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ABSTRACT/TIIVISTELMÄ 
 
The paper aims at presenting some achievements of joint statistics. The different statistical distributions used for the 
description of the main parameters of the joint sets (attitude, intensity, area, and aperture) are introduced. For the 
attitude, a comparison of the existing distribution functions is made. For the intensity, the formulas for its 
determination are given, the applicable statistical models are presented, and the Poisson model for the occurrence of 
the discontinuities in rocks is discussed in depth. The statistical models for the distribution of the volume of the 
blocks of a rock mass are introduced. For the area, again, the formulas for its determination are given, and the 
applicable statistical models presented. Finally, the distribution function for the aperture is referred to, as well as a 
note on the roughness and waviness. 
 
 
 
1. INTRODUCTION 
 
Rock masses always present numerous discontinuity surfaces, which may be of genetic origin 
(contacts between crystals, schistosity planes, bedding planes, etc.), tectonic origin 
(microfissures, joints, faults, etc.), or other origins (fractures due to the daily thermal wave, etc.). 
From the Rock Mechanics point of view, the discontinuity surfaces may be sorted into 2 groups: 
- one, that assembles those discontinuity surfaces which, due to their great number, small 
dimension, or little variation of the mechanical properties (at the scale of the considered 
problem), although having an influence on the rock mass properties, do not prevent the use of the 
Mechanics of the Continuous Media for the study of the rock mass; and 
- another one, that assembles the remaining discontinuity surfaces, i.e., those which call for the 
use of the Mechanics of the Discontinuous Media for the study of the rock mass. 
The whole lot of the discontinuity surfaces belonging to the second group, are called the rock 
mass jointing  and, usually, include the joints, the faults, the fractures along schistosity planes, the 
bedding planes, etc. 
The large majority of the discontinuity surfaces occurring in a rock mass, are approximately 
plane, and, therefore, the orientation in the space of each one of them, called the attitude, can be 
defined by two parameters, habitually, the strike (σ) and the dip (δ) (Grossmann 1977). 
In general, a rock mass presents discontinuity surfaces with all attitudes, but, as a rule, the great 
majority of those surfaces may be included in a relatively small number of discontinuity sets, 
which are characterized by the fact that all discontinuity surfaces of the same set have adjoining 
attitudes, i.e., all discontinuity surfaces of a set are approximately parallel. 
The jointing of a rock mass is, therefore, usually characterized by the presence of a small number 
of discontinuity sets, and, additionally, a few discontinuity surfaces with a random attitude. 
However, in most studies of the geometrical characteristics of the rock mass jointing, the problem 
is simplified, by reducing it to the determination of the occurring discontinuity sets, and the 
description of their geometrical parameters. 
The geometrical parameters which, generally, are considered in the description of a discontinuity 
set, are the attitude, the intensity, the area, and the opening, these parameters being chosen due to 
the fact that the discontinuity surfaces are often modelled as prisms with a very small height in 
relation to the dimension of their bases. 
 



 
2. ATTITUDE OF THE DISCONTINUITY SETS 
 
2.1. Concept 
 
The parameter attitude describes the orientation in the space of the discontinuity surfaces of the 
set, independently from their location, and assuming they are plane. 
As has been said, the attitude of a discontinuity surface is, in general, quantified through the 2 
parameters strike and dip. 
 
2.2. Statistical Distribution 
 
2.2.1. Isotropic models 
 
Although graphical representations of the distribution of the jointing surface attitudes have been 
used in geotechnical studies for nearly 80 years (Müller, 1933), the first mathematical models for 
the distribution function of the discontinuity surface attitudes of a set date from only about 40 
years (Watson, 1966). 
These models were, however, all isotropic, i.e., for them, the probability density function [f(ω, ε)] 
is given by 
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as a function of the longitude (ω) and the colatitude (ε) of the discontinuity surface attitude (in a 
system of spherical co-ordinates, whose revolution axis is normal to the mean attitude of the 
considered discontinuity set); the 2 constants (A) and (B); and a function [g(ε)] of the colatitude 
(ε). 
The probability density functions of the most important isotropic models are: 
a) for the Arnold distribution  (Arnold,1941) 
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with the parameter (kA) which measures the dispersion. The Arnold distribution is the 
hemispheric counterpart of the erroneously often used Fisher or spherical normal distribution. 
b) for the Bingham distribution  (Bingham 1964) 
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with the parameter (kB) which measures the dispersion, and Kummer’s confluent hypergeometric 
function [M (1/2; 3/2; kB)], with the parameters (1/2) and (3/2), and the variable (kB). 
c) for the isotropic bivariate normal distribution  (Grossmann 1985) 
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with the standard variation (σ). For practical purposes, the above expression reduces to 
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In spite of the limitation imposed by the isotropy, the use of these models still finds support in the 
literature. This standpoint, however, is not justifiable, because the experience has shown that the 
large majority of the discontinuity sets occurring in the rock masses, presents an anisotropic 
distribution of the discontinuity surface attitudes, and several anisotropic models for that 
distribution have already been presented in the literature. 
 
