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Abstract. When analysing the effects of seismic actionsir@d Itunnels, a non-linear soll
model able to reproduce the main features of cylséibaviour, such as damping and pore
pressure generation, should be used. In this warkprizontal shear wave propagating up-
wards corresponding to a constant amplitude spédarczeleration in a bandwidth limited
frequency domain interacts with a lined tunnel,amated in saturated overconsolidated hard
clay. Initial values of the model’s internal variab consistent with an overconsolidated ini-
tial stress field including the tunnel’s constructieffect are considered. Different amplitudes
of the input signal are applied. Both a boundingface “bubble” model, proposed by Kav-
vadas and Belokas [1] for structured overconsokahsoils with anisotropy, and a hysteretic
model included in the software FLAC are used fergail.
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1 INTRODUCTION

The analysis of the response of geotechnical strestto cyclic loading requires the use of
sophisticated material models. In this work, thalgsis of a tunnel, excavated in overcon-
solidated clay, submitted to a seismic loading mgndonstant spectral amplitude and limited
bandwidth is presented.

Two different non-linear soil models having diffatelegrees of complexity were used and
three acceleration histories with increasing amgét were applied. The response at some
points in the model is presented in the form ofcté acceleration amplification ratios,
stress-strain curves, pore pressure and relatsgtagiement histories.

2 MODELS’ DESCRIPTION

2.1 The bounding surface bubble model

The model adopted here was formulated by KavvaddsBelokas [1]. It is a generalisa-
tion of the Modified Cam-Clay Model (MCCM), with ntnuous plasticity, following the
general bounding surface formulation of Dafaligls The bounding surface is a sheared ellip-
soid (see Figure 1), which makes the plastic behmvanisotropic. The model includes a
mechanism to simulate the strain induced destrimgtuwhich is a relevant aspect of natural
soils.

The most exterior surface, the bounding surfacechwis the Structure Strength Envelope
(SSE), represents the material with its structotacit, and is defined by the function:

F(o,0,a) =C—12[S-is<j :[ S-Ep §J+ (p-pY-a*=0 (1)
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Figure 1: 2D representation of bounding surfaceehwdrious surfaces.

that, in geometrical terms, describes a sheardoseidl of revolution, whose position and
alignment is given by the tensor, =s, + p,|. The length of the surface in tipeaxis direc-
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tion is 2a. The semi-axis ratio of the ellipsoid dependstendonstant. Wheno, =al and

c=+/2/3M, the Maodified Cam-Clay Model’s ellipsoid, which isotropic, is obtained. The

interior bubble, that bounds the elastic domairihés Plastic Yield Envelope (PYE). It is de-
fined, in stress space by the following function:

f(o.oK,oL.a)=C—12(s—st—p;—pL %J:( s 5_% §]+(p— B’ -(£ay’=0 (2)

This PYE bubble is homothetic to the SSE shrunk lsgade factoré <<1 and translated
o, -0, in relation tog, . The PYE, f = O, is obtained from the SSE substituo by
0-0, +0, anda by éa, in F=0. The tensoo, is the centre of the bubble (PYE).

The model was implemented into a finite differecoele and applied to a tunnel excava-
tion by Maranha and Vieira [3]. In this referenaajescription of all model details as well as
the meaning of all its material constants can lo@do

The material model constants used here were takem Vallerica clay [4]Bo=12500kPa,
Go=9375kPap,=100kPa, m=14"=0.118,x =0.012,n=2, Nis;=2.15,/=2.08,v,=1.363,c=0.85,
£é=0.08,k=0.85, px=a=500kPax=1, ¢=0, =10, /1=0.22 andi =0. Load induced anisot-
ropy and destructuring were not considergd @) and as such the associated constants are
zero.

2.2 Hysteretic model available in the FLAC code

The hysteretic model implemented in the FLAC coda i®onlinear model in which both
the bulk,K, and the sheat, moduli are shear strain dependent. The modeliatsporates
the Masing rules for cyclic loading. Damping ari$esn the closed hysteretic loops. Also,
because volumetric behaviour is independent ostiear one, dilatancy cannot be represented.

