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ABSTRACT 
The effect of aspect ratio on steady laminar 

fluid flow past an elliptical cylinder is investigated 
numerically at two low Reynolds numbers, 20 and 
40. The two-dimensional Navier-Stokes equations 
are solved using an original fully coupled resolution 
method, without any transformation of continuity 
equation. The wake’s length and maximum width, 
as well as drag coefficient increase as aspect ratio 
increases. A pair of steady vortices forms when 
aspect ratio reaches a critical value. 

Keywords: CFD, elliptic cylinder, finite volume, 
fully coupled resolution method  

NOMENCLATURE 
AR [-] aspect ratio 
ARc [-] critical aspect ratio  
CD [-] drag coefficient 
CDf [-] viscous drag coefficient 
CDp [-] pressure drag coefficient 
Cp [-] pressure coefficient 
Cpb [-] base pressure coefficient  
CpS [-] pressure coefficient at front 
  stagnation point 
D [m] circular cylinder diameter 
La [m] major axis 
Lb [m] minor axis 
Lext [m] computational domain extension 
Lw [m] recirculation length  
Re [-] Reynolds number, U∞La/ν 
S [-] non-dimensional cell surface 
Sw [m] core-stream distance between 

vortex centres 
U∞ [m/s] free stream velocity 
V [-] non-dimensional cell volume 
Xw [m] vortex centres distance from the  

rear stagnation point 
e [m] first grid-point near to the wall  
bw [-] recirculation width 

n [-] interface normal vector 
p [-] non-dimensional pressure 
t [-] non-dimensional time 
u [-] non-dimensional velocity  
xi [-] non-dimensional Cartesian  

co-ordinates  
ν [m2/s] viscosity 
θ [degree] angle from the front stagnation 

point 
Subscripts and Superscripts 
i i=1,2  horizontal and vertical directions 

1. INTRODUCTION 
Cylinders of different cross-sectional shapes, 

like circular, elliptical and rectangular, are 
classically used in many engineering applications 
such as heat exchangers, offshore structures, civil 
structures and many others. Therefore, due to its 
large engineering application, the flow past an 
isolated cylinder has motivated a large number of 
investigations through theoretical, experimental and 
computational approaches. In particular, the flow 
over a circular cylinder has been extensively studied 
and, consequently, is well documented like is 
reported by Zdravkovich [1, 2]. 

In contrast, literature on elliptical cylinders is 
very limited even though they find application in 
heat exchangers, airfoils, blades and many others. 
Characteristic of elliptical cylinder is defined by the 
aspect ratio AR, ratio of minor axis Lb to major axis 
La. Several authors have investigated experimental-
ly the flow past elliptical cylinders from moderate 
to high Reynolds numbers, Re, as Modi and Dikshit 
[3], Modi et al. [4], Nair and Sengupta [5] and Choi 
and Lee [6]. Numerically, only limited information 
is available in unsteady regime and even in the 
steady regime at low Reynolds numbers. Mittal and 
Balachandar [7] conducted two- and three-
dimensional simulations at Re=525 using a spectral 
method for an elliptical cylinder with AR=0.5. 
Johnson et al. [8] studied the effect of AR on low 
frequency structures in the wake of an elliptical 



cylinder for Reynolds number in the range of 75 to 
175 and by varying the AR between a circular 
cylinder and a flat plate normal to the flow. 
Sivakumar et al. [9] investigated numerically the 
flow of power-law fluids across an elliptical 
cylinder at very low Reynolds numbers, 
0.01<Re<40. Faruquee et al. [10] presented a study 
of the effects of aspect ratio on laminar fluid flow at 
Re=40, from an elliptical cylinder, AR=0.3, to a 
circular cylinder, AR=1.0, with the major axis 
parallel to the free-stream. Variation of fundamental 
quantities and wake parameters versus the AR are 
presented: the wake size and drag coefficient 
increase with the increase of AR and a pair of steady 
vortices forms when AR reaches a critical value. 
However, the small computational domain size used 
by Faruquee et al. [10] does not allow grid 
independent solutions to be obtained. Boubekri and 
Afrid [11] conducted numerical simulations for an 
elliptical cylinder with AR=0.286 and for Reynolds 
numbers between 10 and 280 and found three flow 
regimes. 