2.2.2. Anisotropic models 
 
The anisotropic models for the distribution function of the discontinuity surface attitudes of a set 
can be sorted into 2 groups: 
- one, that assembles the models which use the 2 habitual parameters of the attitude, the strike (σ) 
and the dip (δ), as variables of a plane bivariate normal distribution; and 
- another one, that assembles the models which use as variables the longitude and the colatitude 
(in a system of spherical co-ordinates whose revolution axis is normal to the mean attitude of the 
considered discontinuity set). 
The models of the first group, which still have supporters, lead to unsatisfactory results, 
especially when the discontinuity surfaces of the set are nearly horizontal. This is due to the fact 
that the used distribution assumes that the elementary area (dσ dδ) has a constant value, although, 
in reality, it is the elementary area (sinδ dσ dδ) which has a constant value on the spherical 
surface. 
As concerns the models of the second group, only 2 are mentioned in the literature, the Bingham 
distribution (Shanley & Mahtab 1975) and the bivariate normal distribution on the tangent plane 
at the mean attitude (LNEC 1973b). 
 
2.2.3. Bingham distribution 
 
The probability density function [f(ω, ε)] of this mathematical model is given by (Bingham 1964) 
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as a function of the longitude (ω) (measured from the orientation with the minimum dispersion) 
and the colatitude (ε) of the discontinuity surface attitude (in a system of spherical co-ordinates, 
whose revolution axis is normal to the mean attitude of the considered discontinuity set); the 2 
parameters (ζ1) and (ζ2), which measure the dispersion, and obey the relation 
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and Kummer’s confluent hypergeometric function [M (1/2; 3/2; z)], with the parameters (1/2) and 
(3/2), and the variable (z), which is given by the matrix 
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As is shown in Fig. 1, the Bingham distribution does not reject the existence, in any given 
discontinuity set, of discontinuity surfaces whose attitude is normal to the mean attitude of that 
set. 
Due to this inconvenient, which the Bingham distribution shares with the major part of the 
mathematical models for the distribution function of the discontinuity surface attitudes of a set, 
the bivariate normal distribution on the tangent plane at the mean attitude began to be used at the 
LNEC. 
 
 



Fig. 1 – Normalized distribution functions of 3 spherical distributions 
 
2.2.4. Bivariate normal distribution on the tangent plane at the mean attitude 
 
On the spherical surface, the probability density function  [f(ω, ε)] of this mathematical model is 
given by (Grossmann 1985) 
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as a function of the longitude (ω) and the colatitude (ε) of the discontinuity surface attitude (in a 
system of spherical co-ordinates, whose revolution axis is normal to the mean attitude of the 
considered discontinuity set); and the maximum standard deviation (σM), the minimum standard 
deviation (σm), and the longitude (ωM) of the orientation with maximum dispersion, of the attitude 
distribution. 
On the tangent plane at the mean attitude, the probability density function [fP(ω, ε)] of that 
distribution is given by (Grossmann 1977) 
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and, thus, the area on that plane, limited by a line of equal probability density, for which the 
probability of having poles of the discontinuity surfaces of the considered set inside that area, is 
equal to (P), is the ellipse given by  
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In order to completely characterize the distribution of the discontinuity surface attitudes of a 
given set with the help of the bivariate normal model on the tangent plane at the mean attitude, 
one has, thus, to know 5 parameters, the strike (σ) and the dip (δ) of the mean attitude, the 
maximum and the minimum standard deviations, respectively, (σM) and (σm), and the angle (ωM) 
that identifies the orientation for which the maximum dispersion occurs. 
The bivariate normal distribution on the tangent plane at the mean attitude is a unimodal 
distribution, which is symmetric in relation to the 2 perpendicular planes that correspond to the 
orientations for which the maximum and minimum dispersions occur. Its probability density 
function presents a bell type shape. 
The 5 parameters defining the bivariate normal distribution on the tangent plane at the mean 
attitude, allow an easy visualization of the distribution, because: 
- the mean attitude indicates directly the central point, which is the mode of the distribution; 
- the maximum and minimum standard distributions give the limits between which lies the 
tangent of the colatitude of the points of the line of equal probability density which encloses the 
domain of attitudes containing 
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of the poles of the discontinuity surfaces of the considered set; and 
- the angle ωM reveals directly the orientation for which the maximum dispersion occurs, and, due 
to the perpendicularity of their orientations, indirectly also the orientation for which the minimum 
dispersion occurs. 
 