In order to be able to compare both models, a ploeefor the adjustment of the shear
modulus reduction (with shear strain) curves wateutaken. For the bubble model, an initial
isotropic effective stress of 300kPa was used. Thisesponds approximately to the stress
acting at the tunnels midsection level before eatam. The curve of the hysteretic model
(adjusted to the bubble model), together with the som the bubble model, are presented in
Figure 2. The initial elastic constants of the bebinlodel were used in the hysteretic model.
The two parameters of the default FLAC hystereticdetoverel;=-1.2 and_,=0.9.

In theory, the elastic domain (the “bubble™) candsesmall as desired. However, it has
been observed that, if the size of the bubbleasstoall, numerical stability problems occur.
This has also been recognized within the contekngficit integration by Borjaet al [5] and
Rouainia and Muir Wood [6]. To avoid these numdrimablems a minimum size ratio for
the bubble of 0.12 was adopted. The relatively laige of the bubble is the reason why the
adjustment of the curve for the smaller strainsoisvery good.

No matter how small, there is always, in both medal purely elastic region having no
damping at all. To avoid this, a small, 1% dampiago of the Rayleigh type was used in all
the analyses.
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Figure 2: Modulus reduction curves for bubble agstéretic models in a simple shear test.

3 THE INPUT SEISMIC ACTION

The seismic action adopted in this study is anlacagon history having the shape o$ia
nus cardinalig(sinc) function in the time domain (Figure 3). Tioection is defined as:

sin(at) 120
h(t) = at ' 3)
b t=0

This function is associated with a constant speatrglitude and a limited bandwidth, as
shown in Figure 4. The parametgrdefines the amplitude of the signal and the patana,
determines the maximum frequency present in theasicAs the bandwidth gets wider, the
signal tends to a localized impulse (like as Dolatta function). The advantage of this type of
input signal is that, every frequency within giieounds has the same contribution. Because
the shape of the input signal in the frequency dongaalways flat, only the amplitude value
b is needed to define it.
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Figure 3: Input motion in the time domain.
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In the present case, the input signal consistshiarzontal acceleration applied to the base
of the model which acts as a rigid bedrock. The pbakalues used were 0.5g, 1g and 2g.
The duration of the action is 10s and the peakt&rmd after 5s. The maximum frequency
applied is 20Hz.
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Figure 4: Input motion in the frequency domain.

4 MODEL OF THE TUNNEL

The case being analysed is a tunnel having a airaubss section with 10m diameter. The
tunnel’s crown is 10m below the ground surface. gieand where the tunnel is excavated is
an overconsolidated hard clay. The soil is saturated the water table is 2m below the
ground surface. In the 2m above the water tablathegpore pressures resulting from capil-
lary forces were applied. The rigid bedrock is ledsat a depth of 46m. The numerical analy-
ses are made with FLAC, under plane strain andaineld conditions. The mesh used in the
analysis is shown in Figure 5.

Figure 5: Mesh used in the numerical analyses.

Because the rigid base boundary has been adoptee icurrent model the input motions
(horizontal acceleration) are applied to the mdmsede. As regards the lateral boundaries free
field conditions were applied. The initial streséasthe dynamic analyses, were taken from a
single previous excavation analysis, includingnmplacement, made with the bubble model.
This was the case for both the dynamic analyses mattiethe bubble model and the ones
made with the hysteretic model. The proceduresifoulating the excavation are described in
detail in Maranha and Vieira [3]. The 0.25m thickelar elastic sprayed concrete lining
(E=4.8MPa andv=0.2), is applied after 30% stress relief. The seaisaation is applied im-
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mediately after construction, before any excess poessure dissipation takes place. Figure 6
shows the monitored points during all the perforragdlyses.
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Figure 6: Location of history points.

5 ANALYSIS RESULTS

Before describing the results of the analyses, important validation aspects were con-
sidered. The first aspect concerns the use of a migactive stress dependent hypoelastic law
incorporated in the bubble model as described]inB8cause this hypoelastic law can gener-
ate energy in close stress and strain cycles, aluavon of the consequences of this conceiv-
able behaviour on the validity of the results maestmade. To accomplish this evaluation, an
analysis using a linear elastic law instead ofhigpoelastic one with the bubble model, was
performed using a 2g amplitude input. The initiaéar and bulk moduli were the ones ob-
tained from the hypoelastic law at the end of thastruction stage. The rather small differ-
ences in the results relative to the analysis uieghypoelastic model confirm that, in this
case, the non-conservative behaviour of the moaket ciot invalidate the results obtained.

