

UNIVERSIDADE TÉCNICA DE LISBOA INSTITUTO SUPERIOR TÉCNICO

ANÁLISE DE ESTRUTURAS DE MEMBRANA COM COMPORTAMENTO ORTOTRÓPICO UTILIZANDO O MÉTODO DE GALERKIN LIVRE DE ELEMENTOS

Bruno Ricardo Gomes de Figueiredo (Licenciado)

Dissertação para a obtenção do Grau de Mestre em Engenharia de Estruturas pela Universidade Técnica de Lisboa no âmbito do protocolo de cooperação entre o IST e o LNEC

Orientador: Doutor Vitor Manuel Azevedo Leitão

Júri Presidente: Doutor João Carlos de Oliveira Fernandes de Almeida Vogais: Doutor Corneliu Cismasiu Doutor Vitor Manuel Azevedo Leitão Doutor João Paulo Janeiro Gomes Ferreira

Dezembro de 2007

Aos meus pais e irmã

Agradecimentos

Terminado este trabalho, com a satisfação de constatar que os objectivos inicialmente propostos foram cumpridos, é meu desejo agradecer de forma sincera às pessoas e entidades que contribuíram de forma decisiva para a sua realização e conclusão. Este trabalho só foi possível graças à colaboração de instituições, professores, colegas, amigos e familiares.

Em primeiro lugar gostaria de exprimir ao Prof. Vitor Manuel Azevedo Leitão, meu orientador científico, o meu profundo agradecimento pela oportunidade de realizar este trabalho. A sua disponibilidade e esforço para proporcionar as melhores condições à concretização deste trabalho foram decisivas, bem como todo o alento, motivação e amizade demonstrada em todos os momentos.

Aos professores Luís Castro, Moitinho de Almeida, Orlando Pereira, Teixeira de Freitas, Carlos Tiago pelo agradável convívio e amizade e pelo bom ambiente de trabalho proporcionado.

A todos os docentes da parte escolar do Curso de Mestrado em Estruturas de Engenharia Civil agradeço a formação concedida.

Agradeço aos demais colegas do Laboratório de Mecânica Computacional pelo bom ambiente de trabalho, em especial à Victoria Rosca, pelo seu apoio e esclarecimento de questões de índole teórica.

Aos colegas do Instituto Superior Técnico pela camaradagem e amizade que sempre mostraram, em especial os Engenheiros Luís Martinez, Gonçalo Correia, João Morgado, Pedro Chitas, Ana Fernandes e Rute Geraldes.

Ao Instituto Superior Técnico, em particular, ao Departamento de Engenharia Civil e Arquitectura, na pessoa do Professor Carlos Sousa Oliveira, agradeço as condições e os meios informáticos dispensados.

Ao Laboratório Nacional de Engenharia Civil, na pessoa do seu Presidente Carlos Matias Ramos, agradeço a inclusão deste trabalho no âmbito do protocolo de cooperação entre o IST e o LNEC. Ao Departamento de Barragens de Betão, em particular ao seu Presidente, Eng. Carlos Pina, e ao Chefe de Núcleo de Fundações e Obras Subterrâneas, Eng. Luís Lamas, agradeço as condições disponibilizadas.

Cumpre-me ainda referir a importância do apoio financeiro proporcionado pela Fundação para a Ciência e a Tecnologia, através do Programa de Financiamento de Unidade de I&D.

Gostaria de exprimir a minha enorme e profunda gratidão aos meus pais e minha irmã pela forma incondicional e constante com que sempre me apoiaram do início ao fim deste trabalho.

A todos aqueles que directa ou indirectamente tornaram possível a elaboração deste trabalho.

Análise de estruturas de membrana com comportamento ortotrópico utilizando o Método de Galerkin Livre de Elementos

por

Bruno Ricardo Gomes de Figueiredo

Tese submetida para satisfação dos requisitos do grau de Mestre em Estruturas de Engenharia Civil do Instituto Superior Técnico da Universidade Técnica de Lisboa sob a supervisão do Drof. Vitor Monuel A gouado Loitão

Prof. Vitor Manuel Azevedo Leitão

Resumo

As estruturas de membrana são caracterizadas por terem secções transversais muito pequenas (espessura no caso da membranas). Desta forma verifica-se que este tipo de estruturas não tem capacidade para desenvolver esforços de flexão e portanto, a única maneira de equilibrar as acções transversais é adaptando a sua forma ao carregamento.

Contrariamente ao tradicional método dos elementos finitos (FEM), o método de Galerkin livre de elementos desenvolvido por Belytschko [1] não necessita de elementos na aproximação do campo de variáveis. No EFGM, os elementos são substituídos por um conjunto de nós em que cada um possui um determinado domínio de influência. Assim, a função de aproximação é construída em cada ponto com base nos nós incluídos no seu domínio de influência. As funções de aproximação são obtidas utilizando o método dos mínimos quadrados móveis (MLS) que não é mais do que um método de mínimos quadrados que se move consoante o domínio de influência do nó em questão.

Neste trabalho é apresentado a implementação de um método sem malha, o método livre de elementos de Galerkin para a análise de estruturas de membrana com comportamento ortotrópico.

Para a utilização deste método na análise de estruturas de membrana utilizou-se uma técnica de mapeamento da geometria tridimensional para um espaço bidimensional, sendo que as bases deste sistema são utilizadas na expressão das componentes de deformação e tensão na equação do princípio dos trabalhos virtuais. Com base nesta técnica, os nós da malha são gerados no espaço bidimensional e as suas coordenadas são utilizadas no método dos mínimos quadrados móveis para a aproximação do campo de deslocamentos.

Para uma estrutura de membrana, a rigidez geométrica da estrutura de suporte não pode ser desprezada sendo que a análise geometricamente não linear é essencial na formulação do problema. Para tal, com base numa formulação Lagrangeana total desenvolveu-se uma formulação de análise geometricamente não linear considerando o método livre de elementos de Galerkin.

Neste trabalho foram analisados alguns exemplos de estruturas de membrana com comportamento isotrópico e ortotrópico para validar o método proposto sendo que os respectivos resultados foram comparados directamente com os resultados obtidos com o programa generalista de elementos finitos ADINA.

Analysis of tensile structures with orthotropic behavior by using the Element Free Galerkin Method

By

Bruno Ricardo Gomes de Figueiredo

Thesis submitted in fulfilment of degree of Master in Civil Engineering Structures of the Intituto Superior Técnico of Universidade Técnica de Lisboa under the supervision of

Prof. Vitor Manuel Azevedo Leitão

Abstract

Membrane structures are characterized by being very thin and by being acted upon with loads that may only be of the tensile/compressive type, that is, no bending is present.

For membranes of general shape and, especially, if they are subjected to transversal loads, it is essential to take into account the geometric stiffness of the membrane, that is, to consider geometrically non-linear effects.

The EFGM, originally developed by Belytschko [1], relies on nodes rather than on elements. The elements are replaced by sets of nodes within domains of influence of a given node. The variable of interest (the displacements, in our case) is approximated at a given point by finding the nodes within its domain of influence and by constructing the corresponding approximation function. These functions are found by means of the Moving Least-Squares concept which is basically a Least-Squares procedure that, as the name says, is not "statically" defined, it moves as the domains of influence for each given node move.

In this work an implementation of a meshless method, the element free Galerkin method for the analysis of three-dimensional laminar (thin) anisotropic structures is presented.

By using a mapping technique the geometry of arbitrary curved surfaces is expanded in the twodimensional space and the bases of convected co-ordinate system are utilized for expressing the strain and stress components in the virtual work principle. Only nodal data are generated on this two-dimensional space and the convected co-ordinates are used in the moving least-squares interpolation method for the aproximation of the displacement field.

Generally shaped three-dimensional tensile structures require geometrically non-linear analysis. In the work described herein these effects are formulated in terms of the total Lagrangian method.

In the present work several numerical examples of membrane structures with isotropic and orthotropic behaviour are tested to show the validity of the proposed method and satisfatory results are obtained in comparison to the finite element results obtained by ADINA.

Palavras Chave

Estruturas de Membrana Método de Galerkin Livre de Elementos Análise geometricamente não linear Formulação Lagrangeana total Isotropia Ortotropia ADINA MATLAB

Keywords

Membrane structures Element Free Galerkin Method Geometrically non-linear analysis Total Lagrangean method Isotropic Orthotropic ADINA MATLAB

Índice Geral

CAPÍTULO	D 1. INTRODUÇÃO	1
11	Estruturas tensionadas	1
1.2	Método de Galerkin livre de elementos	2
1.3.	Motivação	2
1.4.	Objectivos	3
1.5.	Apresentação da tese	
CAPÍTULO	D 2. MECÂNICA DOS MEIOS CONTÍNUOS	5
2.1.	Equações fundamentais	5
	2.1.1. Relações constitutivas	7
	2.1.2. Equações de equilíbrio	8
2.2.	Problemas bidimensionais	8
	2.2.1. Estado plano de deformação	8
	2.2.2. Estado plano de tensão	9
	2.2.3. Equações de equilíbrio	12
2.3.	Aplicação a estruturas de membrana	12
2.4.	Transformações tensoriais	14
	2.4.1. Transformação dos vectores de base	14
	2.4.2. Transformação das componentes de vectores	15
	2.4.3. Transformação das componentes de transformações lineares	16
	2.4.4. Transformação das componentes de tensores de ordem arbitrária	16
CAPÍTULO	O 3. ESTRUTURAS DE MEMBRANA	19
3.1.	Retrospectiva histórica	19
3.2.	Tipos de estrutura de membrana	22
	3.2.1. Estruturas tensionadas formadas por malhas de cabos	22
	3.2.2. Estruturas tensionadas formadas por membranas	23
3.3.	Características principais das estruturas de membrana	24
3.4.	Características dos tecidos	25
3.5.	Detalhes para fabricação	31
3.6.	Fases de projecto	33
	3.6.1. Busca da forma	34
	3.6.2. Determinação dos padrões de corte	34
	3.6.2.1. Identificação das linhas de corte	35
	3.6.2.2. Planificação	35
	3.6.3. Resposta às solicitações	36
CAPÍTULO	O 4. MÉTODO DE GALERKIN LIVRE DE ELEMENTOS	37
4.1.	Introdução ao EFGM	37
	4.1.1. Método de resolução	37
	4.1.2. Geometria do problema	38
	4.1.3. Funções de aproximação	39
	4.1.4. Aplicação de condições de fronteira cinemáticas e estáticas	39
	4.1.5. Sistema de equações	39
	4.1.6. Integração numérica	39
	4.1.7. Dimensão e forma do domínio de influência	40
	4.1.8. Procedimento do EFGM	41
4.2.	Formulação do método de Galerkin livre de elementos	43
	4.2.1. Formulação fraca de Galerkin	43

	4.2.2. Imposição das condições de fronteira na forma fraca de Galerkin	45
	4.2.2.1. Metodo dos multiplicadores de Lagrange - MiniL	45
13	Funções de apporimação	40
4.5.	A 3.1 Introdução às funções de aprovimação	40
	4.3.2 Aproximação pelo método dos mínimos quadrados móveis (MLS)	40
	4.5.2. Aproximação pero inclodo dos minimos quadrados moveis (MES).	····· 7/ 51
	4.3.2.1. Funções de peso	51
CADÍTILI (4.5.2.2.	
) 5. FORMULAÇÃO DO EFGMI PARA ESTRUTURAS DE MEMBRAN	A55
<i>J.1.</i>		
<i>J.2.</i> <i>5.3</i>	Aproximação da geometria	
J.J.	Formulação Lagrangeana total	00
CAPITULO) 6. IMPLEMENTAÇAO	63
6.1.	Aproximação da geometria	64
6.2.	Aproximação do campo de deslocamentos	64
6.3.	Aproximação do campo de deformações e tensões	64
6.4.	Matriz de rigidez	67
6.5.	Vector de forças nodais	69
6.6.	Condições de fronteira	69
	6.6.1. Método dos multiplicadores de Lagrange	69
	6.6.2. Método da Penalidade	/1
6.7.	Sistema de equações	72
	6./.1. Metodo dos multiplicadores de Lagrange	/2
()	6./.2. Metodo da Penalidade	/2
0.8.	Metodos de resolução de equações não lineares	/ 2
	6.8.1. Metodo da aplicação incremental da carga	/3
	6.8.2. Metodo de Newton-Raphson	/4
6.0	6.8.3. Uniterios de convergencia	/0
0.9.	Apresentação de resultados	//
0.10	. Fluxograma	//
CAPITULO) 7. EXEMPLOS	81
7.1.	Membranas planas	81
	7.1.1. Membrana I	83
	7.1.2. Membrana II	89
7.2.	Membranas tridimensionais	95
	7.2.1. Membrana cabo	95
	7.2.1.1. Carga distribuída	96
	7.2.1.2. Carga pontual	102
	7.2.2. Parabolóide hiperbólico	109
	7.2.2.1. Busca da forma	109
	/.2.2.2. Acção do vento	113
7.3.	Membranas pneumáticas	121
	7.3.1. Cúpula de base quadrada	121
~ · ~ -		132
CAPITULO) 8. CONCLUSOES E DESENVOLVIMENTOS FUTUROS	139
8.1.	Conclusões	139
8.2.	Desenvolvimentos futuros	141

Índice de tabelas

Tabela 3.1: Vantagens e desvantagens da utilização de uma estrutura de membrana	25
Tabela 3.2: Valores dos parâmetros k e n para diferentes materiais	26
Tabela 3.3 (extraída de Figueiredo [17]): Comparação dos dois tecidos usados com maior	
frequência na confecção de membranas	29
Tabela 3.4 (extraída de Figueiredo [17]): Características dos materiais utilizados na matriz o	das
membranas	31
Tabela 5.1: Referenciais	58
Tabela 7.1: Resultante das reacções segundo as 3 direcções do referencial global (kN)	83
Tabela 7.2: Resultante das reacções segundo as 3 direcções do referencial global (kN)	90
Tabela 7.3: Resultante das reacções segundo as 3 direcções do referencial global	97
Tabela 7.4: Resultados da busca de forma	110
Tabela 7.5: Resultante das reacções segundo as 3 direcções do referencial global (kN)	115
Tabela 7.6: Resultante das reacções segundo as três direcções do referencial global (kN)	121
Tabela 7.7: Resultante das reacções segundo as três direcções do referencial global (kN)	133

Índice de figuras

Figura 2.1: Tensor das tensões	5
Figura 2.2: Rotação dos eixos (x,y) para os eixos segundo a ortotropia (1,2)	. 10
Figura 2.3 (extraída de Irvine[28]) – Elemento de membrana dA; cargas aplicadas, esforços d	de
membrana e projecções em plano horizontal	. 12
Figura 2.4: Dois referenciais ortonormados	. 14
Figura 3.1 (extraída de Oliveira [41]): Tenda de nativos norte americanos	. 19
Figura 3.2 (extraída de Oliveira [41]): Tendas negras	. 19
Figura 3.3 (extraída de Oliveira [41]): Tendas de Circos	. 20
Figura 3.4 (extraída de Oliveira [41]): Vierpunktsegel, Kassel, 1955	. 20
Figura 3.5 (extraída de Oliveira [41]): Tanzbrunnen, Cologne, 1957	. 20
Figura 3.6 (extraída de Oliveira [41]): Radome, 1946	. 20
Figura 3.7 (extraída de Oliveira [41]): Pavilhão americano na feira de Osaka, 1970	. 20
Figura 3.8 (extraída de Oliveira [41]): La Verne College Student Activities Center, EUA, 197	13
	. 21
Figura 3.9 (extraída de Oliveira [41]): Aeroporto de Jeddah, Arábia Saudita, 1985	. 21
Figura 3.10 (extraída de Oliveira [41]): Estádio Rei Fahd, Arábia Saudita, 1985	. 21
Figura 3.11 (extraída de Oliveira [41]): Columbus Center, Baltimore, EUA	. 21
Figura 3.12 (extraída de Pauletti [49]): Stadio delle Alpi, Turin, Itália, 1990	. 21
Figura 3.13 (extraída de Pauletti [49]): Estádio em Hong Kong, China, 1994	. 22
Figura 3.14 (extraída de Oliveira [41]): Millenium Dome, Londres, Inglaterra, 2000	. 22
Figura 3.15 (extraída de Oliveira [41]): Estádio olímpico, Munique, Alemanha, 1972	. 22
Figura 3.16: Tipos de estruturas de membrana	. 23
Figura 3.17 (extraída de Oliveira [40]) – Detalhe típico dos cabos embutidos em bainhas	
situadas no contorno da membrana	. 24
Figura 3.18 (extraída de Oliveira [40]): Aeroporto de Denver, EUA	. 24
Figura 3.19 (extraída de Oliveira [41]): Arranjo dos fios no tecido (a) fios tecidos (b) fios	
sobrepostos	. 26
Figura 3.20 (extraída de Vandenberg [66]) – Direcções de fiação dos tecidos	. 27
Figura 3.21 (extraída de Oliveira [41]): Tecido simples com aplicação da matriz	. 28
Figura 3.22 (extraída de Oliveira [41]): Detalhe para re-tensionamento	. 31
Figura 3.23 (extraída de Oliveira [41]): Detalhe para vedação	. 32
Figura 3.24 (extraída de Oliveira [41]): União colada	. 32
Figura 3.25 (extraída de Oliveira [41]): União costurada	. 32
Figura 3.26 (extraída de Oliveira [41]): Ligação cabo-tecido	. 33
Figura 3.27 (extraída de Oliveira [41]): Ligação estrutura-tecido-cabos	. 33
Figura 3.28 (extraída de Oliveira [41]): Fases do projecto de estruturas de membrana	. 33
Figura 4.1: Esquema do processo de solução do FEM e do EFGM	. 38
Figura 4.2: Discretização geométrica – (a) FEM, elementos triangulares e quadriláteros; (b)	
EFGM, nós espalhados aleatoriamente	. 38
Figura 4.3: Exemplos de esquemas de integrações numéricas no EFGM (a) Malha regular de	
células de integração do mesmo tamanho do elemento a estudar (b) Malha de integração	ļ
maior que o elemento a estudar, solução a aplicar no caso de geometria complexas (c)	
Aspecto de um diagrama de Voronoi para o caso da integração nodal	. 40
Figura 4.4: (a) Obtenção do domínio nodal para o caso unidimensional ($n_d = 5$) e para o caso	
bidimensional (n_d =20) (b) Determinação indirecta do domínio de influência do ponto d	e
interesse x_Q	. 41

Figura 4.5: Densidade da malha nodal a variar mediante a descontinuidade física e a imposição	10 11
de condições de fronteira ou de carga	41
Figura 4.6: (a) Exemplos de formas que os dominios de influencia podem tomar; (b)	
Comparação entre o número de nos contido num dominio de influência de um ponto num	na
zona esparsa e numa zona de grande densidade nodal, $n_1 \ll n_2$. 42
Figura 4.7: Diferença entre os valores discretos e a função de aproximação para um dado nó e	m
<i>x</i> ₁	. 48
Figura 4.8. Gráficos comparativos das "splines" cúbica e quártica e primeiras derivadas em	
ordem a x	52
Figura 5.1: Maneamento da superfície curva	57
Figura 5.2: Geometria tridimensional da membrana	57
Figura 5.3: Superfície de referência com o referencial cartesiano de referência (x y z) e os	51
rigura 5.5. Superinere de referencia com o referencial cartesiano de referencia $(x,y,z) \in OS$	50
vectores base covariante (G_1, G_2, G_3)	. 38
Figura 6.1 (extraída de Noguchi [37]): Geração do domínio e malha de nós no método de	
Galerkin livre de elementos	. 64
Figura 6.2: Relação carga-deslocamento para uma estrutura de 1 grau de liberdade	. 73
Figura 6.3: Ilustração do método da aplicação incremental da carga para 1 grau de liberdade	. 74
Figura 6.4: Ilustração do método de Newton-Raphson para 1 grau de liberdade	.75
Figura 6.5: Fluxograma	. 79
Figura 7.1: Membranas planas a analisar	. 82
Figura 7.2: Discretização das membranas planas em análise (a) EFGM (b) FEM	. 82
Figura 7.3: Célula unitária	. 82
Figura 7.4: Situações de ortotropia a analisar	. 83
Figura 7.5: (a) Deslocamentos [m] segundo x ao longo do bordo livre vertical (b) Deformada	1
(isotropia) (c) Deformada (ortotropia – 30°)	84
Figura 7.6: Distribuição de tensões σ [kN/m ²] - alinhamento A-A'	85
Figura 7.7: Diagramas de deslocamentos x [m] (isotronia): (a) FEGM (b) FEM	87
Figura 7.8: Diagramas de deslocamentos y [m] (isotropia): (a) EFGM (b) FEM	87
Figure 7.0: Diagramas de tensões principais $\sigma_{\rm c}$ [kN/m ²] (isotropia): (a) EFGM (b) FFM	87
Figure 7.10: Diagrammas de tensões principais of $[KIV/III]$ (isotropia): (a) EFOW (b) FEW	07
Figura 7.10. Diagramas de tensoes principais $O_{\rm II}$ [KN/III] (Isotropia). (a) EFOM (b) FEM	. 0 /
Figura 7.11: Diagramas de deslocamentos x [m] (ortotropia-30°): (a) EFGM (b) FEM	. 88
Figura 7.12: Diagramas de desiocamentos y [m] (ortotropia-30°): (a) EFGM (b) FEM	. 88
Figura 7.13: Diagramas de tensões principais $\sigma_{I} [kN/m^{2}]$ (ortotropia-30°): (a) EFGM (b) FEM	188
Figura 7.14: Diagramas de tensões principais σ_{II} [kN/m ²] (ortotropia-30°): (a) EFGM (b) FEM	1
	. 88
Figura 7.15: Situações de ortotropia a analisar	. 89
Figura 7.16: (a) Deslocamentos [m] segundo as direcções x e y do Ponto A (b) Deformada	
(isotropia) (c) Deformada (ortotropia – 45°)	. 90
Figura 7.17: Deslocamentos [m] ao longo do alinhamento B-B'	. 90
Figura 7.18: Distribuição de tensões principais $\sigma_I [kN/m^2]$ ao longo do alinhamento B-B' -	
11×11 nós (a) Isotropia (b) Ortotropia (0°) (c) Ortotropia (45°) (d) Ortotropia (90°)	.90
Figura 7.19: Distribuição de tensões principais σ_{I} [kN/m ²] ao longo do alinhamento B-B' -	
21×21 nós (a) Isotropia (b) Ortotropia (0°) (c) Ortotropia (45°) (d) Ortotropia (90°)	91
Figura 7 20: Distribuição de tensões principais $\sigma_{\rm H}$ [kN/m ²] ao longo do alinhamento B-B' -	
11×11 nós (a) Isotronia (b) Ortotronia (0°) (c) Ortotronia (45°) (d) Ortotronia (00°)	01
$11\times11 \text{ los}(a)$ isotropia (b) Ortotropia (b) (c) Ortotropia (45.) (d) Ortotropia (90.)	. 91
Figura 7.21. Distribuição de tensoes principais O_{II} [kN/III] ao longo do animamento B-B -	00
21×21 nos (a) isotropia (b) Ortotropia (0°) (c) Ortotropia (45°) (d) Ortotropia (90°)	.92
Figura /.22: Distribuição de tensões principais ao longo do alinhamento B-B' - 21×21 nós	.92
Figura 7.23: Diagramas de deslocamentos x [m] (isotropia): (a) EFGM (b) FEM	.93
Figura 7.24: Diagramas de deslocamentos y [m] (isotropia): (a) EFGM (b) FEM	.93
Figura 7.25: Diagramas de tensões principais $\sigma_I [kN/m^2]$ (isotropia): (a) EFGM (b) FEM	.93

Figura 7.26: Diagramas de tensões principais σ_{II} [kN/m²] (isotropia): (a) EFGM (b) FEM.......93 Figura 7.29: Diagramas de tensões principais σ_{I} [kN/m²] (ortotropia-45°): (a) EFGM (b) FEM94 Figura 7.30: Diagramas de tensões principais σ_{II} [kN/m²] (ortotropia-45°): (a) EFGM (b) FEM Figura 7.43: Diagramas de tensões principais σ_{II} [kN/m²] (isotropia): (a) EFGM (b) FEM...... 99 Figura 7.44: Diagramas de deslocamentos x [m] (ortotropia-45°): (a) EFGM (b) FEM...... 100 Figura 7.45: Diagramas de deslocamentos y [m] (ortotropia-45°): (a) EFGM (b) FEM...... 100 Figura 7.46: Diagramas de deslocamentos z [m] (ortotropia-45°): (a) EFGM (b) FEM 100 Figura 7.47: Diagramas de tensões σ_{xx} [kN/m²] (ortotropia-45°): (a) EFGM (b) FEM 101 Figura 7.48: Diagramas de tensões σ_{vv} [kN/m²] (ortotropia-45°): (a) EFGM (b) FEM 101 Figura 7.49: Diagramas de tensões principais $\sigma_{I} [kN/m^{2}]$ (ortotropia-45°): (a) EFGM (b) FEM Figura 7.50: Diagramas de tensões principais σ_{II} [kN/m²] (ortotropia-45°): (a) EFGM (b) FEM 101 Figura 7.51: Configuração deformada [m].....102 Figura 7.52: Deslocamentos [m] ao longo do alinhamento C-C'...... 102 Figura 7.53: Deslocamentos [m] ao longo do alinhamento D-D' 102 Figura 7.54: Distribuição de tensões σ_{xx} [kN/m²] ao longo do alinhamento C-C' (a) Isotropia (b) Figura 7.55: Distribuição de tensões σ_{vv} [kN/m²] ao longo do alinhamento C-C' (a) Isotropia (b) Figura 7.56: Comparação de tensões para as situações analisadas 104 Figura 7.57: Diagramas de deslocamentos x [m] (isotropia): (a) EFGM (b) FEM...... 105 Figura 7.58: Diagramas de deslocamentos y [m] (isotropia): (a) EFGM (b) FEM...... 105 Figura 7.59: Diagramas de deslocamentos z [m] (isotropia): (a) EFGM (b) FEM 105 Figura 7.60: Diagramas de tensões σ_{xx} [kN/m²] (isotropia): (a) EFGM (b) FEM 106 Figura 7.61: Diagramas de tensões σ_{yy} [kN/m²] (isotropia): (a) EFGM (b) FEM 106 Figura 7.62: Diagramas de tensões principais σ_{I} [kN/m²] (isotropia): (a) EFGM (b) FEM..... 106 Figura 7.63: Diagramas de tensões principais σ_{II} [kN/m²] (isotropia): (a) EFGM (b) FEM..... 106 Figura 7.64: Diagramas de deslocamentos x [m] (ortotropia-45°): (a) EFGM (b) FEM...... 107 Figura 7.65: Diagramas de deslocamentos y [m] (ortotropia-45°): (a) EFGM (b) FEM...... 107 Figura 7.66: Diagramas de deslocamentos z [m] (ortotropia-45°): (a) EFGM (b) FEM...... 107 Figura 7.67: Diagramas de tensões σ_{xx} [kN/m²] (ortotropia-45°): (a) EFGM (b) FEM 108 Figura 7.68: Diagramas de tensões σ_{vv} [kN/m²] (ortotropia-45°): (a) EFGM (b) FEM 108 Figura 7.69: Diagramas de tensões principais $\sigma_1 [kN/m^2]$ (ortotropia-45°): (a) EFGM (b) FEM Figura 7.70: Diagramas de tensões principais σ_{II} [kN/m²] (ortotropia-45°): (a) EFGM (b) FEM 108

Figura 7.71: Alinhamento A-A' e B-B'	. 109
Figura 7.72: Geometria inicial da membrana a analisar	. 109
Figura 7.73: (a) Deslocamento vertical máximo [m] (b) Tensão principal máxima [kN/m ²]	. 110
Figura 7.74: Perspectivas da forma minimal do parabolóide hiperbólico	. 110
Figura 7.75: Geometria inicial do parabolóide hiperbólico (a) EFGM (b) FEM	. 111
Figura 7.76: Discretização do parabolóide-hiperbólico (a) EFGM (b) FEM	. 111
Figura 7.77: Posição [m] inicial e final das diagonais	. 112
Figura 7.78: Deslocamentos verticais [m] das diagonais	. 112
Figura 7.79: Tensão principal σ_{I} [kN/m ²]	. 112
Figura 7.80: Deslocamento vertical máximo [m]: (a) EFGM (b) FEM	. 113
Figura 7.81: Tensão principal σ_{I} [kN/m ²]: (a) EFGM (b) FEM	. 113
Figura 7.82: Características da membrana a analisar perante a acção do vento	. 113
Figura 7.83: Carga correspondente à acção do vento (valores normais à superfície) (a) EFGN	Л
(b) FEM	. 114
Figura 7.84: Deformada	. 115
Figura 7.85: Deslocamentos verticais [m] - acção do vento	. 115
Figura 7.86: Tensão principal σ_{I} [kN/m ²] - acção do vento	. 115
Figura 7.87: Diagramas de deslocamentos x [m]: (a) EFGM (b) FEM	. 116
Figura 7.88: Diagramas de deslocamentos y [m]: (a) EFGM (b) FEM	. 116
Figura 7.89: Diagramas de deslocamentos z [m]: (a) EFGM (b) FEM	. 117
Figura 7.90: Diagramas de tensões principais $\sigma_{\rm I}$ [kN/m ²]: (a) EFGM (b) FEM	.117
Figure 7.91: Diagramas de tensões principais $\sigma_{\rm H}$ [kN/m ²]: (a) EFGM (b) FEM	117
Figura 7 92: Deslocamentos verticais [m] – accão do vento	118
Figura 7 93: Módulo dos deslocamentos verticais [m] - acção do vento	118
Figura 7.94: Tensão principal $\sigma_{\rm r}$ [kN/m ²] – acção do vento	118
Figure 7.95: Diagramas de deslocamentos z [m] (ortotropia-135°): (a) EEGM (b) FEM	119
Figure 7.96: Diagramas de tensões principais $\sigma_{\rm r}$ [kN/m ²] (ortotronia-135°): (a) EFGM (b) FF	EM
	119
Figura 7 97: Diagramas de tensões principais $\sigma_{\rm H}$ [kN/m ²] (ortotropia-135°): (a) EEGM (b) E	EM
	119
Figura 7 98: Diagramas de deslocamentos z [m] (ortotropia-45°): (a) EFGM (b) FEM	120
Figure 7.99. Diagramas de tensões principais $\sigma_{\rm r}$ [kN/m ²] (ortotronia-45°): (a) EFGM (b) FE	M
	120
Figura 7 100: Diagramas de tensões principais $\sigma_{\rm W}$ [kN/m ²] (ortotropia-45°): (a) FEGM (b) F	FM
	120
Figura 7 101: Características da cúpula de base quadrada	120
Figura 7.107: Comparação do número de iterações em cada incremento de carga através dos	. 121
dois métodos numéricos: FEM e EEGM	122
Figura 7 103: Curva pressão interna-deslocamento do ponto central da membrana pneumátic	. 1 <i>22</i>
rigura 7.105. Cuiva pressuo interna desiocamento do ponto central da memorana predinario	122
Figura 7 104: Configurações indeformada e deformada ao longo do alinhamento A-A' [m]	122
Figura 7 105: Deslocamentos [m] na direcção x ao longo do alinhamento B-B'	122
Figura 7 106: Deslocamentos [m] na direcção y ao longo do alinhamento A-A'	122
Figura 7 107: Distribuição de tensões $\sigma \in \sigma$ [kN/m ²] ao longo do alinhamento A-A' (a)	. 122
y=0.0 (h) $y=0.267$	123
Figura 7 108: Curva pressão interna-deslocamento do ponto central da membrana pneumátic	. 123 Ca
rigara 7.100. Curva pressao merna-desiocamento do ponto central da memorana pricultati	174
Figura 7 109: Configuração indeformada [m] e deformada ao longo do alinhamento A-A'	124
Figura 7 110: Deslocamentos [m] na direcção x ao longo do alinhamento R-R'	124
Figura 7 111: Deslocamentos [m] na direcção y ao longo do alinhamento A-A'	124
Figura 7 112: Análise paramétrica do deslocamento vertical [m] no centro da membrana cor	n o
ângulo de ortotropia	. 124

Figure 7.1.5. Distributive de consols [k1/m] has duas direcções, $\sigma_{xx} \in \sigma_{yy}$, do longo de)
alinnamento A-A' $(0=0.267)$	125
Figura 7.114: Diagramas de deslocamentos x [m] (isotropia): (a) EFGM (b) FEM	126
Figura 7.115: Diagramas de deslocamentos y [m] (isotropia): (a) EFGM (b) FEM	126
Figura 7.116: Diagramas de deslocamentos z [m] (isotropia): (a) EFGM (b) FEM	126
Figura 7.117: Diagramas de tensões σ_{xx} [kN/m ²] (isotropia): (a) EFGM (suporte-2+ ϵ) (b	5) FEM 127
Figura 7.118: Diagramas de tensões σ_{yy} [kN/m ²] (isotropia): (a) EFGM (suporte-2+ ϵ) (l	b) FEM
Figura 7.119: Diagramas de tensões principais $\sigma_I [kN/m^2]$ (isotropia): (a) EFGM (suport (b) FEM.	te-2+ε) 127
Figura 7.120: Diagramas de tensões principais σ_{II} [kN/m ²] (isotropia): (a) EFGM (supor (b) FEM	te-2+ε) 127
Figura 7.121: Diagramas de tensões σ_{xx} [kN/m ²] (isotropia): (a) EFGM (suporte-1+ ϵ) (b) FEM 128
Figura 7.122: Diagramas de tensões σ_{yy} [kN/m ²] (isotropia): (a) EFGM (suporte-1+ ϵ) (b	b) FEM
Figura 7.123: Diagramas de tensões principais $\sigma_I [kN/m^2]$ (isotropia):(a) EFGM (suport (b) FEM	e-1+ε) 128
Figura 7.124: Diagramas de tensões principais σ_{II} [kN/m ²] (isotropia): (a) EFGM (supor (b) FEM	te-1+ε) 128
Figura 7.125: Diagramas de deslocamentos x [m] (ortotropia-30°): (a) EFGM (b) FEM	129
Figura 7.126: Diagramas de deslocamentos v [m] (ortotropia-30°); a) EFGM b) FEM	
Figura 7 127: Diagramas de deslocamentos z [m] (ortotropia-30°): (a) EFGM (b) FEM	129
Figure 7.128: Diagramas de tensões σ [kN/m ²] (ortotropia 30°): (a) EFGM (b) FEM	130
Figure 7.120: Diagramas de tensões σ_{xx} [kN/m ²] (ortetropia 20%): (a) EFGM (b) FEM	130
Figura 7.129. Diagramas de tensões O_{yy} [kiv/iii] (oltotiopia-30). (a) EFOM (b) FEM Eigura 7.120. Diagramas de tensões principais = [LN/ w^2] (arteturnis 200). (a) EFOM (b)	150
Figura 7.150. Diagramas de tensoes principais o_{I} [kiv/m] (onotropia-30°): (a) EFGWI (t) $\Gamma E M$
$\Gamma_{1}^{2} = 7.121$, $\Gamma_{1}^{2} = 1.4$, $\Gamma_{1}^{2} = 1.5$, Γ_{1}^{2}	130
Figura 7.131: Diagramas de tensoes principais σ_{II} [kN/m] (ortotropia-30°): (a) EFGM (b) FEM
Figura 7.132: Deslocamento [m] no ponto central da cúpula em função do número de nó	is em
que a membrana é discretizada	131
que a membrana é discretizada Figura 7.133: Tempo de processamento (s) obtido em função do número de nós em que membrana é discretizada	131 a
que a membrana é discretizada Figura 7.133: Tempo de processamento (s) obtido em função do número de nós em que membrana é discretizada Figura 7.134: Características da cobertura cilíncrica	131 a 131 132
 que a membrana é discretizada Figura 7.133: Tempo de processamento (s) obtido em função do número de nós em que membrana é discretizada Figura 7.134: Características da cobertura cilíncrica Figura 7.135: Discretização da geometria cilíndrica (a) EEGM (b) EEM 	a 131 a 131 132 132
 que a membrana é discretizada Figura 7.133: Tempo de processamento (s) obtido em função do número de nós em que membrana é discretizada Figura 7.134: Características da cobertura cilíncrica Figura 7.135: Discretização da geometria cilíndrica (a) EFGM (b) FEM Figura 7.136: Accão (a) pressão interna normal. (b) pressão interna vertical 	a 131 a 131 132 132 132
 que a membrana é discretizada Figura 7.133: Tempo de processamento (s) obtido em função do número de nós em que membrana é discretizada Figura 7.134: Características da cobertura cilíncrica Figura 7.135: Discretização da geometria cilíndrica (a) EFGM (b) FEM Figura 7.136: Acção (a) pressão interna normal (b) pressão interna vertical Figura 7.137: Número do iterações em cada incremento do cargo (a) pressão interna por 	a 131 a 131 132 132 133 mal à
 que a membrana é discretizada Figura 7.133: Tempo de processamento (s) obtido em função do número de nós em que membrana é discretizada Figura 7.134: Características da cobertura cilíncrica Figura 7.135: Discretização da geometria cilíndrica (a) EFGM (b) FEM Figura 7.136: Acção (a) pressão interna normal (b) pressão interna vertical Figura 7.137: Número de iterações em cada incremento de carga (a) pressão interna norma norma entre entre de carga (b) pressão interna norma norma norma figura (b) pressão interna norma nor	a 131 a 131 132 132 133 mal à
 que a membrana é discretizada Figura 7.133: Tempo de processamento (s) obtido em função do número de nós em que membrana é discretizada Figura 7.134: Características da cobertura cilíncrica Figura 7.135: Discretização da geometria cilíndrica (a) EFGM (b) FEM Figura 7.136: Acção (a) pressão interna normal (b) pressão interna vertical Figura 7.137: Número de iterações em cada incremento de carga (a) pressão interna norma superfície (b) pressão interna vertical Figura 7.138: Deslocamento vertical [m] ao longo do alinhamento A-A': pressão interna 	a 131 a 131 132 132 133 mal à 133 a normal
 que a membrana é discretizada Figura 7.133: Tempo de processamento (s) obtido em função do número de nós em que membrana é discretizada Figura 7.134: Características da cobertura cilíncrica Figura 7.135: Discretização da geometria cilíndrica (a) EFGM (b) FEM Figura 7.136: Acção (a) pressão interna normal (b) pressão interna vertical Figura 7.137: Número de iterações em cada incremento de carga (a) pressão interna norma superfície (b) pressão interna vertical Figura 7.138: Deslocamento vertical [m] ao longo do alinhamento A-A': pressão interna 	a 131 a 131 a 131 a 132 132 a normal a normal a vertical 134
 que a membrana é discretizada Figura 7.133: Tempo de processamento (s) obtido em função do número de nós em que membrana é discretizada Figura 7.134: Características da cobertura cilíncrica Figura 7.135: Discretização da geometria cilíndrica (a) EFGM (b) FEM Figura 7.136: Acção (a) pressão interna normal (b) pressão interna vertical Figura 7.137: Número de iterações em cada incremento de carga (a) pressão interna norma superfície (b) pressão interna vertical Figura 7.138: Deslocamento vertical [m] ao longo do alinhamento A-A': pressão interna Figura 7.139: Deslocamento vertical [m] ao longo do alinhamento A-A': pressão interna Figura 7.140: Diagramas de deslocamentos z [m] – pressão interna normal: (a) EFGM (1) 	a 131 a 131 a 131 a 132 a 133 mal à 133 a normal 134 a vertical 134 b) FEM 134
 que a membrana é discretizada Figura 7.133: Tempo de processamento (s) obtido em função do número de nós em que membrana é discretizada Figura 7.134: Características da cobertura cilíncrica	a131 a131 a131 a132 a132 a mal à133 a normal a vertical a vertical a vertical b) FEM b) FEM a134
 que a membrana é discretizada Figura 7.133: Tempo de processamento (s) obtido em função do número de nós em que membrana é discretizada Figura 7.134: Características da cobertura cilíncrica Figura 7.135: Discretização da geometria cilíndrica (a) EFGM (b) FEM Figura 7.136: Acção (a) pressão interna normal (b) pressão interna vertical Figura 7.137: Número de iterações em cada incremento de carga (a) pressão interna norma superfície (b) pressão interna vertical Figura 7.138: Deslocamento vertical [m] ao longo do alinhamento A-A': pressão interna Figura 7.140: Diagramas de deslocamentos z [m] – pressão interna normal: (a) EFGM (Figura 7.141: Diagramas de deslocamentos z [m] – pressão interna vertical: (a) EFGM (Figura 7.142: Tensão principal σ₁ [kN/m²] ao longo do alinhamento A-A'-pressão interna normal 	a 131 a 131 a 131 a 132 a normal a 133 a normal a 134 a vertical 134 b) FEM b) FEM a 134 b) FEM a 134 b) FEM
 que a membrana é discretizada	a 131 a 131 a 131 a 132 a 132 a 133 mal à 133 a normal a vertical a vertical a vertical a 134 b) FEM b) FEM a 134 b) FEM a 135 na

Figura 7.144: Diagramas de tensões principais σ _I [kN/m ²] – pressão interna normal: (a) EFGM (b) FEM
Figura 7.145: Diagramas de tensões principais σ_{I} [kN/m ²]-pressão interna vertical: (a) EFGM
Figura 7.146: Tensão principal σ_{II} [kN/m ²] ao longo do alinhamento A-A'-pressão interna
normal
vertical
(b) FEM
(b) FEM
Figura 7.150: Deslocamento vertical [m] ao longo do alinhamento A-A'(ortotropia-30°) 136 Figura 7.151: Tensão principal σ_I [kN/m ²] ao longo do alinhamento A-A' (ortotropia-30°) 136
Figura 7.152: Tensão principal σ_{II} [kN/m ²] ao longo do alinhamento A-A' (ortotropia-30°) 136 Figura 7.153: Diagramas de deslocamentos z [m] – ortotropia(30°): (a) EEGM (b) FEM 137
Figura 7.154: Diagramas de tensões principais σ_{I} [kN/m ²] – ortotropia(30°): (a) EFGM (b) FEM
Figura 7.155: Diagramas de tensões principais σ_{II} [kN/m ²]-ortotropia(30°): (a) EFGM (b) FEM

Notação

σ_{ϵ}	Tensão
ı I	Operador diferencial
L U	Vector de deslocamentos
Е	Módulo de elasticidade
E_i	Módulo de elasticidade na direcção i
V	Coeficiente de poisson
${oldsymbol{\mathcal{V}}}_{ij}$	Coeficiente de Poisson que caracteriza a taxa de deformação na direcção j
C	quando é aplicada uma tensão na direcção <i>i</i>
G	Modulo de distorção Módulo de distorção ou de corte que caracteriza as mudanças de ângulos entre as
G_{ij}	direcções $i \in j$
b	Forças de massa
τ 	Tensão de corte
I_x, I_y, I_z	Estorços actuantes no elemento de memorana
T_x, T_y, T_z	Estorços actuantes no elemento de membrana projectados no seu plano horizontal
Z_0	Forma do equilíbrio inicial da membrana
T	Transformação linear Matriz da transformação linear
	Número de nós dentro de cólula de integração
n _c	Número de nos de integração na cólula
$n_Q \times n_Q$	Velar de função de entregração na cerura
$\varphi_i(x)$	valor da função de aproximação no no 7 determinada usando os 7 nos dentro do suporte
Т	Energia cinética
π_{s}	Energia de deformação
W_{f}	Trabalho realizado pelas forças externas
Ω	Volume do sólido
ρ	Massa volúmica
\overline{t}	Forças aplicadas na fronteira estática
\prod_{t}	
$u_{i_t}^n$	Campo de parametros nodais do deslocamento
α	Matriz com os factores de penalidade
n(x)	Vector de polinómios
P(x)	Função de mínimos quadrados
$w(x-x_I)$	Função de peso
r	Raio normalizado
dm_I	Raio do domínio de influência do nó I
d_{I}	Distância entre o nó I e o nó dentro do seu domínio
a	Vector de aceleração
λ $i \approx$	Vector dos multiplicadores de Lagrange
u C	v cetor dos destocamentos presentos na nontena S_u
\mathfrak{o}_{u}	FIORERA CHICHIAICA

S_t	Fronteira estática
N_I	Função interpoladora de Lagrange
X_{I}	Vector posição do ponto I ^{nésimo} da geometria da membrana
r^{1}, r^{2}	Coordenadas curvilíneas na superfície de membrana
${}_{0}{}^{t}E$	Tensor das deformações de Green
${}_{0}{}^{t}S$	Tensor das tensões de Piolla-Kirchoff
$_{0}C$	Tensor de quarta ordem da relação constitutiva
$_{0}\overline{C}^{mnop}$	Componentes do tensor constitutivo no referencial local
$_{0}C^{ijkl}$	Componentes do tensor constitutivo no referencial global
е	Parcela linear do tensor das deformações de Green
η	Parcela não linear do tensor das deformações de Green
G_i, G_j	Vectores de base covariante do referencial global no instante de tempo $t = 0$
G^i, G^j	Vectores de base contravariante do referencial global no instante de tempo $t = 0$
g_i, g_j	Vectores de base covariante do referencial global no instante de tempo t
g^i, g^j	Vectores de base contravariante do referencial global no instante de tempo t
\otimes	Produto tensorial
$\begin{bmatrix} B_0 \end{bmatrix}$	Matriz que exprime a relação linear entre os deslocamentos e as deformações
$\begin{bmatrix} B_1 \end{bmatrix}$	Matriz que exprime a relação não linear entre os deslocamentos e as deformações
$\{\varepsilon_0\}$	Vector das deformações iniciais
$\{F\}$	Vector de forças nodais
$\left\{ \boldsymbol{\phi}^{i} \right\}$	Vector das forças residuais na iteração i
[K]	Matriz de rigidez
$\left[K_{E}\right]$	Matriz de rigidez elástica
$\left[K_{G}\right]$	Matriz de rigidez geométrica
t	espessura
τ	Matriz das tensões iniciais
I_3	Matriz de identidade de ordem 3
$\{Q\}$	Vector de forças internas
$\{F\}$	Vector de forças externas
[G]	Matriz com os multiplicadores de Lagrange
$\{q_I\}$	Vector de reações devidas aos deslocamentos prescritos na fronteira essencial
$[K]^{\alpha}$	Matriz de rigidez com os factores de penalidade
$[F]^{\alpha}$	Vector de forças com os factores de penalidade

Instituto Superior Técnico

Capítulo 1. Introdução

1.1. Estruturas tensionadas

As estruturas traccionadas, como malhas de cabos e membranas, são caracterizadas por terem secções transversais muito pequenas (espessura no caso das membranas). Desta forma verifica-se que este tipo de estruturas não tem capacidade para desenvolver esforços de flexão e portanto, a única maneira de equilibrar as acções transversais é adaptando a sua forma ao carregamento.

As membranas são estruturas laminares não necessariamente planas, ou seja, com espessura muito reduzida, em que, tal como nos cabos, a rigidez de flexão pode ser desprezada. Ao contrário da maioria das estruturas construídas pelo homem, que apresentam um comportamento rígido e em que a forma é um dado conhecido, nas estruturas tensionadas a elevada flexibilidade faz com que a forma seja função do carregamento e portanto bastante variável. Como consequência da elevada esbelteza, estas estruturas podem apenas desenvolver esforços de tracção. É esta característica que leva a que se utilize o termo *estruturas tensionadas* para designar este tipo de estruturas.

Os termos *estruturas tensionadas* ou *tensoestruturas*, também por vezes usados nalguma bibliografia, derivam do inglês *tension* que, neste contexto, significa tracção. Uma vez que, em português, o termo tensão refere tanto os estados de compressão como os de tracção, designar as estruturas que trabalham apenas à tracção por tensoestruturas ou estruturas tensionadas pode gerar alguma ambiguidade. Na bibliografia brasileira utilizam-se bastante as designações de estruturas *retesadas* e *tensoestruturas*.

A dependência entre forma e carregamento faz com que a análise de malhas de cabos e membranas seja um problema geometricamente não linear e portanto a única forma viável de analisar formas complexas é recorrendo a métodos numéricos. O método dos elementos finitos é actualmente o mais utilizado na resolução numérica de estruturas estando disponível no mercado uma variedade bastante grande de programas que utilizam este método. Para o caso especifico das estruturas traccionadas existem programas especializados que apenas resolvem este tipo de estruturas e permitem executar praticamente todas as tarefas relacionadas com as três fases do projecto destas estruturas – procura da forma, análise e determinação dos padrões de corte (Pauletti [49]).

Definição da forma

Como as estruturas de membrana não têm resistência à flexão e à compressão, a forma, os carregamentos externos e um estado interno de tensões exclusivamente de tracção devem interagir de modo a satisfazer as equações de equilíbrio. O projecto preliminar das estruturas tensionadas envolve assim a determinação de uma configuração inicial na qual o estado de solicitações e a geometria especificada definem um estado de equilíbrio (algumas vezes incluiu-se o peso próprio da estrutura no processo).

Determinação dos padrões de corte

A definição do modelo de corte consiste na transformação da superficie tridimensional na correspondente superficie plana com os dados de corte/emenda necessários para a composição da membrana (Moncrieff [35]). Deste modo, após a determinação dos padrões da configuração inicial da superficie da membrana segue-se a determinação do padrão de corte, processo que compreende a identificação de linhas de corte sobre a superficie de equilíbrio inicial, desdobrando a superficie total e gerando um conjunto de peças de dupla curvatura, tendo como objectivo final o desenvolvimento deste conjunto em peças planas.

Análise aos carregamentos

Estabelecida a forma de equilíbrio inicial correspondente à resposta da estrutura de membrana face ao pré-esforço aplicado, e possivelmente ao peso próprio, deve proceder-se ao estudo do comportamento da estrutura sujeita a uma variedade de carregamentos para garantir que a estrutura possa suportar todas as solicitações que encontrará em serviço, sem ocorrência de tensões de compressão.

Esta recorrência de etapas projectivas pode tornar o processo muito trabalhoso, existindo por isso a necessidade do uso de ferramentas computacionais capazes de efectuar a análise de cada uma das etapas e de interagir com os resultados de outras etapas.

Estes programas têm já incorporadas rotinas de projecto que resultam do *know how* acumulado pelos fabricantes. No entanto, deve referir-se que os programas especializados têm certas limitações que advêm do facto de se destinarem a um tipo de análise muito específico. Em oposição, os programas generalistas permitem também a utilização de materiais com praticamente qualquer tipo de relação constitutiva e disponibilizam uma grande variedade de elementos finitos. No entanto, ao contrário do que acontece nos programas especializados, nos programas generalistas é o utilizador que tem de introduzir as rotinas de cálculo no programa. Para tal, é necessário que o utilizador tenha um bom conhecimento dos fundamentos teóricos que permitem procurar a forma e obter os padrões de corte utilizando o método dos elementos finitos.

1.2. Método de Galerkin livre de elementos

Tal como qualquer outro método numérico existem 3 fases fundamentais que têm que ser consideradas nos métodos sem malha: discretização, aproximação do campo de variáveis e estabelecimento do sistema de equações (Dolbow [16]).

Contrariamente ao método tradicional de elementos finitos (FEM), o método de Galerkin livre de elementos desenvolvido por Belytschko [8] não necessita de elementos na aproximação do campo de variáveis. No EFGM, os elementos são substituídos por um conjunto de nós em que cada um possui um determinado domínio de influência. Assim, a função de aproximação é construída em cada ponto com base nos nós do seu domínio de influência. As funções de aproximação são obtidas considerando o método dos mínimos quadrados móveis (MLS) que não é mais do que um método de mínimos quadrados que se move consoante o domínio de influência do nó em questão.

Embora o método dos mínimos quadrados móveis não necessite da definição de elementos, a imposição das condições de fronteira merece especial atenção, pois as funções de aproximação obtidas pelo MLS não satisfazem a propriedade de delta Kronecker.

1.3. Motivação

Devido ao seu aspecto estético, à sua leveza, à evolução dos materiais e métodos númericos e computacionais, as estruturas de membrana têm sido cada vez mais utilizadas.

Contrariamente ao método dos elementos finitos, os métodos sem malha não necessitam de elementos sendo que as funções de aproximação são construídas em cada nó com base nos nós situados no seu domínio. Embora estes sejam métodos que necessitam de procedimentos

particulares na imposição das condições de fronteira cinemáticas, a performance e utilidade por partes destes métodos têm sido estudadas nos últimos anos. (Belytschko [8], Dolbow [16]). Em Belinha [7], encontra-se uma descrição sumária de alguns métodos sem malha existentes.

Apesar de escassos, os resultados obtidos na aplicação do método de Galerkin livre de elementos à resolução de problemas de elasticidade plana são encorajadores, pelo que a sua aplicação a estruturas de membrana se reveste, naturalmente, de um redobrado interesse.

1.4. Objectivos

O objectivo deste trabalho é estender a aplicação do método livre de elementos de Galerkin à resolução de estruturas de membrana com comportamento ortotrópico.

No âmbito deste trabalho foi criado um programa de cálculo automático em ambiente MATLAB. Numa fase inicial analisou-se o programa desenvolvido por Dolbow [16] para a resolução de problemas de placas utilizando o método de Galerkin Livre de Elementos. Tendo este programa como ponto de partida, desenvolveu-se um programa para a resolução de estruturas de membrana tridimensionais adoptando-se a técnica de mapeamento utilizada por Noguchi [37] na sua transformação no espaço bidimensional. Uma vez que neste tipo de estruturas os efeitos geometricamente não lineares não são desprezáveis, introduziu-se a análise geometricamente não linear no método de Galerkin livre de elementos baseada numa formulação Lagrangeana total.

Uma eficiente implementação em programa de cálculo automático é fundamental pois permite a análise de variadíssimos casos de uma forma sistemática.

Uma vez que os problemas analisados neste trabalho são desprovidos de soluções exactas, os resultados obtidos através do modelo computacional apresentado foram comparados com os obtidos através do método tradicional de elementos finitos presente no programa generalista ADINA.

1.5. Apresentação da tese

Esta dissertação encontra-se dividida em 8 capítulos tratando-se o primeiro de um capítulo introdutório, onde se apresenta o âmbito deste trabalho expondo-se sucintamente o estudo de estruturas de membrana e o método de Galerkin livre de elementos (EFGM).

O **Capítulo 2** refere-se à mecânica dos meios contínuos, nomeadamente de problemas bidimensionais (Estado Plano de Deformação e Estado Plano de Tensão) particulizando-se as equações apresentadas para os problemas de estruturas de membrana.

O **Capítulo 3** refere-se aos principais aspectos e conceitos a considerar em estruturas de membrana. Assim depois destas estruturas serem contextualizadas historicamente, referem-se alguns destes tipos de estruturas e características principais das mesmas, características dos tecidos e fases de projecto.

O **Capítulo 4** é reservado à apresentação do EFGM. Inicia-se com uma introdução de conceitos e terminologias, seguindo-se a exposição do princípio variacional utilizado no EFGM e o método aplicado na construção das funções de aproximação.

O **Capítulo 5** é destinado à aplicação do EFGM a estruturas de membrana referindo-se a técnica utilizada para a aproximação da geometria tridimensional destas estruturas e para o seu mapeamento no espaço bidimensional com base numa transformação de coordenadas. Seguidamente, incorporando os efeitos geometricamente não lineares característicos deste tipo de estruturas, procede-se à descrição da formulação Lagrangeana total na escrita das deformações e tensões na equação do princípio dos trabalhos virtuais.

No **Capítulo 6** é feita uma descrição sumária do programa de cálculo automático desenvolvido para o efeito apresentando-se o modo de implementação do mesmo tendo por base a escrita das equações apresentadas no capítulo anterior.

Tendo como objectivo a validação do programa de cálculo automático desenvolvido neste trabalho diversos exemplos de estruturas de membrana foram analisados no **Capítulo 7**. Neste capítulo são analisadas membranas planas e membranas tridimensionais sendo que dentro da

última categoria se analisam membranas pré-esforçadas por um pré-esforço inicial e membranas sustentadas por uma pressão interna (pneumáticas). A análise destas estruturas tipo foi efectuada considerando o comportamento tanto isotrópico como ortotrópico. Perante a ausência de soluções exactas, a comparação das soluções foi efectuada com as soluções obtidas através do programa generalista de elementos finitos: ADINA.

As conclusões do trabalho e sugestões para futuros desenvolvimentos são apresentadas no **Capítulo 8**.

Capítulo 2. Mecânica dos Meios Contínuos

2.1. Equações fundamentais

A mecânica dos meios contínuos define as grandezas tensão e deformação e relaciona-as para um dado ponto do domínio físico do meio.

Os meios contínuos podem ter as propriedades materiais a variar com a direcção, sendo designados por meios com carácter anisotrópico. Deste modo, uma força causa uma determinada deformação quando aplicada numa dada direcção e uma outra deformação quando aplicada numa direcção diferente da primeira.

Num meio contínuo de domínio Ω existem dois tipos de fronteira: fronteira cinemática e estática. A fronteira cinemática está relacionada com a imposição dos deslocamentos, sendo que a fronteira estática está relacionada com a imposição de cargas ou forças.

Na **Figura 2.1**, observa-se um sólido tridimensional com domínio Ω (volume total do sólido) e com uma superfície de fronteira Γ sujeito a duas forças externas P_1 e P_2 aplicadas na fronteira estática Γ_t . No ponto P do sólido, que na realidade se trata de um volume infinitesimal de dimensões $d_x \cdot d_y \cdot d_z$, encontram-se instaladas na sua superfície seis componentes distintas da tensão. Estas grandezas são fundamentais na mecânica dos meios contínuos podendo ser organizadas sob a forma do tensor das tensões, como se indica a equação (2.1):

Figura 2.1: Tensor das tensões

$$\sigma = \begin{bmatrix} \sigma_{xx} & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_{yy} & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_{zz} \end{bmatrix} \land \sigma_{ij} = \sigma_{ji} \text{ se } i \neq j$$
(2.1)

Estas componentes podem também ser representadas sob a forma de vector:

$$\boldsymbol{\sigma} = \left\{ \boldsymbol{\sigma}_{xx} \quad \boldsymbol{\sigma}_{yy} \quad \boldsymbol{\sigma}_{zz} \quad \boldsymbol{\tau}_{xy} \quad \boldsymbol{\tau}_{yz} \quad \boldsymbol{\tau}_{zx} \right\}^{T}$$
(2.2)

O tensor das tensões de Piola-Kirchhoff é usado para exprimir as componentes de tensão relativas à configuração de referência (indeformada). No tensor das tensões de Cauchy as suas componentes são expressas relativamente à configuração actual. No caso das deformações serem infinitesimais, os tensores de Cauchy e Piola-Kirchhoff são idênticos.

A cada uma das tensões corresponde uma deformação, formando-se assim o tensor das deformações:

$$\boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_{xx} & \gamma_{xy} & \gamma_{xz} \\ \gamma_{yx} & \varepsilon_{yy} & \gamma_{yz} \\ \gamma_{zx} & \gamma_{zy} & \varepsilon_{zz} \end{bmatrix}$$
(2.3)

O tensor das deformações, ε , é um tensor simétrico que quantifica as deformações segundo as três direcções. Assim, os coeficientes da diagonal, ε_{ii} , são relativos à mudança de comprimento de um objecto segundo as três direcções na hipótese das pequenas deformações. Os termos $\varepsilon_{ii} = 1/2\gamma_{ii}$ ($i \neq j$) correspondem à distorção.

Na hipótese das pequenas deformações, o tensor das deformações de Green é definido pela seguinte equação:

$$\varepsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$$
(2.4)

No caso da hipótese das grandes deformações, o tensor das deformações corresponde ao tensor de Green-Lagrange, definido pela equação:

$$\varepsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} + \frac{\partial u_i}{\partial x_j} \frac{\partial u_j}{\partial x_i} \right)$$
(2.5)

Estas componentes podem também ser representadas sob a forma de vector:

$$\boldsymbol{\varepsilon} = \left\{ \boldsymbol{\varepsilon}_{xx} \quad \boldsymbol{\varepsilon}_{yy} \quad \boldsymbol{\varepsilon}_{zz} \quad \boldsymbol{\gamma}_{xy} \quad \boldsymbol{\gamma}_{yz} \quad \boldsymbol{\gamma}_{zx} \right\}^T$$
(2.6)

onde:

$$\varepsilon_{xx} = \frac{\partial u}{\partial x}$$
 $\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}$ (2.7)

$$\varepsilon_{yy} = \frac{\partial u}{\partial y}$$
 $\gamma_{yz} = \frac{\partial v}{\partial z} + \frac{\partial w}{\partial y}$ (2.8)

$$\mathcal{E}_{zz} = \frac{\partial w}{\partial z} \qquad \qquad \gamma_{zx} = \frac{\partial w}{\partial x} + \frac{\partial u}{\partial z}$$
(2.9)

sendo u, $v \in w$ os deslocamentos nas direcções x, $y \in z$, respectivamente. Pode recorrer-se a um operador diferencial L e ao vector campo de deslocamentos, u, exprimindo as deformações do seguinte modo:

$$\varepsilon = Lu \tag{2.10}$$

sendo:

$$L^{T} = \begin{bmatrix} \frac{\partial}{\partial x} & 0 & 0 & \frac{\partial}{\partial y} & 0 & \frac{\partial}{\partial z} \\ 0 & \frac{\partial}{\partial y} & 0 & \frac{\partial}{\partial x} & \frac{\partial}{\partial z} & 0 \\ 0 & 0 & \frac{\partial}{\partial z} & 0 & \frac{\partial}{\partial y} & \frac{\partial}{\partial x} \end{bmatrix} \qquad u = \begin{cases} u \\ v \\ w \end{cases}$$
(2.11)

Estas deformações são também denominadas por deformações lineares utilizadas em problemas em que se consideram as pequenas deformações.

2.1.1. Relações constitutivas

As deformações e as tensões em elasticidade linear relacionam-se através da lei de Hooke generalizada:

$$\sigma = c\varepsilon \tag{2.12}$$

A matriz c é a matriz das constantes materiais obtidas experimentalmente. Sendo esta matriz é simétrica e não singular pode afirmar-se que:

$$\varepsilon = s\sigma \tag{2.13}$$

_

sendo $s = c^{-1}$. A matriz *s* pode ser definida do seguinte modo:

_

$$s = \begin{bmatrix} \frac{1}{E_x} & -\frac{v_{yx}}{E_y} & -\frac{v_{zx}}{E_z} & 0 & 0 & 0\\ -\frac{v_{xy}}{E_x} & \frac{1}{E_y} & -\frac{v_{zy}}{E_z} & 0 & 0 & 0\\ -\frac{v_{xz}}{E_x} & -\frac{v_{yz}}{E_y} & \frac{1}{E_z} & 0 & 0 & 0\\ 0 & 0 & 0 & \frac{1}{G_{xy}} & 0 & 0\\ 0 & 0 & 0 & 0 & \frac{1}{G_{yz}} & 0\\ 0 & 0 & 0 & 0 & 0 & \frac{1}{G_{zx}} \end{bmatrix}$$
(2.14)

É de notar que a matriz s apresentada na equação anterior se refere a materiais ortotrópicos. Os elementos da matriz s são constituídos por nove constantes independentes entre si, $E_x, E_y, v_{xy}, v_{yz}, v_{zx}, G_{yy}, G_{yz}$ e G_{zx} .

 E_i - módulo de elasticidade na direcção i

 v_{ij} - coeficiente de Poisson que caracteriza a taxa de deformação na direcção j quando é aplicada uma tensão na direcção i

 G_{ij} - módulo de distorção ou de corte que caracteriza as mudanças de ângulos entre as direcções *i* e *j*

Devido à simetria pode estabelecer-se a seguinte relação entre o módulo de Elasticidade e o coeficiente de Poisson:

$$E_i v_{ji} = E_j v_{ij} \tag{2.15}$$

2.1.2. Equações de equilíbrio

As componentes do tensor das tensões não são independentes entre si e têm de satisfazer as seguintes equações de equilíbrio:

$$L^T \sigma + b = 0 \tag{2.16}$$

$$\sigma^T = \sigma \tag{2.17}$$

Substituindo as equações (2.10) e (2.12) na equação (2.16) obtém-se a seguinte equação de equilíbrio:

$$L^T c L u + b = 0 \tag{2.18}$$

2.2. Problemas bidimensionais

As estruturas de membrana são exemplos típicos de problemas bidimensionais em que as variáveis são independentes do eixo doz zz e que todas as cargas externas são aplicadas no plano Oxy. Existem duas situações possíveis correspontes a dois estados: estado plano de deformação e o estado plano de tensão.

2.2.1. Estado plano de deformação

O estado plano de deformação aplica-se a sólidos cuja dimensão no eixo dos zz é muito grande quando comparada com a dimensões x e y. Neste caso, pode afirmar-se que a deformação segundo o eixo dos zz é muito pequena quando comparada com as deformações nas outras direcções ($\varepsilon_{zz} = \gamma_{zx} = \gamma_{yz} = 0$). Assim, o vector das deformações é escrito do seguinte modo:

$$\boldsymbol{\varepsilon} = \left\{ \boldsymbol{\varepsilon}_{xx}, \boldsymbol{\varepsilon}_{yy}, \boldsymbol{\gamma}_{xy} \right\}^T \tag{2.19}$$

$$\mathcal{E} = \left\{ \frac{\partial u}{\partial x} \quad \frac{\partial v}{\partial y} \quad \frac{\partial u}{\partial y} + \frac{\partial u}{\partial x} \right\}^{T}$$
(2.20)

sendo $u \in v$ as componentes do deslocamento nas direcções x e y, respectivamente. Apresentando-se esta relação numa forma matricial:

$$\varepsilon = Lu \tag{2.21}$$

sendo:

$$L^{T} = \begin{bmatrix} \frac{\partial}{\partial x} & 0 & \frac{\partial}{\partial y} \\ 0 & \frac{\partial}{\partial y} & \frac{\partial}{\partial x} \end{bmatrix} \quad e \quad u = \begin{cases} u \\ v \end{cases}$$
(2.22)

Num estado plano de deformação, as tensões σ_{zz} , σ_{yy} e τ_{xy} são diferentes de zero e σ_{zz} é linearmente dependente de σ_{xx} e σ_{yy} o que a torna numa componente não nula. As restantes tensões τ_{yz} e τ_{zx} são nulas.

O vector das tensões, apenas com as tensões linearmente independentes, é escrito do seguinte modo:

$$\boldsymbol{\sigma} = \left\{ \boldsymbol{\sigma}_{xx}, \boldsymbol{\sigma}_{yy}, \boldsymbol{\tau}_{xy} \right\}^T$$
(2.23)

Aplicando a lei de Hooke a um estado plano de deformação ($\varepsilon_{zz} = 0$), através da equação (2.13) obtém-se:

$$\sigma_{zz} = \frac{\nu_{xz}}{E_x} E_z \sigma_{xx} + \frac{\nu_{yz}}{E_y} E_z \sigma_{yy}$$
(2.24)

sendo a matriz s que relaciona as restantes tensões não nulas com as deformações definida por:

$$s = \begin{bmatrix} \frac{1}{E_x} - \frac{v_{zx}^2}{E_z} & -\frac{v_{yx}}{E_y} - \frac{v_{zx}}{E_z} & 0\\ -\frac{v_{yx}}{E_x} - \frac{v_{zy}v_{zx}}{E_z} & -\frac{1}{E_y} - \frac{v_{zy}}{E_z} & 0\\ 0 & 0 & \frac{1}{G_{xy}} \end{bmatrix}$$
(2.25)

Uma vez obtidas as tensões normais σ_{xx} e σ_{yy} pode-se obter σ_{zz} pela equação (2.24).