It can be deduced from the analysis of the 
existing literature that data on fluid flow over 
elliptical cylinders is limited, especially at low 
Reynolds numbers. The role of aspect ratio on flow 
topology is still not well understood for steady flow. 
Since measurements become inaccurate at low 
Reynolds numbers, numerical simulation is a good 
complement for investigating forces acting on the 
cylinder and flow topology. However, mesh 
resolution and computational domain size have to 
be carefully chosen to reduce numerical errors and 
to obtain a grid independent solution. Grid 
independent solution with mesh resolution is 
routinely carried out. However, fundamental 
quantities are not only strongly dependent on the 
mesh resolution but also on the size of the 
computational domain, as has been demonstrated by 
Posdziech and Grundmann [12] and Didier [13]. 
Thus, in order to use numerical simulation in 
fundamental investigation, a grid independent study 
has to be carefully realized beforehand to ensure 
that numerical errors are small as possible. 

The present article reports on simulations of 
two-dimensional steady incompressible laminar 
flow over an elliptical cylinder, with major axis 
parallel to the free-stream, for AR from 0.2 to 1.0, 
and for Reynolds numbers Re=20 and 40. The 
longitudinal length La is used as the Reynolds 
number length scale. The effects of aspect ratio are 
investigated by examining the flow topology, drag 
coefficient, wake characteristics, base pressure 
coefficient and pressure coefficient on the cylinder.  

2. EQUATIONS 
The governing equations for a Newtonian, 

incompressible viscous flow are the conservation of 
mass and the Navier-Stokes equations. In 

dimensionless two-dimensions form and without 
body forces, they may be written as follows:  
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where ui are the non-dimensional velocity compo-
nents, p is the non-dimensional pressure, Re the 
Reynolds number. 

On the circular cylinder surface a no-slip 
condition is applied, which implies that the fluid 
velocity is zero. 

With the present formulation the velocity field 
is applied on the external boundary situated far 
from the cylinder. 
 
u1= U∞ , u2=0 (3) 

 

3. NUMERICAL MODEL 

3.1. Dimensionless integral equations 
The unsteady bidimensional Navier-Stokes 

equations are written in conservative dimensionless 
integral form in the referential of the cylinder.  
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where V is the volume of the element, S is its area 
and ni the components of the outward unit vector 
normal to the surface. 

3.2. Fully coupled resolution method 
The present numerical code, developed by the 

author, solves the unsteady, incompressible and 
two-dimensional Navier-Stokes equations, without 
any transformation of the continuity equation. In the 
precedent version of the code, presented by Didier 
[14] and Didier and Borges [15], a pressure 
equation has been reconstructed. In the present 
version of the code, the continuity equation is used 
in its original form. A finite volume method with 
collocated cell-centred unknowns is used to 
discretize the equations for unstructured grids. 

Time-dependent solution of these equations 
requires using an implicit time-integration scheme. 
Momentum equations are integrated with a three-
level second-order scheme. Spatial discretization 



schemes are implicit too. Diffusion terms are 
approximated by second-order central-differences 
scheme. Newton linearization is applied to 
convective terms. Velocities are approximated by 
the deferred correction method, using first-order 
UDS and third-order WACEB [16] schemes for the 
implicit and explicit part. Pressure at the midpoint 
face of the control volume is approximated by a 
second-order linear interpolation. For non-
orthogonal grids, corrections are required to 
estimate velocity components and pressure to the 
face midpoint of the control volume. 

The discretized continuity and momentum 
equations are gathered in one linear system and 
solved simultaneously using the iterative algorithm 
Bi-CGSTAB-ω [17] with an incomplete LU pre-
conditioning. The present resolution method does 
not require any dual-time scheme like in the 
artificial compressibility or pressure correction 
methods, or any relaxation parameters. 

3.3. Mesh independence results for flow 
over a circular cylinder 

Flow over a circular cylinder at Re=40 is 
simulated. The no-slip condition is applied to the 
body wall and free-stream velocity condition is 
imposed on the outer circular boundary. The 
computational domain extension, Lext, is equal to 
300D, where D is the cylinder diameter. Figure 1 
shows a schematic view of the computational 
domain and the position of the outer boundary. 
Table 1 presents the characteristics of six grids. A 
grid refinement study is presented Tables 2 and 3 
and revealed that an O-grid with Nang=240 and 
Nrad=240 nodes in angular and radial directions 
respectively, with a first grid-point near to the wall 
at e/D=10-3, is well adapted to the present 
simulations. The wake’s length, Lw, drag 
coefficient, CD, and pressure base coefficient, Cpb, 
obtained with this mesh are within 0.02% of those 
obtained with a finer grid solution. 

