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ABSTRACT 

Composite liners are used to limit the contamination migration from landfills. Their successful 
performance is closely related with the geomembrane as it provides the primary barrier to diffusive 
and advective transport of contaminants. Critical issues on the performance of the geomembranes are 
the seams between geomembrane panels and the inevitable defects resulting, for instance, from 
inadequate installation activities. 

In landfills, where high density polyethylene geomembranes are usually used, seams are typically 
made by the thermal-hot dual wedge method. A literature review on quality control of the seams 
showed that, in situ, fluid-tightness of seams is evaluated in qualitative terms (pass/failure criteria), 
despite their importance to ensure appropriate performance of the geomembranes as barriers.  

In addition, a synthesis of studies on geomembrane defects indicated that defects varying in density 
from 0.7 to 15.3 per hectare can be found in landfills. Defects represent preferential flow paths for 
leachate. Various authors have developed analytical solutions and empirical equations for predicting 
the flow rate through composite liners due to defects in the geomembrane. The validity of these 
methods for composite liners comprising a geomembrane over a geosynthetic clay liner (GCL) over a 
compacted clay liner (CCL) has never been studied from an experimental point of view. 

To address the problem of fluid migration through the geomembrane seams, an attempt is made to 
provide a test method, herein termed as “gas permeation pouch test”, for assessing the quality of the 
thermal-hot dual wedge seams. This test consists of pressurising the air channel formed by the double 
seam with a gas to a specific pressure and, then, measuring the decrease in pressure over time. From 
the pressure decrease, both the gas permeation coefficients, in steady state conditions, and the time 
constant, in unsteady state conditions, can be estimated. Experiments were carried out both in 
laboratory and in field conditions to study the suitability of this test to assess the quality of the seams 
in situ. The results obtained suggest that it is possible to assess the quality of the geomembrane seams 
from a non-destructive test conducted in situ by determining the time constant.  

To address the problem of fluid migration through geomembrane defects, composite liners comprising 
a geomembrane with a circular hole over a GCL over a CCL were simulated in tests at three scales. 
Flow rates at the interface between the geomembrane and the GCL were measured. Correspondent 
interface transmissivity was estimated based on final flow rates and observation of the wetted area. A 
parametric study was performed to evaluate the influence of the prehydration of the GCL, the 
hydraulic head on top of the liner and the confining stress over the liner system, on the flow rate 
through composite liners due to defects in the geomembrane, as well as to check the feasibility of an 
extrapolation of the results obtained on small-scale tests to field conditions. It was found that the 
transmissivity does not seem to be affected by the prehydration of the GCLs when low confining 
stresses were used. It also does not seem to be influenced by the increase in confining stress when 
non-prehydrated GCLs are used. Finally, the transmissivity does not seem to be significantly affected 
by the increase in hydraulic head. The results also suggest that predictions on flow rates though 
composite liners due to defects in the geomembrane, which are based on transmissivity values 
obtained in small scale tests, are conservative.  

Lastly, based on the transmissivities obtained in this study, empirical equations for predicting the flow 
rate through composite liners consisting of a geomembrane over a GCL over a CCL are proposed. 
Flow rates calculated using these equations are in better agreement with the flow rates measured 
experimentally than the empirical equations reported in literature. The new empirical equations 
provide design engineers with simple and accurate tools for calculating the flow rates through the 
above mentioned type of composite liners.  
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RESUME 

Les étanchéités composites sont utilisées pour limiter la migration des lixiviats à travers les barrières 
d’installations de stockage de déchets. Leur efficacité est étroitement liée à la géomembrane car 
cette-ci agit comme une barrière primaire contre le transport diffusif et advectif des contaminants. Un 
point essentiel pour une bonne performance des géomembranes est la bonne qualité des soudures entre 
les lés de géomembranes ainsi que l’absence de défauts. 
Dans les barrières d’installations de stockage de déchets, où des géomembranes en polyéthylène haute 
densité sont le plus couramment utilisées, les soudures sont souvent effectuées par la méthode du 
double cordon. Une synthèse de la littérature sur le contrôle de la qualité des soudures, a démontré que, 
sur site, l’étanchéité des soudures est évaluée en termes qualitatifs (critères d’admission/défaillance), 
malgré leur importance pour assurer la performance adéquate des géomembranes en tant que barrières.  
D’autre part, une synthèse des études sur les défauts dans les géomembranes a démontré que leur 
densité est comprise en moyenne entre 0,7 à 15,3 par hectare dans les barrières d’installations de 
stockage de déchets. Les défauts représentent des passages préférentiels d’écoulement pour les 
lixiviats. Plusieurs auteurs ont développé des solutions analytiques et des équations empiriques pour 
prévoir l’écoulement au travers des étanchéités composites dus à des défauts dans la géomembrane. La 
validité de ces équations pour les étanchéités composites comportant une géomembrane associée à un 
géosynthétique bentonitique (GSB) placé sur une couche d’argile compactée (CCL) n’a jamais été 
étudiée, du point de vue expérimental.  
Une méthode d’essai a été élaborée pour évaluer la qualité des soudures effectuées par la méthode du 
double cordon, ici désignée comme “essais de perméabilité au gaz sur poche”. Cet méthode d’essai 
consiste à pressuriser le conduit d’air résultant de l’élaboration du double cordon avec un gaz jusqu’à 
une pression spécifique et mesurer la réduction de la pression au cours du temps. A partir de la 
réduction de la pression on peut estimer les coefficients de perméation au gaz, en régime permanent, 
ainsi que la constante de temps, en régime transitoire. Des essais ont été effectués à la fois au 
laboratoire, et en extérieur avec des soudures exposées, pour étudier l’adéquation de cet essai à 
l’évaluation de la qualité des soudures sur site. Les résultats obtenus suggèrent qu’il est possible 
d’évaluer la qualité des soudures de géomembrane à partir d’un essai non-destructif effectué sur site 
moyennant la détermination de la constante de temps.  
Des essais à trois échelles différentes ont été réalisés avec des étanchéités composites comportant une 
géomembrane avec un trou circulaire surmontant un GSB pour étudier le problème de la migration des 
liquides au travers des défauts dans la géomembrane. Les débits à l’interface entre la géomembrane et 
le GSB ont été mesurés et la transmissivité de l’interface correspondante a été estimée. Une étude 
paramétrique a été effectuée pour évaluer l’influence de la pré-hydratation du GSB, de la charge 
hydraulique et de la contrainte mécanique appliquées sur l’étanchéité composite, ainsi que pour évaluer 
la viabilité de l’extrapolation des résultats obtenus dans des essais à petite échelle aux conditions de 
terrain. On a observé que la transmissivité ne semble pas être affectée par la pré-hydratation des GSB 
quand des contraintes de confinement réduites ont été utilisées. La transmissivité ne semble pas non 
plus être influencée par l’augmentation de la contrainte de confinement quand on utilise des GSB, qui 
n’ont pas été préalablement hydratés. Finalement, la transmissivité ne semble pas être 
significativement affectée par l’augmentation de la charge hydraulique. Les résultats suggèrent aussi 
que les prévisions relatives aux débits au travers des étanchéités composites liés à l’existence de 
défauts dans la géomembrane, et basées sur les valeurs de transmissivité obtenues dans des essais à 
petite échelle représentent la limite supérieure des débits pouvant être observés.  
Finalement, à partir des valeurs de transmissivité obtenues dans cette étude, on a développé des 
équations empiriques pour prévoir le débit au travers des étanchéités composites comportant une 
géomembrane, un GSB et une CCL. Les débits calculés en utilisant les nouvelles équations proposées 
sont plus proches des résultats de mesure que les équations empiriques existantes. Ces nouvelles 
équations empiriques représentent donc pour l’ingénieur un outil validé par l’expérimentation de 
prévision des débits à travers les étanchéités composites. 
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RESUMO 