2.2.2. Estado plano de tensão

O estado plano de tensão aplica-se a sólidos cuja dimensão z é muito menor do que as restantes, em x e y. Num estado plano de tensão apenas existem esforços segundo x e y o que leva a que apenas existam tensões segundo essas mesmas direcções, σ_{xx} , σ_{yy} e τ_{xy} . Portanto, as restantes tensões do vector das tensões são nulas.

$$\boldsymbol{\sigma} = \{\boldsymbol{\sigma}_{xx}, \boldsymbol{\sigma}_{yy}, \boldsymbol{\tau}_{xy}\}^T$$
(2.26)

No entanto existe uma quarta componente de deformação, linearmente dependente de \mathcal{E}_{xx} e \mathcal{E}_{yy} . Como o sólido está livre na direcção z, não se geram tensões nessa direcção, daí o nome de estado plano de tensão. No entanto, a peça pode deformar-se nessa direcção em consequência das tensões instaladas nas direcções x e y. A expressão seguinte permite a obtenção do valor de \mathcal{E}_{xy} :

$$\varepsilon_{zz} = -\frac{V_{xz}}{E_x}\sigma_{xx} - \frac{V_{yz}}{E_y}\sigma_{yy}$$
(2.27)

É possível aplicar novamente a equação (2.12) de forma a obter-se o campo de tensões em função das deformações obtidas.

$$s = \begin{bmatrix} \frac{1}{E_x} & -\frac{v_{yx}}{E_y} & 0\\ -\frac{v_{xy}}{E_x} & \frac{1}{E_y} & 0\\ 0 & 0 & \frac{1}{G_{xy}} \end{bmatrix}$$
(2.28)

A inversa de c, a matriz s, é para o caso do estado plano de tensão uma simplicação da matriz s apresentada na equação (2.14).

Para um material isotrópico, a relação constitutiva de elasticidade é escrita em função de 2 parâmetros independentes: módulo de elasticidade E e coeficiente de poisson v. Assim, escrevendo matricialmente as tensões em função das deformações, tem-se:

$$\begin{cases} \sigma_{x} \\ \sigma_{y} \\ \tau_{xy} \end{cases} = \frac{E}{1 - v^{2}} \begin{bmatrix} 1 & v & 0 \\ v & 1 & 0 \\ 0 & 0 & \frac{1 - v}{2} \end{bmatrix} \begin{bmatrix} \varepsilon_{x} \\ \varepsilon_{y} \\ \gamma_{xy} \end{bmatrix}$$
(2.29)

Caso o material seja ortotrópico são definidas 4 constantes independentes: E_1 , E_2 , v_{12} e G_{12} . Assim, para este tipo de material pode escrever-se matricialmente as tensões em função das deformações do seguinte modo:

$$\begin{cases} \sigma_{1} \\ \sigma_{2} \\ \tau_{12} \end{cases} = \begin{bmatrix} \frac{E_{1}}{1 - v_{12}v_{21}} & \frac{E_{1}v_{21}}{1 - v_{12}v_{21}} & 0 \\ \frac{E_{2}v_{12}}{1 - v_{12}v_{21}} & \frac{E_{2}}{1 - v_{12}v_{21}} & 0 \\ 0 & 0 & \cdots & G_{12} \end{bmatrix} \begin{cases} \varepsilon_{1} \\ \varepsilon_{2} \\ \gamma_{12} \end{cases}$$
(2.30)

Se a ortotropia se der segundo dois eixos (1-2) que formam um ângulo θ com os eixos xy, as tensões no referencial do material são escritas do seguinte modo:

Figura 2.2: Rotação dos eixos (x,y) para os eixos segundo a ortotropia (1,2)

$$\sigma_{1} = \sigma_{x} \cos^{2} \theta + \sigma_{y} \sin^{2} \theta + 2\tau_{xy} \sin \theta \cos \theta$$

$$\sigma_{2} = \sigma_{x} \sin^{2} \theta + \sigma_{y} \cos^{2} \theta - 2\tau_{xy} \sin \theta \cos \theta$$

$$\tau_{12} = (\sigma_{y} - \sigma_{x}) \sin \theta \cos \theta + \tau_{xy} (\cos^{2} \theta - \sin^{2} \theta)$$
(2.31)

Escrevendo esta relação na forma matricial:

$$\begin{cases} \sigma_1 \\ \sigma_2 \\ \tau_{12} \end{cases} = \begin{bmatrix} \cos^2 \theta & \sin^2 \theta & 2\sin \theta \cos \theta \\ \sin^2 \theta & \cos^2 \theta & -2\sin \theta \cos \theta \\ -\sin \theta & -\cos \theta & \cos 2\theta - \sin 2\theta \end{bmatrix} \begin{cases} \sigma_x \\ \sigma_y \\ \tau_{xy} \end{cases}$$
(2.32)

$$\sigma' = A\sigma \tag{2.33}$$

Atendendo a que:

$$\begin{cases} \varepsilon_{1} \\ \varepsilon_{2} \\ \gamma_{12} / 2 \end{cases} = A \begin{cases} \varepsilon_{x} \\ \varepsilon_{y} \\ \gamma_{xy} / 2 \end{cases}$$
 (2.34)

onde a introdução do factor $\frac{1}{2}$ na deformação por corte surge a partir da sua definição clássica, sendo esta o dobro da deformação de corte tensorial. Introduzindo a seguinte matriz:

$$R = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
(2.35)

Assim:

$$\begin{cases} \varepsilon_{1} \\ \varepsilon_{2} \\ \gamma_{12} \end{cases} = R \begin{cases} \varepsilon_{1} \\ \varepsilon_{2} \\ \gamma_{12} / 2 \end{cases} = RA \begin{cases} \varepsilon_{x} \\ \varepsilon_{y} \\ \gamma_{xy} / 2 \end{cases} = RAR^{-1} \begin{cases} \varepsilon_{x} \\ \varepsilon_{y} \\ \gamma_{xy} \end{cases}$$
(2.36)

$$\begin{cases} \varepsilon_{x} \\ \varepsilon_{x} \\ \gamma_{xy} \end{cases} = R \begin{cases} \varepsilon_{x} \\ \varepsilon_{y} \\ \gamma_{xy} / 2 \end{cases} = RA^{-1} \begin{cases} \varepsilon_{1} \\ \varepsilon_{2} \\ \gamma_{12} / 2 \end{cases} = RA^{-1}R^{-1} \begin{cases} \varepsilon_{1} \\ \varepsilon_{2} \\ \gamma_{12} / 2 \end{cases} = RA^{-1}R^{-1}S \begin{cases} \sigma_{1} \\ \sigma_{2} \\ \tau_{12} \end{pmatrix} = (2.37)$$
$$= RA^{-1}R^{-1}SA \begin{cases} \sigma_{x} \\ \sigma_{y} \\ \tau_{xy} \end{cases} = \bar{S} \begin{cases} \sigma_{x} \\ \sigma_{y} \\ \tau_{xy} \end{cases}$$
$$\bar{S} = RA^{-1}R^{-1}SA \qquad (2.38)$$

A inversa desta matriz é a matriz de rigidez em relação aos eixos x e y.

$$D = \bar{S}^{-1}$$
 (2.39)

2.2.3. Equações de equilíbrio

As equações de equilíbrio bidimensionais podem ser escritas na forma matricial como:

$$L^T \sigma + b = 0 \tag{2.40}$$

onde *L* é definido na equação (2.22), σ é definido na equação (2.26) e $b = (bx, by)^T$. Substituindo as equações (2.12) e (2.10) na equação (2.29) obtém-se a equação (2.18).

2.3. Aplicação a estruturas de membrana

A formulação teórica apresentada nesta secção pode encontrar-se em Irvine [25], e de uma maneira mais sintética, em Palma [44]. Uma membrana apenas pode desenvolver esforços de tracção e corte tangenciais a esta. Num elemento de membrana só existem tensões tangentes à sua superfície e portanto só essas tensões vão equilibrar carregamentos transversais a esta. Se o carregamento mudar, o campo de tensões e as curvaturas também mudam de forma a que o equilíbrio seja mantido. Estas mudanças provocam deslocamentos e rotações que podem não ser pequenos e portanto é necessário considerar os termos quadráticos na relação extensão-deslocamento (não é válida a hipótese dos pequenos deslocamentos).

Equações de equilíbrio

Os esforços actuantes no elemento da membrana são dados por T_x , T_y , e T_{xy} (= T_{yx}) que podem ser projectados no plano horizontal dando origem a $\overline{T}_x, \overline{T}_y$ e \overline{T}_{xy} . Se o carregamento por unidade de área na membrana (elemento dA) segundo os três eixos cartesianos (x, y, z) for dado por p_x , p_y , p_z , as forças equivalentes no elemento dxdy (projecção no plano horizontal) são $\overline{p}_x, \overline{p}_y$ e \overline{p}_z . A relação entre p_i e \overline{p}_i é dada por:

$$p_i dA = \overline{p}_i dx dy$$
, com $i = x, y \text{ ou } z$ (2.41)

Deste modo, as equações de equilíbrio deste elemento de membrana segundo as direcções x, y, e z podem ser escritas do seguinte modo, respectivamente:

Figura 2.3 (extraída de Irvine[28]) – Elemento de membrana dA; cargas aplicadas, esforços de membrana e projecções em plano horizontal

$$\frac{\partial \overline{T}_x}{\partial x} + \frac{\partial T_{xy}}{\partial y} + \overline{p}_x = 0, \quad \text{equilibrio na direcção x}$$

$$\frac{\partial \overline{T}_y}{\partial y} + \frac{\partial \overline{T}_{xy}}{\partial x} + \overline{p}_y = 0, \quad \text{equilibrio na direcção y}$$
(2.42)
(2.43)

$$\frac{\partial}{\partial x} \left(\overline{T}_x \frac{\partial z}{\partial x} \right) + \frac{\partial}{\partial x} \left(\overline{T}_{xy} \frac{\partial z}{\partial y} \right) + \frac{\partial}{\partial y} \left(\overline{T}_{xy} \frac{\partial z}{\partial x} \right) + \frac{\partial}{\partial y} \left(\overline{T}_y \frac{\partial z}{\partial y} \right) + \overline{p}_z = 0, \text{ equilibrio na direcção z}$$
(2.44)

Utilizando as equações (2.42) e (2.43), pode escrever-se a equação (2.44) do seguinte modo:
$$\overline{T}_{x}\frac{\partial^{2}z}{\partial x^{2}} + 2\overline{T}_{xy}\frac{\partial^{2}z}{\partial x dy} + \overline{T}_{y}\frac{\partial^{2}z}{\partial y^{2}} = -\overline{p}_{z} + \overline{p}_{x}\frac{\partial z}{\partial x} + \overline{p}_{y}\frac{\partial z}{\partial y}$$
(2.45)

Numa fase de procura de forma em que não existe nenhum carregamento aplicado à membrana (despreza-se o peso próprio), a equação de equilíbrio apresentada anteriormente pode ser escrita da seguinte forma:

$$\overline{T}_{x}\frac{\partial^{2} z_{0}}{\partial x^{2}} + 2\overline{T}_{xy}\frac{\partial^{2} z_{0}}{dxdy} + \overline{T}_{y}\frac{\partial^{2} z_{0}}{dy^{2}} = 0$$
(2.46)

em que z_0 representa a forma de equilíbrio inicial da membrana sendo que a solução trivial z = 0 satisfaz esta equação.

Deste modo, a membrana plana descrita pela equação z = 0 constitui uma forma de equilíbrio para a situação em que não existe nenhum carregamento aplicado na sua superfície, estando esta sujeita apenas a um estado de tensão auto-equilibrado¹. Umas vez conhecidas as condições de fronteira da membrana podem definir-se as expressões analíticas dessas superfícies.

Para uma estrutura de membrana pode escrever-se o campo de deslocamentos da seguinte forma:

$$\mathbf{u} = \begin{cases} u \\ v \\ w \end{cases}$$
(2.47)

Considerando este campo de deslocamentos, pode escrever-se o campo de deformações seguinte, tendo por base a hipótese dos grandes deslocamentos:

$$\varepsilon = \begin{cases} \varepsilon_{x} \\ \varepsilon_{y} \\ \gamma_{xy} \end{cases} = \begin{cases} \frac{\partial u}{\partial x} \\ \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \end{cases} + \begin{cases} \frac{1}{2} \left[\left(\frac{\partial u}{\partial x} \right)^{2} + \left(\frac{\partial v}{\partial x} \right)^{2} + \left(\frac{\partial w}{\partial x} \right)^{2} \right] \\ \frac{1}{2} \left[\left(\frac{\partial u}{\partial y} \right)^{2} + \left(\frac{\partial v}{\partial y} \right)^{2} + \left(\frac{\partial w}{\partial y} \right)^{2} \right] \\ \left[\left(\frac{\partial u}{\partial x} \right) \left(\frac{\partial u}{\partial y} \right) + \left(\frac{\partial v}{\partial x} \right) \left(\frac{\partial w}{\partial y} \right) + \left(\frac{\partial w}{\partial x} \right) \left(\frac{\partial w}{\partial y} \right) \right] \end{cases}$$
(2.48)

Relações constitutivas

Uma vez que estas estruturas são características de um estado plano de tensão, o vector das tensões será dado por:

$$\boldsymbol{\sigma} = \{\boldsymbol{\sigma}_{xx}, \boldsymbol{\sigma}_{yy}, \boldsymbol{\tau}_{xy}\}^T \tag{2.49}$$

A inversa da matriz c, designada por s, para o caso de uma membrana pode ser escrita do seguinte modo:

¹ Qualquer outra superfície plana ou com curvatura Gaussiana negativa satisfazem a equação (2-46).

$$s = \begin{bmatrix} \frac{1}{E_x} & -\frac{v_{yx}}{E_y} & 0\\ -\frac{v_{xy}}{E_x} & \frac{1}{E_y} & 0\\ 0 & 0 & \frac{1}{G_{xy}} \end{bmatrix}$$
(2.50)

2.4. Transformações tensoriais

Considerem-se dois referenciais ortonormados directos cujos vectores de base são $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$ e $(\vec{e}_1', \vec{e}_2', \vec{e}_3')$, apresentados na **Figura 2.4**. Esta secção tem como objectivo o estabelecimento de uma relação entre:

- os dois conjuntos de vectores de base;
- as componentes de um vector \vec{v} nos dois referenciais

$$\vec{v} = v_i \vec{e}_i = v'_p \vec{e}'_p \tag{2.51}$$

• as componentes de uma transformação linear T nos dois referenciais

$$T = T_{ij}\vec{e}_i \otimes \vec{e}_j = T'_{pq}\vec{e}'_p \otimes \vec{e}'_q; \qquad (2.52)$$

• e, mais geralmente, as componentes (com n indices, n = 0,1,2,...) de um tensor cartesiano nos dois referenciais.

Figura 2.4: Dois referenciais ortonormados

2.4.1. Transformação dos vectores de base

A componente de um vector qualquer \vec{w} segundo um vector \vec{e}_p da base $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$ é dada por:

$$w'_p = \vec{w} \cdot \vec{e}'_p \tag{2.53}$$

pelo que o vector \vec{w} se pode escrever na forma:

$$\vec{w} = w'_{p}\vec{e}'_{p} = \left(\vec{w}\cdot\vec{e}'_{p}\right)\vec{e}'_{p} = \left(\vec{w}\cdot\vec{e}'_{1}\right)\vec{e}'_{1} + \left(\vec{w}\cdot\vec{e}'_{2}\right)\vec{e}'_{2} + \left(\vec{w}\cdot\vec{e}'_{3}\right)\vec{e}'_{3}$$
(2.54)

Do mesmo modo, os vectores de base $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$ podem escrever-se na base $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$ na forma:

$$\vec{e}_{1} = (\vec{e}_{1} \cdot \vec{e}_{1}^{'})\vec{e}_{1}^{'} + (\vec{e}_{1} \cdot \vec{e}_{2}^{'})\vec{e}_{2}^{'} + (\vec{e}_{1} \cdot \vec{e}_{3}^{'})\vec{e}_{3}^{'}$$

$$\vec{e}_{2} = (\vec{e}_{2} \cdot \vec{e}_{1}^{'})\vec{e}_{1}^{'} + (\vec{e}_{2} \cdot \vec{e}_{2}^{'})\vec{e}_{2}^{'} + (\vec{e}_{2} \cdot \vec{e}_{3}^{'})\vec{e}_{3}^{'}$$

$$\vec{e}_{3} = (\vec{e}_{3} \cdot \vec{e}_{1}^{'})\vec{e}_{1}^{'} + (\vec{e}_{3} \cdot \vec{e}_{2}^{'})\vec{e}_{2}^{'} + (\vec{e}_{3} \cdot \vec{e}_{3}^{'})\vec{e}_{3}^{'}$$
(2.55)

Definindo os coeficientes A_{ip} e agrupando-os numa matriz que se designa por matriz de Lamé, ou matriz dos co-senos directores, ou ainda matriz da transformação, [A], pode escreverse:

$$A_{ip} = \left(\vec{e}_i \cdot \vec{e}_p\right) = \left|\vec{e}_i\right| \left|\vec{e}_p\right| \cos\left(\vec{e}_i, \vec{e}_p\right) = \cos\left(\vec{e}_i, \vec{e}_p\right)$$
(2.56)

Re-escrevendo o sistema de equações (2.55) utilizando a matriz de Lamé:

$$\vec{e}_i = A_{ip} \overline{e}_p' \tag{2.57}$$

$$\left[\vec{e}\right] = \left[A\right]\left\{\vec{e}'\right\} \tag{2.58}$$

em que nas vectores-coluna $\{\vec{e}\}$ e $\{\vec{e}'\}$ se agrupam os vectores de base \vec{e}_i e \vec{e}_p' , respectivamente,

$$\left\{\vec{e}\right\} = \left\{\begin{array}{c} \vec{e}_1\\ \vec{e}_2\\ \vec{e}_3\end{array}\right\} \qquad \left\{\vec{e}'\right\} = \left\{\begin{array}{c} \vec{e}_1'\\ \vec{e}_2'\\ \vec{e}_3'\end{array}\right\} \qquad (2.59)$$

É fácil concluir que a transformação inversa de (2.57), (2.58) é dada por:

ł

$$\vec{e}_p' = A_{pi}\vec{e}_i \tag{2.60}$$

$$\left[\vec{e}'\right] = \left[A\right]^T \left\{\vec{e}\right\} \tag{2.61}$$

As equações (2.57) – (2.61) permitem interpretar o conteúdo das linhas e das colunas da matriz [A]. Deste modo, as linhas da matriz [A] são as componentes dos vectores de base \vec{e}_i na base $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$, enquanto que as colunas da matriz [A] são as componentes dos vectores de base \vec{e}_p na base $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

2.4.2. Transformação das componentes de vectores

Tal como se escreveu em (2.51), um vector \vec{v} pode ser representado tanto pelas suas componentes na base $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$ como pelas suas componentes na base $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$. Substituindo (2.57) em (2.51) obtém-se:

$$\vec{v} = v_i \vec{e}_i = v_i A_{ip} \vec{e}_p' = v_p' \vec{e}_p'$$
 (2.62)

concluindo-se que:

$$\mathbf{v}_{p}^{'} = A_{pi} \mathbf{v}_{i} \tag{2.63}$$

que, de forma equivalente, se escreve matricialmente:

$$\{v'\} = [A]^T \{v\}$$
 (2.64)

Analogamente, substituindo (2.60) em (2.51) obtém-se:

$$\vec{v} = v_i \vec{e}_i = v_p \dot{e}_p = v_p A_{ip} \vec{e}_i$$
 (2.65)

de que se podem concluir as leis de transformação (2.63), (2.64):

$$v_i = A_{ip} v_p' \tag{2.66}$$

$$\{v\} = [A]\{v'\}$$
(2.67)

2.4.3. Transformação das componentes de transformações lineares

Como se escreveu em (2.52), uma transformação linear T pode ser representada tanto pelas suas componentes na base $\vec{e}_i \otimes \vec{e}_j$ como pelas suas componentes na base $\vec{e}_p \otimes \vec{e}_q$. Procedendo como na subsecção anterior, substitua-se (2.57) em (2.52):

$$T = T_{ij}\vec{e}_i \otimes \vec{e}_j = T_{ij}(A_{ip}\vec{e}_p) \otimes \left(A_{jq}\vec{e}_q^{'}\right) = A_{ip}A_{jq}T_{ij}\vec{e}_p^{'} \otimes \vec{e}_q^{'} = T_{pq}^{'}\vec{e}_p^{'} \otimes \vec{e}_q^{'} \quad (2.68)$$

pelo que:

$$T'_{pq} = A_{ip} A_{jq} T_{ij}$$
(2.69)

Escrevendo esta expressão no modo matricial:

$$[T'] = [A]^T [T] [A]$$
(2.70)

Aplicando a lei de transformação inversa e as relações de ortogonalidade facilmente se pode demonstrar que:

$$\begin{bmatrix} T \end{bmatrix} = \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} T' \end{bmatrix} \begin{bmatrix} A \end{bmatrix}^T$$
(2.71)

Em notação indicial esta transformação escreve-se do seguinte modo:

$$T_{ij} = A_{ip} A_{jq} T'_{pq}$$
(2.72)

2.4.4. Transformação das componentes de tensores de ordem arbitrária

Os vectores são tensores cartesianos de 1º ordem. Por outro lado, uma transformação linear é uma entidade cujas componentes cartesianas têm dois índices e se transformam, numa mudança de referenciais ortonormados, de acordo com as leis de transformação (2.63)-(2.67). Por estas razões, as transformações lineares são também conhecidas por tensores cartesianos de 2º ordem.

Generalizando as observações anteriores sobre os já conhecidos tensores de 1^a e de 2^a ordem, pode dizer-se que um tensor (cartesiano) de ordem *n* é uma entidade cujas componentes em referenciais ortonormados têm n índices e se transformam numa mudança de referencial de acordo com as seguintes leis (que generalizam (2.66) e (2.72)).

$$T_{ijk...} = A_{ip} A_{jq} A_{kr} \dots T_{pqr} \dots$$
(2.73)

sendo que a transformação inversa é dada por:

$$T'_{pqr} = A_{ip}A_{jq}A_{kr}...T'_{ijk}...$$
 (2.74)

É de notar que o número de índices nas componentes do tensor (que iguala a sua ordem) é também igual ao número de componentes de [A] no monómio do membro da direita de (2.73) e (2.74).

Capítulo 3. Estruturas de membrana

3.1. Retrospectiva histórica

As tendas são certamente o tipo de construção mais antigo praticado pelo homem, à excepção das cavernas. Foram encontradas, na Ucrânia, evidências de que o homem, há mais de 40000 anos, usava ossos e presas de mamutes para sustentar peles de animais. Os nativos da América do Norte e da Ásia usavam tendas cónicas para se proteger das intempéries (Oliveira [41]).

Figura 3.1 (extraída de Oliveira [41]): Tenda de nativos norte americanos

Figura 3.2 (extraída de Oliveira [41]): Tendas negras

Os povos nómadas faziam uso das estruturas de membrana constituídas por peles de animais, que eram fáceis de desmontar e de transportar, tal como as tendas negras (Figura 3.2). Nessa época as peles eram transportadas, enquanto as partes mais pesadas, usadas como suporte, eram deixadas para trás. Com o passar dos tempos as peles de animais passaram a ser subtituídas por tecidos (Oliveira [41]).

Com a popularização dos circos nos EUA, no século XIX, foram desenvolvidos vários conhecimentos empíricos para a produção deste tipo de estruturas (Figura 3.3), como a forma de cortar e costurar os tecidos, as ancoragens, técnicas de montagem e desmontagem. Até hoje, os circos ainda utilizam estruturas de tecidos devido à sua facilidade de montagem, desmontagem e transporte, permitindo frequentes mudanças.

Uma das empresas fabricantes de tendas é a Stromeyer, fundada em 1872 e que até hoje está em funcionamento. Juntamente com Peter Stromeyer, uma das mais importantes referências na análise de membranas, Frei Otto, começou a trabalhar com tendas, chegando a publicar uma patente, em 1961, para a empresa Stromeyer (Otto[42]).

Figura 3.3 (extraída de Oliveira [41]): Tendas de Circos

A cobertura de um palco projectada por Frei Otto (Figura 3.4), em 1955, pode ser considerada como um marco de utilização das tenso-estruturas têxteis modernas. Ele realizou outros projectos pioneiros tal como a cobertura para um salão de dança, em 1957 (Figura 3.5).

Figura 3.4 (extraída de Oliveira [41]):Figura 3.5 (extraída de Oliveira [41]):Vierpunktsegel, Kassel, 1955Tanzbrunnen, Cologne, 1957

Inicialmente, as estruturas tensionadas têxteis eram usadas apenas como estruturas temporárias uma vez que os materiais não tinham a durabilidade necessária para serem utilizados como estruturas permanentes. Actualmente já existem materiais que são fabricados com uma durabilidade garantida por pelo menos 20 anos.

Aproximadamente na mesma época em que Frei Otto criava na Alemanha as bases para o desenvolvimento das estruturas de membrana pré-esforçadas por cabos, Walter Bird começava nos EUA, nos anos 50, o seu trabalho com membranas pneumáticas (Oliveira [41]). Estruturas pneumáticas para radares, chamadas *radomes*, estavam entre os seus principais projectos (Figura 3.6).

Horst Berger e David Geiger também foram

Figura 3.6 (extraída de Oliveira [41]): Radome, 1946

importantes para o progresso das estruturas de membrana. Enquanto que Berger estava ligado ao tipo de membrana pré-esforçada, Geiger trabalhava com coberturas pneumáticas do tipo da apresentada na Figura 3.7, a primeira estrutura de membrana pneumática a ser analisada computacionalmente.

Figura 3.7 (extraída de Oliveira [41]): Pavilhão americano na feira de Osaka, 1970

Com o avanço dos métodos de cálculo automático, via modelação numéricocomputacional, e com a melhoria da qualidade dos tecidos, essas coberturas passaram a ser utilizadas em edificações de grande porte, tais como aeroportos, estádios desportivos e centros de convenções em várias partes do Mundo (Pauletti [49]). Exemplos dessas coberturas são apresentados nas seguintes figuras:

Figura 3.8 (extraída de Oliveira [41]): La Verne College Student Activities Center, EUA, 1973

Figura 3.9 (extraída de Oliveira [41]): Aeroporto de Jeddah, Arábia Saudita, 1985

Figura 3.10 (extraída de Oliveira [41]): Estádio Rei Fahd, Arábia Saudita, 1985

Figura 3.11 (extraída de Oliveira [41]): Columbus Center, Baltimore, EUA

Figura 3.12 (extraída de Pauletti [49]): Stadio delle Alpi, Turin, Itália, 1990

Figura 3.13 (extraída de Pauletti [49]): Estádio em Hong Kong, China, 1994

Figura 3.14 (extraída de Oliveira [41]): Millenium Dome, Londres, Inglaterra, 2000

Para um melhor desenvolvimento acerca da contextualização história das estruturas de membrana pode consultar-se Figueiredo [17], Oliveira [40], Oliveira [41], Palma [44] e Pauletti [49].

3.2. Tipos de estrutura de membrana

As estruturas tensionadas podem ser classificadas em dois grandes grupos:

- Estruturas tensionadas formadas por malhas de cabos ou fios de aço ou material novo e resistente (por exemplo aramida ou Kevlar), cobertas com telhas poliméricas translúcidas ou tecido;
- Estruturas formadas por membranas, que podem ser constituídas por pedaços de tecido costurados, também designadas por tensoestruturas têxteis, ou por outros materiais, como folhas de aço.

3.2.1. Estruturas tensionadas formadas por malhas de cabos

Com o advento de fios de aço ordinário, ou aço de pré-esforço, com baixa relaxação, houve um impulso na criação de estruturas tensionadas formadas por malhas de cabos para coberturas de grandes vãos. A superfície formada por essa malha de cabos pode ser coberta por folhas ou telhas de material plástico translúcido, ou pedaços costurados de tecido (Oliveira [41]).

Frei Otto projectou, entre outras, a estrutura de cabos para o pavilhão da Alemanha na Expo 1967, em Montreal (Canadá) e a cobertura das arquibancadas do estádio olímpico de Munique, em 1972 (Figura 3.15).

Figura 3.15 (extraída de Oliveira [41]): Estádio olímpico, Munique, Alemanha, 1972

3.2.2. Estruturas tensionadas formadas por membranas

Numa estrutura de membrana, os cabos e os tecidos não têm capacidade de resistir a esforços de compressão. Assim, para que a estrutura seja estável e não sofra enrugamento, estes elementos necessitam de estar sempre em tensão. As estruturas de membrana podem ser classificadas, de acordo com a tecnologia de pré-esforço, em dois tipos (Figura 3.16): estruturas pneumáticas, em que o pré-esforço é efectuado através da aplicação de uma pressão interna: estruturas de membrana pré-esforçadas por cabos, em que o pré-esforço é aplicado nos cabos.

O tecido também pode ser usado sem função estrutural, substituindo as telhas e tapamentos laterais. Neste caso, pode ser feito um cálculo observando-se a falta de rigidez ao corte do tecido, além de se ter em consideração que os carregamentos transversais ao plano do tecido serão transferidos para a estrutura de suporte por esforços de membrana, gerando esforços numa direcção diferente da direcção dos carregamentos (Oliveira [40]).

Figura 3.16: Tipos de estruturas de membrana

As estruturas de membrana pré-esforçadas por cabos são estabilizadas através de cabos de pré-esforço, geralmente situados em bainhas no contorno da membrana (Figura 3.17).

O contorno define a forma da estrutura e determina o modo de transferência dos esforços de membrana para o sistema estrutural rígido ou para a fundação. Geralmente o contorno é constituído por cabos embutidos nas extremidades da membrana, o que lhes confere um comportamento flexível.

A forma da membrana é obtida combinando a sua curvatura com o pré-esforço a que esta está sujeita. A curvatura da membrana permite a transferência das cargas laterais actuantes na mesma, sendo que o pré-esforço inicial assegura que o tecido permaneça em tensão, mesmo depois de aplicadas as acções (Pauletti [49]).

Figura 3.17 (extraída de Oliveira [40]) – Detalhe típico dos cabos embutidos em bainhas situadas no contorno da membrana

Para a estabilização da superfície da membrana é necessário ter em conta os seguintes princípios:

- Quanto maior curvatura tiver a superfície, maior terá que ser o pré-esforço a instalar na mesma;
- Excessivas curvaturas introduzem dificuldades práticas de pré-esforço, principalmente em materiais como fibras de vidro revestidas com PTFE, não permitindo a redistribuição de tensões adicionais locais;
- As variações de curvatura ao longo da membrana devem ser muito suaves, de modo a não se verificar um contraste demasiado elevado entre zonas "flexíveis" e zonas "rígidas".

Um maior desenvolvimento sobre o tema referido nesta secção encontra-se apresentado em Figueiredo [17], Oliveira [40], Oliveira [41], Otto [42] e Pauletti [49].

3.3. Características principais das estruturas de membrana

As estruturas de membrana têm tido uma crescente utilização, sendo utilizadas como coberturas permanentes de grandes espaços públicos, como estádios desportivos e aeroportos.

A escolha de uma solução em estrutura de membrana, para grandes estruturas de cobertura, geralmente tem em consideração o grande impacto visual que a forma estrutural provoca, como é o caso do aeroporto de Denver (Figura 3.18). Durante a noite, a estrutura translúcida marca a paisagem a quilómetros de distância. Assim, este efeito de luminosidade pode ser identificado como referência turística de uma cidade.

Figura 3.18 (extraída de Oliveira [40]): Aeroporto de Denver, EUA

A leveza é outra grande vantagem dos tecidos. Esta característica torna-se mais importante à medida que se aumenta o vão livre da estrutura, já que a relação entre o peso da estrutura e carga que ela suporta aumenta consideravelmente para o caso de grandes vãos, tornando proibitivo o uso de certos sistemas estruturais mais pesados. Com a redução do peso da estrutura, são reduzidos os esforços nas estruturas de suporte e cargas nas fundações, principalmente quando estes esforços são devidos a efeitos sísmicos, proporcionando uma grande vantagem para cobertura de estruturas pré-existentes.

Os gastos com a energia eléctrica também podem ser reduzidos. Com o uso de tecidos translúcidos, pode ser aproveitada a luz natural, reduzindo o uso de iluminação artificial. Em climas quentes pode economizar-se na refrigeração do ambiente, já que o índice de reflexão dos raios solares é bastante alto.

A facilidade de montagem e de transporte, que possibilitam a utilização em estruturas móveis, também agilizam o processo construtivo da estrutura, desde a fabricação, que pode ser feita em locais distantes e transportada com baixo custo, até à montagem, não exigindo equipamentos de grande porte.

O custo do tecido certamente é muito maior do que o de telhas convencionais. No entanto, quando são consideradas todas as reduções de custo proporcionadas por este tipo de estruturas, estas tornam-se soluções bastante competitivas (Oliveira [41]).

Observando a série de vantagens apresentadas anteriormente, as estruturas de membrana parecem ser a solução ideal para coberturas de grandes vãos. No entanto, tal não se reflecte na realidade da indústria da construção civil já que a principal desvantagem está associada às incertezas em relação ao envelhecimento de materiais compósitos e poliméricos expostos aos raios ultravioletas, portanto em relação ao custo/durabilidade.

Na tabela seguinte, resumem-se as principais vantagens e desvantagens deste tipo de estruturas:

Vantagens	Desvantagens
• Simplicidade na concepção. Todos os seus	 Tendência a responderem fortemente às acções
elementos trabalham em total tracção ou	dinâmicas;
compressão;	 Susceptíveis a grandes deslocamentos e
 Beleza arquitectónica; 	formação de rugas, principalmente quando
 Permite grande variedade de formas; 	submetidas a acções concentradas;
 Impermeabilidade total; 	 Requer pessoal especializado na sua montagem;
 Baixo peso próprio (1 a 5 Kg/m²), vencendo 	 Isolamento térmico satisfatório, não atingindo o
grandes vãos;	nível das coberturas de betão e aço tradicionais;
 Durabilidade dos tecidos; 	 Incertezas em relação ao envelhecimento de
• Leveza e resistência face às cargas do projecto e	materiais compósitos e poliméricos expostos aos
efeitos do vento;	raios ultravioletas.
 Boa resistência ao fogo dos tecidos mais 	
modernos;	
 Boa iluminação natural com a utilização de 	
tecidos translúcidos.	
 Isolamento acústico produzido por coberturas de 	
membrana dupla;	
 Fácil transporte; 	
• Custo competitivo para coberturas de grande	
porte.	

Tabela 3.1: Vantagens e desvantagens da utilização de uma estrutura de membrana

3.4. Características dos tecidos

A informação disponibilizada nesta secção encontra-se apresentada com maior detalhe em Oliveira [40], Oliveira [41], Pauletti [49], Pauletti [52], Figueiredo [17] e Vandenberg [66].

Nesta secção é feita uma breve descrição das características dos tecidos utilizados em estruturas de membrana, apresentando-se os tipos mais utilizados e as suas principais características físicas. Os tecidos mais utilizados neste tipo de estruturas são compostos por fibras e por uma matriz. Apesar de existirem tecidos sem a matriz, é mais comum a utilização dos dois materiais. Existe ainda a possibilidade de utilizar membranas poliméricas sem a presença de fibras.

As fibras por si só não são suficientemente longas ou espessas para serem utilizadas como material estrutural, tendo que se proceder a um agrupamento por parte destas, formando os filamentos. Assim, as malhas estruturais podem ter os fios tramados (Figura 3.19 a) ou sobrepostos (Figura 3.19 b), sendo a primeira solução a mais adoptada.

No segundo caso, os fios são apenas sobrepostos antes da aplicação da matriz. Além disso, as ondulações criadas nos fios alteram as características mecânicas, criando um comportamento ortotrópico acentuado (Oliveira [41]).

Figura 3.19 (extraída de Oliveira [41]): Arranjo dos fios no tecido (a) fios tecidos (b) fios sobrepostos

Sabendo as constantes elásticas determinadas através de ensaios (Oliveira [41]) e tendo como objectivo a avaliação do grau de ortotropia das estruturas de membrana, é possível destacar 3 parâmetros que relacionam as constantes elásticas E_1 , E_2 , v_{21} e G_{12} . Estes parâmetros são escritos do seguinte modo (Pauletti [52]):

$$m = \frac{E_1}{G_{12}} - 2\nu_{21} \tag{3.1}$$

$$k = \sqrt{\frac{E_1}{E_2}} \tag{3.2}$$

$$n = \sqrt{2k + m} \tag{3.3}$$

Portanto, conhecidos os valores de E_1 , E_2 , G_{12} e v_{21} para os tecidos estruturais, as expressões anteriores permitem determinar os parâmetros k e n, que caracterizam o grau de ortotropia dos tecidos. Para materiais isotrópicos k=1 e n=2. Na tabela seguinte, apresentam-se os valores destes parâmetros para diferentes materiais.

Material		k	n
Plásticos reforçados com fibra de vidro	Unidireccional	2,01	3,67
	Bidireccional	1,17	3,08
Tecidos de fibra de poliéster com PVC	Unidireccional	1,054	2,70
	Bidireccional	0,98	1,97
Tecidos de fibra de poliéster com PVC e PVDF	Bidireccional	0,72	1,57

Tabela 3.2: Valores dos parâmetros k e n para diferentes materiais

Assim, a fiação e tracção dos tecidos que constituem as membranas é geralmente efectuada segundo duas direcções: o urdume e a trama. Deste modo, garante-se um módulo de

deformação mais alto e também uma boa resistência à tracção nos dois sentidos. Durante a fiação, os fios do urdume são mantidos rectos, pré-esforçados, enquanto os fios da trama são passados alternadamente por cima e por baixo de cada fio do urdume, apresentando portanto uma ondulação mais acentuada que estes últimos (Figura 3.20).

Figura 3.20 (extraída de Vandenberg [66]) – Direcções de fiação dos tecidos

Quando o tecido é solicitado por um carregamento, a interacção entre as duas direcções torna-se mais acentuada. Deste modo, enquanto a ondulação do *urdum*e aumenta, a *trama* tende a rectificar-se. Em virtude deste comportamento, os tecidos apresentam propriedades anisotrópicas não lineares (Vandenberg [66]).

Contudo, para efeitos práticos, é usual trabalhar-se com modelos lineares, o que implica severas simplificações, no que diz respeito ao modelo de comportamento desse material. Considerando-se o tecido estrutural como um elemento com superfície cujas dimensões no plano são muito maiores que a espessura, pode considerar-se a validade do comportamento de material em condição de estado plano de tensão.

Caso as direcções de fiação não estejam alinhadas com as tensões principais, não ocorrerão distorções excessivas na superfície de membrana. No entanto, tal situação raramente ocorrerá para toda a extensão da membrana ou para toda a gama de carregamentos, ficando a membrana sujeita a grandes distorções. Assim, este problema poderá ser resolvido adicionandose uma segunda camada de fiação com direcções oblíquas em relação à primeira. Esta camada contribui significativamente para o carácter isotrópico e aumento do módulo de elasticidade do tecido, melhorando o seu funcionamento. Por outro lado, o tecido fica sujeito a uma propagação repentina de rasgos em comparação com os tecidos ortótropicos (Vandenberg [66]).

Num tecido de membrana pode ainda fazer-se variar os seguintes factores: diâmetro dos fios, quantidade dos fios por metro, afastamento entre estes, ângulo entre os fios da trama e do urdume. A variações desses parâmetros alteram as seguintes características:

- Adesão mecânica à matriz;
- Resistência ao rasgamento;
- Resistência à tracção unidireccional e bi-direccional;
- Rigidez extensional.

Segundo HAPPOLD [23], o espectro de materiais usados na confecção de uma membrana incide sobre quatro tipos de tecido:

- fibras de poliéster revestidas com matriz de PVC;
- fibras de vidro revestido com matriz de PVC;
- fibras de vidro ou carbono (*Kevlar*) revestidas com matriz de *Teflon* (PTFE);
- fibras de vidro ou carbono revestidas com matriz de Silicone (Vestar).

No entanto, os materiais mais usados na confecção de uma membrana são as fibras de poliéster revestidas com matriz de PVC e as fibras de vidro revestidas com matriz de PTFE. As diferenças entre ambas residem no preço, na durabilidade, na capacidade mecânica, na tecnologia de produção e na facilidade de manuseio.

O uso de tecidos de poliéster para a confecção de membranas é uma das soluções mais populares. Esta solução revela-se suficientemente barata, de tal modo, que pode ser substituída de 10 em 10 anos. No entanto, deteriora-se sob a acção dos raios ultravioletas e tem tendência a encardir, sendo este um meio propício para o desenvolvimento de fungos.

Os tecidos confeccionados utilizando as fibras de vidro são utilizados em membranas projectadas para um longo período de vida² ou membranas que apresentam baixa manutenção ao longo deste período. Deste modo, são resistentes às intempéries, às altas temperaturas, à tracção, ao corte e à perfuração, à humidade, podendo ser dotadas de qualquer grau de translucidez, desde a total transparência até à total opacidade. No entanto, esta solução tem como principal desvantagem a fragilidade exigindo cuidados especiais no transporte e montagem de modo a evitar dobragens no tecido e o aumento de custos em relação à solução anterior (Vandenberg [66]). Na Tabela 3.3, proceder-se-á à comparação dos dois materiais mais usados na confecção de estruturas de membrana (Figueiredo [17]).

Os coeficientes da matriz de deformabilidade que compreendem os módulos de elasticidade longitudinais E_1 e E_2 podem ser determinados directamente por meio de ensaios uniaxiais e biaxiais de tracção de acordo com a direcção de interesse (Oliveira [41]). Os valores dos módulos de elasticidade longitudinais são obtidos a partir dos ajustes das curvas de tensão-deformação longitudinal e os valores dos coeficientes de Poisson são determinados a partir dos ajustes lineares das curvas de deformação transversal versus deformação longitudinal.

No caso dos ensaios biaxiais de tracção, o valor do módulo de elasticidade transversal pode ser determinado por meio de uma analogia com o modelo de placas ortotrópicas. Assim, exprimindo o módulo de elasticidade transversal em função dos módulos de elasticidade longitudinais e dos coeficientes de Poisson, têm-se:

$$G_{12} = \frac{\sqrt{E_1 E_2} - E_1 v_{12}}{2(1 - v_{12} v_{21})}$$
(3.4)

A resistência à tracção também pode não ser determinante para o desempenho do tecido, uma vez que a resistência ao rasgamento pode limitar o valor das cargas. Como o aumento da resistência à tracção diminui a resistência ao rasgamento, atinge-se um certo ponto em que o aumento da resistência à tracção piora o desempenho do tecido (Oliveira [41], Pauletti [52]).

A humidade e os ataques ultravioleta podem degradar o material, diminuindo a sua resistência à tracção.

A malha criada com as fibras sem o revestimento da matriz pode ser utilizada mais convenientemente em estruturas temporárias em que não se exija a resistência às intempéries. Para estruturas permanentes são utilizados tecidos revestidos com matriz polimérica. A aplicação pode ser feita pelo derrame da matriz líquida sobre a malha aguardando-se posteriormente a cura ou polimerização da mesma. A matriz pode ser espalhada com uma espátula e pressionada contra o tecido, ou pode ainda ser laminada (Oliveira [41]).

Figura 3.21 (extraída de Oliveira [41]): Tecido simples com aplicação da matriz

² As membranas apresentam geralmente um período de garantia de 10 anos.

Tabela 3.3 (extraída de Figueiredo [17]): Comparação dos dois tecidos usados com maior frequência na confecção de membranas

Propriedades		Tecido	
		Poliéster revestido com PVC	Fibras de vidro revestidas com Teflon (PTFE)
	Resistência à tracção	Média	Alta
	Módulo de elasticidade	Médio	Alto
Propriedades	Resistência ao estiramento	Média	Alta
estruturais a curto prazo	Direccionalidade	Normalmente mais flexível na direcção do urdume do que na trama, existindo tecidos em que as propriedades são idênticas nas duas direcções.	Normalmente mais flexível na direcção do urdume do que na trama, existindo tecidos em que as propriedades são idênticas nas duas direcções.
Propriedades	Esticamento na construção	Médio	Baixo
estruturais a longo prazo	Estabilidade dimensional	Média	Alta
Propriedades não estruturais	Durabilidade	O tempo de vida normalmente é de 10 a 12 anos, dependendo da opacidade do revestimento. A vida da obra poderia ser de somente 3 a 5 anos com revestimentos de alta translucidez e mais de 15 anos com revestimentos opacos. Um acabamento em branco reduziria a temperatura superficial e melhoraria a durabilidade.	25 anos ou mais
	Translucidez	8% a 30%	5% a 15%
	Aparência	Todas as cores disponíveis, podendo estas ser opacas ou translúcidas. As membranas confeccionadas com este tipo de tecido estão sujeitas à retenção de lixo, determinando a sua duração de vida.	As cores disponíveis para este tecido são muito menores, sendo o branco a cor predominante. A sujidade não é retida, ficando a superfície praticamente limpa. Este tecido não sofre descoloração.
	Resistência química	Boa	Muito Boa
	Resistência ao enrugamento	Muito Boa	Satisfatória
	Resistência à corrosão	Muito Boa	Muito Boa
	Resistência à temperatura	-30°C a 70°C	-80°C a 250 °C
	Isolamento Térmico	Satisfatório	Satisfatório

	Resistência à abrasão	Boa	Muito Boa
	Resistência ao envelhecimento	Boa	Muito Boa
	Deformação limite na rotura	15-30%	3-12%
Facilidade de instalação	Flexibilidade	Alta flexibilidade. Fácil fabricação, transporte e instalação. Em virtude da sua maior flexibilidade, permite uma melhor redistribuição do excesso de tensões, em relação às fibras de vidro.	Baixa flexibilidade. Riscos de estragos durante fabricação, transporte e instalação. Em virtude da sua menor flexibilidade, não existe tão boa redistribuição do excesso de tensões pelo tecido, tal como acontece com os tecidos de poliéster.
	Encaixe/Junções	Feita facilmente.	Técnicas especializadas necessárias.
	Tempo de montagem	Médio. Feita a montagem da membrana, será precisa uma nova visita ao local para apertar os cabos e verificar a fluência.	Médio-alto. O pré- esforço da membrana demora mais tempo do que numa membrana feita com tecidos de poliéster.
Custos	Custos de Fabrico	Baixo-Médio	Face a uma maior rigidez deste material, o que tem como consequência a adopção de mão de obra mais especializada, o custo será mais elevado.
	Custos de Montagem	Médio	Alto
Usos Típicos		Geralmente utilizados em estruturas desmontáveis e estruturas permanentes (mais de 15 anos de funcionamento).	Apenas utilizados em estruturas permanentes. O material está longe de ser rígido de modo a aguentar o ciclo de montagem e desmontagem da membrana.

A matriz tem como função isolar os fios de tecido do contacto directo com o ar, exposição solar e humidade. Este deve incluir aditivos necessários para manter as propriedades mecânicas, a estabilidade às radiações ultravioleta e resistência aos fungos. Na Tabela 3.4, apresentam-se as características dos principais materiais utilizados na confecção da matriz.

As informações existentes relativamente aos tecidos apresentam-se sem uniformidade e consenso em relação aos procedimentos de ensaio e à determinação das propriedades dos tecidos. Muitas vezes, informações importantes para o projecto encontram-se dependentes de pesquisas realizadas pelos próprios fabricantes, onde nem sempre os resultados fornecidos contribuem para esclarecer sobre o comportamento do material. Assim, é necessário o desenvolvimento de ensaios para a determinação da resistência, dos módulos de elasticidade longitudinal e transversal e dos coeficientes de Poisson, especialmente sob condições de solicitações biaxiais.

Tabela 3.4 (extraída de Figueiredo [17]): Características dos materiais utilizados na matriz das membranas

Revestimento	Características
Policloreto de Vinilo (PVC)	 Leve e maleável; Resistente aos raios UV, estando disponível em qualquer cor; Utilizado na matriz de tecidos de poliéster e nylon.
Politetrafluoretileno (PTFE)	 Quimicamente inerte, resistente à humidade, a micro-organismos, com baixa deterioração com a idade, estando disponível na cor branca; Material de grande estabilidade, quando combinado com tecidos de fibra de vidro; Resistente ao fogo, com alta resistência à tracção e alto módulo de elasticidade. Solução mais cara do que a solução em PVC.
Silicone	 Utilizado como revestimento protector dos tecidos em fibra de vidro, possuindo características muito próximas às do PTFE com fibra de vidro. Excelente resistência a raios UV, alta flexibilidade térmica, resistência ao fogo, alta resistência à tracção e alto módulo de elasticidade. Alta propagação lumínica.
Aditivos - lacas e vernizes	 Melhora a protecção do tecido aos raios UV e as caracterísiticas auto-limpantes. Um dos materiais utilizados para isto é o Tedlar. Trata-se de um fluoreto de polivinil (PVF) e pode ser aplicado tanto no poliéster revestido de PVC como na fibra de vidro revestida de PTFE.

3.5. Detalhes para fabricação

A informação disponibilizada nesta secção encontra-se apresentada com maior detelhe em Oliveira [40], Oliveira [41], Otto [42] e Vandenberg [66].

O detalhe da estrutura de suporte e do próprio tecido, quando comparados com as estruturas correntes, são complexos. Numa estrutura convencional os ângulos de ligação entre os diversos elementos da estrutura são bem definidos, sendo muitas vezes ângulos rectos, o que possibilita a utilização de detalhes padronizados, de fácil execução.

No detalhe da estrutura de membrana deve ser dada atenção especial às ligações da estrutura, sejam entre pedaços de tecido (costuras), entre tecido e cabos, entre outras. Se não for tomado o devido cuidado, nestes pontos de concentração de tensões podem ser criados pontos frágeis. Em alguns casos o detalhe possibilita ainda a aplicação de pré-esforço necessário no tecido e nos cabos, e até um posterior re-aplicação de pré-esforço por perda do mesmo (Oliveira [41]):

Figura 3.22 (extraída de Oliveira [41]): Detalhe para re-tensionamento

A vedação da estrutura pode gerar também um problema de detalhe quando existe um encontro da estrutura têxtil flexível com uma parede, existindo neste ponto uma grande diferença de deslocamento entre a superfície de membrana e a parede, cujo deslocamento é praticamente nulo. Assim, para solucionar este problema são usados elementos flexíveis, que vedam este espaço entre a fachada e a membrana.

Figura 3.23 (extraída de Oliveira [41]): Detalhe para vedação

Os pedaços de tecido cortados têm que ser unidos para formar a superfície da cobertura. Essa união pode ser soldada, colada ou costurada. É importante que a emenda transmita os esforços de membrana no tecido, afectando o mínimo possível o comportamento global da estrutura. A resistência desta ligação é influenciada por factores como a adesão da matriz e a largura da emenda, que varia de 25 a 50 mm para materiais com PVC e de 50 a 75 mm para a silicone e PTFE (Oliveira [41]).

Figura 3.24 (extraída de Oliveira [41]): União colada

Figura 3.25 (extraída de Oliveira [41]): União costurada

As figuras seguintes apresentam outros detalhes típicos de ligação entre a estrutura de apoio e o tecido, entre cabos e o tecido e entre o cabo e estrutura. A primeira apresenta, em amarelo, um detalhe interessante de um elemento de protecção para canalizar a água. A segunda apresenta um recorte feito usualmente nos cantos do tecido para eviar a concentração de tensões

nesses pontos, além de ilustrar as ligações entre os cabos, estrutura de apoio e o tecido (Oliveira [41]).

Figura 3.26 (extraída de Oliveira [41]): Ligação cabo-tecido

Figura 3.27 (extraída de Oliveira [41]): Ligação estrutura-tecido-cabos

3.6. Fases de projecto

O projecto de uma estrutura de membrana têxtil engloba três fases inexistentes no projecto estrutural convencional (Pauletti [49]). A primeira é a definição da forma espacial final, que deixa de ser de responsabilidade exclusiva do arquitecto e passa a ter colaboração do engenheiro. A segunda é a definição dos padrões ou moldes de corte, que talvez pudesse ser considerada uma tarefa exclusiva do fabricante, mas tem grande influência no comportamento estrutural e depende de resultados de cálculos que não são conhecidos pelo fabricante, tal como o campo de tensões. A terceira fase do projecto é a remontagem dos pedaços de tecido planos na estrutura de membrana tridimensional. Por fim, a estrutura deve ser verificada como uma estrutura convencional, analisando tensões nos tecidos e os esforços nos cabos de bordo, nas estruturas de apoio e nas fundações. A Figura 3.28 sistematiza as três fases envolvidas no projecto.

Esta recorrência de etapas projectivas pode tornar o processo muito trabalhoso, existindo por isso a necessidade do uso de ferramentas computacionais capazes de efectuar a análise de cada uma das etapas e de interagir com os resultados de outras etapas.

Figura 3.28 (extraída de Oliveira [41]): Fases do projecto de estruturas de membrana

3.6.1. Busca da forma

Como as estruturas de membrana não têm resistência à flexão e à compressão, a forma, os carregamentos externos e um estado interno de tensões exclusivamente de tracção devem interagir de modo a satisfazer as equações de equilíbrio. O projecto preliminar das estruturas tensionadas envolve assim a determinação de uma configuração inicial na qual o estado de solicitações e a geometria especificadas definem um estado de equilíbrio (algumas vezes incluiu-se o peso próprio da estrutura no processo).

Existem muitas configurações de equilíbrio possíveis, sendo que o projectista procura seleccionar a configuração que melhor atenda aos requisitos de projecto (condições estéticas, funcionalidade e estruturais). É importante destacar que uma única configuração correspondente à da superfície mínima. A vantagem desta é estar associada a uma distribuição uniforme de tensão de tracção em toda a membrana. A membrana deve apresentar níveis de tensão aceitáveis em toda a sua superfície, deve ter curvatura elevada (maior rigidez), não apresentar pontos baixos onde se acumule água e deve ter inclinações suficientes que permitam o rápido escoamento de água e evitem o acumular de grandes quantidades de neve (Pauletti [49]).

Actualmente, existem diversos métodos utilizados para resolver o problema da busca de forma (Pauletti [49]):

- Modelos físicos;
- Método da densidade de forças;
- Método dos elementos finitos.

3.6.2. Determinação dos padrões de corte

O sistema computacional depois de ter calculado a forma da membrana, é usado para o procedimento de planeamento, optimização da fabricação e corte do tecido. O tecido é dividido em faixas que são posteriormente tecidas e costuradas entre si por processos especiais de selagem.

A definição do modelo de corte consiste na transformação da superficie tridimensional na correspondente superficie plana com os dados de corte/emenda necessários para a composição da membrana (Moncrieff [35]). Deste modo, após a determinação dos padrões da configuração inicial da superfície da membrana segue-se a determinação do padrão de corte, processo que compreende a identificação de linhas de corte sobre a superfície de equilíbrio inicial, desdobrando a superfície total e gerando um conjunto de peças de dupla curvatura, tendo como objectivo final o desenvolvimento deste conjunto em peças planas.

O processo de corte deve ser efectuado, de acordo com as seguintes restrições:

- O tecido deve ser cortado a partir de rolos de largura relativamente pequena;
- Por razões económicas, cada peça deve maximizar o uso da largura disponível, sendo vantajoso o emprego de peças com lados rectos;
- Os comprimentos de peças adjacentes devem ser iguais;
- A distorção do tecido nos bordos da estrutura deve ser evitada;
- O arranjo das peças deve ser tal que as direcções das tensões principais coincidam na maior extensão possível com as direcções de fiação;
- As peças adjacentes devem ter uma variação gradual de tamanho. Deve-se também procurar evitar a junção de quatro peças de tecido num canto, devido à sobre-espessura corrente.

Como as superficies de dupla curvatura – típicas das estruturas tensionadas – não podem ser planificadas de forma exacta, o processo de determinação dos padrões de corte é inevitavelmente aproximado. Neste sentido, procura-se uma solução que minimize os gastos de materiais, que preserve a forma da superfície, que seja esteticamente agradável e, por fim, que preserve a capacidade da estrutura em suportar as acções.

3.6.2.1. Identificação das linhas de corte

O processo de determinação dos padrões de corte inicia-se pela identificação das linhas de corte, preferencialmente, linhas geodésicas (curvas com curvatura geodésica nula). A curvatura geodésica é definida, em cada ponto duma superfície, como sendo a projecção ortogonal do raio de curvatura sobre o plano tangente à superfície no ponto considerado. Deste modo, quando a superfície é planificada, as linhas geodésicas transformam-se em rectas. Assim, numa peça em que os bordos são linhas geodésicas, a respectiva transformação origina um rectângulo no plano (Moncrief [35], Pauletti [49]).

- A determinação da linha geodésica a partir de um ponto pode ser efectuada de dois modos: Determinação da linha de máximo ou mínimo gradiente passando por este ponto. No caso de uma superfície definida por um arranjo de facetas triangulares, esta linha, partindo de um ponto qualquer de um triângulo, intercepta outro ponto pertencente a um dos outros dois lados do mesmo triângulo, repetindo-se o mesmo procedimento para o triângulo adjacente. Este método tem como principal desvantagem o facto de não ser permitida a prescrição do ponto final da linha de corte.
- Fazendo uso da propriedade das linhas geodésicas (uma linha geodésica é a menor distância entre dois pontos de uma superfície), estas podem ser encontradas por um método de optimização, ou por uma análise estrutural, em que um cabo esticado sobre a superfície (suposta rígida) escorrega sem atrito sobre a mesma (com excepção dos dois pontos extremos fixos). Deste modo, o cabo irá desenvolver-se segundo a linha geodésica que une os dois pontos. Esta análise pode ser feita recorrendo ao método de Newton-Raphson ou ao método da relaxação dinâmica. Pauletti [49] refere que o método da relaxação dinâmica é o mais adequado, uma vez que o primeiro pode não convergir quando a configuração inicial do cabo estiver muito longe da linha geodésica.

3.6.2.2. Planificação

Uma vez identificadas as linhas de corte, procede-se à planificação da membrana. A planificação pode ser estrutural ou geométrica (Moncrief [35], Pauletti [49]).

• Planificação estrutural

No caso da superfície não ser planificável, utiliza-se uma análise estrutural para forçar a planificação. Este procedimento consiste em gerar um sub-modelo de elementos finitos extraindo da malha da estrutura os elementos correspondentes à peça. A cada uma das peças (com a forma e tensão inicial) é imposto um campo de deslocamentos que anula a coordenada vertical de cada um dos nós. No final do processo é necessário verificar se os comprimentos dos contornos de cada peça são compatíveis (Moncrieff [35]). No entanto, no caso de superfícies que tenham um triângulo vertical, este pode não ser o melhor plano, uma vez que a superfície deixa de ser função da coordenada z. Deste modo, é importante poder definir o plano de referência com mais generalidade, sendo que deve-se também eliminar a labilidade da superfície em relação ao plano de referência, vinculando alguns graus de liberdade em x e y.

• Planificação geométrica

Se a faixa a ser planificada tiver apenas um triângulo na largura, esses triângulos podem ser rebatidos sucessivamente para um único plano. Deste modo, inicia-se o processo admitindo que o primeiro triângulo se encontra neste plano, o que tem como consequência directa que dois nós do segundo triângulo também se encontrem neste plano. Assim, o problema reside em encontrar as coordenadas do terceiro nó, neste plano, que preserve o comprimento dos lados do triângulo que convergem para este terceiro nó. Este processo é repetido para todos os elementos da membrana em análise. Uma vez que o material se encontra esticado na configuração espacial, é importante reduzir os comprimentos, proporcionalmente à deformação medida ao longo deste lado (Barnes [4], Moncrieff [35], Pauletti [49].

Em geral, os métodos empregues para gerar modelos de corte são baseados em modelos físicos, modelos geométricos e modelos por equilíbrio. Estes modelos encontram-se descritos em Grundig [20], Moncrieff [35], Oliveira [40], Oliveira [41], Otto [42] e Pauletti [49].

3.6.3. Resposta às solicitações

Estabelecida a forma de equilíbrio inicial correspondente à resposta da estrutura de membrana face ao pré-esforço aplicado, e possivelmente ao peso próprio, deve proceder-se ao estudo do comportamento da estrutura sujeita a uma variedade de carregamentos para garantir que a estrutura possa suportar todas as solicitações que encontrará em serviço, sem ocorrência de tensões de compressão. As acções usualmente consideradas são a sobrecarga concentrada, o peso próprio, a pressão interna (no caso de estruturas pneumáticas), o carregamento da neve e a pressão de vento. O peso próprio é um carregamento intrínseco à própria existência do material, sendo a sua contribuição para o campo de tensões iniciais geralmente desprezável. Por outro lado, o pré-esforço inicial a que a membrana está sujeita é fundamental, pois confere-lhe forma e rigidez.

A falta de rigidez torna as estruturas tensionadas susceptíveis a grandes variações geométricas, mesmo sob carregamentos moderados. Em alguns casos, os próprios carregamentos são dependentes da deformação. É o caso do carregamento provocado pela acção do vento, que permanece sempre normal à superfície deformada. Torna-se necessário proceder-se a uma análise não-linear para incluir estes efeitos na análise de resposta aos carregamentos. Como critérios de aceitação para as análises de carregamento devem-se considerar a segurança mecânica a curto e longo prazo, a limitação das vibrações e a perda de pré-esforço, o que pode levar ao enrugamento da membrana.

Para a análise de uma membrana aos carregamentos podem ser efectuadas análises estáticas ou dinâmicas. A descrição destes métodos pode ser consultada em Pauletti [49].

Capítulo 4. Método de Galerkin livre de elementos

4.1. Introdução ao EFGM

4.1.1. Método de resolução

As formulações sem malha apresentam-se promissoras na medida em que não requerem a definição de uma malha de elementos como é usual na técnica mais corrente na análise de estruturas, que é, sem dúvida, o método dos elementos finitos nas suas diversas formas. Esta independência da malha é conseguida por força da utilização de funções de aproximação que não têm que ser definidas em subdomínios pré-definidos (como acontece nas formulações clássicas de elementos finitos), podendo antes ser definidas globalmente (como na técnica de Trefftz) ou mesmo localmente de uma forma não estruturada, como na formulação implícita no método de Galerkin livre de elementos (EFGM) adoptada neste trabalho.

Neste método são assim definidas funções de aproximação e funções de peso nodais (estas últimas definindo um domínio de influência nodal) as quais evitam o uso de elementos.

O método dos elementos finitos (FEM) e o método livre de elementos de Galerkin (EFGM) diferem na fase da discretização geométrica e na criação das funções de forma.

No FEM as funções de forma são criadas usando elementos, sendo iguais para elementos do mesmo tipo. Tal situação leva a uma simplificação do processo, pois se para o mesmo elemento se tem as mesmas funções de forma, estas podem ser determinadas mesmo antes da análise começar.

No EFGM a construção das funções de aproximação é efectuada durante o processo de análise, pois são constituídas com base num ponto de interesse e nos nós que estão dentro do domínio nodal desse mesmo ponto de interesse. A mudança de ponto de interesse tem como consequência a mudança do domínio nodal e a mudança da função de aproximação. Passada a fase de discretização geométrica e da construção das funções de aproximação todo o processo é semelhante ao método dos elementos finitos.

Um aspecto que pode ser visto como uma desvantagem do EFGM reside no facto de em cada ponto ao basear-se nos nós vizinhos para gerar uma função de aproximação, pode estar a basear-se em nós que não o influenciam directamente. Um nó pode estar dentro do domínio de influência de um dado ponto de interesse e no entanto nem fazer parte do mesmo corpo havendo, por isso, que ter algum cuidado (Dolbow[16]).

No esquema seguinte é possível observar o processo de solução de um problema recorrendo ao método dos elementos finitos e ao método de Galerkin livre de elementos.

Figura 4.1: Esquema do processo de solução do FEM e do EFGM

4.1.2. Geometria do problema

A geometria de uma peça ou de uma estrutura pode ser extremamente complexa. No FEM essa geometria é modelada utilizando elementos triangulares, quadriláteros, etc. para domínios bidimensionais. As curvas e as formas geométricas mais complexas são aproximadas pelos lados desses elementos, ou seja, por rectas, parábolas, etc.

Figura 4.2: Discretização geométrica – (a) FEM, elementos triangulares e quadriláteros; (b) EFGM, nós espalhados aleatoriamente

A precisão com que se representam as curvas depende do número e tipo de elementos usados, ou seja, do nível de discretização. No EFGM a fronteira é representada por nós, sendo que qualquer ponto situado entre dois nós da fronteira pode ser interpolado utilizando as funções de aproximação. A curva da fronteira é aproximada de forma muito precisa pois as funções de aproximação são criadas usando um domínio nodal que é diferente para cada nó. A malha nodal, que discretiza o domínio do problema, pode ser aleatória ou regular.

4.1.3. Funções de aproximação

Enquanto no FEM as funções de forma podem ser predefinidas mesmo antes do programa iniciar, no EFGM a função de aproximação de cada ponto de interesse depende do número e do posicionamento dos nós que o rodeia. Neste trabalho, utilizou-se o método dos mínimos quadrados móveis (MLS – Moving Least Squares) para obter as funções de aproximação do EFGM. Este é, de todos os métodos usados actualmente no EFGM, o mais estudado e utilizado. O maior inconveniente do MLS é que as funções de aproximação por ele geradas não possuem a propriedade de "delta Kronecker", como acontece no FEM, o que causa dificuldade na imposição das condições de fronteira do tipo essencial.

4.1.4. Aplicação de condições de fronteira cinemáticas e estáticas

Num problema complexo, tal como no FEM, a aplicação das condições de fronteira tem de passar por um processo de análise e escolha bem cuidada do tipo e das regiões onde vão ser aplicadas. Quer seja um ou vários os pontos sujeitos a imposições de condições de fronteira do tipo estático ou cinemático, os processos de aplicação são muito semelhantes aos utilizados no FEM, com algumas modificações inerentes ao EFGM. Estas modificações têm de ser aplicadas quando se trata do EFGM, uma vez que as funções de aproximação, quando construídas pelo método dos mínimos quadrados, não possuem a já referida propriedade de "delta Kronecker".

Na aplicação do EFGM, o método dos multiplicadores de Lagrange e o método da Penalidade são os principais métodos utilizados na imposição das condições de fronteira cinemáticas.

4.1.5. Sistema de equações

O sistema de equações da "forma forte" é o próprio sistema de equações diferenciais que governam o fenómeno em estudo. A "forma fraca" permite uma menor consistência das funções de aproximação adoptadas. O ideal seria obter a solução exacta para um sistema de equações a partir da "forma forte", o que é extremamente difícil para a generalidade dos problemas de engenharia. Formulações baseadas nas "formas fracas" apresentam um comportamento estável (do sistema de equações algébricas), benificiando a qualidade das soluções obtidas, razão pela qual é usual a adopção de uma formulação deste tipo.

Para efeitos de estabelecimento do sistema de equações de equilíbrio no âmbito do EFGM considerou-se uma forma fraca baseada no princípio dos trabalhos virtuais (PTV). Os resultados assim obtidos são mais estáveis quando comparados com a técnica de colocação, onde se aplicam as designadas "formas fortes".

4.1.6. Integração numérica

Os métodos sem malha são métodos cuja malha nodal pode ser construída aleatoriamente, sem necessidade de regularidade ou uniformidade. No entanto, é necessário proceder-se à integração das equações da "forma fraca" que regem o fenómeno em estudo, pelo que é necessário uma malha regular de integração. Essa malha pode ser da dimensão do domínio em estudo ou maior sem grande prejuízo para os resultados finais.

Figura 4.3: Exemplos de esquemas de integrações numéricas no EFGM (a) Malha regular de células de integração do mesmo tamanho do elemento a estudar (b) Malha de integração maior que o elemento a estudar, solução a aplicar no caso de geometria complexas (c) Aspecto de um diagrama de Voronoi para o caso da integração nodal

Tal como no método dos elementos finitos, é usual recorrer-se a malhas de integração de Gauss. Uma outra forma de integrar as equações é aplicando a integração nodal, através do uso de diagramas de Voronoi no cálculo das áreas de peso de cada um dos nós. Neste trabalho foi utilizada a integração gaussiana.

Neste tipo de integração é bom ter-se presente que a escolha do número de pontos de quadratura que formam a malha de integração em relação ao número de nós de todo o problema ainda é um tema de grande discussão no EFGM. Vários trabalhos tentaram determinar uma relação óptima entre o número de pontos de Gauss dentro de uma determinada célula de integração e o número de nós dentro dessa mesma célula. A escolha da malha de fundo acaba por influenciar a precisão do resultado final. Belytschko [8] propõe que em cada célula de integração com $n_0 \times n_0$ pontos de quadratura exista a seguinte relação:

$$n_{\mathcal{Q}} \cong \sqrt{n_c} + 2 \tag{4.1}$$

sendo n_c o número de nós dentro da célula. Porém, esta relação só é válida para o caso do problema bidimensional, sendo que esta varia bastante com o tipo de problema.