 
 
3. INTENSITY OF THE DISCONTINUITY SETS 
 
3.1. Concepts 
 
3.1.1. Intensity 
 
The parameter intensity describes the degree of jointing that the whole lot of the discontinuity 
surfaces of the set have induce in the rock mass, independently of the individual extent of each 
discontinuity surface. 
The intensity of a discontinuity set is, therefore, quantified by the sum of the areas of the 
discontinuity surfaces of the set which occur in a unit volume of the rock mass, and, so, should be 
expressed in m2/m3. 
However, the intensity is quite often expressed in number of discontinuity surfaces/m, which 
results from the fact that the intensity of a discontinuity set is considered to be the number of 
discontinuity surfaces of that set, which are intersected by a segment with a unit length, and 
whose orientation is normal to the mean attitude of the considered set. 
This second definition only corresponds to the first one if all discontinuity surfaces of the set 
possess the same attitude (the mean attitude), because only in that case the intersection of any of 
those discontinuity surfaces with a unit volume having a cylindrical shape, an infinitesimal cross-
section, and generatrices which are normal to the mean attitude of the considered discontinuity 
set (the volume which is equivalent to the segment in the second definition), is equal to the cross- 
-section of that cylindrical volume. It should be noted that it is valid to disregard the occurrence 
of partial intersections, due to the exiguity of the cross-section of the cylindrical volume. 
 
 



3.1.2. Spacing 
 
The spacing of a discontinuity set is the inverse of its intensity, i.e., the volume of the rock mass 
in which the sum of the areas of the discontinuity surfaces of that set, that occur in it, corresponds 
to a unit area (Grossmann 1967) (Fig. 2). 
The spacing should, thus, be expressed in m3/m2, 
although it is usually expressed in m, which results from 
the fact that the spacing of a discontinuity set is 
considered to be the distance between successive 
discontinuity surfaces of the set, measured along a 
straight line with an orientation normal to the mean 
attitude of the considered set. 
 
3.2. Determination 
 
As, in general, it is not possible to measure the areas of 
the jointing surfaces directly, the intensities of the 
various discontinuity sets occurring in a given rock 
mass, are determined from the knowledge of the length 
of the intersections of the different discontinuity 
surfaces with the observation surface on which the 
jointing sampling has been performed. 
Thus, for a general observation surface (S), the intensity (I) of a chosen discontinuity set is given 
by (Grossmann 1988) 
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as a function of the sum (it) of the lengths of the intersections of the discontinuity surfaces of that 
set with the given observation surface, and the angle (α) between the normal to the surface 
element (dS) and any normal to the mean attitude of the considered discontinuity set. 
In the case of a plane observation surface, with an area (S), the last expression reduces to 
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On the other hand, the general expression can also be transformed, by partial integration, into 
(Grossmann 1977) 
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as a function of the length (p) of the intersection of the chosen observation surface with the plane 
possessing the mean attitude of the considered discontinuity set, and corresponding to the length 
element (dhn) of the segment (hn), which is defined on a normal to the mean attitude of that set, 
by the 2 planes with the mean attitude of the set, which are tangent to the exterior of the 
observation surface. 
In the case of a cylindrical observation surface, for which the length (p) is constant, as, for 
instance, for a borehole, the last expression reduces to 

  Fig. 2 – Spacing of a discontinuity set 
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If one admits that the intersections of the discontinuity surfaces of the considered set with the 
cylindrical observation surface have all the same length, i.e., that no partial intersections occur, 
and that all those discontinuity surfaces have the same attitude (the mean attitude of the set), the 
last expression can be written as 

εcosl
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as a function of the number (N) of those discontinuity surfaces, the length (l) of any generatrix of 
the cylindrical observation surface, and the angle (ε) formed by any of those generatrices with the 
normals to the mean attitude of the considered discontinuity set. 
This last expression applies, obviously, also to the cases in which the observation surface reduces 
to a segment, as, for instance, a scanline. 
The spacing of a discontintuity set is easily calculated from the respective intensity (I), by 
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3.3. Statistical Distributions 
 
3.3.1. Poisson distribution 
 
The occurrence of discontinuity surfaces of a same discontinuity set is a phenomenon that, in a 
homogeneous rock mass, often possesses the following properties: 
i) Stationarity  – the probability that one of those discontinuity surfaces intersects any given 
segment element (dl) in the rock mass, is approximately equal to (I cos ε dl), as a function of the 
angle (ε) between the segment element and any normal to the mean attitude of the considered 
discontinuity set, and the intensity (I) of that set; 
ii)  Non-multiplicity  – the probability that more than one discontinuity surfaces of the considered 
set intersect the aforesaid segment element (dl), is negligible, if compared to (I cos ε dl); and  
iii)  Independence – the number of discontinuity surfaces of the considered set which intersect 
any given segment in the rock mass, is independent of the number of discontinuity surfaces of 
that set which intersect any other given segment in the rock mass, as long as the orthogonal 
projections of those 2 segments on a normal to the mean attitude of the considered set, do not 
overlap, neither totally, nor partially. 
When these conditions are fulfilled, one is in the presence of a Poisson process. (Benjamin & 
Cornell 1970). 
 
