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Abstract. When analysing the effects of seismic actions on lined tunnels, a non-linear soil 
model able to reproduce the main features of cyclic behaviour, such as damping and pore 
pressure generation, should be used. In this work, a horizontal shear wave propagating up-
wards corresponding to a constant amplitude spectral acceleration in a bandwidth limited 
frequency domain interacts with a lined tunnel, excavated in saturated overconsolidated hard 
clay. Initial values of the model’s internal variables consistent with an overconsolidated ini-
tial stress field including the tunnel’s construction effect are considered. Different amplitudes 
of the input signal are applied. Both a bounding surface “bubble” model, proposed by Kav-
vadas and Belokas [1] for structured overconsolidated soils with anisotropy, and a hysteretic 
model included in the software FLAC are used for the soil. 
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1 INTRODUCTION 

The analysis of the response of geotechnical structures to cyclic loading requires the use of 
sophisticated material models. In this work, the analysis of a tunnel, excavated in overcon-
solidated clay, submitted to a seismic loading having constant spectral amplitude and limited 
bandwidth is presented. 

Two different non-linear soil models having different degrees of complexity were used and 
three acceleration histories with increasing amplitude were applied. The response at some 
points in the model is presented in the form of spectral acceleration amplification ratios, 
stress-strain curves, pore pressure and relative displacement histories. 

 

2 MODELS’ DESCRIPTION 

2.1 The bounding surface bubble model 

The model adopted here was formulated by Kavvadas and Belokas [1]. It is a generalisa-
tion of the Modified Cam-Clay Model (MCCM), with continuous plasticity, following the 
general bounding surface formulation of Dafalias [2]. The bounding surface is a sheared ellip-
soid (see Figure 1), which makes the plastic behaviour anisotropic. The model includes a 
mechanism to simulate the strain induced destructuring, which is a relevant aspect of natural 
soils.  

The most exterior surface, the bounding surface, which is the Structure Strength Envelope 
(SSE), represents the material with its structure intact, and is defined by the function: 
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Figure 1: 2D representation of bounding surface model various surfaces. 

that, in geometrical terms, describes a sheared ellipsoid of revolution, whose position and 
alignment is given by the tensor K K Kp= +s Iσσσσ . The length of the surface in the p axis direc-
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tion is 2α. The semi-axis ratio of the ellipsoid depends on the constant c. When K α= Iσσσσ  and 

2 / 3c M= , the Modified Cam-Clay Model’s ellipsoid, which is isotropic, is obtained. The 
interior bubble, that bounds the elastic domain, is the Plastic Yield Envelope (PYE). It is de-
fined, in stress space by the following function: 
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This PYE bubble is homothetic to the SSE shrunk by a scale factor ξ <<1 and translated 

L K−σ σσ σσ σσ σ  in relation to Kσσσσ . The PYE, f = 0, is obtained from the SSE substituting σσσσ  by 

L K− +σ σ σσ σ σσ σ σσ σ σ  and α by ξα, in F=0. The tensor Lσσσσ  is the centre of the bubble (PYE). 

The model was implemented into a finite difference code and applied to a tunnel excava-
tion by Maranha and Vieira [3]. In this reference, a description of all model details as well as 
the meaning of all its material constants can be found. 

The material model constants used here were taken from Vallerica clay [4]: B0=12500kPa, 
G0=9375kPa, pr=100kPa, m=1, λ*=0.118, κ*=0.012, n=2, Niso=2.15, Γ=2.08, v0=1.363, c=0.85, 

ξ=0.08, k=0.85, pK=α=500kPa, χ=1, ψ=0, γ=10, λ1=0.22 and ̂ 0ξ =ξ =ξ =ξ = . Load induced anisot-

ropy and destructuring were not considered (ψ=0) and as such the associated constants are 
zero.  

 

2.2 Hysteretic model available in the FLAC code 

The hysteretic model implemented in the FLAC code is a nonlinear model in which both 
the bulk, K, and the shear, G, moduli are shear strain dependent. The model also incorporates 
the Masing rules for cyclic loading. Damping arises from the closed hysteretic loops. Also, 
because volumetric behaviour is independent of the shear one, dilatancy cannot be represented. 