4.1.7. Dimensão e forma do domínio de influência

A precisão da aproximação depende do número de nós dentro do domínio de influência do ponto de interesse, ou seja, do ponto de quadratura de Gauss x_Q . Assim, é necessário garantir que o domínio de influência tenha uma dimensão razoável (número suficiente de pontos) de modo a permitir a obtenção de bons resultados. É bom ter presente que suportes pequenos levam a problemas na construção das funções de aproximação (por falta de nós) e suportes muito grandes levam a problemas de tempo de processamento e consequentemente de perda de eficiência do método (Dolbow[16]). Assim, sendo o domínio de influência sensível ao tipo de função de aproximação utilizada e à malha de integração, para um número mínimo de nós n_d contidos no domínio de influência nodal, procura-se para cada nó os n_d nós mais próximos do nó em estudo, sendo que o último nó a ser obtido estará a uma distância d_m do nó em estudo. O domínio de influência terá então um comprimento $2.0 \times d_{mi}$ centrado no nó *i*, no caso unidimensional. Para o caso bidimensional e domínios de influência circulares, estes terão um raio de d_{mi} centrado no nó *i*. No caso de se utilizarem domínios quadrangulares estes terão os lados com comprimento $2.0 \times d_{mi}$, também centrados no nó *i* (Figura 4.4 a). Neste trabalho foram utilizados domínios quadrangulares.

É de notar que o número de nós n_d depende da função de aproximação e do tipo de malha de integração, sendo que cada nó do problema terá o seu próprio domínio de influência.

Outro aspecto importante é o "domínio de influência" dos pontos de interesse. Um ponto de interesse pode não ser um nó, podendo apenas ser um ponto de integração. Numa primeira análise pode-se ser tentado a calcular também para os potenciais pontos de interesse o seu domínio de influência o que conduziria a um custo computacional demasiado elevado e completamente inútil, pois uma vez calculados os domínios de influência nodais os domínios de influência de qualquer ponto de interesse já estão indirectamente calculados (Figura 4.4 b).

Figura 4.4: (a) Obtenção do domínio nodal para o caso unidimensional ($n_d = 5$) e para o caso bidimensional ($n_d = 20$) (b) Determinação indirecta do domínio de influência do ponto de interesse x_Q

Se o ponto de interesse x_Q está dentro do domínio de influência do nó 1 e 2 é porque estes fazem parte do seu próprio domínio de influência, bastando portanto comparar as distâncias entre o ponto de interesse e os nós com os raios do domínio de influência dos nós.

4.1.8. Procedimento do EFGM

Os passos básicos no EFGM com vista à resolução do problema são:

1 - Representação do domínio do problema

Nesta fase, um corpo é discretizado por um conjunto de nós espalhados de forma aleatória ou regular no seu domínio e ao longo das suas fronteiras. Especificam-se quais os nós sujeitos a condições de fronteira a impôr e quais estão sujeitos a um campo de forças. Nos locais onde se pretende uma maior precisão e onde o gradiente das deformações é maior deve aumentar-se o número de nós. Tal como se indica na Figura 4.5, esses locais são as zonas de descontinuidade física e as fronteiras onde existem graus de liberdade condicionados ou zonas de aplicação de cargas.

Figura 4.5: Densidade da malha nodal a variar mediante a descontinuidade física e a imposição de condições de fronteira ou de carga

2 - Aproximação do campo de variáveis

No EFGM não há elementos e por conseguinte a variável em estudo em qualquer ponto é aproximada (e não interpolada) com os valores do campo de variáveis dos nós dentro do seu domínio de influência. Sendo a variável em estudo o deslocamento u pode-se dizer que o valor de u no ponto $x \in u(x)$,

$$u(x) = \sum_{i=1}^{n} \phi_i(x) u_i$$
 (4.2)

em que:

n - número de nós dentro do suporte d_{mi} do ponto x;

 u_i - valor da variável, neste caso do deslocamento, no nó i;

 $\phi_i(x)$ - valor da função de aproximação no nó i, determinada usando os n nós dentro do suporte

É o domínio de influência do ponto x que determina o número de nós que se usam para determinar a função de aproximação para o ponto x.

O domínio de influência, por uma questão de simplicidade, pode ter uma área constante para todos os nós do campo nodal no domínio do problema, o que funciona muito bem para problemas simples de figuras geométricas sem descontinuidades e sem fronteiras irregulares. No entanto, para os problemas com zonas de singularidades, o número de nós nessas zonas aumenta drasticamente. Assim, se o domínio de influência se mantiver constante ao longo de todo o problema, o número de nós dentro do domínio de influência dessas zonas de grande concentração nodal vai ser muito maior do que nas zonas onde os nós são esparsos (Figura 4.6). Deste modo, uma má escolha do suporte pode resultar em erros na construção das funções de aproximação podendo conduzir a resultados incorrectos.

Figura 4.6: (a) Exemplos de formas que os domínios de influência podem tomar; (b) Comparação entre o número de nós contido num domínio de influência de um ponto numa zona esparsa e numa zona de grande densidade nodal, $n_1 << n_2$

Como tal o melhor é basear o domínio de influência num número mínimo de nós que devem estar contidos no domínio e não numa dimensão fixa ao longo de todo o problema independente da discretização nodal. É de notar que a aproximação da equação (4.2) é efectuada para todas as componentes do campo de variáveis no mesmo domínio de influência. No caso bidimensional, o campo de deslocamentos tem duas componentes $u \, e \, v$, como tal:

$$u(x) = \sum_{i=1}^{n} \phi_i(x) u_i \quad v(x) = \sum_{i=1}^{n} \phi_i(x) v_i$$
(4.3)

A mesma função de forma é usada para todas as componentes do campo de deslocamentos no domínio de influência desse mesmo ponto.

3 - Sistema de equações

O sistema de equações é obtido considerando o método dos resíduos pesados de Galerkin aplicado às equações diferenciais representativas do problema. Estas equações são escritas na forma matricial em relação a cada um dos nós e depois assembladas numa matriz global que representa o sistema de equações do problema.

Uma vez que o método não fornece directamente o campo de deslocamentos, o campo dos parâmetros nodais de deslocamentos é obtido em primeiro lugar. Seguidamente, pode obterse a partir deste as tensões em qualquer nó ou ponto.

Qualquer método de resolução de equações lineares, como o método da eliminação de Gauss, serve para resolver o sistema de equações. No entanto, é conveniente usar um método directo e não iterativo, uma vez que este último aumenta ainda mais o custo computacional da triangularização da matriz de rigidez, devido à diferença de grandeza de valores da própria matriz de rigidez. Um outro aspecto a considerar na resolução do sistema de equações é o facto da matriz de rigidez apenas ser uma matriz bandeada e simétrica nos casos em que se tem uma malha regular de nós. Nos casos das malhas irregulares a matriz continua a ser simétrica mas deixa de ser em banda, o que aumenta ainda mais o custo computacional da triangularização. De qualquer forma o tempo dispendido na triangularização é sempre mais elevado que no FEM. No FEM para o elemento de nove nós tem-se, no caso bidimensional, dois graus de liberdade por nó, o que se traduz numa matriz de rigidez local de dimensões 18×18. No EFGM, nove nós dentro do domínio de influência é pouco e o normal é cerca de 20 nós, produzindo-se uma matriz de rigidez local de dimensões 40×40. Deste modo, constata-se que mesmo conseguindo uma matriz em banda com uma malha regular bem numerada, o custo computacional tende sempre a ser mais elevado no caso do EFGM.

4.2. Formulação do método de Galerkin livre de elementos

A formulação teórica apresentada neste ponto encontra-se descrita com maior detalhe em Belytschko [8] e Dolbow [16].

4.2.1. Formulação fraca de Galerkin

A "forma fraca" de Galerkin é uma forma variacional baseada num princípio energético. De todas as configurações referentes aos deslocamentos que respeitem as condições de compatibilidade e as condições de fronteira cinemáticas (deslocamentos prescritos) a configuração que corresponde à solução real e correcta é a que minimiza o funcional Lagrangeano, L, definido por:

$$L = T - \pi_s + W_f \tag{4.4}$$

sendo T a energia cinética, π_s a energia de deformação e W_f o trabalho realizado pelas forças externas. A energia cinética define-se do seguinte modo:

$$T = \frac{1}{2} \int_{\Omega} \rho u_t^T u_t d\Omega$$
(4.5)

onde Ω é o volume total do sólido, ρ a massa volúmica e u_t a primeira derivada do campo de deslocamentos em ordem ao tempo, ou seja, a velocidade. A energia de deformação para sólidos e estuturas de materiais elásticos é expressa por:

$$\pi_s = \frac{1}{2} \int_{\Omega} \varepsilon^T \sigma d\Omega \tag{4.6}$$

sendo ε a deformação do corpo e σ a tensão instalada. O trabalho realizado pelas forças externas é obtido através da seguinte expressão:

$$W_f = \int_{\Omega} u^T b \ d\Omega + \int_{T_t} u^T \bar{t} \ dT \tag{4.7}$$

onde *b* representa as forças de volume aplicadas ao corpo e T_t representa a fronteira do sólido na qual são aplicadas as forças t.

Substituindo na equação (4.4) as equações (4.5), (4.6) e (4.7) obtém-se a seguinte expressão para o funcional Lagrangeano L:

$$L = -\frac{1}{2} \int_{\Omega} \varepsilon^{T} \sigma \, d\Omega + \int_{\Omega} u^{T} b \, d\Omega + \int_{T_{t}} u^{T} \bar{t} \, d\Gamma + \frac{1}{2} \int_{\Omega} \rho u_{t}^{T} u_{t} \, d\Omega$$
(4.8)

Para resolver um problema utilizando a forma fraca de Galerkin procede-se da seguinte forma:

- 1. Constroem-se as funções de aproximação de modo a aproximar o campo de variáveis usando os seus valores nos nós no domínio do problema;
- 2. Calcula-se a energia cinética, a energia de deformação e o trabalho realizado pelas forças externas, referentes à aproximação do campo de variáveis;
- 3. Minimiza-se o funcional, integra-se por partes e efectua-se a integração espacial e temporal (t_2 instante final e t_1 instante inicial) obtendo-se o conjunto de equações algébricas que, após resolvido, fornece o campo de variáveis.

$$\delta \int_{t_1}^{t_2} L \, dt = 0 \tag{4.9}$$

Efectuando este procedimento (descrito em Belinha [7]), obtém-se a forma fraca de Galerkin:

$$\int_{\Omega} \delta \varepsilon^{T} \sigma \, d\Omega - \int_{\Omega} \delta u^{T} b \, d\Omega - \int_{T_{t}} \delta u^{T} \bar{t} \, d\Gamma + \rho \int_{\Omega} \delta u^{T} \frac{\partial^{2} u}{\partial t^{2}} d\Omega = 0$$
(4.10)

No caso de problemas estáticos a última parcela desaparece, obtendo-se a seguinte expressão:

$$\int_{\Omega} \delta \varepsilon^{T} \sigma \, d\Omega - \int_{\Omega} \delta u^{T} b \, d\Omega - \int_{T_{t}} \delta u^{T} \bar{t} \, d\Gamma = 0 \tag{4.11}$$

Na equação (4.10) exprime-se o Princípio dos Trabalhos Virtuais em que um corpo sólido está em equilíbrio se o trabalho das forças externas for igual ao trabalho das forças internas quando o corpo se encontra sujeito a um deslocamento virtual.

Usando as relações tensão/deformação e as deformações/deslocamentos pode escrever-se a equação (4.11) explicitamente em função do vector dos deslocamentos u:

$$\int_{\Omega} \delta(Lu)^{T} c(Lu) d\Omega - \int_{\Omega} \delta u^{T} b \, d\Omega - \int_{T_{t}} \delta u^{T} \bar{t} \, d\Gamma = 0$$
(4.12)

A equação anterior expressa a forma fraca de Galerkin escrita em função dos deslocamentos para o caso do problema estático. Esta equação tem como vantagem não ser necessária a integração por partes de qualquer dos termos. O sistema de equações discretizado pode ser derivado facilmente usando a aproximação do campo de deslocamentos.

- Assim, para a obtenção do campo de deslocamentos, procede-se da seguinte forma:
- 1. Aproxima-se o deslocamento num ponto usando as funções de aproximação e os parâmetros do deslocamento nodal dos nós contidos no domínio desse ponto;
- 2. Utiliza-se a equação (4.12) que conduz a um conjunto de equações algébricas;
- 3. Resolvem-se as equações algébricas e obtém-se os valores do campo de parâmetros nodais do deslocamento para os nós do domínio do problema;
- 4. Aplica-se a seguinte expressão para se obter o campo dos deslocamentos,

$$u = \sum_{j}^{n_{t}} \sum_{i}^{n} \phi_{i}(x_{j}) u_{i}^{h}$$
(4.13)

onde n_i é o número de nós de todo o problema, n é o número de nós no suporte do nó i, $\phi_i(x_j)$ é o valor da função de forma no nó i em relação ao nó j, u é o campo de deslocamentos e u_i^h é o campo de parâmetros nodais do deslocamento.

4.2.2. Imposição das condições de fronteira na forma fraca de Galerkin

Nos casos em que o campo de variáveis aproximado não satisfaz em algumas zonas do domínio do problema as condições de compatibilidade ou as condições de fronteira tem de alterar-se a forma fraca de Galerkin de modo a ter em conta este tipo de situações. Considerando o conjunto de k condições que o campo de variáveis não consegue satisfazer,

$$C(u) = \{C_1(u) \ C_2(u) \ \dots \ C_k(u)\} \text{ em } \Omega$$
 (4.14)

Dois métodos são frequentemente usados neste tipo de problemas: o método dos multiplicadores de Lagrange e o método da Penalidade.

4.2.2.1. Método dos multiplicadores de Lagrange - MML

O método dos multiplicadores de Lagrange (MML) pode ser apresentado na forma do funcional Lagrangeano acrescentado,

$$\delta \int_{t_1}^{t_2} \widetilde{L}(u) dt = 0 \tag{4.15}$$

o que implica que os multiplicadores de Lagrange sejam incógnitas. No caso da restrição de deslocamentos, estes multiplicadores traduzem forças de reacção. Este método provoca um aumento do número de incógnitas do problema, passando de $v \times n$ para $v \times n + k$, sendo n o número de nós, v o número de variáveis a estudar por nó e k o número de multiplicadores de Lagrange.

Desenvolvendo a equação anterior obtém-se a seguinte expressão para o caso de um problema estático:

$$\int_{\Omega} \delta(Lu)^T c(Lu) d\Omega - \int_{\Omega} \delta u^T b \ d\Omega - \int_{T_t} \delta u^T \bar{t} \ d\Gamma - \int_{\Omega} \delta \lambda^T C(u) d\Omega - \int_{\Omega} \lambda^T \delta C(u) \ d\Omega = 0 \ (4.16)$$

4.2.2.2. Método da Penalidade - MP

Tendo por base a equação (4.14) constrói-se o funcional:

$$C^{T} \alpha C = \alpha_{1} C_{1}^{2} + \alpha_{2} C_{2}^{2} + \dots + \alpha_{k} C_{k}^{2}$$
(4.17)

sendo que α é a matriz diagonal definida por:

$$\alpha_{ij} = \alpha \times \begin{cases} 1 & para & i = j \\ 0 & para & i \neq j \end{cases}$$
(4.18)

onde α é um número real e α_{11} , α_{22} ,..., α_{kk} são os chamados factores de penalidade. Usualmente estes factores são números cuja ordem de grandeza é muito superior à de qualquer elemento da matriz de rigidez global construída pela forma fraca de Galerkin sem imposições. Em qualquer caso a forma quadrática $C^T \alpha C$ será sempre não negativa, sendo apenas nula se todas as condições na equação (4.14) estiverem satisfeitas. Assim, a condição que garante o mínimo do funcional $C^T \alpha C$ é escrita do seguinte modo:

$$\delta(C^T \alpha C) = 0 \tag{4.19}$$

Desenvolvendo a expressão anterior obtém-se:

$$\delta(C^T \alpha C) = \delta C^T \alpha C + C^T \alpha \ \delta C = 2 \times \delta C^T \alpha C = 2 \times C^T \alpha \delta C = 0$$
(4.20)

O novo funcional Lagrangeano a minimizar é dado pela seguinte expressão:

$$\widetilde{L}(u) = L(u) + \frac{1}{2} \int_{\Omega} \delta(C^T \alpha C) d\Omega = 0$$
(4.21)

Enquanto a escolha de um número muito grande leva a problemas numéricos, a escolha de um número muito pequeno leva a que as condições não sejam satisfeitas na totalidade. Zienkiewicz [67] sugeriu o uso de uma expressão para o caso do FEM que pode muito bem ser aplicada ao EFGM:

$$\alpha = 10^{EXP} \times (\text{máximo elemento da diagonal da matriz de rigidez})$$
 (4.22)

em que o valor de EXP varia entre 4 e 13.

4.3. Funções de aproximação

A formulação teórica apresentada neste ponto encontra-se descrita com maior detalhe em Belytschko [8] e Dolbow [16].

4.3.1. Introdução às funções de aproximação

Ao contrário do FEM onde os elementos são predefinidos e as funções de aproximação apenas têm de garantir a conectividade entre um número limitado de nós correspondente ao número de nós do elemento, no EFGM existe a necessidade de se criarem funções de aproximação usando um conjunto de nós espalhados de forma arbitrária sem qualquer malha predefinida, que garantam a conectividade entre nós.

No EFGM o método para construir as funções de aproximação deve:

- ser flexível no que respeita à distribuição nodal;
- ser capaz de produzir funções de aproximação, no mínimo, com a ordem de continuidade requerida pela equação que rege o fenómeno;

- necessitar de domínios nodais muito menores que o domínio total do problema (consistência);
- ter um algoritmo de baixo custo computacional (eficiência);
- possuir propriedades que lhe confiram estabilidade e convergência de solução;
- originar aproximações compatíveis.

A compatibilidade refere-se à continuidade da aproximação nas fronteiras dos subdomínios usados na construção das funções de aproximação. Tanto a consistência como a compatibilidade afectam a precisão e a convergência dos resultados numéricos.

O EFGM usa a aproximação pelo método dos mínimos quadrados móveis (MLS) para construir as funções de aproximação. A consistência é assegurada pelo uso de funções de base completas até à ordem desejada ou mesmo incluindo funções específicas (enriquecimento).

4.3.2. Aproximação pelo método dos mínimos quadrados móveis (MLS)

As grandes vantagens deste método resultam do facto do campo de variáveis aproximado ser suave e contínuo em todo o domínio do problema e de ser capaz de produzir uma aproximação com a ordem de consistência desejada. A aproximação pelo MLS é construída a partir de três componentes:

- 1. Uma função de peso de suporte compacto associado a cada nó;
- 2. Uma base, usualmente um polinómio;
- 3. Um conjunto de coeficientes dependentes da posição de cada nó.

Convém dar especial atenção à função de peso, uma vez que a sua continuidade condiciona a continuidade da aproximação. A aproximação herda sempre a continuidade da função de peso e não a da base polinomial.

Considerando u(x) a função do campo de variáveis no domínio Ω , a aproximação de $u^h(x)$ será u(x) no ponto x. Esta aproximação pode ser um polinómio com m monómios e coeficientes não constantes, ou seja,

$$u^{h}(x) = a_{1}(x)p_{1}(x) + a_{2}(x)p_{2}(x) + \dots + a_{m}(x)p_{m}(x)$$
(4.23)

sendo:

 $a(x) = \{a_1(x), a_2(x), \dots, a_m(x)\} - \text{vector dos coeficientes}$ $p(x) = \{p_1(x), p_2(x), \dots, p_m(x)\} - \text{vector dos polinómios}$

É de notar que m representa o número de monómios e não o grau do polinómio total usado como base.

Para o caso unidimensional:
$$x = \{x\}$$
Para o caso bidimensional:
 $x = \{x, y\}$ $a(x) = \{a_1(x), a_2(x), \dots a_m(x)\}$ $a(x) = \{a_1(x, y), a_2(x, y), \dots a_m(x, y)\}$ $p(x) = \{1, x, x^2, \dots, x^{m-1}\}$ $p(x) = \{1, x, y, x^2, xy, y^2, \dots\}$

A equação (4.23) pode escrever-se do seguinte modo:

$$u^{h}(x) = a_{1}(x)p_{1}(x) + a_{2}(x)p_{2}(x) + \dots + a_{m}(x)p_{m}(x)$$
(4.24)

A cada nó corresponde um parâmetro nodal u_I representando a função u(x) nesse ponto, sendo em regra geral $u_I \neq u(x_I)$.

Figura 4.7: Diferença entre os valores discretos e a função de aproximação para um dado nó em x_1

Dado um conjunto de *n* valores nodais do campo de variáveis $u_1, u_2, ..., u_n$, e o respectivo conjunto de nós $x_1, x_2, ..., x_n$, que pertencem ao domínio de influência do nó de interesse, pode usar-se a equação (4.24) para calcular os valores aproximados do campo de variáveis para esses nós.

$$u^{h}(x, x_{I}) = p^{T}(x_{I})a(x)$$
 para $I = 1, 2, ..., n$ (4.25)

Construindo-se uma função de mínimos quadrados usando os valores aproximados do campo de variáveis e os parâmetros nodais:

$$J = \sum_{I=1}^{n} w(x - x_I) [u_L^h(x_I, x) - u_I]^2 = \sum_{I=1}^{n} w(x - x_I) [p^T(x_I)a(x) - u_I]^2 \quad (4.26)$$

A função de peso $w(x - x_1)$ tem duas funções importantes:

- Atribuir pesos aos resíduos dos diferentes nós no domínio de influência do ponto de Gauss. É escolhida de tal forma que quanto mais afastada do ponto de Gauss menor é o peso atribuído ao resíduo desse nó.
- Garantir a entrada e saída suave dos nós do domínio de influência do ponto de interesse. É esta função que garante a propriedade de compatibilidade das funções de aproximação pelo MLS.

Os coeficientes não constantes a(x) são obtidos minimizando a norma quadrada de J em ordem a a(x). Assim:

$$\frac{dJ}{da} = 0 \tag{4.27}$$

Desenvolvendo a expressão anterior:

$$J = \sum_{I=1}^{n} w(x - x_{I}) [u_{L}^{h}(x_{I}, x) - u_{I}]^{2} =$$

$$\sum_{I=1}^{n} w(x - x_{I}) [(p^{T}(x_{I})a(x))(p^{T}(x_{I})a(x)) - 2 \times u_{I}(p^{T}(x_{I})a(x)) + u_{I}^{2}]$$
(4.28)
Derivando a expressão anterior em ordem a a(x):

$$\frac{\partial J}{\partial a} = \sum_{I}^{n} w(x - x_{I}) \Big[2 \times (p^{T}(x_{I})a(x))p^{T}(x_{I}) - 2 \times p^{T}(x_{I})u_{I} \Big] = 0 \qquad (4.29)$$

Sabendo que $p^{T}(x_{I})a(x)$ é um escalar, a equação (4.29) pode ser escrita sem prejuízo para o resultado final, do seguinte modo:

$$\frac{\partial J}{\partial a} = \sum_{I}^{n} w(x - x_{I}) \Big[(a^{T}(x) p(x_{I})) p^{T}(x_{I}) - p^{T}(x_{I}) u_{I} \Big] = 0$$
(4.30)

ou seja,

$$\sum_{I}^{n} w(x - x_{I})(a^{T}(x)p(x_{I}))p^{T}(x_{I}) = \sum_{I}^{n} w(x - x_{I})p^{T}(x_{I})u_{I}$$
(4.31)

$$\sum_{I}^{n} w(x - x_{I}) p(x_{I}) p^{T}(x_{I}) a(x) = \sum_{I}^{n} w(x - x_{I}) p^{T}(x_{I}) u_{I}$$
(4.32)

Uma vez que a(x) não depende de x_i , pode colocar-se fora do somatório:

$$\left[\sum_{I}^{n} w(x-x_{I})p(x_{I})p^{T}(x_{I})\right]a(x) = \sum_{I}^{n} w(x-x_{I})p^{T}(x_{I})u_{I}$$
(4.33)

Designando por:

$$A(x) = \sum_{i}^{n} w(x - x_{i}) p(x_{i}) p^{T}(x_{i})$$
(4.34)

$$B(x) = \sum_{i}^{n} w(x - x_{i}) p^{T}(x_{i})$$
(4.35)

$$u = \sum_{I}^{n} u_{I} \tag{4.36}$$

pode escrever-se,

$$A(x)a(x) = B(x)u \tag{4.37}$$

ou de forma mais conveniente,

$$a(x) = A(x)^{-1}B(x)u$$
(4.38)

Escrevendo $A(x) \in B(x)$ na forma matricial, no caso unidimensional, com base linear, p(x) = [1 x]:

$$A(x) = \sum_{i}^{n} w(x - x_{i}) p(x_{i}) p^{T}(x_{i}) = w(x - x_{i}) \begin{bmatrix} 1 & x_{1} \\ x_{1} & x_{1}^{2} \end{bmatrix} + w(x - x_{2}) \begin{bmatrix} 1 & x_{2} \\ x_{2} & x_{2}^{2} \end{bmatrix} + \dots + w(x - x_{n}) \begin{bmatrix} 1 & x_{n} \\ x_{n} & x_{n}^{2} \end{bmatrix}$$
(4.39)

Para o caso bidimensional com base linear, $p(x) = \begin{bmatrix} 1 & x \end{bmatrix}$, pode escrever-se:

$$A(x) = w(x - x_{I}) \begin{bmatrix} 1 & x_{1} & y_{1} \\ x_{1} & x_{1}^{2} & x_{1}y_{1} \\ y_{1} & x_{1}y_{1} & y_{1}^{2} \end{bmatrix} + \dots + w(x - x_{n}) \begin{bmatrix} 1 & x_{n} & y_{n} \\ x_{n} & x_{n}^{2} & x_{n}y_{n} \\ y_{n} & x_{n}y_{n} & y_{n}^{2} \end{bmatrix} (4.40)$$

Expandindo agora B(x) no caso unidimensional com base linear, p(x) = [1 x]:

$$B(x) = \sum_{I}^{n} w(x - x_{I}) p^{T}(x_{I}) = \begin{bmatrix} w(x - x_{I}) \begin{bmatrix} 1 \\ x_{1} \end{bmatrix}, w(x - x_{2}) \begin{bmatrix} 1 \\ x_{2} \end{bmatrix}, ..., w(x - x_{n}) \begin{bmatrix} 1 \\ x_{n} \end{bmatrix} \end{bmatrix}$$
(4.41)

Para o caso bidimensional com base linear, $p(x) = \begin{bmatrix} 1 & x \end{bmatrix}$, pode escrever-se:

$$B(x) = \begin{bmatrix} w(x - x_1) \begin{bmatrix} 1 \\ x_1 \\ y_1 \end{bmatrix}, w(x - x_2) \begin{bmatrix} 1 \\ x_2 \\ y_2 \end{bmatrix}, \dots, w(x - x_n) \begin{bmatrix} 1 \\ x_n \\ y_n \end{bmatrix} \end{bmatrix}$$
(4.42)

Aplicando a equação (4.38) à equação (4.24) obtém-se:

$$u^{h}(x) = \sum_{I}^{n} \sum_{j}^{m} p_{j}(x) \Big(A(x)^{-1} B(x) \Big)_{jI} u_{I}$$
(4.43)

ou simplesmente:

$$u^{h}(x) = \sum_{I}^{n} \phi_{I}(x) u_{I}$$
(4.44)

Sendo a função de aproximação $\phi_I(x)$:

$$\phi_I(x) = \sum_{j=1}^{m} p_j(x) (A(x)^{-1} B(x))_{jl} = p^T A^{-1} B_l$$
(4.45)

Um problema já mencionado quando se referiram os domínios de influência resulta do facto de no caso de n não ser suficientemente grande a matriz A ser singular e como tal, ser não-invertível. Assim, ao garantir-se $n \gg m$ obtém-se uma matriz A não singular.

A derivada da função de aproximação em ordem a x é obtida pela equação:

$$\phi_{I,x} = (p^T A^{-1} B_I)_{,x} = p^T_{,x} A^{-1} B_I + p^T (A^{-1})_{,x} B_I + p^T A^{-1} B_I_{,x}$$
(4.46)

sendo:

$$B_{I,x}(x) = \frac{dw}{dx}(x - x_{I})p(x_{I})$$
(4.47)

$$A^{-1}_{,x} = -A^{-1}A_{,x}A^{-1}$$
(4.48)

$$A_{,x} = \sum_{I}^{n} \frac{dw}{dx} (x - x_{I}) p(x_{I}) p^{T}(x_{I})$$
(4.49)

É de notar que as funções de aproximação e as suas derivadas não possuem a propriedade "delta Kronecker", $\phi_I(x_j) \neq \delta_{ij}$, motivo pelo qual estas não são denominadas de funções interpoladoras mas sim por funções de aproximação, o que leva a que as variáveis nodais sejam diferentes dos parâmetros nodais, $u_I \neq u(x_I)$. A aproximação do deslocamento no nó I depende do parâmetro nodal em I como também depende de u_1, u_2, \dots, u_n , ou seja, de todos os nós dentro do domínio de influência do nó I, patente na equação (4.44).

Esta particularidade das funções de aproximação pelo MLS faz com que a imposição das condições de fronteira cinemáticas seja mais complexa que no FEM.

4.3.2.1. Funções de peso

De uma forma geral, as funções de peso devem ser diferentes de zero sobre um domínio na vizinhança de x_I , que coincide com o domínio de influência do nó I, e zero fora deste. É a sobreposição destes domínios que garante a conectividade entre nós, podendo dizer-se que, nestas condições, a função de peso tem um suporte compacto. A função deverá ter uma forma de sino, ser positiva e crescer à medida que $||x - x_I||$ decresce. Além disso, é desejável que esta função seja suave, pois a sua continuidade será a continuidade da função de peso e não a da base polinomial usada.

4.3.2.2. Tipos e funções de peso

Considerando o raio r presente na formulação da função de peso como,

$$r = \frac{d_I}{dm_I} \tag{4.50}$$

sendo dm_I o raio do domínio de influência do nó I e d_I a distância entre o nó I e o nó dentro do seu domínio definido por:

$$d_I = \parallel x - x_I \parallel \tag{4.51}$$

A expressão (4.50) representa o raio normalizado, independente do tamanho do domínio de influência ou do tipo de malha. Na análise de estruturas de membrana, as funções de peso mais utilizadas são as splines cúbica e quártica.

• "Spline" Cúbica

$$w(x - x_{I}) \equiv w(r) = \begin{cases} \frac{2}{3} - 4r^{2} + 4r^{3} & r < 0.5 \\ \frac{4}{3} - 4r + 4r^{2} - \frac{4}{3}r^{3} & 0.5 < r \le 1.0 \\ 0 & r > 1.0 \end{cases}$$
(4.52)

A primeira derivada em ordem a x é escrita do seguinte modo:

$$\frac{\partial w(x-x_{I})}{\partial x} = \frac{\partial w(x-x_{I})}{\partial r} \frac{\partial r}{\partial x} = \frac{\partial w(x-x_{I})}{\partial r} \frac{\partial \left(\frac{\|x-x_{I}\|}{dm_{I}}\right)}{\partial x} = \frac{\partial w(x-x_{I})}{\partial r} \frac{\left(\frac{\|x-x_{I}\|}{\|x-x_{I}\|}\right)}{dm_{I}} \quad (4.53)$$

Através da expressão anterior pode escrever-se:

$$\frac{\partial w(x-x_I)}{\partial x} = \frac{\left(\frac{x-x_I}{\|x-x_I\|}\right)}{dm_I} \times \begin{cases} -8r+12r^2 & r < 0.5\\ -4+8r-4r^2 & 0.5 < r \le 1.0\\ 0 & r > 1.0 \end{cases}$$
(4.54)

A segunda derivada em ordem a x da "spline" cúbica é escrita do seguinte modo:

$$\frac{\partial^2 w(x - x_I)}{\partial x^2} = \frac{1}{dm_I^2} \begin{cases} -8 + 24r & r < 0.5\\ 8 - 8r & 0.5 < r \le 1.0\\ 0 & r > 1.0 \end{cases}$$
(4.55)

• "Spline" Quártica

$$w(x - x_{I}) \equiv w(r) = \begin{cases} 1 - 6r^{2} + 8r^{3} - 3r^{4} & r \le 1.0 \\ 0 & r > 1.0 \end{cases}$$
(4.56)

A primeira derivada em ordem a x é escrita do seguinte modo:

$$\frac{\partial w(x - x_I)}{\partial x} = \frac{\left(\frac{x - x_I}{\|x - x_I\|}\right)}{dm_I} \times \begin{cases} -12r + 24r^2 - 12r^3 & r \le 1.0\\ 0 & r > 1.0 \end{cases}$$
(4.57)

A segunda derivada em ordem a x é escrita do seguinte modo:

$$\frac{\partial^2 w(x - x_I)}{\partial x^2} = \frac{1}{dm_I^2} \begin{cases} -12 + 48r - 36r^2 & r \le 1.0 \\ 0 & r > 1.0 \end{cases}$$
(4.58)

Figura 4.8: Gráficos comparativos das "splines" cúbica e quártica e primeiras derivadas em ordem a x

Aplicando as funções de peso a casos em que se pretendem funções de aproximação numa aplicação bidimensional, sendo x = (x, y):

$$w(x - x_I) = w(x - x_I) \times w(y - y_I)$$
(4.59)

$$\frac{\partial w(x-x_I)}{\partial x} = \frac{\partial w(x-x_I)}{\partial x} \times w(y-y_I)$$
(4.60)

$$\frac{\partial w(x - x_I)}{\partial y} = w(x - x_I) \frac{\partial w(y - y_I)}{\partial y}$$
(4.61)

No que respeita às derivadas parciais de segunda ordem escreve-se:

$$\frac{\partial^2 w(x - x_I)}{\partial x^2} = \frac{\partial^2 w(x - x_I)}{\partial x^2} \times w(y - y_I)$$
(4.62)

$$\frac{\partial^2 w(x - x_I)}{\partial x \partial y} = \frac{\partial w(x - x_I)}{\partial x} \times \frac{\partial w(y - y_I)}{\partial y}$$
(4.63)

$$\frac{\partial^2 w(x - x_I)}{\partial y^2} = w(x - x_I) \times \frac{\partial^2 w(y - y_I)}{\partial y^2}$$
(4.64)

Capítulo 5. Formulação do EFGM para estruturas de membrana

Recentemente, a construção de estruturas de membrana tem aumentado de forma considerável. Embora com os meios computacionais disponíveis actualmente os engenheiros possam projectar estruturas cada vez mais complicadas pelo método dos elementos finitos, é gasto um considerável esforço na geração de malhas do modelo em análise. Nos últimos anos, tem vindo a ser considerada a adopção de métodos sem malha na resolução de problemas estruturais.

Neste capítulo apresenta-se uma formulação Lagrangeana total para a análise de estruturas de membrana com o método de Galerkin livre de elementos. Utilizando a técnica de mapeamento adoptada por Noguchi [37], a geometria tridimensional é transformada num espaço bidimensional sendo que as bases deste sistema são utilizadas na escrita das expressões das tensões e deformações na equação do princípio dos trabalhos virtuais. Assim, os nós da malha do método EFGM são gerados neste espaço bidimensional e as bases deste sistema de eixos são utilizadas no método dos mínimos quadrados móveis na interpolação do campo de deslocamentos.

Na fase de determinação da forma espacial da estrutura, os deslocamentos prescritos aplicados dão origem a grandes deslocamentos e deformações elevadas, sendo necessário considerar, na formulação não-linear geométrica, o tensor das deformações de Green.

5.1. Formulação variacional

Utilizando a formulação Lagrangeana total na escrita do tensor das deformações de Green-Lagrange, ${}_{o}{}^{t}E$, e do tensor das tensões de Piola-Kirchhoff, ${}_{o}{}^{t}S$, a equação do princípio dos trabalhos virtuais para um deslocamento virtual geometricamente admissível δu e para uma variação de δu designada por δ é dada pela seguinte expressão:

$$\int_{V} {}_{0}^{t} \sigma : \delta_{0}^{t} E \, dV = \int_{S_{t}} {}^{t} \widetilde{t} \cdot \delta u \, dS + \int_{V} \rho_{0} a \cdot \delta u \, dV$$
(5.1)

em que:

 $t \tilde{t}$ - vector de forças aplicadas na fronteira S_t

 ρ_0 – densidade do material

a - vector da aceleração

Neste trabalho desprezou-se o segundo termo do lado direito da equação (5.1).

Se o método dos multiplicadores de Lagrange for utilizado para impôr as condições de fronteira, a equação anterior é re-escrita do seguinte modo:

$$\int_{V} {}_{0}^{t} \sigma : \delta_{0}^{t} E \, dV - \int_{Su} \delta\lambda \cdot ({}^{t} u - {}^{t} \widetilde{u}) \, dS - \int_{Su} {}^{t} \lambda \cdot (\delta u) \, dS = \int_{S_{t}} {}^{t} \widetilde{t} \cdot \delta u \, dS \tag{5.2}$$

onde ' λ é o vector dos multiplicadores de Lagrange no instante de tempo t e ' \tilde{u} o vector dos deslocamentos na fronteira S_u .

Alternativamente, no caso de se utilizar o método da Penalidade para se impôr as condições de fronteira, a equação (5.1) é escrita do seguinte modo:

$$\int_{V} \int_{0}^{t} \sigma : \delta_{0}^{t} E \, dV + \int_{Su} \alpha \cdot ({}^{t} u - {}^{t} \widetilde{u}) \delta u \, dS = \int_{St} {}^{t} \widetilde{t} \cdot \delta u \, dS \tag{5.3}$$

sendo α o factor de penalidade.

Utilizando o método de Newton-Raphson para a resolução da sistema de equações não linear e considerando o método dos multiplicadores de Lagrange na imposição das condições de fronteira, a equação (5.2) é escrita do seguinte modo:

$$\left[\int_{V} \int_{0}^{t} \dot{\sigma} : \delta e \, dV + \int_{V} \int_{0}^{t} \sigma : (\delta \eta)^{\bullet} \, dV - \int_{Su} \delta \lambda \cdot t \, \dot{u} \, dS - \int_{Su} t \, \dot{\lambda} \cdot (\delta u) \, dS \right] \Delta t$$

$$\approx \int_{St} \int_{0}^{t+\Delta t} \tilde{t} \cdot \delta u \, dS + \int_{Su} \delta \lambda \cdot (t \, u - t + \Delta t) \, dS + \int_{Su} t \, \lambda \cdot \delta u \, dS - \int_{V} \int_{0}^{t} \sigma : \delta e \, dV$$
(5.4)

Utilizando o método de Newton-Raphson para a resolução da sistema de equações não linear e considerando o método da Penalidade para a imposição das condições de fronteira, a equação (5.3) é escrita do seguinte modo:

$$\begin{bmatrix} \int_{V} {}^{t}_{0} \dot{\sigma} : \delta e \, dV + \int_{V} {}^{t}_{0} \sigma : (\delta \eta)^{\bullet} \, dV + \alpha \int_{Su} {}^{t} \dot{u} \cdot \delta u \, dS \end{bmatrix} \Delta t$$

$$\approx \int_{St} {}^{t+\Delta t} \widetilde{t} \cdot \delta u \, dS - \alpha \int_{Su} ({}^{t} u - {}^{t+\Delta t} \widetilde{u}) \cdot \delta u \, dS - \int_{V} {}^{t}_{0} \sigma : \delta e \, dV$$
(5.5)

em que *e* e η representam a parte linear e não linear do tensor das deformações de Green, ${}_{0}^{t}E$, respectivamente.

$$\dot{e}_{ij} = \frac{1}{2} \left({}^{t}g_{i} \frac{\partial \dot{u}}{\partial r^{j}} + {}^{t}g_{j} \frac{\partial \dot{u}}{\partial r^{i}} \right)$$
(5.6)

$$(\delta \eta_{ij})^{\bullet} = \frac{1}{2} \left(\frac{\partial \delta u}{\partial r^{i}} \frac{\partial \dot{u}}{\partial r^{j}} + \frac{\partial \dot{u}}{\partial r^{i}} \frac{\partial \delta u}{\partial r^{j}} \right)$$
(5.7)

$$\delta e_{ij} = \frac{1}{2} \left({}^{t}g_{i} \frac{\partial \delta \dot{u}}{\partial r^{j}} + {}^{t}g_{j} \frac{\partial \delta \dot{u}}{\partial r^{i}} \right)$$
(5.8)

A imposição das condições de fronteira através do método dos multiplicadores de Lagrange pressupõe o aumento do número de graus de liberdade do problema, o que muitas vezes dificulta a resolução do sistema de equações não lineares pelo simples facto dos termos diagonais da matriz de rigidez correspondentes aos multiplicadores de Lagrange se tornarem nulos. O método da Penalidade é mais fácil de implementar computacionalmente uma vez que não são introduzidos novos graus de liberdade no sistema de equações, permitindo uma maior facilidade na convergência do método de Newton-Raphson (Noguchi [37]). Neste trabalho, utilizou-se o método da Penalidade na imposição das condições de fronteira cinemáticas.

5.2. Aproximação da geometria

Existem diversos modos para aproximar a geometria de uma membrana. Krysl [30] utiliza o método dos mínimos quadrados para a aproximação da geometria de diversas cascas, sendo este exactamente o mesmo conceito da utilização das funções de forma dos elementos finitos isoparamétricos. Neste trabalho, as superfícies de membrana analisadas têm continuidade C^1 podendo ser definidas através de expressões analíticas. É de notar que no caso de estruturas de membrana não constituídas por superfícies suaves, a continuidade C^1 não é satisfeita, o que impossibilita a aplicação deste método.

Neste trabalho, a aproximação da geometria foi efectuada de acordo com a utilização dos polinómios de Lagrange existentes na formulação dos elementos finitos isoparamétricos. Para a aplicação destes polinómios interpoladores devem ser definidas as coordenadas cartesianas de um número apropriado de pontos da membrana. A técnica utilizada neste trabalho, e utilizada por Noguchi [37], consiste num mapeamento da superfície de membrana tridimensional para um plano horizontal, utilizando-se uma transformação de coordenadas baseada nos polinómios de Lagrange (Figura 5.1).

Figura 5.1: Mapeamento da superfície curva

Figura 5.2: Geometria tridimensional da membrana

A posição do vector X da configuração inicial pode ser expressa como função explícita $f(r^1, r^2)$, sendo esta a função dos polinómios de Lagrange. Deste modo, a geometria da membrana é aproximada do seguinte modo:

$$X = \sum_{I=1}^{K} N_{I}(r_{1}, r_{2}) X_{I}$$
(5.9)

em que:

K - número de pontos utilizados para a aproximação da geometria

 N_I - função interpoladora de Lagrange

 X_{I} - vector posição do ponto $I^{enésimo}$ da geometria da membrana

$$X_I = \begin{bmatrix} x_I & y_I & z_I \end{bmatrix}^T$$

Introduzindo as funções dos polinómios de Lagrange na equação (5.9), obtém-se:

$$X = f(r^{1}, r^{2}) = \sum_{J=1}^{l} \sum_{I=1}^{k} H_{I}(r_{1}) H_{J}(r_{2}) X(r_{I}^{1}, r_{J}^{2})$$
(5.10)

$$H_{I}(r^{1}) = \frac{(r^{1} - r_{1}^{1})(r^{1} - r_{2}^{1})...(r^{1} - r_{I-1}^{1})(r^{1} - r_{I+1}^{1})...(r^{1} - r_{k}^{1})}{(r_{I}^{1} - r_{1}^{1})(r_{I}^{1} - r_{2}^{1})...(r_{I}^{1} - r_{I-1}^{1})(r_{I}^{1} - r_{I+1}^{1})...(r_{I}^{1} - r_{k}^{1})}$$
(5.11)

$$H_{J}(r^{2}) = \frac{(r^{2} - r_{1}^{2})(r^{2} - r_{2}^{2})...(r^{2} - r_{J-1}^{2})(r^{2} - r_{J+1}^{2})...(r^{2} - r_{l}^{2})}{(r_{J}^{2} - r_{1}^{2})(r_{J}^{2} - r_{2}^{2})...(r_{J}^{2} - r_{J-1}^{2})(r_{J}^{2} - r_{J+1}^{2})...(r_{J}^{2} - r_{l}^{2})}$$
(5.12)

em que $k \times l$ é o número de pontos que define a geometria da membrana.

Se o domínio da membrana projectada no plano for $-1 \le r_i \le 1$ (i = 1,2) e cada ponto de definição da geometria for distribuído uniformemente em ambas as direcções r^1 e r^2 , $H_I(r^1)$ e $H_J(r^2)$, há coincidência exacta com as funções de forma utilizadas nos elementos isoparamétricos dos elementos finitos.

Geralmente, na resolução de um problema de estrutura de membrana são utilizados os seguintes referenciais:

Tipo de sistemas de coordenadas	Descrição
Sistema de coordenadas global (x, y, z) (sistema mapeado)	Sistema de coordenadas cartesiano em relação ao qual a geometria da estrutura é definida espacialmente. As coordenadas nodais, o vector de deslocamentos, a matriz de rigidez global e o vector de forças são escritos neste sistema de eixos.
Sistema de coordenadas local	Este sistema é definido em cada ponto com origem na
(V_1, V_2, V_3)	superficie de referência.

		DO	•	•
Tahala	5 1 .	Reteren	019	110
	J.1.	RUUUU	υı	us

Para a descrição da geometria de uma estrutura de membrana é muito conveniente a utilização de vectores de base covariante e vectores de base contravariante.

Os vectores de base covariante base são definidos em qualquer ponto como função da posição do vector $X = \{x, y, z\}$ e das coordenadas curvilíneas locais, (r_1, r_2) :

$$G_{i} = \frac{\partial X}{\partial r_{i}} = \left\{ \frac{\partial x}{\partial r_{i}}; \frac{\partial y}{\partial r_{i}}; \frac{\partial z}{\partial r_{i}} \right\}, i = 1, 2$$
(5.13)

Os vectores de base covariante $G_1 \in G_2$ são tangentes às curvas $r \in s$, respectivamente, e definem um plano tangente em cada ponto da superfície (Figura 5.3). Assim, estes vectores apenas necessitam de ser linearmente independentes para que possam servir de base ao plano tangente em cada ponto da superfície.

Figura 5.3: Superfície de referência com o referencial cartesiano de referência (x,y,z) e os vectores base covariante (G_1, G_2, G_3)

Os produtos escalares G_{ij} - as componentes do tensor covariante métrico - traduzem a métrica da superficie (unidade dos vectores e ângulo entre eles). Assim:

$$\begin{split} G_{11} &= G_1.G_1 \neq 1 \\ G_{22} &= G_2.G_2 \neq 1 \\ G_{12} &= G_{21} = G_1.G_2 \neq 0 \end{split}$$

A normal à superficie é determinada por G_3 sendo este definido pelo produto externo normalizado entre G_1 e G_2 . Assim:

$$G_{3} = \frac{G_{1} \times G_{2}}{\|G_{1} \times G_{2}\|} \quad \|G_{3}\| = 1$$
(5.14)

Os vectores de base contravariante G^i são definidos como sendo os vectores de base covariante G_i . Assim, estes são definidos pela seguinte regra:

$$G^i \cdot G_j = \delta^i_j \tag{5.15}$$

Instituto Sur

em que δ_j^i é o símbolo de Kronecker. A relação anterior significa que G^1 é ortogonal a G_2 e que o produto escalar escalar entre os dois vectores é unitário.

Uma vez que G_1 e G_2 são ortogonais a G_3 :

$$G_3 = G^3 e \parallel G_3 \parallel = 1 \tag{5.16}$$

O tensor contravariante métrico pode ser definido como o inverso do tensor covariante métrico:

$$G^{ij} = (G_{ij})^{-1}$$
(5.17)

Qualquer vector ou tensor pode ser escrito em função das suas bases covariante e contravariante. Deste modo, o vector a ou o tensor de segunda ordem T podem ser escritos do seguinte modo:

$$a = a^i G_i = a_i G^i \tag{5.18}$$

$$T = T^{ij}G_i \otimes G_j = T_{ij}G^i \otimes G^j$$
(5.19)

O tensor identidade pode ser escrito do seguinte modo:

$$I = G_{ij}G^i \otimes G^j = G^{ij}G_i \otimes G_j \tag{5.20}$$

em que \otimes representa o produto tensorial.

Os vectores de base covariante e de base contravariante são transformados uns nos outros através dos tensores métricos. Assim:

$$a_i = G_{ii}a^i \tag{5.21}$$

$$b^i = G^{ij}b_i \tag{5.22}$$

$$G_i = G_{ii}G^j \tag{5.23}$$

$$G^i = G^{ij}G_j \tag{5.24}$$

Se e^1 , e^2 e e^3 são os vectores de base contravariante de R^3 (não necessariamente ortogonais), os vectores de base covariante deste espaço são escritos do seguinte modo:

$$e_1 = \frac{e^2 \times e^3}{e^1 (e^2 \times e^3)}$$
(5.25)

$$e_2 = \frac{e^3 \times e^1}{e^1 (e^2 \times e^3)}$$
(5.26)

$$e_{3} = \frac{e^{1} \times e^{2}}{e^{1}(e^{2} \times e^{3})}$$
(5.27)

As componentes covariantes do vector v podem ser obtidas pelo produto interno do vector v com o vector de base contravariante de R^3 :

$$q^1 = v \cdot e^1 \tag{5.28}$$

$$q^2 = v \cdot e^2 \tag{5.29}$$

$$q^3 = v \cdot e^3 \tag{5.30}$$

Do mesmo modo, as componentes covariantes de v podem ser obtidas pelo produto interno de v com o vector de base covariante de R^3 :

$$q_1 = v \cdot e_1 \tag{5.31}$$

$$q_2 = v \cdot e_2 \tag{5.32}$$

$$q_3 = v \cdot e_3 \tag{5.33}$$

Assim, v pode ser escrito de 2 modos:

$$v = q_i e^i = q_1 e^1 + q_2 e^2 + q_3 e^3$$
(5.34)

$$v = q^{i}e_{i} = q^{1}e_{1} + q^{2}e_{2} + q^{3}e_{3}$$
(5.35)

5.3. Formulação Lagrangeana total

Numa estrutura de membrana, apenas existem as extensões ε_{xx} e ε_{yy} e a distorção γ_{xy} . As bases covariante e contravariante do referencial global são utilizadas no tensor de segunda ordem das deformações de Green-Lagrange, no tensor de segunda ordem das tensões de Piola-Kirchhoff e no tensor de quarta ordem da relação constitutiva (Noguchi [37]). Assim:

$${}_{0}^{t}E = {}_{0}^{t}E_{ii}G^{i} \otimes G^{j}$$

$$(5.36)$$

$${}_{0}^{t}S = {}_{0}^{t}S^{ij}G_{i} \otimes G_{j}$$

$$(5.37)$$

$${}_{0}C = {}_{0}C^{ijkl}G_{i} \otimes G_{j} \otimes G_{k} \otimes G_{l}$$

$$(5.38)$$

em que G_i e G^i são os vectores de base covariante e contravariante no instante de tempo³ t = 0, respectivamente.

$${}_{0}^{t}E = \frac{1}{2} ({}^{t}g_{i} {}^{t}g_{j} - G_{i}G_{j})G_{i} \otimes G_{j}$$
(5.39)

em que g_i é o vector de base covariante no instante de tempo t.

De acordo com a definição dos vectores de base covariante do sistema de eixos global:

$$G_{i} = \frac{\partial X}{\partial r^{i}} = \sum_{I=1}^{K} \frac{\partial N_{I}(r^{1}, r^{2})}{\partial r^{i}} X_{I} \qquad com \qquad i = 1,2$$
(5.40)

$$g_{i} = \frac{\partial^{t} X}{\partial r^{i}} = \frac{\partial (X + {}^{t} u)}{\partial r^{i}} = G_{i} + \frac{\partial^{t} u}{\partial r^{i}} \qquad com \quad i = 1,2$$
(5.41)

Substituindo as equações (5.40) e (5.41) na equação (5.39), o tensor das deformações de Green-Lagrange é escrito do seguinte modo:

$$_{0}^{'}E = \frac{1}{2} \left(G_{i} \frac{\partial^{\prime} u}{\partial r^{j}} + G_{j} \frac{\partial^{\prime} u}{\partial r^{i}} + \frac{\partial^{\prime} u}{\partial r^{i}} \frac{\partial^{\prime} u}{\partial r^{j}} \right) G_{i} \otimes G_{j}$$
(5.42)

Escrevendo o referido tensor de uma forma incremental no tempo $(t \text{ para } t' = t + \Delta t)$ obtém-se:

$${}_{_{0}}E = {}_{_{0}}^{'}E - {}_{_{0}}^{'}E = \frac{1}{2} \left({}^{'}g_{i} \frac{\partial u}{\partial r^{j}} + {}^{'}g_{j} \frac{\partial u}{\partial r^{i}} + \frac{\partial u}{\partial r^{i}} \frac{\partial u}{\partial r^{j}} \right) G_{i} \otimes G_{j} = (e_{ij} + \eta_{ij})G^{i} \otimes G^{j} \quad (5.43)$$

em que:

 e_{ii} – parcela linear do tensor de deformações

 η_{ii} - parcela não linear do tensor de deformações

O tensor das constantes elásticas de 4^a ordem, ${}_{0}C$, é obtido a partir da relação entre o tensor das tensões, ${}_{0}^{t}S$, e o tensor das deformações, ${}_{0}^{t}E$.

$${}_{0}^{t}S = {}_{0}C : {}_{0}^{t}E$$
 (5.44)

Substituindo as equações (5.36) a (5.38) na equação (5.44) e procedendo-se à derivada material, obtém-se as seguintes expressões:

$${}_{0}^{t}S^{ij} = {}_{0}C^{ijkl} {}_{0}^{t}E_{kl} {}_{0}^{t}\dot{S}^{ij} = {}_{0}C^{ijkl} {}_{0}^{t}\dot{e}_{kl}$$
(5.45)

As constantes elásticas podem ser definidas pelas componentes do tensor decompostas segundo os vectores ortonormados do referencial nodal, tal como V_i (i = 1,2,3) na Figura 5.2. Designando estas componentes por ${}_0\overline{C}^{mnop}$, as componentes do tensor constitutivo no referencial global utilizadas na equação (5.45) são obtidas utilizando a seguinte transformação tensorial:

$${}_{0}C^{ijkl} = \left(G^{i} \cdot V_{m}\right) \left(G^{j} \cdot V_{n}\right) \left(G^{k} \cdot V_{o}\right) \left(G^{l} \cdot V_{p}\right)_{0} \overline{C}^{mnop}$$
(5.46)

³ A variável tempo serve para quantificar a forma como a carga é aplicada ao longo dos vários incrementos de carga. Não deve portanto ser tomado como uma variável dinâmica.

$$G^{i} = \frac{G_{j} \times G_{k}}{[G_{1}G_{2}G_{3}]} \qquad (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2) \tag{5.47}$$

onde $[G_1G_2G_3]$ é designado pelo produto escalar triplo definido por $G_1 \times G_2 \cdot G_3$. O vector unitário normal V_3 é obtido pelo produto externo dos vectores de base covariante G_1 e G_2 do referencial global. Assim:

$$V_{3} = \frac{G_{1}(r^{1}, r^{2}, 0) \times G_{2}(r^{1}, r^{2}, 0)}{\left|G_{1}(r^{1}, r^{2}, 0) \times G_{2}(r^{1}, r^{2}, 0)\right|}$$
(5.48)

sendo G_i obtido pela equação (5.40). O vector V_1 pode ser determinado utilizando a projecção do versor de base unitário e_1 no referencial cartesiano global. Assim:

$$V_{2} = \frac{V_{3} \times e_{1}}{|V_{3} \times e_{1}|} , V_{1} = V_{2} \times V_{3}$$
(5.49)

Finalmente, a equação do princípio dos trabalhos virtuais (5.4) ou (5.5) pode ser reescrita do seguinte modo:

$$V_2 = \frac{V_3 \times e_1}{|V_3 \times e_1|} , \ V_1 = V_2 \times V_3$$
(5.50)

$$\int_{V} {}^{t}_{0} S : \& dV = \iiint_{r_{1} r_{2} r_{3}} {}^{t}_{0} S^{ij} \&_{ij} [G_{1}G_{2}G_{3}] dr^{1} dr^{2} dr^{3} = \int_{V} {}^{t}_{0} S : \& dV + \int_{V} {}^{t}_{0} S : (\delta\eta)^{\bullet} dV =$$

$$\iiint_{r_{1} r_{2} r_{3}} {}^{0} C^{ijkl} \dot{e}_{kl} \&_{ij} [G_{1}G_{2}G_{3}] dr^{1} dr^{2} dr^{3} + \iiint_{r_{1} r_{2} r_{3}} {}^{t}_{0} S^{ij} (\delta\eta_{ij})^{\bullet} [G_{1}G_{2}G_{3}] dr^{1} dr^{2} dr^{3}$$

$$dV = [G_{1}G_{2}G_{3}] dr^{1} dr^{2} dr^{3} \qquad (5.52)$$

Esta formulação encontra-se de forma mais detalhada em Noguchi [37].

Instituto Superior Técnico

Capítulo 6. Implementação

O êxito da aplicação de modelos numéricos na resolução de problemas de Engenharia depende em grande parte das ferramentas de cálculo colocadas à disposição do utilizador. Estas devem ser adequadas às suas necessidades, possuir uma interface simples de utilizar e uma constituição robusta e fiável.

Neste trabalho, foi criado um programa de cálculo automático em ambiente MATLAB de modo a testar a formulação apresentada nos **Capítulos 4** e **5**. Este não foi concebido para uma utilização prática, mas sim para analisar de uma forma sistemática diversos casos e, consequentemente, extrair conclusões acerca das possibilidades do método.

O objectivo deste capítulo é fazer uma breve referência às principais unidades que constituem o programa, enumerarando alguns dos procedimentos utilizados.

O programa efectua a análise de problemas de estruturas de membrana em estado plano de tensão. Os dados necessários à resolução de um problema deste tipo incluem a definição da geometria tridimensional, a sua técnica de mapeamento para o respectivo cálculo no sistema mapeado, propriedades do material, condições de fronteira, solicitações, malha de nós, malha de integração, domínio de suporte do campo de deslocamentos, função de peso a utilizar, e diversas opções para a apresentação de resultados.

O programa desenvolvido neste trabalho teve como base o programa desenvolvido por Dolbow [16] e Belytschko [8] para o cálculo de placas. Assim, tendo este programa como ponto de partida, neste trabalho incorporaram-se os seguintes elementos principais:

- Algoritmo gerador de malhas nodais e de malhas de pontos de quadratura de Gauss para efeitos de integração, permitindo deste modo ao utilizador total liberdade na modelação de qualquer tipo de geometria;
- Construção de uma biblioteca de funções de peso e de bases polinomiais, permitindo assim grande liberdade na escolha do tipo de construção da função de aproximação;
- Mapeamento da superficie tridimensional para o espaço bidimensional, com base nos polinómios de Lagrange;
- Escrita das tensões e deformações em cada ponto da membrana no referencial global e no referencial local;
- Incorporação de análise geometricamente não linear no método de Galerkin livre de elementos a partir de uma formulação Lagrangeana total;
- Método iterativo de Newton-Rapshon na resolução do sistema de equações não linear;
- Visualização gráfica das malhas de nós e pontos de quadratura de Gauss, da deformada da estrutura de membrana e dos mapas de isolinhas dos campos de deslocamentos, tensões segundo os eixos do referencial global e local e tensões principais.

A descrição exaustiva e completa do código criado resultaria num relatório bastante longo e extremamente técnico, sob o ponto de vista de linguagem de programação. Assim apenas os algoritmos e procedimentos mais relevantes serão brevemente apresentados neste capítulo.

6.1. Aproximação da geometria

Utilizando a técnica do mapeamento referida no **Capítulo 5** para transformar a superfície da membrana no espaço bidimensional, são definidas neste sistema de coordenadas as expressões das tensões e deformações na equação do princípio dos trabalhos virtuais. Os nós da malha do método de Galerkin livre de elementos são assim gerados neste sistema de coordenadas (Figura 6.1), aproximando-se o campo de deslocamentos através do método dos mínimos quadrados móveis (MLS).

Figura 6.1 (extraída de Noguchi [37]): Geração do domínio e malha de nós no método de Galerkin livre de elementos

As coordenadas cartesianas da superfície de membrana são escritas em função das coordenadas curvilíneas, através dos polinómios interpoladores de Lagrange de acordo com as expressões (5.10) a (5.12).

6.2. Aproximação do campo de deslocamentos

A aproximação do campo de deslocamentos pode ser escrita do seguinte modo:

$$u^{h}(x) = \sum_{I}^{n} \phi_{I}(x) u_{I}$$
 (6.1)

sendo *n* o número de nós dentro do domínio de influência do ponto de interesse *I*. Estes nós constroem a aproximação nodal ϕ_I do MLS sendo que a equação (6.1) pode, para um problema de estrutura de membrana, ser escrita na sua forma matricial:

$$u^{h} = \begin{cases} u^{h} \\ v^{h} \\ w^{h} \end{cases} \qquad \phi_{I} = \begin{bmatrix} \phi_{I}^{u} & 0 & 0 \\ 0 & \phi_{I}^{v} & 0 \\ 0 & 0 & \phi_{I}^{w} \end{bmatrix} \qquad u_{I} = \begin{bmatrix} u_{I} \\ v_{I} \\ w_{I} \end{bmatrix}$$
(6.2)

6.3. Aproximação do campo de deformações e tensões

O tensor das deformações de Green-Lagrange expresso na equação (5.42) pode ser escrito na sua forma matricial do seguinte modo:

Instituto Superior Técnico

$$\{\varepsilon\} = [B_0]\{u\} + 1/2[A]\{\theta\}$$
(6.3)

em que:

$$\begin{bmatrix} B_0 \end{bmatrix} = \begin{bmatrix} G_1 \cdot a_{11} & G_1 \cdot a_{12} & G_1 \cdot a_{13} \\ G_2 \cdot a_{21} & G_2 \cdot a_{22} & G_2 \cdot a_{23} \\ G_1 \cdot a_{21} + G_2 \cdot a_{11} & G_1 \cdot a_{22} + G_2 \cdot a_{12} & G_1 \cdot a_{23} + G_2 \cdot a_{13} \end{bmatrix}$$
(6.4)

sendo para i = 1,2:

$$a_{i1} = \begin{bmatrix} \frac{\partial \phi}{\partial r_i} \\ 0 \\ 0 \end{bmatrix} \qquad a_{i2} = \begin{bmatrix} 0 \\ \frac{\partial \phi}{\partial r_i} \\ 0 \end{bmatrix} \qquad a_{i2} = \begin{bmatrix} 0 \\ 0 \\ \frac{\partial \phi}{\partial r_i} \\ \frac{\partial \phi}{\partial r_i} \end{bmatrix}$$
(6.5)

$$G_{i} = \left[\sum_{I=1}^{K} \frac{\partial N_{I}(r^{1}, r^{2})}{\partial r^{i}} x_{I}, \sum_{I=1}^{K} \frac{\partial N_{I}(r^{1}, r^{2})}{\partial r^{i}} y_{I}, \sum_{I=1}^{K} \frac{\partial N_{I}(r^{1}, r^{2})}{\partial r^{i}} z_{I}\right]$$
(6.6)

A matriz [A] e o vector $\{\theta\}$ são escritos do seguinte modo:

$$[A] = \begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial v}{\partial x} & \frac{\partial w}{\partial x} & 0 & 0 & 0\\ 0 & 0 & 0 & \frac{\partial u}{\partial y} & \frac{\partial v}{\partial y} & \frac{\partial w}{\partial y} \\ \frac{\partial u}{\partial y} & \frac{\partial v}{\partial y} & \frac{\partial w}{\partial y} & \frac{\partial u}{\partial x} & \frac{\partial v}{\partial x} & \frac{\partial w}{\partial x} \end{bmatrix}$$

$$\{\theta\} = \begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial v}{\partial x} & \frac{\partial w}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial v}{\partial y} & \frac{\partial w}{\partial y} \end{bmatrix}^{T}$$

$$(6.8)$$

A matriz B é assim separada em duas parcelas: $B_0 \in B_1$. A matriz B_0 fornece a relação entre os deslocamentos e a parcela linear das deformações e:

$$e = B_0 u \tag{6.9}$$

A parcela não linear das deformações pode ser escrita simplesmente na forma:

$$\eta = \frac{1}{2}B_1 u \tag{6.10}$$

ou equivalentemente,

$$\eta = \frac{1}{2}A \cdot G \cdot u \tag{6.11}$$

sendo:

$$[G] = \begin{bmatrix} \frac{\partial \phi}{\partial r_1} & 0 & 0\\ 0 & \frac{\partial \phi}{\partial r_1} & 0\\ 0 & 0 & \frac{\partial \phi}{\partial r_1} \\ \frac{\partial \phi}{\partial r_2} & 0 & 0\\ 0 & \frac{\partial \phi}{\partial r_2} & 0\\ 0 & 0 & \frac{\partial \phi}{\partial r_2} \end{bmatrix}$$
(6.12)

Na matriz anterior, as funções ϕ são as funções de aproximação do campo de deslocamentos utilizando o método dos mínimos quadrados móveis (MLS).

Deste modo, de acordo com as expressões (6.10) e (6.11), a parcela não linear das deformações pode ser escrita do seguinte modo:

$$B_1(u) = \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} G \end{bmatrix}$$
(6.13)

Assim, reescrevendo a expressão (6.3):

$$\{\varepsilon\} = \left[B_0 + \frac{1}{2}B_1(u)\right]u \tag{6.14}$$

Escrevendo o tensor das deformações incrementais na forma matricial:

$$\{\delta\varepsilon\} = ([B_0] + [A][G])\{\delta u\}$$
(6.15)

Considerando um estado plano de tensão em cada plano tangente a um ponto da superfície de membrana, e adoptando uma formulação de pequenas deformações e grandes deslocamentos, escrevem-se as tensões de Piola-Kirchoff na sua forma matricial no referencial global:

$$\{\sigma\} = \begin{pmatrix} \sigma_x \\ \sigma_y \\ \sigma_{xy} \end{pmatrix} = [C](\{\varepsilon\} + \{\varepsilon_0\})$$
(6.16)

sendo:

[C] - tensor de quarta ordem com as constantes elásticas que no caso de um problema de estado plano de tensão se reduz a uma matriz de dimensão 3 (referencial global);

 $\{\varepsilon_0\}$ - vector das deformações iniciais (referencial global).