In this case, the probability [P(N)] that any given segment in the rock mass, with a length (l), 
intersects a number (N) of discontinuity surfaces of the considered set, is given by the Poisson 
distribution 
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as a function of the intensity (I) of that discontinuity set, and the angle (ε) between the considered 
segment and any normal to the mean attitude of that set. 
Fig. 3 presents some typical cases of the Poisson distribution. 



For small values of the parameter (I l cos ε), the 
Poisson distribution is strongly skewed to the 
right, but, with the increase of the parameter, this 
distribution approaches the normal distribution 

with the mean (N ) and the standard deviation 
(σN). 
 
3.3.2. Exponential distribution 
 
From the expression of the Poisson distribution, 
one deduces directly that the probability [P(0)] 
that any given segment in the rock mass, with a 
length (l), does not intersect any discontinuity 
surface of the considered set, i.e., that the distance 
between any 2 successive intersections of the 
discontinuity surfaces of that set with any given 
straight line in the rock mass, is not less than (l), 
is given by 

εcos)0( lIeP −=  
as a function of the intensity (I) of the considered 
discontinuity set, and the angle (ε) between either 
the considered segment, or the considered straight 
line, and any normal to the mean attitude of that 
set. 
By derivation of the last expression, one obtains 
the probability density function [f(l)] 
corresponding to a distance (l) between 2 
successive intersections of the discontinuity 
surfaces of the considered set with any given 
straight line in the rock mass, i.e., in a certain sense, the probability density function of a 
“spacing”, which is given by 

εε coscos)( lIeIlf −=  
This expression corresponds to an exponential distribution with the parameter (I cos ε). 
 
3.3.3. Gamma distribution 
 
The probability [PN(l)] that the intersection of order (N) of any given straight line in the rock 
mass, with the discontinuity surfaces of the considered set lies at a distance not less than (l) from 
any given point on that straight line, can also be deduced from the expression of the Poisson 
distribution, and is given by 
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as a function of the intensity (I) of that discontinuity set, the angle (ε) between the considered 
straight line and any normal to the mean attitude of that set, the gamma function [Γ(N)] with the 
parameter (N), and the incomplete gamma function [Γ(N, x)] with the parameters (N) and (x). 
By derivation of the expression of [PN(l)], one obtains the probability density function [fN(l)] 
corresponding to a distance (l) between the point chosen on the straight line and the intersection 
of order (N) of that straight line with the discontinuity surfaces of the considered set, which is 
given by 

      Fig. 3 – Poisson distribution –Variation 
          of the probability with the number of 
          discontinuity surfaces, for 3 values of 
           the parameter (I l cos ε) 
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This distribution is a gamma distribution with the parameters (N) and (I cos ε) (if (N) takes only 
integer values, it is also called an Erlang distribution). 
Fig. 4 presents some examples 
of the Erlang (gamma) 
distribution. 
For small values of the 
parameter (N), the gamma 
distribution is strongly skewed 
to the right, but, with the 
increase of the parameter, this 
distribution approaches the 
normal distribution with the 

mean ( Nl ) and the standard 

deviation (
Nl

σ ). 

It should be noted that the 
aforementioned exponential 
distribution corresponds to the 

particular case of the gamma 
distribution in which the 
parameter (N) takes the value 
1. 
 
3.3.4. Lognormal distribution 
 
It is found, sometimes, that some discontinuity sets occurring in homogeneous rock masses, are 
not correctly described by means of a Poisson process. This fact may, for instance, be due to the 
way the rock was formed, to the existence of discontinuity sets generated before the origin of the 
discontinuity sets which are not susceptible to be described by means of a Poisson model, etc. 
In these cases, a description with the help of a lognormal distribution has been applied with 
success. 
The probability [P(0)] that any given segment in the rock mass, with a length (l), does not 
intersect any discontinuity surface of the considered set, i.e., that the distance between any 2 
successive intersections of the discontinuity surfaces of that set with any given straight line in the 
rock mass, is not less than (l), is, then, given by (Grossmann 1988) 
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as a function of the intensity (I) of the considered discontinuity set, the angle (ε) between either 
the considered segment, or the considered straight line and any normal to the mean attitude of 
that set, the (unitless) standard deviation (σ) of the distribution, and the upper tail area [Q(x)] of 
the standardized normal (Gaussian) distribution, for the value (x) of the standardized variable. 
The probability density function [f(l)] corresponding to a distance (l) between 2 successive 
intersections of the discontinuity surfaces of the considered set with any given straight line in the 
rock mass, i.e., in a certain sense, the probability density function of a “spacing”, is given by the 
lognormal distribution 

     Fig. 4 – Erlang (gamma) distribution –Variation of the 
                 probability density with the variable (I l cos ε), 
                 for 4 values of the parameter (N) 
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For small values of the parameter (σ), the lognormal distribution approaches a normal 
distribution, but, for the values of (σ) usually occurring in the practice (always greater than 0,7, 
and, generally, even greater than 1,5), this distribution is strongly skewed to the right. 
 