Os sistemas de confinamento de fundo e taludes dos aterros de resíduos incluem barreiras múltiplas, 
tipicamente constituídas por uma geomembrana, geralmente de polietileno de alta densidade (PEAD), 
um geossintético bentonítico (GCL) e uma camada de solo argiloso compactada (CCL). O sucesso 
destas barreiras depende, em grande medida, do desempenho das geomembranas pois estas constituem 
a barreira activa à migração de poluentes. Os principais aspectos, que podem comprometer o 
desempenho das geomembranas, são as juntas (união entre painéis adjacentes) e os orifícios. 

A revisão bibliográfica sobre o controlo de qualidade das juntas in situ indicou que a estanqueidade 
das juntas é avaliada, através de critérios qualitativos (passa/não passa), não obstante a importância 
das mesmas para assegurar o desempenho adequado das geomembranas.  

Por outro lado, a revisão bibliográfica sobre orifícios nas geomembranas mostrou que estes são 
inevitáveis e que, nos aterros de resíduos, o seu número pode variar entre 0,7 a 15,5 por hectare. Os 
orifícios representam caminhos preferenciais para a migração de poluentes. Várias equações analíticas 
e empíricas têm sido desenvolvidas, para calcular o fluxo de contaminantes que migra através de 
orifícios nas geomembranas. Porém, a validade destes métodos, para barreiras múltiplas constituídas 
por geomembrana, GCL e CCL, nunca foi estudada de um ponto de vista experimental. 

Para estudar o problema da estanqueidade das juntas realizadas por termofusão, com dupla soldadura 
(método geralmente utilizado para nas geomembranas de PEAD), desenvolveu-se um ensaio, o qual 
foi designado por “ensaio de permeância em bolsa de gás”. Este ensaio consiste em pressurizar o canal 
entre os dois lados da dupla soldadura com um determinado gás. A qualidade das juntas foi avaliada 
com base em dois parâmetros, determinados a partir do decréscimo de pressão no interior da junta, ao 
longo do tempo. O primeiro parâmetro, a permeância, foi calculado em regime permanente. O 
segundo, “ parâmetro τ”, foi estimado em regime transitório. Foram realizados ensaios em laboratório 
assim como ao ar livre, a fim de estudar a adequabilidade do método para avaliar a qualidade das 
juntas in situ. Os resultados obtidos sugerem que é possível avaliar a qualidade das juntas através de 
ensaios de permeância em bolsa de gás in situ, mediante a determinação do parâmetro τ. 

Para estudar o problema da migração de fluidos através de orifícios na geomembrana, realizaram-se 
ensaios em três escalas, com vista a medir o fluxo que migra através de um orifício na geomembrana e 
calcular a correspondente transmissividade entre a mesma e o GCL. Este trabalho teve por objectivos 
estudar a influência da pré-hidratação dos GCLs, da tensão confinante e da carga hidráulica sobre a 
migração de fluidos através dos orifícios da geomembranas assim como comparar os resultados 
obtidos a diferentes escalas e avaliar a validade dos resultados obtidos, em ensaios laboratoriais, para 
as condições em que a geomembrana se encontra em serviço. Os resultados sugerem que a 
transmissividade não é significativamente influenciada pela pré-hidratação dos GCLs quando a tensão 
confinante é reduzida. Por outro lado, o aumento da tensão confinante influenciou apenas os 
resultados dos ensaios realizados com provetes pré-hidratados. A transmissividade não foi, 
igualmente, influenciada pelo aumento da carga hidráulica. Os resultados sugerem, também, que o 
cálculo do fluxo que migra através de orifícios de geomembrana, realizado com base nos valores da 
transmissividade, obtidos em ensaios de pequena escala, é conservativo.  

Por fim, com base nos valores de transmissividade obtidos neste estudo, desenvolveram-se equações 
empíricas para calcular o fluxo que migra através de barreiras múltiplas constituídas por uma 
geomembrana, um GCL e uma camada de solo argiloso compactada. Os fluxos calculados utilizando 
as novas equações foram relativamente semelhantes aos obtidos experimentalmente e, 
comparativamente, mais precisos do que os fluxos calculados com base nas equações empíricas 
disponíveis na literatura, o que constitui um melhoramento nas ferramentas existentes. 
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NOTATIONS 

Roman 
a = area of circular defect in geomembrane (m2) 
A, Ap, AQ = constants (dimensionless) 
b = width of defect of infinite length (m) 
B, Bp, BQ = constants (dimensionless) 
C = Hf +HL - ha (m) 
Cc = contact condition factor, also called contact quality factor (dimension is variable), 

for axi-symmetric case 
Ctd = contact condition factor, also called contact quality factor (dimension is variable), 

for two-dimensional case 
cf = concentration of penetrant molecules in fluid in contact with geomembrane (kg m-3) 
cg = concentration of diffusing molecules in geomembrane (kg m-3) 
D = diffusion coefficient (m2 s-1) 
Epeel = seam efficiency in peel (%) 
Eshear = seam efficiency in shear (%) 
f = mass flux of penetrant molecules through the geomembrane (kg m-2 s-1) 
fCO2L = mass flux of carbon dioxide through the geomembrane by unit of seam length 