Através de uma transformação tensorial do tipo da indicada no Capítulo 1, procede-se à transformação para o referencial global da matriz com as constantes elásticas e vector das deformações iniciais escritos no referencial local, [C'] e $\{\varepsilon_0\}$, respectivamente. Assim, sendo [A] a matriz de transformação tensorial a aplicar na matriz [C']:

$$[A] = \begin{bmatrix} (G^{1}V_{1})^{2} & (G^{1}V_{2})^{2} & (G^{1}V_{1}) \cdot (G^{1}V_{2}) \\ (G^{2}V_{1})^{2} & (G^{2}V_{2})^{2} & (G^{2}V_{1}) \cdot (G^{2}V_{2}) \\ (G^{1}V_{1}) \cdot (G^{2}V_{1}) & (G^{1}V_{2}) \cdot (G^{2}V_{2}) & (G^{1}V_{1}) \cdot (G^{2}V_{2}) \end{bmatrix}$$
(6.17)

$$[C] = [A] \cdot [C'] \cdot [A]^T$$
(6.18)

Escrevendo o vector de deformação inicial sob a forma de tensor $[\mathcal{E}_0]$, aplica-se a seguinte transformação tensorial:

$$A = \begin{bmatrix} G_1 V_1 & G_1 V_2 \\ G_2 V_1 & G_2 V_2 \end{bmatrix}$$
(6.19)

$$\begin{bmatrix} \boldsymbol{\varepsilon}_0 \end{bmatrix} = \begin{bmatrix} \boldsymbol{A} \end{bmatrix} \begin{bmatrix} \boldsymbol{\varepsilon}_0 \end{bmatrix} \begin{bmatrix} \boldsymbol{A} \end{bmatrix}^T \tag{6.20}$$

6.4. Matriz de rigidez

Escrevendo matricialmente a equação de equilíbrio de um elemento de membrana, obtida através do princípio dos trabalhos virtuais explícito na equação (5.1):

$$\int_{V} \{\delta\varepsilon\}^{T} \{\sigma\} dV - \{\delta u\}^{T} \{F\} = 0$$
(6.21)

em que $\{F\}$ é o vector das forças nodais. Substituindo (6.3), (6.15) e (6.16) na equação anterior:

$$\int_{V} ([B_0] + [A]]G])^{T} \left([C] \left([B_0] \{u\} + \frac{1}{2} [A] [\theta] \right) + \{\sigma_0\} \right) dV - \{F\} = 0$$
 (6.22)

Assumindo que se utiliza o método de Newton-Raphson na resolução da equação anterior, pode escrever-se para a iteração i:

$$\{\phi\}^{i} = \int_{V} \left([B_{0}] + [A]^{i} [G] \right)^{T} \left([C] \left([B_{0}] \{u\}^{i} + \frac{1}{2} [A]^{i} [\theta]^{i} \right) + \{\sigma_{0}\} \right) dV - \{F\}$$
(6.23)

Nesta equação ϕ^i representa as forças residuais na iteração *i*. A matriz de rigidez tangente [K_T] pode então ser escrita como a soma de duas matrizes: matriz de rigidez elástica [K_E] e matriz de rigidez geométrica [K_G]:

$$\begin{bmatrix} K_T \end{bmatrix}^i = \begin{bmatrix} K_E \end{bmatrix}^i + \begin{bmatrix} K_G \end{bmatrix}^i = \frac{\partial \{\phi\}^i}{\partial \{u\}}$$
(6.24)

em que:

$$\begin{bmatrix} K_E \end{bmatrix}^i = \int_V \left(\begin{bmatrix} B_0 \end{bmatrix} + \begin{bmatrix} A \end{bmatrix}^i \begin{bmatrix} G \end{bmatrix} \right)^T \frac{\partial}{\partial \{u\}} \left(\begin{bmatrix} C \end{bmatrix} \left(\begin{bmatrix} B_0 \end{bmatrix} \{u\}^i + \frac{1}{2} \begin{bmatrix} A \end{bmatrix}^i \begin{bmatrix} \theta \end{bmatrix}^i \right) \right) dV$$
(6.25)

$$\Leftrightarrow [K_E]^i = \int_V ([B_0] + [A]^i [G])^T [C] ([B_0] + [A]^i [G]) dV$$
(6.26)

$$\Rightarrow [K_E]^i = \iint_{r^1 r^2} ([B_0] + [A]^i [G])^T [C] ([B_0] + [A]^i [G]) \cdot t \cdot [G_1 G_2 G_3] dr^1 dr^2 \quad (6.27)$$

$$\left[K_{G}\right]^{i} = \int_{V} \frac{\partial}{\partial \{u\}} \left(\left[B_{0}\right] + \left[A\right]^{i} \left[G\right] \right) \left(\left[C\left(\left[B_{0}\right] \left\{u\}^{i} + \frac{1}{2}\left[A\right]^{i} \left[\theta\right]^{i} \right] + \left\{\sigma_{0}\right\} \right) dV \quad (6.28)$$

$$\Leftrightarrow \left[K_G\right]^i = \int_V \left[G\right]^T \frac{\partial \left[\left[A\right]^i\right]^T}{\partial \{u\}} \{\sigma\}^T dV$$
(6.29)

$$\Leftrightarrow \left[K_G\right]^i = \int_V [G]^T [\tau]^i [G] dV$$
(6.30)

$$\Leftrightarrow \left[K_G\right]^i = \iint_{r^1 r^2} [G]^r [\tau]^i [G] \cdot t \cdot [G_1 G_2 G_3] dr^1 dr^2$$
(6.31)

Nas expressões anteriores, t representa a espessura da membrana, $[G_1G_2G_3]$ exprime o produto escalar triplo dado por $G_1 \times G_2 \cdot G_3$. A matriz $[\tau]$ é a matriz das tensões iniciais e escreve-se do seguinte modo:

$$[\tau] = \begin{bmatrix} \sigma_{x}I_{3} & \tau_{xy}I_{3} & \tau_{xz}I_{3} \\ \tau_{yx}I_{3} & \sigma_{y}I_{3} & \tau_{yz}I_{3} \\ \tau_{zx}I_{3} & \tau_{zy}I_{3} & \sigma_{z}I_{3} \end{bmatrix}$$
(6.32)

sendo que I_3 representa a matriz identidade de ordem 3.

A matriz de rigidez tangente global nodal tem o seguinte aspecto:

$$\begin{bmatrix} K_T \end{bmatrix} = \begin{bmatrix} k_{11} & k_{12} & \dots & k_{1m_t} \\ k_{21} & k_{22} & \dots & k_{2m_t} \\ \vdots & \vdots & & \vdots \\ k_{m_t 1} & k_{m_t 2} & \dots & k_{m_t m_t} \end{bmatrix}$$
(6.33)

sendo que m_t é o número de graus de liberdade do sistema.

A matriz de rigidez global $[K_T]$ é simétrica sendo que os seus coeficientes de rigidez entre o nó I e o nó J são determinados a partir do domínio de influência de um dado ponto de interesse do problema. Os valores de K_{IJ} têm de ser posteriormente assemblados à matriz de rigidez global. No entanto só é necessário proceder-se a esta operação se os nós I e Jestiverem ambos contidos no domínio de influência de um ponto de interesse. Se I e Jestiverem muito afastados e nenhum ponto de interesse o partilhar simultaneamente, K_{IJ} é nulo.

Enquanto o domínio de influência for de suporte compacto e não cobrir demasiados pontos, muitos coeficientes da matriz de rigidez global são nulos e consequentemente $[K_T]$ é uma matriz esparsa. Se os nós estiverem bem numerados a matriz de rigidez global será uma matriz em banda, reduzindo ainda mais o custo computacional inerente à sua inversão.

Tal como foi referido anteriormente, a integração de Gauss requer a definição de uma malha. Esta malha de integração é idêntica à usada no FEM e também aqui, sobreposições ou

falhas de continuidade da malha não são permitidas. Porém, ao contrário do FEM, no EFGM a malha de integração é apenas usada para efeitos de integração das parcelas contribuintes para a matriz dos coeficientes do sistema de equações e não para a aproximação do campo de variáveis. Esta malha é independente da distribuição nodal.

6.5. Vector de forças nodais

O vector de forças global recebe a contribuição tanto das forças de massa como das forças externas aplicadas nas fronteiras estáticas. Para um problema de estrutura de membrana, o vector das forças nodais global, F, pode escrever-se vectorialmente do seguinte modo:

$$F = \{ f_{x1} \ f_{y1} \ f_{z1} \ f_{x2} \ f_{y2} \ f_{z2} \ \cdots \ f_{xmt} \ f_{ynt} \ f_{znt} \}^T$$
(6.34)

Calculando o vector global das forças nodais correspondentes às forças de massa b no volume V:

$$f_I = \int_V \phi_I b dV \cdot t \cdot [G_1 G_2 G_3] dr^1 dr^2$$
(6.35)

Considerando a contribuição das forças externas aplicadas nas fronteiras estáticas T_t pode escrever-se o vector de forças externas global adicional. Assim:

$$f_I = \int_{T_t} \phi_I^T \bar{t} d\Gamma$$
(6.36)

Os esforços na superfície de membrana são obtidos do seguinte modo:

$$\{Q\} = \int_{V} B^{T} \sigma \, dV \tag{6.37}$$

$$\{Q\} = \int_{V} \left(\left[B_{0}\right] + \left[A\right] \left[G\right] \right)^{T} \{\sigma\} dV = \iint_{r^{1} r^{2}} \left(\left[B_{0}\right] + \left[A\right] \left[G\right] \right)^{T} \{\sigma\} \cdot t \cdot \left[G_{1} G_{2} G_{3}\right] dr^{1} dr^{2}$$
(6.38)

Escrevendo a equação anterior no modo iterativo do método de Newton-Raphson tem-se:

$$\{Q\}^{i} = \iint_{r^{1}r^{2}} \left[\left[B_{0} \right] + \left[A \right]^{i} \left[G \right] \right]^{T} \{\sigma\}^{i} \cdot t \cdot \left[G_{1}G_{2}G_{3} \right] dr^{1} dr^{2}$$
(6.39)

6.6. Condições de fronteira

6.6.1. Método dos multiplicadores de Lagrange

A equação diferencial geral de equilíbrio e as condições de fronteira cinemáticas podem ser apresentadas como:

$$L^T \sigma + b = 0 \tag{6.40}$$

$$u = \overline{u} \tag{6.41}$$

em que:

L – operador diferencial

 σ – vector das tensões

- u vector dos deslocamentos
- \overline{u} vector dos deslocamentos prescritos na fronteira cinemática

A equação (6.40) representa as equações de equilíbrio no domínio Ω do problema e a equação (6-41) representa as condições de fronteira cinemáticas em Γ_u . Os multiplicadores de Lagrange, λ , presentes na equação (5.2) podem ser vistos como "forças inteligentes" que forçam $u = \overline{u}$. Estes multiplicadores são incógnitas que necessitam de ser interpoladas usando os nós das fronteiras cinemáticas, de forma a construir um conjunto de equações discretas. Assim:

$$\lambda(x) = \sum_{I}^{n_{\lambda}} N_{I}(s)\lambda_{I}, \quad x \in \Gamma_{u}$$
(6.42)

onde n_{λ} é o número de nós a ser usado na interpolação, s é o comprimento da fronteira cinemática, λ_I é o multiplicador de Lagrange no nó I e $N_I(x)$ é o interpolador usado.

Num dado ponto, s, situado entre os nós com coordenadas em s_0 e s_1 , a interpolação é efectuado do seguinte modo:

$$N_0(s) = \frac{s - s_1}{s_0 - s_1} e N_1(s) = 1 - N_0(s)$$
(6.43)

Assim, a variação do multiplicador de Lagrange pode ser obtida por:

$$\delta \lambda = \sum_{I}^{n_{\lambda}} N_{I}(s) \delta \lambda I , \qquad x \in \Gamma_{u}$$
(6.44)

Para uma estrutura de membrana, o vector dos multiplicadores de Lagrange pode ser escrito na forma matricial do seguinte modo:

$$\lambda = \sum_{I}^{n_{\lambda}} \begin{bmatrix} N_{I} & 0 & 0\\ 0 & N_{I} & 0\\ 0 & 0 & N_{I} \end{bmatrix} \begin{cases} \lambda_{u}\\ \lambda_{v}\\ \lambda_{w} \end{cases}$$
(6.45)

De uma forma geral,

$$\lambda = \sum_{I}^{n_{\lambda}} N_{I} \lambda_{I} \tag{6.46}$$

sendo n_{λ} o número total de nós na fronteira cinemática.

A matriz com os multiplicadores de Lagrange [G] e o vector de reacções q correspondente aos deslocamentos preescritos na fronteira cinemática são calculados do seguinte modo:

$$G_{IJ}^{T} = -\int_{\Gamma_{i}} N_{I} \phi_{J} d\Gamma$$
(6.47)

$$q_I = -\int_{\Gamma_u} N_I^T \overline{u} d\Gamma$$
(6.48)

É de notar que a dimensão da matriz G depende do número de nós na fronteira cinemática, $n_{\lambda t}$, e do número total de nós do problema, n_t . Assim:

$$G = \begin{bmatrix} G_{11} & G_{12} & \cdots & G_{1m_g} \\ G_{21} & G_{22} & \cdots & G_{2m_g} \\ \vdots & \vdots & & \vdots \\ G_{m_l1} & G_{m_l2} & \cdots & G_{m_lm_g} \end{bmatrix}$$
(6.49)

sendo $m_t = 3n_t e m_g = 3n_{\lambda t}$ para um problema de estrutura de membrana.

6.6.2. Método da Penalidade

Um método alternativo de imposição das condições de fronteira é o Método da Penalidade que consiste em gerar uma matriz de coeficientes cujas dimensões são equivalentes às dimensões da matriz produzida pelo FEM. As condições de fronteira cinemáticas a impôr têm a seguinte forma:

$$\sum_{I}^{n} \phi_{I}(x) u_{I} = \overline{u}(x) \quad em \quad \Gamma_{u}$$
(6.50)

sendo $\overline{u}(x)$ o deslocamento prescrito na fronteira cinemática.

Considerem-se as equações (6.40) e (6.41) e introduza-se um factor a penalizar a diferença entre os deslocamentos da aproximação MLS e o deslocamento prescrito na fronteira cinemática.

A forma fraca de Galerkin com restrições de fronteira pelo método da Penalidade é dada pela expressão (5.3). Esta equação é idêntica à equação (5.1) com as devidas alterações dos integrais de volume já referidas anteriormente. A matriz $[\alpha]$ obtida através da equação (4.18) é diagonal e é formada pelos factores de penalidade. Apesar destes factores poderem ter diferentes pesos conforme o grau de liberdade do nó em questão, neste trabalho os factores são considerados constantes para toda a matriz. Aplicando este método na imposição das condições de fronteira cinemáticas, obtém-se matriz de rigidez com os factores de penalidade e o vector de forças penalizadoras:

$$K_{IJ}^{\alpha} = \int_{\Gamma_{u}} \phi_{I}^{T} \alpha \phi_{J} d\Gamma$$
(6.51)

$$F_{IJ}^{\alpha} = \int_{\Gamma_{u}} \phi_{I}^{T} \alpha \overline{u} d\Gamma$$
(6.52)

Nas expressões seguintes apresentam-se as matrizes ϕ_I , ϕ_J e α :

$$\phi_{I} = \begin{bmatrix} \phi_{I} & 0 & 0 \\ 0 & \phi_{I} & 0 \\ 0 & 0 & \phi_{I} \end{bmatrix}$$
(6.53)

$$\phi_{J} = \begin{bmatrix} \phi_{J} & 0 & 0 \\ 0 & \phi_{J} & 0 \\ 0 & 0 & \phi_{J} \end{bmatrix}$$
(6.54)

$$\alpha = \begin{bmatrix} \alpha & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & \alpha \end{bmatrix}$$
(6.55)

6.7. Sistema de equações

6.7.1. Método dos multiplicadores de Lagrange

Substituindo na equação (5.1) as formas matriciais dos vários termos que a compõem obtém-se:

$$\delta U^{T} K U - \delta U^{T} F + \delta \lambda^{T} \left[G^{T} U - q \right] + \delta U^{T} G \lambda = 0$$
(6.56)

$$\delta U^{T} [KU + G\lambda - F] + \delta \lambda^{T} [G^{T}U - q] = 0$$
(6.57)

Sendo δU e $\delta \lambda$ arbitrários a equação anterior só é satisfeita se:

$$KU + G\lambda - F = 0 \tag{6.58}$$

$$G^T U - q = 0 \tag{6.59}$$

ou seja, o sistema de equações discretas final pode ser apresentado como:

$$\begin{bmatrix} K & G \\ G & 0 \end{bmatrix} \begin{bmatrix} U \\ \lambda \end{bmatrix} = \begin{bmatrix} F \\ q \end{bmatrix}$$
(6.60)

6.7.2. Método da Penalidade

Escrevendo a equação (5.3) na forma matricial, obtém-se o seguinte sistema de equações:

$$([K_T] + [K]^{\alpha})\{u\} = \{F\} + \{F^{\alpha}\} + \{Q(u)\}$$
(6.61)

sendo:

 $[K_T]$ - matriz de rigidez tangente

 $[K^{\alpha}]$ - matriz de rigidez com os factores de penalização devidos aos deslocamentos prescritos na fronteira cinemática

 $\{F\}$ - vector de forças nodais devido às forças de massa e forças na fronteira

 $\{F^{\alpha}\}$ - vector de forças com os factores de penalização devido aos deslocamentos prescritos na fronteira cinemática

 $\{Q(U)\}\$ - vector de esforços

Em virtude do método dos multiplicadores de Lagrange acarretar um maior custo computacional e uma maior dificuldade na convergência do método de Newton-Raphson, neste trabalho utilizou-se o método da Penalidade na imposição das condições de fronteira.

6.8. Métodos de resolução de equações não lineares

As equações de equilíbrio são função não linear dos deslocamentos nodais e, como tal, não podem ser resolvidas directamente. Os métodos normalmente usados na resolução deste tipo de problema aplicam a carga em várias fases (incrementos) e, em cada incremento, arbitram um valor inicial para o vector dos deslocamentos nodais resolvendo assim as equações de equilíbrio. No final de várias iterações é possível obter uma boa aproximação para os deslocamentos nodais nesse incremento de carga.

A não linearidade da relação carga-deslocamento duma estrutura pode tornar a estrutura mais ou menos rígida à medida que se aumenta a carga aplicada (Figura 6.2). Nesta secção consideraram-se as equações de equilíbrio escritas na forma [K][u] = [F]. Na notação utilizada o índice superior esquerdo denota o instante de tempo no qual a variável está a ser considerada e o índice superior direito indica a iteração a que a variável se refere. Admite-se que o vector das forças nodais é função do tempo.

Figura 6.2: Relação carga-deslocamento para uma estrutura de 1 grau de liberdade

6.8.1. Método da aplicação incremental da carga

Este é um método puramente incremental e como tal não existe qualquer processo iterativo em cada incremento de carga. Considerando o vector $\{F\}$ função do tempo pode escrever-se:

$$\{F\} = \{F_i(t)\}, t \in [0,T]$$
 (6.62)

Os passos de cálculo resumem-se a aplicar um incremento de carga e usar a matriz de rigidez tangente para calcular o incremento de deslocamento $\{\Delta u\}$ que a carga produziu. Assim, o método consiste no cálculo de $\{\Delta u\}$ para os restantes incrementos de carga e somar os $\{\Delta u\}$ de todos os incrementos para obter o vector dos deslocamentos total.

Sistematizando:

1° Passo – Escolha do número de incrementos (n) em que se vai aplicar a carga, sendo que cada incremento representa um intervalo de tempo de amplitude $\Delta t = T/n$. Para o 1° incremento considera-se que t = 0, admite-se que ${}^{0}{u} = 0$ e calcula-se ${}^{t+\Delta t}{\Delta u}$ utilizando as seguintes expressões:

$${}^{t}\left[K\right]^{t+\Delta t}\left\{\Delta u\right\} = {}^{t+\Delta t} \left\{\Delta F\right\}, \text{ com}$$
(6.63)

$$^{+\Delta t} \left[\Delta F \right] = {}^{t+\Delta t} \left\{ F \right\} - {}^{t} \left\{ F \right\}$$
(6.64)

$${}^{t}\left[K\right] = \frac{\partial\{Q\}}{\partial\{u\}}\Big|_{t\{u\}}, com \qquad \{Q\} = \left[K\right]\!\!\left\{u\right\}$$
(6.65)

O valor do vector dos deslocamentos nodais no final deste incremento é dado por:

t-

t

$$^{+\Delta t}\left[u\right] = {}^{t} \left\{u\right\} - {}^{t+\Delta t} \left\{\Delta u\right\}, \text{ com}$$
(6.66)

2° Passo – Cálculo para $t = t + \Delta t$ do valor de $t + \Delta t = t + \Delta t$ do valor de $u = t + \Delta$

3º Passo – Repetição do segundo passo até ao incremento em que $t + \Delta t = T$. O valor de ${}^{T} \{u\}$ é dado por (6.66) considerando que ${}^{T} \{u\} = {}^{t+\Delta t} \{u\}$.

Neste método (Figura 6.3), o erro no cálculo do vector ${}^{t+\Delta t} \{\Delta u\}$ não é corrigido e portanto o valor de ${}^{T} \{u\}$ contém um erro dado pela soma de todos os erros obtidos no cálculo de ${}^{t+\Delta t} \{\Delta u\}$.

Figura 6.3: Ilustração do método da aplicação incremental da carga para 1 grau de liberdade

6.8.2. Método de Newton-Raphson

O método de Newton-Raphson é um método incremental de carga em que é realizado um processo iterativo em cada incremento de carga. Considerando o vector F função do tempo, pode escrever-se:

$$\{F\} = \{F_i(t)\}, \ t \in [0, T]$$
(6.67)

Os passos de cálculo resumem-se a aplicar um incremento de carga e usar a matriz de rigidez tangente para calcular $\{\Delta u\}$ que a carga produziu. Seguidamente calculando $\{\Delta u\}$ para os restantes incrementos de carga e somando todos os vectores $\{\Delta u\}$ de todos os incrementos obtém-se o vector dos deslocamentos total. O método de Newton-Raphson distingue-se do anterior pelo facto de realizar em cada incremento iterações para melhorar a solução obtida. Essas iterações são feitas utilizando a matriz de rigidez tangente actualizada. Sistematizando:

1° Passo - Escolha do número de incrementos (n) em que se vai aplicar a carga, sendo que cada incremento representa um intervalo de tempo de amplitude $\Delta t = T/n$. Para o 1° incremento considera-se que t = 0 e admite-se que $t + \Delta t \{u\}^{(0)} = 0$. Na 1ª iteração (i = 1) calcula-se o valor de $\{\Delta u\}^{(1)}$ utilizando as seguintes expressões:

$$^{+\Delta t} [K]^{(i-1)} \{\Delta u\}^{(i)} = {}^{t+\Delta t} \{F\} - {}^{t+\Delta t} \{Q\}^{(i-1)}, \text{ com}$$
(6.68)

$${}^{t+\Delta t} \left[K \right]^{(i-1)} = \frac{\partial \{ Q \}}{\partial \{ u \}} \Big|_{{}^{t+\Delta t} \{ u \}^{(i-1)}}, \text{ com } \{ Q \} = \left[K \right] \!\! \left\{ \! u \right\}$$
(6.69)

$${}^{t+\Delta t} \{Q\}^{(i-1)} = {}^{t+\Delta t} [K]^{(i-1)} \times {}^{t+\Delta t} \{u\}^{(i-1)}$$
(6.70)

O valor do vector dos deslocamentos nodais no final de cada iteração é dado por:

$$^{+\Delta t} \{u\}^{(i)} = {}^{t+\Delta t} \{u\}^{(i-1)} + \{\Delta u\}^{(i)}$$
(6.71)

2º Passo – Depois de calculado $t^{+\Delta t} \{u\}^{(1)}$ realizam-se mais iterações (ainda no 1º incremento de tempo) utilizando as equações anteriores. O processo iterativo termina quando o critério de convergência escolhido fôr satisfeito.

3° Passo – Determinação do valor de $\{u\}$ para o 1° incremento de carga calculando-se o valor de ${}^{t+\Delta t} \{u\}^{(i)}$ para o 2° incremento utilizando de novo as equações anteriores. Sempre que se inicia um novo incremento considera-se que ${}^{t+\Delta t} [K]^{(0)} = {}^{t} [K], {}^{t+\Delta t} \{F\}^{(0)} = {}^{t} \{F\}$ e ${}^{t+\Delta t} \{u\}^{(0)} = {}^{t} \{u\}$.

4° Passo – Repetição do 3° passo até ao último incremento de tempo. O valor do vector dos deslocamentos nodais final é dado pelo valor de $t^{t+\Delta t} \{u\}^{(i)}$ obtido na última iteração do último incremento.

Tal como se observa na figura seguinte, no método de Newton-Raphson calcula-se uma nova matriz de rigidez tangente em cada iteração. Este método converge rapidamente para curvas bem comportadas mas pode ter problemas de convergência em estruturas com n graus de liberdade cujas "superfícies" carga-deslocamento apresentem um andamento pouco "suave".

Figura 6.4: Ilustração do método de Newton-Raphson para 1 grau de liberdade

Em virtude da grande utilização deste método na resolução de problemas não lineares é importante referir algumas das suas propriedades:

1)Se a matriz de rigidez tangente $\binom{t+\Delta t}{K}^{(i-1)}$ for não singular, se Q e a sua primeira derivada em ordem a $\{u\}$ (que representa a matriz de rigidez tangente) for contínua numa vizinhança de $\binom{u^*}{u^*}$, e se $\binom{t+\Delta t}{u}^{(i-1)}$ pertencer a essa vizinhança,

Instituto Superior Técnico

então^{$t+\Delta t$} {u}^(*i*) estará mais próximo de { u^* } do que ^{$t+\Delta t$} {u}^(*i*-1). Nestas condições, conclui-se que o processo iterativo converge para { u^* }.

2) Se a matriz de rigidez tangente também satisfizer:

$$\|^{t+\Delta t} [K] u_1 - {}^{t+\Delta t} [K] u_2 \| \le L \| \{ u_1 \} - \{ u_2 \} \|$$
(6.72)

para todo o $\{u_1\}$ e $\{u_2\}$ na vizinhança de $\{u^*\}$ e L > 9, então a convergência do método é quadrática, o que significa que se na iteração *i* o erro for (ε) , na iteração *i*+1 o erro será (ε^2) .

Uma consequência prática destas propriedades é que se a solução da iteração i estiver suficientemente perto da solução $\{u^*\}$ e se a matriz de rigidez tangente não variar abruptamente, então o método converge quadraticamente. Por outro lado, caso uma destas condições não se verifique o método pode divergir. Desta forma um dos procedimentos a adoptar em caso de não convergência do método será a consideração de incrementos de carga mais reduzidos.

Tendo em conta que o cálculo da matriz de rigidez tangente em todas as iterações pode exigir um grande esforço computacional, especialmente em problemas com elevado número de graus de liberdade, pode ser vantajoso recorrer a métodos que não calculem a matriz de rigidez de tangente em todas as iterações. Em Bathe [5], podem consultar-se alguns desses métodos.

Neste trabalho foi utilizado o método de Newton-Raphson na resolução do sistema de equações não lineares.

6.8.3. Critérios de convergência

No final de cada iteração é necessário verificar se a solução satisfaz a tolerância previamente definida. A escolha da tolerância de convergência a usar é importante uma vez que valores elevados conduzem a soluções com grande erro e valores muito pequenos requerem um grande esforço computacional para obter ganhos de precisão muito reduzidos. Do mesmo modo, a escolha do critério de convergência a usar é também muito importante pois critérios desadequados podem parar a iteração quando o método não está realmente a divergir ou forçar a iteração a procurar uma solução inacessível.

Uma vez que no método Galerkin livre de elementos se procura uma solução para os parâmetros nodais é natural que um critério de convergência possível seja o de limitar a variação dos parâmetros nodais numa iteração de tal forma que:

$$\frac{|\{\Delta u\}^{(i)}|}{|^{t+\Delta t}\{u\}|} \le \varepsilon_D \tag{6.73}$$

Nesta equação ε_D representa a tolerância do critério e $t^{t+\Delta t} \{u\}$ representa a solução exacta para o incremento $(t + \Delta t)$. Sendo que este valor não é conhecido é normalmente substituído por $t^{t+\Delta t} \{u\}^{(i)}$.

No entanto, pode acontecer que a solução exacta esteja longe da solução obtida quando o método converge utilizando $t^{t+\Delta t} \{u\}^{(i)}$ em (6.73). Tal situação acontece quando os parâmetros nodais mudam muito pouco em cada iteração mas continuam a mudar durante várias iterações.

Outra alternativa para critério de convergência é o uso das forças desequilibradas. Exigindo-se que o módulo das forças residuais seja inferior a uma dada tolerância ε_F do incremento de carga ${}^{t+\Delta t}{F}$, pode escrever-se:

$$^{t+\Delta t}\left\{F\right\} - ^{t+\Delta t}\left\{Q\right\}^{(i)} \leq \varepsilon_{F} \left|^{t+\Delta t}\left\{F\right\} - ^{t}\left\{Q\right\}\right|$$

$$(6.74)$$

Este critério de convergência apresenta uma falha ao não considerar a solução dos deslocamentos. Esta falha é grave, por exemplo, no caso de estruturas com material elastoplástico a entrar na região plástica. Nesta situação as cargas desequilibradas podem ser muito pequenas e a solução de deslocamentos pode estar ainda longe do valor exacto.

Como forma de melhorar os critérios anteriores e prevenir que, nos casos anteriormente referidos, haja convergência mesmo em situações em que os deslocamentos estejam ainda longe dos exactos (6.74) ou as cargas muito desequilibradas (6.73), pode usar-se o seguinte critério:

$$\left\{\Delta u\right\}^{(i)^{T}}\left(^{t+\Delta t}\left\{F\right\}^{-t+\Delta t}\left\{Q\right\}^{(i-1)}\right) \leq \varepsilon_{E}\left[\left\{\Delta u\right\}^{(1)^{T}}\left(^{t+\Delta t}\left\{F\right\}^{-t+\Delta t}\left\{Q\right\}\right)\right]$$
(6.75)

Este critério de convergência fornece uma indicação de quando é que os deslocamentos e as forças estão próximas dos seus valores de equilíbrio. Para tal, compara-se a energia interna no início de cada incremento com o aumento de energia interna em cada iteração. Limitando tanto os deslocamentos como as forças na verificação de convergência, este método permite obter bons resultados na convergência dos métodos numéricos. Mais detalhes sobre estes critérios de convergência podem ser consultados em Bathe [5].

6.9. Apresentação de resultados

Os resultados obtidos são acedidos através de dois modos: *tabelas numéricas* ou *visualização gráfica*.

A elaboração das tabelas numéricas é efectuada através da determinação das grandezas pretendidas numa malha de nós segundo os quais as membranas são discretizadas. Em cada um destes nós são calculados os deslocamentos segundo as três direcções do referencial global sendo que em cada ponto de quadratura são calculadas as tensões segundo as direcções x e y do referencial global σ_{xx} , σ_{yy} e σ_{xy} e as tensões principais σ_I e σ_{II} .

A visualização gráfica permite a apresentação de:

- Malhas de nós e pontos de quadratura;
- Campos de deslocamentos *u*, *v*, *w*;
- Campos de tensões segundo as direcções x e y do referencial global σ_{xx} , σ_{yy} e σ_{xy} ;
- Campos de tensões principais σ_I , σ_{II} ;

A visualização gráfica dos resultados obtidos é essencial, pois sintetiza uma apreciável quantidade de informação, permitindo uma rápida análise dos resultados obtidos.

6.10. Fluxograma

O procedimento de solução do método de Galerkin livre de elementos é muito semelhante ao método dos elementos finitos. A malha dos nós e a malha de fundo para efeitos de integração é construída com base na geometria do problema a estudar. O sistema de equações é construído através da realização de um ciclo sobre os pontos de Gauss, sendo construídas as funções de aproximação através do método dos mínimos quadrados móveis. Os passos necessários para a elaboração do programa são apresentados de seguida:

- 1. Definição da geometria da membrana, das características físicas e mecânicas dos materiais que as constituem e das deformações iniciais;
- Geração da malha de nós em que a membrana é discretizada no sistema de coordenadas global (sistema mapeado);
- 3. Determinação do domínio de influência de cada nó da malha;
- 4. Definição das células de integração;

- 5. Determinação da posição dos pontos de Gauss em cada uma das células de integração e cálculo do seu peso e jacobiano;
- 6. Determinação dos nós nas fronteiras onde são impostas as condições de fronteiras estáticas e cinemáticas;
- 7. Determinação dos pontos de Gauss nessas fronteiras;
- 8. Elaboração de um ciclo que percorre todos os pontos de Gauss das células de modo a calcular a matriz de rigidez tangente k_{tan} e o vector de forças internas Q para o instante inicial;
- 9. Elaboração de um ciclo que percorre todos os pontos de Gauss das fronteiras estáticas de modo a calcular o vector de forças externas f;
- 10. Elaboração de um ciclo que percorre os pontos de Gauss das fronteiras cinemáticas de modo a calcular a matriz de rigidez k_{pen} e vector de forças f_{pen} com os factores de penalização;
- 11. Elaboração de um ciclo que percorre o número de incrementos de carga pré-definido no método de Newton-Raphson. Em cada incremento de carga é efectuado um novo ciclo contabilizando o número de iterações necessárias para se obter uma melhoria da solução obtida de acordo com uma tolerância de convergencia pré-definida. Para cada incremento de carga calcula-se a matriz de rigidez tangente e a variação do campo de parâmetros nodais que esse incremento de carga produz. O vector de parâmetros nodais final é obtido somando as variações do campo de parâmetros obtidas em todos os incrementos de carga. No cálculo da matriz de rigidez actualizada são efectuados os seguintes passos:
 - a. Determinação dos nós na vizinhança;
 - b. Determinação dos pesos, funções de aproximação e derivadas das funções de aproximação em cada nó no domínio de influência;
 - c. Assemblagem da matriz das derivadas das funções de aproximação B;
 - d. Assemblagem da matriz de rigidez tangente, k_{tan} , incluindo a matriz de rigidez com os factores de penalização devido à imposição das condições de fronteira cinemáticas.
- 12. Resolução do sistema de equações de modo a determinar os valores dos parâmetros nodais u_1 no referencial global (sistema mapeado);
- Determinação dos valores dos deslocamentos correspondentes aos três graus de liberdade por nó, através da consideração das funções de aproximação construídas através do MLS;
- 14. Elaboração de um ciclo que percorre todos os pontos de Gauss, calculando em cada um destes pontos, as tensões σ_{xx} , σ_{yy} , τ_{xy} , no referencia global e local, e as tensões principais σ_I e σ_{II} .

Este procedimento pode ser esquematizado no seguinte fluxograma:

Figura 6.5: Fluxograma

Instituto Superior Técnico

Capítulo 7. Exemplos

Neste capítulo apresentam-se alguns exemplos de estruturas de membrana analisadas pelo método de Galerkin livre de elementos através do modelo computacional implementado em ambiente MATLAB.

Uma vez que os problemas típicos de estruturas de membrana não possuem soluções analíticas, a comparação possível reside na observação das diferenças de resultados existentes entre as análises através de outras técnicas numéricas, como por exemplo o método dos elementos finitos, e o método de Galerkin livre de elementos para um número semelhante de graus de liberdade. Assim, o modelo computacional apresentado neste trabalho foi validado através da utilização de um programa generalista de elementos finitos: ADINA.

Assim, a validação do modelo computacional desenvolvido iniciou-se com a análise de duas membranas planas sujeitas a uma acção única (pré-esforço).

Continuando a validação do programa de cálculo automático, o estudo prosseguiu com a análise de superfícies de membrana tridimensionais. Deste modo, analisou-se primeiramente uma membrana em forma de cabo face à actuação de 3 tipos de acções: pré-esforço, carga uniformemente distribuída e carga pontual. Nesta secção, analisou-se ainda uma membrana em forma de parabolóide hiperbólico no estudo de dois aspectos essenciais no projecto de uma estrutura de membrana: busca de forma e quantificação da acção que mais relevância tem no seu projecto (vento).

Finalmente, é abordado o estudo das membranas pneumáticas, utilizando-se como casos de estudo uma cúpula de base quadrada e uma membrana cilíndrica sujeitas à acção de uma pressão interna.

Tendo como objectivo a generalização do programa de cálculo automático à análise de membranas constituídas por materiais com comportamento ortotrópico, foi considerada na análise das mesmas a isotropia e ortotropia do material segundo dois eixos arbitrários.

7.1. Membranas planas

As duas membranas analisadas nesta secção possuem as mesmas características físicas e geométricas diferindo apenas nas condições de fronteira cinemáticas, sendo ambas analisadas para a acção de um pré-esforço inicial. Na figura seguinte observam-se as duas membranas analisadas nesta secção assim como as características físicas, geométricas e mecânicas das mesmas.

A aplicação do EFGM foi efectuada utilizando uma malha de 11×11 nós em que cada célula de quadratura é definida por 4 nós vizinhos, contendo um sistema de 3×3 pontos de integração. Foi utilizada uma base linear para o campo de deslocamentos e uma spline cúbica como função de peso. As condições de fronteira foram impostas pelo método da penalidade com um factor de 10^{10} .

O elemento finito utilizado como termo comparativo foi o elemento finito de quatro nós com 3×3 pontos de quadratura de Gauss em cada elemento. Sendo a aproximação dos

deslocamentos linear neste tipo de elementos, reproduzem-se as mesmas condições nos dois métodos numéricos.

Figura 7.1: Membranas planas a analisar

Em ambos os programas foi utilizado o método iterativo de Newton-Raphson na resolução do sistema de equações não linear com 10 incrementos de carga em que o critério de convergência adoptado foi baseado na imposição de uma tolerância de convergência (10⁻¹⁰) para a variação dos deslocamentos entre iterações sucessivas. Na Figura 7.2 pode observar-se a discretização utilizada na análise das duas membranas na aplicação dos dois métodos numéricos considerados. Na Figura 7.3 é apresentado um pormenor da célula unitária de integração utilizada nos 2 modelos.

A análise dos exemplos apresentados foi realizada considerando o seu comportamento isotrópico e ortotrópico segundo dois eixos que fazem ângulos de 0°, 30°, 60° e 90° com os eixos do referencial global (Figura 7.4).

Figura 7.2: Discretização das membranas planas em análise (a) EFGM (b) FEM

Figura 7.3: Célula unitária

Figura 7.4: Situações de ortotropia a analisar

Avaliando o grau de ortotropia das membranas em estudo através das expressões (3.1)-(3.3):

$$m = \frac{800 \times 10^3}{100 \times 10^3} - 2 \times 0.3 = 7.4$$
$$k = \sqrt{\frac{800 \times 10^3}{400 \times 10^3}} = 1.414$$
$$n = \sqrt{2 \times 1.414 + 7.4} = 3.198$$

O valor de k = 1.414 permite inferir que a membrana apresenta um grau de ortotropia substancial. Esta membrana apresenta um comportamento típico de um plástico reforçado com fibras de vidro (**Tabela 3.2**).

7.1.1. Membrana I

Utilizando o FEM e o EFGM, fez-se uma análise paramétrica dos deslocamentos horizontais segundo a direcção x ao longo do bordo livre vertical, obtendo-se os resultados ilustrados na Figura 7.5. Tomando como referência a situação de comportamento isotrópico, verificou-se que o ADINA e o programa de cálculo automático efectuaram 3 e 4 iterações no primeiro incremento de carga, sendo que ambos convergiram nas restantes iterações com 1 incremento de carga. Na Tabela 7.1 apresentam-se os somatórios de reacções segundo os três eixos do referencial global, registados no final da resolução de equações através do método de Newton-Raphson.

Eixo	FEM	EFGM
Х	0	1.834×10 ⁻¹³
у	0	2.210×10 ⁻¹⁴
Z	0	0

Tabela 7.1: Resultante das reacções segundo as 3 direcções do referencial global (kN)

Os resultados apresentados graficamente nesta secção encontram-se expressos na forma de tabelas no Anexo I.1.

Observando os resultados expressos na Figura 7.5, verifica-se ainda que ocorre uma diminuição de deslocamentos ao longo do bordo quando se passa de uma situação de isotropia para situações de ortotropia orientada a 0° e 90°, o que é explicável uma vez que nestas situações a membrana é mais rígida segundo estas direcções. Comparando com o caso isotrópico, pode dizer-se que para uma ortotropia (0°) apenas ocorre uma translacção dos deslocamentos ao longo do bordo no sentido de diminuição. Nestes dois casos, existe uma diferença de deslocamento entre o ponto médio do bordo e o ponto extremo de 0.029 cm. Para uma situação de ortotropia (90°), a curvatura da gráfico de deslocamentos ao longo do bordo livre é menor, sendo a diferença referida de 0.016 cm.

Para os casos em que o material é ortotrópico segundo direcções de 30° e 60°, a deformada do bordo vertical deixa de ser simétrica em relação ao eixo dos xx, sendo que os

deslocamentos horizontais chegam a atingir um valor máximo e mínimo nos pontos extremos, comparativamente com as restantes situações analisadas. Para uma ortotropia (30°), a diferença de deslocamentos dos pontos extremos do bordo é de 0.142 cm.

Figura 7.5: (a) Deslocamentos [m] segundo x ao longo do bordo livre vertical (b) Deformada (isotropia) (c) Deformada (ortotropia – 30°)

Na Figura 7.6 é efectuada uma comparação entre as tensões σ_{xx} obtidas pelo EFGM e as tensões suavizadas obtidas pelo FEM ao longo do alinhamento A-A'. No EFGM as distribuições de tensões foram obtidas através da utilização de uma malha de 11×11 nós com domínio nodal de suporte de 1+ ϵ e 2+ ϵ .

Esta distribuição de tensões apresenta um valor máximo negativo no bordo sujeito a imposição de condições de fronteira cinemáticas, um valor máximo positivo no ponto médio do alinhamento e um valor practicamente nulo no bordo livre.

A comparação entre a distribuição suavizada de tensões obtida pelo FEM e EFGM permite inferir sobre a boa fiabilidade nos resultados obtidos pelo modelo computacional apresentado neste trabalho. A observação dos resultados apresentados permite constatar que a utilização de um domínio nodal de suporte de $2+\epsilon$ permite a obtenção de uma distribuição suavizada de tensões.

(c) Ortotropia (0°) - Domínio de suporte 1+ ε

(d) Ortotropia (0°) – Domínio de suporte 2+ε

(i) Ortotropia (90°) - Domínio de suporte $1+\epsilon$ (j) Ortotropia (90°) - Domínio de suporte $2+\epsilon$

Figura 7.6: Distribuição de tensões σ_{xx} [kN/m²] - alinhamento A-A'

Nas figuras seguintes pode observar-se uma comparação entre os campos de deslocamentos e tensões principais na membrana obtidos através da aplicação dos dois métodos numéricos. Os diagramas apresentados referem-se a situações de comportamento isotrópico e comportamento ortotrópico (30°) sendo obtidos utilizando malhas de 21×21 nós. Através dos diagramas apresentados infere-se que estes são simétricos em relação ao eixo dos xx apenas para uma situação de comportamento isotrópico por parte do material.

Relativamente ao comportamento isotrópico do material, observa-se que o deslocamento máximo segundo a direcção x ocorre no ponto médio do bordo livre vertical, embora ao longo deste bordo este deslocamento seja practicamente constante. Verifica-se que o deslocamento segundo a direcção y é praticamente nulo ao longo do alinhamento A-A' devido às condições de simetria da estrutura e do carregamento, sendo que atinge valores máximos nos pontos extremos do bordo livre vertical.

Observando os diagramas de tensões principais infere-se que estes apresentam perturbações junto ao bordo encastrado sendo que no bordo livre oposto as tensões principais são uniformes, tal como não poderia deixar de ser de acordo com o princípio de Saint Venant. No bordo livre as tensões principais máximas σ_I são praticamente nulas e as tensões principais mínimas σ_{II} são negativas o que permite indagar sobre a existência de compressões transversais, sendo que ao longo deste bordo as direcções principais de tensão estão alinhadas segundo os eixos do referencial global.

Observando os respectivos diagramas referentes à análise da membrana com comportamento ortotrópico (30°), verifica-se que o deslocamento máximo e mínimo segundo a direcção x ocorrem nos pontos extremos do bordo livre vertical, inferior e superior,

respectivamente. Verifica-se que comparativamente com a análise anteriormente efectuada para a situação de comportamento isotrópico, uma ortotropia (30°) confere à membrana um comportamento mais flexível (para estas condições de apoio e carregamento) uma vez que os deslocamentos segundo a direcção x aumentam ligeiramente. Para a referida situação de ortotropia, o deslocamento máximo segundo a direcção y ocorre no ponto superior do bordo.

A análise das tensões principais permite inferir que os diagramas não são simétricos em virtude do ângulo de ortotropia considerado ser diferente de 0. Verifica-se que o canto com a fibra mais pré-esforçada apresenta um valor de tensão principal σ_I consideravelmente inferior ao observado na situação de comportamento isotrópico, o que é explicável pelo facto da presente situação ser mais flexível do que a anterior. Os valores de pico são diferentes quando obtidos através do FEM e do EFGM, o que nao é relevante. Os resultados das tensões ao longo de um alinhamento médio revelam-se bastante próximos, sendo este o aspecto relevante.

A análise das tensões principais mínimas σ_{II} permite constatar que estas são negativas numa região próxima do bordo livre, correspondendo a uma compressão transversal da membrana observável na sua configuração deformada. Uma vez que o ADINA ordena as tensões principais no sentido decrescente, observou-se a existência de tensões σ_{III} não nulas apenas no bordo livre sendo o valor das mesmas exactamente igual ao valor das tensões principais mínimas obtidas através do EFGM. Nos diagramas seguintes correspondentes às tensões principais mínimas obtidas no ADINA, apenas são apresentados os diagramas de tensões σ_{II} .

Figura 7.7: Diagramas de deslocamentos x [m] (isotropia): (a) EFGM (b) FEM

Figura 7.8: Diagramas de deslocamentos y [m] (isotropia): (a) EFGM (b) FEM

Figura 7.9: Diagramas de tensões principais $\sigma_I [kN/m^2]$ (isotropia): (a) EFGM (b) FEM

Figura 7.10: Diagramas de tensões principais σ_{II} [kN/m²] (isotropia): (a) EFGM (b) FEM

Figura 7.11: Diagramas de deslocamentos x [m] (ortotropia-30°): (a) EFGM (b) FEM

Figura 7.12: Diagramas de deslocamentos y [m] (ortotropia-30°): (a) EFGM (b) FEM

Figura 7.13: Diagramas de tensões principais $\sigma_1 [kN/m^2]$ (ortotropia-30°): (a) EFGM (b) FEM

Figura 7.14: Diagramas de tensões principais σ_{II} [kN/m²] (ortotropia-30°): (a) EFGM (b) FEM

7.1.2. Membrana II

A membrana analisada neste exemplo (Figura 7.1) é uma membrana plana sujeita a uma extensão inicial segundo as duas direcções. A análise desta membrana foi realizada considerando o comportamento isotrópico e ortotrópico (0°, 45° e 90°) por parte do material (Figura 7.15). A discretização da membrana segundo os dois métodos numéricos, a base utilizada no suporte da aproximação do campo de deslocamentos e a imposição das condições de fronteira cinemáticas foram efectuadas de modo idêntico ao exemplo anterior.

Na Figura 7.16 apresentam-se os resultados referentes a uma análise paramétrica dos deslocamentos no Ponto A com as direcções de ortotropia. Através da análise paramétrica dos deslocamentos no Ponto A com as direcções de ortotropia, verifica-se que estes são iguais em ambas as direcções quando a direcção de ortotropia faz um ângulo de 0°, 45° ou 90° com os eixos do referencial global. Verifica-se que para um ângulo compreendido entre 0° e 45° os deslocamentos do Ponto A segundo a direcção x diminuem, aumentando na mesma proporção os respectivos deslocamentos na direcção y. Para um ângulo compreendido entre 45° e 90°, verifica-se o fenómeno inverso.

Na Figura 7.17 apresentam-se os resultados referentes aos deslocamentos horizontais ao longo do alinhamento B-B' para as três situações de ortotropia estudadas. Observando os deslocamentos segundo as direcções x e y ao longo do alinhamento B-B' infere-se que para as 3 situações de ortotropia estudadas, apenas para uma ortotropia (45°) se registam deslocamentos inferiores aos verificados na situação de comportamento isotrópico por parte do material.

Na Figura 7.18 e Figura 7.19 apresenta-se a distribuição de tensões principais σ_I ao longo do alinhamento B-B', obtida através da utilização de malhas de 11×11 nós e 21×21 nós com domínios nodais de suporte de 1+ ϵ e 2+ ϵ , respectivamente.

Na Figura 7.20 e Figura 7.21 apresenta-se a distribuição de tensões principais σ_{II} ao longo do alinhamento B-B', obtida através da utilização de malhas de 11×11 nós e 21×21 nós com domínios nodais de suporte de 1+ ϵ e 2+ ϵ , respectivamente.

A comparação entre a distribuição suavizada de tensões obtida pelo FEM e EFGM permite inferir sobre a boa fiabilidade nos resultados obtidos pelo modelo computacional apresentado neste trabalho. A observação dos resultados apresentados permite constatar que a utilização de uma malha de 21×21 nós permite uma maior proximidade entre as tensões obtidas através do FEM e EFGM. Na região próxima do bordo livre observam-se tensões de compressão da ordem de 2 MPa, o que é perceptível face à observação da deformada da membrana.

Na Figura 7.22 são comparadas as distribuições de tensões obtidas para as situações de isotropia e ortotropia analisadas. Tomando como referência a situação de isotropia, verificou-se que o ADINA e o programa de cálculo automático efectuaram 3 e 4 iterações no primeiro incremento de carga, sendo que ambos convergiram nas restantes iterações com 1 incremento de carga.

Na Tabela 7.2 apresentam-se os somatórios de reacções segundo as 3 direcções do referencial global, obtidos no final da resolução de equações não lineares através do método de Newton-Raphson.

Figura 7.15: Situações de ortotropia a analisar

Eixo	FEM	EFGM
Х	8,88×10 ⁻¹⁶	4,020×10 ⁻¹⁴
у	7,77×10 ⁻¹⁶	-2,685×10 ⁻¹³
Z	0	0

Tabela 7.2: Resultante das reacções segundo as 3 direcções do referencial global (kN)

Figura 7.16: (a) Deslocamentos [m] segundo as direcções x e y do Ponto A (b) Deformada (isotropia) (c) Deformada (ortotropia – 45°)

Figura 7.18: Distribuição de tensões principais $\sigma_I [kN/m^2]$ ao longo do alinhamento B-B' - 11×11 nós (a) Isotropia (b) Ortotropia (0°) (c) Ortotropia (45°) (d) Ortotropia (90°)

Figura 7.19: Distribuição de tensões principais $\sigma_I [kN/m^2]$ ao longo do alinhamento B-B' - 21×21 nós (a) Isotropia (b) Ortotropia (0°) (c) Ortotropia (45°) (d) Ortotropia (90°)

Figura 7.20: Distribuição de tensões principais σ_{II} [kN/m²] ao longo do alinhamento B-B' - 11×11 nós (a) Isotropia (b) Ortotropia (0°) (c) Ortotropia (45°) (d) Ortotropia (90°)

Instituto Superior Técnico

Figura 7.21: Distribuição de tensões principais σ_{II} [kN/m²] ao longo do alinhamento B-B' - 21×21 nós (a) Isotropia (b) Ortotropia (0°) (c) Ortotropia (45°) (d) Ortotropia (90°)

Figura 7.22: Distribuição de tensões principais ao longo do alinhamento B-B' - 21×21 nós

Através da observação da Figura 7.22 verifica-se que comparativamente com as situações analisadas em que o material apresenta um comportamento ortotrópico, a consideração de um comportamento isotrópico permite a obtenção de valores mais elevados de tensão principal ao longo do alinhamento B-B'. Comparando as três situações de ortotropia analisadas, a ortotropia (0°) é a situação que confere menores níveis de tensão ao longo do alinhamento.

Os resultados apresentados graficamente encontram-se expressos na forma de tabelas no Anexo I.2.

Nas figuras seguintes são ilustrados os campos de deslocamentos e tensões principais na membrana em análise para uma situação de comportamento isotrópico e ortotrópico (45°), respectivamente. Os diagramas foram obtidos através do EFGM e FEM utilizando malhas de 21×21 nós com um domínio nodal de suporte de $2+\epsilon$ na construção das funções de aproximação do EFGM.

Observando-se os campos de deslocamentos apresentados verifica-se que no caso da membrana apresentar comportamento isotrópico, o diagrama de deslocamentos segundo a direcção y é exactamente o diagrama de deslocamentos segundo a direcção x rodado de 90°, devido à simetria da membrana em relação à sua diagonal que faz 45° com os eixos x-y. Se a membrana possuir comportamento ortotrópico (45°), os deslocamentos segundo x e y são muito semelhantes aos obtidos na situação anterior, quer qualitativamente quer quantitativamente.

Figura 7.23: Diagramas de deslocamentos x [m] (isotropia): (a) EFGM (b) FEM

Figura 7.24: Diagramas de deslocamentos y [m] (isotropia): (a) EFGM (b) FEM

Figura 7.25: Diagramas de tensões principais $\sigma_I [kN/m^2]$ (isotropia): (a) EFGM (b) FEM

Figura 7.26: Diagramas de tensões principais σ_{II} [kN/m²] (isotropia): (a) EFGM (b) FEM

Figura 7.27: Diagramas de deslocamentos x [m] (ortotropia-45°): (a) EFGM (b) FEM

Figura 7.28: Diagramas de deslocamentos y [m] (ortotropia-45°): (a) EFGM (b) FEM

Figura 7.29: Diagramas de tensões principais σ_{I} [kN/m²] (ortotropia-45°): (a) EFGM (b) FEM

Figura 7.30: Diagramas de tensões principais σ_{II} [kN/m²] (ortotropia-45°): (a) EFGM (b) FEM

A análise de tensões mostra que em ambas as situações de comportamento por parte do material, a tensão principal máxima σ_I é superior ao valor de tensão inicial (8MPa) na região delimitada pelos bordos sujeitos a imposição de condições de fronteira essenciais e pela diagonal da membrana. Assim, nesta região a membrana encontra-se sujeita a aumentos de tensão nas duas direcções principais, sendo que esse aumento é mais evidenciado na situação de isotropia, obtendo-se um valor de 37 MPa no canto superior esquerdo da membrana. Na restante região da membrana a tensão principal máxima é inferior ao valor de tensão inicial, ocorrendo deste modo relaxação do estado de tensão inicial.

A análise das tensões principais mínimas σ_{II} permite constatar que nas regiões próximas dos bordos livres ocorrem tensões de compressão, o que se justifica face à observação da configuração deformada da membrana.

7.2. Membranas tridimensionais

7.2.1. Membrana cabo

O objectivo deste exemplo é a análise de uma membrana com a forma de um cabo em que se consideram dois comportamentos distintos: isotrópico e ortotrópico (0°, 45° e 90°). As características geométricas e mecânicas desta membrana encontram-se apresentadas na seguinte figura:

Figura 7.31: Geometria da membrana em forma de cabo a analisar

Esta membrana possui as mesmas características mecânicas das anteriores e foi analisada perante dois carregamentos distintos: carga distribuída e carga pontual.

Os métodos numéricos utilizados na análise estrutural da membrana foram o método dos elementos finitos e o método de Galerkin livre de elementos. A análise desta membrana foi efectuada recorrendo a discretizações da membrana segundo malhas de 11×11 e 21×21 nós. No EFGM foi utilizado uma base linear, uma spline cúbica e um suporte de $1+\epsilon$ no caso de uma malha de 11×11 nós e um suporte de $2+\epsilon$ no caso de uma malha de 21×21 nós. Cada célula de integração é definida por 4 nós vizinhos, contendo cada célula de integração 3×3 pontos de quadratura.

A imposição das condições de fronteira foi efectuada através do método da penalidade, utilizando-se um factor de penalidade de 10¹⁰. Foi utilizado o método de Newton-Raphson na resolução do sistema de equações não linear e adoptou-se o mesmo critério e tolerância de convergência do exemplo anterior.

O elemento finito utilizado como termo comparativo foi o elemento finito de quatro nós com 3×3 pontos de quadratura de Gauss em cada elemento.

Os resultados apresentados graficamente encontram-se expressos na forma de tabelas no Anexo II.1.

7.2.1.1. Carga distribuída

Nesta secção procede-se à análise da membrana perante uma carga distríbuida. Considerando o comportamento isotrópico e dois pontos de referência (Ponto A e Ponto B) compararam-se os deslocamentos verticais destes pontos para vários níveis de carregamento, obtendo-se as curvas apresentadas na Figura 7.32.

Na Figura 7.33 é apresentada a configuração indeformada e deformada ao longo do alinhamento C-C' para um carregamento de 1 kPa. Na Figura 7.34 e Figura 7.35 apresenta-se uma comparação dos deslocamentos nas direcções x e y ao longo dos alinhamentos C-C' e D-D', para um carregamento de 1 kPa. Na Figura 7.36 apresenta-se a distribuição de tensões segundo as direcções x e y ao longo do alinhamento C-C', obtida para um carregamento de 1 kPa. As distribuições de tensões apresentadas foram obtidas com uma malha de 21×21 nós.

Através dos resultados apresentados, verifica-se que a membrana apresenta maiores deslocamentos verticais para uma situação em que o material é ortotrópico (45°), sendo que uma membrana com estas características apresenta deslocamentos muito próximos das situações em que o seu material é ortotrópico (90°). Por outro lado, comparando os deslocamentos verticais para as situações em que o material da membrana é isotrópico e ortotópico (0°) verifica-se que estes são muito semelhantes, sendo o comportamento isotrópico a situação que conduz a menores deslocamentos verticais.

Image: Contract of the second of th

Figura 7.32: Relação carga – deslocamento nos Pontos A e B

Figura 7.33: Posições deformadas [m] ao longo do alinhamento C-C'

Observando-se os deslocamentos segundo a direcção x constata-se que estes atingem valores mais elevados para uma ortotropia (45°), sendo cerca de metade dos valores observados para uma ortotropia (90°). Considerando o comportamento isotrópico por parte da membrana, obtém-se deslocamentos que são cerca de metade dos registados para uma situação de ortotropia (90°). Na situação de comportamento ortotrópico (0°) observam-se os menores deslocamentos segundo a direcção x.

Relativamente aos deslocamentos segundo a direcção y verifica-se que estes são maiores na situação de comportamento ortotrópico (45°), sendo que se o ângulo de ortotropia for 90°, observam-se os valores mais baixos. Nas outras duas situações analisadas, os deslocamentos segundo a direcção y revelam-se muito semelhantes.

A distribuição de tensões σ_{xx} permite inferir que esta é uma distribuição parabólica com o máximo situado na origem. Verifica-se que para uma ortotropia (0°) e ortotropia (90°) esta curvatura é muito suave sendo muito pequena a diferença entre o valor máximo (centro) e o valor mínimo (bordo). Assim, o valor do centro é 2,98 % e 2,67 % superior ao valor de bordo para situações de ortotropia (0°) e (90°), respectivamente. No entanto, para uma ortotropia (0°) o valor de tensão máxima é 80,4% superior ao correspondente valor observado na situação de comportamento ortotrópico (90°), o que é explicável pelo facto de na primeira situação a direcção em que o módulo de elastacidade é maior coincidir com o alinhamento segundo o qual

se observam os valores de tensão. A consideração de um comportamento isotrópico permite a obtenção de maiores valores de tensão na origem, sendo estes cerca de 4 % superiores aos valores observados para uma ortotropia (0°). Para uma ortotropia (45%) observa-se a maior diferença entre o valor máximo (centro) e o valor mínimo (bordo), sendo a tensão no centro superior em 41,53% em relação à tensão no bordo.

Os valores de tensão obtidos ao longo de um alinhamento com o método de Galerkin livre de elementos coincidem com a distribuição de tensões suavalizada obtida através da consideração do método dos elementos finitos (ADINA), sendo este um bom indicador da qualidade dos resultados obtidos.

Figura 7.34: Deslocamentos [m] segundo a direcção x ao longo do alinhamento C-C'

Figura 7.35: Deslocamentos [m] segundo a direcção y ao longo do alinhamento D-D'

Figura 7.36: Distribuição de tensões ao longo do alinhamento C-C'

Nas figuras seguintes apresentam-se os campos de deslocamentos e tensões obtidos considerando o comportamento isotrópico e o comportamento ortotrópico (45°) da membrana. Os diagramas de tensões foram obtidos considerando uma discretização de 21×21 nós e um domínio de suporte de $2+\epsilon$.

Tomando como exemplo a situação isotrópica verificou-se que o ADINA e o modelo computacional implementado em MATLAB efectuaram 5 e 6 iterações, respectivamente, no primeiro incremento de carga, sendo que ambos convergiram nas restantes iterações com 4 incrementos de carga. Na tabela seguinte, apresentam-se os somatórios de reacções segundo as 3 direcções do referencial global, obtidos no final da resolução de equações através do método de Newton-Raphson.

Tabela 7.3: Resultante das reacções segundo as 3 direcções do referencial global

Eixo	FEM	EFGM
Х	$-2,22 \times 10^{-16}$	-1,83×10 ⁻¹³
У	1,11×10 ⁻¹⁶	1,20×10 ⁻¹⁴
Z	1.000	1.000

Comparando os campos de deslocamentos e tensões na membrana obtidos mediante a aplicação do FEM e EFGM verifica-se que estes são praticamente idênticos corroborando os resultados obtidos anteriormente. É de notar que a tensão principal σ_{II} é positiva em toda a

superfície de membrana, o que permite inferir que esta se encontra totalmente tensionada, não ocorrendo enrugamento.

Para uma situação de comportamento isotrópico, a análise de tensões mostra que a tensão principal σ_I é quase sempre superior ao valor de tensão inicial (8 MPa) o que faz com que grande região de superfície de membrana esteja sujeita a aumentos de tensão nas duas direcções principais, coincidindo as fibras mais traccionadas com os cantos da membrana.

Figura 7.37: Diagramas de deslocamentos x [m] (isotropia): (a) EFGM (b) FEM

Figura 7.38: Diagramas de deslocamentos y [m] (isotropia): (a) EFGM (b) FEM

Figura 7.39: Diagramas de deslocamentos z [m] (isotropia): (a) EFGM (b) FEM

Figura 7.40: Diagramas de tensões σ_{xx} [kN/m²] (isotropia): (a) EFGM (b) FEM

Figura 7.41: Diagramas de tensões σ_{yy} [kN/m²] (isotropia): (a) EFGM (b) FEM

Figura 7.42: Diagramas de tensões principais $\sigma_1 [kN/m^2]$ (isotropia): (a) EFGM (b) FEM

Figura 7.43: Diagramas de tensões principais σ_{II} [kN/m²] (isotropia): (a) EFGM (b) FEM

Ao considerar-se o comportamento ortotrópico (45°) verifica-se que na diagonal que possui um maior módulo de elasticidade, a tensão principal σ_I é superior à tensão inicial (8 MPa), sendo que as fibras mais traccionadas se situam nos extremos dessa diagonal. Na restante região da membrana, a tensão principal σ_I é inferior à tensão inicial ocorrendo relaxação do estado de tensão nas duas direcções principais.

Figura 7.44: Diagramas de deslocamentos x [m] (ortotropia-45°): (a) EFGM (b) FEM

Figura 7.45: Diagramas de deslocamentos y [m] (ortotropia-45°): (a) EFGM (b) FEM

Figura 7.46: Diagramas de deslocamentos z [m] (ortotropia-45°): (a) EFGM (b) FEM

Figura 7.47: Diagramas de tensões σ_{xx} [kN/m²] (ortotropia-45°): (a) EFGM (b) FEM

Figura 7.48: Diagramas de tensões σ_{yy} [kN/m²] (ortotropia-45°): (a) EFGM (b) FEM

Figura 7.49: Diagramas de tensões principais $\sigma_1 [kN/m^2]$ (ortotropia-45°): (a) EFGM (b) FEM

Figura 7.50: Diagramas de tensões principais σ_{II} [kN/m²] (ortotropia-45°): (a) EFGM (b) FEM

7.2.1.2. Carga pontual

Nesta secção analisa-se o comportamento da membrana mas desta feita sujeita a uma carga pontual de 1 kN aplicada no centro da mesma. Esta análise foi efectuada utilizando um domínio nodal de suporte de $1+\varepsilon$.

Na Figura 7.51 apresentam-se as configurações deformadas ao longo dos alinhamentos C-C' e D-D', considerando-se um comportamento isotrópico e ortotrópico por parte da membrana. Os gráficos apresentados traduzem uma distribuição parabólica dos deslocamentos verticais ao longo dos alinhamentos de referência, sendo a abertura das parábolas maior na direcção x, o que é explicável pelo facto da carga se dissipar para os bordos onde estão impostas as condições de fronteira cinemáticas. Observando o seu comportamento perante a consideração de um comportamento ortotrópico por parte da membrana, verifica-se que quanto maior for o ângulo formado entre os eixos de ortotropia e os eixos do referencial global, maior é o deslocamento obtido. É de notar que o deslocamento vertical mediante uma ortotropia (90°) aumenta 45% em relação à situação em que se considera um comportamento isotrópico por parte do material da membrana.

Figura 7.51: Configuração deformada [m]

Figura 7.52: Deslocamentos [m] ao longo do alinhamento C-C'

Figura 7.53: Deslocamentos [m] ao longo do alinhamento D-D'

Observando os deslocamentos segundo a direcção x ao longo do alinhamento C-C' (Figura 7.52), constata-se que estes são muito semelhantes quer se considere um comportamento isotrópico ou ortotrópico (0°) por parte do material. Caso a ortotropia esteja orientada a 90°, os deslocamentos atingem valores superiores às outras situações analisadas, podendo o seu valor máximo atingir 2.36 do valor máximo obtido na situação de comportamento isotrópico. É de

notar que os deslocamentos segundo a direcção x seguem uma distribuição parabólica ao longo deste alinhamento, ocorrendo um valor máximo a uma distância de 20 cm da origem do referencial.

A observação dos deslocamentos segundo a direcção y ao longo do alinhamento D-D'(Figura 7.53) permite constatar que estes, para uma situação de isotropia, seguem uma distribuição linear atingindo o seu valor máximo de 0,16 cm na extremidade do alinhamento. Considerando o comportamento ortotrópico por parte da membrana, conclui-se que à medida que o ângulo de ortotropia aumenta, a distribuição de deslocamentos deixa de ser linear ao longo de todo o alinhamento, sendo-o apenas numa região perto da origem do referencial. A maior diferença de resultados na extremidade do alinhamento ocorre quando se passa de um comportamento isotrópico para um comportamento ortotrópico (0°). Os 3 casos de ortotropia analisados conduzem a deslocamentos semelhantes na extremidade do alinhamento, citando-se as situações de ortotropia (45°) e ortotropia (90°). Para estes dois casos os deslocamentos na extremidade são, respectivamente, cerca de 3.86 e 3.96 vezes os deslocamentos obtidos para a análise da membrana com comportamento isotrópico.

Observando os diagramas de deslocamentos verticais verifica-se a existência de uma perturbação no centro da membrana provocada pela carga pontual. Estes diagramas apenas são simétricos em relação aos eixos do referencial global apenas em situações de comportamento isotrópico por parte do material. Caso o material seja ortotrópico (45°), os diagramas são simétricos em relação à diagonal definida por o ângulo que esta faz com os eixos do referencial global.

Analisando os gráficos das tensões σ_{xx} segundo o alinhamento C-C' (Figura 7.54) verifica-se que as tensões máximas ocorrem precisamente no ponto de aplicação da carga pontual. Observa-se que entre as 4 situações analisadas, o valor máximo de σ_{xx} ocorre quando a membrana apresenta um comportamento ortotrópico (0°), sendo que o valor mínimo deste pico ocorre para uma situação de ortotropia (45°). Nas situações em que o material da membrana possui um comportamento ortotrópico (0°, 45° e 90°), o valor de pico é superior ao valor verificado no bordo em 3.3, 9.9 e 4.3, respectivamente, constatando-se que uma ortotropia (45°) é a situação em que se registam maiores diferenças entre os valores máximos e mínimos de tensão.

Figura 7.54: Distribuição de tensões σ_{xx} [kN/m²] ao longo do alinhamento C-C' (a) Isotropia (b) Ortotropia (0°) (c) Ortotropia (45°) (d) Ortotropia (90°)

Figura 7.55: Distribuição de tensões σ_{yy} [kN/m²] ao longo do alinhamento C-C' (a) Isotropia (b) Ortotropia (0°) (c) Ortotropia (45°) (d) Ortotropia (90°)

Figura 7.56: Comparação de tensões para as situações analisadas

A análise das tensões σ_{yy} permite constatar que esta distribuição apresenta valores practicamente nulos em quase todo o alinhamento C-C', excepto na zona de singularidade correspondente à aplicação da carga pontual.

Comparando com as distribuições de tensões obtidas através do FEM, constata-se que são muito semelhantes embora se verifique que a aproximação obtida na zona da singularidade é melhor para a distribuição de tensões σ_{vv} .

Nas figuras seguintes apresentam-se os diagramas dos campos de deslocamentos e tensões obtidos considerando o comportamento isotrópico e ortotrópico (45°).

Para a elaboração destes diagramas foi considerada uma discretização de 21×21 nós e um domínio de suporte de $1+\epsilon$. Utilizando este domínio nodal, a distribuição de tensões obtida através do modelo computacional desenvolvido nestre trabalho é uma distribuição não suavizada, encontrando-se mais próxima da distribuição suavizada obtida no ADINA. Assim, constatou-se que utilização de um domínio de suporte de $2+\epsilon$ permite a suavização do campo de tensões, sendo que neste caso particular a suavização conduz a resultados que se afastam dos obtidos na zona de singularidade através do ADINA.