In order to be able to compare both models, a procedure for the adjustment of the shear 
modulus reduction (with shear strain) curves was undertaken. For the bubble model, an initial 
isotropic effective stress of 300kPa was used. This corresponds approximately to the stress 
acting at the tunnels midsection level before excavation. The curve of the hysteretic model 
(adjusted to the bubble model), together with the one from the bubble model, are presented in 
Figure 2. The initial elastic constants of the bubble model were used in the hysteretic model. 
The two parameters of the default FLAC hysteretic model were L1=-1.2 and L2=0.9. 

In theory, the elastic domain (the “bubble”) can be as small as desired. However, it has 
been observed that, if the size of the bubble is too small, numerical stability problems occur. 
This has also been recognized within the context of implicit integration by Borja et al. [5] and 
Rouainia and Muir Wood [6]. To avoid these numerical problems a minimum size ratio for 
the bubble of 0.12 was adopted. The relatively large size of the bubble is the reason why the 
adjustment of the curve for the smaller strains is not very good. 

No matter how small, there is always, in both models, a purely elastic region having no 
damping at all. To avoid this, a small, 1% damping ratio of the Rayleigh type was used in all 
the analyses. 
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Figure 2: Modulus reduction curves for bubble and hysteretic models in a simple shear test. 

3 THE INPUT SEISMIC ACTION 

The seismic action adopted in this study is an acceleration history having the shape of a si-
nus cardinalis (sinc) function in the time domain (Figure 3). The function is defined as: 
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; 0
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This function is associated with a constant spectral amplitude and a limited bandwidth, as 
shown in Figure 4.  The parameter b, defines the amplitude of the signal and the parameter a, 
determines the maximum frequency present in the signal. As the bandwidth gets wider, the 
signal tends to a localized impulse (like as Dirac delta function). The advantage of this type of 
input signal is that, every frequency within given bounds has the same contribution. Because 
the shape of the input signal in the frequency domain is always flat, only the amplitude value 
b is needed to define it. 
 

 
Figure 3: Input motion in  the time domain. 
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In the present case, the input signal consists in a horizontal acceleration applied to the base 
of the model which acts as a rigid bedrock. The peak, b, values used were 0.5g, 1g and 2g. 
The duration of the action is 10s and the peak is attained after 5s. The maximum frequency 
applied is 20Hz. 
 

 
Figure 4: Input motion in the frequency domain. 

 

4 MODEL OF THE TUNNEL 

The case being analysed is a tunnel having a circular cross section with 10m diameter. The 
tunnel’s crown is 10m below the ground surface. The ground where the tunnel is excavated is 
an overconsolidated hard clay. The soil is saturated and the water table is 2m below the 
ground surface. In the 2m above the water table negative pore pressures resulting from capil-
lary forces were applied. The rigid bedrock is located at a depth of 46m. The numerical analy-
ses are made with FLAC, under plane strain and undrained conditions. The mesh used in the 
analysis is shown in Figure 5. 

 
Figure 5: Mesh used in the numerical analyses. 

Because the rigid base boundary has been adopted in the current model the input motions 
(horizontal acceleration) are applied to the model base. As regards the lateral boundaries free 
field conditions were applied. The initial stresses for the dynamic analyses, were taken from a 
single previous excavation analysis, including lining placement, made with the bubble model. 
This was the case for both the dynamic analyses made with the bubble model and the ones 
made with the hysteretic model. The procedures for simulating the excavation are described in 
detail in Maranha and Vieira [3]. The 0.25m thick linear elastic sprayed concrete lining 
(E=4.8MPa and ν=0.2), is applied after 30% stress relief. The seismic action is applied im-
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mediately after construction, before any excess pore pressure dissipation takes place. Figure 6 
shows the monitored points during all the performed analyses. 

 
Figure 6: Location of history points. 

 

5 ANALYSIS RESULTS  

Before describing the results of the analyses, two important validation aspects were con-
sidered. The first aspect concerns the use of a mean effective stress dependent hypoelastic law 
incorporated in the bubble model as described in [3]. Because this hypoelastic law can gener-
ate energy in close stress and strain cycles, an evaluation of the consequences of this conceiv-
able behaviour on the validity of the results must be made. To accomplish this evaluation, an 
analysis using a linear elastic law instead of the hypoelastic one with the bubble model, was 
performed using a 2g amplitude input. The initial shear and bulk moduli were the ones ob-
tained from the hypoelastic law at the end of the construction stage. The rather small differ-
ences in the results relative to the analysis using the hypoelastic model confirm that, in this 
case, the non-conservative behaviour of the model does not invalidate the results obtained. 