(kg m-2 s-1) 
fG = mass flux of gas G determined for ∆pG when the specimen is immersed in gas 

(mol m-2 s-1 for geomembrane area unit or mol s-1 for pouch specimen) 
fG’ = mass flux of gas G determined for ∆p’G when the specimen is immersed in liquid 

(mol m-2 s-1 for geomembrane area unit or mol s-1 for pouch specimen) 
fN2 = mass flux of nitrogen through the geomembrane (kg m-2 s-1) 
fN2L = mass flux of nitrogen through the geomembrane by unit of seam length  (kg m-2 s-1) 
fW = mass flux of water vapour determined (mol m-2 s-1 for geomembrane area unit or 

mol s-1 for pouch specimen) 
F, E = coefficient, value dependent on boundary conditions (m) 
g = acceleration due to gravity (m s− 2) 
h = hydraulic head interface (m) 
ha = hydraulic head in aquifer or at bottom of foundation layer (m) 
Hf = thickness of the foundation layer (m) 
HGCL = thickness of the GCL (m) 
HL = thickness of the soil layer (CCL or GCL)(m) 
HS = equivalent thickness of the soil liner (GCL+CCL) (m) 
hs = specific hydraulic head in interface at r = Rc (m) 
hw = elevation of the water body above a specific datum (m) 
i = hydraulic head gradient (m) 
I0 = modified Bessel function of zero order (dimensionless) 
I1 = modified Bessel function of first order (dimensionless) 
IP = plasticity index (%) 
is = mean gradient across soil layer and foundation layer (dimensionless) 
k = saturated hydraulic conductivity (m s-1) 
K = unsaturated hydraulic conductivity (m s-1) 
K0 = modified Bessel function of zero order (dimensionless) 
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K1 = modified Bessel function of first order (dimensionless) 
kf = hydraulic conductivity of foundation layer (m s− 1) 
kGCL = hydraulic conductivity of geosynthetic clay liner (m s− 1) 
ki = hydraulic conductivity of interface (m s− 1) 
kL = hydraulic conductivity of soil layer (CCL or GCL) (m s− 1) 
ks = equivalent hydraulic conductivity (GCL+CCL) (m s− 1) 
kx, ky, kz = hydraulic conductivity, repectively, in x-direction, y-direction and z-direction (m s-1) 
L = seam length (m) 
L0 = melt depth (m) 
LL = liquid limit (%) 
LP = plastic limit (%) 
Ltd = length of the geomembrane seam, or length of two-dimensional defect in 

geomembrane (defect of infinite length or damaged wrinkle) (m) 
m  = van Genuchten model parameter (dimensionless) 
Mf = mass of dry filter paper (g) 
Mw = mass of water in the filter paper (g) 
n = number of moles of specific element (mol) 
n = van Genuchten model parameter (dimensionless) 
nG = number of moles of gas G (mol) 
nG+W = number of moles of gas G and water W (mol) 
nN2 = number of moles of nitrogen (mol) 
nW = number of moles of water (mol) 
P = coefficient of permeability of the geomembrane to a specific element (m2 s-1) 

P0 = 100
tsmeasuremen),(of.NoTotal

optimumsoflineabovetspoin),(of.No
d

d ×
γω

γω  

patm = atmospheric pressure (Pa) 
PCO2L = permeance to carbon dioxide by unit of seam length (mol m-1 s-1 Pa-1) 
PG = permeance to gas G (mol m-2 s-1 Pa-1 for characterizing geomembrane area unit or 

mol s-1 Pa-1 for characterizing pouch specimen) 
pG+W = gas and water vapour pressure in pouch (Pa) 
pGin = gas G absolute pressure inside the pouch (total or partial pressure depending on 

the gas composition, monoconstituent or not) (Pa) 
pGin(∞) = absolute final gas pressure in the pouch (Pa) 
pGin(0) = absolute initial gas pressure in pouch (Pa) 
pGout = gas pressure outside pouch specimen (Pa) 
pN2 = nitrogen pressure in pouch (Pa) 
pN2out = nitrogen pressure outside pouch specimen (Pa) 
PN2 = permeance to nitrogen (mol s-1 Pa-1) 
PN2L = permeance to nitrogen by unit of seam length (mol m-1 s-1 Pa-1) 
PW = permeance to water vapour (mol m-2 s-1 Pa-1 for characterizing geomembrane area unit 

or mol s-1 Pa-1 for characterizing pouch specimen) 
pWout = pressure of liquid outside the pouch specimen (Pa) 

''
2NP  = coefficient of permeability to nitrogen (mol s-1 m-1 Pa-1) 
''

WP  = coefficient of permeability to water vapour (mol s-1 m-1 Pa-1) 
''

GP  = coefficient of permeability to a specific gas G (mol s-1 m-1 Pa-1) 
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'
GP  = coefficient of permeability to a specific gas G (mol m2 s-1 kg-1) 

LCOP 2  = mean cabon dioxide permeance by unit of seam length (mol m-1 s-1 Pa-1) 

WGp +  = mean gas and water vapour pressure in pouch during the time interval ∆t (Pa) 

GLP  = mean gas G permeance of pouch specimen by unit of seam length determined for time 
interval ∆t (mol s-1 m-1 Pa-1) 

GP  = mean gas G permeance of pouch specimen determined for time interval ∆t (mol m-2 s-1 
Pa-1 for characterizing geomembrane area unit or mol s-1 Pa-1 for characterizing pouch 
specimen) 

Ginp  = mean gas G pressure inside the pouch during the time interval ∆t (Pa) 

LNP 2  = mean nitrogen permeance by unit of seam length (mol m-1 s-1 Pa-1) 

2NP  = mean nitrogen permeance of pouch specimen determined for time interval ∆t 
(mo m-2 s-1 Pa-1 for characterizing geomembrane area unit or mol s-1 Pa-1 for 
characterizing pouch specimen) 

WLP  = mean water vapour permeance of pouch specimen by unit of seam length determined 
for time interval ∆t (mol s-1 m-1 Pa-1) 

WP  = mean water vapour permeance of pouch specimen determined for time interval ∆t 
(mol m-2 s-1 Pa-1 for characterizing geomembrane area unit or mol s-1 Pa-1 
for characterizing pouch specimen) 

Wp  = mean water vapour pressure in pouch during the time interval ∆t (Pa) 

Q = rate of flow through defect in geomembrane component of a composite liner (m3 s− 1) 

Qa = 
730

852
.