No diagrama de tensões principais máximas σ_I é evidente que a difusão do bolbo de tensões ocorre com maior predominância na direcção dos bordos onde estão impostas as condições de fronteira cinemáticas. A análise de tensões mostra que a tensão principal máxima σ_I é superior ao valor de tensão inicial (8 MPa) na região perto do alinhamento C-C' e da diagonal a 45°, para os casos em que a membrana apresenta um comportamento isotrópico e

ortotrópico (45°), respectivamente. Assim, nestas regiões a membrana encontra-se sujeita a aumentos de tensão nas duas direcções principais, coincidindo a fibra mais traccionada com o ponto de aplicação da carga.

A observação das tensões principais mínimas σ_{II} permite constatar que estas são positivas em toda a extensão da membrana, salvo em pontos locais, o que permite inferir que esta se encontra tensionada em toda a sua superfície, não ocorrendo enrugamento.

Figura 7.57: Diagramas de deslocamentos x [m] (isotropia): (a) EFGM (b) FEM

Figura 7.58: Diagramas de deslocamentos y [m] (isotropia): (a) EFGM (b) FEM

Figura 7.59: Diagramas de deslocamentos z [m] (isotropia): (a) EFGM (b) FEM

Figura 7.60: Diagramas de tensões σ_{xx} [kN/m²] (isotropia): (a) EFGM (b) FEM

Figura 7.61: Diagramas de tensões σ_{yy} [kN/m²] (isotropia): (a) EFGM (b) FEM

Figura 7.62: Diagramas de tensões principais σ_1 [kN/m²] (isotropia): (a) EFGM (b) FEM

Figura 7.63: Diagramas de tensões principais σ_{II} [kN/m²] (isotropia): (a) EFGM (b) FEM

Figura 7.64: Diagramas de deslocamentos x [m] (ortotropia-45°): (a) EFGM (b) FEM

Figura 7.65: Diagramas de deslocamentos y [m] (ortotropia-45°): (a) EFGM (b) FEM

Figura 7.66: Diagramas de deslocamentos z [m] (ortotropia-45°): (a) EFGM (b) FEM

Figura 7.67: Diagramas de tensões σ_{xx} [kN/m²] (ortotropia-45°): (a) EFGM (b) FEM

Figura 7.68: Diagramas de tensões σ_{yy} [kN/m²] (ortotropia-45°): (a) EFGM (b) FEM

Figura 7.69: Diagramas de tensões principais $\sigma_i [kN/m^2]$ (ortotropia-45°): (a) EFGM (b) FEM

Figura 7.70: Diagramas de tensões principais σ_{II} [kN/m²] (ortotropia-45°): (a) EFGM (b) FEM

7.2.2. Parabolóide hiperbólico

O parabolóide hiperbólico é uma das formas mais frequentemente utilizadas nas estruturas de membrana. Uma vez que constitui uma superfície minimal esta forma permite equilibrar o campo resultante de extensões iniciais com tensões uniformes em toda a extensão da superfície.

Neste exemplo será analisado um parabolóide hiperbólico de forma quadrada em planta com os lados de 8,7 m (6,15 em planta). O desnível entre os cantos elevados e os cantos rebaixados é de 6,15 m (lados com inclinação de 100%) e o ponto central da membrana está a uma cota intermédia (3,075 m acima dos cantos rebaixados). Conclui-se assim que, para esta geometria, as duas diagonais são eixos de simetria. O parabolóide hiperbólico descrito é analisado por Pauletti [49]

Figura 7.71: Alinhamento A-A' e B-B'

utilizando um programa generalista de elementos finitos (ANSYS), tendo estes resultados sido reproduzidos por Palma [44] com recurso ao programa de elementos finitos ADINA.

Os resultados apresentados graficamente nesta secção encontram-se expressos na forma de tabelas no Anexo II.2.

7.2.2.1. Busca da forma

Nesta secção pretende-se comparar, para uma dada forma inicial, os resultados obtidos através do FEM e EFGM.

Palma [44] adoptou como geometria inicial para o parabolóide hiperbólico 4 rectas que definem os quatro bordos rígidos e outras quatro rectas que unem os cantos ao nó central (situado a meia altura entre as cotas dos cantos rebaixados e elevados). As oito rectas assim definidas formam quatro triângulos (Figura 7.72). Para modelar a condição dos bordos serem rígidos considerou-se que todos os nós dos quatro lados do parabolóide são apoios fixos. Palma [44] analisou a superfície de membrana utilizando um modelo composto por 200 elementos finitos triangulares de 3 nós (tensão uniforme), utilizando-se 3 pontos de integração por elemento finito. É de notar que a escolha desta malha na análise da membrana teve em consideração o facto da geometria em causa apresentar simetria segundo a diagonal de cumeeira.

A adopção desta forma inicial tem como objectivo verificar se existe uma boa convergência para uma solução que à partida é conhecida mesmo começando com uma geometria bastante distante da forma minimal.

Figura 7.72: Geometria inicial da membrana a analisar

Na fase da busca de forma considerou-se um módulo de elasticidade inferior ao real de forma a tornar a estrutura mais flexível. A busca da forma foi assim efectuada com um material

com módulo de elasticidade de 0,1 MPa ($E_{real}=1$ GPa) e para uma extensão inicial $\varepsilon_i=0.10$. Palma [44] analisou a influência que a extensão inicial tem na convergência para a forma minimal, concluindo que uma maior extensão inicial leva a que a membrana restabeleça o equilíbrio numa posição mais próxima da forma mínima.

Observando os resultados apresentados na Tabela 7.4, verifica-se que no final da terceira actualização da forma o deslocamento máximo é apenas de 0,019 m e que a tensão principal máxima apenas varia 0,436 kN/m² em toda a membrana.

	Deslocamento vertical máximo (z) [m]	Tensão principal (σ_I) [kN/m ²]	
		σ_{I} (Min)	$\sigma_{I}(Max)$
Equilíbrio inicial	0,3024	8,033	22,44
1 ^a Actualização	0,1764	9,354	15,48
2ª Actualização	0,06156	9,815	11,48
3 ^a Actualização	0,01903	9,878	10,35

Tabela 7.4: Resultados da busca de forma

A forma do diagrama de deslocamentos verticais obtidos por Pauletti [49] é muito semelhante à que se apresenta na Figura 7.73, referindo este autor que para deslocamentos máximos de 2,5 cm as tensões variam apenas entre 0,995 e 1 MPa. De facto, este valor mostra que as tensões já são bastante uniformes mesmo para um deslocamento vertical de 2,5 cm, mas a verdade é que é difícil estabelecer uma comparação exacta entre os resultados obtidos pois não se dispõe de dados suficientes para confirmar se estes valores se referem a uma fase de busca da forma ou se já são valores obtidos para um material com módulo de elasticidade real. As perspectivas da forma final correspondente ao final da 3ª actualização encontram-se apresentadas na Figura 7.74.

Figura 7.73: (a) Deslocamento vertical máximo [m] (b) Tensão principal máxima [kN/m²]

Figura 7.74: Perspectivas da forma minimal do parabolóide hiperbólico

Seguidamente utilizou-se o ADINA e o modelo computacional desenvolvido neste trabalho para a análise do parabolóide hiperbólico quando a sua geometria inicial é definida por uma aproximação quadrática construída com base em 9 pontos (Figura 7.75).

A discretização no EFGM foi efectuada utilizando uma malha de 11×11 nós, uma base linear para a aproximação do campo dos deslocamentos, uma spline cúbica para a função de peso e um suporte de 1+ ϵ . A discretização do parabolóide hiperbólico segundo o FEM e o EFGM é apresentada na Figura 7.76, destacando que ambos os modelos possuem o mesmo número de graus de liberdade.

Na imposição das condições de fronteira cinemáticas foi utilizado um factor de penalidade de 10¹⁰. A resolução do sistema de equações não lineares foi efectuada com base no método iterativo de Newton-Rapson com 10 incrementos de carga, utilizando-se um critério de convergência baseado num critério de deslocamentos com tolerância de convergência de 10⁻¹⁰.

Figura 7.75: Geometria inicial do parabolóide hiperbólico (a) EFGM (b) FEM

Figura 7.76: Discretização do parabolóide-hiperbólico (a) EFGM (b) FEM

Analisando a membrana perante a aplicação de um pré-esforço inicial nas duas direcções ortogonais (ε_i =0.10), comparou-se a forma inicial e a final da diagonal de cumeeira (Figura 7.77). Na Figura 7.78 apresentam-se os deslocamentos verticais ao longo da diagonal de cumeeira e de talvegue. Na Figura 7.79 apresentam-se as tensões principais σ_1 ao longo da diagonal de cumeeira (Alinhamento A-A') e Alinhamento B-B'.

Relativamente aos deslocamentos obtidos nas diagonais de cumeeira e de talvegue verifica-se que o modelo computacional apresentado neste trabalho permite obter resultados bastante bons quando comparados com os obtidos através do FEM. Verifica-se ainda que a forma final se encontra muito próxima da forma inicial obtida por uma aproximação quadrática com base nos polinómios de Lagrange. Os diagramas de deslocamentos verticais obtidos através dos dois métodos são muito semelhantes, observando-se que o deslocamento máximo obtido em ambos é cerca de 4,1 cm. Assim, infere-se que a geometria inicial considerada permite obter uma forma intermédia das configurações obtidas por Palma [44] na 2^a iteração e 3^a iteração (Tabela 7.4).

Observando a distribuição de tensões principais máximas σ_I ao longo do alinhamento B-B' (Figura 7.79) calculada através do método de Galerkin livre de elementos, verifica-se que esta se encontra muito próxima da respectiva distribuição suavizada obtida no ADINA. Neste alinhamento a tensão principal σ_I é praticamente constante observando-se valores compreendidos entre 9.8 kPa e 10.6 kPa. Tendo como referência a distribuição de tensões suavizada obtida pelo FEM, a aproximação da tensão principal σ_I obtida ao longo da diagonal de cumeeira através do EFGM não se revela tão boa como no alinhamento B-B', embora ambas as distribuições variem apenas 0.65 kPa.

(a) Diagonal de cumeeira

(b) Diagonal de talvegue

Figura 7.77: Posição [m] inicial e final das diagonais

Figura 7.78: Deslocamentos verticais [m] das diagonais

Figura 7.79: Tensão principal $\sigma_I [kN/m^2]$

Observando os diagramas de tensões principais σ_I obtidos através do FEM e EFGM, verifica-se que esta varia 0,856 kPa em toda a membrana enquanto que no final da 3^a iteração efectuada por Palma [44], a correspondente variação de tensão foi de 0,472 kPa. Em virtude da variação de tensão obtida ser inferior a 1 kPa e uma vez que a implementação da busca de forma se encontra fora dos objectivos deste trabalho, utilizou-se a forma definida pela aproximação quadrática na análise da mesma sujeita à acção do vento.

Figura 7.80: Deslocamento vertical máximo [m]: (a) EFGM (b) FEM

Figura 7.81: Tensão principal σ_I [kN/m²]: (a) EFGM (b) FEM

7.2.2.2. Acção do vento

Na fase de análise da resposta às acções é necessário considerar as propriedades reais do material que constitui a membrana. Assim, consideraram-se as características indicadas na seguinte figura:

Figura 7.82: Características da membrana a analisar perante a acção do vento

A acção do vento é normalmente quantificada recorrendo à seguinte expressão:

$$p = \frac{1}{2}\rho V^2 \delta_p \tag{7.1}$$

Através da utilização do RSA [55] pode calcular-se o valor da pressão dinâmica w do vento. Considerando que a membrana em estudo será construída na Zona B (altitude superior a 600 m), que a rugosidade aerodinâmica do solo é do tipo II e que a membrana se encontra a uma altura do solo inferior a 10 m, o valor característico da pressão dinâmica do vento é obtido do seguinte modo:

$$w = 0.90 \times 1,20 = 1,08 \ KN / m^2$$

O coeficiente de pressão foi quantificado recorrendo à proposta de Tabarrok [61]. De acordo com este trabalho pode admitir-se que o coeficiente de pressão sobre uma uma superfície é proporcional ao coseno do ângulo (α) formado pela normal à superfície com a direcção de ataque do vento (ou seja, $p = w\delta_p \cos(\alpha)$, em que δ_p é constante em toda a estrutura). De acordo com este modelo, a pressão do vento é nula numa superfície paralela à sua direcção. É preciso ter em atenção que este modelo não deixa de ser algo grosseiro. No entanto, na falta de outras formas mais exactas para quantificar o coeficiente de pressão, optou-se pelo uso deste método que também é referido por Pauletti [49].

Assim, admite-se que numa superfície perpendicular à direcção do vento o coeficiente de pressão é unitário. Neste exemplo, considerou-se a acção do vento a actuar segundo a diagonal de cumeeira.

É de notar que a acção do vento aplicada nos dois modelos numéricos não é exactamente idêntica em virtude do programa ADINA ser um programa generalista e, como tal, a aplicação do vento ter que ser efectuada de modo simplificado. Assim, considerou-se a pressão constante em cada quadrícula e igual à pressão calculada no centro das quadrículas (Figura 7.83). No modelo computacional a acção foi calculada considerando o ângulo formado entre a normal à superfície e a direcção do vento nos pontos de quadratura.

Figura 7.83: Carga correspondente à acção do vento⁴ (valores normais à superfície) (a) EFGM (b) FEM

É de notar que este carregamento é simétrico em relação à diagonal paralela à direcção do vento e os valores das pressões e sucções são iguais para ambas as direcções de ataque do vento.

Na modelação desta acção não foi considerada a dependência entre carregamento e configuração deformada, o que não corresponde à realidade, pois esta é uma acção sempre perpendicular à superfície de membrana. Na realidade, o próprio valor da pressão numa quadrícula varia em função da deformada. No entanto, como se verá a seguir, os deslocamentos provocados pelo vento não são muito grandes e portanto a intensidade da pressão em cada quadrícula não muda muito em função da deformada.

Para a análise do parabolóide hiperbólico sujeito à acção do vento admitiu-se como forma de equilíbrio a forma obtida através da aproximação quadrática da membrana por polinómios de Lagrange. Considerando o comportamento isotrópico por parte da membrana, a aplicação de

⁴ Considera-se que a carga é positiva quando tem uma componente positiva segundo o eixo dos z.

uma extensão inicial ε =0.01 nas duas direcções ortogonais conduz a um estado de tensão inicial isotrópico (no plano da membrana) de 8 MPa. Se a tensão de rotura do material for de 90 MPa este valor de pré-esforço está perto dos 10% da tensão última sendo portanto um valor razoável. Caso o parabolóide hiperbólico possua um comportamento ortotrópico segundo duas direcções arbitrárias com as características indicadas Figura 7.82, a membrana fica sujeita a um estado de tensão inicial de 8 MPa e 4 MPa segundo essas direcções respectivamente.

Primeiramente efectuou-se a análise da membrana quando esta apresenta comportamento isotrópico. A deformada obtida pela acção do vento é apresentada na Figura 7.84.

Verifica-se que ao passo que o ADINA estabelece a convergência do método Newton Raphson em 4 iterações no primeiro incremento e 3 nas restantes, o modelo computacional apresentado neste trabalho estabelece a convergência com 5 iterações no primeiro incremento e 4 nas restantes, efectuando assim mais uma iteração em cada incremento de carga do que o ADINA. Na Tabela 7.5 apresentam-se os somatórios de reacções segundo as 3 direcções do referencial global, obtidos no final da resolução de equações através do método de Newton-Raphson.

Figura 7.84: Deformada

|--|

Eixo	FEM	EFGM
Х	7,7085	7,0395
у	-7,7085	-7,0395
Z	1,4676×10 ⁻⁷	-1,21×10 ⁻¹²

Na Figura 7.85 apresentam-se os deslocamentos ao longo das duas diagonais obtidos face à aplicação da acção do vento. Na Figura 7.86 apresentam-se as tensões principais σ_I ao longo da diagonal de cumeeira (alinhamento A-A') e alinhamento B-B'.

Figura 7.85: Deslocamentos verticais [m] - acção do vento

Figura 7.86: Tensão principal σ_{I} [kN/m²] - acção do vento

Observando os resultados apresentados anteriormente, verifica-se que ao contrário da diagonal de talvegue, a diagonal de cumeeira não está sujeita a deslocamentos simétricos. Verifica-se que nesta diagonal o deslocamento é máximo no canto de jusante, o que tem como consequência que a fibra sujeita a maior tracção se situe nesta zona. Constata-se ainda que os deslocamentos verticais da diagonal de talvegue são sempre ascendentes, ainda que no ponto central da diagonal se registe um valor praticamente nulo. A diagonal de cumeeira está sujeita essencialmente a deslocamentos descendentes, exceptuando-se uma pequena região situada entre o centro do alinhamento e o canto de montante.

Comparativamente com os resultados obtidos mediante a aplicação do FEM, a aproximação dos deslocamentos verticais ao longo das diagonais de cumeeira e talvegue obtida através do EFGM revela-se bastante boa.

Estabelecendo a comparação das distribuições de tensões principais σ_I ao longo da diagonal de cumeeira e do alinhamento B-B', observa-se que os resultados mediante a aplicação dos dois métodos numéricos se encontram mais próximos no alinhamento B-B'. Enquanto na diagonal de cumeeira a tensão principal σ_I obtida através do EFGM é superior à determinada através do FEM em quase toda a totalidade da diagonal, no alinhamento B-B' esta situação apenas se verifica na região compreendida entre o canto de jusante e o centro da membrana.

Através da observação do diagrama de deslocamentos verticais constata-se que os deslocamentos verticais variam entre -2,74 cm e 1,5 cm. Verifica-se ainda que os maiores deslocamentos se verificam na diagonal paralela à acção do vento e próximo dos cantos. A análise das tensões σ_I mostra que existem pontos em que estas são menores do que 8 MPa (tensão inicial) e portanto nesses pontos ocorre relaxação do estado de tensão nas duas direcções principais. Por outro lado, também existem pontos em que σ_I é maior que 8 MPa o que faz com que nesses pontos se verifique um aumento de tensão nas duas direcções principais. A fibra mais traccionada (9,8 MPa) está sobre a diagonal da cumeeira e situa-se próximo do canto a jusante. Uma vez que σ_{II} é maior em todos os pontos, não existe enrugamento em nenhum ponto da membrana.

Figura 7.87: Diagramas de deslocamentos x [m]: (a) EFGM (b) FEM

Figura 7.88: Diagramas de deslocamentos y [m]: (a) EFGM (b) FEM

Figura 7.89: Diagramas de deslocamentos z [m]: (a) EFGM (b) FEM

Figura 7.90: Diagramas de tensões principais σ_1 [kN/m²]: (a) EFGM (b) FEM

Figura 7.91: Diagramas de tensões principais σ_{II} [kN/m²]: (a) EFGM (b) FEM

Seguidamente, procedeu-se à análise da membrana quando esta possui um comportamento ortotrópico, sendo estudadas duas situações: ortotropia orientada segundo a diagonal de cumeeira e talvegue em que o tecido possui o módulo de elasticidade mais elevado segundo a diagonal de cumeeira (θ =135°); ortotropia orientada segundo a diagonal de cumeeira e talvegue em que o tecido possui o módulo de elasticidade mais elevado segundo a diagonal de talvegue (θ =45°). Para estas situações, os deslocamentos verticais nas diagonais de cumeeira e talvegue encontram-se expressos na Figura 7.92 e Figura 7.93.

Através dos resultados apresentados observa-se que em virtude do carregamento de vento actuar na direcção de cumeeira, os deslocamentos verticais da diagonal de talvegue são sempre simétricos em relação à origem. Comparando com os resultados apresentados anteriormente, verifica-se que para uma ortotropia (135°) os deslocamentos verticais na diagonal de cumeeira além de serem descendentes são menores desde o canto de jusante até cerca de 1.23 m da origem do referencial. A partir deste ponto os deslocamentos são ascendentes e

consideravelmente maiores seguindo uma distribuição parabólica com um máximo de 0,276 m a uma distância de 0,615 m no sentido do canto de montante.

Contrariamente às outras duas situações analisadas, a ortotropia (45°) conduz a deslocamentos verticais no sentido descendente em toda a diagonal de cumeeira. Este comportamento da estrutura conduz a deslocamentos verticais maiores na região situada entre o canto de jusante e o centro da diagonal de cumeeira, sendo que o deslocamento vertical máximo nesta região é cerca de 1.80 vezes o correspondente deslocamento para a situação de comportamento isotrópico. A partir deste ponto os deslocamentos decrescem obtendo-se uma distribuição intermédia entre as situações de ortotropia (135°) e isotropia na região situada entre o centro da diagonal de cumeeira e o canto de montante.

Figura 7.92: Deslocamentos verticais [m] - acção do vento

Figura 7.93: Módulo dos deslocamentos verticais [m] - acção do vento

Figura 7.94: Tensão principal $\sigma_{I} [kN/m^{2}]$ – acção do vento

Observando a distribuição de tensões principais máximas σ_I ao longo da diagonal de cumeeira, verifica-se que comparativamente com as outras duas situações de ortotropia analisadas, o comportamento isotrópico conduz a valores de tensão superiores. Comparando as duas situações de ortotropia, constata-se que a situação em que a diagonal de cumeeira é mais rígida (ortotropia-135°) conduz a maiores valores de tensão principal máxima σ_I apenas na região compreendida entre o canto de jusante e o centro da membrana. Por outro lado, a situação em que a diagonal de talvegue é mais rígida (ortotropia-45°) conduz a maiores valores de tensão principal máxima σ_I na região compreendida entre o centro da membrana e o canto de montante.

Figura 7.95: Diagramas de deslocamentos z [m] (ortotropia-135°): (a) EFGM (b) FEM

Figura 7.96: Diagramas de tensões principais $\sigma_I [kN/m^2]$ (ortotropia-135°): (a) EFGM (b) FEM

Figura 7.97: Diagramas de tensões principais σ_{II} [kN/m²] (ortotropia-135°): (a) EFGM (b) FEM

A observação dos diagramas de tensões principais σ_I permite constatar que na situação em que a diagonal de cumeeira é mais rígida (ortotropia-135°) a fibra mais traccionada situa-se sobre esta diagonal junto ao canto de jusante e na situação em que a diagonal de talvegue é mais rígida a fibra mais traccionada situa-se sobre esta diagonal junto ao canto de montante.

A observação das tensões principais mínimas σ_{II} permite constatar que estas são positivas em toda a extensão da membrana, o que permite inferir que esta se encontra tensionada em todos os pontos, não ocorrendo enrugamento.

Figura 7.98: Diagramas de deslocamentos z [m] (ortotropia-45°): (a) EFGM (b) FEM

Figura 7.99: Diagramas de tensões principais $\sigma_i [kN/m^2]$ (ortotropia-45°): (a) EFGM (b) FEM

Figura 7.100: Diagramas de tensões principais σ_{II} [kN/m²] (ortotropia-45°): (a) EFGM (b) FEM
7.3. Membranas pneumáticas

7.3.1. Cúpula de base quadrada

O presente exemplo foi analisado por Noguchi [37]. As características geométricas e mecânicas da membrana pneumática em análise são apresentadas na seguinte figura:

Figura 7.101: Características da cúpula de base quadrada

A resolução do problema foi efectuada recorrendo a duas malhas de nós: 11×11 ou 21×21 . A discretização da membrana pneumática foi efectuada do mesmo modo que os primeiros exemplos apresentados neste trabalho (Figura 7.2).

Para a aproximação da geometria foi utilizada uma aproximação bi-quadrática construída a partir dos polinómios de Lagrange. Utilizando a técnica de mapeamento referida anteriormente, é utilizada uma base linear para o campo de deslocamentos obtido através do método dos mínimos quadrados móveis, uma spline cúbica como função de peso e utiliza-se como parâmetro ρ o raio do domínio de influência. O raio ρ é normalizado pela menor distância entre dois nós vizinhos denominada por *c*.

As condições de fronteira foram impostas pelo método da penalidade com um factor de penalidade de 10¹⁰. A resolução do sistema de equações foi efectuada através do método iterativo de Newton-Raphson com 10 incrementos de carga utilizando deslocamentos como critério de convergência (10⁻¹⁰). Para um determinado carregamento correspondente à pressão interna vertical (1500 kPa), compararam-se os valores das resultantes de forças (Tabela 7.6), bem como o número de iterações efectuados em cada incremento de carga (Figura 7.102).

Através da observação destes resultados constata-se que para o mesmo critério e tolerância de convergência, os resultados obtidos através dos dois métodos numéricos são muito semelhantes. Os resultados apresentados nos gráficos seguintes encontram-se expressos na forma de tabelas no Anexo III.1.

 Tabela 7.6: Resultante das reacções segundo as três direcções do referencial global (kN)

Direcção	FEM	EFGM
Х	2,1694×10 ⁻¹³	1,083×10 ⁻¹¹
у	-2,1871×10 ⁻¹⁴	-2,19×10 ⁻¹²
Z	$-1,5408 \times 10^{3}$	$-1,5419 \times 10^{3}$

Figura 7.102: Comparação do número de iterações em cada incremento de carga através dos dois métodos numéricos: FEM e EFGM

Na Figura 7.103 apresenta-se a relação carga-deslocamento da estrutura de membrana obtida para dois coeficientes de Poisson distintos (0.0 e 0.267) e para uma malha de 11×11 nós.

Na Figura 7.104 observa-se a configuração indeformada e a deformada ao longo do alinhamento A-A', para uma pressão interna de 1500 kPa.

Na Figura 7.105 e Figura 7.106 são apresentados os deslocamentos segundo as direcções x e y ao longo do alinhamento B-B' e A-A', respectivamente. Observa-se que ao longo destes alinhamentos o campo de deslocamentos verticais é simétrico e os campos de deslocamentos segundo as direcções x e y são anti-simétricos como não poderia deixar de ser, face à dupla simetria da geometria e carregamento.

Figura 7.103: Curva pressão internadeslocamento do ponto central da membrana pneumática

Figura 7.105: Deslocamentos [m] na direcção x ao longo do alinhamento B-B'

Figura 7.104: Configurações indeformada e deformada ao longo do alinhamento A-A' [m]

Figura 7.106: Deslocamentos [m] na direcção y ao longo do alinhamento A-A'

Na Figura 7.107 é apresentada a distribuição de tensões σ_{xx} e σ_{yy} ao longo do alinhamento A-A' para os coeficientes de Poisson $\upsilon=0$ e $\upsilon=0.267$. A comparação das tensões obtidas através do EFGM foi efectuada com a distribuição de tensões suavizadas obtida mediante a aplicação do FEM. Esta comparação foi efectuada para uma malha de 21×21 nós e um domínio nodal com suporte $2+\epsilon$ no EFGM.

Figura 7.107: Distribuição de tensões $\sigma_{xx} e \sigma_{yy} [kN/m^2]$ ao longo do alinhamento A-A' (a) υ =0.0 (b) υ =0.267

A observação das distribuições de tensões σ_{xx} ao longo deste alinhamento permite inferir que a aproximação obtida através do EFGM coincide praticamente com a distribuição suavizada obtida através do FEM. No entanto, a solução obtida através do EFGM referente à aproximação das tensões σ_{yy} afasta-se ligeiramente da distribuição obtida através do FEM no sentido do centro para o extremo do alinhamento.

Seguidamente, procedeu-se à análise da membrana mas desta feita com comportamento ortotrópico (0° e 30°). Sendo a membrana em análise duplamente simétrica, os resultados obtidos para estas direcções de ortotropia são idênticos aos obtidos para situações de comportamento ortotrópico (90° e 60°). Calculando o grau de ortotropia da membrana em análise:

$$m = \frac{600 \times 10^3}{100 \times 10^3} - 2 \times 0.3 = 5.4$$
$$k = \sqrt{\frac{600 \times 10^3}{300 \times 10^3}} = 1.414$$
$$n = \sqrt{2 \times 1.414 + 5.4} = 2.868$$

O valor de k = 1.414 reflecte um grau de ortotropia idêntico ao das membranas analisadas anteriormente.

Relativamente a estas duas situações de comportamento ortotrópico por parte da membrana (0° e 30°), verifica-se que para um mesmo nível de carga o deslocamento vertical do ponto central aumenta quando se passa de um comportamento isotrópico para um comportamento ortotrópico (Figura 7.108). Assim, para uma pressão interna de 1500 kPa, o aumento do deslocamento vertical em relação à situação de isotropia é de 19,8% e 27,8% para situações de ortotropia (0°) e ortotropia (30°), respectivamente (Figura 7.108).

Relativamente aos deslocamentos segundo a direcção y verifica-se que o valor máximo que ocorre a 0,3 m da origem do alinhamento é maior para uma situação de ortotropia (0°), sendo este superior em 46,8% comparativamente com uma situação de comportamento isotrópico por parte da membrana (Figura 7.111).

Figura 7.108: Curva pressão interna-deslocamento do ponto central da membrana pneumática

Figura 7.110: Deslocamentos [m] na direcção x ao longo do alinhamento B-B'

Figura 7.109: Configuração indeformada [m] e deformada ao longo do alinhamento A-A'

Figura 7.111: Deslocamentos [m] na direcção y ao longo do alinhamento A-A'

Fazendo uma análise paramétrica do deslocamento vertical no centro da membrana em função do ângulo que os eixos de ortotropia fazem com os eixos x-y, verifica-se que este valor é máximo para um ângulo de 45° (Figura 7.112).

Figura 7.112: Análise paramétrica do deslocamento vertical [m] no centro da membrana com o ângulo de ortotropia

Observando as distribuições de tensões ao longo do alinhamento A-A' para situações de ortotropia (0°) e ortotropia (30°) pode constatar-se que as ditribuições de tensões σ_{xx} e σ_{yy} deixam de tocar-se num único ponto, passando a intersectarem-se em dois pontos. Como seria de esperar, a distribuição de tensões σ_{xx} referente à situação de ortotropia (0°) conduz a maiores valores de tensão no centro da membrana, pois nestas condições esta direcção é mais rígida do que as restantes. Do mesmo modo se justifica o facto da distribuição de tensões σ_{yy} atingir valores mínimos no centro da membrana para a mesma situação de ortotropia.

Se a membrana apresentar um comportamento ortotrópico (30°), verifica-se que as tensões σ_{xx} no centro da membrana são menores do que as verificadas nos restantes casos

analisados. Por outro lado, o comportamento isotrópico da mesma confere-lhe maiores tensões σ_{yy} no centro.

Figura 7.113: Distribuição de tensões $[kN/m^2]$ nas duas direcções, $\sigma_{xx} \in \sigma_{yy}$, ao longo do alinhamento A-A' (υ =0.267)

Nas figuras seguintes é apresentada uma comparação entre os campos de deslocamentos e tensões obtidos através dos dois métodos numéricos para uma pressão interna de 1500 kPa e um coeficiente de Poisson de 0.267. Estes diagramas foram obtidos para situações de comportamento isotrópico e ortotrópico (30°) por parte da membrana.

Utilizando uma discretização da membrana em 21×21 nós e adoptando um domínio nodal de suporte de $2+\varepsilon$, obtiveram-se distribuições de tensões suavizadas semelhantes às obtidas no método dos elementos finitos (Figura 7.117, Figura 7.118, Figura 7.119 e Figura 7.120). Considerando um domínio nodal de suporte de d_{max}= $1+\varepsilon$, a distribuição de tensões obtida é uma distribuição de tensões não suavizada semelhante à obtida através do método dos elementos finitos (Figura 7.122, Figura 7.123, Figura 7.124).

Verifica-se que na situação de comportamento isotrópico por parte da membrana, os diagramas de deslocamentos e tensões são duplamente simétricos em relação aos eixos do referencial global, explicável pelo facto da geometria e carregamento serem duplamente simétricos.

Figura 7.114: Diagramas de deslocamentos x [m] (isotropia): (a) EFGM (b) FEM

Figura 7.115: Diagramas de deslocamentos y [m] (isotropia): (a) EFGM (b) FEM

Figura 7.116: Diagramas de deslocamentos z [m] (isotropia): (a) EFGM (b) FEM

Efectuando uma análise das tensões principais σ_I verifica-se que a fibra mais traccionada coincide com o ponto médio dos bordos, sendo que a fibra de canto possui tensão nula.

Observando as tensões principais σ_{II} verifica-se que estas são positivas em toda a superfície da membrana o que pressupõe a inexistência de enrugamento. A excepção ocorre numa fibra de canto, sendo que este é um efeito meramente local que ocorre devido à imposição das condições de fronteira.

É ainda observável que enquanto as tensões principais σ_I são máximas nos bordos e mínimas no topo da membrana, as tensões principais σ_{II} são máximas no topo e mínimas nos bordos.

Figura 7.117: Diagramas de tensões σ_{xx} [kN/m²] (isotropia): (a) EFGM (suporte-2+ ϵ) (b) FEM

Figura 7.118: Diagramas de tensões σ_{yy} [kN/m²] (isotropia): (a) EFGM (suporte-2+ ϵ) (b) FEM

Figura 7.119: Diagramas de tensões principais $\sigma_1 [kN/m^2]$ (isotropia): (a) EFGM (suporte-2+ ϵ) (b) FEM

Figura 7.120: Diagramas de tensões principais σ_{II} [kN/m²] (isotropia): (a) EFGM (suporte-2+ ϵ) (b) FEM

Figura 7.121: Diagramas de tensões σ_{xx} [kN/m²] (isotropia): (a) EFGM (suporte-1+ ϵ) (b) FEM

Figura 7.122: Diagramas de tensões σ_{yy} [kN/m²] (isotropia): (a) EFGM (suporte-1+ ε) (b) FEM

Figura 7.123: Diagramas de tensões principais $\sigma_1 [kN/m^2]$ (isotropia):(a) EFGM (suporte-1+ ϵ) (b) FEM

Figura 7.124: Diagramas de tensões principais σ_{II} [kN/m²] (isotropia): (a) EFGM (suporte-1+ ϵ) (b) FEM

Considerando uma ortotropia (30°), verifica-se que os diagramas de deslocamentos e tensões deixam de ser simétricos em relação ao sistema de eixos global.

Pela análise do campo de deslocamentos verticais constata-se que comparativamente com a situação de isotropia, o comportamento ortotrópico confere uma maior flexibilidade à membrana.

Figura 7.125: Diagramas de deslocamentos x [m] (ortotropia-30°): (a) EFGM (b) FEM

Figura 7.126: Diagramas de deslocamentos y [m] (ortotropia-30°): a) EFGM b) FEM

Figura 7.127: Diagramas de deslocamentos z [m] (ortotropia-30°): (a) EFGM (b) FEM

Através da análise dos diagramas de tensões principais verifica-se que enquanto a tensão principal máxima σ_I diminui muito ligeiramente, a diminuição da tensão principal σ_{II} é muito mais evidente passando de 553,5 MPa para 351,4 MPa.

Figura 7.128: Diagramas de tensões σ_{xx} [kN/m²] (ortotropia-30°): (a) EFGM (b) FEM

Figura 7.129: Diagramas de tensões σ_{yy} [kN/m²] (ortotropia-30°): (a) EFGM (b) FEM

Figura 7.130: Diagramas de tensões principais σ_{I} [kN/m²] (ortotropia-30°): (a) EFGM (b) FEM

Figura 7.131: Diagramas de tensões principais σ_{II} [kN/m²] (ortotropia-30°): (a) EFGM (b) FEM

Seguidamente, apresenta-se uma análise de convergência do método de Galerkin livre de elementos traduzida na avaliação do deslocamento vertical do ponto central da membrana em função do número de nós em que esta é discretizada. O gráfico apresentado na Figura 7.132 permite concluir que a solução referente ao deslocamento vertical do ponto central da membrana se revela uma solução bastante estável com a utilização de uma malha de 441 nós (21×21) .

Um outro aspecto de grande importância na aplicação do programa de cálculo automático desenvolvido é a comparação entre os tempos de processamento da solução e os dispendidos na aplicação de um programa generalista de elementos finitos, neste caso, o ADINA. Assim, efectuando-se uma análise do tempo de processamento através da aplicação do programa de cálculo automático desenvolvido obteve-se o gráfico ilustrado na Figura 7.133. Através do gráfico apresentado é bem visível o crescimento de esforço computacional com o número de nós que se utilizam na discretização da membrana. Verificou-se que para uma malha de 441 nós (21×21), o ADINA calcula a solução do problema em 3 segundos enquanto que o modelo computacional desenvolvido em ambiente MATLAB e utilizando um processador Pentium 1.6 GHz-512 MHz de RAM calcula a solução em 11 minutos e 29 segundos.

Através desta comparação é bastante visível a grande diferença de tempo de análise do problema mediante a aplicação do EFGM e FEM. Perante esta situação, pode afirmar-se que muito trabalho há a fazer na melhoria do tempo de processamento, não fazendo parte do âmbito deste trabalho: melhoramento do algoritmo de busca dos nós no domínio de influência de um dado ponto de interesse, melhoria do algoritmo de construção das funções de aproximação, e melhoria na resolução do sistema de equações.

Figura 7.132: Deslocamento [m] no ponto central da cúpula em função do número de nós em que a membrana é discretizada

Figura 7.133: Tempo de processamento (s) obtido em função do número de nós em que a membrana é discretizada

7.3.2. Membrana cilíndrica

O presente exemplo pretende analisar uma membrana cilindrica com as características indicadas na seguinte figura:

Figura 7.134: Características da cobertura cilíncrica

Na análise deste problema foi utilizada uma malha de 21×21 nós com uma célula unitária igual à utilizada na resolução dos problemas anteriormente apresentados (Figura 7.2).

_																						
٠	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	* * * * * * * * * * * * *	• • • • • •
												÷.							÷.		* * * * * * * * * * * * *	<u> </u>
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• • • • • • • • • • • • •	• • • • • •
٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	* * * * * * * * * * * * *	• • • • • •
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	* * * * * * * * * * * * *	- • • • • • •
٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	* * * * * * * * * * * * *	• • • • • •
٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
																						T T T T T T
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	* * * * * * * * * * * * * *	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	* * * * * * * * * * * * * *	• • • • • •
٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	* * * * * * * * * * * * *	
																						IIIII
																					* * * * * * * * * * * * *	* * * * * *
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	* * * * * * * * * * * * *	• • • • • •
٠	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	* * * * * * * * * * * * *	
•																						
																						IIIII
Ľ		1		1		1	1								1	1					<u> </u>	<u> </u>
٠	•	•	٠	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	٠	<u>* * * * * * * * * * * * * * * * * * * </u>	<u> </u>

Figura 7.135: Discretização da geometria cilíndrica (a) EFGM (b) FEM

Neste exemplo, a secção transversal da membrana foi descrita directamente através da equação geral de uma circunferência. Foi utilizada uma base linear para o campo de deslocamentos, uma spline cúbica como função de peso e um raio ρ normalizado definido pela menor distância entre dois nós vizinhos denominada por *c*.

As condições de fronteira foram impostas pelo método da penalidade com um factor de 10¹⁰. A resolução do sistema de equações foi efectuada através do método iterativo de Newton-Raphson com 10 incrementos de carga utilizando deslocamentos como critério de convergência (10⁻¹⁰).

Considerando um comportamento isotrópico analisou-se a membrana perante dois carregamentos de pressão interna distintos: normal à superfície e vertical (Figura 7.136).

Figura 7.136: Acção (a) pressão interna normal (b) pressão interna vertical

Nos Figura 7.137 pode observar-se o número de iterações efectuado pelo método de Newton-Raphson em cada incremento de carga para as duas situações de carregamento referidas. Através da observação dos gráficos facilmente se constata que a convergência do método de Newton-Raphson é muito semelhante em ambas as situações analisadas. Contudo, para a situação em que a pressão interna é vertical são necessárias mais iterações nos incrementos de carga iniciais.

Figura 7.137: Número de iterações em cada incremento de carga (a) pressão interna normal à superfície (b) pressão interna vertical

Na Tabela 7.7 comparam-se os valores das resultantes de forças obtidos nas duas situações de carga, verificando-se que estas são praticamente idênticas no EFGM e no FEM.

Dirogoão	Pressão ir	nterna normal	Pressão interna vertical		
Direcçao	FEM	EFGM	FEM	EFGM	
х	1.465×10 ⁻¹⁴	1.100×10 ⁻¹⁶	1.865×10 ⁻¹⁴	5.818×10 ⁻¹⁴	
у	2.898×10 ⁻¹⁴	6.380×10 ⁻¹⁵	3.663×10 ⁻¹⁴	5.373×10 ⁻¹⁴	
Z	1.800×10^2	1.800×10^2	2.447×10^{2}	2.449×10^{2}	

Tabela 7.7: Resultante das reacções segundo as três direcções do referencial global (kN)

Comparando os deslocamentos verticais ao longo do alinhamento A-A' constata-se que a respectiva aproximação obtida através do EFGM e FEM é muito semelhante. Contudo, comparativamente com os resultados provenientes do FEM, a utilização do EFGM conduz a uma melhor aproximação dos deslocamentos verticais para a situação em que a carga é normal à superfície, exceptuando a parte central do alinhamento A-A'. É ainda de destacar que contrariamente à situação em que a pressão interna é vertical, para uma pressão normal à

superfície os deslocamentos verticais são sempre positivos, sendo que o máximo não se situa no centro do alinhamento. Os deslocamentos verticais são consideravelmente superiores na situação em que a pressão interna é vertical.

Figura 7.138: Deslocamento vertical [m] ao longo do alinhamento A-A': pressão interna normal

Figura 7.139: Deslocamento vertical [m] ao longo do alinhamento A-A': pressão interna vertical

Figura 7.140: Diagramas de deslocamentos z [m] – pressão interna normal: (a) EFGM (b) FEM

Figura 7.141: Diagramas de deslocamentos z [m] – pressão interna vertical: (a) EFGM (b) FEM

Comparando as distribuições de tensões principais máximas σ_I ao longo do alinhamento A-A' para as duas situações de carregamento observa-se que enquanto uma pressão interna normal à superfície conduz a uma distribuição parabólica de concavidade negativa, uma pressão interna vertical origina uma distribuição igualmente parabólica de concavidade negativa mas apenas na região central do alinhamento existindo uma inversão do sinal da concavidade nas extremidades do alinhamento.

Em virtude de uma pressão interna vertical conduzir a deslocamentos verticais superiores tem como consequência o aumento das tensões nesta situação de carga.

Comparando os diagramas de tensões principais máximas σ_I verifica-se que as fibras mais traccionadas se localizam na proximidade dos bordos circulares sujeitos à imposição das condições de fronteira essenciais. Assim, enquanto na situação de pressão interna normal à superfície estas fibras se localizam perto do ponto médio do bordo circular, para uma pressão interna vertical a sua localização reside na proximidade dos cantos.

A comparação da solução obtida para as tensões principais σ_I através do EFGM e FEM permite observar uma boa coerência das mesmas.

Instituto Superior Técnico

Figura 7.142: Tensão principal σ_I [kN/m²] ao longo do alinhamento A-A'-pressão interna normal

Figura 7.143: Tensão principal σ_I [kN/m²] ao longo do alinhamento A-A'-pressão interna vertical

Figura 7.144: Diagramas de tensões principais $\sigma_1 [kN/m^2]$ – pressão interna normal: (a) EFGM (b) FEM

Figura 7.145: Diagramas de tensões principais $\sigma_I [kN/m^2]$ -pressão interna vertical: (a) EFGM (b) FEM

A observação das tensões principais mínimas σ_{II} permite constatar que a aproximação das mesmas é melhor na situação em que a pressão interna é vertical, especialmente na região central do alinhamento. A aproximação das tensões σ_{II} obtida através do EFGM é sempre positiva para ambos os casos de carga analisados, excepto na situação de pressão vertical na proximidade dos bordos sujeitos à imposição das condições de fronteira essenciais, assinalando-se nesta região pequenas compressões.

Figura 7.146: Tensão principal σ_{II} [kN/m²] ao longo do alinhamento A-A'-pressão interna normal

Figura 7.147: Tensão principal σ_{II} [kN/m²] ao longo do alinhamento A-A'-pressão interna vertical

Figura 7.148: Diagramas de tensões principais σ_{II} [kN/m²] - pressão interna normal: (a) EFGM (b) FEM

Figura 7.149: Diagramas de tensões principais σ_{II} [kN/m²] - pressão interna vertical: (a) EFGM (b) FEM

Seguidamente analisou-se a membrana cilíndrica face à actuação de uma pressão interna normal à superfície considerando um comportamento ortotrópico (30°) por parte do material.

Figura 7.150: Deslocamento vertical [m] ao longo do alinhamento A-A'(ortotropia-30°)

Contariamente à situação de isotropia, os diagramas de deslocamentos verticais e tensões principais não são simétricos em relação do eixo dos yy.

Figura 7.151: Tensão principal σ_I [kN/m²] ao longo do alinhamento A-A' (ortotropia-30°)

Nestas condições os deslocamentos verticais máximos são cerca do dobro dos observados na situação de comportamento isotrópico, o que permite inferir sobre uma maior flexibilidade

por parte da membrana. Assim, como consequência do aumento dos deslocamentos os valores das tensões principais serão superiores aos observados na situação de isotropia.

As tensões principais mínimas σ_{II} são sempre positivas, salvo pontos locais, o que permite concluir que a membrana se encontra tensionada em toda a sua superfície.

Figura 7.153: Diagramas de deslocamentos z [m] – ortotropia(30°): (a) EFGM (b) FEM

Figura 7.154: Diagramas de tensões principais $\sigma_{I} [kN/m^{2}]$ – ortotropia(30°): (a) EFGM (b) FEM

Figura 7.155: Diagramas de tensões principais σ_{II} [kN/m²]-ortotropia(30°): (a) EFGM (b) FEM

Capítulo 8. Conclusões e Desenvolvimentos Futuros

8.1. Conclusões

As formulações sem malha apresentam-se promissoras na medida em que não requerem a definição de uma malha de elementos como é usual na técnica mais corrente na análise de estruturas, que é, sem dúvida, o método dos elementos finitos nas suas diversas formas. Esta independência da malha é conseguida por força da utilização de funções de aproximação que não têm que ser definidas em subdomínios pré-definidos (como acontece nas formulações clássicas de elementos finitos), podendo antes ser definidas globalmente (como na técnica de Trefftz) ou mesmo localmente de uma forma não estruturada, como na formulação de Galerkin livre de elementos (EFGM) adoptada neste trabalho.

A utilização e desenvolvimento de uma formulação do método de Galerkin livre de elementos para a análise de estruturas laminares não planas com comportamento ortotrópico sujeito a cargas que não lhe provocam flexão constituiu o principal objectivo deste trabalho.

O modelo computacional desenvolvido consiste na aplicação de uma técnica de mapeamento da geometria tridimensional para um espaço bidimensional, utilizando-se as bases deste sistema na expressão das componentes de deformação e tensão na equação do princípio dos trabalhos virtuais. Com base nesta técnica, os nós da malha são gerados no espaço bidimensional e as suas coordenadas são utilizadas no método dos mínimos quadrados móveis para a aproximação do campo de deslocamentos. Para uma estrutura de membrana, a rigidez geométrica da estrutura de suporte não pode ser desprezada sendo que a análise geometricamente não linear é essencial na formulação do problema. Para tal, com base numa formulação Lagrangeana total, desenvolveu-se uma formulação de análise geometricamente não linear considerando o método livre de elementos de Galerkin.

A validação do modelo computacional foi efectuada procedendo à analise de exemplos de membranas sujeitas a um pré-esforço inicial e a uma pressão interna (pneumáticas), sendo que as análises foram efectuadas considerando comportamento isotrópico e ortotrópico segundo 2 direcções arbitrárias. Os resultados obtidos são, em geral, de boa qualidade e foram comparados com as soluções obtidas através de um programa generalista de elementos finitos: ADINA.

Da aplicação do método de Galerkin livre de elementos a análise de estruturas de membrana resultam os seguintes comentários:

- O EFGM é um método numérico dependente de vários factores, requerendo, por isso, a calibração de diversos parâmetros de modo a que a formulação utilizada produza resultados precisos e não exiga demasiado tempo de processamento.
- Uma vez que este tipo de problemas raramente possui soluções analíticas, a sua comparação foi feita com as soluções obtidas pelo programa generalista de elementos finitos: ADINA. A comparação foi efectuada utilizando o mesmo número de graus de liberdade na aplicação do FEM e EFGM, a mesma base polinomial na aproximação dos deslocamentos, o mesmo critério de convergência no método de Newton-Rapshon e a mesma tolerância de convergência do mesmo. Assim, a utilização no EFGM de um domínio de nós equivalente a um elemento finito mestre do método FEM permite a

redução do tempo de processamento e uma consequente redução do esforço computacional da solução obtida, possibilitando uma comparação directa dos métodos.

- A comparação das soluções relativas ao campo de deslocamentos e tensões principais permitiu inferir sobre a qualidade do EFGM e da metodologia apresentada neste trabalho na análise de problemas de estruturas geometricamente não lineares.
- Apesar da acção do vento ser quantificada de modo empírico através da metodolgia de Tabarrok [61], a aplicação desta acção neste tipo de estruturas revela-se mais fácil utilizando o programa de cálculo automático desenvolvido, pois contrariamente ao ADINA, no modelo implementado é possível o cálculo do ângulo formado entre a normal à superfície e a direcção do vento nos pontos de quadratura.
- Observou-se que os resultados obtidos relativamente ao número de iterações efectuadas em cada incremento de carga é muito semelhante segundo os dois métodos numéricos quando considerando o mesmo critério e tolerância de convergência, o que permite inferir sobre a boa convergência do método de Newton-Raphson utilizado na resolução do sistema de equações não lineares.
- Verificou-se que o modelo computacional desenvolvido apresenta um tempo de processamento bastante superior ao utilizado pelo programa de elementos finitos ADINA. Perante esta situação, pode afirmar-se que muito trabalho há a fazer na melhoria do tempo de processamento, não fazendo parte do âmbito deste trabalho: melhoramento do algoritmo de busca dos nós no domínio de influência de um dado ponto de interesse, melhoria do algoritmo de construção das funções de aproximação, e melhoria na resolução do sistema de equações.

Os benefícios que advêm da utilização do método de Galerkin livre de elementos associado à aplicação em estruturas geometricamente não lineares (membranas) pode ser sumarizado nos seguintes aspectos essenciais:

- Contrariamente ao método dos elementos finitos, os métodos sem malha não requerem a definição de elementos mas apenas da definição de uma distribuição de pontos ou nós. As funções de aproximação são construídas em cada nó com base nos nós situados numa sua vizinhança. A topologia da malha é consideravelmente mais simples que a requerida pelo FEM, sendo, por essa razão, ajustável a domínios de forma arbitrária. No FEM essa geometria é modelada usando elementos sendo que as curvas e as formas geométricas mais complexas são aproximadas pelos lados desses elementos, ou seja, por rectas, parábolas, etc. No EFGM, a geometria é aproximada de forma muito precisa pois as funções de aproximação são criadas usando um domínio nodal que é diferente para cada nó;
- A modelação da ortotropia revela-se menos trabalhosa no EFGM, pois no FEM a definição da mesma requer, logo à partida, a consideração dos referenciais locais dos elementos finitos.

Apesar das vantagens apontadas serem significativas, existem limitações que devem ser apontadas. Os inconvenientes encontrados são listados em seguida:

- Uma das grandes desvantagens do EFGM reside no facto de cada ponto ao basear-se nos nós vizinhos para gerar uma função de aproximação, poder estar a basear-se em nós que não o influenciam directamente. Um nó pode estar dentro do domínio de influência de um dado ponto de interesse e, no entanto, nem fazer parte do mesmo corpo. Deste modo, uma má escolha do tamanho do domínio de influência pode resultar em erros na construção das funções de aproximação, podendo conduzir a resultados incorrectos.
- Enquanto no FEM as funções de aproximação são predefinidas, no EFGM a função de aproximação de cada ponto de interesse depende do número de nós que o rodeia e tem

sempre que ser calculada. Assim, o EFGM é um método que requer mais tempo de processamento e maior custo computacional.

- O método dos mínimos quadrados móveis utilizado no EFGM na construção das funções de aproximação tem como principal inconveniente o facto das funções de aproximação por ele geradas não possuirem a propriedade de "delta Kronecker" como acontece no FEM. Assim, a aproximação do deslocamento no nó *I* depende do parâmetro nodal em *I* como também depende de todos os nós dentro do domínio de influência do nó *I*. Esta particularidade das funções de aproximação pelo MLS faz com que a imposição das condições de fronteira cinemáticas seja mais complexa que no FEM.
- Verificou-se que a consideração de situações de comportamento ortotrópico é mais susceptível de instabilidade numérica e de convergência, especialmente quando a ortotropia se encontra disposta mediante um determinado ângulo com os eixos do referencial global.

8.2. Desenvolvimentos futuros

Actualmente, o EFGM encontra-se numa fase relativamente incipiente no que a análises física e geometricamente não-lineares diz respeito sendo que o caminho a percorrer na aplicação a estruturas de membrana se vislumbra aliciante. Seguidamente são enumerados alguns aspectos que merecem especial interesse em aplicações futuras do EFGM:

- Inclusão de outros métodos iterativos com vista à resolução do sistema de equações não-linear de modo a tornar a análise mais rápida;
- Desenvolvimento dos algoritmos numéricos, especialmente no que diz respeito ao armazenamento da informação e à solução dos sistemas de equações;
- Criação de rotinas para a quantificação e aplicação de cargas;
- Determinação de padrões de corte;
- Reforço de estruturas de membrana com cabos de bordo;
- Análise experimental de tecidos, tendo como objectivo a determinação das tensões de rotura, resistência ao fogo, durabilidade, características ortotrópicas, características acústicas;
- Optimização dos padrões de corte, minimizando o desperdício de tecido;
- Análise experimental de protótipos;
- Estudo do enrugamento dos tecidos provocado pela presença de tensões de compressão;
- Análise dinâmica não linear definição de algoritmos de melhor desempenho, análise da instabilidade dinâmica;
- Optimização de forma optimizar a forma em função das tensões, área de tecido e parâmetros dinâmicos.

Entretanto é necessário evoluir nas actuais limitações do método, como por exemplo, criar alternativas nas construções das funções de aproximação de modo a aliviar os problemas relacionados com as imposições das condições de fronteira cinemáticas e estáticas.

O futuro do EFGM não passa por qualquer rivalidade constante com o FEM, sendo que a acoplagem entre estes dois métodos poderá revelar-se bastante vantajosa.

Deste modo, refere-se que as condições de fronteira podem ser impostas pelo método dos elementos finitos e as zonas de descontinuidade física discretizadas por malhas irregulares analisadas pelo EFGM.

Bibliografia

- [1] Ahmad S, Irons BM, Zienkiewicz OC.; "Analysis of thick and thin shell structures by curved elements"; International Journal for Numerical Methods in Engineering; 2; 419-451; 1970
- [2] Arcaro, Vinicius F.; Free form generation for shell structures; UNICAMP/FEC
- [3] Arcaro, Vinicius F.; A simple procedure for shape finding and analysis of fabric structures; UNICAMP/FEC
- [4] Barnes, M.; "Form-finding and analysis of prestressed nets and membranes"; *Computer & Structures*; 30 (3) 685-695;1985
- [5] Bathe, K.K.; *Finite Element Procedures*; Prentice Hall; New Jersey; 1996
- [6] Beilin, D. e Polyakov, V.; "Study of interaction between pneumatic spherical and cylindrical form shells subjected to wind pressure"; *IASS-ASCE International Symposium*; Atlanta; 1994.
- [7] Belinha, J.A.; Análise Elasto-Plástica considerando o Método Livre de Elementos de Galerkin: Problemas Bidimensionais, Placas e Laminados; *Dissertação para a obtenção do grau de mestre em engenharia de estruturas; FEUP; 2004*
- [8] Belytschko, T., Y.Y. Lu, and L. Gu; "Element Free Galerkin Methods"; *International Journal for Numerical Methods in Engineering*; 37, 229-256; 1994
- [9] Belytschko, T., D.Organ, and Y.Krongauz; "A Coupled Finite Element-Element Free Galerkin Method"; *Computational Mechanics;* 17, 186-195; 1995
- [10] Belytschko, T., Y.Krongauz, M.Fleming, D.Organ and W.K.Liu; "Smoothing and Accelerated Computations in the Element Free Galerkin Method"; *Journal of Computational and Applied Mechanics*; 74, 111-126; 1996
- [11] Belytschko, T.; Y.Krongauz, D.Organ, M.Fleming and P.Krysl; "Meshless Methods: An Overview and Recent Developments"; *Computer Methods in Applied Mechanics and Engineering*; 139, 3-47
- [12] Belytschko, T. and Krysl, P.; "Analysis of Thin Shells by the Element-Free Galerkin Method"; 1996
- [13] Broughton, P e Ndumbaro, P.; *The analysis of cable&catenary structures*; Thomas Telford; London; 1994
- [14] Bulson, F.S.; "Design principles of pneumatic structures"; *The Structural Engineer*; 51 209-215; 1973
- [15] Deifeld, T.E.C. and R.M.O. Pauletti; "Numerical and Physical Modeling of Tensegrity Structures"; Escola Politécnica da Universidade de São Paulo; São Paulo, Brasil
- [16] Dolbow, J. and Belytschko, T.; "An introduction to Programming the Meshless Element Free Galerkin Method"; 1998
- [17] Figueiredo, B.; *Análise de Estruturas Tensionadas Cabos e Membranas*; Trabalho Final de Curso; Instituto Superior Técnico; 2004
- [18] Gosling, P.D. e Lewis, W.J.; "Optimal structural membranes I. Formulation of a curved quadrilateral element for surface definition"; *Computer & Structures*; 61 (5) 871-883; 1996
- [19] Gosling, P.D. e Lewis, W.J.; "Optimal structural membranes II. Form-finding of prestressed membranes using a curved quadrilateral finite element for surface definition"; *Computer & Structures*; 61 (5) 885-895; 1996
- [20] Grundig, L.; "Minimal surface for finding forms of structural membranes"; *Computer&Structures*; 30 (3) 679-683; 1988
- [21] Grundig, L.; et al.; "Geodesic and semi-geodesic line algorithms for cutting pattern generation of architectural textile structures"; Proc. Asia-Pacific Conference on Shell and Spatial Structures, Beijing, China, IASS; 1996
- [22] Han, P.S e Olson, M.D.; "Static analysis of pneumatic structures loaded by wind"; *Proceedings IASS Symposium*, Osaka, 2; 1996
- [23] Happold, E.; "Membrane Structures: Technological Innovation and Architetural

Opportunity"; IASS-ASCE International Symposium, Atlanta, 1994.