Another aspect evaluated was the actual performahtie free field boundary conditions
used. This was done by comparing the results ofglescolumn analysis, having one element
width, using free field lateral boundary conditiongh the results at the free field boundary
of the tunnel analysis. The results were almost#ree.

5.1 Spectral acceleration amplification ratio

Input acceleration signals, defining the horizorghkar wave, having maximum ampli-
tudes of 0.5g, 1g and 2g, where analysed. The hidrexpuency in all cases was 20Hz. For
each one of the amplitudes two analyses were peedr using both the bubble continuous
plasticity model and the hysteretic model descridedve.

The natural frequencies of the soil layer were cot@g using an analytical solution, due to
Ambraseys [7] that assumes the soil to be lineastiel with the shear modulus increasing
linearly with depth. The natural frequencies areaoted from
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s

whereK =,/G,/G, , H is the thickness of the soil layal =,/G,/p, Go andGy are, re-

spectively, the shear modulus at the top and tliimoof the layer, and, is the nh root of
the equation

Jo(a)Yi(Ka)- J(Ka) Y 8=0 (5)

The displacement patterns for the standing wavesiénshapes) corresponding to the natu-
ral frequencies are obtained from

1+ f z 1+ fz
oo EE N fEE a0
with f =(G, - G,)) (G, H).

The first five natural frequencies, computed frdme humerical analyses, can clearly be
seen in the spectral amplification ratio plot ainp®, for an input signal with 0.5g amplitude,
as presented in Figure 7. In this case, wherertigitde of signal is smaller, the response is
closer to the linear elastic one. The responseotii models is very similar. The analytical
values for the natural frequencies are quite ne&hiq 6%) the computed values. The ana-
lytical value for the fundamental frequency (0.63deviates only 1% of the computed value.
As expected, amplification ratios decrease withlaasing frequency.
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Figure 7: Spectral amplification ratio at point&;, bubble and hysteretic models (0.5g).

Considering point 4, which is located on the frieédfat a depth of 12m, it can be observed
in Figure 8 that the second natural frequency ppeessed. This is due to the point being lo-
cated in close proximity to a nodal point (zeroihamtal displacement) of the second vibra-
tion mode. Point 3 is located on the free fiel@4tn depth and is close to a nodal point of the
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third mode. This explains the suppression of tlire ttmode that can be observed in Figure 9.
This nodal point effect is also present at 1g amthput amplitude levels.
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Figure 8: Spectral amplification ratio at pointidr, bubble and hysteretic models (0.5g).
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Figure 9: Spectral amplification ratio at pointf&; bubble and hysteretic models (0.5g).

In Figure 10, the spectral acceleration amplifmatiatio is plotted at point 5, located at the
surface on the free field, for both models and @bd 2g input amplitude levels. It is appar-
ent that, when increasing the amplitude level fi@fdg to 2g, the bubble model originates
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much reduced amplification ratios while, in theea$ hysteretic model, they remain essen-
tially the same. The damping produced by the bubieel increases with the amplitude of
the input signal. This does not occur with the égetic model.
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Figure 10: Spectral amplification ratio at poinfér, both models (0.5g and 29).

In order to evaluate the tunnel effect, the respafspoints on the free field is compared
with that of point at the same depth but horizdptaligned with the tunnel’s axis. In Figure
11, the amplification ratio for point 5, at the gmal surface, on the free field, is compared
with that of point 10, at the surface, above thenal's axis. The input amplitude is 2g. The
point aligned with the tunnel produces significgitiwer amplification ratios, for frequencies
higher than the fundamental one, than the pointhenfree field. This effect, although less
pronounced than at surface level, also takes @laother depths.
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Figure 11: Spectral amplification ratio at pointar 10, for both models (2g).
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5.2 Stress-strain behaviour

The curves of shear stress variation with sheamstcomputed at an element situated di-
rectly above the tunnel’s crown, are plotted inufgg12. Both models as well as three input
amplitude levels (0.5g, 1g and 2g) are represeritethe lower amplitude level, 0.5g, the re-
sponse is similar between both models. At 2g, tieeeedivergent response between the mod-
els, with the hysteretic model displaying larged amore open loops.
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Figure 12: Shear stress vs shear strain at poBtiSble and hysteretic models. (0.5g, 19, 2g).