3.3.5. Comments 
 
Independently of the applicable statistical model, we may, thus, state that the distribution of the 
distance between 2 successive intersections of the discontinuity surfaces of a given set with any 
given straight line in the rock mass, i.e., in a certain sense, the distribution of a “spacing”, has a 
positive coefficient of skewness, its mode being lower than its mean. 
In consequence, we may also state that, independently of the applicable statistical model, the 
distribution of the probability [P(N)] that any given segment in the rock mass, with a length (l), 
intersects (N) discontinuity surfaces of the considered set, can only be assimilated to a normal 
(Gaussian) distribution when the length (l) is sufficiently great (in view of the intensity of the 
discontinuity set, and taking into account the angle between the chosen segment and any normal 
to the mean attitude of the discontinuity set), so that the mean of the distribution of [P(N)] has a 
minimum value of 9. 
As, however, the scale of many engineering problems implies the consideration of segments for 
which the above-mentioned condition is not fulfilled, the distribution of [P(N)] will, usually, also 
have a positive coefficient of skewness, its mode being lower than its mean. 
In short, care must be taken with the fact that, nearly always, the means of the different 
characteristics related to the intensity of the discontinuity sets, do not correspond neither to the 
most frequent values (modes), nor to the middle values (medians) of the respective distribution. 
 
3.3.6. Example 
 
The recognition of the skewed character of the 
distributions of many practical parameters 
connected with the intensities of the discontinuity 
sets, has still not entered into the domain of Rock 
Mechanics’ common knowledge. 
Due to this fact, the foreseeable occurrence of 
restricted zones with a great number of 
discontinuity surfaces of a given set, tends always 
to be considered as an “unpredictable abnormality”. 
For instance, if a tunnel, in a homogeneous rock 
mass, runs normal to the mean attitude of a joint set 
whose intensity is 1 m2/m3, and for which the 
occurrence of the joints can be described by a 
Poisson model, the probability that a certain 
number of joints of that set occurs in any given 10 
m stretch of the tunnel, is shown in Table I. 
The analysis of this table indicates that, in each km 
of that tunnel, one may expect one 10 m stretch 
with 3 or less joints of the considered set, but also 
another 10 m stretch with 18 or more joints of that 
set, a more than sixfold increase in the number of 
joints. 

Number of joints 
per 10 m stretch 

Probability 
(%)  

< 4 1,0 
4 1,9 
5 3,8 
6 6,3 
7 9,0 
8 11,3 
9 12,5 
10 12,5 
11 11,4 
12 9,5 
13 7,3 
14 5,2 
15 3,5 
16 2,2 
17 1,3 

> 17 1,4 

   Table I – Probability of occurrence of 
          joints of a set with an intensity of 
       1 m2/m3, in a 10 m.stretch of a tunnel 
        running normal to the mean attitude 
             of the set (Grossmann 1988) 



Fig. 5 presents the result of a computer simulation of the aforesaid occurrence of a joint set whose 
intensity is 1 m2/m3, in a tunnel with a length of 1 km, clearly showing that, in a homogeneous 
rock mass, there are zones which an unexperienced observer would classify as totally different in 
their jointing. 

Fig. 5 – Tunnel in a homogeneous rock mass – Intersections of the joints of a set 
which can be described by a Poisson model 

 
 
3.4. Volume of the Blocks 
 
3.4.1. Premises 
 
The knowledge of the volume of the blocks which are defined by the jointing of a rock mass, can 
have a great practical interest, because, in many situations, the use of those blocks is conditioned 
by a minimum and/or maximum volume. 
That knowledge can easily be obtained, if the following 3 hypotheses are assumed: 
i) the rock mass presents only 3 discontinuity sets; 
ii) all the discontinuity surfaces of a same set possess the same attitude (the mean attitude of the 
discontinuity set); and 