- [24] Hinton E. Owen DRJ.; *Finite Element Software for Plate and Shell Structures*; Pineridge Press:Swansea, 1984
- [25] Irvine, M.; Cable Structures; Dover Pub.; New York; 1981
- [26] Jensen, J.J.; "Dynamics of tension roof structures", *International Conference on Tension Roof Structures, Polytechnic of Central London*, April 8-10, 1974
- [27] Kim, Jae-Yeol and Lee, Jang-Bog; "A new technique for optimum cutting pattern generation of membrane structures"; *Engineering Structures*; 24, 745-756; 2001
- [28] Kim, N.H., et al.; "Meshfree analysis and design sensitivity analysis for shell structures"; International Journal for Numerical Methods in Engineering; 53, 2087-2116; 2002
- [29] Krysl, P and Belytschko, T.; "Analysis of thin plates by the element-free Galerkin method"; *Computational Mechanics*; 16,1-10; 1985
- [30] Krysl, P and Belytschko, T.; "Analysis of thin shells by the element-free Galerkin method"; *International Journal of Solids and Structures*; 33,3057-3080; 1996
- [31] Liddell, Ian; "Minnesota Metrodome. A study on the behaviour of air supported roofs under environmental loads"; *Structural Engineering Review*; 6 (3/4) 215-235; 1994
- [32] Maher, F.J.; "Wind loads on basic domes"; *Journal of the Structural Division*; 91 219-228; 1965
- [33] Martins, J.A.C.; "Apontamentos de Tensores Cartesianos"; *Disciplina de Dinâmica da Licenciatura em Engenharia Civil*; IST; 1999
- [34] Majowiecki, M., "Tensostrutture Progetto e Veriffica"; Edizione CREA; Genova; 1994
- [35] Moncrief, E. e Topping, B.H.; "Computer methods for the generation of membrane cutting patterns"; *Computer&Structures*; 37 (4) 441-450; 1993
- [36] Nakayama, Masanao; et al; "Wind tunnel test on spherical pneumatic structures"; *Proceedings IASS Synposium*, Osaka; 2; 1986
- [37] Noguchi, H.; "Element free analysis of shell and spatial structures"; *International Journal for Numerical Methods in Engineering*; 47; 1215-1240; 2000
- [38] Noguchi, H., Kawashima, T.; "Meshfree analysis of cable-reinforced membrane structures by ALE-EFG method"; *Engineering analysis with Boundary Elements*; 28, 443-451; 2004
- [39] Ohsaki, M. and Fujiwara, J.; "Developability conditions for prestress optimization of a curved surface; Computer Methods Applied Mechanics Engineering; 192, 77-94; 2002
- [40] Oliveira, M.B.; Estudo das Estruturas de Membrana: Uma Abordagem Integrada Do Sistema Construtivo, do Processo de Projectar e dos Métodos de Análise; Tese de Doutoramento; Escola de Engenharia da Universidade de São Paulo, São Carlos, Brasil; 2000
- [41] Oliveira, V.; Análise e Projecto de Tenso-Estruturas Têxteis para Coberturas; Tese para a obtenção do Grau de Doutor em Ciências de Engenharia Civil; Rio de Janeiro, Brasil; 2003
- [42] Otto, F. e Schleyer, F.B.; *Tensile Structures*; M.I.T. Press; 1969
- [43] Otto, F. e Rash, B.; Finding form: Towards na architecture of the minimal; IFAI, 1995
- [44] Palma, N.; *Iniciação ao Estudo de Estruturas Traccionadas Cabos e Membranas*; Trabalho Final de Curso; Instituto Superior Técnico; 2003
- [45] Pargana, Júlio Balsa; *Realistic modelling of tension fabric structures*; PhD Thesis; Faculty of engineering of the University of London; 2004
- [46] Pauletti, R. M. O.; *Tenso-Estruturas-Ideias básicas*; Escola Politécnica da U.S.P.; BT/PEF/9909;1999
- [47] Pauletti, R. M. O.; *Evolução das tenso-estruturas, Parte II Coberturas de cabos e membranas*; Escola Politécnica da U.S.P.; BT/PEF/9916; 1999
- [48] Pauletti, R.M.O. e Reyolando, M.; *Anotações sobre o Projecto e análise das tensoestruturas*; Escola Politécnica da U.S.P.; BT/PEF/0103; 2001
- [49] Pauletti, R.M.O.; *História, Análise e Projecto de Estruturas Retesadas*; Tese de Livre Docência; Escola Politécnica da U.S.P; 2003

- [50] Pauletti, R.M.O.; Análise de estruturas retesadas (tensoestruturas), empregando programas generalistas"; Escola Politécnica da U.S.P; 2002
- [51] Pauletti, R.M.O. e Reyolando, M. ; "Design and Analysis if Tension Structures using General Purpose Finite Element Programs"; *Textile Composites and Inflatable Structures Symposium*; Barcelona ; 2003
- [52] Pauletti, R.M.O. and Alvin.R.; "Avaliação Experimental de Propriedades Mecânicas dos Tecidos Estruturais"; *Jornadas Sud-Americanas de Ingeniería Estructural*; 2004
- [53] Plaut, Raymond H.; et al.; "Shell analysis of an inflatable arch subjected to snow and wind loading"; *International Journal of Solid and Structures*; 37 4275-4288; 2000
- [54] Reese, S., Raible, T. e Wriggers, P.; "Finite element modelling of orthotropic material behaviour in pneumatic structures"; *International Journal of Solid and Structures*; 38 9525-9544; 2001
- [55] RSA-Regulamento de Segurança e Acções para Estruturas de Edifícios e Pontes, *Porto Editora*, (1983)
- [56] Seeley, Gerard R.; et al.; "Static wind loads on circular concave cable roofs"; *Journal of the structural division*; 100 (ST8) 1593-1609; 1974
- [57] Srivastava, N.K.; Turkkan, N.; "Experimental determination of wind pressure distribution of cylindrical and spherical flexible membrane structures"; *Can.J. Civ. Eng.*; 22 23-31; 1995
- [58] Stegmann, J.; "Analysis and Optimization of Laminated Composite Shell Structures"; Ph.D. Thesis; Institute of Mechanical Engineering, Aalborg University; 2005
- [59] Sygulski, R.; "Vibrations of pneumatic structures interacting with air"; *Computer & Structures;* 49 (5) 867-876; 1993
- [60] Tabarrok, B. e Qin, Z.; "Dynamic Analysis of Tension Structures"; *Computer&Structures*; 62 467-474; 1997
- [61] Tabarrok, B. e Qin, Z,: "Nonlinear analysis of tensioned structures"; *Computer&Structures*; 45 (5/6) 973-984; 1992
- [62] Tibert, Gunnar; Numerical Analyses of Cable Roof Structures; Licentiate Thesis; 1999
- [63] Thouraya Nouri-Baranger; "Computational methods for tension-loaded structures"; *Archives of computational methods in Engineering*"; 11 143-186; 2004
- [64] Tsiatas, G.C. e Katsikadelis, J.T.; "Large deflection analysis of elastic space membranes"; International Journal for Numerical Methods in Engineering; 65 (2) 264-294; 2005
- [65] Uematsu, Yasushi e Uchiyama, Kazuo; "Aeroelastic behaviour of an H.P.-shaped suspended roof"; *Proceedings IASS Symposium*, Osaka; 2; 1986
- [66] Vandenberg, M.; Soft Canopies; Great Britain, Academy Editions; 1996
- [67] Zhang, W., Leonard, J.L. e Accorsi, M.L.; "Analisis of geometrically nonlinear anisotropic membranes: theory and verification"; *Finite Elements in Analysis and Design*; 41 963-988; 2005
- [68] Zienkiewics, O.C. e Taylor, R.L.; *The Finite Element Method*; McGraw-Hill; London; 1989

Anexo I Membranas Planas

Anexo I.1 Membrana I

	Isotrop	ia (0°)	Ortotro	pia (0º)	Ortotrop	oia (30°)	Ortotropia (60°)		Ortotropia (90°)	
Coordenada y (m)	FEM	EFGM	FEM	EFGM	FEM	EFGM	FEM	EFGM	FEM	EFGM
-0.5	-0.0103	-0.0103	-0.0101	-0.0101	-0.0113	-0.0113	-0.0107	-0.0107	-0.0103	-0.0103
-0.4	-0.0104	-0.0104	-0.0101	-0.0101	-0.0112	-0.0112	-0.0108	-0.0108	-0.0103	-0.0103
-0.3	-0.0105	-0.0105	-0.0102	-0.0102	-0.0111	-0.0111	-0.0109	-0.0109	-0.0103	-0.0103
-0.2	-0.0106	-0.0106	-0.0103	-0.0103	-0.0111	-0.0111	-0.0110	-0.0110	-0.0104	-0.0104
-0.1	-0.0106	-0.0106	-0.0104	-0.0104	-0.0110	-0.0110	-0.0110	-0.0110	-0.0104	-0.0104
0	-0.0106	-0.0106	-0.0104	-0.0104	-0.0110	-0.0110	-0.0110	-0.0110	-0.0104	-0.0104
0.1	-0.0106	-0.0106	-0.0104	-0.0104	-0.0109	-0.0109	-0.0110	-0.0110	-0.0104	-0.0104
0.2	-0.0106	-0.0106	-0.0103	-0.0103	-0.0107	-0.0107	-0.0110	-0.0110	-0.0104	-0.0104
0.3	-0.0105	-0.0105	-0.0102	-0.0102	-0.0104	-0.0104	-0.0109	-0.0109	-0.0103	-0.0103
0.4	-0.0104	-0.0104	-0.0101	-0.0101	-0.0101	-0.0101	-0.0109	-0.0109	-0.0103	-0.0103
0.5	-0.0103	-0.0103	-0.0101	-0.0101	-0.0099	-0.0099	-0.0109	-0.0109	-0.0103	-0.0103

Tabela I.1: Deslocamentos [m] segundo a direcção x ao longo do bordo livre vertical

Tabela I.2: Deslocamentos [m] segundo a direcção y ao longo do bordo livre vertical

	Isotrop	ia (0º)	Ortotro	pia (0°)	Ortotrop	pia (30°)	Ortotropia (60°)		Ortotropia (90°)	
Coordenada (m)	FEM	EFGM	FEM	EFGM	FEM	EFGM	FEM	EFGM	FEM	EFGM
-0.5	0.0052	0.0052	0.0052	0.0052	0.0044	0.0044	0.0041	0.0041	0.0051	0.0051
-0.4	0.0042	0.0042	0.0042	0.0042	0.0034	0.0034	0.0031	0.0031	0.0041	0.0041
-0.3	0.0032	0.0032	0.0031	0.0031	0.0023	0.0023	0.0021	0.0021	0.0031	0.0031
-0.2	0.0021	0.0021	0.0021	0.0021	0.0013	0.0013	0.0010	0.0010	0.0020	0.0020
-0.1	0.0011	0.0011	0.0011	0.0011	0.0002	0.0002	0.0000	0.0000	0.0010	0.0010
0	0.0000	0.0000	0.0000	0.0000	-0.0009	-0.0009	-0.0011	-0.0011	0.0000	0.0000
0.1	-0.0011	-0.0011	-0.0011	-0.0011	-0.0021	-0.0021	-0.0022	-0.0022	-0.0010	-0.0010
0.2	-0.0021	-0.0021	-0.0021	-0.0021	-0.0032	-0.0032	-0.0033	-0.0032	-0.0020	-0.0020
0.3	-0.0032	-0.0032	-0.0031	-0.0031	-0.0042	-0.0042	-0.0043	-0.0043	-0.0031	-0.0031
0.4	-0.0042	-0.0042	-0.0042	-0.0042	-0.0053	-0.0053	-0.0053	-0.0053	-0.0041	-0.0041
0.5	-0.0052	-0.0052	-0.0052	-0.0052	-0.0063	-0.0063	-0.0063	-0.0063	-0.0051	-0.0051

Coordenada x (m)	Isotropia	Ortotropia (0°)	Ortotropia (30°)	Ortotropia (60°)	Ortotropia (90°)
-0.5	-1005.49	-379.99	-486.82	-437.89	-209.97
-0.4	-1006.87	-475.78	-531.27	-470.99	-378.43
-0.3	-344.55	-225.12	-216.68	-110.91	-84.54
-0.2	130.48	-52.26	30.65	141.29	77.58
-0.1	388.68	41.48	189.44	268.39	128.57
0	459.17	76.32	257.10	288.87	123.87
0.1	406.25	76.87	251.24	242.55	99.05
0.2	294.17	59.99	196.86	170.28	69.15
0.3	172.36	37.28	123.70	99.47	40.76
0.4	78.81	19.07	62.60	46.90	19.83
0.5	-4.97	-9.74	-20.12	-4.12	0.07

Tabela I.3: Distribuição de tensões suavizadas σ_{xx} [kN/m²] ao longo do alinhamento A-A' (FEM) - malha 11×11 nós

Tabela I.4: Distribuição de tensões	σ_{xx} [kN/m ²] ao longo o	do alinhamento A-A	A' (EFGM) – malha	11×11
nós (domínio nodal 1+ε)				

Coordenada x (m)	Isotropia	Ortotropia (0°)	Ortotropia (30°)	Ortotropia (60°)	Ortotropia (90°)
-0.48873	-1025.70	-389.76	-498.87	-452.08	-220.01
-0.45	-1371.60	-601.40	-706.26	-711.34	-511.75
-0.41127	-1753.10	-828.72	-941.48	-950.94	-816.14
-0.38873	-277.20	-128.02	-140.68	44.20	56.95
-0.35	-580.03	-288.01	-341.30	-268.41	-123.10
-0.31127	-944.57	-471.10	-588.32	-525.14	-323.44
-0.28873	255.66	21.73	142.92	421.34	157.37
-0.25	25.66	-73.70	-37.39	108.11	78.50
-0.21127	-269.98	-195.28	-250.72	-133.74	-14.53
-0.18873	536.59	92.85	333.86	562.98	172.19
-0.15	377.93	40.87	168.01	324.90	141.37
-0.11127	182.02	-27.64	30.01	133.20	107.76
-0.08873	600.68	112.53	435.19	495.17	150.72
-0.05	499.62	86.10	272.82	370.58	139.58
-0.01127	394.01	49.76	211.24	241.42	130.20
0.01127	527.61	104.15	455.20	349.39	118.01
0.05	465.60	91.17	296.73	310.76	114.11
0.08873	422.90	72.67	285.01	237.95	114.25
0.11127	391.10	81.80	399.31	216.82	83.95
0.15	354.47	75.13	258.07	217.75	82.45
0.18873	343.52	65.44	268.71	182.90	85.41
0.21127	245.06	54.86	300.31	118.15	52.83
0.25	221.83	49.80	182.12	128.04	51.79
0.28873	220.25	43.25	196.65	113.49	54.41
0.31127	124.03	31.35	198.81	53.80	26.97
0.35	101.89	23.63	97.38	55.83	25.04
0.38873	93.93	15.70	101.98	46.19	25.31
0.41127	62.89	22.26	133.90	30.03	14.14
0.45	23.76	5.61	33.41	11.41	6.40
0.48873	-4.23	-9.38	14.43	-7.84	0.19

Coordenada x (m)	Isotropia	Ortotropia (0°)	Ortotropia (30°)	Ortotropia (60°)	Ortotropia (90°)
-0.48873	-1407.8	-559.5	-730.8	-750.8	-474.1
-0.45	-1433.8	-622.4	-759.9	-773.0	-559.4
-0.41127	-1211.4	-557.2	-654.0	-640.8	-452.7
-0.38873	-984.1	-466.0	-539.6	-505.9	-310.2
-0.35	-622.6	-315.0	-359.7	-299.8	-105.0
-0.31127	-319.8	-189.1	-211.3	-135.6	11.4
-0.28873	-159.9	-125.3	-132.9	-49.3	41.6
-0.25	64.8	-42.0	-21.5	80.2	81.5
-0.21127	198.9	-1.7	43.3	171.8	104.1
-0.18873	228.6	0.3	55.5	202.3	105.3
-0.15	278.5	9.3	86.6	239.6	107.5
-0.11127	359.2	36.1	152.5	280.2	116.8
-0.08873	424.5	60.1	209.1	311.4	125.9
-0.05	498.5	88.7	274.3	345.8	134.0
-0.01127	499.1	93.2	281.8	337.9	125.9
0.01127	462.8	84.0	259.3	310.1	112.7
0.05	406.8	71.5	229.4	267.3	93.7
0.08873	376.3	68.5	222.1	241.9	83.9
0.11127	370.9	71.0	227.8	235.6	82.6
0.15	350.4	71.6	226.1	219.3	78.1
0.18873	304.7	64.1	203.0	187.7	67.5
0.21127	265.3	55.6	179.7	160.7	58.3
0.25	201.8	41.6	140.3	119.3	43.6
0.28873	149.7	30.1	105.4	87.7	32.6
0.31127	125.5	25.0	87.6	73.9	28.1
0.35	92.3	18.9	65.4	55.1	22.0
0.38873	64.9	14.8	50.7	39.3	16.0
0.41127	49.2	12.3	42.8	30.0	12.0
0.45	17.5	4.4	18.0	10.0	4.2
0.48873	-18.0	-7.6	-21.3	-13.5	-4.1

Tabela I.5: Distribuição de tensões σ_{xx} [kN/m²] ao longo do alinhamento A-A' (EFGM) – malha 11×11 nós (domínio nodal 2+ ϵ)

Anexo I.2 Membrana II
Ângulo de ortotropia (°)	FE	EM	EFGM			
Angulo de ortotropia ()	Deslocamento x (m)	Deslocamento y (m)	Deslocamento x (m)	Deslocamento y (m)		
0	-9.666E-03	-9.739E-03	-9.666E-03	-9.740E-03		
5	-9.307E-03	-1.001E-02	-9.307E-03	-1.001E-02		
10	-8.961E-03	-1.022E-02	-8.961E-03	-1.022E-02		
15	-8.657E-03	-1.037E-02	-8.657E-03	-1.037E-02		
20	-8.430E-03	-1.044E-02	-8.430E-03	-1.044E-02		
25	-8.312E-03	-1.040E-02	-8.312E-03	-1.040E-02		
30	-8.332E-03	-1.024E-02	-8.332E-03	-1.024E-02		
35	-8.500E-03	-9.967E-03	-8.500E-03	-9.968E-03		
40	-8.799E-03	-9.598E-03	-8.800E-03	-9.600E-03		
45	-9.187E-03	-9.187E-03	-9.188E-03	-9.188E-03		
50	-9.598E-03	-8.799E-03	-9.600E-03	-8.800E-03		
55	-9.967E-03	-8.500E-03	-9.968E-03	-8.500E-03		
60	-1.024E-02	-8.332E-03	-1.024E-02	-8.332E-03		
65	-1.040E-02	-8.312E-03	-1.040E-02	-8.312E-03		
70	-1.044E-02	-8.430E-03	-1.044E-02	-8.430E-03		
75	-1.037E-02	-8.657E-03	-1.037E-02	-8.657E-03		
80	-1.022E-02	-8.961E-03	-1.022E-02	-8.961E-03		
85	-1.001E-02	-9.307E-03	-1.001E-02	-9.307E-03		
90	-9.739E-03	-9.666E-03	-9.740E-03	-9.666E-03		

Tabela I.6: Deslocamentos [m] do Ponto A segundo as direcções x e y

Tabela I.7: Deslocamentos [m] segundo a direcção x ao longo do alinhamento B-B'

_	Isot	ropia	Angu	Angulo - 0°		Angulo - 45°		o - 90°
Coordenada x (m)	FEM	EFGM	FEM	EFGM	FEM	EFGM	FEM	EFGM
-0.5	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
-0.4	-1.028E-03	-1.029E-03	-1.088E-03	-1.088E-03	-1.065E-03	-1.065E-03	-1.109E-03	-1.110E-03
-0.3	-1.950E-03	-1.950E-03	-2.121E-03	-2.121E-03	-2.027E-03	-2.028E-03	-2.056E-03	-2.057E-03
-0.2	-2.778E-03	-2.778E-03	-3.109E-03	-3.109E-03	-2.870E-03	-2.871E-03	-2.896E-03	-2.896E-03
-0.1	-3.548E-03	-3.549E-03	-4.070E-03	-4.071E-03	-3.614E-03	-3.615E-03	-3.686E-03	-3.687E-03
0	-4.307E-03	-4.308E-03	-5.022E-03	-5.022E-03	-4.310E-03	-4.311E-03	-4.470E-03	-4.471E-03
0.1	-5.097E-03	-5.098E-03	-5.978E-03	-5.979E-03	-5.027E-03	-5.028E-03	-5.277E-03	-5.278E-03
0.2	-5.947E-03	-5.949E-03	-6.947E-03	-6.948E-03	-5.814E-03	-5.815E-03	-6.128E-03	-6.129E-03
0.3	-6.865E-03	-6.866E-03	-7.934E-03	-7.935E-03	-6.677E-03	-6.678E-03	-7.037E-03	-7.038E-03
0.4	-7.825E-03	-7.827E-03	-8.929E-03	-8.930E-03	-7.575E-03	-7.576E-03	-8.000E-03	-8.001E-03
0.5	-8.773E-03	-8.775E-03	-9.910E-03	-9.911E-03	-8.433E-03	-8.434E-03	-8.973E-03	-8.974E-03

	Isotı	opia	Angu	Angulo - 0°		Angulo - 45°		o - 90°
Coordenada x (m)	FEM	EFGM	FEM	EFGM	FEM	EFGM	FEM	EFGM
-0.5	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
-0.4	-1.2289E-03	-1.2291E-03	-1.3658E-03	-1.3658E-03	-1.1995E-03	-1.1997E-03	-1.7397E-03	-1.7399E-03
-0.3	-2.2978E-03	-2.2983E-03	-2.5126E-03	-2.5129E-03	-2.2638E-03	-2.2642E-03	-3.1132E-03	-3.1139E-03
-0.2	-3.1800E-03	-3.1806E-03	-3.4027E-03	-3.4032E-03	-3.1612E-03	-3.1618E-03	-4.0694E-03	-4.0706E-03
-0.1	-3.8532E-03	-3.8540E-03	-4.0452E-03	-4.0458E-03	-3.8544E-03	-3.8553E-03	-4.6758E-03	-4.6770E-03
0	-4.3073E-03	-4.3081E-03	-4.4700E-03	-4.4706E-03	-4.3103E-03	-4.3113E-03	-5.0215E-03	-5.0224E-03
0.1	-4.5417E-03	-4.5424E-03	-4.7076E-03	-4.7080E-03	-4.5097E-03	-4.5104E-03	-5.1751E-03	-5.1757E-03
0.2	-4.5603E-03	-4.5606E-03	-4.7777E-03	-4.7780E-03	-4.4532E-03	-4.4533E-03	-5.1783E-03	-5.1786E-03
0.3	-4.3712E-03	-4.3710E-03	-4.6836E-03	-4.6835E-03	-4.1659E-03	-4.1656E-03	-5.0411E-03	-5.0411E-03
0.4	-4.0012E-03	-4.0009E-03	-4.4271E-03	-4.4268E-03	-3.6949E-03	-3.6946E-03	-4.7318E-03	-4.7311E-03
0.5	-3.5222E-03	-3.5228E-03	-4.0841E-03	-4.0848E-03	-3.0964E-03	-3.0965E-03	-4.2551E-03	-4.2550E-03

Tabela I.8: Deslocamentos [m] segundo a direcção y ao longo do alinhamento B-B'

Tabela I.9: Distribuição de tensões principais suavizadas $\sigma_I e \sigma_{II} [kN/m^2]$ ao longo do alinhamento B-B' (FEM) – malha 11×11 nós

	Isotropia		Angulo - 0°		Angulo - 45°		Angulo - 90°	
Coordenada x (m)	Tensao σ_{I} [kN/m ²]	Tensao σ_{II} [kN/m ²]	Tensao σ _I [kN/m ²]	Tensao σ_{II} [kN/m ²]	Tensao σ_{I} [kN/m ²]	Tensao σ_{II} [kN/m ²]	Tensao σ_{I} [kN/m ²]	Tensao σ_{II} [kN/m ²]
-0.5	10743.20	711.47	4648.98	167.59	4666.66	35.54	8805.14	489.72
-0.4	9573.78	446.35	3831.16	51.90	4438.30	0.00	6105.87	275.74
-0.3	8247.06	605.38	3000.41	152.64	4091.49	252.22	3969.66	402.51
-0.2	6963.41	651.42	2320.39	221.07	3636.14	463.74	2617.64	441.37
-0.1	5812.85	604.95	1806.86	241.48	3122.84	559.07	1848.82	359.69
0	4764.22	515.71	1410.68	223.53	2585.27	536.69	1410.68	223.53
0.1	3747.33	425.59	1080.01	188.63	2015.91	434.04	1113.48	122.61
0.2	2696.80	336.89	772.35	151.79	1399.14	280.74	862.99	86.81
0.3	1555.44	200.70	437.63	113.27	757.56	75.87	622.71	98.11
0.4	449.66	-278.73	106.60	-120.21	259.85	-296.18	258.18	0.00
0.5	0.00	-2171.86	0.00	-1021.98	0.00	-1237.20	0.00	-1221.58

Instituto Superior Técnico

$(\mathbf{F}\mathbf{E}\mathbf{N}\mathbf{I}) = \mathbf{III}\mathbf{a}\mathbf{II}\mathbf{I}$	a 21×21 nos	5						
	Isoti	ropia	Angu	lo - 0º	Angul	o - 45°	Angul	o - 90°
Coordenada x (m)	Tensao σ_I [kN/m ²]	Tensao σ_{II} [KN/m ²]	Tensao σ_{I} [kN/m ²]	Tensao σ_{II} [KN/m ²]	Tensao σ _I [kN/m ²]	Tensao σ_{II} [kN/m ²]	Tensao σ_I [kN/m ²]	Tensao σ_{II} [kN/m ²]
-0.5	10744.60	392.83	4657.49	38.20	4652.34	0.00	8791.27	280.28
-0.45	10194.80	278.66	4263.54	0.00	4555.22	0.00	7416.75	189.25
-0.4	9583.86	418.00	3834.77	58.87	4436.10	0.00	6101.44	293.10
-0.35	8931.86	536.83	3405.47	127.64	4286.86	87.80	4935.63	386.59
-0.3	8266.26	627.82	3002.81	187.49	4106.41	242.32	3972.32	456.52
-0.25	7610.16	686.46	2640.63	233.83	3896.45	383.79	3209.17	493.73
-0.2	6978.88	712.21	2322.57	264.67	3661.61	501.67	2621.07	494.76
-0.15	6379.01	708.66	2046.13	280.35	3408.32	586.69	2177.44	461.99
-0.1	5809.63	682.31	1805.66	282.87	3142.54	633.44	1846.91	403.46
-0.05	5264.79	640.78	1594.34	275.07	2867.68	641.76	1598.68	331.70
0	4735.89	590.89	1405.25	259.97	2583.97	616.07	1405.25	259.97
0.05	4213.67	537.21	1232.00	240.16	2289.55	558.65	1245.38	198.32
0.1	3689.25	481.36	1068.86	217.38	1982.39	489.22	1104.75	151.84
0.15	3154.36	421.88	910.54	192.43	1661.96	399.23	974.59	121.11
0.2	2601.09	354.70	751.35	165.17	1330.26	295.77	849.32	102.99
0.25	2021.43	273.78	583.84	134.83	992.95	179.19	723.47	91.40
0.3	1408.88	170.04	397.22	99.92	662.81	44.74	586.19	78.10
0.35	776.69	14.29	184.15	49.84	370.45	0.00	411.39	52.93
0.4	281.51	-364.24	60.10	-153.45	166.62	-380.49	170.70	-24.62
0.45	93.88	-1145.68	24.87	-528.69	62.45	-711.94	50.00	-445.33
0.5	0.00	-2221.45	0.00	-1015.27	0.00	-1207.46	0.00	-1296.33

Tabela I.10: Distribuição de tensões principais suavizadas $\sigma_I e \sigma_{II} [kN/m^2]$ ao longo do alinhamento B-B' (FEM) – malha 21×21 nós

	Isotro	opia	Ortotro	pia (0º)	Ortotrop	Ortotropia (45°)		Ortotropia (90°)	
Coordenada x (m)	Tensao σ_{I} [kN/m ²]	Tensao σ_{II} [kN/m ²]	Tensao σ_{I} [kN/m ²]	Tensao σ_{II} [kN/m ²]	Tensao σ_{I} [kN/m ²]	Tensao σ_{II} [kN/m ²]	Tensao σ_{I} [kN/m ²]	Tensao σ_{II} [kN/m ²]	
-0.48873	10439	412.11	4513.2	76.997	4559.7	-187.02	8344.7	273.67	
-0.45	10086	274.73	4208.9	-1.3504	4503.5	-223.84	7303.1	162.82	
-0.41127	9649.8	308.34	3880	-5.0772	4418.7	-143.15	6309.8	199.53	
-0.38873	9337.4	392.72	3673.5	23.707	4346.2	-57.633	5757.3	283.68	
-0.35	8729.5	521.77	3313.6	83.959	4187.7	76.873	4863.2	404.64	
-0.31127	8165.8	620.5	2991.8	154.71	4035.8	207.47	4092.5	471.3	
-0.28873	7914.9	673.69	2840	202.75	3971.7	294.86	3725.3	490.25	
-0.25	7569.2	736.72	2622.5	265.12	3876.7	424.36	3227.9	512.81	
-0.21127	7203.8	749.24	2417.2	290.97	3749.3	496.64	2822.4	517.77	
-0.18873	6931.4	728.58	2286.9	287.48	3639.7	503.66	2595.6	507.41	
-0.15	6397.6	680.23	2058.1	276.39	3406.5	505.61	2224.8	469.49	
-0.11127	5880.3	644.19	1849.2	270.5	3170.8	534.53	1917.9	415.4	
-0.08873	5626.7	640.03	1746.9	272.89	3054.9	574.88	1782.1	384.22	
-0.05	5264.5	639.02	1600.4	278.9	2884.8	619.03	1608.9	340.79	
-0.01127	4925.7	624.23	1472.1	279.3	2713	606.94	1473.4	301.38	
0.01127	4708.7	600.37	1397.1	273.35	2595.5	570.42	1397.1	273.35	
0.05	4276.2	540.04	1254.8	250.03	2353.5	505.11	1259.9	215.88	
0.08873	3798.1	469.62	1101.8	214.93	2078.1	449.64	1124.8	161	
0.11127	3519.8	431.66	1014.1	192.62	1914.3	424.2	1053.1	137.96	
0.15	3122.4	399.75	895.76	176.28	1676.3	385.18	960.43	125.64	
0.18873	2790.6	392.5	808.1	183.99	1472.5	340.62	892.24	129.02	
0.21127	2597.3	386.14	761.48	191.73	1353.2	305.76	852.65	127.81	
0.25	2143.6	313.12	626.54	160.91	1088.7	208.04	741.22	98.199	
0.28873	1552.3	162.04	424.79	70.736	760.69	59.847	588.36	46.414	
0.31127	1175.9	47.931	297.96	-9.9153	556.81	-42.863	498.03	13.123	
0.35	663.77	-77.48	137.92	-74.893	299.26	-160.49	392.17	-2.399	
0.38873	324.08	-188.75	34.614	-57.089	184.75	-248.35	260.2	13.276	
0.41127	278.91	-399.93	116.72	-167.45	186.05	-332.96	173.38	-32.759	
0.45	215.71	-1076.9	201.43	-468.01	129.86	-623.25	125.63	-441.34	
0.48873	34.394	-1965.3	171.02	-851.53	-48.256	-1047.4	60.615	-1049.4	

Tabela I.11: Distribuição de tensões principais $\sigma_I e \sigma_{II} [kN/m^2]$ ao longo do alinhamento B-B' (EFGM) – malha 11×11 nós (domínio nodal 1+ ϵ)

le.

	Isotro	opia	Ortotro	pia (0º)	Ortotrop	pia (45°)	Ortotro	pia (90°)
Coordenada x (m)	Tensao σ _I [kN/m ²]	$\begin{array}{c} \text{Tensao} \ \sigma_{\text{II}} \\ [k\text{N/m}^2] \end{array}$	Tensao σ _I [kN/m ²]	$\begin{array}{c} \text{Tensao} \ \sigma_{\text{II}} \\ [k\text{N/m}^2] \end{array}$	Tensao σ_I [kN/m ²]	Tensao σ_{II} [kN/m ²]	Tensao σ _I [kN/m ²]	Tensao σ _{II} [kN/m ²]
-0.49436	10461	187.22	4535.3	-62.543	4560.2	-335.66	8461.9	134.87
-0.475	10261	134.06	4388.1	-86.106	4525.6	-354.64	7940	91.768
-0.45564	10060	181.19	4238.9	-61.735	4491.4	-304.78	7435.3	126.91
-0.44436	9939.7	247.79	4150.3	-28.713	4470.5	-249.28	7148.5	178.83
-0.425	9723.2	343.75	3992.4	19.49	4430.7	-163.64	6655.7	254.04
-0.40564	9495.2	397.64	3829.2	48.455	4386	-102.34	6167.5	297.5
-0.39436	9358.2	412.76	3732.8	58.132	4358.1	-75.616	5889.4	310.77
-0.375	9116.3	445.8	3568.2	78.847	4306.1	-23.335	5432.6	338.06
-0.35564	8871.4	493.46	3406.9	107.64	4250.1	39.925	5006.1	375.29
-0.34436	8729.7	526.99	3315.5	127.7	4216	81.097	4772.8	400.85
-0.325	8486.3	575.3	3162.6	157.83	4154.1	148.12	4396.1	437.3
-0.30564	8240.8	609.91	3014.1	181.22	4087.1	208.83	4047.2	462.43
-0.29436	8095.8	624.56	2929.3	192.05	4045.2	241.55	3855.9	472.18
-0.275	7844.5	647.57	2787.9	209.82	3968.1	296.82	3548.8	486.31
-0.25564	7596	670.27	2653	227.55	3887.4	352.56	3269.5	498.08
-0.24436	7454.7	683.53	2577.8	237.84	3839.9	385.45	3119.8	503.6
-0.225	7216.4	700.58	2454.3	252.9	3755.8	437.35	2883.1	508.19
-0.20564	6981	710.11	2336.7	264.29	3667.6	482.58	2669.5	506.03
-0.19436	6844	712.47	2270.6	269.25	3613.8	505.86	2554.5	501.61
-0.175	6610.3	713.32	2161.4	276.22	3517.7	541.65	2372.7	490.57
-0.15564	6381.4	711.67	2058	281.7	3419.6	573.91	2210	475.76
-0.14436	6251.2	709.88	2000.6	284.22	3362.3	591.51	2123.8	465.47
-0.125	6032	703.8	1906.1	286.94	3262.9	615.85	1988.7	445.05
-0.10564	5816.2	693.99	1816.2	287.56	3161.1	632.61	1868.1	421.42
-0.094365	5691.2	686.62	1765.8	286.94	3100.4	639.04	1803.6	406.25
-0.075	5478.4	672.24	1682.2	284.77	2994.1	645.61	1701.6	379.01
-0.055635	5268.6	656.53	1602.4	281.45	2886.4	647.86	1609.9	350.97
-0.044365	5148	646.94	1557.6	279	2823.4	647.48	1560.7	334.5
-0.025	4943.3	629.65	1483.2	274.07	2714.6	642.25	1482.4	306.64
-0.0056351	4740.5	611.24	1411.7	268.22	2604.2	631.34	1410.5	279.63
0.0056351	4622.5	599.88	1371.1	264.33	2538.7	622.48	1371.1	264.33
0.025	4419.9	579.88	1303	257.12	2424.6	604.3	1307	239.42
0.044365	4217.2	559.36	1236.7	249.26	2308.3	582.86	1246.6	216.51
0.055635	4098.9	547.08	1198.9	244.37	2239.5	568.87	1213	204.12
0.075	3896.6	526.06	1135.1	235.83	2120.8	542.42	1157.4	184.85
0.094365	3694.1	504.61	1072.6	227.02	2000.8	512.66	1104	168.02
0.10564	3575.5	491.59	1036.6	221.66	1929.8	493.67	1073.7	159.21
0.125	3369.5	468.58	975.06	212.02	1805.8	459.41	1022.7	145.9
0.14436	3160	444.16	913.42	201.64	1678.8	422.82	972.52	134.63
0.15564	3036.3	429.01	877.43	195.19	1603.4	400.24	943.67	128.83
0.175	2823.3	402.53	815.84	184.25	1474.3	360.12	894.72	120.43
0.19436	2608.5	374.62	754.05	173.24	1345.1	317.71	846.26	113.46
0.20564	2481.8	357.27	717.7	166.6	1269.4	291.68	818.14	109.81
0.225	2259.7	325.63	653.67	154.33	1138	246.16	769.44	104.13
0.24436	2030.8	290.66	587.02	140.51	1004.9	199.08	719.72	98.32
0.25564	1894.2	268.37	546.84	131.69	926.93	170.48	690.04	94.5

Tabela I.12: Distribuição de tensões principais $\sigma_I e \sigma_{II} [kN/m^2]$ ao longo do alinhamento B-B' (EFGM) – malha 21×21 nós (domínio nodal 2+ ϵ)

0.275	1658.1	227.55	476.09	116.88	795.87	118.26	637.22	87.508
0.29436	1418.3	182.43	402.01	102.23	668.5	60.528	580.89	79.242
0.30564	1276.3	153.6	356.85	93.423	596.26	23.929	545.96	73.616
0.325	1030.3	99.359	275.75	75.93	477.69	-40.066	481.91	62.968
0.34436	785.15	33.577	191.18	52.524	369.69	-108.5	409.33	49.009
0.35564	646.45	-15.071	143.13	32.81	313.44	-152.98	361.56	38.248
0.375	428.01	-134.74	79.854	-27.213	226.17	-248.15	268.24	12.561
0.39436	253.23	-320.2	47.314	-128.05	147.67	-366.23	165.04	-30.262
0.40564	176	-460.87	35.306	-198.58	105.92	-442.63	109.28	-72.335
0.425	97.867	-743.66	23.84	-332.69	60.187	-567.09	53.52	-198.09
0.44436	72.793	-1066.2	21.694	-481.68	51.197	-684.44	36.085	-394.38
0.45564	71.784	-1271.6	22.561	-576.19	57.535	-754.55	33.155	-540.99
0.475	33.229	-1664.5	6.8613	-753.74	30.574	-910.93	13.327	-846.01
0.49436	-57.982	-2096.7	-32.492	-945.43	-53.044	-1111.3	-26.785	-1197.3

Anexo II Membranas pré-esforçadas

Anexo II.1 Membrana cabo

IE.

	Isoti	ropia	Ortotropia (0°)		Ortotropia (45°)		Ortotro	oia (90°)
Coordenada x (m)	Deslocamento z (m)							
()	FEM	EFGM	FEM	EFGM	FEM	EFGM	FEM	EFGM
-0.5	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
-0.4	-0.0051	-0.0051	-0.0052	-0.0052	-0.0099	-0.0099	-0.0094	-0.0094
-0.3	-0.0090	-0.0090	-0.0093	-0.0093	-0.0173	-0.0173	-0.0167	-0.0167
-0.2	-0.0118	-0.0118	-0.0122	-0.0122	-0.0224	-0.0224	-0.0219	-0.0219
-0.1	-0.0135	-0.0135	-0.0139	-0.0139	-0.0253	-0.0253	-0.0250	-0.0250
0	-0.0141	-0.0141	-0.0145	-0.0145	-0.0262	-0.0262	-0.0260	-0.0260
0.1	-0.0135	-0.0135	-0.0139	-0.0139	-0.0253	-0.0253	-0.0250	-0.0250
0.2	-0.0118	-0.0118	-0.0122	-0.0122	-0.0224	-0.0224	-0.0219	-0.0219
0.3	-0.0090	-0.0090	-0.0093	-0.0093	-0.0173	-0.0173	-0.0167	-0.0167
0.4	-0.0051	-0.0051	-0.0052	-0.0052	-0.0099	-0.0099	-0.0094	-0.0094
0.5	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Tabela II.1: Deslocamentos	verticais [m] ao longo	do alinhamento C-C'	(carga distribuída=1 kPa)
	verticuls [m] uo longo		(curga distribuida 1 Kra)

 Tabela II.2: Deslocamentos horizontais x [m] ao longo do alinhamento C-C ' (carga distribuída=1 kPa)

	Isotropia		Ortotropia (0°)		Ortotropia (45°)		Ortotropia (90°)	
Coordenada x (m)	Deslocamento x (m)							
	FEM	EFGM	FEM	EFGM	FEM	EFGM	FEM	EFGM
-0.5	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
-0.4	-0.0002	-0.0002	-0.0001	-0.0001	-0.0006	-0.0006	-0.0003	-0.0003
-0.3	-0.0002	-0.0002	-0.0002	-0.0002	-0.0009	-0.0009	-0.0004	-0.0004
-0.2	-0.0002	-0.0002	-0.0001	-0.0001	-0.0008	-0.0008	-0.0003	-0.0003
-0.1	-0.0001	-0.0001	-0.0001	-0.0001	-0.0004	-0.0004	-0.0002	-0.0002
0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.1	0.0001	0.0001	0.0001	0.0001	0.0004	0.0004	0.0002	0.0002
0.2	0.0002	0.0002	0.0001	0.0001	0.0008	0.0008	0.0003	0.0003
0.3	0.0002	0.0002	0.0002	0.0002	0.0009	0.0009	0.0004	0.0004
0.4	0.0002	0.0002	0.0001	0.0001	0.0006	0.0006	0.0003	0.0003
0.5	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Tabela II.3: Deslocamentos horizontais y [m] ao longo do alinhamento D-D' (carga distribuída=1 kPa)

	Isotr	opia	Ortotropia (0°)		Ortotropia (45°)		Ortotropia (90°)	
Coordenada v (m)	Deslocamento y (m)	Deslocamento y (m)	Deslocamento y (m)	Deslocamento y (m)	Deslocament o y (m)	Deslocamento y (m)	Deslocamento y (m)	Deslocamento y (m)
5 ()	FEM	EFGM	FEM	EFGM	FEM	EFGM	FEM	EFGM
0.5	-0.0016	-0.0016	-0.0015	-0.0015	-0.0036	-0.0036	-0.0009	-0.0009
0.4	-0.0012	-0.0012	-0.0012	-0.0012	-0.0029	-0.0029	-0.0007	-0.0007
0.3	-0.0009	-0.0009	-0.0009	-0.0009	-0.0022	-0.0022	-0.0005	-0.0005
0.2	-0.0006	-0.0006	-0.0006	-0.0006	-0.0014	-0.0014	-0.0004	-0.0004
0.1	-0.0003	-0.0003	-0.0003	-0.0003	-0.0007	-0.0007	-0.0002	-0.0002
0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
-0.1	0.0003	0.0003	0.0003	0.0003	0.0007	0.0007	0.0002	0.0002
-0.2	0.0006	0.0006	0.0006	0.0006	0.0014	0.0014	0.0004	0.0004
-0.3	0.0009	0.0009	0.0009	0.0009	0.0022	0.0022	0.0005	0.0005
-0.4	0.0012	0.0012	0.0012	0.0012	0.0029	0.0029	0.0007	0.0007
-0.5	0.0016	0.0016	0.0015	0.0015	0.0036	0.0036	0.0009	0.0009

	pia (90°)	Tensao $\sigma_{yy} [kN/m^2]$	1398.71	1025.45	711.98	467.73	292.72	173.86	95.89	46.40	16.57	0.75	-4.20	0.74	16.55	46.37	95.83	173.76	292.57	467.50	711.73	1025.27	1398.72
	Ortotro	Tensao $\sigma_{xx} [kN/m^2]$	4767.37	4757.64	4794.08	4823.04	4843.63	4856.90	4864.73	4868.99	4871.10	4872.01	4872.25	4872.01	4871.10	4869.00	4864.74	4856.91	4843.66	4823.07	4794.11	4757.67	4767.41
)	ia (45°)	Tensao $\sigma_{yy}[kN/m^2]$	2070.51	1820.69	1683.66	1535.30	1377.13	1212.80	1049.57	899.02	775.86	694.75	666.40	694.71	775.80	898.94	1049.49	1212.74	1377.09	1535.28	1683.66	1820.71	2070.57
	Ortotrop	Tensao $\sigma_{xx} [kN/m^2]$	3784.00	3778.56	3986.92	4200.69	4414.45	4620.02	4807.23	4965.33	5084.92	5159.21	5184.38	5159.24	5084.98	4965.43	4807.35	4620.16	4414.58	4200.82	3987.03	3778.65	3784.09
	pia (0°)	Tensao σ_{yy} [kN/m ²]	1256.61	1015.46	801.25	614.86	461.27	340.41	249.20	183.52	139.55	114.38	106.18	114.36	139.53	183.47	249.13	340.32	461.16	614.74	801.14	1015.39	1256.62
	Ortotro	Tensao $\sigma_{xx} [kN/m^2]$	8546.75	8540.16	8597.21	8647.63	8689.76	8723.18	8748.46	8766.60	8778.67	8785.55	8787.78	8785.55	8778.68	8766.62	8748.48	8723.22	8689.80	8647.68	8597.25	8540.19	8546.78
	opia	Tensao $\sigma_{yy} [kN/m^2]$	2480.47	2082.21	1735.85	1409.83	1114.25	857.46	645.00	479.66	362.15	292.06	268.77	292.01	362.06	479.53	644.83	857.25	1114.03	1409.61	1735.69	2082.12	2480.50
	Isotr	Tensao σ_{xx} [kN/m ²]	8424.69	8435.00	8584.17	8723.06	8846.89	8952.09	9036.81	9100.85	9145.10	9170.92	9179.39	9170.94	9145.14	9100.91	9036.90	8952.20	8847.01	8723.19	8584.28	8435.09	8424.78
		Coordenada x (m)	-0.5	-0.45	-0.4	-0.35	-0.3	-0.25	-0.2	-0.15	-0.1	-0.05	0	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.5

Tabela II.4: Distribuição de tensões suavizadas $\sigma_{xx} \in \sigma_{yy} [kN/m^2]$ ao longo do alinhamento C-C' (carga distribuída=1 kPa) - FEM

	Isoti	ropia	Ortotro	pia (0°)	Ortotrol	oia (45°)	Ortotrol	oia (90°)
Coordenada x (m)	Tensao $\sigma_{xx} [kN/m^2]$	Tensao $\sigma_{yy}[kN/m^2]$	Tensao $\sigma_{xx} \; [kN/m^2]$	Tensao $\sigma_{yy} [kN/m^2]$	Tensao $\sigma_{xx} \; [kN/m^2]$	Tensao $\sigma_{yy} [kN/m^2]$	Tensao $\sigma_{xx} \; [kN/m^2]$	Tensao $\sigma_{_{yy}}[kN/m^2]$
-0.49436	8244.90	2428.50	8431.38	1237.24	3638.80	1985.28	4693.83	1365.16
-0.475	8237.60	2271.90	8420.43	1141.64	3617.65	1879.95	4682.76	1215.18
-0.45564	8281.10	2131.80	8433.12	1051.32	3673.22	1820.78	4689.93	1075.21
-0.44436	8329.20	2057.90	8452.05	1001.69	3741.74	1807.43	4704.61	1000.03
-0.425	8406.10	1930.80	8483.01	918.81	3853.68	1778.23	4728.90	877.51
-0.40564	8463.40	1800.00	8504.86	838.10	3935.89	1727.98	4744.12	761.85
-0.39436	8487.70	1722.20	8512.98	792.17	3969.42	1688.97	4747.91	697.79
-0.375	8531.70	1591.50	8527.18	716.60	4033.59	1624.68	4754.28	596.24
-0.35564	8582.00	1467.10	8543.86	646.23	4112.44	1568.06	4763.05	506.48
-0.34436	8614.10	1398.20	8554.90	607.98	4164.93	1538.70	4769.58	459.84
-0.325	8665.30	1283.80	8572.02	546.42	4252.04	1485.65	4779.28	387.79
-0.30564	8709.40	1173.10	8585.74	489.55	4331.92	1427.24	4785.72	324.51
-0.29436	8731.80	1110.10	8592.09	458.43	4374.93	1390.66	4787.81	291.17
-0.275	8769.10	1006.20	8602.62	408.58	4449.22	1327.65	4791.19	240.06
-0.25564	8806.20	909.10	8613.25	363.52	4525.85	1266.95	4794.89	196.41
-0.24436	8827.60	856.28	8619.47	339.55	4571.56	1233.33	4797.19	174.22
-0.225	8861.20	771.23	8629.05	301.93	4646.43	1175.61	4800.48	140.80
-0.20564	8890.20	692.65	8636.90	268.39	4715.61	1117.38	4802.62	112.42
-0.19436	8904.90	649.64	8640.63	250.56	4753.16	1083.25	4803.29	97.83
-0.175	8928.30	580.96	8646.60	222.79	4814.48	1025.66	4804.32	75.90
-0.15564	8949.80	519.59	8652.15	198.60	4873.18	972.05	4805.38	57.66
-0.14436	8961.40	487.49	8655.17	186.13	4906.37	943.62	4805.98	48.59
-0.125	8979.10	438.34	8659.70	167.31	4957.65	897.81	4806.80	35.33
-0.10564	8993.50	396.29	8663.31	151.55	5001.34	855.98	4807.29	24.60
-0.094365	9000.30	374.87	8664.95	143.66	5023.33	833.68	4807.40	19.34
-0.075	9010.20	343.52	8667.35	132.28	5055.59	799.70	4807.55	11.88
-0.055635	9018.00	319.36	8669.28	123.62	5081.98	773.18	4807.71	6.34
-0.044365	9021.60	308.73	8670.16	119.81	5094.93	761.96	4807.81	3.94

Tabela II.5: Distribuição de tensões σ_{xx} e σ_{yy} [kN/m²] ao longo do alinhamento C-C' (carga distribuída =1 kPa) - EFGM

Anexo II.1: Membrana cabo

| 4807.99 0.01 | .99 0.01 | 1.18 | 3.94 | 6.34 | 11.88 | 19.34 | 24.60 | 5.33 | 59 | 6 | 0

 | | 2
 | (

 | 0

 | 1 | 6 | 7

 | 1
 | 9 | 4 | 8 | 4 | 9 | 5 | 51 | 03 | 21
 | 18 | 16 |
|--------------|--|--|--|--|--|---|--|---|--|---
--
--
--
---|---|---
--
--

--
--
---|---|---
--
--
--
--|---|---|--|--|---|---|---|--
--|--|
| 4807.99 | 99 | | | | | | | 35 | 48. | 57.6 | 75.90

 | 97.83 | 112.43
 | 140.80

 | 174.22

 | 196.4 | 240.0 | 291.1

 | 324.5
 | 387.7 | 459.8 | 506.4 | 596.2 | 697.7 | 761.8 | 877.5 | 1000. | 1075.
 | 1215. | 1365 |
| | 4807. | 4807.92 | 4807.81 | 4807.71 | 4807.55 | 4807.40 | 4807.29 | 4806.80 | 4805.98 | 4805.38 | 4804.32

 | 4803.29 | 4802.62
 | 4800.48

 | 4797.19

 | 4794.89 | 4791.19 | 4787.81

 | 4785.72
 | 4779.28 | 4769.58 | 4763.05 | 4754.28 | 4747.91 | 4744.12 | 4728.90 | 4704.61 | 4689.93
 | 4682.76 | 4693 83 |
| 743.84 | 744.06 | 750.30 | 764.71 | 777.18 | 805.87 | 841.53 | 864.40 | 907.02 | 954.05 | 983.66 | 1039.61

 | 1099.10 | 1133.83
 | 1192.69

 | 1251.06

 | 1285.25 | 1346.97 | 1410.82

 | 1447.74
 | 1506.65 | 1560.01 | 1589.40 | 1645.83 | 1709.92 | 1748.94 | 1799.32 | 1828.57 | 1841.83
 | 1900.90 | 28 9002 |
| 5119.28 | 5120.16 | 5115.24 | 5102.74 | 5092.21 | 5069.63 | 5040.27 | 5019.42 | 4977.45 | 4928.10 | 4896.35 | 4839.92

 | 4779.93 | 4742.49
 | 4673.22

 | 4598.41

 | 4552.97 | 4476.77 | 4402.56

 | 4359.33
 | 4278.97 | 4191.34 | 4138.53 | 4059.13 | 3994.51 | 3960.82 | 3878.30 | 3765.89 | 3696.99
 | 3640.94 | 10 2998 |
| 113.40 | 113.40 | 115.34 | 119.81 | 123.62 | 132.28 | 143.66 | 151.55 | 167.31 | 186.13 | 198.60 | 222.79

 | 250.56 | 268.39
 | 301.93

 | 339.55

 | 363.52 | 408.58 | 458.43

 | 489.55
 | 546.42 | 607.98 | 646.23 | 716.60 | 792.17 | 838.10 | 918.81 | 1001.69 | 1051.32
 | 1141.64 | 1237 24 |
| 8671.73 | 8671.73 | 8671.24 | 8670.16 | 8669.28 | 8667.35 | 8664.95 | 8663.31 | 8659.70 | 8655.17 | 8652.15 | 8646.60

 | 8640.63 | 8636.90
 | 8629.05

 | 8619.47

 | 8613.25 | 8602.62 | 8592.09

 | 8585.74
 | 8572.02 | 8554.90 | 8543.86 | 8527.18 | 8512.98 | 8504.86 | 8483.01 | 8452.05 | 8433.12
 | 8420.43 | 843138 |
| 290.91 | 290.91 | 296.28 | 308.73 | 319.36 | 343.52 | 374.87 | 396.29 | 438.34 | 487.49 | 519.59 | 580.96

 | 649.64 | 692.65
 | 771.23

 | 856.28

 | 909.10 | 1006.20 | 1110.10

 | 1173.10
 | 1283.80 | 1398.20 | 1467.10 | 1591.50 | 1722.20 | 1800.00 | 1930.80 | 2057.90 | 2131.80
 | 2271.90 | 242.8 50 |
| 9028.00 | 9028.00 | 9026.00 | 9021.60 | 9018.00 | 9010.20 | 9000.30 | 8993.50 | 8979.10 | 8961.40 | 8949.80 | 8928.30

 | 8904.90 | 8890.20
 | 8861.20

 | 8827.60

 | 8806.20 | 8769.10 | 8731.80

 | 8709.40
 | 8665.30 | 8614.10 | 8582.00 | 8531.70 | 8487.70 | 8463.40 | 8406.10 | 8329.20 | 8281.10
 | 8237.60 | 8244 90 |
| -0.0056351 | 0.0056351 | 0.025 | 0.044365 | 0.055635 | 0.075 | 0.094365 | 0.10564 | 0.125 | 0.14436 | 0.15564 | 0.175