La

Lext

Lb

 

Figure 1. Schematic of the computational 
domain, cylinder and outer circular boundary 

Table 1. Mesh characteristics 

Mesh e/D Nrad Nang Ntotal 
1 0.005 140 120 16800 
2 0.001 170 120 20400 
3 0.001 170 240 40800 
4 0.001 240 120 28800 
5 0.001 240 240 57600 
6 0.001 295 340 100300 

Table 2. Fundamental quantities with grid 
refinement for a circular cylinder at Re=40 

Mesh Lw/D CD -Cpb 
1 2.18509 1.51645 0.62864 
2 2.14310 1.50883 0.62979 
3 2.22784 1.50229 0.62249 
4 2.14210 1.50913 0.62965 
5 2.22594 1.50239 0.62299 
6 2.22546 1.50269 0.62307 

Table 3. Errors of fundamental quantities with 
grid refinement for a circular cylinder at Re=40 

Mesh E(Lw)% E(CD) % E(-Cpb)% 
1 1.814 0.916 0.894 
2 3.701 0.409 1.079 
3 0.107 0.027 0.093 
4 3.746 0.429 1.056 
5 0.022 0.020 0.013 
6 0 0 0 

 
Table 4 and 5 show asymptotic convergence of 

fundamental quantities of flow past a circular 
cylinder at Re=20 for a computational domain size 
varying from 20D to 4800D. Numerical results are 
strongly dependent on the mesh resolution, like it 
was shown previously in Table 3 and 4, and even 
more on the size of the computational domain, i.e. 
the position of the outer boundary. The errors of 
fundamental quantities, defined using the converged 
solution obtained for Lext/D=4800, decrease 
significantly with increasing size of the 
computational domain, Lext. For small domain 
extensions, like 20D, errors are larger than 1%. 
When Lext=60D, wake length error is inferior to 
1%. However, drag and base pressure coefficient 
still exhibit an error around 1.5% and 5% 
respectively. For Lext/D=500, errors become 
inferior to 0.5%. Figures 2 and 3 show the present 
results and a comparison with results obtained by 
Posdziech and Grundmann [12] that performed a 
grid independent solution study using a numerical 
spectral method. The curves show similar trends. A 
difference is observed for small computational 
domain size, due to the type of boundary conditions 
used in each method, but for domain size larger 
than 60-80D, values of fundamental quantities are 
very similar. Converged solutions of the two 
methods present a difference inferior to 0.05%. 
Results obtained by other authors, like Baranyi and 



Lewis [18] using Lext=40D, Henderson [19] with 
Lext=28D and Lange [20] with Lext=200D, confirm 
that dispersion of fundamental quantities values, 
observed in the literature, are related to 
computational domain extension. 

Table 4. Fundamental quantities with 
computational domain extension at Re=20 

Lext/La Lw/D CD -Cpb 
20 0.91437 2.09496 0.63388 
60 0.90955 2.02636 0.56482 
140 0.90475 2.00848 0.54646 
500 0.90194 2.00031 0.54113 
1000 0.90146 1.99717 0.53912 
2500 0.90115 1.99487 0.53831 
4800 0.90107 1.99394 0.53813 

Table 5. Errors of fundamental quantities with 
computational domain extension at Re=20 

Lext/La E(Lw)% E(CD) % E(-Cpb)% 
20 1.48 5.07 17.79 
60 0.94 1.63 4.96 
140 0.41 0.73 1.55 
500 0.10 0.32 0.50 
1000 0.04 0.16 0.18 
2500 0.01 0.05 0.03 
4800 0 0 0 

 
With the present consideration, the circular 

outer boundary of the computational domain having 
a radius of 300D was chosen to simulate the 
unbounded flow past a cylinder. Numerical 
blockage effect is negligible and fundamental 
quantities errors are inferior to 0.5% for a circular 
cylinder shape. 
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Figure 2. Drag coefficient versus the 
computational domain extension at Re=20 
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Figure 3. Base pressure coefficient versus the 
computational domain extension at Re=20 

4. RESULTS AND DISCUSSION 
For Re=20 and 40, it is well established that the 

flow over a circular cylinder is symmetric. A steady 
state wake forms behind the circular cylinder. The 
wake length, Lw, is defined as the streamwise 
distance between the wake saddle point (where 
velocity magnitude is zero) and the stagnation point 
on the rear of the cylinder.  