GCL

i
R k

klogQ.
−








  (m2s− 1) 

QL = rate of flow per unit length (m2s− 1) 
Qr = radial rate of flow in transmissive layer for a axi-symmetric problem (m3s− 1) 
QR = rate of flow predicted using Equation (4.30) (m2s− 1) 
Qs = rate of flow into soil liner (soil layer and foundation layer) (m3s− 1) 
Qx = rate of flow in interface for two-dimensional problem (m3s− 1) 
r = radial distance (m) 
r = specific humidity (water vapour kg dry air kg-1) 
R = Universal Gas Constant (8.3143 m3 Pa mol-1 K-1) 
Rc = radius of test cell or system studied in axi-symmetric case (m) 
r0 = radius of defect in geomembrane (m) 
s = thickness of interface (m) 
st = seam thickness (m) 
Sgf = partitioning coefficient (dimensionless) 
T = absolute temperature (K) 
Tseam in peel = seam peel strength (N) 
Tseam in shear = seam shear strength (N) 
Tunseamed sheet = sheet tensile strength (N) 
t = time (s) 
t0 = delay time (s) 
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tg = thickness of geomembrane (m) 
u = uncertainty 
v = Darcian velocity (m s-1) 
V = inner volume of pouch specimen (m3) 
WTR = water vapour transmission rate 
x = horizontal distance (m) 
Xc = width of test cell or system studied in damaged wrinkle case (m) 
Xw = limit width for validity of two-dimensional solutions (m) 
z = spatial dimension parallel to the direction of diffusion (m) 
z = vertical distance (m) 

Z(t) = 
( )
( ) 








−
−

GoutGin

GoutGin

pp
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Greek 
α = van Genuchten model parameter (m-1) 

β = ( )          
 HH

k

L

s

θf+
(m−1) 

χ = exponent of hydraulic head in empirical equation (dimensionless) 
∂cg/∂z = concentration gradient of diffusing molecules in geomembrane (kg m-4) 
∂hw/∂x = hydraulic head gradient in the x-direction (dimensionless) 
∂hw/∂y = hydraulic head gradient in the y-direction (dimensionless) 
∂hw/∂z = hydraulic head gradient in the z-direction (dimensionless) 

ε = 
V

PTR G  (s-1) 

γd = dry unit weight (kN m-3) 
(γd)max = maximum dry unit weight (kN m-3) 
γw = unit weight of water (kN m-3) 
η = dynamic viscosity of water (kg m−1 s−1) 
κ = exponent of soil layer hydraulic conductivity in empirical equation (dimensionless) 
λ = factor in hydraulic gradient expression (dimensionless) 
µ = exponent in hydraulic gradient expression (dimensionless) 
π = constant = 3.14159265… 
θ = transmissivity of the interface (m2 s−1) 
ρw = density of water (kg m−3) 
τ = time constant (hour) 
τCO2 = time constant for carbon dioxide (hour) 
τN2 = time constant for nitrogen (hour) 
ω = gravimetric water content (%) 
ωf = water content of the filter paper (%) 
ωopt = optimum water content (%) 
ξ = exponent of defect area or width in empirical equation (dimensionless) 
ψ = total potential or suction (m) 
ψc = suction for which K=k/2 (m) 
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ψg = gravitational potential (m) 
ψm = matric potential (m) 
ψp = pressure potential (m) 
ψo = osmotic potential (m) 
Θ = volumetric water content (dimensionless) 
Θr = residual volumetric water content (dimensionless) 
Θs = volumetric water content at saturation (dimensionless) 
Ω0, Ω1 = constants (dimensionless) 
 

Differences 
∆cf = concentration difference of penetrant molecule in adjacent fluids on either side of the 

geomembrane (kg m-3) 
∆cg = concentration difference of penetrant molecule in the geomembrane (kg m-3) 
∆n = number of moles difference (mol) 
∆pG = partial pressure difference of penetrant molecule G in adjacent fluids on both sides of 

geomembrane for specimen immersed in gas (Pa) 

Gp∆  = mean pressure difference during time interval ∆t for specimen immersed in gas (Pa) 
'

Gp∆  = partial pressure difference of penetrant molecule G in adjacent fluids on both sides of 
geomembrane for specimen immersed liquid (Pa) 

'Gp∆  = mean pressure difference during time interval ∆t for specimen immersed in liquid (Pa) 

∆pW = water partial pressure difference (Pa) 
∆t = time interval (s) 
δt = infinitesimal time interval (s) 
 

Abbreviations 
CCL:  Compacted Clay Liner 
CEMAGREF: Institut de Recherche pour I'Ingénierie de l'Agriculture et de l'Environnement 
ECC:  Excellent Contact Conditions 
GCL CC:  GCL Contact Conditions 
GCL:  Gosynthetic Clay Liner 
GM:  Geomembrane 
GSYS:  Geomembrane Yield Strength 
LIRIGM: Laboratoire Interdisciplinaire de Recherche Impliquant la Géologie et la Mécanique 

de l’Université Joseph Fourier 
LNEC:  Laboratório Nacional de Engenharia Civil 
PLCS:  Primary Leachate Collection System 
SLCS:  Secondary Leachate Collection System 
USEPA:  United States Environmental Protection Agency 
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1 INTRODUCTION 

1.1 BACKGROUND 

As mankind becomes increasingly aware of the environment, more questions are asked as to 
the possible environmental effects of our waste management systems. The disposal of waste 
may lead to contamination of the air, surface water, or groundwater. Over the past two 
decades it has become necessary to design and construct safe waste disposal facilities or 
landfills. Modern landfills are designed with a barrier system intending to control 
contaminant movement from any waste facility to levels that will result in negligible impact 
to the environment. This system often includes composite liners, consisting either of a 
geomembrane over a compacted clay liner, of a geomembrane over a geosynthetic clay liner, 
or of a geomembrane over a geosynthetic clay liner over a compacted clay liner. 

The effectiveness of composite liners in service conditions is closely related with the 
performance of geomembranes, as they provide the primary resistance for contaminants to 
migrate from the site. The performance of the geomembrane is linked with the seams quality 
and the unavoidable defects occurring mainly due to inadequate construction activities, such 
as, puncture, tears, cuts, etc.  