 | 0.19436 | 0.20564
 | 0.225

 | 0.24436

 | 0.25564 | 0.275 | 0.29436

 | 0.30564
 | 0.325 | 0.34436 | 0.35564 | 0.375 | 0.39436 | 0.40564 | 0.425 | 0.44436 | 0.45564
 | 0.475 | 927670 |
| | -0.0056351 9028.00 290.91 8671.73 113.40 5119.28 743.84 4807 | -0.0056351 9028.00 290.91 8671.73 113.40 5119.28 743.84 4807.9 0.0056351 9028.00 290.91 8671.73 113.40 5120.16 744.06 4807.9 | -0.0056351 9028.00 290.91 8671.73 113.40 5119.28 743.84 4807.9 0.0056351 9028.00 290.91 8671.73 113.40 5120.16 744.06 4807.9 0.025 9026.00 296.28 8671.24 115.34 5115.24 750.30 4807.9 | -0.0056351 9028.00 290.91 8671.73 113.40 5119.28 743.84 4807.9 0.0056351 9028.00 290.91 8671.73 113.40 5120.16 744.06 4807.9 0.0056351 9026.00 296.28 8671.24 115.34 5115.24 750.30 4807.9 0.025 9021.60 308.73 8670.16 119.81 5102.74 764.71 4807.9 | -0.0056351 9028.00 290.91 8671.73 113.40 5119.28 743.84 4807.9 0.0056351 9028.00 290.91 8671.73 113.40 5120.16 744.06 4807.9 0.0056351 9026.00 296.28 8671.24 115.34 5115.24 750.30 4807.9 0.044365 9021.60 308.73 8670.16 119.81 5102.74 764.71 4807.9 0.055635 9018.00 319.36 8669.28 123.62 5092.21 777.18 4807.7 | -0.0056351 9028.00 290.91 8671.73 113.40 5119.28 743.84 4807.9 0.0056351 9028.00 290.91 8671.73 113.40 5120.16 744.06 4807.9 0.0056351 9026.00 296.28 8671.24 115.34 5115.24 750.30 4807.9 0.04365 9021.60 308.73 8670.16 119.81 5102.74 764.71 4807.8 0.055635 9018.00 319.36 8669.28 123.62 5092.21 777.18 4807.7 0.055635 9018.00 319.36 8667.35 123.62 5092.21 777.18 4807.7 0.055635 9018.00 319.36 8667.35 123.62 5092.21 777.18 4807.7 | -0.0056351 9028.00 290.91 8671.73 113.40 5119.28 743.84 4807.9 0.0056351 9028.00 290.91 8671.73 113.40 5119.26 744.06 4807.9 0.0056351 9026.00 296.28 8671.24 115.34 5115.24 750.30 4807.9 0.04365 9021.60 308.73 8670.16 119.81 5102.74 764.71 4807.8 0.04365 9018.00 319.36 8669.28 123.62 5092.21 777.18 4807.7 0.075 9010.20 343.52 8667.35 132.28 5069.63 805.87 4807.7 0.04365 9010.20 343.52 8667.35 132.28 5069.63 805.87 4807.7 0.04365 9000.30 374.87 8664.95 143.66 5040.27 841.53 4807.5 | -0.0056351 9028.00 290.91 8671.73 113.40 5119.28 743.84 4807.9 0.0056351 9028.00 290.91 8671.73 113.40 5120.16 744.06 4807.9 0.0056351 9026.00 296.28 8671.24 115.34 5115.24 750.30 4807.9 0.04365 9021.60 308.73 8670.16 119.81 5115.24 764.71 4807.8 0.04365 9021.60 308.73 8670.16 119.81 5102.74 764.71 4807.8 0.04365 9018.00 319.36 8669.28 123.62 509.21 777.18 4807.7 0.075 9010.20 343.52 8664.95 132.28 5069.63 805.87 4807.5 0.094365 9010.20 374.87 8664.95 143.66 5040.27 841.53 4807.5 0.094365 9000.30 374.87 8664.95 143.66 5040.27 841.53 4807.5 0.093350 396.29 8663.31 151.55 5019.42 864.40 807.40 4807.2 | -0.0056351 9028.00 290.91 8671.73 113.40 5119.28 743.84 4807.9 0.0056351 9028.00 290.91 8671.73 113.40 5120.16 744.06 4807.9 0.0056351 9026.00 296.28 8671.24 115.34 5120.16 744.06 4807.9 0.025 9026.00 296.28 8671.24 115.34 5102.74 764.71 4807.9 0.04365 9021.60 308.73 8670.16 119.81 5102.74 764.71 4807.3 0.04365 9021.60 319.36 8669.28 123.62 5092.21 777.18 4807.3 0.055635 9010.20 319.36 8664.95 123.62 5092.21 777.18 4807.3 0.075 9010.20 374.87 8664.95 132.28 5069.63 801.537 4807.4 0.09365 9000.30 374.87 8664.95 143.66 5040.27 841.53 4807.4 0.09350 8993.50 396.29 8664.95 143.66 5040.27 841.60 4807.4 0.10564 8979.10 438.34 8659.70 167.31 4977.45 907.02 4806.8 | -0.0056351 9028.00 290.91 8671.73 113.40 5119.28 743.84 48079 0.0056351 9028.00 290.91 8671.73 113.40 5120.16 744.06 48079 0.025 9026.00 296.28 8671.24 115.34 5115.24 764.71 48079 0.04365 9021.60 308.73 8670.16 119.81 5102.74 764.71 48078 0.04365 9021.60 319.36 8669.28 123.62 5092.21 777.18 4807.7 0.055635 9010.20 343.52 8667.35 132.28 5069.63 805.87 4807.7 0.075 9010.20 343.52 8667.35 132.28 5069.63 805.87 4807.7 0.075635 9010.20 343.52 8667.35 132.28 5069.63 805.87 4807.7 0.075635 9010.20 374.87 8664.95 132.28 5069.63 805.87 4807.7 0.094365 9000.30 374.87 8664.95 132.28 5069.63 805.87 4807.6 0.10564 8993.50 374.87 8664.95 137.56 5019.42 841.65 4807.6 0.10564 8993.50 374.87 8653.31 151.55 5019.42 864.40 4807.6 0.125 8991.40 8653.17 186.13 4977.45 907.02 4806.8 0.1436 8961.40 487.49 8655.17 186.13 4977.45 $907.$ | -0.0056351 9028.00 290.91 8671.73 113.40 5119.28 743.84 4807.9 0.0056351 9028.00 290.91 8671.73 113.40 5120.16 744.06 4807.9 0.0056351 9026.00 296.28 8671.24 115.34 5115.24 750.30 4807.9 0.04365 9021.60 308.73 8670.16 119.81 5102.74 764.71 4807.9 0.04365 9021.60 308.73 8667.28 119.81 5102.74 764.71 4807.9 0.055635 9010.20 319.36 8667.35 123.62 5092.21 777.18 4807.5 0.055635 9010.20 319.36 8664.95 113.66 509.63 807.2 4807.5 0.055635 9010.20 374.87 8664.95 143.66 509.63 841.53 4807.5 0.055635 9000.30 374.87 8664.95 143.66 5040.27 841.53 4807.5 0.094365 9000.30 374.87 8664.95 143.66 5040.27 841.53 4807.5 0.094365 9000.30 374.87 8664.95 143.66 5040.27 841.53 4807.5 0.094365 8993.50 336.29 8663.31 151.55 5040.27 841.53 4807.5 0.10564 8993.50 336.29 8663.31 151.55 5040.27 841.53 4807.6 0.10564 8997.10 487.49 8655.17 186.13 </th <th>-0.0056351$9028.00$$290.91$$8671.73$$113.40$$5119.28$$743.84$$4807.9$$0.0056351$$9028.00$$290.91$$8671.73$$113.40$$5120.16$$744.06$$4807.9$$0.0056351$$9026.00$$296.28$$8671.24$$115.34$$5112.24$$750.30$$4807.9$$0.025$$9026.00$$296.28$$8671.24$$115.34$$5102.74$$764.71$$4807.8$$0.044365$$9021.60$$308.73$$8670.16$$119.81$$5102.74$$764.71$$4807.8$$0.04365$$9010.20$$319.36$$8667.35$$123.62$$5092.21$$777.18$$4807.3$$0.075$$9010.20$$319.36$$8667.35$$132.28$$5092.21$$777.18$$4807.5$$0.075$$9010.20$$314.87$$8667.35$$132.28$$5096.63$$807.87$$4807.5$$0.075$$9010.20$$374.87$$8664.95$$132.26$$5040.27$$841.53$$4807.5$$0.094365$$9000.30$$374.87$$8664.95$$143.66$$5040.27$$807.40$$807.40$$0.0564$$8993.50$$936.29$$8653.70$$167.31$$151.55$$5019.42$$864.40$$807.2$$0.125$$8979.10$$487.49$$8655.17$$186.13$$167.31$$4977.45$$907.02$$4806.8$$0.1436$$8979.10$$8853.17$$186.13$$167.31$$4977.45$$907.02$$4806.5$$0.1436$$894180$$8879.96$$8655.17$<</th> <th>-0.0056351$9028.00$$290.91$$8671.73$$113.40$$5119.28$$743.84$$48079$$0.0056351$$9028.00$$290.91$$8671.73$$113.40$$5120.16$$744.06$$48079$$0.0056351$$9028.00$$296.28$$8671.24$$115.44$$5102.74$$764.71$$48079$$0.025$$9021.60$$308.73$$8670.16$$119.81$$5102.74$$764.71$$48073$$0.04365$$9021.60$$319.36$$8667.35$$123.62$$5092.21$$777.18$$4807.7$$0.055635$$9010.20$$343.52$$8667.35$$123.66$$509.63$$805.87$$4807.7$$0.055635$$9010.20$$343.52$$8667.35$$132.66$$509.63$$805.87$$4807.7$$0.075$$9010.20$$343.52$$8667.35$$132.62$$509.63$$807.40$$4807.7$$0.09365$$9000.30$$374.87$$8663.31$$151.55$$5019.42$$847.6$$4807.2$$0.094365$$8979.10$$487.49$$8653.70$$167.31$$4977.45$$907.02$$4807.2$$0.1436$$8979.10$$487.49$$8653.70$$167.31$$4977.45$$907.02$$4807.2$$0.14436$$8991.40$$8655.17$$186.13$$151.55$$5019.42$$864.40$$807.9$$0.14436$$8991.40$$8653.17$$186.13$$151.55$$917.45$$907.02$$4807.3$$0.14436$$8991.40$$8655.17$$186.13$$186.13$$917.45$<</th>
<th>-0.0056351$9028.00$$290.91$$8671.73$$113.40$$5119.28$$743.84$$48079$$0.0056351$$9028.00$$290.91$$8671.73$$113.40$$5120.16$$744.06$$4807.9$$0.0056351$$9026.00$$296.28$$8671.24$$115.34$$5115.24$$750.30$$4807.9$$0.025$$9026.00$$296.28$$8671.26$$119.81$$5102.74$$747.06$$4807.3$$0.04365$$9021.60$$308.73$$8670.16$$119.81$$5102.74$$764.71$$4807.3$$0.04365$$9010.20$$319.36$$8669.28$$123.62$$5092.21$$777.18$$4807.3$$0.075$$9010.20$$319.36$$8667.35$$113.66$$5090.63$$805.87$$4807.3$$0.0755$$9010.20$$319.36$$8667.35$$113.66$$500.27$$864.36$$4807.3$$0.0755$$9010.20$$319.36$$8667.35$$113.66$$500.27$$864.36$$4807.3$$0.0755$$9010.20$$374.87$$8667.35$$143.66$$500.27$$864.36$$4807.3$$0.07564$$8993.50$$487.49$$8663.31$$151.55$$5019.42$$864.40$$4807.3$$0.16564$$8991.90$$487.49$$865.17$$186.13$$4977.45$$907.02$$4807.3$$0.16564$$8992.0$$649.60$$519.50$$186.13$$4977.45$$907.02$$4807.3$$0.15564$$8992.0$$649.60$$8664.60$$222.79$$4896.35$<th>-0.0056351$9028,00$$29091$$8671.73$$113.40$$5119.28$$743.84$$48079$$0.0056351$$9028,00$$29091$$8671.73$$115.34$$5120.16$$744.06$$48079$$0.0056351$$9026,00$$296.28$$8671.24$$115.34$$5102.74$$764.71$$48073$$0.0056355$$902160$$308.73$$8670.16$$119.81$$5102.74$$764.71$$48073$$0.04365$$902160$$308.73$$866.928$$123.62$$509221$$777.18$$48074$$0.055635$$9010.20$$319.36$$866.928$$123.62$$509221$$777.18$$48074$$0.075$$9010.20$$317.87$$866.95$$113.28$$5096.63$$864.40$$48074$$0.075$$9010.20$$317.87$$866.95$$143.66$$504027$$864.40$$48074$$0.075$$9010.20$$374.87$$866.95$$167.31$$497745$$907.02$$48074$$0.0935635$$39629$$866.331$$151.55$$5019.42$$864.40$$48074$$0.10564$$8993.50$$48749$$865.77$$167.31$$497745$$907.02$$4806.8$$0.11564$$8991.40$$48749$$865.75$$186.13$$167.31$$497745$$907.02$$4806.8$$0.15564$$8993.50$$519.59$$865.75$$186.13$$167.32$$907.02$$4806.8$$0.15564$$8994.90$$519.59$$8664.06$$250.56$$4779.93$$1099.10$<!--</th--><th>-0.0056351$902800$$29091$$8671.73$$11340$$511928$$74384$$48079$$0.0056351$$902800$$29091$$8671.73$$11340$$5115.24$$750.30$$48079$$0.0255$$902600$$296.28$$8671.24$$115.34$$5115.24$$750.30$$48079$$0.025635$$9021.60$$308.73$$8670.16$$119.81$$5102.74$$764.71$$4807.3$$0.0755$$9021.60$$319.36$$8667.35$$112.86$$5092.21$$777.18$$4807.3$$0.0755$$9010.20$$319.36$$8667.35$$132.28$$5092.63$$805.87$$4807.3$$0.0755$$9010.20$$319.36$$8667.35$$132.66$$5040.27$$841.53$$4807.4$$0.0755$$9010.20$$374.87$$8664.95$$113.66$$5040.27$$841.53$$4807.4$$0.0755$$9000.30$$374.87$$8667.35$$113.266$$5040.27$$841.63$$805.87$$0.10564$$8993.50$$374.87$$866.331$$151.55$$5019.42$$841.53$$4807.43$$0.10564$$8993.50$$374.87$$866.331$$151.55$$5019.42$$864.40$$4807.3$$0.1256$$8991.40$$487.49$$865.77$$186.13$$157.24$$907.02$$4806.3$$0.1264$$8991.40$$487.49$$865.77$$186.13$$4928.10$$907.02$$4806.3$$0.15564$$8991.86$$5892.90$$8640.60$$222.79$$4896.35$</th><th>-0.0056351$9028.00$$29091$$8671.73$$113.40$$5119.28$$743.84$$4807.9$$0.0056351$$9028.00$$29091$$8671.73$$113.40$$5120.16$$744.06$$4807.9$$0.0056351$$9026.00$$296.28$$8671.24$$115.34$$5102.74$$764.71$$4807.9$$0.0255$$9021.60$$308.73$$8670.16$$119.81$$5102.74$$764.71$$4807.9$$0.045655$$9021.60$$319.36$$8667.35$$113.262$$5092.21$$777.18$$4807.3$$0.0755$$901020$$319.352$$8667.35$$113.262$$5092.21$$777.18$$4807.3$$0.0755$$901020$$319.352$$8667.35$$113.66$$5102.74$$777.18$$4807.3$$0.0755$$901020$$319.3629$$8667.35$$113.262$$5092.21$$777.18$$4807.3$$0.0755$$901020$$319.3629$$8667.35$$113.66$$3609.63$$807.3$$4807.3$$0.10564$$8993.50$$396.29$$8663.31$$151.55$$5019.42$$841.53$$4807.3$$0.10564$$8993.50$$4877.49$$866.33$$166.60$$222.79$$4806.3$$4807.3$$0.1436$$8991.40$$4877.49$$866.40$$866.60$$222.79$$4896.35$$9891.60$$0.1436$$8991.20$$699.66$$866.60$$222.79$$4896.35$$9891.60$$4806.3$$0.1436$$8991.20$$6992.60$$866.60$$866.60$$2$</th><th>-0.056351$9028.00$$290.91$$8671.73$$113.40$$5119.28$$743.84$$4807.9$$0.056351$$9028.00$$290.91$$8671.73$$113.40$$5120.16$$744.06$$4807.9$$0.0255$$9026.00$$296.28$$8671.24$$115.34$$5102.74$$764.71$$4807.3$$0.04365$$9021.60$$319.36$$8670.16$$119.81$$5102.74$$764.71$$4807.3$$0.04365$$9018.00$$319.36$$866.928$$123.62$$5092.21$$777.18$$4807.3$$0.055635$$9010.00$$319.36$$866.928$$123.62$$5092.21$$777.18$$4807.3$$0.075$$9010.00$$319.36$$866.95$$143.66$$807.3$$4807.3$$4807.3$$0.094365$$9000.020$$374.87$$8664.95$$143.66$$807.3$$4807.3$$4807.3$$0.094365$$9000.020$$374.87$$866.33.1$$151.55$$5092.61$$887.76$$4807.3$$0.094365$$8999.300$$374.87$$866.33.1$$151.55$$5092.65$$864.60.5$$4807.3$$0.10564$$89993.60$$487.36$$866.37$$186.13$$167.31$$4977.4$$4807.3$$0.1436$$8994.900$$519.59$$866.053$$126.56$$4779.92$$987.60$$4806.3$$0.1436$$8994.900$$519.59$$8660.63$$225.79$$4899.25$$4792.6$$0.1936$$8994.900$$692.66$$866.063$$225.79$$4779.93$<t< th=""><th>-0.0056351$902800$$20991$$8671,73$$113,40$$5119,28$$743,84$$4807.9$$0.0056351$$902800$$29991$$8671,73$$113,40$$5120,16$$744.06$$4807.9$$0.0255$$9021.60$$296,28$$8671,24$$115,34$$5102,74$$750,30$$4807.9$$0.043565$$9021.60$$308,73$$867.16$$119,81$$5102,74$$764.71$$4807.8$$0.043565$$9021.60$$319.36$$866.95$$123.62$$5092.21$$777.18$$4807.7$$0.0755$$901020$$343.52$$866.95$$123.66$$5092.21$$777.18$$4807.7$$0.0755$$900030$$374.87$$866.95$$123.66$$5092.61$$740.6$$4807.3$$0.094365$$9993.60$$374.87$$866.3.31$$151.55$$5092.65$$8487.7$$4807.3$$0.094365$$8993.90$$337.87$$866.3.31$$151.55$$5092.65$$4807.3$$4807.3$$0.10564$$8993.30$$396.230$$866.3.31$$151.55$$50192.7$$816.5.3$$4806.3$$0.1456$$8991.90$$649.64$$865.21.7$$186.60$$4806.3$$220.79$$4806.3$$0.1456$$8999.30$$699.66$$886.60.63$$220.79$$4896.35$$4806.3$$0.14564$$8899.20$$699.66$$866.63$$222.79$$4779.92$$1099.10$$4806.3$$0.14756$$8809.20$$699.66$$866.63$$2005.66$$4779.92$<td< th=""><th>-0.056351$9028,00$$20901$$8671/3$$11340$$511928$$743.64$$48079$$0.0056351$$9028,00$$29091$$8671.73$$113.40$$5115.24$$764.71$$48073$$0.0255635$$902160$$308.73$$8667.124$$115.34$$5115.24$$764.71$$48073$$0.04365$$902160$$308.73$$8667.15$$119.81$$5102.74$$764.71$$48073$$0.055635$$902160$$308.73$$8667.35$$113.62$$5092.21$$771.18$$48073$$0.055635$$902100$$343.52$$8663.35$$113.66$$5092.21$$777.18$$48073$$0.055635$$900200$$374.87$$8663.35$$113.66$$5092.21$$777.18$$48073$$0.075635$$9993.500$$374.87$$8663.35$$113.66$$504027$$841.53$$48073$$0.075635$$9999.500$$374.87$$8663.31$$151.55$$5094027$$841.53$$48073$$0.10564$$8993.500$$374.87$$8663.31$$151.55$$5094027$$841.63$$807.36$$0.1436$$8999.500$$374.87$$8663.37$$167.31$$4977.45$$9070.2$$4806.36$$0.1436$$8999.800$$4873.47$$866.900$$251.55$$4992.10$$9976.10$$4806.36$$0.1436$$8999.800$$4873.76$$866.900$$252.79$$4806.36$$4806.36$$0.1436$$8891.20$$866.900$$866.900$$266.900$$4806.36$</th><th>-0.0056351 9038,00 299,91 8671,73 113,40 519,28 743,84 4807.9 0.0056351 9028,00 296,91 8671,73 113,40 5115,24 750.30 4807.9 0.0055635 9026,00 296,28 8667,35 113,40 5115,24 764.71 4807.3 0.04365 9018,00 319,36 8667,35 123,62 509,21 777.18 4807.3 0.055635 9010,20 348,37 8667,35 123,62 509,21 764.71 4807.3 0.055645 9010,20 348,37 866,33 133,65 509,21 777.18 4807.3 0.05564 8993,50 348,37 866,35 143,66 504.02 846.40 4807.3 0.10564 8994,80 519,59 866,35 155,62 4807.3 4807.4 0.10564 8994,80 519,59 866.3 166.3 1407.45 907.02 4806.3 0.1436 8994,40 487.49 865.17 186.13</th><th>0.005651 9028,00 209,91 8671.73 113,40 5119,28 743,44 4807.9 0.0056551 9028,00 290,91 8671.24 115.34 5119,28 743,04 4807.9 0.0056551 9026,00 290,523 8670.16 119,34 5115,24 759.10 4807.3 0.01355 9018,00 319,36 8669,35 123,62 509,21 777.18 4807.3 0.04365 9010,20 343,52 8667,35 123,62 509,21 777.18 4807.3 0.05663 9010,20 343,52 866,33 123,62 509,21 777.18 4807.3 0.0564 8993,50 345,32 865,31 151,55 509,21 777.18 4807.3 0.1155 8961,40 487.3 865,31 167,31 467.3 4807.3 0.1155 8993,50 3465,51 186,13 167.31 4807.3 4807.3 0.1156 894980 515,55 196,02 369,51 4807.4</th><th>-0006351 20091 $8671,3$ $113,40$ $519,28$ $743,64$ 4807 00056351 902800 29091 $8671,24$ $115,34$ $510,26$ $744,06$ 4807 00056351 902600 29023 $8671,24$ $115,34$ $510,274$ $751,06$ $4807,3$ 0043655 901800 $319,36$ $8669,35$ $115,34$ $510,274$ $771,18$ $4807,3$ 005655 901800 $319,36$ $866,331$ $153,55$ $509,65$ $807,4$ $4807,3$ 0075655 $9010,20$ $343,52$ $866,331$ $151,55$ $509,65$ $8407,4$ $4807,3$ 0105664 $8991,400$ $4877,9$ $866,50$ $167,31$ $4774,5$ $907,02$ $4807,3$ 011564 $8991,400$ $4877,9$ $866,50$ $865,50$ $167,31$ $4807,3$ $4807,3$ 011564 $8991,400$ $4877,9$ $865,50$ $165,31$ $157,42$ $4102,50$ $480,53$</th><th>-00056351 9028.00 220.91 8671.73 113.40 51.92.8 73.54 48073 00056351 9028.00 229.01 8671.73 113.40 51.01.6 74.06 48073 00056351 902.600 239.73 867.12.4 115.34 51.02.74 75.30 48073 0005555 902.600
 338.73 866.35 123.62 509.21 777.18 48073 004365 901.000 319.35 866.35 132.28 509.21 777.18 48073 0075 901.020 345.32 866.35 132.56 509.21 777.18 48073 0175 9900.30 348.74 866.35 151.59 866.35 186.31 151.55 901.22 4807.5 014356 896.40 487.49 865.31 151.55 947.5 947.5 947.5 940.5 4807.5 014356 896.40 486.31 151.55 186.10 186.3 9405.5 9405.5 940.5 940.5</th><th>0.0056351 $9028,00$ 29.991 $8671,73$ $113,40$ $5110,28$ $743,84$ 4807.9 0.0056531 $9028,00$ 29091 $8671,73$ $113,40$ $5110,16$ 740.6 4807.9 0.0056535 $9021,60$ $318,73$ $8670,16$ $119,81$ $5102,74$ $764,71$ 4807.3 0.0055635 $9021,60$ $314,52$ $8669,28$ $122,62$ $5092,21$ $777,18$ 4807.3 0.0755 $9020,00$ $314,52$ $8669,52$ $125,62$ $5092,21$ $747,18$ 4807.3 0.0755 $9002,00$ $314,52$ $8669,52$ $155,56$ $5092,51$ 4807.3 0.094365 $8999,00$ $487,49$ $865,517$ $167,31$ $4977,45$ $9970,22$ 4807.3 0.11564 $8994,00$ $3865,517$ $166,517$ $166,731$ 4907.3 4807.3 0.11436 $8994,00$ $865,517$ $166,731$ $4977,45$ $970,25$ 4902.3 0.12564</th></td<></th></t<><th>0.005651 9028,00 29091 8671.73 113.40 519.28 743.44 4807.3 0.0056551 9028,00 29091 8671.73 113.40 512.01 764.71 4807.3 0.005655 902.600 296.30 870.16 119.81 510.74 764.71 4807.3 0.005655 902.600 319.36 8670.53 870.16 119.81 510.74 764.71 4807.3 0.055655 901.000 319.36 866.92 870.16 119.81 510.74 764.71 4807.3 0.055655 901.000 319.36 866.92 113.46 510.24 764.10 4807.3 0.05565 900.300 319.36 866.92 153.55 509.42 640.5 4807.3 0.1055 989.10 487.49 865.17 186.13 497.35 640.5 640.5 540.5 640.5 640.5 0.1055 989.10 487.4 865.17 186.13 497.45 970.3 640.5</th><th>-0005631 9028,00 20901 8671.73 113.40 519.28 7.43.44 4807.3 00056351 9028,00 29091 86771.73 113.40 5102.14 7.44.71 4807.3 00055635 9026,00 236.33 8670.16 119.81 5102.74 7.64.71 4807.3 00055635 9012,00 236.35 8670.16 119.81 5102.74 7.64.71 4807.3 0055635 9012,00 319.36 866.33 123.62 509.21 764.71 4807.3 0105643 8099.10 319.36 866.33 123.65 509.22 744.71 4807.3 0104364 8995.00 346.73 155 509.42 866.3</th><th>0.0056531 902800 29091 8671.73 113.40 519.28 7.43.44 4807.8 0.0056531 902800 29091 8671.73 113.40 5120.16 744.06 4807.9 0.0056535 902600 2968.3 8671.15 115.34 5120.16 744.06 4807.3 0.0055635 901800 319.36 8667.35 115.34 510.24 764.71 4807.3 0.004365 9010.20 348.72 866.31 115.36 509.21 764.71 4807.3 0.015564 8993.50 398.50 866.31 151.55 509.22 866.3 167.31 4977.45 907.02 4807.8 0.1456 8993.50 348.3 866.31 151.55 509.22 866.3 4807.3 0.14564 8993.50 348.49 865.51 151.55 509.22 867.3 4807.3 0.14564 8991.00 487.49 865.51 153.65 509.22 4807.3 4807.3 0.14564 89</th><th>-0.0056351 9.028.00 2.909.1 8671.73 113.40 5119.36 743.64 4807.3 0.0035631 9028.00 2.909.1 8671.24 113.40 5112.41 764.71 4807.3 0.0035635 9026.00 2.909.3 8671.24 115.44 764.71 4807.3 0.0035635 9021.60 346.3 867.124 115.44 764.71 4807.3 0.004365 9020.00 345.3 867.124 115.43 510.2.44 764.71 4807.3 0.075645 8993.00 345.3 866.3 115.15 519.2.5 546.40 4807.3 0.12564 8993.00 348.3 866.5 15.36 519.2.5 546.40 4807.3 0.13564 8994.80 519.2 866.5 15.36 569.5 546.40 540.2 540.3 0.13564 8994.80 519.2 866.5 15.31 457.44 4807.2 4807.3 0.13564 8994.80 519.2.5 519.42 546.40 <</th><th>0.0066531 9028,00 29991 8671.33 113.40 5119.26 743.64 4807.9 0.0056351 9028,00 29093 8671.33 113.40 5119.24 741.06 4807.3 0.0056351 9028,00 290.38 8671.34 115.44 511.24 764.71 4807.3 0.005635 9021,60 318.73 8671.34 115.44 764.71 4807.3 0.005645 9010.20 319.35 8667.35 123.85 509.21 771.18 4807.3 0.01564 8993.50 314.37 8664.95 135.55 193.56 9407.5 844.0 4807.3 0.01664 8993.50 314.37 866.31 151.55 509.21 771.93 4807.4 0.1155 8993.40 433.43 866.30 365.37 186.13 497.4 369.35 4807.4 0.1156 8993.50 519.40 474.1 364.57 364.55 4908.55 4907.5 4807.5 0.1156 8993.60 <td< th=""></td<></th></th></th></th> | -0.0056351 9028.00 290.91 8671.73 113.40 5119.28 743.84 4807.9 0.0056351 9028.00 290.91 8671.73 113.40 5120.16 744.06 4807.9 0.0056351 9026.00 296.28 8671.24 115.34 5112.24 750.30 4807.9 0.025 9026.00 296.28 8671.24 115.34 5102.74 764.71 4807.8 0.044365 9021.60 308.73 8670.16 119.81 5102.74 764.71 4807.8 0.04365 9010.20 319.36 8667.35 123.62 5092.21 777.18 4807.3 0.075 9010.20 319.36 8667.35 132.28 5092.21 777.18 4807.5 0.075 9010.20 314.87 8667.35 132.28 5096.63 807.87 4807.5 0.075 9010.20 374.87 8664.95 132.26 5040.27 841.53 4807.5 0.094365 9000.30 374.87 8664.95 143.66 5040.27 807.40 807.40 0.0564 8993.50 936.29 8653.70 167.31 151.55 5019.42 864.40 807.2 0.125 8979.10 487.49 8655.17 186.13 167.31 4977.45 907.02 4806.8 0.1436 8979.10 8853.17 186.13 167.31 4977.45 907.02 4806.5 0.1436 894180 8879.96 8655.17 < | -0.0056351 9028.00 290.91 8671.73 113.40 5119.28 743.84 48079 0.0056351 9028.00 290.91 8671.73 113.40 5120.16 744.06 48079 0.0056351 9028.00 296.28 8671.24 115.44 5102.74 764.71 48079 0.025 9021.60 308.73 8670.16 119.81 5102.74 764.71 48073 0.04365 9021.60 319.36 8667.35 123.62 5092.21 777.18 4807.7 0.055635 9010.20 343.52 8667.35 123.66 509.63 805.87 4807.7 0.055635 9010.20 343.52 8667.35 132.66 509.63 805.87 4807.7 0.075 9010.20 343.52 8667.35 132.62 509.63 807.40 4807.7 0.09365 9000.30 374.87 8663.31 151.55 5019.42 847.6 4807.2 0.094365 8979.10 487.49 8653.70 167.31 4977.45 907.02 4807.2 0.1436 8979.10 487.49 8653.70 167.31 4977.45 907.02 4807.2 0.14436 8991.40 8655.17 186.13 151.55 5019.42 864.40 807.9 0.14436 8991.40 8653.17 186.13 151.55 917.45 907.02 4807.3 0.14436 8991.40 8655.17 186.13 186.13 917.45 < | -0.0056351 9028.00 290.91 8671.73 113.40 5119.28 743.84 48079 0.0056351 9028.00 290.91 8671.73 113.40 5120.16 744.06 4807.9 0.0056351 9026.00 296.28 8671.24 115.34 5115.24 750.30 4807.9 0.025 9026.00 296.28 8671.26 119.81 5102.74 747.06 4807.3 0.04365 9021.60 308.73 8670.16 119.81 5102.74 764.71 4807.3 0.04365 9010.20 319.36
8669.28 123.62 5092.21 777.18 4807.3 0.075 9010.20 319.36 8667.35 113.66 5090.63 805.87 4807.3 0.0755 9010.20 319.36 8667.35 113.66 500.27 864.36 4807.3 0.0755 9010.20 319.36 8667.35 113.66 500.27 864.36 4807.3 0.0755 9010.20 374.87 8667.35 143.66 500.27 864.36 4807.3 0.07564 8993.50 487.49 8663.31 151.55 5019.42 864.40 4807.3 0.16564 8991.90 487.49 865.17 186.13 4977.45 907.02 4807.3 0.16564 8992.0 649.60 519.50 186.13 4977.45 907.02 4807.3 0.15564 8992.0 649.60 8664.60 222.79 4896.35 <th>-0.0056351$9028,00$$29091$$8671.73$$113.40$$5119.28$$743.84$$48079$$0.0056351$$9028,00$$29091$$8671.73$$115.34$$5120.16$$744.06$$48079$$0.0056351$$9026,00$$296.28$$8671.24$$115.34$$5102.74$$764.71$$48073$$0.0056355$$902160$$308.73$$8670.16$$119.81$$5102.74$$764.71$$48073$$0.04365$$902160$$308.73$$866.928$$123.62$$509221$$777.18$$48074$$0.055635$$9010.20$$319.36$$866.928$$123.62$$509221$$777.18$$48074$$0.075$$9010.20$$317.87$$866.95$$113.28$$5096.63$$864.40$$48074$$0.075$$9010.20$$317.87$$866.95$$143.66$$504027$$864.40$$48074$$0.075$$9010.20$$374.87$$866.95$$167.31$$497745$$907.02$$48074$$0.0935635$$39629$$866.331$$151.55$$5019.42$$864.40$$48074$$0.10564$$8993.50$$48749$$865.77$$167.31$$497745$$907.02$$4806.8$$0.11564$$8991.40$$48749$$865.75$$186.13$$167.31$$497745$$907.02$$4806.8$$0.15564$$8993.50$$519.59$$865.75$$186.13$$167.32$$907.02$$4806.8$$0.15564$$8994.90$$519.59$$8664.06$$250.56$$4779.93$$1099.10$<!--</th--><th>-0.0056351$902800$$29091$$8671.73$$11340$$511928$$74384$$48079$$0.0056351$$902800$$29091$$8671.73$$11340$$5115.24$$750.30$$48079$$0.0255$$902600$$296.28$$8671.24$$115.34$$5115.24$$750.30$$48079$$0.025635$$9021.60$$308.73$$8670.16$$119.81$$5102.74$$764.71$$4807.3$$0.0755$$9021.60$$319.36$$8667.35$$112.86$$5092.21$$777.18$$4807.3$$0.0755$$9010.20$$319.36$$8667.35$$132.28$$5092.63$$805.87$$4807.3$$0.0755$$9010.20$$319.36$$8667.35$$132.66$$5040.27$$841.53$$4807.4$$0.0755$$9010.20$$374.87$$8664.95$$113.66$$5040.27$$841.53$$4807.4$$0.0755$$9000.30$$374.87$$8667.35$$113.266$$5040.27$$841.63$$805.87$$0.10564$$8993.50$$374.87$$866.331$$151.55$$5019.42$$841.53$$4807.43$$0.10564$$8993.50$$374.87$$866.331$$151.55$$5019.42$$864.40$$4807.3$$0.1256$$8991.40$$487.49$$865.77$$186.13$$157.24$$907.02$$4806.3$$0.1264$$8991.40$$487.49$$865.77$$186.13$$4928.10$$907.02$$4806.3$$0.15564$$8991.86$$5892.90$$8640.60$$222.79$$4896.35$</th><th>-0.0056351$9028.00$$29091$$8671.73$$113.40$$5119.28$$743.84$$4807.9$$0.0056351$$9028.00$$29091$$8671.73$$113.40$$5120.16$$744.06$$4807.9$$0.0056351$$9026.00$$296.28$$8671.24$$115.34$$5102.74$$764.71$$4807.9$$0.0255$$9021.60$$308.73$$8670.16$$119.81$$5102.74$$764.71$$4807.9$$0.045655$$9021.60$$319.36$$8667.35$$113.262$$5092.21$$777.18$$4807.3$$0.0755$$901020$$319.352$$8667.35$$113.262$$5092.21$$777.18$$4807.3$$0.0755$$901020$$319.352$$8667.35$$113.66$$5102.74$$777.18$$4807.3$$0.0755$$901020$$319.3629$$8667.35$$113.262$$5092.21$$777.18$$4807.3$$0.0755$$901020$$319.3629$$8667.35$$113.66$$3609.63$$807.3$$4807.3$$0.10564$$8993.50$$396.29$$8663.31$$151.55$$5019.42$$841.53$$4807.3$$0.10564$$8993.50$$4877.49$$866.33$$166.60$$222.79$$4806.3$$4807.3$$0.1436$$8991.40$$4877.49$$866.40$$866.60$$222.79$$4896.35$$9891.60$$0.1436$$8991.20$$699.66$$866.60$$222.79$$4896.35$$9891.60$$4806.3$$0.1436$$8991.20$$6992.60$$866.60$$866.60$$2$</th><th>-0.056351$9028.00$$290.91$$8671.73$$113.40$$5119.28$$743.84$$4807.9$$0.056351$$9028.00$$290.91$$8671.73$$113.40$$5120.16$$744.06$$4807.9$$0.0255$$9026.00$$296.28$$8671.24$$115.34$$5102.74$$764.71$$4807.3$$0.04365$$9021.60$$319.36$$8670.16$$119.81$$5102.74$$764.71$$4807.3$$0.04365$$9018.00$$319.36$$866.928$$123.62$$5092.21$$777.18$$4807.3$$0.055635$$9010.00$$319.36$$866.928$$123.62$$5092.21$$777.18$$4807.3$$0.075$$9010.00$$319.36$$866.95$$143.66$$807.3$$4807.3$$4807.3$$0.094365$$9000.020$$374.87$$8664.95$$143.66$$807.3$$4807.3$$4807.3$$0.094365$$9000.020$$374.87$$866.33.1$$151.55$$5092.61$$887.76$$4807.3$$0.094365$$8999.300$$374.87$$866.33.1$$151.55$$5092.65$$864.60.5$$4807.3$$0.10564$$89993.60$$487.36$$866.37$$186.13$$167.31$$4977.4$$4807.3$$0.1436$$8994.900$$519.59$$866.053$$126.56$$4779.92$$987.60$$4806.3$$0.1436$$8994.900$$519.59$$8660.63$$225.79$$4899.25$$4792.6$$0.1936$$8994.900$$692.66$$866.063$$225.79$$4779.93$<t< th=""><th>-0.0056351$902800$$20991$$8671,73$$113,40$$5119,28$$743,84$$4807.9$$0.0056351$$902800$$29991$$8671,73$$113,40$$5120,16$$744.06$$4807.9$$0.0255$$9021.60$$296,28$$8671,24$$115,34$$5102,74$$750,30$$4807.9$$0.043565$$9021.60$$308,73$$867.16$$119,81$$5102,74$$764.71$$4807.8$$0.043565$$9021.60$$319.36$$866.95$$123.62$$5092.21$$777.18$$4807.7$$0.0755$$901020$$343.52$$866.95$$123.66$$5092.21$$777.18$$4807.7$$0.0755$$900030$$374.87$$866.95$$123.66$$5092.61$$740.6$$4807.3$$0.094365$$9993.60$$374.87$$866.3.31$$151.55$$5092.65$$8487.7$$4807.3$$0.094365$$8993.90$$337.87$$866.3.31$$151.55$$5092.65$$4807.3$$4807.3$$0.10564$$8993.30$$396.230$$866.3.31$$151.55$$50192.7$$816.5.3$$4806.3$$0.1456$$8991.90$$649.64$$865.21.7$$186.60$$4806.3$$220.79$$4806.3$$0.1456$$8999.30$$699.66$$886.60.63$$220.79$$4896.35$$4806.3$$0.14564$$8899.20$$699.66$$866.63$$222.79$$4779.92$$1099.10$$4806.3$$0.14756$$8809.20$$699.66$$866.63$$2005.66$$4779.92$<td< th=""><th>-0.056351$9028,00$$20901$$8671/3$$11340$$511928$$743.64$$48079$$0.0056351$$9028,00$$29091$$8671.73$$113.40$$5115.24$$764.71$$48073$$0.0255635$$902160$$308.73$$8667.124$$115.34$$5115.24$$764.71$$48073$$0.04365$$902160$$308.73$$8667.15$$119.81$$5102.74$$764.71$$48073$$0.055635$$902160$$308.73$$8667.35$$113.62$$5092.21$$771.18$$48073$$0.055635$$902100$$343.52$$8663.35$$113.66$$5092.21$$777.18$$48073$$0.055635$$900200$$374.87$$8663.35$$113.66$$5092.21$$777.18$$48073$$0.075635$$9993.500$$374.87$$8663.35$$113.66$$504027$$841.53$$48073$$0.075635$$9999.500$$374.87$$8663.31$$151.55$$5094027$$841.53$$48073$$0.10564$$8993.500$$374.87$$8663.31$$151.55$$5094027$$841.63$$807.36$$0.1436$$8999.500$$374.87$$8663.37$$167.31$$4977.45$$9070.2$$4806.36$$0.1436$$8999.800$$4873.47$$866.900$$251.55$$4992.10$$9976.10$$4806.36$$0.1436$$8999.800$$4873.76$$866.900$$252.79$$4806.36$$4806.36$$0.1436$$8891.20$$866.900$$866.900$$266.900$$4806.36$</th><th>-0.0056351 9038,00 299,91 8671,73 113,40 519,28 743,84 4807.9 0.0056351 9028,00 296,91 8671,73 113,40 5115,24 750.30 4807.9 0.0055635 9026,00 296,28 8667,35 113,40 5115,24 764.71 4807.3 0.04365 9018,00 319,36 8667,35 123,62 509,21 777.18 4807.3 0.055635 9010,20 348,37 8667,35 123,62 509,21 764.71 4807.3 0.055645 9010,20 348,37 866,33 133,65 509,21 777.18 4807.3 0.05564 8993,50 348,37 866,35 143,66 504.02 846.40 4807.3 0.10564 8994,80 519,59 866,35 155,62 4807.3 4807.4 0.10564 8994,80 519,59 866.3 166.3 1407.45 907.02 4806.3 0.1436 8994,40 487.49 865.17 186.13</th><th>0.005651 9028,00 209,91 8671.73 113,40 5119,28 743,44 4807.9 0.0056551 9028,00 290,91 8671.24 115.34 5119,28 743,04 4807.9 0.0056551 9026,00 290,523 8670.16 119,34 5115,24 759.10 4807.3 0.01355 9018,00 319,36 8669,35 123,62 509,21 777.18 4807.3 0.04365 9010,20 343,52 8667,35 123,62 509,21 777.18 4807.3 0.05663 9010,20 343,52 866,33 123,62 509,21 777.18 4807.3 0.0564 8993,50 345,32 865,31 151,55 509,21 777.18 4807.3 0.1155 8961,40 487.3 865,31 167,31 467.3 4807.3 0.1155 8993,50 3465,51 186,13 167.31 4807.3 4807.3 0.1156 894980 515,55 196,02 369,51 4807.4</th><th>-0006351 20091 $8671,3$ $113,40$ $519,28$ $743,64$ 4807 00056351 902800 29091 $8671,24$ $115,34$ $510,26$ $744,06$ 4807 00056351 902600 29023 $8671,24$ $115,34$ $510,274$ $751,06$ $4807,3$ 0043655 901800 $319,36$ $8669,35$ $115,34$ $510,274$ $771,18$ $4807,3$ 005655 901800 $319,36$ $866,331$ $153,55$ $509,65$ $807,4$ $4807,3$ 0075655 $9010,20$ $343,52$ $866,331$ $151,55$ $509,65$ $8407,4$ $4807,3$ 0105664 $8991,400$ $4877,9$ $866,50$ $167,31$ $4774,5$ $907,02$ $4807,3$ 011564 $8991,400$ $4877,9$ $866,50$ $865,50$ $167,31$ $4807,3$ $4807,3$ 011564 $8991,400$ $4877,9$ $865,50$ $165,31$ $157,42$ $4102,50$ $480,53$</th><th>-00056351 9028.00 220.91 8671.73 113.40 51.92.8 73.54 48073 00056351 9028.00 229.01 8671.73 113.40 51.01.6 74.06 48073 00056351 902.600 239.73 867.12.4 115.34 51.02.74 75.30 48073 0005555 902.600 338.73 866.35 123.62 509.21 777.18 48073 004365 901.000 319.35 866.35 132.28 509.21 777.18 48073 0075 901.020 345.32 866.35 132.56 509.21
 777.18 48073 0175 9900.30 348.74 866.35 151.59 866.35 186.31 151.55 901.22 4807.5 014356 896.40 487.49 865.31 151.55 947.5 947.5 947.5 940.5 4807.5 014356 896.40 486.31 151.55 186.10 186.3 9405.5 9405.5 940.5 940.5</th><th>0.0056351 $9028,00$ 29.991 $8671,73$ $113,40$ $5110,28$ $743,84$ 4807.9 0.0056531 $9028,00$ 29091 $8671,73$ $113,40$ $5110,16$ 740.6 4807.9 0.0056535 $9021,60$ $318,73$ $8670,16$ $119,81$ $5102,74$ $764,71$ 4807.3 0.0055635 $9021,60$ $314,52$ $8669,28$ $122,62$ $5092,21$ $777,18$ 4807.3 0.0755 $9020,00$ $314,52$ $8669,52$ $125,62$ $5092,21$ $747,18$ 4807.3 0.0755 $9002,00$ $314,52$ $8669,52$ $155,56$ $5092,51$ 4807.3 0.094365 $8999,00$ $487,49$ $865,517$ $167,31$ $4977,45$ $9970,22$ 4807.3 0.11564 $8994,00$ $3865,517$ $166,517$ $166,731$ 4907.3 4807.3 0.11436 $8994,00$ $865,517$ $166,731$ $4977,45$ $970,25$ 4902.3 0.12564</th></td<></th></t<><th>0.005651 9028,00 29091 8671.73 113.40 519.28 743.44 4807.3 0.0056551 9028,00 29091 8671.73 113.40 512.01 764.71 4807.3 0.005655 902.600 296.30 870.16 119.81 510.74 764.71 4807.3 0.005655 902.600 319.36 8670.53 870.16 119.81 510.74 764.71 4807.3 0.055655 901.000 319.36 866.92 870.16 119.81 510.74 764.71 4807.3 0.055655 901.000 319.36 866.92 113.46 510.24 764.10 4807.3 0.05565 900.300 319.36 866.92 153.55 509.42 640.5 4807.3 0.1055 989.10 487.49 865.17 186.13 497.35 640.5 640.5 540.5 640.5 640.5 0.1055 989.10 487.4 865.17 186.13 497.45 970.3 640.5</th><th>-0005631 9028,00 20901 8671.73 113.40 519.28 7.43.44 4807.3 00056351 9028,00 29091 86771.73 113.40 5102.14 7.44.71 4807.3 00055635 9026,00 236.33 8670.16 119.81 5102.74 7.64.71 4807.3 00055635 9012,00 236.35 8670.16 119.81 5102.74 7.64.71 4807.3 0055635 9012,00 319.36 866.33 123.62 509.21 764.71 4807.3 0105643 8099.10 319.36 866.33 123.65 509.22 744.71 4807.3 0104364 8995.00 346.73 155 509.42 866.3</th><th>0.0056531 902800 29091 8671.73 113.40 519.28 7.43.44 4807.8 0.0056531 902800 29091 8671.73 113.40 5120.16 744.06 4807.9 0.0056535 902600 2968.3 8671.15 115.34 5120.16 744.06 4807.3 0.0055635 901800 319.36 8667.35 115.34 510.24 764.71 4807.3 0.004365 9010.20 348.72 866.31 115.36 509.21 764.71 4807.3 0.015564 8993.50 398.50 866.31 151.55 509.22 866.3 167.31 4977.45 907.02 4807.8 0.1456 8993.50 348.3 866.31 151.55 509.22 866.3 4807.3 0.14564 8993.50 348.49 865.51 151.55 509.22 867.3 4807.3 0.14564 8991.00 487.49 865.51 153.65 509.22 4807.3 4807.3 0.14564 89</th><th>-0.0056351 9.028.00 2.909.1 8671.73 113.40 5119.36 743.64 4807.3 0.0035631 9028.00 2.909.1 8671.24 113.40 5112.41 764.71 4807.3 0.0035635 9026.00 2.909.3 8671.24 115.44 764.71 4807.3 0.0035635 9021.60 346.3 867.124 115.44 764.71 4807.3 0.004365 9020.00 345.3 867.124 115.43 510.2.44 764.71 4807.3 0.075645 8993.00 345.3 866.3 115.15 519.2.5 546.40 4807.3 0.12564 8993.00 348.3 866.5 15.36 519.2.5 546.40 4807.3 0.13564 8994.80 519.2 866.5 15.36 569.5 546.40 540.2 540.3 0.13564 8994.80 519.2 866.5 15.31 457.44 4807.2 4807.3 0.13564 8994.80 519.2.5 519.42 546.40 <</th><th>0.0066531 9028,00 29991 8671.33 113.40 5119.26 743.64 4807.9 0.0056351 9028,00 29093 8671.33 113.40 5119.24 741.06 4807.3 0.0056351 9028,00 290.38 8671.34 115.44 511.24 764.71 4807.3 0.005635 9021,60 318.73 8671.34 115.44 764.71 4807.3 0.005645 9010.20 319.35 8667.35 123.85 509.21 771.18 4807.3 0.01564 8993.50 314.37 8664.95 135.55 193.56 9407.5 844.0 4807.3 0.01664 8993.50 314.37 866.31 151.55 509.21 771.93 4807.4 0.1155 8993.40 433.43 866.30 365.37 186.13 497.4 369.35 4807.4 0.1156 8993.50 519.40 474.1 364.57 364.55 4908.55 4907.5 4807.5 0.1156 8993.60 <td< th=""></td<></th></th></th> | -0.0056351 $9028,00$ 29091 8671.73 113.40 5119.28 743.84 48079 0.0056351 $9028,00$ 29091 8671.73 115.34 5120.16 744.06 48079 0.0056351 $9026,00$ 296.28 8671.24 115.34 5102.74 764.71 48073 0.0056355 902160 308.73 8670.16 119.81 5102.74 764.71 48073 0.04365 902160 308.73 866.928 123.62 509221 777.18 48074 0.055635 9010.20 319.36 866.928 123.62 509221 777.18 48074 0.075 9010.20 317.87 866.95 113.28 5096.63 864.40 48074 0.075 9010.20 317.87 866.95 143.66 504027 864.40 48074 0.075 9010.20 374.87 866.95 167.31 497745 907.02 48074 0.0935635 39629 866.331 151.55 5019.42 864.40 48074 0.10564 8993.50 48749 865.77 167.31 497745 907.02 4806.8 0.11564 8991.40 48749 865.75 186.13 167.31 497745 907.02 4806.8 0.15564 8993.50 519.59 865.75 186.13 167.32 907.02 4806.8 0.15564 8994.90 519.59 8664.06 250.56 4779.93 1099.10 </th <th>-0.0056351$902800$$29091$$8671.73$$11340$$511928$$74384$$48079$$0.0056351$$902800$$29091$$8671.73$$11340$$5115.24$$750.30$$48079$$0.0255$$902600$$296.28$$8671.24$$115.34$$5115.24$$750.30$$48079$$0.025635$$9021.60$$308.73$$8670.16$$119.81$$5102.74$$764.71$$4807.3$$0.0755$$9021.60$$319.36$$8667.35$$112.86$$5092.21$$777.18$$4807.3$$0.0755$$9010.20$$319.36$$8667.35$$132.28$$5092.63$$805.87$$4807.3$$0.0755$$9010.20$$319.36$$8667.35$$132.66$$5040.27$$841.53$$4807.4$$0.0755$$9010.20$$374.87$$8664.95$$113.66$$5040.27$$841.53$$4807.4$$0.0755$$9000.30$$374.87$$8667.35$$113.266$$5040.27$$841.63$$805.87$$0.10564$$8993.50$$374.87$$866.331$$151.55$$5019.42$$841.53$$4807.43$$0.10564$$8993.50$$374.87$$866.331$$151.55$$5019.42$$864.40$$4807.3$$0.1256$$8991.40$$487.49$$865.77$$186.13$$157.24$$907.02$$4806.3$$0.1264$$8991.40$$487.49$$865.77$$186.13$$4928.10$$907.02$$4806.3$$0.15564$$8991.86$$5892.90$$8640.60$$222.79$$4896.35$</th>
<th>-0.0056351$9028.00$$29091$$8671.73$$113.40$$5119.28$$743.84$$4807.9$$0.0056351$$9028.00$$29091$$8671.73$$113.40$$5120.16$$744.06$$4807.9$$0.0056351$$9026.00$$296.28$$8671.24$$115.34$$5102.74$$764.71$$4807.9$$0.0255$$9021.60$$308.73$$8670.16$$119.81$$5102.74$$764.71$$4807.9$$0.045655$$9021.60$$319.36$$8667.35$$113.262$$5092.21$$777.18$$4807.3$$0.0755$$901020$$319.352$$8667.35$$113.262$$5092.21$$777.18$$4807.3$$0.0755$$901020$$319.352$$8667.35$$113.66$$5102.74$$777.18$$4807.3$$0.0755$$901020$$319.3629$$8667.35$$113.262$$5092.21$$777.18$$4807.3$$0.0755$$901020$$319.3629$$8667.35$$113.66$$3609.63$$807.3$$4807.3$$0.10564$$8993.50$$396.29$$8663.31$$151.55$$5019.42$$841.53$$4807.3$$0.10564$$8993.50$$4877.49$$866.33$$166.60$$222.79$$4806.3$$4807.3$$0.1436$$8991.40$$4877.49$$866.40$$866.60$$222.79$$4896.35$$9891.60$$0.1436$$8991.20$$699.66$$866.60$$222.79$$4896.35$$9891.60$$4806.3$$0.1436$$8991.20$$6992.60$$866.60$$866.60$$2$</th> <th>-0.056351$9028.00$$290.91$$8671.73$$113.40$$5119.28$$743.84$$4807.9$$0.056351$$9028.00$$290.91$$8671.73$$113.40$$5120.16$$744.06$$4807.9$$0.0255$$9026.00$$296.28$$8671.24$$115.34$$5102.74$$764.71$$4807.3$$0.04365$$9021.60$$319.36$$8670.16$$119.81$$5102.74$$764.71$$4807.3$$0.04365$$9018.00$$319.36$$866.928$$123.62$$5092.21$$777.18$$4807.3$$0.055635$$9010.00$$319.36$$866.928$$123.62$$5092.21$$777.18$$4807.3$$0.075$$9010.00$$319.36$$866.95$$143.66$$807.3$$4807.3$$4807.3$$0.094365$$9000.020$$374.87$$8664.95$$143.66$$807.3$$4807.3$$4807.3$$0.094365$$9000.020$$374.87$$866.33.1$$151.55$$5092.61$$887.76$$4807.3$$0.094365$$8999.300$$374.87$$866.33.1$$151.55$$5092.65$$864.60.5$$4807.3$$0.10564$$89993.60$$487.36$$866.37$$186.13$$167.31$$4977.4$$4807.3$$0.1436$$8994.900$$519.59$$866.053$$126.56$$4779.92$$987.60$$4806.3$$0.1436$$8994.900$$519.59$$8660.63$$225.79$$4899.25$$4792.6$$0.1936$$8994.900$$692.66$$866.063$$225.79$$4779.93$<t< th=""><th>-0.0056351$902800$$20991$$8671,73$$113,40$$5119,28$$743,84$$4807.9$$0.0056351$$902800$$29991$$8671,73$$113,40$$5120,16$$744.06$$4807.9$$0.0255$$9021.60$$296,28$$8671,24$$115,34$$5102,74$$750,30$$4807.9$$0.043565$$9021.60$$308,73$$867.16$$119,81$$5102,74$$764.71$$4807.8$$0.043565$$9021.60$$319.36$$866.95$$123.62$$5092.21$$777.18$$4807.7$$0.0755$$901020$$343.52$$866.95$$123.66$$5092.21$$777.18$$4807.7$$0.0755$$900030$$374.87$$866.95$$123.66$$5092.61$$740.6$$4807.3$$0.094365$$9993.60$$374.87$$866.3.31$$151.55$$5092.65$$8487.7$$4807.3$$0.094365$$8993.90$$337.87$$866.3.31$$151.55$$5092.65$$4807.3$$4807.3$$0.10564$$8993.30$$396.230$$866.3.31$$151.55$$50192.7$$816.5.3$$4806.3$$0.1456$$8991.90$$649.64$$865.21.7$$186.60$$4806.3$$220.79$$4806.3$$0.1456$$8999.30$$699.66$$886.60.63$$220.79$$4896.35$$4806.3$$0.14564$$8899.20$$699.66$$866.63$$222.79$$4779.92$$1099.10$$4806.3$$0.14756$$8809.20$$699.66$$866.63$$2005.66$$4779.92$<td< th=""><th>-0.056351$9028,00$$20901$$8671/3$$11340$$511928$$743.64$$48079$$0.0056351$$9028,00$$29091$$8671.73$$113.40$$5115.24$$764.71$$48073$$0.0255635$$902160$$308.73$$8667.124$$115.34$$5115.24$$764.71$$48073$$0.04365$$902160$$308.73$$8667.15$$119.81$$5102.74$$764.71$$48073$$0.055635$$902160$$308.73$$8667.35$$113.62$$5092.21$$771.18$$48073$$0.055635$$902100$$343.52$$8663.35$$113.66$$5092.21$$777.18$$48073$$0.055635$$900200$$374.87$$8663.35$$113.66$$5092.21$$777.18$$48073$$0.075635$$9993.500$$374.87$$8663.35$$113.66$$504027$$841.53$$48073$$0.075635$$9999.500$$374.87$$8663.31$$151.55$$5094027$$841.53$$48073$$0.10564$$8993.500$$374.87$$8663.31$$151.55$$5094027$$841.63$$807.36$$0.1436$$8999.500$$374.87$$8663.37$$167.31$$4977.45$$9070.2$$4806.36$$0.1436$$8999.800$$4873.47$$866.900$$251.55$$4992.10$$9976.10$$4806.36$$0.1436$$8999.800$$4873.76$$866.900$$252.79$$4806.36$$4806.36$$0.1436$$8891.20$$866.900$$866.900$$266.900$$4806.36$</th><th>-0.0056351 9038,00 299,91 8671,73 113,40 519,28 743,84 4807.9 0.0056351 9028,00 296,91 8671,73 113,40 5115,24 750.30 4807.9 0.0055635 9026,00 296,28 8667,35 113,40 5115,24 764.71 4807.3 0.04365 9018,00 319,36 8667,35 123,62 509,21 777.18 4807.3 0.055635 9010,20 348,37 8667,35 123,62 509,21 764.71 4807.3 0.055645 9010,20 348,37 866,33 133,65 509,21 777.18 4807.3 0.05564 8993,50 348,37 866,35 143,66 504.02 846.40 4807.3 0.10564 8994,80 519,59 866,35 155,62 4807.3 4807.4 0.10564 8994,80 519,59 866.3 166.3 1407.45 907.02 4806.3 0.1436 8994,40 487.49 865.17 186.13</th><th>0.005651 9028,00 209,91 8671.73 113,40 5119,28 743,44 4807.9 0.0056551 9028,00 290,91 8671.24 115.34 5119,28 743,04 4807.9 0.0056551 9026,00 290,523 8670.16 119,34 5115,24 759.10 4807.3 0.01355 9018,00 319,36 8669,35 123,62 509,21 777.18 4807.3 0.04365 9010,20 343,52 8667,35 123,62 509,21 777.18 4807.3 0.05663 9010,20 343,52 866,33 123,62 509,21 777.18 4807.3 0.0564 8993,50 345,32 865,31 151,55 509,21 777.18 4807.3 0.1155 8961,40 487.3 865,31 167,31 467.3 4807.3 0.1155 8993,50 3465,51 186,13 167.31 4807.3 4807.3 0.1156 894980 515,55 196,02 369,51 4807.4</th><th>-0006351 20091 $8671,3$ $113,40$ $519,28$ $743,64$ 4807 00056351 902800 29091 $8671,24$ $115,34$ $510,26$ $744,06$ 4807 00056351 902600 29023 $8671,24$ $115,34$ $510,274$ $751,06$ $4807,3$ 0043655 901800 $319,36$ $8669,35$ $115,34$ $510,274$ $771,18$ $4807,3$ 005655 901800 $319,36$ $866,331$ $153,55$ $509,65$ $807,4$ $4807,3$ 0075655 $9010,20$ $343,52$ $866,331$ $151,55$ $509,65$ $8407,4$ $4807,3$ 0105664 $8991,400$ $4877,9$ $866,50$ $167,31$ $4774,5$ $907,02$ $4807,3$ 011564 $8991,400$ $4877,9$ $866,50$ $865,50$ $167,31$ $4807,3$ $4807,3$ 011564 $8991,400$ $4877,9$ $865,50$ $165,31$ $157,42$ $4102,50$ $480,53$</th><th>-00056351 9028.00 220.91 8671.73 113.40 51.92.8 73.54 48073 00056351 9028.00 229.01 8671.73 113.40 51.01.6 74.06 48073 00056351 902.600 239.73 867.12.4 115.34 51.02.74 75.30 48073 0005555 902.600 338.73 866.35 123.62 509.21 777.18 48073 004365 901.000 319.35 866.35 132.28 509.21 777.18 48073 0075 901.020 345.32 866.35 132.56 509.21 777.18 48073 0175 9900.30 348.74 866.35 151.59 866.35 186.31 151.55 901.22 4807.5 014356 896.40 487.49 865.31 151.55 947.5 947.5 947.5 940.5 4807.5 014356 896.40 486.31 151.55 186.10 186.3 9405.5 9405.5 940.5 940.5</th><th>0.0056351 $9028,00$ 29.991 $8671,73$ $113,40$ $5110,28$ $743,84$ 4807.9 0.0056531 $9028,00$ 29091 $8671,73$ $113,40$ $5110,16$ 740.6 4807.9 0.0056535 $9021,60$ $318,73$ $8670,16$ $119,81$ $5102,74$ $764,71$ 4807.3 0.0055635 $9021,60$ $314,52$ $8669,28$ $122,62$ $5092,21$ $777,18$ 4807.3 0.0755 $9020,00$ $314,52$ $8669,52$ $125,62$ $5092,21$ $747,18$ 4807.3 0.0755 $9002,00$ $314,52$ $8669,52$ $155,56$ $5092,51$ 4807.3 0.094365 $8999,00$ $487,49$ $865,517$ $167,31$ $4977,45$ $9970,22$ 4807.3 0.11564 $8994,00$ $3865,517$ $166,517$ $166,731$ 4907.3 4807.3 0.11436 $8994,00$ $865,517$ $166,731$ $4977,45$ $970,25$ 4902.3 0.12564</th></td<></th></t<><th>0.005651 9028,00 29091 8671.73 113.40 519.28 743.44 4807.3 0.0056551 9028,00 29091 8671.73 113.40 512.01 764.71 4807.3 0.005655 902.600 296.30 870.16 119.81 510.74 764.71 4807.3 0.005655 902.600 319.36 8670.53 870.16 119.81 510.74 764.71 4807.3 0.055655 901.000 319.36 866.92 870.16 119.81 510.74 764.71 4807.3 0.055655 901.000 319.36 866.92 113.46 510.24 764.10 4807.3 0.05565 900.300 319.36 866.92 153.55 509.42 640.5 4807.3 0.1055 989.10 487.49 865.17 186.13 497.35 640.5 640.5 540.5 640.5 640.5 0.1055 989.10 487.4 865.17 186.13 497.45 970.3 640.5</th><th>-0005631 9028,00 20901 8671.73 113.40 519.28 7.43.44 4807.3
 00056351 9028,00 29091 86771.73 113.40 5102.14 7.44.71 4807.3 00055635 9026,00 236.33 8670.16 119.81 5102.74 7.64.71 4807.3 00055635 9012,00 236.35 8670.16 119.81 5102.74 7.64.71 4807.3 0055635 9012,00 319.36 866.33 123.62 509.21 764.71 4807.3 0105643 8099.10 319.36 866.33 123.65 509.22 744.71 4807.3 0104364 8995.00 346.73 155 509.42 866.3</th><th>0.0056531 902800 29091 8671.73 113.40 519.28 7.43.44 4807.8 0.0056531 902800 29091 8671.73 113.40 5120.16 744.06 4807.9 0.0056535 902600 2968.3 8671.15 115.34 5120.16 744.06 4807.3 0.0055635 901800 319.36 8667.35 115.34 510.24 764.71 4807.3 0.004365 9010.20 348.72 866.31 115.36 509.21 764.71 4807.3 0.015564 8993.50 398.50 866.31 151.55 509.22 866.3 167.31 4977.45 907.02 4807.8 0.1456 8993.50 348.3 866.31 151.55 509.22 866.3 4807.3 0.14564 8993.50 348.49 865.51 151.55 509.22 867.3 4807.3 0.14564 8991.00 487.49 865.51 153.65 509.22 4807.3 4807.3 0.14564 89</th><th>-0.0056351 9.028.00 2.909.1 8671.73 113.40 5119.36 743.64 4807.3 0.0035631 9028.00 2.909.1 8671.24 113.40 5112.41 764.71 4807.3 0.0035635 9026.00 2.909.3 8671.24 115.44 764.71 4807.3 0.0035635 9021.60 346.3 867.124 115.44 764.71 4807.3 0.004365 9020.00 345.3 867.124 115.43 510.2.44 764.71 4807.3 0.075645 8993.00 345.3 866.3 115.15 519.2.5 546.40 4807.3 0.12564 8993.00 348.3 866.5 15.36 519.2.5 546.40 4807.3 0.13564 8994.80 519.2 866.5 15.36 569.5 546.40 540.2 540.3 0.13564 8994.80 519.2 866.5 15.31 457.44 4807.2 4807.3 0.13564 8994.80 519.2.5 519.42 546.40 <</th><th>0.0066531 9028,00 29991 8671.33 113.40 5119.26 743.64 4807.9 0.0056351 9028,00 29093 8671.33 113.40 5119.24 741.06 4807.3 0.0056351 9028,00 290.38 8671.34 115.44 511.24 764.71 4807.3 0.005635 9021,60 318.73 8671.34 115.44 764.71 4807.3 0.005645 9010.20 319.35 8667.35 123.85 509.21 771.18 4807.3 0.01564 8993.50 314.37 8664.95 135.55 193.56 9407.5 844.0 4807.3 0.01664 8993.50 314.37 866.31 151.55 509.21 771.93 4807.4 0.1155 8993.40 433.43 866.30 365.37 186.13 497.4 369.35 4807.4 0.1156 8993.50 519.40 474.1 364.57 364.55 4908.55 4907.5 4807.5 0.1156 8993.60 <td< th=""></td<></th></th> | -0.0056351 902800 29091 8671.73 11340 511928 74384 48079 0.0056351 902800 29091 8671.73 11340 5115.24 750.30 48079 0.0255 902600 296.28 8671.24 115.34 5115.24 750.30 48079 0.025635 9021.60 308.73 8670.16 119.81 5102.74 764.71 4807.3 0.0755 9021.60 319.36 8667.35 112.86 5092.21 777.18 4807.3 0.0755 9010.20 319.36 8667.35 132.28 5092.63 805.87 4807.3 0.0755 9010.20 319.36 8667.35 132.66 5040.27 841.53 4807.4 0.0755 9010.20 374.87 8664.95 113.66 5040.27 841.53 4807.4 0.0755 9000.30 374.87 8667.35 113.266 5040.27 841.63 805.87 0.10564 8993.50 374.87 866.331 151.55 5019.42 841.53 4807.43 0.10564 8993.50 374.87 866.331 151.55 5019.42 864.40 4807.3 0.1256 8991.40 487.49 865.77 186.13 157.24 907.02 4806.3 0.1264 8991.40 487.49 865.77 186.13 4928.10 907.02 4806.3 0.15564 8991.86 5892.90 8640.60 222.79 4896.35 | -0.0056351 9028.00 29091 8671.73 113.40 5119.28 743.84 4807.9 0.0056351 9028.00 29091 8671.73 113.40 5120.16 744.06 4807.9 0.0056351 9026.00 296.28 8671.24 115.34 5102.74 764.71 4807.9 0.0255 9021.60 308.73 8670.16 119.81 5102.74 764.71 4807.9 0.045655 9021.60 319.36 8667.35 113.262 5092.21 777.18 4807.3 0.0755 901020 319.352 8667.35 113.262 5092.21 777.18 4807.3 0.0755 901020 319.352 8667.35 113.66 5102.74 777.18 4807.3 0.0755 901020 319.3629 8667.35 113.262 5092.21 777.18 4807.3 0.0755 901020 319.3629 8667.35 113.66 3609.63 807.3 4807.3 0.10564 8993.50 396.29 8663.31 151.55 5019.42 841.53 4807.3 0.10564 8993.50 4877.49 866.33 166.60 222.79 4806.3 4807.3 0.1436 8991.40 4877.49 866.40 866.60 222.79 4896.35 9891.60 0.1436 8991.20 699.66 866.60 222.79 4896.35 9891.60 4806.3 0.1436 8991.20 6992.60 866.60 866.60 2 | -0.056351 9028.00 290.91 8671.73 113.40 5119.28 743.84 4807.9 0.056351 9028.00 290.91 8671.73 113.40 5120.16 744.06 4807.9 0.0255 9026.00 296.28 8671.24 115.34 5102.74 764.71 4807.3 0.04365 9021.60 319.36 8670.16 119.81 5102.74 764.71 4807.3 0.04365 9018.00 319.36 866.928 123.62 5092.21 777.18 4807.3 0.055635 9010.00 319.36 866.928 123.62 5092.21 777.18 4807.3 0.075 9010.00 319.36 866.95 143.66 807.3 4807.3 4807.3 0.094365 9000.020 374.87 8664.95 143.66 807.3 4807.3 4807.3 0.094365 9000.020 374.87 $866.33.1$ 151.55 5092.61 887.76 4807.3 0.094365 8999.300 374.87 $866.33.1$ 151.55 5092.65 $864.60.5$ 4807.3 0.10564 89993.60 487.36 866.37 186.13 167.31 4977.4 4807.3 0.1436 8994.900 519.59 866.053 126.56 4779.92 987.60 4806.3 0.1436 8994.900 519.59 8660.63 225.79 4899.25 4792.6 0.1936 8994.900 692.66 866.063 225.79 4779.93 <t< th=""><th>-0.0056351$902800$$20991$$8671,73$$113,40$$5119,28$$743,84$$4807.9$$0.0056351$$902800$$29991$$8671,73$$113,40$$5120,16$$744.06$$4807.9$$0.0255$$9021.60$$296,28$$8671,24$$115,34$$5102,74$$750,30$$4807.9$$0.043565$$9021.60$$308,73$$867.16$$119,81$$5102,74$$764.71$$4807.8$$0.043565$$9021.60$$319.36$$866.95$$123.62$$5092.21$$777.18$$4807.7$$0.0755$$901020$$343.52$$866.95$$123.66$$5092.21$$777.18$$4807.7$$0.0755$$900030$$374.87$$866.95$$123.66$$5092.61$$740.6$$4807.3$$0.094365$$9993.60$$374.87$$866.3.31$$151.55$$5092.65$$8487.7$$4807.3$$0.094365$$8993.90$$337.87$$866.3.31$$151.55$$5092.65$$4807.3$$4807.3$$0.10564$$8993.30$$396.230$$866.3.31$$151.55$$50192.7$$816.5.3$$4806.3$$0.1456$$8991.90$$649.64$$865.21.7$$186.60$$4806.3$$220.79$$4806.3$$0.1456$$8999.30$$699.66$$886.60.63$$220.79$$4896.35$$4806.3$$0.14564$$8899.20$$699.66$$866.63$$222.79$$4779.92$$1099.10$$4806.3$$0.14756$$8809.20$$699.66$$866.63$$2005.66$$4779.92$<td< th=""><th>-0.056351$9028,00$$20901$$8671/3$$11340$$511928$$743.64$$48079$$0.0056351$$9028,00$$29091$$8671.73$$113.40$$5115.24$$764.71$$48073$$0.0255635$$902160$$308.73$$8667.124$$115.34$$5115.24$$764.71$$48073$$0.04365$$902160$$308.73$$8667.15$$119.81$$5102.74$$764.71$$48073$$0.055635$$902160$$308.73$$8667.35$$113.62$$5092.21$$771.18$$48073$$0.055635$$902100$$343.52$$8663.35$$113.66$$5092.21$$777.18$$48073$$0.055635$$900200$$374.87$$8663.35$$113.66$$5092.21$$777.18$$48073$$0.075635$$9993.500$$374.87$$8663.35$$113.66$$504027$$841.53$$48073$$0.075635$$9999.500$$374.87$$8663.31$$151.55$$5094027$$841.53$$48073$$0.10564$$8993.500$$374.87$$8663.31$$151.55$$5094027$$841.63$$807.36$$0.1436$$8999.500$$374.87$$8663.37$$167.31$$4977.45$$9070.2$$4806.36$$0.1436$$8999.800$$4873.47$$866.900$$251.55$$4992.10$$9976.10$$4806.36$$0.1436$$8999.800$$4873.76$$866.900$$252.79$$4806.36$$4806.36$$0.1436$$8891.20$$866.900$$866.900$$266.900$$4806.36$</th><th>-0.0056351 9038,00 299,91 8671,73 113,40 519,28 743,84 4807.9 0.0056351 9028,00 296,91 8671,73 113,40 5115,24 750.30 4807.9 0.0055635 9026,00
296,28 8667,35 113,40 5115,24 764.71 4807.3 0.04365 9018,00 319,36 8667,35 123,62 509,21 777.18 4807.3 0.055635 9010,20 348,37 8667,35 123,62 509,21 764.71 4807.3 0.055645 9010,20 348,37 866,33 133,65 509,21 777.18 4807.3 0.05564 8993,50 348,37 866,35 143,66 504.02 846.40 4807.3 0.10564 8994,80 519,59 866,35 155,62 4807.3 4807.4 0.10564 8994,80 519,59 866.3 166.3 1407.45 907.02 4806.3 0.1436 8994,40 487.49 865.17 186.13</th><th>0.005651 9028,00 209,91 8671.73 113,40 5119,28 743,44 4807.9 0.0056551 9028,00 290,91 8671.24 115.34 5119,28 743,04 4807.9 0.0056551 9026,00 290,523 8670.16 119,34 5115,24 759.10 4807.3 0.01355 9018,00 319,36 8669,35 123,62 509,21 777.18 4807.3 0.04365 9010,20 343,52 8667,35 123,62 509,21 777.18 4807.3 0.05663 9010,20 343,52 866,33 123,62 509,21 777.18 4807.3 0.0564 8993,50 345,32 865,31 151,55 509,21 777.18 4807.3 0.1155 8961,40 487.3 865,31 167,31 467.3 4807.3 0.1155 8993,50 3465,51 186,13 167.31 4807.3 4807.3 0.1156 894980 515,55 196,02 369,51 4807.4</th><th>-0006351 20091 $8671,3$ $113,40$ $519,28$ $743,64$ 4807 00056351 902800 29091 $8671,24$ $115,34$ $510,26$ $744,06$ 4807 00056351 902600 29023 $8671,24$ $115,34$ $510,274$ $751,06$ $4807,3$ 0043655 901800 $319,36$ $8669,35$ $115,34$ $510,274$ $771,18$ $4807,3$ 005655 901800 $319,36$ $866,331$ $153,55$ $509,65$ $807,4$ $4807,3$ 0075655 $9010,20$ $343,52$ $866,331$ $151,55$ $509,65$ $8407,4$ $4807,3$ 0105664 $8991,400$ $4877,9$ $866,50$ $167,31$ $4774,5$ $907,02$ $4807,3$ 011564 $8991,400$ $4877,9$ $866,50$ $865,50$ $167,31$ $4807,3$ $4807,3$ 011564 $8991,400$ $4877,9$ $865,50$ $165,31$ $157,42$ $4102,50$ $480,53$</th><th>-00056351 9028.00 220.91 8671.73 113.40 51.92.8 73.54 48073 00056351 9028.00 229.01 8671.73 113.40 51.01.6 74.06 48073 00056351 902.600 239.73 867.12.4 115.34 51.02.74 75.30 48073 0005555 902.600 338.73 866.35 123.62 509.21 777.18 48073 004365 901.000 319.35 866.35 132.28 509.21 777.18 48073 0075 901.020 345.32 866.35 132.56 509.21 777.18 48073 0175 9900.30 348.74 866.35 151.59 866.35 186.31 151.55 901.22 4807.5 014356 896.40 487.49 865.31 151.55 947.5 947.5 947.5 940.5 4807.5 014356 896.40 486.31 151.55 186.10 186.3 9405.5 9405.5 940.5 940.5</th><th>0.0056351 $9028,00$ 29.991 $8671,73$ $113,40$ $5110,28$ $743,84$ 4807.9 0.0056531 $9028,00$ 29091 $8671,73$ $113,40$ $5110,16$ 740.6 4807.9 0.0056535 $9021,60$ $318,73$ $8670,16$ $119,81$ $5102,74$ $764,71$ 4807.3 0.0055635 $9021,60$ $314,52$ $8669,28$ $122,62$ $5092,21$ $777,18$ 4807.3 0.0755 $9020,00$ $314,52$ $8669,52$ $125,62$ $5092,21$ $747,18$ 4807.3 0.0755 $9002,00$ $314,52$ $8669,52$ $155,56$ $5092,51$ 4807.3 0.094365 $8999,00$ $487,49$ $865,517$ $167,31$ $4977,45$ $9970,22$ 4807.3 0.11564 $8994,00$ $3865,517$ $166,517$ $166,731$ 4907.3 4807.3 0.11436 $8994,00$ $865,517$ $166,731$ $4977,45$ $970,25$ 4902.3 0.12564</th></td<></th></t<> <th>0.005651 9028,00 29091 8671.73 113.40 519.28 743.44 4807.3 0.0056551 9028,00 29091 8671.73 113.40 512.01 764.71 4807.3 0.005655 902.600 296.30 870.16 119.81 510.74 764.71 4807.3 0.005655 902.600 319.36 8670.53 870.16 119.81 510.74 764.71 4807.3 0.055655 901.000 319.36 866.92 870.16 119.81 510.74 764.71 4807.3 0.055655 901.000 319.36 866.92 113.46 510.24 764.10 4807.3 0.05565 900.300 319.36 866.92 153.55 509.42 640.5 4807.3 0.1055 989.10 487.49 865.17 186.13 497.35 640.5 640.5 540.5 640.5 640.5 0.1055 989.10 487.4 865.17 186.13 497.45 970.3 640.5</th> <th>-0005631 9028,00 20901 8671.73 113.40 519.28 7.43.44 4807.3 00056351 9028,00 29091 86771.73 113.40 5102.14 7.44.71 4807.3 00055635 9026,00 236.33 8670.16 119.81 5102.74 7.64.71 4807.3 00055635 9012,00 236.35 8670.16 119.81 5102.74 7.64.71 4807.3 0055635 9012,00 319.36 866.33 123.62 509.21 764.71 4807.3 0105643 8099.10 319.36 866.33 123.65 509.22 744.71 4807.3 0104364 8995.00 346.73 155 509.42 866.3</th> <th>0.0056531 902800 29091 8671.73 113.40 519.28 7.43.44 4807.8 0.0056531 902800 29091 8671.73 113.40 5120.16 744.06 4807.9 0.0056535 902600 2968.3 8671.15 115.34 5120.16 744.06 4807.3 0.0055635 901800 319.36 8667.35 115.34 510.24 764.71 4807.3 0.004365 9010.20 348.72 866.31 115.36 509.21 764.71 4807.3 0.015564 8993.50 398.50 866.31 151.55 509.22 866.3 167.31 4977.45 907.02 4807.8 0.1456 8993.50 348.3 866.31 151.55 509.22 866.3 4807.3 0.14564 8993.50 348.49 865.51 151.55 509.22 867.3 4807.3 0.14564 8991.00 487.49 865.51 153.65 509.22 4807.3 4807.3 0.14564 89</th> <th>-0.0056351 9.028.00 2.909.1 8671.73 113.40 5119.36 743.64 4807.3 0.0035631 9028.00 2.909.1 8671.24 113.40 5112.41 764.71 4807.3 0.0035635 9026.00 2.909.3 8671.24 115.44 764.71 4807.3 0.0035635 9021.60 346.3 867.124 115.44 764.71 4807.3 0.004365 9020.00 345.3 867.124 115.43 510.2.44 764.71 4807.3 0.075645 8993.00 345.3 866.3 115.15 519.2.5 546.40 4807.3 0.12564 8993.00 348.3 866.5 15.36 519.2.5 546.40 4807.3 0.13564 8994.80 519.2 866.5 15.36 569.5 546.40 540.2 540.3 0.13564 8994.80 519.2 866.5 15.31 457.44 4807.2 4807.3 0.13564 8994.80 519.2.5 519.42 546.40 <</th> <th>0.0066531 9028,00 29991 8671.33 113.40 5119.26 743.64 4807.9 0.0056351 9028,00 29093 8671.33 113.40 5119.24 741.06 4807.3 0.0056351 9028,00 290.38 8671.34 115.44 511.24 764.71 4807.3 0.005635 9021,60 318.73 8671.34 115.44 764.71 4807.3 0.005645 9010.20 319.35 8667.35 123.85
 509.21 771.18 4807.3 0.01564 8993.50 314.37 8664.95 135.55 193.56 9407.5 844.0 4807.3 0.01664 8993.50 314.37 866.31 151.55 509.21 771.93 4807.4 0.1155 8993.40 433.43 866.30 365.37 186.13 497.4 369.35 4807.4 0.1156 8993.50 519.40 474.1 364.57 364.55 4908.55 4907.5 4807.5 0.1156 8993.60 <td< th=""></td<></th> | -0.0056351 902800 20991 $8671,73$ $113,40$ $5119,28$ $743,84$ 4807.9 0.0056351 902800 29991 $8671,73$ $113,40$ $5120,16$ 744.06 4807.9 0.0255 9021.60 $296,28$ $8671,24$ $115,34$ $5102,74$ $750,30$ 4807.9 0.043565 9021.60 $308,73$ 867.16 $119,81$ $5102,74$ 764.71 4807.8 0.043565 9021.60 319.36 866.95 123.62 5092.21 777.18 4807.7 0.0755 901020 343.52 866.95 123.66 5092.21 777.18 4807.7 0.0755 900030 374.87 866.95 123.66 5092.61 740.6 4807.3 0.094365 9993.60 374.87 $866.3.31$ 151.55 5092.65 8487.7 4807.3 0.094365 8993.90 337.87 $866.3.31$ 151.55 5092.65 4807.3 4807.3 0.10564 8993.30 396.230 $866.3.31$ 151.55 50192.7 $816.5.3$ 4806.3 0.1456 8991.90 649.64 $865.21.7$ 186.60 4806.3 220.79 4806.3 0.1456 8999.30 699.66 $886.60.63$ 220.79 4896.35 4806.3 0.14564 8899.20 699.66 866.63 222.79 4779.92 1099.10 4806.3 0.14756 8809.20 699.66 866.63 2005.66 4779.92 <td< th=""><th>-0.056351$9028,00$$20901$$8671/3$$11340$$511928$$743.64$$48079$$0.0056351$$9028,00$$29091$$8671.73$$113.40$$5115.24$$764.71$$48073$$0.0255635$$902160$$308.73$$8667.124$$115.34$$5115.24$$764.71$$48073$$0.04365$$902160$$308.73$$8667.15$$119.81$$5102.74$$764.71$$48073$$0.055635$$902160$$308.73$$8667.35$$113.62$$5092.21$$771.18$$48073$$0.055635$$902100$$343.52$$8663.35$$113.66$$5092.21$$777.18$$48073$$0.055635$$900200$$374.87$$8663.35$$113.66$$5092.21$$777.18$$48073$$0.075635$$9993.500$$374.87$$8663.35$$113.66$$504027$$841.53$$48073$$0.075635$$9999.500$$374.87$$8663.31$$151.55$$5094027$$841.53$$48073$$0.10564$$8993.500$$374.87$$8663.31$$151.55$$5094027$$841.63$$807.36$$0.1436$$8999.500$$374.87$$8663.37$$167.31$$4977.45$$9070.2$$4806.36$$0.1436$$8999.800$$4873.47$$866.900$$251.55$$4992.10$$9976.10$$4806.36$$0.1436$$8999.800$$4873.76$$866.900$$252.79$$4806.36$$4806.36$$0.1436$$8891.20$$866.900$$866.900$$266.900$$4806.36$</th><th>-0.0056351 9038,00 299,91 8671,73 113,40 519,28 743,84 4807.9 0.0056351 9028,00 296,91 8671,73 113,40 5115,24 750.30 4807.9 0.0055635 9026,00 296,28 8667,35 113,40 5115,24 764.71 4807.3 0.04365 9018,00 319,36 8667,35 123,62 509,21 777.18 4807.3 0.055635 9010,20 348,37 8667,35 123,62 509,21 764.71 4807.3 0.055645 9010,20 348,37 866,33 133,65 509,21 777.18 4807.3 0.05564 8993,50 348,37 866,35 143,66 504.02 846.40 4807.3 0.10564 8994,80 519,59 866,35 155,62 4807.3 4807.4 0.10564 8994,80 519,59 866.3 166.3 1407.45 907.02 4806.3 0.1436 8994,40 487.49 865.17 186.13</th><th>0.005651 9028,00 209,91 8671.73 113,40 5119,28 743,44 4807.9 0.0056551 9028,00 290,91 8671.24 115.34 5119,28 743,04 4807.9 0.0056551 9026,00 290,523 8670.16 119,34 5115,24 759.10 4807.3 0.01355 9018,00 319,36 8669,35 123,62 509,21 777.18 4807.3 0.04365 9010,20 343,52 8667,35 123,62 509,21 777.18 4807.3 0.05663 9010,20 343,52 866,33 123,62 509,21 777.18 4807.3 0.0564 8993,50 345,32 865,31 151,55 509,21 777.18 4807.3 0.1155 8961,40 487.3 865,31 167,31 467.3 4807.3 0.1155 8993,50 3465,51 186,13 167.31 4807.3 4807.3 0.1156 894980 515,55 196,02 369,51 4807.4</th><th>-0006351 20091 $8671,3$ $113,40$ $519,28$ $743,64$ 4807 00056351 902800 29091 $8671,24$ $115,34$ $510,26$ $744,06$ 4807 00056351 902600 29023 $8671,24$ $115,34$ $510,274$ $751,06$ $4807,3$ 0043655 901800 $319,36$ $8669,35$ $115,34$ $510,274$ $771,18$ $4807,3$ 005655 901800 $319,36$ $866,331$ $153,55$ $509,65$ $807,4$ $4807,3$ 0075655 $9010,20$ $343,52$ $866,331$ $151,55$ $509,65$ $8407,4$ $4807,3$ 0105664 $8991,400$ $4877,9$ $866,50$ $167,31$ $4774,5$ $907,02$ $4807,3$ 011564 $8991,400$ $4877,9$ $866,50$ $865,50$ $167,31$ $4807,3$ $4807,3$ 011564 $8991,400$ $4877,9$ $865,50$ $165,31$ $157,42$ $4102,50$ $480,53$</th><th>-00056351 9028.00 220.91 8671.73 113.40 51.92.8 73.54 48073 00056351 9028.00 229.01 8671.73 113.40 51.01.6 74.06 48073 00056351 902.600 239.73 867.12.4 115.34 51.02.74 75.30 48073 0005555 902.600 338.73 866.35 123.62 509.21 777.18 48073 004365 901.000 319.35 866.35 132.28 509.21 777.18 48073 0075 901.020 345.32 866.35 132.56 509.21 777.18 48073 0175 9900.30 348.74 866.35 151.59 866.35 186.31 151.55 901.22 4807.5 014356 896.40 487.49 865.31 151.55 947.5 947.5 947.5 940.5 4807.5 014356 896.40 486.31 151.55 186.10 186.3 9405.5 9405.5 940.5 940.5</th><th>0.0056351 $9028,00$ 29.991 $8671,73$ $113,40$ $5110,28$ $743,84$ 4807.9 0.0056531 $9028,00$ 29091 $8671,73$ $113,40$ $5110,16$ 740.6 4807.9 0.0056535 $9021,60$ $318,73$ $8670,16$ $119,81$ $5102,74$ $764,71$ 4807.3 0.0055635 $9021,60$ $314,52$ $8669,28$ $122,62$ $5092,21$ $777,18$ 4807.3 0.0755 $9020,00$ $314,52$ $8669,52$ $125,62$ $5092,21$ $747,18$ 4807.3 0.0755 $9002,00$ $314,52$ $8669,52$ $155,56$ $5092,51$ 4807.3 0.094365 $8999,00$ $487,49$ $865,517$ $167,31$ $4977,45$ $9970,22$ 4807.3 0.11564 $8994,00$ $3865,517$ $166,517$ $166,731$ 4907.3 4807.3 0.11436 $8994,00$ $865,517$ $166,731$ $4977,45$ $970,25$ 4902.3 0.12564</th></td<> | -0.056351 $9028,00$ 20901 $8671/3$ 11340 511928 743.64 48079 0.0056351 $9028,00$ 29091 8671.73 113.40 5115.24 764.71 48073 0.0255635 902160 308.73 8667.124 115.34 5115.24 764.71 48073 0.04365 902160 308.73 8667.15 119.81 5102.74 764.71 48073 0.055635 902160 308.73 8667.35 113.62 5092.21 771.18 48073 0.055635 902100 343.52 8663.35 113.66 5092.21 777.18 48073 0.055635 900200 374.87 8663.35 113.66 5092.21 777.18 48073 0.075635 9993.500 374.87 8663.35 113.66 504027 841.53 48073 0.075635 9999.500 374.87 8663.31 151.55 5094027 841.53 48073 0.10564 8993.500 374.87 8663.31 151.55 5094027 841.63 807.36 0.1436 8999.500 374.87 8663.37 167.31 4977.45 9070.2 4806.36 0.1436 8999.800 4873.47 866.900 251.55 4992.10 9976.10 4806.36 0.1436 8999.800 4873.76 866.900 252.79 4806.36 4806.36 0.1436 8891.20 866.900 866.900 266.900 4806.36 | -0.0056351 9038,00 299,91 8671,73 113,40 519,28 743,84 4807.9 0.0056351 9028,00 296,91 8671,73 113,40 5115,24 750.30 4807.9 0.0055635 9026,00 296,28 8667,35 113,40 5115,24 764.71 4807.3 0.04365 9018,00 319,36 8667,35 123,62 509,21 777.18 4807.3 0.055635 9010,20 348,37 8667,35 123,62 509,21 764.71 4807.3 0.055645 9010,20 348,37 866,33 133,65 509,21 777.18 4807.3 0.05564 8993,50 348,37 866,35 143,66 504.02 846.40 4807.3 0.10564 8994,80 519,59 866,35 155,62 4807.3 4807.4 0.10564 8994,80 519,59 866.3 166.3 1407.45 907.02 4806.3 0.1436 8994,40 487.49 865.17 186.13 | 0.005651 9028,00 209,91 8671.73 113,40 5119,28 743,44 4807.9 0.0056551 9028,00 290,91 8671.24 115.34 5119,28
743,04 4807.9 0.0056551 9026,00 290,523 8670.16 119,34 5115,24 759.10 4807.3 0.01355 9018,00 319,36 8669,35 123,62 509,21 777.18 4807.3 0.04365 9010,20 343,52 8667,35 123,62 509,21 777.18 4807.3 0.05663 9010,20 343,52 866,33 123,62 509,21 777.18 4807.3 0.0564 8993,50 345,32 865,31 151,55 509,21 777.18 4807.3 0.1155 8961,40 487.3 865,31 167,31 467.3 4807.3 0.1155 8993,50 3465,51 186,13 167.31 4807.3 4807.3 0.1156 894980 515,55 196,02 369,51 4807.4 | -0006351 20091 $8671,3$ $113,40$ $519,28$ $743,64$ 4807 00056351 902800 29091 $8671,24$ $115,34$ $510,26$ $744,06$ 4807 00056351 902600 29023 $8671,24$ $115,34$ $510,274$ $751,06$ $4807,3$ 0043655 901800 $319,36$ $8669,35$ $115,34$ $510,274$ $771,18$ $4807,3$ 005655 901800 $319,36$ $866,331$ $153,55$ $509,65$ $807,4$ $4807,3$ 0075655 $9010,20$ $343,52$ $866,331$ $151,55$ $509,65$ $8407,4$ $4807,3$ 0105664 $8991,400$ $4877,9$ $866,50$ $167,31$ $4774,5$ $907,02$ $4807,3$ 011564 $8991,400$ $4877,9$ $866,50$ $865,50$ $167,31$ $4807,3$ $4807,3$ 011564 $8991,400$ $4877,9$ $865,50$ $165,31$ $157,42$ $4102,50$ $480,53$ | -00056351 9028.00 220.91 8671.73 113.40 51.92.8 73.54 48073 00056351 9028.00 229.01 8671.73 113.40 51.01.6 74.06 48073 00056351 902.600 239.73 867.12.4 115.34 51.02.74 75.30 48073 0005555 902.600 338.73 866.35 123.62 509.21 777.18 48073 004365 901.000 319.35 866.35 132.28 509.21 777.18 48073 0075 901.020 345.32 866.35 132.56 509.21 777.18 48073 0175 9900.30 348.74 866.35 151.59 866.35 186.31 151.55 901.22 4807.5 014356 896.40 487.49 865.31 151.55 947.5 947.5 947.5 940.5 4807.5 014356 896.40 486.31 151.55 186.10 186.3 9405.5 9405.5 940.5 940.5 | 0.0056351 $9028,00$ 29.991 $8671,73$ $113,40$ $5110,28$ $743,84$ 4807.9 0.0056531 $9028,00$ 29091 $8671,73$ $113,40$ $5110,16$ 740.6 4807.9 0.0056535 $9021,60$ $318,73$ $8670,16$ $119,81$ $5102,74$ $764,71$ 4807.3 0.0055635 $9021,60$ $314,52$ $8669,28$ $122,62$ $5092,21$ $777,18$ 4807.3 0.0755 $9020,00$ $314,52$ $8669,52$ $125,62$ $5092,21$ $747,18$ 4807.3 0.0755 $9002,00$ $314,52$ $8669,52$ $155,56$ $5092,51$ 4807.3 0.094365 $8999,00$ $487,49$ $865,517$ $167,31$ $4977,45$ $9970,22$ 4807.3 0.11564 $8994,00$ $3865,517$ $166,517$ $166,731$ 4907.3 4807.3 0.11436 $8994,00$ $865,517$ $166,731$ $4977,45$ $970,25$ 4902.3 0.12564 | 0.005651 9028,00 29091 8671.73 113.40 519.28 743.44 4807.3 0.0056551 9028,00 29091 8671.73 113.40 512.01 764.71 4807.3 0.005655 902.600 296.30 870.16 119.81 510.74 764.71 4807.3 0.005655 902.600 319.36 8670.53 870.16 119.81 510.74 764.71 4807.3 0.055655 901.000 319.36 866.92 870.16 119.81 510.74 764.71 4807.3 0.055655 901.000 319.36 866.92 113.46 510.24 764.10 4807.3 0.05565 900.300 319.36 866.92 153.55 509.42 640.5 4807.3 0.1055 989.10 487.49 865.17 186.13 497.35 640.5 640.5 540.5 640.5 640.5 0.1055 989.10 487.4 865.17 186.13 497.45 970.3 640.5 | -0005631 9028,00 20901 8671.73 113.40 519.28 7.43.44 4807.3 00056351 9028,00 29091 86771.73 113.40 5102.14 7.44.71 4807.3 00055635 9026,00 236.33 8670.16 119.81 5102.74 7.64.71 4807.3 00055635 9012,00 236.35 8670.16 119.81 5102.74 7.64.71 4807.3 0055635 9012,00 319.36 866.33 123.62 509.21 764.71 4807.3 0105643 8099.10 319.36 866.33 123.65 509.22 744.71 4807.3 0104364 8995.00 346.73 155 509.42 866.3 | 0.0056531 902800 29091 8671.73 113.40 519.28 7.43.44 4807.8 0.0056531 902800 29091 8671.73 113.40 5120.16 744.06 4807.9 0.0056535 902600 2968.3 8671.15 115.34 5120.16 744.06 4807.3 0.0055635 901800 319.36 8667.35 115.34 510.24 764.71 4807.3 0.004365 9010.20 348.72 866.31 115.36 509.21 764.71 4807.3 0.015564 8993.50 398.50 866.31 151.55 509.22 866.3 167.31 4977.45 907.02 4807.8 0.1456 8993.50 348.3 866.31 151.55 509.22 866.3 4807.3 0.14564 8993.50 348.49 865.51 151.55 509.22 867.3 4807.3 0.14564 8991.00 487.49 865.51 153.65 509.22 4807.3 4807.3 0.14564 89 | -0.0056351 9.028.00 2.909.1 8671.73 113.40 5119.36 743.64 4807.3 0.0035631 9028.00 2.909.1 8671.24 113.40 5112.41 764.71 4807.3 0.0035635 9026.00 2.909.3 8671.24 115.44 764.71 4807.3 0.0035635 9021.60 346.3 867.124 115.44 764.71 4807.3 0.004365 9020.00 345.3 867.124 115.43 510.2.44 764.71 4807.3 0.075645 8993.00 345.3 866.3 115.15 519.2.5 546.40 4807.3 0.12564 8993.00 348.3 866.5 15.36 519.2.5 546.40 4807.3 0.13564 8994.80 519.2 866.5 15.36 569.5 546.40 540.2 540.3 0.13564 8994.80 519.2 866.5 15.31 457.44 4807.2 4807.3 0.13564 8994.80 519.2.5 519.42 546.40 < | 0.0066531 9028,00 29991 8671.33 113.40 5119.26 743.64 4807.9 0.0056351 9028,00 29093 8671.33 113.40 5119.24 741.06 4807.3 0.0056351 9028,00 290.38 8671.34 115.44 511.24 764.71 4807.3 0.005635 9021,60 318.73 8671.34 115.44 764.71 4807.3 0.005645 9010.20 319.35 8667.35 123.85 509.21 771.18 4807.3 0.01564 8993.50 314.37 8664.95 135.55 193.56 9407.5 844.0 4807.3 0.01664 8993.50 314.37 866.31 151.55 509.21 771.93 4807.4 0.1155 8993.40 433.43 866.30 365.37 186.13 497.4 369.35 4807.4 0.1156 8993.50 519.40 474.1 364.57 364.55 4908.55 4907.5 4807.5 0.1156 8993.60 <td< th=""></td<> |