Numerical simulation predicts a pair of stable, 
counter-rotating and symmetrical vortices behind 
the circular cylinder, at AR=1.0, in agreement with 
the existing experimental data. Coutanceau and 
Bouard [21] experimentally determined the wake 
length for flow past a circular cylinder for various 
blockage ratios and extrapolated the wake length for 
unbounded flow at Re=20 and Re=40: Lw/La=0.93 
and Lw/La=2.13. Present results, Lw/La=0.916 and 
LwLa=2.22, at Re=20 and 40 respectively, agree 
well with these experimental data and with 
numerical result obtained by Faruquee et al. [10], 
Lw/La=2.31 at Re=40, and data from the literature. 

Numerical simulation predicts a pair of stable, 
counter-rotating and symmetrical vortices behind 
the elliptical cylinder. Figure 4 and 5 show the non-
dimensional wake length, Lw/La, and maximum 
width, bw/La, versus aspect ratio at Re=20 and 40, 
respectively. Wake length for Re=40 is compared 
with that obtained by Faruquee et al. [10]. Wake 
length decreases with decreasing AR. Below a 
critical aspect ratio, ARc, the standing eddies 
disappear, as expected since the cylinder becomes 
more streamlined. ARc values are obtained from 
extrapolation of the numerical data using a 
polynomial second order fit curve: ARc=0.5648 and 
Arc=0.4076, at Re=20 and 40, respectively. 
Faruquee et al. [10] found a different value of 
critical aspect ratio at Re=40, ARc=0.34, certainly 
due to the smaller computational domain used in 
their simulations.  

Lext/D 

Lext/D 
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Figure 4. Effect of AR on the wake length and 
width at Re=20 
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Figure 5. Effect of AR on the wake length and 
width at Re=40 

Maximum wake width varies linearly with AR. 
When separation of the boundary layer occurs, at 
ARc, the maximum width is situated at the 
separation point. As AR is increased the maximum 
width location moves downstream from the 
separation point and bw increases (see also Figures 
10 to 13). 

Figures 6 and 7 show the position of the centres 
of eddies, Xw, and the core-stream distance between 
vortex centres, Sw, respectively. Wake cores, i.e. 
vortex centres, are defined in terms of their x1 
coordinate as the distance from the rear stagnation 
point of the cylinder, and x2 coordinate as the 
distance from the rear axis. Coutanceau and Bouard 
[21] measured the distances of the vortex centres 
from the circular cylinder rear stagnation point and 
from the near wake axis (streamwise rear axis). In 
present simulation, at Re=40, the centres of the 
vortices formed behind the circular cylinder were 
found at a streamwise distance of 0.71La from the 
rear stagnation point and at a cross-stream distance 
of ±0.295La from the wake axis. These are in very 
good agreement with the findings of Coutanceau 
and Bouard [21] for an unbounded cylinder, who 
estimated the distances as 0.76La from the rear 
stagnation point and ± 0.295La from  the wake axis, 
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Figure 6. Effect of AR on the vortex centre 
positions at Re=20 
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Figure 7. Effect of AR on the vortex centre 
positions at Re=20 

respectively. From Figures 6 and 7, it is show that 
distance between the vortex centres, Sw, increases 
linearly with AR, for Re=20 and Re=40. The 
variation of distance of the vortex centres from the 
rear stagnation point, Xw, with AR is not linear, for 
both Reynolds numbers. These behaviours are not 
observed by Faruquee et al. [10], since they found 
that Sw is to be approximately quadratically related 
with AR, and that Xw varies linearly. The 
discrepancy observed between the present results 
and Faruquee et al. [10] results can be due to the 
small domain used by these authors. 

Figures 8 and 9 show total drag, CD, viscous 
drag, CDf, and pressure drag, CDp, coefficients 
versus AR for Re=20 and 40, respectively. Present 
results are compared those obtained by Sivakumar 
et al. [9] and Faruquee et al. [10]. The drag 
coefficient increases with the increase of AR and is 
maximum for a circular cylinder. The viscous drag 
coefficient is found to decrease at a small rate 
whereas the pressure drag coefficient increases 
rather sharply with increasing AR. Fit curves allow 
to confirm that pressure drag is zero for AR=0, a 
thin flat plate, and that viscous drag is the sole 
contributor  to drag coefficient. Extrapolated  values  
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Figure 8. Drag coefficient, CD, CDf and CDp versus 
AR at Re=20 
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Figure 9. Drag coefficient, CD, CDf and CDp versus 
AR at Re=40 

of viscous drag are 0.945 and 0.617 for Re=20 and 
40, respectively. 