Seams need both to be fluid-tight and have a mechanical strength of the same order of 
magnitude as geomembrane panels. In landfills, where geomembranes are mainly seamed by 
the thermal-hot dual wedge method, the fluid-tightness of the seams is typically evaluated in 
qualitative terms, in spite of the recognised vulnerability of those areas. A more accurate tool 
to evaluate the quality of the seams by quantitative measurement of their fluid-tightness 
arises as a need.  

As regards the unavoidable defects in the geomembrane, their impact can be minimised by 
proper design of the landfill liner. For that, it is of primary importance to predict the flow 
rates through composite liners due to defects in the geomembrane. A number of attempts has 
been made to predict the flow rates by calculations based on fundamental parameters that 
govern the problem. Even though several tools are available (empirical equations, analytical 
equations, numerical codes), experimental data for validating those tools are scarce.  

 

1.2 RESEARCH OBJECTIVES  

The aim of this dissertation is to study the quality of geomembrane seams from a 
fluid-tightness point of view, and to evaluate the flow rates through composite liners due to 
defects in the geomembrane.  

With regard to seams, the study concentrates on high density polyethylene geomembranes 
made by the thermal-hot dual wedge method. The main objectives of the research carried out 
can be summarised as follows:  
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− To design and carry out a series of small-scale laboratory tests, termed here as “gas 
permeation pouch tests”, for assessing quantitatively the quality of the geomembrane 
seams, as well as for studying the aptness of the pressurised dual method, usually used on 
site to evaluate the thermal-hot dual wedge seams quality;  

− To design and carry out large-scale gas permeation pouch tests, both in laboratory and in 
field conditions, to study the suitability of performing this test in situ to assess the quality 
of thermal-hot dual wedge geomembrane seams; 

− To carry out mechanical tests to investigate a possible correlation between gas permeation 
test results and mechanical strength of the seams. 

As to flow rates, the study concentrates on composite liners consisting of a geomembrane 
over a geosynthetic clay liner (GCL) over a compacted clay liner (CCL). The amount of 
liquid flow at the interface between the geomembrane and the GCL seems to depend on many 
factors, namely: the hydraulic conductivity of the GCL (saturated or unsaturated), the liquid 
head acting on top of the composite liner, the confining stress over the liner system, the 
contact conditions between the geomembrane and the GCL, the thickness of the lining system 
(GCL and CCL), the type and location of the defect in the geomembrane, etc. A parametric 
study is conducted to find the relative importance of some of the most important parameters 
governing the flow rate through composite liners due to geomembrane defects. The research 
objectives were the following: 

− To carry out a series of laboratory tests to examine the suitability of the filter paper 
method for evaluating the suction of the GCLs; suction is required to estimate the water 
retention curves, from which it is possible to infer the unsaturated hydraulic conductivity 
of the GCLs;   

− To design and carry out a series of small-scale laboratory tests to examine the influence 
of prehydration of the GCLs, of the confining stress, and of the hydraulic head on flow 
rates through composite liners due to defects in geomembranes; 

− To design and carry out intermediate and large scale tests for complementing the 
small-scale tests and for checking the feasibility of an extrapolation of the results 
obtained on small-scale tests to field conditions; 

− To develop empirical equations for predicting the flow rate through composite liners due 
to defects in the geomembrane.  

 

1.3 OUTLINE OF THE DISSERTATION 

This dissertation is organised in seven chapters. After the present chapter of introduction, 
Chapter 2 focuses on landfills and composite bottom liners. Emphasis will be given to critical 
issues related with a successful performance of geomembranes (seams and defects) and to the 
factors affecting the hydraulic performance of the geosynthetic clay liners. 
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Chapter 3 addresses the theoretical background on mass transport through intact 
geomembranes. The governing equations for determining the permeation coefficients of the 
geomembranes are given in the chapter. A summary of previous experimental studies on 
geomembrane permeation to gases and water vapour is also presented.  

Chapter 4 contains the basic theory on water flow through both saturated and unsaturated 
porous media. The predictive methods for assessing the unsaturated hydraulic conductivity 
are described. Emphasis is given to methods based on water retention curves, often 
represented by the van Genuchten parameters. A literature review on water retention curves 
for GCLs is included. Also in Chapter 4, the existing analytical solutions and empirical 
equations to predict the flow rate through composite liners are discussed. Finally, the chapter 
presents a synthesis of previous studies on flow through composite liners consisting of a 
geomembrane and of a GCL. 

Chapter 5 describes the experimental work on gas flow through geomembrane seams. 
Materials, equipment, and test procedures are described. The results obtained are reported 
and discussed.  

Chapter 6 presents the experimental work on water retention curves and on flow rates through 
composite liners due to geomembranes defects, including a description of specimens, 
equipments and test procedures. The results obtained are shown and discussed. These are 
followed by the development of empirical equations for predicting the flow rate through 
composite liners consisting of a geomembrane over a GCL over a CCL. 

Chapter 7 summarises the conclusions drawn from the work described in this thesis, and 
highlights various recommendations for future research. 

 



 



Chapter 2      Landfills and composite liners 

 5

2 LANDFILLS AND COMPOSITE LINERS 

2.1 INTRODUCTION 

The disposal of waste materials is a matter of increasing public concern. The major 
component of solid waste disposal systems in almost every country is the landfill. During the 
last three decades, the practice of landfilling has developed into fully engineering facilities 
subject to stringent regulations in order to protect the environment. To limit contaminant 
migration to levels that will result in negligible impact on the environment, several different 
types of lining systems can be used for waste containment. The simplest liner consists of 
either a geomembrane, a CCL or a GCL. Whereas any of these materials can be used as a 
barrier by itself, modern landfills usually combine two or more components, for example, a 
geomembrane over a CCL, a geomembrane over a GCL, or geomembrane over a GCL over a 
CCL, creating a composite liner. 

In a composite liner, the geomembrane provides the primary resistance to advective 
contaminant flow (also termed leakage, and herein simply referred to as flow) as well as to 
diffusion of some contaminants. The clay component of the composite liner, CCL or GCL, 
serves to reduce the flow through inevitable holes or defects in the geomembrane. It also 
provides some attenuation of contaminants that can diffuse through intact geomembranes or 
transfer through holes in the geomembranes. 

Some of the significant issues in the design of composite liners are (Rowe 1999): (1) 
contaminant transport (advective and diffusive transport); (2) service life of the engineered 
waste disposal systems (i.e. how long can it be relied upon to control transport to the design 
level); (3) geotechnical problems (e.g. stability, differential settlement, bearing capacity); and 
(4) natural attenuation of contaminants (e.g. sorption, biodegradation, and dilution). 