iii) all discontinuity surfaces end at other discontinuity surfaces. 
The 1st hypothesis will, as a rule, be easily accepted in the case of rock masses formed by 
anisotropic rocks, since the experience has shown that their discontinuity system is, very often, 
basically constituted by 3 approximately triorthogonal discontinuity sets. 
For the rock masses with more than 3 important discontinuity sets, one would have to merge, if 
possible, groups of neighbouring sets into single sets. 
The 3rd hypothesis, although seeming very restrictive, is based on the practice. In fact, it has been 
verified that, as a rule, only a small percentage of discontinuity surfaces seem to end in other 
ways than at other discontinuity surfaces (for instance, Kikuchi et al. (1985) indicate 11,5 %), and 
it can always be argued that, possibly, some of those discontinuity surfaces still continue until 
they find others, but with such a tiny opening, that they can not be detected by the employed 
observation techniques. 
If all the 3 aforesaid simplifying hypotheses are accepted, all the blocks of the given rock mass 
have the shape of parallelepipeds, the attitudes of their 3 pairs of parallel faces being, 
respectively, the mean attitudes of the 3 considered discontinuity sets 
The volume (V) of a parallelepiped whose 3 pairs of parallel faces have, respectively, the 
attitudes (A), (B), and (C), is given by 

ABCABCABCABC
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as a function of the distances (dA), (dB), and (dC) between the 2 faces with, respectively, the 
attitudes (A), (B), and (C), and the angles (αBC), (αCA), and (σAB) between, respectively, the 
attitudes (B) and (C), (C) and (A), and (A) and (B). 
 
3.4.2. Statistical distribution 
 
When the occurrence of the discontinuity surfaces of the 3 chosen sets can be described by means 
of Poisson processes, the probability density function [f(V)] of the volume (V) of the blocks of 
the rock mass is given by (Grossmann 1986) 
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as a function of the modified Bessel function of the 2nd kind and order 0 [K0(t)], with the 

argument (t), and the mean of the distribution (V ), which is calculated by 
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as a function of the intensities (IA), (IB), and (IC) of the 3 discontinuity sets, with, respectively, the 
mean attitudes (A), (B), and (C), and the angles (αBC), (αCA), and (αAB) between, respectively, the 
mean attitudes (B) and (C), (C) and (A), and (A) and (B). 
In this case, the distribution of the volume of the blocks of the rock mass has the standard 
deviation (σV), given by 

VV 7=σ  

The cumulative distribution function [F(V)] of the volume of the blocks of the rock mass is, then, 
given by 
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and the fraction [p(V)] of the rock mass, constituted by the blocks whose individual volume does 
not exceed (V), by (Grossmann 1986) 
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Fig. 6 presents the probability density function and the cumulative distribution function of the 
volume of the blocks of a rock mass, for which the 3 pertinent discontinuity sets can be described 
by Poisson models. In this case, the probability density function is a monotonically decreasing 
function of the block volume. 
 

Fig. 6 – Probability density function (left) and cumulative distribution function (right) 
of the volume of the blocks of a rock mass, 

when the discontinuity sets are described by Poisson models 
 
However, if the occurrence of the discontinuity surfaces of the 3 chosen sets is described with the 
help of lognormal distributions, the volume (V) of the blocks of the rock mass follows also a 
lognormal distribution, whose probability density function [f(V)] is given by 
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as a function of the 2 parameters of the distribution (the median (ξ) and the standard deviation 
(σ)), which are calculated by 
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as a function of the intensities (IA), (IB), and (IC) of the 3 discontinuity sets, with, respectively, the 
mean attitudes (A), (B), and (C), and the angles (αBC), (αCA), and (αAB) between, respectively, the 
mean attitudes (B) and (C), (C) and (A), and (A) and (B); and 

222
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as a function of the standard 
deviations (σA), (σB), and (σC) of 
the distributions of the 
intersections with a straight line, of 
the discontinuity surfaces of the 3 
considered sets, with, respectively, 
the mean attitudes (A), (B), and 
(C). 
The cumulative distribution 
function [F(V)] of the volume of 
the blocks of the rock mass is, in 
this case, given by 
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as a function of the lower tail area 
of the standardized normal 
distribution [P(x)], for the value 
(x) of the standardized variable; 
and the fraction [p(V)] of the rock 
mass, made up by the blocks 
whose individual volume does not 
exceed (V), is given by 
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Fig. 7 presents an example of a 
graphical solution (with the help of 
a lognormal probability paper) of 
the last equation. 
 
 
4. AREA OF THE DISCONTINUITY SETS 
 
4.1. Concepts 
 
4.1.1. Area 
 
The parameter area describes the size of the discontinuity surfaces of the set, independently of 
their shape. 

Fig. 7 – Fraction of the rock mass, whose individual blocks 
     do not exceed a given volume, for a lognormal block 
   volume distribution (dioritic rock mass (LNEC 1973 a)) 



 
4.1.2. Equivalent radius 
 
The equivalent radius (Grossmann 1984) of a discontinuity surface is the radius of the circle 
whose area is equal to that of the discontinuity surface. 
 