Another aspect evaluated was the actual performance of the free field boundary conditions 
used. This was done by comparing the results of a single column analysis, having one element 
width, using free field lateral boundary conditions with the results at the free field boundary 
of the tunnel analysis. The results were almost the same. 

5.1 Spectral acceleration amplification ratio 

Input acceleration signals, defining the horizontal shear wave, having maximum ampli-
tudes of 0.5g, 1g and 2g, where analysed. The highest frequency in all cases was 20Hz. For 
each one of the amplitudes two analyses were performed, using both the bubble continuous 
plasticity model and the hysteretic model described above. 

The natural frequencies of the soil layer were computed using an analytical solution, due to 
Ambraseys [7] that assumes the soil to be linear elastic with the shear modulus increasing 
linearly with depth. The natural frequencies are obtained from 



J. R. Maranha and A. Vieira 

 7 

 

2 0(1 )

4
n s

n

a K v
f

H Kπ
−=  (4) 

where 0 / HK G G=  , H is the thickness of the soil layer, 0
0 /sv G ρ= , G0 and GH are, re-

spectively, the shear modulus at the top and the bottom of the layer, and an is the nth  root of 
the equation 
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The displacement patterns for the standing waves (mode shapes) corresponding to the natu-
ral frequencies are obtained from 
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with 0 0( ) /( )Hf G G G H= − .  
The first five natural frequencies, computed from the numerical analyses, can clearly be 

seen in the spectral amplification ratio plot at point 5, for an input signal with 0.5g amplitude, 
as presented in Figure 7. In this case, where the amplitude of signal is smaller, the response is 
closer to the linear elastic one. The response of both models is very similar. The analytical 
values for the natural frequencies are quite near (within 6%) the computed values. The ana-
lytical value for the fundamental frequency (0.64Hz) deviates only 1% of the computed value. 
As expected, amplification ratios decrease with increasing frequency. 
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Figure 7: Spectral amplification ratio at point 5, for bubble and hysteretic models (0.5g). 

Considering point 4, which is located on the free field at a depth of 12m, it can be observed 
in Figure 8 that the second natural frequency is suppressed. This is due to the point being lo-
cated in close proximity to a nodal point (zero horizontal displacement) of the second vibra-
tion mode. Point 3 is located on the free field at 24m depth and is close to a nodal point of the 
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third mode. This explains the suppression of the third mode that can be observed in Figure 9. 
This nodal point effect is also present at 1g and 2g input amplitude levels. 
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Figure 8: Spectral amplification ratio at point 4, for bubble and hysteretic models (0.5g). 
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Figure 9: Spectral amplification ratio at point 3, for bubble and hysteretic models (0.5g). 

 
In Figure 10, the spectral acceleration amplification ratio is plotted at point 5, located at the 

surface on the free field, for both models and 0.5g and 2g input amplitude levels. It is appar-
ent that, when increasing the amplitude level from 0.5g to 2g, the bubble model originates 
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much reduced amplification ratios while, in the case of hysteretic model, they remain essen-
tially the same. The damping produced by the bubble model increases with the amplitude of 
the input signal. This does not occur with the hysteretic model.  
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Figure 10: Spectral amplification ratio at point 5, for both models (0.5g and 2g). 

In order to evaluate the tunnel effect, the response of points on the free field is compared 
with that of point at the same depth but horizontally aligned with the tunnel’s axis. In Figure 
11, the amplification ratio for point 5, at the ground surface, on the free field, is compared 
with that of point 10, at the surface, above the tunnel’s axis. The input amplitude is 2g. The 
point aligned with the tunnel produces significantly lower amplification ratios, for frequencies 
higher than the fundamental one, than the point on the free field. This effect, although less 
pronounced than at surface level, also takes place at other depths.  
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Figure 11: Spectral amplification ratio at points 5 and 10, for both models (2g). 
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5.2 Stress-strain behaviour 

The curves of shear stress variation with shear strain, computed at an element situated di-
rectly above the tunnel’s crown, are plotted in Figure 12. Both models as well as three input 
amplitude levels (0.5g, 1g and 2g) are represented. At the lower amplitude level, 0.5g, the re-
sponse is similar between both models. At 2g, there is a divergent response between the mod-
els, with the hysteretic model displaying larger and more open loops. 
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Figure 12: Shear stress vs shear strain at point 9. Bubble and hysteretic models. (0.5g, 1g, 2g). 