In the scope of the present work, emphasis will be given to the first point: the potential for 
advective and diffusive transport. This topic is linked with the problem of vulnerable areas of 
geomembranes, namely the seams between geomembrane panels, and the unavoidable defects 
(holes, tears, cuts, etc.). This chapter focuses on landfill composite bottom liners. First, it 
makes an overview of landfills and their design approaches. Then, it addresses the materials 
used in composite liners, namely geomembrane liners, GCLs and CCLs, as well as the main 
critical issues related with their successful performance in landfills. 

 

2.2 LANDFILLS 

2.2.1 Historical perspective 

Landfilling, in various forms, has been a common practice for a while. However, until the late 
seventies little attention was given to the impact of landfilled waste on the environment. From 
that time to the nineties landfill design philosophy changed towards the containment and 
isolation of the waste, giving rise to the development of engineered waste disposal systems, 
followed by an extensive use of geosynthetics. The focus of the present decade seems to be on 
mechanical and biological waste treatment, increasing use of leachate recirculation and 
bioreactor technology, as the knowledge of these concepts increases, as well as the benefits 
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related to the reduction of long term costs and liabilities (Bouazza et al. 2002a). The evolution 
of the municipal solid waste landfills in developed countries is summarized in Table 2.1. 

 
Table 2.1 - Summary of municipal solid waste landfill evolution (from Bouazza et al. 2002a) 

Dates Development Problems Improvements 

1970s Sanitary landfills Health/nuisance Daily cover, better compaction, 
engineered approach to containment 

Late 1980s to 
early 1990s 

Engineered landfills, 
recycling 

Ground and 
groundwater 

contamination 

Engineered liners, covers, leachate and 
gas collection systems, increasing 

regulation 

1990s 
Improved siting and 
containment, waste 
diversion and re-use 

Stability, gas 
migration 

Incorporation of technical and 
socio-political factors into siting process, 
development of new lining materials, new 
cover systems, increase post-closure use 

2000s Improved waste 
treatment ? 

Increasing emphasis on mechanical and 
biological waste treatment, leachate 

recirculation and bioreactors 

 

Modern landfills include three liner components: bottom, side, and cover liners. The bottom 
liner is used to prevent or reduce the advective and diffusive contaminant migration into the 
surrounding environment. The side slope liner has basically the same functions as the bottom 
liner, while the cover system controls water and gas movement and minimizes odours, disease 
vectors and other nuisances. Cover systems are also used to meet erosion, aesthetic, and post-
closure development criteria. 

The most stringent of the mentioned systems is the bottom liner. It typically includes an active 
barrier and a passive barrier. The active barrier incorporates the drainage system (drainage 
systems and filters) and the active confinement of the landfill (geomembrane, usually high 
density polyethylene), whereas the passive barrier comprises the passive confinement (CCL 
and/or GCL) and the attenuation layer (geological barrier). 

The design solution for landfill lining systems depends on regulations and on characteristics 
of the site. Regulations can vary from country to country or even within the country, 
depending on waste management strategies and practices, as well as public concern and 
political will. It depends also on the type of landfills, which are typically classified into three 
groups according to the wastes: inert, non hazardous (e.g. municipal solid wastes), and 
industrial hazardous (European Directive No. 1999/31/EC).  

 

2.2.2 Design approaches 

The design of a landfill liner system can be made either on a prescriptive basis or on a 
performance basis (Manassero et al. 1998). In the first case, the requirements for a minimum 
lining system profile are specified through regulations, whereas in the second approach it 
must take into account numerous parameters such as: transport parameters and service life of 
the mineral barriers, drainage layers, geosynthetics, and also the main characteristics of the 
waste. The objective is to evaluate the leachate quality and production over the landfill 
activity and after closure (Manassero et al. 2000). 
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Both approaches present advantages and disadvantages. As regards prescriptive design 
approach, the main benefits can be summarised as follows (Estrin & Rowe 1995): (1) 
minimises the effort of approval for the regulator by providing a process which basically 
allows a check list comparison to be made between the proposed design and the prescriptive 
design requirements; (2) makes it easy for proponents since the regulator can easily determine 
if the proponent’s application complies with the prescriptive specifications; and (3) ensures a 
minimum environmental protection. However, it might be either insufficient to assure 
minimisation of environmental impacts at long term, or overly conservative (Rowe et al. 
1995). 

The main benefits of the performance design approach include (Estrin & Rowe 1995): (1) 
allowing landfill designer to bring updated engineering concepts in designing to achieve these 
performance standards, which promotes both theoretical and practical research investigation 
and the application of evolving technology in the field; (2) need of a detailed evaluation of the 
proposed design prior to approval; and (3) the lining systems can be adapted to the specific 
characteristics of the waste and the considered site. The drawbacks of this approach can be 
listed as follows (Manassero et al. 1998): (1) the reliability of the design model must be 
validated; (2) the reliability of each input parameter for modelling the behaviour of landfill 
lining performance and the time and space variability of the contaminant targets must be 
checked; and (3) evaluation of some projects can be very difficult. 

Most regulations around the world follow the prescriptive design approach. Table 2.2 presents 
a summary of regulatory requirements for landfill liner design in different countries. The 
performance design approach has been used in some countries such as Canada and USA. 

Many European Countries follow the European Directive No. 1999/31/EC. It establishes that 
the protection of soil and water (groundwater and superficial water) must be achieved by 
combining a geological barrier with an artificial sealing layer (usually assumed as a 
geomembrane). The geological barrier must have a hydraulic conductivity (k) less than 
10-9 m s-1 and be at least 1 m thick. For hazardous waste, bottom lining systems must consist 
of an artificial sealing layer plus a geological barrier with k ≤ 10-9 m s-1 and be at least 5 m 
thick.  

Nevertheless, according to the European Directive, if the geological barrier does not fulfil the 
aforementioned conditions other materials may artificially complement it, provided that a 
technically equivalent protection can be achieved. Moreover, the minimum thickness of the 
equivalent barrier must be 0.5 m, and the system has to incorporate a drainage layer with a 
minimum thickness of 0.5 m. The Directive, however, does not illustrate how technical 
equivalence is to be justified. As result, different design solutions can be considered.  

In Portugal, the bottom liner systems implemented in large MSW landfills usually include an 
active barrier comprising a drainage layer (≥ 0.5 m) and a HDPE geomembrane 2 mm thick, 
and a passive barrier consisting of a GCL over a CCL (k < 10-9 m s-1, thickness ≥ 0.5 m), as 
Figure 2.1 shows. 