	Isotı	ropia	Ortotro	pia (0º)	Ortotro	pia (45°)	Ortotro	pia (90°)
Coordenada x (m)	Deslocamento z (m)							
x (m)	FEM	EFGM	FEM	EFGM	FEM	EFGM	FEM	EFGM
0.5	0.0004	0.0004	0.0003	0.0003	-0.0016	-0.0015	-0.0002	-0.0001
0.4	-0.0034	-0.0033	-0.0020	-0.0020	-0.0108	-0.0108	-0.0087	-0.0087
0.3	-0.0095	-0.0095	-0.0070	-0.0070	-0.0212	-0.0212	-0.0191	-0.0191
0.2	-0.0191	-0.0191	-0.0171	-0.0171	-0.0341	-0.0341	-0.0332	-0.0332
0.1	-0.0331	-0.0332	-0.0340	-0.0341	-0.0514	-0.0516	-0.0523	-0.0523
0	-0.0572	-0.0572	-0.0671	-0.0671	-0.0771	-0.0772	-0.0829	-0.0830
-0.1	-0.0331	-0.0332	-0.0340	-0.0341	-0.0514	-0.0516	-0.0523	-0.0523
-0.2	-0.0191	-0.0191	-0.0171	-0.0171	-0.0341	-0.0341	-0.0332	-0.0332
-0.3	-0.0095	-0.0095	-0.0070	-0.0070	-0.0212	-0.0212	-0.0191	-0.0191
-0.4	-0.0034	-0.0033	-0.0020	-0.0020	-0.0108	-0.0108	-0.0087	-0.0087
-0.5	0.0004	0.0004	0.0003	0.0003	-0.0016	-0.0015	-0.0002	-0.0001

Tabela II.6: Deslocamentos verticais [m] ao longo do alinhamento C-C' (carga pontual = 1 kN)

Tabela II.7: Deslocamentos verticais [m] ao longo do alinhamento D-D' (carga pontual=1 kN)

	Isotı	ropia	Ortotro	pia (0º)	Ortotro	oia (45°)	Ortotro	oia (90°)
Coordenada	Deslocamento z (m)							
y (iii)	FEM	EFGM	FEM	EFGM	FEM	EFGM	FEM	EFGM
0.5	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.4	-0.0108	-0.0109	-0.0138	-0.0138	-0.0136	-0.0136	-0.0204	-0.0204
0.3	-0.0222	-0.0222	-0.0275	-0.0276	-0.0278	-0.0279	-0.0386	-0.0387
0.2	-0.0334	-0.0335	-0.0401	-0.0402	-0.0431	-0.0433	-0.0541	-0.0541
0.1	-0.0440	-0.0441	-0.0516	-0.0517	-0.0594	-0.0596	-0.0666	-0.0666
0	-0.0572	-0.0572	-0.0671	-0.0671	-0.0771	-0.0772	-0.0829	-0.0830
-0.1	-0.0440	-0.0441	-0.0516	-0.0517	-0.0594	-0.0596	-0.0666	-0.0666
-0.2	-0.0334	-0.0335	-0.0402	-0.0402	-0.0431	-0.0433	-0.0541	-0.0541
-0.3	-0.0222	-0.0222	-0.0275	-0.0276	-0.0278	-0.0279	-0.0386	-0.0387
-0.4	-0.0108	-0.0109	-0.0138	-0.0138	-0.0136	-0.0136	-0.0204	-0.0204
-0.5	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

_	Isotr	opia	Ortotro	pia (0°)	Ortotro	oia (45°)	Ortotro	pia (90°)
Coordenada	Deslocamento x (m)							
x (iii)	FEM	EFGM	FEM	EFGM	FEM	EFGM	FEM	EFGM
-0.5	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
-0.4	-0.0005	-0.0005	-0.0006	-0.0006	-0.0008	-0.0008	-0.0015	-0.0015
-0.3	-0.0008	-0.0008	-0.0009	-0.0010	-0.0013	-0.0014	-0.0023	-0.0023
-0.2	-0.0010	-0.0010	-0.0010	-0.0010	-0.0015	-0.0015	-0.0023	-0.0023
-0.1	-0.0007	-0.0007	-0.0006	-0.0006	-0.0012	-0.0012	-0.0014	-0.0015
0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.1	0.0007	0.0007	0.0006	0.0006	0.0012	0.0012	0.0014	0.0015
0.2	0.0010	0.0010	0.0010	0.0010	0.0015	0.0015	0.0023	0.0023
0.3	0.0008	0.0008	0.0009	0.0010	0.0013	0.0014	0.0023	0.0023
0.4	0.0005	0.0005	0.0006	0.0006	0.0008	0.0008	0.0015	0.0015
0.5	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Tabela II.8: Deslocamentos horizontais x [m] ao longo do alinhamento C-C' (carga pontual=1 kN)

Tabela II.9: Deslocamentos horizontais y [m] ao longo do alinhamento D-D' (carga pontual=1 kN)

	Isotı	ropia	Ortotro	pia (0º)	Ortotroj	pia (45°)	Ortotro	pia (90°)
Coordenada	Deslocamento y (m)							
y (iii)	FEM	EFGM	FEM	EFGM	FEM	EFGM	FEM	EFGM
0.5	-0.0016	-0.0016	-0.0049	-0.0049	-0.0060	-0.0060	-0.0062	-0.0062
0.4	-0.0012	-0.0012	-0.0047	-0.0047	-0.0053	-0.0054	-0.0058	-0.0058
0.3	-0.0009	-0.0009	-0.0045	-0.0045	-0.0045	-0.0045	-0.0053	-0.0053
0.2	-0.0006	-0.0006	-0.0042	-0.0042	-0.0034	-0.0034	-0.0045	-0.0045
0.1	-0.0003	-0.0003	-0.0034	-0.0034	-0.0021	-0.0020	-0.0033	-0.0033
0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
-0.1	0.0003	0.0003	0.0034	0.0034	0.0021	0.0020	0.0033	0.0033
-0.2	0.0006	0.0006	0.0042	0.0042	0.0034	0.0034	0.0045	0.0045
-0.3	0.0009	0.0009	0.0045	0.0045	0.0045	0.0045	0.0053	0.0053
-0.4	0.0012	0.0012	0.0047	0.0047	0.0053	0.0054	0.0058	0.0058
-0.5	0.0016	0.0016	0.0049	0.0049	0.0060	0.0060	0.0062	0.0062

Anexo II.1: Membrana cabo

	iia (90°)	Tensao σ _{yy} [kN/m²]	3716.25	1410.32	248.22	143.73	191.48	241.18	313.26	339.23	1014.37	1864.77	32743.60	1864.71	1014.37	339.25	313.28	241.20	191.48	143.74	248.07	1410.05	3716.26
	Ortotrop	Tensao σ _{xx} [kN/m ²]	6373.92	6167.56	6727.50	7486.29	8259.26	9105.97	10080.10	11202.40	13075.70	17122.20	29323.10	17122.20	13075.80	11202.50	10080.20	9106.06	8259.36	7486.41	6727.60	6167.57	6373.95
	ia (45°)	Tensao σ _{yy} [kN/m ²]	3202.21	2296.98	1879.81	1480.66	1126.77	861.64	763.96	1007.81	2246.62	6307.76	31101.70	6307.74	2246.59	1007.75	763.88	861.57	1126.72	1480.62	1879.80	2297.01	3202.28
	Ortotrop	Tensao σ _{xx} [kN/m ²]	5085.35	4888.32	5444.52	6049.03	6721.42	7496.63	8455.00	9819.03	12461.70	18521.00	37762.60	18521.00	12461.80	9819.14	8455.13	7496.77	6721.56	6049.16	5444.64	4888.41	5085.45
	pia (0°)	Tensao σ _{yy} [kN/m ²]	3487.50	2055.41	1204.18	585.39	210.98	89.27	210.78	612.78	1728.51	3612.42	24387.50	3612.40	1728.51	612.77	210.76	89.22	210.89	585.27	1204.06	2055.34	3487.51
	Ortotro	Tensao σ_{xx} [kN/m ²]	11909.60	11592.10	12073.50	12618.90	13320.50	14240.20	15475.50	17272.60	20649.30	26900.80	41754.10	26900.80	20649.30	17272.70	15475.60	14240.30	13320.60	12619.00	12073.60	11592.20	11909.70
	opia	Tensao σ _{yy} [kN/m ²]	2806.86	1744.89	967.18	361.62	-17.49	-155.19	-79.03	244.83	1285.79	3955.56	29981.40	3955.53	1285.76	244.80	-79.06	-155.26	-17.65	361.40	966.98	1744.77	2806.87
	Isotr	Tensao σ _{xx} [kN/m ²]	9559.22	9607.84	10107.80	10685.60	11396.30	12263.20	13312.50	14679.30	17231.80	24892.30	38214.00	24892.30	17231.90	14679.50	13312.70	12263.40	11396.50	10685.80	10107.90	9607.89	9559.28
ų		Coordenada x (m)	-0.5	-0.45	-0.4	-0.35	-0.3	-0.25	-0.2	-0.15	-0.1	-0.05	0	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.5

 Tabela II.10: Distribuição de tensões suavizadas σ_{xx} e σ_{yy} [kN/m²] ao longo do alinhamento C-C' (carga pontual=1 kN) - FEM

ia (90°)	Tensao σ_{w} [kN/m ²]	1712.62	494.39	156.80	322.43	-306.60	0.96	203.89	-154.03	-4.88	204.93	-60.14	-20.14	201.12	-27.27	-33.53	213.25	-12.67	-33.00	253.13	-66.71	-130.02	209.12	31.61	234.60	778.20	-173.01	-544.61	1973.20
Ortotrop	Tensao σ _{xx} [kN/m ²]	5962.42	5639.55	5729.05	6434.16	6142.58	6385.94	7036.85	6809.50	7005.54	7705.27	7480.19	7671.51	8427.97	8167.63	8392.77	9243.78	8913.14	9206.84	10208.45	9759.64	10150.97	11317.73	10768.50	11321.56	13242.99	12318.89	13044.57	20357.22
ia (45°)	Tensao σ_{w} [kN/m ²]	2370.67	1893.56	1527.78	2122.41	1601.99	1225.61	1858.57	1304.88	926.19	1598.08	1023.44	655.17	1368.56	788.39	449.59	1212.27	645.50	363.76	1202.47	666.15	481.84	1484.11	1007.92	1039.85	2671.54	2255.80	3089.04	6699.51
Ortotrop	Tensao σ_{xx} [kN/m ²]	4368.05	4065.47	3876.98	4897.78	4550.11	4367.81	5454.33	5068.33	4896.23	6049.19	5631.42	5476.92	6700.12	6256.88	6132.11	7438.69	6975.45	6898.98	8337.33	7850.99	7852.88	9589.55	9048.20	9223.39	12115.16	11138.05	12040.38	18654.82
pia (0°)	Tensao σ_{vv} [kN/m ²]	1636.42	1087.67	639.91	699.30	305.34	86.80	168.63	-84.36	-123.70	-20.30	-180.45	-154.63	-33.84	-161.73	-136.22	2.69	-109.95	-73.25	101.18	13.35	107.74	371.26	421.80	762.50	1302.28	1125.06	1625.92	3362.52
Ortotrol	Tensao σ _{xx} [kN/m ²]	11090.51	10819.48	10791.56	11460.88	11163.10	11277.13	11972.06	11644.18	11884.36	12627.92	12281.23	12587.62	13414.78	13027.54	13384.06	14329.66	13872.99	14306.88	15478.22	14899.05	15480.18	17178.02	16339.91	17295.39	20804.17	18899.40	20901.26	30783.73
opia	Tensao σ _{vv} [kN/m ²]	2793.59	2222.40	1668.90	1849.45	1351.70	883.02	1071.01	638.50	260.81	473.51	121.54	-137.56	109.23	-152.01	-294.67	-11.61	-193.14	-246.01	88.79	-19.79	21.45	470.10	530.75	830.49	1787.13	1827.81	2645.12	6214.83
Isotr	Tensao σ _{xx} [kN/m ²]	9398.27	9208.36	9060.87	9822.76	9649.01	9532.83	10297.24	10131.03	10054.18	10874.47	10706.66	10691.15	11591.31	11415.83	11470.14	12460.16	12273.42	12389.84	13528.05	13324.14	13507.84	14987.18	14757.94	15095.30	18217.83	17423.60	18475.23	29299.52
	Coordenada x (m)	-0.49436	-0.475	-0.45564	-0.44436	-0.425	-0.40564	-0.39436	-0.375	-0.35564	-0.34436	-0.325	-0.30564	-0.29436	-0.275	-0.25564	-0.24436	-0.225	-0.20564	-0.19436	-0.175	-0.15564	-0.14436	-0.125	-0.10564	-0.094365	-0.075	-0.055635	-0.044365

 $Tabela II.11: Distribuição de tensões \sigma_{xx} e \sigma_{yy} [kN/m^2] ao longo do alinhamento C-C' (carga pontual=1 kN) - EFGM (abela II.11: Distribuição de tensões of the second se$

Anexo II.1: Membrana cabo

Instituto Superior Técnico

10869.53	28493.21	28493.21	10869.53	1973.20	-544.61	-173.01	778.20	234.60	31.61	209.12	-130.02	-66.71	253.13	-33.00	-12.67	213.25	-33.53	-27.27	201.12	-20.14	-60.14	204.93	-4.88	-154.03	203.89	0.96	-306.60	322.43	156.80	494.39	1712.62
16988.87	24335.22	24335.22	16988.87	20357.22	13044.57	12318.89	13242.99	11321.56	10768.50	11317.73	10150.97	9759.64	10208.45	9206.84	8913.14	9243.78	8392.77	8167.63	8427.97	7671.51	7480.19	7705.27	7005.54	6809.50	7036.85	6385.94	6142.58	6434.16	5729.05	5639.55	5962.42
9619.70	19313.33	33525.93	14325.95	10029.02	5357.86	3280.93	3020.13	1090.00	1137.32	1341.14	247.05	663.88	968.74	96.00	616.99	976.82	198.86	761.33	1156.33	436.05	1010.61	1423.12	748.64	1316.08	1732.76	1099.41	1645.92	2057.65	1463.67	1978.29	2378.95
16096.40	24017.37	38231.96	20963.09	22138.60	14476.37	12455.53	12788.84	9606.79	9582.59	9724.07	7891.85	8182.67	8322.40	6846.14	7212.12	7374.07	6048.95	6438.20	6620.28	5387.35	5778.18	5973.31	4815.06	5193.57	5396.01	4306.37	4662.20	4868.29	3845.23	4169.45	4377.36
8911.62	20469.67	20469.67	8911.62	3362.52	1625.92	1125.06	1302.28	762.50	421.80	371.26	107.74	13.35	101.18	-73.25	-109.95	2.69	-136.22	-161.73	-33.84	-154.63	-180.45	-20.30	-123.70	-84.36	168.63	86.80	305.34	699.30	639.91	1087.67	1636.42
24190.98	35915.88	35915.88	24190.98	30783.73	20901.26	18899.40	20804.17	17295.39	16339.91	17178.02	15480.18	14899.05	15478.22	14306.88	13872.99	14329.66	13384.06	13027.54	13414.78	12587.62	12281.23	12627.92	11884.36	11644.18	11972.06	11277.13	11163.10	11460.88	10791.56	10819.48	11090.51
12903.42	28686.64	28686.64	12903.42	6214.83	2645.12	1827.81	1787.13	830.49	530.75	470.10	21.45	-19.79	88.79	-246.01	-193.14	-11.61	-294.67	-152.01	109.23	-137.56	121.54	473.51	260.81	638.50	1071.01	883.02	1351.70	1849.45	1668.90	2222.40	2793.59
24679.42	36041.06	36041.06	24679.42	29299.52	18475.23	17423.60	18217.83	15095.30	14757.94	14987.18	13507.84	13324.14	13528.05	12389.84	12273.42	12460.16	11470.14	11415.83	11591.31	10691.15	10706.66	10874.47	10054.18	10131.03	10297.24	9532.83	9649.01	9822.76	9060.87	9208.36	9398.27
-0.025	-0.0056351	0.0056351	0.025	0.044365	0.055635	0.075	0.094365	0.10564	0.125	0.14436	0.15564	0.175	0.19436	0.20564	0.225	0.24436	0.25564	0.275	0.29436	0.30564	0.325	0.34436	0.35564	0.375	0.39436	0.40564	0.425	0.44436	0.45564	0.475	0.49436

A-29

Instituto Superior Técnico

Anexo II.2 Parabolóide Hiperbólico

F

	Diagonal d	e cumeeira	Diagonal	de talvegue
Coordenada x (m)	FEM	EFGM	FEM	EFGM
-3.075	0.0000	0.0000	0.0000	0.0000
-2.46	-0.0260	-0.0241	0.0260	0.0241
-1.845	-0.0408	-0.0409	0.0408	0.0409
-1.23	-0.0310	-0.0301	0.0310	0.0301
-0.615	-0.0101	-0.0096	0.0101	0.0096
0	0.0000	0.0000	0.0000	0.0000
0.615	-0.0101	-0.0096	0.0101	0.0096
1.23	-0.0310	-0.0301	0.0310	0.0301
1.845	-0.0408	-0.0409	0.0408	0.0409
2.46	-0.0260	-0.0241	0.0260	0.0241
3.075	0.0000	0.0000	0.0000	0.0000

Tabela II.12: Deslocamentos verticais [m] das diagonais de cumeeira e de talvegue

Tabela II.13: Posição das diagonais [m] das diagonais de cumeeira e de talvegue

		Diagonal d	le cumeeira			Diagonal	de talvegue	
Coordenada	FI	EM	EF	GM	FE	M	EFG	GM
(m)	INICIAL	FINAL	INICIAL	FINAL	INICIAL	FINAL	INICIAL	FINAL
-3.075	3.0750	3.0750	3.0750	3.0750	-3.0750	-3.0750	-3.0750	-3.0750
-2.46	1.9680	1.9420	1.9680	1.9439	-1.9680	-1.9420	-1.9680	-1.9439
-1.845	1.1070	1.0662	1.1070	1.0661	-1.1070	-1.0662	-1.1070	-1.0661
-1.23	0.4920	0.4610	0.4920	0.4620	-0.4920	-0.4610	-0.4920	-0.4620
-0.615	0.1230	0.1129	0.1230	0.1134	-0.1230	-0.1129	-0.1230	-0.1134
0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.615	0.1230	0.1129	0.1230	0.1134	-0.1230	-0.1129	-0.1230	-0.1134
1.23	0.4920	0.4610	0.4920	0.4620	-0.4920	-0.4610	-0.4920	-0.4620
1.845	1.1070	1.0662	1.1070	1.0661	-1.1070	-1.0662	-1.1070	-1.0661
2.46	1.9680	1.9420	1.9680	1.9439	-1.9680	-1.9420	-1.9680	-1.9439
3.075	3.0750	3.0750	3.0750	3.0750	-3.0750	-3.0750	-3.0750	-3.0750

Tabela II.14: Distribuição de tensões principais σ_I suavizadas [kN/m²] - FEM

Coordenada x (m)	Alinhamento A-A'	Alinhamento B-B'
-3.075	10.1785	9.9110
-2.46	10.1526	9.8032
-1.845	10.0839	9.9433
-1.23	10.1259	10.2600
-0.615	10.4306	10.4197
0	10.6135	10.6135
0.615	10.4306	10.4197
1.23	10.1259	10.2600
1.845	10.0839	9.9433
2.46	10.1297	9.8032
3.075	10.327	9.9110

Coordenada (m)	Alinhamento A-A'	Alinhamento B-B'
-3.0057	10.00	9.97
-2.7675	10.01	9.89
-2.5293	10.10	9.86
-2.3907	10.23	9.86
-2.1525	10.42	9.90
-1.9143	10.21	10.01
-1.7757	10.23	10.07
-1.5375	10.52	10.16
-1.2993	10.42	10.24
-1.1607	10.47	10.29
-0.9225	10.65	10.41
-0.68431	10.60	10.52
-0.54569	10.60	10.56
-0.3075	10.64	10.61
-0.069312	10.62	10.62
0.069312	10.62	10.62
0.3075	10.64	10.61
0.54569	10.60	10.56
0.68431	10.60	10.52
0.9225	10.65	10.41
1.1607	10.47	10.29
1.2993	10.42	10.24
1.5375	10.52	10.16
1.7757	10.23	10.07
1.9143	10.21	10.01
2.1525	10.42	9.90
2.3907	10.23	9.86
2.5293	10.10	9.86
2.7675	10.01	9.89
3.0057	10.00	9.97

Tabela II.15: Distribuição de tensões principais $\sigma_I \, [kN/m^2]$ - EFGM

Tabela II.16: Posição das diagonais [m] - acção do vento (isotropia)

		Diagonal d	e cumeeira			Diagonal	de talvegue	
Coordenada x (m)	FI	EM	EFG	GM	FE	M	EFG	GM
	INICIAL	FINAL	INICIAL	FINAL	INICIAL	FINAL	INICIAL	FINAL
-3.075	3.075	3.075	3.075	3.075	-3.075	-3.075	-3.075	-3.075
-2.46	1.968	1.941	1.968	1.942	-1.968	-1.953	-1.968	-1.954
-1.845	1.107	1.081	1.107	1.081	-1.107	-1.095	-1.107	-1.094
-1.23	0.492	0.479	0.492	0.480	-0.492	-0.485	-0.492	-0.485
-0.615	0.123	0.119	0.123	0.120	-0.123	-0.121	-0.123	-0.121
0	0.000	0.001	0.000	0.000	0.000	0.001	0.000	0.000
0.615	0.123	0.124	0.123	0.124	-0.123	-0.121	-0.123	-0.121
1.23	0.492	0.493	0.492	0.493	-0.492	-0.485	-0.492	-0.485
1.845	1.107	1.107	1.107	1.105	-1.107	-1.095	-1.107	-1.093
2.46	1.968	1.964	1.968	1.965	-1.968	-1.953	-1.968	-1.954
3.075	3.075	3.075	3.075	3.075	-3.075	-3.075	-3.075	-3.075

Anexo II.2: Parabolóide Hiperbólico

		Isotrop	oia			Ortotropia	(135°)			Ortotrop	via (45°)	
	Diagonal d	le cumeeira	Diagonal c	e talvegue	Diagonal d	e cumeeira	Diagonal c	le talvegue	Diagonal de	e cumeeira	Diagonal d	e talvegue
Coordenada x (m)	FEM	EFGM	FEM	EFGM	FEM	EFGM	FEM	EFGM	FEM	EFGM	FEM	EFGM
-3.075	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
-2.46	-0.0274	-0.0262	0.0145	0.0141	-0.0278	-0.0260	0.0251	0.0230	-0.0445	-0.0405	0.0051	0.0055
-1.845	-0.0259	-0.0262	0.0125	0.0132	-0.0216	-0.0210	0.0277	0.0288	-0.0472	-0.0463	-0.0015	-0.0014
-1.23	-0.0134	-0.0123	0.0072	0.0063	-0.0004	0.0016	0.0269	0.0257	-0.0332	-0.0316	-0.0113	-0.0132
-0.615	-0.0038	-0.0028	0.0024	0.0018	0.0161	0.0181	0.0253	0.0246	-0.0241	-0.0239	-0.0188	-0.0208
0	0.0005	0.0003	0.0005	0.0003	0.0246	0.0250	0.0246	0.0250	-0.0214	-0.0229	-0.0214	-0.0229
0.615	0.0012	0.0009	0.0024	0.0015	0.0276	0.0276	0.0254	0.0252	-0.0202	-0.0213	-0.0190	-0.0209
1.23	0.0006	0.0007	0.0072	0.0064	0.0270	0.0274	0.0271	0.0259	-0.0165	-0.0168	-0.0118	-0.0134
1.845	0.0000	-0.0015	0.0125	0.0138	0.0229	0.0222	0.0281	0.0285	-0.0113	-0.0128	-0.0022	-0.0016
2.46	-0.0040	-0.0035	0.0145	0.0143	0.0117	0.0118	0.0251	0.0229	-0.0108	-0.0086	0.0051	0.0053
3.075	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000

Tabela II.17: Deslocamentos verticais das diagonais de cumeeira e de talvegue [m] - acção do vento

Tabela II.18: Módulo dos deslocamentos verticais das diagonais de cumeeira e de talvegue [m] - acção do vento

	al de talvegue	EFGM	0.0000	0.0055	0.0014	0.0132	0.0208	0.0229	0.0209	0.0134	0.0016	0.0053	0 0000
nia (45°)	Diagon	FEM	0.0000	0.0051	0.0015	0.0113	0.0188	0.0214	0.0190	0.0118	0.0022	0.0051	0 0000
Ortotro	le cumeeira	EFGM	0.0000	0.0405	0.0463	0.0316	0.0239	0.0229	0.0213	0.0168	0.0128	0.0086	0 0000
	Diagonal d	FEM	0.0000	0.0445	0.0472	0.0332	0.0241	0.0214	0.0202	0.0165	0.0113	0.0108	0 0000
	le talvegue	EFGM	0.0000	0.0230	0.0288	0.0257	0.0246	0.0250	0.0252	0.0259	0.0285	0.0229	0 0000
ia (135º)	Diagonal	FEM	0.0000	0.0251	0.0277	0.0269	0.0253	0.0246	0.0254	0.0271	0.0281	0.0251	0 0000
Ortotron	e cumeeira	EFGM	0.0000	0.0260	0.0210	0.0016	0.0181	0.0250	0.0276	0.0274	0.0222	0.0118	0.000
	Diagonal d	FEM	0.0000	0.0278	0.0216	0.0004	0.0161	0.0246	0.0276	0.0270	0.0229	0.0117	0 0000
	e talvegue	EFGM	0.0000	0.0141	0.0132	0.0063	0.0018	0.0003	0.0015	0.0064	0.0138	0.0143	0.000
nnia	Diagonal d	FEM	0.0000	0.0145	0.0125	0.0072	0.0024	0.0005	0.0024	0.0072	0.0125	0.0145	0 0000
Isotro	e cumeeira	EFGM	0.0000	0.0262	0.0262	0.0123	0.0028	0.0003	0.0009	0.0007	0.0015	0.0035	0.0000
	Diagonal de	FEM	0.0000	0.0274	0.0259	0.0134	0.0038	0.0005	0.0012	0.0006	0.0000	0.0040	0 0000
		Coordenada x (m)	-3.075	-2.46	-1.845	-1.23	-0.615	0	0.615	1.23	1.845	2.46	3.075

	Isotr	ropia	Ortotrop	oia (135º)	Ortotro	pia (45°)
Coordenada x (m)	Alinhamento A-A'	Alinhamento B-B'	Alinhamento A-A'	Alinhamento B-B'	Alinhamento A-A'	Alinhamento B-B'
-3.075	9058.19	7712.26	7409.54	4571.31	5474.96	4576.72
-2.46	8659.89	7191.67	6268.68	4653.78	5592.87	4442.13
-1.845	7992.20	7529.33	6268.68	4980.47	4748.97	4754.44
-1.23	7904.46	8229.70	5067.66	5548.15	4914.09	5369.10
-0.615	8492.31	8649.64	5724.59	5938.28	5589.66	5824.81
0	9119.97	9119.97	6329.23	6329.23	6297.86	6297.86
0.615	9217.61	9012.11	6476.86	6306.46	6640.16	6348.58
1.23	8790.26	8968.82	6227.97	6306.63	6544.11	6438.39
1.845	8296.56	8510.83	5915.17	6043.98	6384.20	6165.76
2.46	8059.37	8261.85	5735.64	5859.00	6175.88	6095.50
3.075	8209.90	8524.36	6212.75	6078.70	6540.89	6578.77

Tabela II.19: Tensõe	s principais $\sigma_{I} [kN/m^{2}]$	- acção do vento - FEM
----------------------	--------------------------------------	------------------------

Tabela II.20: Tensões principais $\sigma_{I}\,[kN/m^{2}]\,$ - acção do vento - EFGM

	Isotr	opia	Ortotrop	via (135°)	Ortotro	pia (45°)
Coordenada x (m)	Alinhamento A-A'	Alinhamento B-B'	Alinhamento A-A'	Alinhamento B-B'	Alinhamento A-A'	Alinhamento B-B'
-3.0057	8054.20	7915.70	8159.90	4891.00	7181.90	4825.90
-2.7675	8398.30	7741.00	7967.90	4776.30	6323.40	4751.30
-2.5293	8866.00	7768.40	7169.10	4828.30	5647.60	4795.80
-2.3907	8809.70	7851.20	6706.60	4976.10	5265.80	4901.40
-2.1525	8379.70	8039.00	6393.80	5363.10	5171.50	5158.40
-1.9143	8957.90	8244.00	6507.20	5751.60	5481.40	5431.00
-1.7757	9046.90	8372.40	6564.10	5920.20	5648.20	5572.20
-1.5375	8881.10	8605.80	6751.60	6212.90	5967.50	5811.40
-1.2993	9154.60	8807.40	6978.20	6448.30	6247.10	6012.20
-1.1607	9254.40	8892.10	7051.40	6528.70	6344.30	6097.10
-0.9225	9240.70	8977.20	7077.30	6612.90	6448.60	6204.40
-0.68431	9227.70	9012.50	7007.70	6642.40	6471.00	6265.80
-0.54569	9171.80	9025.80	6934.30	6636.30	6444.60	6279.80
-0.3075	9080.90	9049.50	6706.10	6568.70	6337.90	6263.00
-0.069312	9064.00	9064.00	6474.80	6474.80	6256.40	6256.40
0.069312	9064.00	9064.00	6395.80	6433.00	6506.70	6395.70
0.3075	9080.60	9049.50	6570.90	6440.70	6858.00	6631.40
0.54569	9171.20	9025.70	6700.60	6552.60	7059.10	6831.40
0.68431	9227.00	9012.40	6713.70	6603.20	7081.10	6916.30
0.9225	9240.00	8977.00	6659.50	6650.00	7015.90	7023.30
1.1607	9253.50	8891.90	6595.20	6654.00	6839.70	7083.00
1.2993	9153.90	8807.20	6572.10	6639.30	6692.70	7093.60
1.5375	8880.70	8605.60	6552.10	6569.80	6434.80	7044.90
1.7757	9045.80	8372.40	6526.30	6473.00	6241.40	6955.50
1.9143	8956.80	8244.00	6506.00	6415.30	6174.60	6902.50
2.1525	8379.40	8039.10	6486.50	6287.70	6234.20	6748.60
2.3907	8808.50	7851.30	6439.10	6157.70	6532.10	6582.70
2.5293	8864.70	7768.60	6429.10	6104.80	6775.20	6519.60
2.7675	8397.70	7741.10	6768.00	6105.80	7142.70	6489.50
3.0057	8054.10	7915.70	7493.90	6160.00	7616.10	6505.10

Anexo III Membranas Pneumáticas

Anexo III.1 Cúpula de base quadrada

Pressão	FE	М	EFO	GM	Diferença I	Relativa (%)
Interna (kPa)	υ=0,267	υ=0,0	v=0,267	υ=0,0	υ=0,267	υ=0,0
0	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
100	0,0162	0,0199	0,0157	0,0194	2,8373	2,4536
200	0,0289	0,0344	0,0283	0,0338	2,1385	1,8999
300	0,0392	0,0459	0,0385	0,0452	1,7844	1,6033
400	0,0480	0,0556	0,0473	0,0548	1,5643	1,4149
500	0,0558	0,0641	0,0550	0,0633	1,4110	1,2822
600	0,0627	0,0716	0,0619	0,0708	1,2968	1,1823
700	0,0691	0,0785	0,0682	0,0777	1,2073	1,1038
800	0,0749	0,0849	0,0741	0,0840	1,1346	1,0400
900	0,0804	0,0907	0,0795	0,0899	1,0744	0,9867
1000	0,0855	0,0963	0,0846	0,0953	1,0232	0,9414
1100	0,0903	0,1014	0,0894	0,1005	0,9791	0,9019
1200	0,0949	0,1063	0,0940	0,1054	0,9406	0,8676
1300	0,0992	0,1111	0,0983	0,1101	0,9065	0,8854
1400	0,1034	0,1155	0,1025	0,1145	0,8761	0,8105
1500	0,1074	0,1197	0,1064	0,1188	0,8490	0,7858

Tabela III.1: Deslocamentos [m] no ponto central da cúpula em função da pressão interna para dois coeficientes de Poisson distintos (isotropia)

Tabela III.2: Deslocamentos [m] no ponto central da cúpula em função da pressão interna para $(\upsilon=0.267)$ (ortotropia)

	Isotr	opia	Ortotro	pia (0º)	Ortotroj	pia (30°)
Pressão Interna (kPa)	FEM	EFGM	FEM	EFGM	FEM	EFGM
0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
100	0.0162	0.0157	0.0214	0.0209	0.0241	0.0235
200	0.0289	0.0283	0.0371	0.0364	0.0409	0.0401
300	0.0392	0.0385	0.0495	0.0487	0.0540	0.0532
400	0.0480	0.0473	0.0599	0.0591	0.0650	0.0641
500	0.0558	0.0550	0.0689	0.0681	0.0745	0.0737
600	0.0627	0.0619	0.0770	0.0762	0.0831	0.0822
700	0.0691	0.0682	0.0844	0.0835	0.0908	0.0899
800	0.0749	0.0741	0.0912	0.0903	0.0979	0.0970
900	0.0804	0.0795	0.0975	0.0966	0.1045	0.1036
1000	0.0855	0.0846	0.1034	0.1025	0.1107	0.1098
1100	0.0903	0.0894	0.1089	0.1080	0.1165	0.1156
1200	0.0949	0.0940	0.1141	0.1132	0.1220	0.1211
1300	0.0992	0.0983	0.1191	0.1182	0.1272	0.1263
1400	0.1034	0.1025	0.1239	0.1230	0.1322	0.1313
1500	0.1074	0.1064	0.1285	0.1275	0.1370	0.1361

		Isotr	opia	Ortotro	opia (0°)	Ortotro	pia (30°)
Coordenada y	Configuração	FEM	EFGM	FEM	EFGM	FEM	EFGM
(m)	(m)	Posição z (m)	Posição z (m)	Posição z (m)	Posição z (m)	Posição z (m)	Posição z (m)
0.5	0	0.000	0.000	0.0000	0.0000	0.0000	0.0000
0.4	0.036	0.076	0.076	0.0884	0.0891	0.0872	0.0881
0.3	0.064	0.135	0.135	0.1549	0.1565	0.1549	0.1566
0.2	0.084	0.176	0.176	0.1977	0.1994	0.2013	0.2030
0.1	0.096	0.199	0.199	0.2205	0.2213	0.2276	0.2284
0	0.1	0.207	0.206	0.2285	0.2278	0.2370	0.2363
-0.1	0.096	0.201	0.199	0.2234	0.2213	0.2307	0.2284
-0.2	0.084	0.178	0.176	0.2022	0.1994	0.2060	0.2030
-0.3	0.064	0.137	0.135	0.1588	0.1565	0.1591	0.1566
-0.4	0.036	0.077	0.076	0.0903	0.0891	0.0895	0.0881
-0.5	0	0.000	0.000	0.0000	0.0000	0.0000	0.0000

Tabela III.3: Configuração deformada [m] ao longo do alinhamento A-A' (L=1500 kPa e v=0.267)

Tabela III.4: Deslocamentos horizontais [m] segundo a direcção x ao longo do alinhamento B-B' (L=1500 kPa e υ =0.267)

	Isoti	opia	Ortotro	pia (0º)	Ortotrop	bia (30°)
Coordenada x	FEM	EFGM	FEM	EFGM	FEM	EFGM
(m)	Deslocamento x (m)					
-0.5	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
-0.4	-0.0103	-0.0102	-0.0110	-0.0109	-0.0115	-0.0117
-0.3	-0.0135	-0.0135	-0.0155	-0.0153	-0.0156	-0.0160
-0.2	-0.0112	-0.0114	-0.0138	-0.0137	-0.0133	-0.0140
-0.1	-0.0059	-0.0062	-0.0079	-0.0079	-0.0069	-0.0080
0	0.0004	0.0000	0.0001	0.0000	0.0012	0.0000
0.1	0.0065	0.0062	0.0079	0.0079	0.0090	0.0080
0.2	0.0114	0.0114	0.0136	0.0137	0.0148	0.0140
0.3	0.0134	0.0135	0.0151	0.0153	0.0164	0.0160
0.4	0.0102	0.0102	0.0108	0.0109	0.0118	0.0117
0.5	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

	Isotropia		Ortotro	pia (0º)	Ortotropia (30°)	
Coordenada y(m)	FEM	EFGM	FEM	EFGM	FEM	EFGM
	Deslocamento y (m)					
0.5	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.4	0.0102	0.0103	0.0151	0.0155	0.0130	0.0134
0.3	0.0134	0.0135	0.0192	0.0199	0.0170	0.0175
0.2	0.0114	0.0114	0.0152	0.0158	0.0142	0.0145
0.1	0.0065	0.0062	0.0080	0.0083	0.0080	0.0078
0	0.0004	0.0000	-0.0001	0.0000	0.0005	0.0000
-0.1	-0.0059	-0.0062	-0.0084	-0.0083	-0.0074	-0.0078
-0.2	-0.0112	-0.0114	-0.0162	-0.0158	-0.0144	-0.0145
-0.3	-0.0135	-0.0135	-0.0203	-0.0199	-0.0177	-0.0175
-0.4	-0.0103	-0.0103	-0.0158	-0.0155	-0.0136	-0.0134
-0.5	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Tabela III.5: Deslocamentos horizontais [m] segundo a direcção y ao longo do alinhamento A-A' (L=1500 kPa e υ =0.267)

Tabela III.6: Deslocamentos verticais [m] ao longo do alinhamento A-A' (L= 1500 kPa e v=0.267)

	Isotropia		Ortotropia (0°)		Ortotropia (30°)	
Coordenada y (m)	FEM	EFGM	FEM	EFGM	FEM	EFGM
	Deslocamento z (m)					
0.5	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.4	0.0399	0.0402	0.0524	0.0531	0.0512	0.0521
0.3	0.0709	0.0714	0.0909	0.0925	0.0909	0.0926
0.2	0.0916	0.0922	0.1137	0.1154	0.1173	0.1190
0.1	0.1031	0.1031	0.1245	0.1253	0.1316	0.1324
0	0.1074	0.1064	0.1285	0.1278	0.1370	0.1363
-0.1	0.1049	0.1031	0.1274	0.1253	0.1347	0.1324
-0.2	0.0942	0.0922	0.1182	0.1154	0.1220	0.1190
-0.3	0.0731	0.0714	0.0948	0.0925	0.0951	0.0926
-0.4	0.0411	0.0402	0.0543	0.0531	0.0535	0.0521
-0.5	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

	Isotropia Ortotropia (0°)		Ortotropia (30°)			
Coordenada y (m)	Tensao σ _{xx} [kN/m ²]	Tensao σ _{yy} [kN/m ²]	Tensao σ_{xx} [kN/m ²]	Tensao σ _{yy} [kN/m ²]	Tensao σ _{xx} [kN/m ²]	Tensao σ _{yy} [kN/m ²]
0.5	1.90E+05	8.76E+05	1.24E+05	6.28E+05	2.50E+05	6.82E+05
0.45	2.15E+05	8.47E+05	1.64E+05	5.96E+05	2.57E+05	6.53E+05
0.4	2.50E+05	7.84E+05	2.22E+05	5.32E+05	2.74E+05	5.96E+05
0.35	2.97E+05	7.27E+05	2.97E+05	4.78E+05	3.05E+05	5.43E+05
0.3	3.52E+05	6.78E+05	3.77E+05	4.33E+05	3.46E+05	4.96E+05
0.25	4.09E+05	6.37E+05	4.50E+05	3.98E+05	3.92E+05	4.57E+05
0.2	4.60E+05	6.05E+05	5.09E+05	3.72E+05	4.37E+05	4.27E+05
0.15	5.02E+05	5.81E+05	5.50E+05	3.55E+05	4.73E+05	4.05E+05
0.1	5.32E+05	5.65E+05	5.76E+05	3.43E+05	5.00E+05	3.91E+05
0.05	5.49E+05	5.56E+05	5.90E+05	3.36E+05	5.15E+05	3.83E+05
0	5.54E+05	5.54E+05	5.94E+05	3.34E+05	5.19E+05	3.80E+05
-0.05	5.46E+05	5.58E+05	5.89E+05	3.37E+05	5.12E+05	3.84E+05
-0.1	5.25E+05	5.68E+05	5.74E+05	3.45E+05	4.94E+05	3.93E+05
-0.15	4.91E+05	5.86E+05	5.45E+05	3.58E+05	4.63E+05	4.09E+05
-0.2	4.45E+05	6.13E+05	4.99E+05	3.77E+05	4.23E+05	4.33E+05
-0.25	3.90E+05	6.48E+05	4.35E+05	4.05E+05	3.75E+05	4.66E+05
-0.3	3.33E+05	6.93E+05	3.58E+05	4.42E+05	3.28E+05	5.09E+05
-0.35	2.79E+05	7.46E+05	2.77E+05	4.91E+05	2.88E+05	5.59E+05
-0.4	2.36E+05	8.07E+05	2.06E+05	5.49E+05	2.61E+05	6.17E+05
-0.45	2.09E+05	8.74E+05	1.56E+05	6.15E+05	2.52E+05	6.77E+05
-0.5	1.95E+05	9.08E+05	1.28E+05	6.50E+05	2.57E+05	7.10E+05

Tabela III.7: Distribuição de tensões suavizadas σ_{xx} e σ_{yy} [kN/m²] ao longo do alinhamento A-A' (L=1500 kPa e υ =0.267) - FEM

Tabela III.8: Distribuição de	tensões σ_{xx} e σ_{yy}	$[kN/m^2]$ ao	longo do	alinhamento	A-A' (L=	1500 kPa e
υ=0.267) - EFGM						

	Isotropia		Ortotropia (0°)		Ortotropia (30°)	
Coordenada y (m)	Tensao σ_{xx} [kN/m ²]	Tensao σ_{yy} [kN/m ²]	Tensao σ_{xx} [kN/m ²]	Tensao σ_{yy} [kN/m ²]	Tensao σ_{xx} [kN/m ²]	Tensao σ_{yy} [kN/m ²]
0.49436	2.14E+05	7.94E+05	1.57E+05	5.72E+05	3.05E+05	6.12E+05
0.475	2.16E+05	7.68E+05	1.67E+05	5.52E+05	2.98E+05	5.93E+05
0.45564	2.21E+05	7.46E+05	1.80E+05	5.32E+05	2.95E+05	5.75E+05
0.44436	2.26E+05	7.37E+05	1.90E+05	5.21E+05	2.95E+05	5.66E+05
0.425	2.37E+05	7.22E+05	2.10E+05	5.04E+05	2.99E+05	5.51E+05
0.40564	2.50E+05	7.05E+05	2.35E+05	4.87E+05	3.05E+05	5.36E+05
0.39436	2.58E+05	6.94E+05	2.50E+05	4.78E+05	3.09E+05	5.27E+05
0.375	2.74E+05	6.76E+05	2.78E+05	4.61E+05	3.17E+05	5.11E+05
0.35564	2.91E+05	6.59E+05	3.07E+05	4.45E+05	3.27E+05	4.97E+05
0.34436	3.02E+05	6.51E+05	3.24E+05	4.37E+05	3.34E+05	4.89E+05
0.325	3.21E+05	6.37E+05	3.54E+05	4.25E+05	3.48E+05	4.77E+05
0.30564	3.40E+05	6.24E+05	3.84E+05	4.12E+05	3.62E+05	4.65E+05
0.29436	3.52E+05	6.16E+05	4.01E+05	4.06E+05	3.71E+05	4.58E+05
0.275	3.71E+05	6.03E+05	4.28E+05	3.95E+05	3.86E+05	4.47E+05
0.25564	3.91E+05	5.92E+05	4.54E+05	3.85E+05	4.02E+05	4.37E+05
0.24436	4.02E+05	5.86E+05	4.68E+05	3.80E+05	4.10E+05	4.31E+05
0.225	4.20E+05	5.76E+05	4.91E+05	3.72E+05	4.26E+05	4.23E+05
0.20564	4.37E+05	5.67E+05	5.10E+05	3.66E+05	4.40E+05	4.16E+05
0.19436	4.46E+05	5.62E+05	5.21E+05	3.62E+05	4.48E+05	4.12E+05
0.175	4.61E+05	5.55E+05	5.36E+05	3.56E+05	4.60E+05	4.05E+05
0.15564	4.74E+05	5.49E+05	5.50E+05	3.51E+05	4.72E+05	4.00E+05
0.14436	4.81E+05	5.45E+05	5.57E+05	3.48E+05	4.78E+05	3.97E+05

		1				
0.125	4.92E+05	5.40E+05	5.67E+05	3.44E+05	4.88E+05	3.93E+05
0.10564	5.02E+05	5.36E+05	5.75E+05	3.41E+05	4.96E+05	3.89E+05
0.094365	5.06E+05	5.34E+05	5.79E+05	3.39E+05	5.00E+05	3.88E+05
0.075	5.13E+05	5.30E+05	5.84E+05	3.37E+05	5.06E+05	3.85E+05
0.055635	5.18E+05	5.28E+05	5.88E+05	3.35E+05	5.10E+05	3.83E+05
0.044365	5.21E+05	5.27E+05	5.90E+05	3.34E+05	5.12E+05	3.82E+05
0.025	5.23E+05	5.26E+05	5.92E+05	3.33E+05	5.14E+05	3.81E+05
0.0056351	5.25E+05	5.25E+05	5.93E+05	3.33E+05	5.16E+05	3.81E+05
-0.0056351	5.25E+05	5.25E+05	5.93E+05	3.33E+05	5.16E+05	3.81E+05
-0.025	5.23E+05	5.26E+05	5.92E+05	3.33E+05	5.15E+05	3.81E+05
-0.044365	5.21E+05	5.27E+05	5.90E+05	3.34E+05	5.12E+05	3.82E+05
-0.055635	5.18E+05	5.28E+05	5.88E+05	3.35E+05	5.10E+05	3.83E+05
-0.075	5.13E+05	5.30E+05	5.84E+05	3.37E+05	5.06E+05	3.85E+05
-0.094365	5.06E+05	5.34E+05	5.79E+05	3.39E+05	5.00E+05	3.88E+05
-0.10564	5.02E+05	5.36E+05	5.75E+05	3.41E+05	4.96E+05	3.89E+05
-0.125	4.92E+05	5.40E+05	5.67E+05	3.44E+05	4.88E+05	3.93E+05
-0.14436	4.81E+05	5.45E+05	5.57E+05	3.48E+05	4.79E+05	3.97E+05
-0.15564	4.74E+05	5.49E+05	5.50E+05	3.51E+05	4.73E+05	4.00E+05
-0.175	4.61E+05	5.55E+05	5.36E+05	3.56E+05	4.61E+05	4.05E+05
-0.19436	4.46E+05	5.62E+05	5.21E+05	3.62E+05	4.49E+05	4.12E+05
-0.20564	4.37E+05	5.67E+05	5.10E+05	3.66E+05	4.41E+05	4.16E+05
-0.225	4.20E+05	5.76E+05	4.91E+05	3.72E+05	4.26E+05	4.23E+05
-0.24436	4.02E+05	5.86E+05	4.68E+05	3.80E+05	4.11E+05	4.32E+05
-0.25564	3.91E+05	5.92E+05	4.54E+05	3.85E+05	4.02E+05	4.37E+05
-0.275	3.71E+05	6.03E+05	4.28E+05	3.95E+05	3.87E+05	4.47E+05
-0.29436	3.52E+05	6.16E+05	4.01E+05	4.06E+05	3.71E+05	4.58E+05
-0.30564	3.40E+05	6.24E+05	3.84E+05	4.12E+05	3.63E+05	4.65E+05
-0.325	3.21E+05	6.37E+05	3.54E+05	4.25E+05	3.48E+05	4.77E+05
-0.34436	3.02E+05	6.51E+05	3.24E+05	4.37E+05	3.35E+05	4.90E+05
-0.35564	2.91E+05	6.59E+05	3.07E+05	4.45E+05	3.28E+05	4.98E+05
-0.375	2.74E+05	6.76E+05	2.78E+05	4.61E+05	3.17E+05	5.12E+05
-0.39436	2.58E+05	6.94E+05	2.50E+05	4.78E+05	3.09E+05	5.28E+05
-0.40564	2.50E+05	7.05E+05	2.35E+05	4.87E+05	3.05E+05	5.38E+05
-0.425	2.37E+05	7.22E+05	2.10E+05	5.04E+05	2.99E+05	5.52E+05
-0.44436	2.26E+05	7.37E+05	1.90E+05	5.21E+05	2.96E+05	5.67E+05
-0.45564	2.21E+05	7.46E+05	1.80E+05	5.32E+05	2.95E+05	5.77E+05
-0.475	2.16E+05	7.68E+05	1.67E+05	5.52E+05	2.99E+05	5.95E+05
-0.49436	2.14E+05	7.94E+05	1.57E+05	5.72E+05	3.05E+05	6.14E+05

Anexo III.2 Membrana cilíndrica

Coordenada y (m)	EFGM	FEM
10	0.00003	0.00000
9	-0.03423	-0.07185
8	-0.06511	-0.05443
7	-0.02884	-0.00666
6	0.02208	0.04744
5	0.06645	0.09490
4	0.10631	0.13052
3	0.13645	0.15433
2	0.15650	0.16870
1	0.16811	0.17616
0	0.17188	0.17844
-1	0.16811	0.17616
-2	0.15650	0.16870
-3	0.13645	0.15433
-4	0.10631	0.13052
-5	0.06645	0.09490
-6	0.02208	0.04744
-7	-0.02884	-0.00666
-8	-0.06511	-0.05443
-9	-0.03423	-0.07185
-10	0.00003	0.00000

 Tabela III.9: Deslocamentos verticais [m] ao longo do alinhamento A-A' – pressão interna vertical

Tabela III.10: Tensões principais $[{\rm KN/m}^2]$ ao longo do alinhamento A-A'-pressão interna vertical-EFGM

Coordenada y (m)	Tensão Principal σ ₁ (KN/m ²)	Tensão Principal σ _{II} (KN/m ²)
9.8873	3282.7	580.4
9.5	3087.6	966.3
9.1127	3030.6	844.6
8.8873	2960.3	85.3
8.5	2830.4	-169.4
8.1127	2732.3	-194.5
7.8873	2730.2	179.0
7.5	2660.4	63.3
7.1127	2637.2	-253.6
6.8873	2612.4	-24.0
6.5	2610.2	404.2
6.1127	2600.7	647.7
5.8873	2689.3	703.1
5.5	2687.2	934.9
5.1127	2730.8	1291.1
4.8873	2778.5	1505.1
4.5	2805.0	1803.3
4.1127	2756.0	2074.7
3.8873	2798.6	2252.9
3.5	2926.3	2560.1

11	1	1
3.1127	2990.6	2822.7
2.8873	2986.7	2920.0
2.5	3173.4	2971.5
2.1127	3368.6	3035.0
1.8873	3462.8	3048.9
1.5	3603.0	3077.0
1.1127	3711.8	3099.2
0.8873	3758.0	3101.2
0.5	3816.8	3115.7
0.1127	3845.5	3131.0
-0.1127	3845.5	3131.0
-0.5	3816.8	3115.7
-0.8873	3758.0	3101.2
-1.1127	3711.8	3099.2
-1.5	3603.0	3077.0
-1.8873	3462.8	3048.9
-2.1127	3368.6	3035.0
-2.5	3173.4	2971.5
-2.8873	2986.7	2920.0
-3.1127	2990.6	2822.7
-3.5	2926.3	2560.1
-3.8873	2798.6	2252.9
-4.1127	2756.0	2074.7
-4.5	2805.0	1803.3
-4.8873	2778.5	1505.1
-5.1127	2730.8	1291.1
-5.5	2687.2	934.9
-5.8873	2689.3	703.1
-6.1127	2600.7	647.7
-6.5	2610.2	404.2
-6.8873	2612.4	-24.0
-7.1127	2637.2	-253.6
-7.5	2660.4	63.3
-7.8873	2730.2	179.0
-8.1127	2732.3	-194.5
-8.5	2830.4	-169.4
-8.8873	2960.3	85.3
-9.1127	3030.6	844.6
-9.5	3087.6	966.3
-9.8873	3282.7	580.4

Coordenada y (m)	Tensão Principal σ ₁ (KN/m ²)	Tensão Principal σ_{II} (KN/m ²)
10	3089.7	923.8
9	2702.1	0.0
8	2544.0	0.0
7	2497.4	0.0
6	2542.8	546.5
5	2654.7	1523.1
4	2800.8	2466.5
3	3233.2	2949.2
2	3771.3	3073.7
1	4082.8	3155.8
0	4184.0	3184.3
-1	4082.8	3155.8
-2	3771.3	3073.7
-3	3233.2	2949.2
-4	2800.8	2466.5
-5	2654.7	1523.1
-6	2542.8	546.5
-7	2497.4	0.0
-8	2544.0	0.0
-9	2702.1	0.0
-10	3089.7	923.8

Tabela III.11: Tensões principais [KN/m²] ao longo do alinhamento A-A' -pressão interna vertical -FEM

Tabela III.12: Deslocamentos verticais [m] ao longo do alinhamento A-A' – pressão interna no	rmal
--	------

Coordenada y (m)	EFGM	FEM
10	0.00002	0.00000
9	0.00862	0.00931
8	0.01449	0.01429
7	0.01725	0.01700
6	0.01882	0.01825
5	0.01951	0.01860
4	0.01950	0.01842
3	0.01922	0.01802
2	0.01886	0.01761
1	0.01858	0.01731
0	0.01847	0.01720
-1	0.01858	0.01731
-2	0.01886	0.01761
-3	0.01922	0.01802
-4	0.01950	0.01842
-5	0.01951	0.01860
-6	0.01882	0.01825
-7	0.01725	0.01700
-8	0.01449	0.01429
-9	0.00862	0.00931
-10	0.00002	0.00000

Coordenada y (m)	Tensão Principal σ ₁ (KN/m ²)	Tensão Principal σ _{II} (KN/m ²)
9.8873	3405.5	1018.3
9.5	3394.9	1019.1
9.1127	3366.3	962.9
8.8873	3353.9	970.7
8.5	3412.8	1003.7
8.1127	3413.1	1011.0
7.8873	3390.9	991.7
7.5	3398.4	994.1
7.1127	3428.5	1016.4
6.8873	3426.0	1019.6
6.5	3408.1	1020.2
6.1127	3403.0	1024.6
5.8873	3412.4	1031.2
5.5	3428.1	1043.0
5.1127	3430.3	1050.6
4.8873	3423.2	1051.9
4.5	3425.5	1057.5
4.1127	3434.4	1064.0
3.8873	3435.3	1066.4
3.5	3436.4	1070.2
3.1127	3438.0	1073.7
2.8873	3438.8	1075.4
2.5	3442.6	1078.4
2.1127	3445.5	1080.8
1.8873	3445.2	1081.4
1.5	3446.3	1082.8
1.1127	3448.1	1084.1
0.8873	3448.4	1084.5
0.5	3448.9	1085.0
0.1127	3449.3	1085.2
-0.1127	3449.3	1085.2
-0.5	3448.9	1085.0
-0.8873	3448.4	1084.5
-1.1127	3448.1	1084.1
-1.5	3446.3	1082.8
-1.8873	3445.2	1081.4
-2.1127	3445.5	1080.8
-2.5	3442.6	1078.4
-2.8873	3438.8	1075.4
-3.1127	3438.0	1073.7
-3.5	3436.4	1070.2
-3.8873	3435.3	1066.4
-4.1127	3434.4	1064.0
-4.5	3425.5	1057.5
-4.8873	3423.2	1051.9
-5.1127	3430.3	1050.6
-5.5	3428.1	1043.0

-5.8873	3412.4	1031.2
-6.1127	3403.0	1024.6
-6.5	3408.1	1020.2
-6.8873	3426.0	1019.6
-7.1127	3428.5	1016.4
-7.5	3398.4	994.1
-7.8873	3390.9	991.7
-8.1127	3413.1	1011.0
-8.5	3412.8	1003.7
-8.8873	3353.9	970.7
-9.1127	3366.3	962.9
-9.5	3394.9	1019.1
-9.8873	3405.5	1018.3

Tabela III.14: Tensões principais [KN/m²] ao longo do alinhamento A-A'-pressão interna normal-FEM

Coordenada y(m)	Tensão Principal σ _I (KN/m ²)	Tensão Principal σ _{II} (KN/m ²)
10	3374.6	1009.1
9	3376.3	968.2
8	3399.4	990.8
7	3412.1	1021.4
6	3422.5	1045.9
5	3431.9	1059.5
4	3439.8	1063.2
3	3446.2	1060.6
2	3450.6	1055.4
1	3453.3	1051.0
0	3454.1	1049.3
-1	3453.3	1051.0
-2	3450.6	1055.4
-3	3446.2	1060.6
-4	3439.8	1063.2
-5	3431.9	1059.5
-6	3422.5	1045.9
-7	3412.1	1021.4
-8	3399.4	990.8
-9	3376.3	968.2
-10	3374.6	1009.1

Coordenada y (m)	EFGM	FEM
10	0.00000	0.00000
9	0.01600	0.01685
8	0.02655	0.02627
7	0.03195	0.03173
6	0.03537	0.03461
5	0.03702	0.03581
4	0.03748	0.03599
3	0.03741	0.03567
2	0.03708	0.03521
1	0.03679	0.03485
0	0.03668	0.03471
-1	0.03679	0.03485
-2	0.03708	0.03521
-3	0.03741	0.03567
-4	0.03748	0.03599
-5	0.03702	0.03581
-6	0.03537	0.03461
-7	0.03195	0.03173
-8	0.02655	0.02627
-9	0.01600	0.01685
-10	0.00000	0.00000

Tabela III.15: Deslocamentos verticais [m] ao longo do alinhamento A-A' – pressão interna normal – ortotropia (30°)

Tabela III.16: Tensões principais [KN/m²] ao longo do alinhamento A-A'-pressão interna normal-EFGM – ortotropia (30°)

Coordenada y (m)	Tensão Principal σ _I (KN/m ²)	Tensão Principal σ _{II} (KN/m ²)
9.8873	3430.8	1281.9
9.5	3425.5	1281.8
9.1127	3406.2	1205.6
8.8873	3390.7	1,213
8.5	3453.1	1264.3
8.1127	3460.5	1287.5
7.8873	3454.3	1264.5
7.5	3468.3	1,263
7.1127	3462.6	1291.2
6.8873	3476.4	1,303
6.5	3474	1312
6.1127	3467.1	1319.1
5.8873	3471.7	1326.7
5.5	3490.2	1344.1
5.1127	3500.9	1357.9
4.8873	3496	1360.9
4.5	3497.4	1368.2
4.1127	3506.6	1377.2
3.8873	3510.9	1381.7
3.5	3516.3	1388.6
3.1127	3519.6	1394

2 9972	3520.6	1206.4
2.0073	2525.5	1390.4
2.3	3520.4	1401
2.1127	3530.4	1404.9
1.88/3	3531.2	1406.2
1.5	3533.1	1408.5
1.1127	3535.1	1410.4
0.8873	3536	1411.2
0.5	3537.4	1412.2
0.1127	3538.3	1412.6
-0.1127	3538.3	1412.6
-0.5	3537.7	1412.1
-0.8873	3536.5	1411
-1.1127	3535.8	1410.3
-1.5	3534	1408.4
-1.8873	3532.1	1406.1
-2.1127	3531.2	1404.6
-2.5	3526.6	1400.7
-2.8873	3522.1	1396.2
-3.1127	3521.4	1393.9
-3.5	3518.1	1388.5
-3.8873	3512	1381.5
-4.1127	3507.6	1376.9
-4.5	3498.9	1368
-4.8873	3498.5	1361.1
-5.1127	3503.4	1358.2
-5.5	3491.9	1344.6
-5.8873	3472.2	1327.1
-6.1127	3467.5	1319.5
-6.5	3475.2	1312.2
-6.8873	3478.4	1,303
-7.1127	3464.5	1291.3
-7.5	3468.3	1,263
-7.8873	3454.6	1265.4
-8.1127	3460.5	1288.7
-8.5	3453.1	1265.6
-8.8873	3390.7	1.214
-9.1127	3406.2	1206
-9.5	3425.5	1281.6
-9 8873	3430.8	1281.8
7.0075	5 150.0	1201.0

Instituto Superior Técnico

Tabela III.17: Tensões principais $[KN/m^2]$ ao longo do alinhamento A-A'-pressão interna normal-FEM- ortotropia (30°)

Coordenada y (m)	Tensão Principal σ ₁ (KN/m ²)	Tensão Principal σ _{II} (KN/m ²)
10	3415.2	1268.1
9	3411.9	1214.8
8	3445.0	1247.8
7	3466.5	1292.3
6	3485.6	1330.7
5	3502.5	1356.3
4	3516.6	1369.4
3	3527.2	1373.5
2	3534.4	1372.8
1	3538.5	1370.9
0	3539.8	1370.1
-1	3538.5	1370.9
-2	3534.4	1372.8
-3	3527.2	1373.5
-4	3516.6	1369.4
-5	3502.5	1356.3
-6	3485.6	1330.7
-7	3466.5	1292.3
-8	3445.0	1247.8
-9	3411.9	1214.8
-10	3415.2	1268.1

Divisão de Divulgação Científica e Técnica - LNEC