4.2. Determination 
 
As said before, in general, it is not possible to measure directly the areas of the jointing surfaces 
occurring in a given rock mass. 
Therefore, as for the intensity, one resorts to the knowledge of the lengths of the intersections of 
the different discontinuity surfaces with the observation surface on which the jointing sampling 
has been performed, in order to obtain an information about the area of the discontinuity surfaces 
of the different sets occurring in the rock mass. 
Unlike what happens with the expressions allowing to obtain the intensity of a discontinuity set, 
the expressions giving the mean area of the discontinuity surfaces of a set, depend on the type of 
the distribution of the areas of the jointing surfaces of the set, through the parameter (k) which 

relates the mean equivalent radius (R) of the discontinuity surfaces of that set to the mean area 

( A ) of those surfaces, in the equality (Grossmann 1987) 

AkR =  
Thus, for a convex, closed observation surface (S), delimiting the volume (V), for which the 
normal to the surface element (dS) forms an angle (α) with any normal to the mean attitude of the 
considered discontinuity set, the mean area of the discontinuity surfaces of that set is given by 
(Grossmann 1987) 
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as a function of the mean length (i ) of the intersections of the discontinuity surfaces of the 
considered set with the observation surface, the distance (hN) between the 2 planes with the mean 
attitude of that set, which are tangent to the observation surface, and a corrective term (V’) of the 
volume (V), which complies with the inequalities 

VV ≤≤ '0  
and depends on the shape of the observation surface and on the type of the distribution of the 
areas of the discontinuity surfaces of the considered set. 
For the case of a plane convex observation surface, with an area (S), a transformation of the last 
equality for a prism with a height 0 and bases with the area (S), gives (Grossmann 1977) 
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4.3. Statistical Distribution 
 
4.3.1. Bessel function distribution 
 
As has been referred to, while presenting the basic hypotheses for the evaluation of the volume of 
the blocks of a rock mass, the experience has shown that the majority of the jointing surfaces 
occurring in a rock mass, seem to end at other jointing surfaces. 
This fact implies that those discontinuity surfaces have a polygonal shape, and, thus, their area 
depends, basically, on the product of 2 distances between opposite sides of the polygon. These 
distances, however, correspond to distances between successive discontinuity surfaces along 
straight lines, which, in general, follow exponential distributions (Priest & Hudson, 1976). The 
distribution of the areas of the discontinuity surfaces can, then, be obtained by multiplying 2 
exponential distributions, the result being a Bessel function distribution (Grossmann 1986). 
Moreover, a study of 10 different rock masses (Hudson & Priest, 1979) showed a good agreement 
between the values measured for the areas of the different discontinuity surfaces, and the 
corresponding Bessel function distributions. 
The probability density function [f(A)] of the area (A) of the discontinuity surfaces of a set 
presenting a Bessel function distribution, is given by (Grossmann & Muralha 1987) 
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as a function of the modified Bessel function of the 2nd kind and order (n) [Kn(x)], with the 

argument (x), and the mean of the distribution (A ). 
In this case, the distribution of the area of the discontinuity surfaces of the set has the standard 
deviation (σA), given by 

AA 3=σ  
The cumulative distribution function [F(A)] of the area of the discontinuity surfaces of a set is, 
then, given by 
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and the contribution [p(A)] of the discontinuity surfaces of the considered set, whose individual 
area does not exceed (A), to the total fracturing which that set induces in the rock mass, given by 
(Grossmann 1991) 
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Fig. 8 presents the probability density function for the Bessel function distribution. 
In this case, the probability density function has a vertical asymptote at the origin, and decreases 
monotonically with the area, tending to 0. 



For the Bessel function 
distribution, the value of the 
parameter (k) referred to above, 
is given by 

4
π=k  

 
4.3.2. Lognormal distribution 
 
However, there are also cases 
reported in the literature (Piteau 
1973), in which it has been 
verified that the dimensions of 
the discontinuity surfaces in the 
directions of the strike and of 
the dip, follow lognormal 
distributions. 
In those cases, also the areas of 
the discontinuity surfaces can be 
described by a lognormal 
distribution. 
The probability density function 
[f(A)] of the area (A) of the 
discontinuity surfaces of a set 
presenting a lognormal 
distribution, is given by 

2

2
ln

2

1

2

1
)(








−
= ξσ

σπ

A

e
A

Af

as a function of the 2 
parameters of the distribution 
(the median (ξ) and the standard 
deviation (σ)). 