In France, bottom liner active barriers also comprise a drainage layer and a geomembrane, but 
for passive barriers the criterion is more stringent. The passive barrier must include 1 m of 
compacted clay liner (k ≤ 10-9 m s-1) over 5 m of compacted soil (k ≤ 10-6 m s-1), as 
Figure 2.2 (a) shows. However, because the GCLs have become more and more widespread in 
this country, the equivalence issue has arisen. According to MEDD (2002), equivalent 
solutions can be achieved by using either a GCL over 1 m of compacted soil (k ≤ 10-9 m s-1) 
over 5 m of compacted soil (k ≤ 10-5 m s-1), or a GCL over 0.5 m of compacted soil (k ≤ 10-9 
m s-1) over 5 m of compacted soil (k ≤ 10-6 m s-1), as Figure 2.2 (b) and (c) depicts. For 
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hazardous wastes the compacted clay liner below the geomembrane must be at least 5 m thick 
and have a k ≤ 10-9 m s-1. 
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Figure 2.1– Schematic drawing of the composite liner used at Portuguese MSW landfills 

 

 

 
 

Figure 2.2 – Schematic drawing of composite liners in French MSW landfills 



Chapter 2      Landfills and composite liners 

 9

At present, landfills have composite liners that can be either single or double (Figure 2.3). 
Double composite liners include a drainage layer (also termed in literature as leakage 
detection layer or leakage detection system) placed between the primary and the secondary 
liners. This drainage layer can be constituted either by a granular layer or by a geonet, and 
aims to control the leachate that goes through the primary liner system.  

Double composite liners are mainly used in hazardous landfills in the USA. According to 
Koerner (2000), 24 % of MSW landfills in USA and 14 % of landfills worldwide have been 
designed with double lining systems. 

 

 

Final cover system

Bottom liner / Drainage system

Drainage layer
Geomembrane

Composite liner

Compact clay liner (CCL) Geosynthetic clay liner (GCL)

Leachate collection
Geomembrane
GCL
Leak detection
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(A) SINGLE COMPOSITE LINER WITH CCL (B) SINGLE COMPOSITE LINER WITH GCL

(C) DOUBLE COMPOSITE LINER SYSTEM

Waste

Geomembrane
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Figure 2.3 – Examples of single and double composite liner systems (adapted from 
Daniel 1998)  

 

 

The materials typically used in composite liners to reduce the contaminant migration to levels 
that will result in negligible impact on environment, namely geomembranes, geosynthetic clay 
liners and compacted clay liners, as well as the critical aspects of their successful 
performance, will be addressed in the following sections. 
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2.3 COMPOSITE LINERS: MATERIALS 

2.3.1 Geomembranes liners 

2.3.1.1 Definition and raw materials 

According to IGS (2000), a geomembrane is defined as a planar, relatively impermeable, 
polymeric (synthetic or natural) sheet used in contact with soil, rock, and/or any other 
geotechnical material in civil engineering applications.  

The geomembrane can be produced from polymeric or bituminous materials. However, 
bituminous geomembranes are rarely used in waste containment applications for bottom 
liners. Thus, in this work, the term geomembrane will be used specifically to describe 
materials that are made of polymeric resins.  

Polymeric geomembranes are made from synthetic polymers derived mainly from oil-based 
products. Polymers used for geomembranes can be thermoplastic, thermoset, or a combination 
of both. Thermoplastic polymers when heated become soft and pliable without any substantial 
change in their inherent properties, and when cooled revert back to their original properties. 
Thermoset polymers once cooled remain solid upon the subsequent application of heat 
(Koerner 1998).  

A wide range of polymers can be used for geomembrane production. Most of the time only 
one polymer is used for a given product. However, to improve specific properties, two or 
more polymers can be blended (Ingold 1994). The most common polymers used for 
manufacturing geomembranes are listed in Table 2.3. In landfill bottom liners, HDPE is 
usually used, mainly because it is typically compatible with leachate and it presents a 
satisfactory long-term performance. Nevertheless, as discussed during the 7th International 
Conference on Geosynthetics, held in Nice in 2002, the door could be opened to other 
materials (Giroud & Touze-Foltz 2003). 

 
Table 2.3 - Common types of geomembranes 

Polymers Abbreviation Type of compound 

High density polyethylene HDPE Thermoplastic 
Low density polyethylene LDPE Thermoplastic 
Very low density polyethylene VLDPE Thermoplastic 
Linear low density polyethylene LLDPE Thermoplastic 
Polypropylene PP Thermoplastic 
Ethylene propylene diene monomer EPDM Thermoset 
Chlorinated polyethylene CPE Thermoplastic/thermoset 
Polyvinyl chloride PVC Thermoplastic 
Chlorosulfonated polyethylene CSPE Thermoplastic/ thermoset 
Ethylene interpolymer alloy EIA Thermoplastic 

 

Polymers in their pure form are not suitable for geomembrane production. Afterwards, they 
are mixed with various additives to produce a final product with the required properties. Thus, 
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the primary resin is formulated with additives, fillers, extruders and/or other agents. The 
additives are used as ultraviolet light absorbers (UV), antioxidants, thermal stabilisers, 
plasticisers, biocides, flame-retardants, lubricants, forming agents, or antistatic agents 
(Ingold 1994, Koerner 1998). 

A primary performance objective for geomembranes as liners is the protection of the 
groundwater quality. The success of their performance is closely related to the quality of the 
seams and to the presence of inevitable defects caused by inadequate construction activities. 
Seams and potential defects are two key issues in landfill construction and operation. In this 
context, Section 2.3.1.2 describes the main seaming methods presently available, discusses 
the parameters that may affect seams quality, and presents an overview of the seams quality 
control, whereas Section 2.3.1.3 focuses on defects, their origin, density and size.  

 

2.3.1.2 Geomembrane seams 

2.3.1.2.1 Field seaming methods 

A variety of bonding systems is used in the seaming of geomembranes. Selection of the best 
method depends on the type of geomembrane as Table 2.4 shows. Seaming methods currently 
available include (Koerner 1998): extrusion welding, thermal fusion or melt bonding, 
chemical fusion and adhesive seaming (Figure 2.4). 