 

5.3 Pore pressure time histories 

Figure 13 shows the pore pressure time histories obtained at the monitored point 1, located 
at the bottom of the soil layer, and at point 9, above the tunnel’s crown, for both models. The 
input amplitude used is 2g. There is a qualitative difference between the pore pressure re-
sponse given by each of the models. Because it incorporates dilatancy, the bounding surface 
bubble model can generate excess pore pressures with each cycle of loading. At point 1, there 
is a significant increase in pore pressure that persists despite the loading cycles. Here the soil 
is in the contractant region. At point 9, the soil is in the dilatant region and there is a continu-
ous decrease in the pore pressure, which eventually becomes lower than the atmospheric pres-
sure. At about 9.5s, the pore pressure reaches the fluid tension limit and there is cavitation 
(the pore pressure becomes equal to the atmospheric pressure). The hysteretic model exhibits 
independence between volumetric and distortional behaviour and, as such, cannot reproduce 
dilatancy. The pore pressure variations arise solely due to corresponding variations in the 
mean effective stress. For this model, both at points 1 and 9, it is observed that after each 
loading cycle, no excess pore pressure remains. 
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The difference in pore pressure response between the models also helps to explain the dis-
parity observed in the shear stress-strain curves at point 9. Due to the suctions that were gen-
erated by the bubble model, the mean effective stress is higher and, consequently, the stiffness 
is also higher than is the case for the hysteretic model.  
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Figure 13: Pore pressure histories at points 1 and 9, for bubble and hysteretic models (2g). 

5.4 Tunnel displacements 

The relative horizontal displacement between the crown and the invert of the tunnel (crown 
minus invert) is a measure of the tunnel’s shearing. When compared with the relative horizon-
tal displacement of points at the same level but located on the free field, it can be used to as-
sess the effect of interaction with the tunnel. The relative horizontal displacements between 
points 8 and 9 (tunnel), and between points 13 and 12 (free field), are plotted in Figure 14 for 
an input amplitude of 2g. The interaction effect is not apparent in the bubble’s model instance 
– the relative displacements are almost the same on the tunnel and on the free field. This is not 
the case with the hysteretic model, where the distortion level in the tunnel is higher than in the 
free field. Also, the maximum relative displacement, for the bubble model, has a value of 7cm 
and occurs immediately after the main shock, while in the case of the hysteretic model, it has 
a value of 8cm and takes place only 3.5s after the shock, during the third cycle.  

6 CONCLUSIONS  

Nonlinear dynamic numerical analyses of a tunnel, excavated in overconsolidated hard 
clay, under the action of a bandwidth limited (max. 20Hz) acceleration history having a con-
stant value in the frequency domain, were accomplished. A bounding surface type model with 
a bubble that accounts for plastic anisotropy as well as a simpler variable elasticity, hysteretic 
model were used to model the soil behaviour. Three levels of input acceleration amplitude 
were considered (0.5g, 1g and 2g). The interpretation of the results leads to the following 
main conclusions: 
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Figure 14: Relative horizontal displacements on the tunnel (crown minus invert) and free field (2g). 

1) As expected, natural frequencies computed from the analytical solution for a soil layer 
with linearly varying shear modulus agree well with those observed in the numerical analyses 
for the lower input amplitude level (0.5g). 

2) The suppression of some natural frequencies at points located at some specific depths is 
explained by the proximity of those points to nodes in modal shapes associated with the sup-
pressed natural frequencies. 

3)  As expected, for the lower input amplitude level (0.5g), the response of both models is 
very similar, given that the soil behaviour is approximately linear elastic. 

4) The damping produced by the bubble model increases significantly with the amplitude 
of the input signal. This does not occur with the hysteretic model. 

5) The points vertically aligned with the tunnel’s axis show a reduction in the amplification 
when compared with points at the same depth on the free field. This is particularly evident at 
the surface. 

6) In terms of shear stress versus shear strain curves, it is observed that, while the response 
is similar between the models for the lowest input amplitude, it diverges significantly for the 
highest one. 

7) The computed pore pressure changes generated by both models differ significantly due 
to the lack of capability of the hysteretic model to reproduce dilatant soil behaviour in contrast 
with what happens with the bubble model. 

8) Relative horizontal displacements between the crown and the invert of the tunnel, when 
compared with the free field corresponding displacements, show that the interaction with the 
tunnel is negligible in the case of the bubble model. 
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