Present results agree very well with that 
obtained by Sivakumar et al. [9] for a circular 
cylinder and an elliptical cylinder with AR=0.2. The 
authors in their numerical simulations used a large 
computational domain with 300La. However, drag 
coefficient found by Faruquee et al. [10] is not in 
accordance with these results. Faruquee et al. [10] 
use a very fine grid, but the computational domain 
size is too small, with an outer radius of circular 
boundary of just 40La. Fundamental quantities are 
strongly dependent not only of the mesh refinement 
but also of the computational domain size. This 
explains the discrepancy of Faruquee’s results. 

Figure 10 shows the pressure coefficient on the 
front stagnation point, CpS, and the base pressure 
coefficient on the rear stagnation point, Cpb, versus 
AR at Re=20 and 40. Pressure coefficient is defined 
using the reference pressure at the inlet boundary. 
As can be expected at low Reynolds numbers flows, 
pressure coefficient on front and rear stagnation 
points     decrease    when   Re    increases.  Pressure 
coefficient on front stagnation point also decreases 
with the increase of AR. However, base pressure 
coefficient    decreases   only    until   the   ARc. For 
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Figure 10. Cp at front stagnation point and Cpb 
versus AR, at Re=20 and 40 
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Figure 11. Effect of AR on the Cp on the elliptical 
cylinder, at Re=40 

AR>ARc base pressure coefficient is quasi constant 
and is not significantly dependent on the AR or 
wake characteristics. 

Figure 11 shows the pressure coefficient on the 
cylinder at Re=40, from the leading edge, θ=0°, to 
the trailing edge, θ=180°, for AR=0.3, 0.6, 0.8 and 
1.0. The AR influences strongly the pressure 
coefficient. The pressure drop becomes sharper at 
the cylinder front as AR decreases and Cp at the 
front stagnation point increases. Cp is constant 
along the cylinder for AR=0.3, before the ARc. 
When flow separation occurs Cp presents a 
minimum value. For a circular cylinder the 
minimum Cp occurs at 89.3°. As the AR decreases 
the minimum Cp value increases and take place at 
angular position greater than 89.3°: 91.4° for 
AR=0.8 and  96.8° at AR=0.6. 

Figure 12 to 15 show the streamlines over a 
cylinder for AR=0.3, 0.6, 0.8 and 1.0, respectively, 
at Re=40. The flow is symmetrical. Symmetrical 
counter rotating vortices are observed behind the 
cylinder for AR>ARc. The wake length and 
maximum width increase with AR, as it was 
demonstrated before. 



 

Figure 12. Flow topology at Re=40 at AR=0.3 

 

Figure 13. Flow topology at Re=40 at AR=0.6 

 

Figure 14. Flow topology at Re=40 at AR=0.8 

 

Figure 15. Flow topology at Re=40 at AR=1.0 

5. CONCLUSIONS 
Fluid flow around an elliptical cylinder is 

numerically investigated, at Reynolds number 20 
and 40, to access the effects of aspect ratio from 
0.2, a streamlined elliptical cylinder, to 1.0, a 
circular cylinder. 

The study also addresses the effect of 
computational domain size and mesh refinement on 
fundamental quantities for a circular cylinder. 
Present results agree well with a similar study 
realized using a spectral method. Both works show 
that fundamental quantities are strongly dependent 
not only of the mesh refinement but also of the 
computational domain size. 

The present study of flow past an elliptic 
cylinder of different aspect ratio shows that 
• No vortices exist behind the cylinder for 

AR<ARc.  
• Critical ARc, for that vortices to appear behind 

the cylinder, are determined as ARc=0.5648 and 
ARc=0.4076 for Re=20 and 40, respectively.  

• Wake width, wake length, CD and CDp increase 
as AR increases while CDf decreases slowly. 

• Distance between the vortex centres, Sw, 
increases linearly with AR, for both Reynolds 
numbers. The variation of distance of the vortex 
centres from the rear stagnation point, Xw, with 
AR is not linear. 

• Pressure coefficient on front stagnation point 
decreases with the increase of AR.  

• However, base pressure coefficient decreases 
only until the ARc. For AR>ARc base pressure 
coefficient is quasi constant and is not 
significantly dependent on AR. 
Future study on unsteady flow over an elliptic 

cylinder with different axes ratio and Reynolds 
number is planed. 
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