included the following: 10 106 2− −< <Q T gHm s/  and 

0 05 0 30. / .< <R T gHc m s .  Many of the discharges shown in Figure 8 have 

Q / T gH 10m s
-6< .  For the conditions of Figure 8, this limit is approximately equivalent 

to Q<10-4m3/s/m.  Nevertheless, Owen also suggested that it was possible to use his 

equation to extrapolate results when the dimensionless freeboard was such that the 

dimensionless discharge fell below 10-6.  Thus, for a typical seawall in 4m water depth, 

it is possible to compare the minimum necessary freeboards predicted by the H&R 

model with those predicted by Owen's expression if overtopping is to be limited to 

specified values. 

Two points are worth noting: 



 

 

i) There is reasonable agreement between the H&R model and Owen’s model 

only for overtopping discharges in the range of 10-2m3/s/m to 2x10-1m3/s/m.  

This is irrespective of the confidence level (37% or 99%) assigned in the 

evaluation of Rmax.  However, it is in the range where there are significant 

differences that most seawalls are designed (see Figure 7). 

ii) As the confidence level in Rmax is increased, the freeboards predicted by the 

H&R model approach those values obtained from Owen's model.  Nevertheless, 

even using (Rmax)99% there remain significant differences.  This observation has 

important implications for seawall design.  For example, for an expected 

overtopping discharge of 10-4m3/s/m, the difference amounts to about 1.9m.  It 

is even greater both for the lower expected overtopping rates associated with 

functional safety requirements (Figure 7) and for higher Hs values.  Owen’s 

model suggests that the freeboard must continue to increase in order to reduce 

the overtopping rate even when the crest of the seawall is clearly above any 

possible run-up level induced by the random waves. 

 

6. Concluding remarks 

A new regression model has been presented for describing wave overtopping data.  

Part of our motivation was to improve the methods available to the designers of 

seawalls by developing a model closely related to the physics of wave overtopping.  

The important features of the model are as follows: 

i) It satisfies the relevant physical boundary conditions, a feature which is 

especially important when the model is used near these boundaries. 

ii) It explicitly recognises (through its foundations in a simple theoretical model for 

regular waves) that regression coefficient A depends upon the shape of the 

structure since the shape, particularly at its crest, affects the discharge 

coefficient; coefficient A represents the dimensionless discharge when the 

dimensionless freeboard is zero. 

iii) Coefficient B depends upon the detailed behaviour of the water surface on the 

seaward face of the structure; it increases as front slopes become flatter. 

iv) Coefficient C relates the maximum run-up to the significant height of the 

incident waves and may be chosen to allow for the influences of the seawall 

slope, the surface roughness and porosity, and the incident wave steepness.  

Coefficient C can also account for storm duration in influencing Rmax (though the 

regression coefficients in the present study have been established only for short 



 

 

sequences of 100 random waves).  Finally, it may be chosen so that there is a 

specified confidence level associated with Rmax. 

It is suggested that the regression coefficients contained within the model should be 

established using a robust regression technique.  Examples are given of the 

differences between the LS and the LAD fitting methods in analysing overtopping data 

collected by Owen (Hydraulics Research Station, 1980; Owen, 1982). 

For the present test results, the H&R model is little different from Owen’s model in 

its ability to represent the data, except for small discharges for which the H&R model is 

better suited.  An example is given of the application of Owen’s model and the H&R 

model to predict the freeboards necessary to limit overtopping to specified values.  

The example shows that, for the small allowable discharges associated with normal 

design conditions, the H&R model predicts seawall crest elevations which may be up 

to several metres lower than values from Owen's model.  These differences may have 

very significant financial and environmental consequences and are worthy of further 

investigation. 
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Figure 1: Notation for seawall overtopping. 
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Figure 2: LS and LAD regression lines (after Rousseeuw & 
Leroy, 1987). 

 
 



 

 

 

 
 
 
 

 
 
 

 
 Figure 3:  Form of function F(t). 

Figure 4: Influences of coefficients A, B and C in the new 
overtopping model. 
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Figure 5: Wave overtopping data for slope 1:2 plotted in the formats required 

for fitting regression equations, (a) using the H&R model, (Rmax)37%, 
and (b) using Owen’s model. 
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Figure 6: Wave overtopping data for slope 1:2, showing the level of agreement 

between Q and QPRED, (a) using the H&R model, (Rmax)37%, and (b) 
using Owen’s model. 

 
 
 



 

 

 
Figure 7: Critical mean overtopping discharges for use in design (modified after 

CIRIA/CUR, 1991). 
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Table 1: Some options for dimensionless discharge, dimensionless freeboard and 
overtopping model. 

 
 
 

  H&R MODEL 
(C given by (Rmax)37%) 

H&R MODEL 
(C given by (Rmax)99%) OWEN’S MODEL 

  LAD LS LAD LS LAD LS Rec. 
Slope 

1:1 
A 
B 

0.00703 
3.42 

0.00581 
3.22 

0.00515 
6.06 

0.00474 
6.04 

0.00777 
20.44 

0.00758 
21.27 

0.00794 
20.12 

Slope 
1:2 

A 
B 

0.00753 
4.17 

0.00790 
4.55 

0.00542 
7.16 

0.00614 
7.98 

0.0117 
21.71 

0.0125 
22.80 

0.0125 
22.06 

Slope 
1:4 

A 
B 

0.0104 
6.27 

0.00792 
5.94 

0.00922 
10.96 

0.00870 
11.12 

0.0134 
42.92 

0.0164 
46.12 

0.0192 
46.96 

Table 2: Regression coefficients for use in the H&R model and Owen’s model. Also 
included for reference are Owen’s recommended (Rec.) values. 
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