5.3 Pore pressure time histories

Figure 13 shows the pore pressure time historiésmdd at the monitored point 1, located
at the bottom of the soil layer, and at point @wabthe tunnel’s crown, for both models. The
input amplitude used is 2g. There is a qualitatiifference between the pore pressure re-
sponse given by each of the models. Because itpocates dilatancy, the bounding surface
bubble model can generate excess pore pressutesaah cycle of loading. At point 1, there
is a significant increase in pore pressure thagigisrdespite the loading cycles. Here the soil
is in the contractant region. At point 9, the $siin the dilatant region and there is a continu-
ous decrease in the pore pressure, which eventuedigmes lower than the atmospheric pres-
sure. At about 9.5s, the pore pressure reachefiuidetension limit and there is cavitation
(the pore pressure becomes equal to the atmospiressure). The hysteretic model exhibits
independence between volumetric and distortionhbb®ur and, as such, cannot reproduce
dilatancy. The pore pressure variations arise ywalele to corresponding variations in the
mean effective stress. For this model, both attpolnand 9, it is observed that after each
loading cycle, no excess pore pressure remains.

10
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The difference in pore pressure response betweemdtuels also helps to explain the dis-
parity observed in the shear stress-strain curvgsiat 9. Due to the suctions that were gen-
erated by the bubble model, the mean effectivessigehigher and, consequently, the stiffness
is also higher than is the case for the hysterstidel.
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Figure 13: Pore pressure histories at points 19%ior bubble and hysteretic models (29g).

5.4 Tunnel displacements

The relative horizontal displacement between tlogvarand the invert of the tunnel (crown
minus invert) is a measure of the tunnel’'s sheaiiigen compared with the relative horizon-
tal displacement of points at the same level beaitled on the free field, it can be used to as-
sess the effect of interaction with the tunnel. Télkative horizontal displacements between
points 8 and 9 (tunnel), and between points 13l&h(free field), are plotted in Figure 14 for
an input amplitude of 2g. The interaction effechdg apparent in the bubble’s model instance
— the relative displacements are almost the santbeotunnel and on the free field. This is not
the case with the hysteretic model, where the distolevel in the tunnel is higher than in the
free field. Also, the maximum relative displacemédat the bubble model, has a value of 7cm
and occurs immediately after the main shock, winilthe case of the hysteretic model, it has
a value of 8cm and takes place only 3.5s afteslioek, during the third cycle.

6 CONCLUSIONS

Nonlinear dynamic numerical analyses of a tunnetaeated in overconsolidated hard
clay, under the action of a bandwidth limited (m2@Hz) acceleration history having a con-
stant value in the frequency domain, were accoingtisA bounding surface type model with
a bubble that accounts for plastic anisotropy déagea simpler variable elasticity, hysteretic
model were used to model the soil behaviour. Thegels of input acceleration amplitude
were considered (0.5g, 1g and 2g). The interpaetadf the results leads to the following
main conclusions:

11
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Figure 14: Relative horizontal displacements onttimmel (crown minus invert) and free field (2g).

1) As expected, natural frequencies computed fitoenainalytical solution for a soil layer
with linearly varying shear modulus agree well witiose observed in the numerical analyses
for the lower input amplitude level (0.59).

2) The suppression of some natural frequenciesiatglocated at some specific depths is
explained by the proximity of those points to nodesmodal shapes associated with the sup-
pressed natural frequencies.

3) As expected, for the lower input amplitude lef@5g), the response of both models is
very similar, given that the soil behaviour is appmately linear elastic.

4) The damping produced by the bubble model inezagynificantly with the amplitude
of the input signal. This does not occur with tlysteretic model.

5) The points vertically aligned with the tunned’sis show a reduction in the amplification
when compared with points at the same depth offréleefield. This is particularly evident at
the surface.

6) In terms of shear stress versus shear strauesuit is observed that, while the response
is similar between the models for the lowest ingmplitude, it diverges significantly for the
highest one.

7) The computed pore pressure changes generatbdtbbynodels differ significantly due
to the lack of capability of the hysteretic modet¢produce dilatant soil behaviour in contrast
with what happens with the bubble model.

8) Relative horizontal displacements between tbavarand the invert of the tunnel, when
compared with the free field corresponding displaeets, show that the interaction with the
tunnel is negligible in the case of the bubble nhode
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