The mean area (A ) is, in this case, given by 
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and the standard deviation of the areas (σA) (which is different from the parameter (σ) of the 
distribution) by 
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The cumulative distribution function [F(A)] of the area of the discontinuity surfaces of a set is, 
then, given by 
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as a function of the lower tail area of the standardized normal distribution [P(x)], for the value (x) 
of the standardized variable; and the contribution [p(A)] of the discontinuity surfaces of the 

          Fig. 8 – Probability density function of the area of a 
       discontinuity set – Bessel function distribution (line with 
      dots) and 7 lognormal distributions with different standard 
                     deviations, for the same mean area 



considered set, whose individual area does not exceed (A), to the total fracturing which that set 
induces in the rock mass, by (Grossmann 1991) 
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Fig. 8 also presents the probability density functions for 7 different lognormal distributions, 
which have all the same mean area as the shown Bessel function distribution. 
For the lognormal distribution, the value of the parameter (k), defined as stated before, is given 
by 
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4.3.3. Comments 
 
Independently of its type, the distribution of the areas of the discontinuity surfaces of a set is a 
distribution with a strong positive asymmetry, for which both the most frequent value (mode) and 
the middle value (median) are lower than its mean. 
On the other hand, the intersection of a discontinuity surface with the possible observation 
surface of the rock mass, only once in a while corresponds to the maximum dimension of the 
discontinuity surface, even in those cases in which the observation surface is large in relation to 
the area of that discontinuity surface. 
From all this, it results that, usually, an unexperienced observer will be induced to underestimate 
the mean areas of the discontinuity surfaces of the different sets occurring in a rock mass, and so, 
in general, he/she will not be on the safe side. 
 
 
5. APERTURE OF THE DISCONTINUITY SETS 
 
5.1. Concept 
 
The parameter aperture describes a given dimension normal to the discontinuity surfaces of a set, 
which is chosen according to the necessities of the study under consideration, and to the type of 
geological feature of those surfaces. 
Thus, in the case of fissures, fractures, or joints, the aperture corresponds, usually, to the distance 
between the faces of the 2 blocks contiguous to the considered jointing surface; in the case of 
veinlets, veins, or faults, the aperture is equivalent to the thickness of the respective filling; in 
other cases, still, the aperture designates the transversal dimension of the whole zone of altered 
rock, which accompanies certain types of discontinuity surfaces of the rock masses. 
When the model adopted for the discontinuity surfaces, is the one of prisms with a very small 
height in relation to the dimension of its bases, obviously, each discontinuity surface will be 
characterized exclusively by 1 aperture value, which, usually, will be the mean value of the 
apertures determined at different points of the discontinuity surface. 
This model fully satisfies when the discontinuity surfaces are plane, or, else, when the coefficient 
of variation of the apertures determined at the different points of the discontinuity surface, is 
small. 
For many jointing surfaces occurring in the rock masses, however, the above premises are not 
verified, and, thus, their aperture requires a more elaborate description. 
 



5.2. Statistical Distribution 
 
The mathematical model for the distribution function of the apertures of the discontinuity 
surfaces of a set presented in the literature, assumes that the discontinuity surfaces are prisms 
with a very small height in relation to the dimension of its bases, i.e., it is a model for the 
distribution function of the mean apertures of the discontinuity surfaces of a set. 
It is again a lognormal distribution, and, thus, the probability density function [f(a)] of the (mean) 
aperture (a) of the discontinuity surfaces of a set is given by 
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as a function of the 2 parameters of the distribution (the median (ξ) and the standard deviation 
(σ)). 
The distribution of the (mean) apertures of the discontinuity surfaces of a set is, still, a 
distribution with a positive asymmetry, for which both the most frequent value (mode) and the 
middle value (median) are lower than its mean. 
 
5.3. Roughness and waviness 
 
As already said, the discontinuity surfaces can, in many cases, be modelled as prisms with a very 
small height in relation to the dimension of its bases. When, however, this simplification is not 
acceptable, the deviations between the discontinuity surfaces and the respective mean planes are 
characterized by the 2 parameters roughness and waviness. 
For the description of those deviations, one resorts, usually, to the uni- or bidimensional 
harmonic analysis, i.e., the deviations are interpreted as a superposition of several simple 
sinusoidal phenomena, each one possessing its spatial period and its amplitude. 
The roughness concerns those components of the general undulatory phenomenon, whose spatial 
period is small, at most, of the order of magnitude of the size of the crystals in the rock, while the 
term waviness is applied to the components of the general undulatory phenomenon with a greater 
spatial period. 
The literature (Piteau 1973; Greenwood et al. 1984) refers also to criteria for the differentiation 
between the roughness and the waviness, which are based on the characteristics related to the 
behaviour of the irregularities of the discontinuity surface under shear or compression loads. 
These criteria, whose use is not easier that the use of the above-mentioned geometric criterium, 
present the disadvantage that they can lead to different results for the same discontinuity surface, 
when different modes of applying the loads, different load levels, etc. are used. 
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