 
Table 2.4 - Field seaming methods for various geomembrane types  

Seaming method 
Type of 

geomembrane Extrusion 
(fillet and flat) 

Thermal fusion 
(hot wedge and hot air)

Chemical fusion 
(chemical and bodied)

Adhesive 
(chemical and contact)

HDPE √ √   
VLDPE √ √   

PP  √   
PVC  √ √ √ 

CSPE-R  √ √ √ 
EIA-R  √ √ √ 

R = reinforced 

 

Extrusion methods  

Extrusion methods are used exclusively for seaming polyethylene geomembranes, specifically 
in the following cases: patches, poorly accessible areas (e.g. around pipes), and in case of 
extremely short seam lengths. A ribbon of molten parent material is extruded either between 
the adjacent overlapped sheets to form a flat weld, or over the top of the adjoining sheets to 
form a fillet. Seaming rate and temperature both play important roles in achieving an 
acceptable seam. Excessive melting weakens the geomembrane and too little melting results 
in inadequate extrudate flow across the seam interface and, consequently, in poor seam 
strength (Koerner 1998). 
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Figure 2.4 - Methods of seaming (based on Daniel & Koerner 1993) 

 

Thermal fusion methods 

There are two thermal fusion methods: hot wedge and hot air. On both, the surface portions of 
the opposing surfaces are truly melted. By hot wedge seaming a wedge of hot steel is passed 
between the overlapped sections of adjacent membrane, melting the sheet. Then, pressure 
rollers bring the molten surfaces together to form the final seam. Both single hot wedge and 
dual hot wedge systems are available. The dual hot wedge seam forms a continuous air 
channel between two seams. This air channel can be used to evaluate the continuity of the 
seam by pressurising it and monitoring any drop in air pressure that may signify a leak in the 
seam. The seaming parameters (speed, temperature, and roller force) are adjustable and 
continuously monitored. The adjustments are done according to the weather conditions. Too 
much melting weakens the geomembrane and inadequate melting results in low seam 
strength. The hot air method consists of using a device provided with a resistance heater, a 
blower and temperature control, to force hot air into two sheets to melt the opposite surfaces. 
Pressure is applied to the seamed area to bond the two sheets. Like in the hot wedge method, 
both single and dual seams can be made (Daniel & Koerner 1993). 

Chemical fusion methods 

There are two chemical fusion seam types: chemical fusion and bodied chemical fusion. The 
first uses a liquid solvent applied between the two sheets to be assembled. After a few seconds 
to soften the geomembrane surfaces, they are pressed together firmly with rollers on a firm 
base to make complete contact and bond the sheets. Bodied chemical fusion seams are 
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identical to chemical fusion seams except that 1 % to 20 % of the parent lining resin or 
compound is dissolved in the solvent and then used to produce the seam. The solvent liquid is 
applied between the two opposite surfaces, which are then pressed together to make complete 
contact (Daniel & Koerner 1993). 

Adhesive methods 

There are two chemical adhesive methods: chemical adhesive and contact adhesive. The first 
method uses an adherent (dissolved bonding agent) that is left after the seam has been 
completed and cured, becoming an additional element in the seam system. In the second 
method, contact adhesives are bonding agents applied to mating surfaces. As soon as they 
reach the proper degree of tackiness, a roller presses the two sheets already assembled. As in 
the chemical adhesive method, the adherent becomes an additional element in the system 
(Koerner 1998). 

For chemical-resistant materials such as HDPE, solvent and adhesive systems are very 
unusual if not non-existent. The adhesive layer formed in these systems is generally more 
susceptible to chemical attack and may result in subsequent failure at the seam. Hot air 
methods are usually regarded also with reservation. Actually, consistent results are difficult to 
reach on field since the techniques significantly rely on temperature. Long-term durability is 
affected as well, due to the intense heating process that often oxidises the geomembrane 
surfaces.  

Hence, hot wedge and extrusion methods are presently considered as the most reliable 
seaming methods (Koerner 1998). 

 

2.3.1.2.2 Factors affecting HDPE seams quality 

Consistent quality in fabricating field seams is paramount to geomembrane performance. 
There are many factors that may affect seams quality. Some are uncontrollable such as the 
weather conditions, others, like preparation of geomembrane surfaces to be joined, can be 
controlled. Nevertheless, first of all, the quality of the seams depends on the quality of the 
geomembrane itself. Site conditions are also very important. Site must be cleaned and care 
must be taken to ensure that the welding machine can function as intended. In addition, seam 
interfaces cannot be dirty or wet. All dirt must be removed before the seaming starts. The 
expertise of the seaming crew and appropriate project design specifications are other 
important issues in seams quality.  

In landfills, HDPE geomembranes are usually seamed by thermal fusion methods, namely by 
dual hot wedge. The welding machines can be either entirely controlled by micro-processor or 
the seaming parameters, such as seaming speed, wedge temperature and contact pressure of 
the hot wedge, have to be adjusted according to the ambient temperature and to the 
temperature of the membrane surface. 

As pointed out by Rollin & Fayoux (1991) machine parameters are determinant on seam 
quality. For example, it is known that a change in sheet temperature affects the seam quality 
and that by varying speed it is possible to compensate for that quality change. Some attempts 
were made to correlate the seam quality and the seaming parameters (e.g. Rollin & 
Fayoux 1991, Rollin et al. 1989). However, since many factors can influence the seam 
quality, definition of proper range of force, speed and temperature for each seam is very 
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difficult, as underlined by Struve (1994). Thus, trial seams or qualifying seams on field are 
usually mandatory as pre-qualifying experience for personal, equipment, and procedures for 
making seams on identical geomembrane material and under the same weather conditions as 
the actual field production seams will be made. Trial seams should be done every four hours, 
whenever personal or equipment is changed, and when climatic conditions reflect significant 
changes in geomembrane temperature (Peggs 1997).  

 

2.3.1.2.3 Quality control of the seams 

Due to their vulnerability, seams require a strict quality control. They need to be both fluid-
tight and have strength of the same order of magnitude as geomembrane panels. The quality 
control of HDPE field seams is usually done on the basis of non-destructive and destructive 
test methods. Non-destructive test methods aim to evaluate the fluid-tightness, whereas the 
destructive test methods measure the relative strength of the bond.  

Non-destructive seam tests 

In non-destructive test methods the goal is to check 100% of the seams. Several non-
destructive test methods can be used to identify geomembrane seams discontinuities, 
including visual observation, air lance, pressurised dual seam, vacuum box, electrical 
methods, ultrasonic methods, etc. Table 2.5 shows the main test methods used to control 
seams.  

In landfill applications, the most used methods are pressurised dual seam, for thermal fusion 
seams, and vacuum box, for extrusion seams. Both of them can only be used to measure the 
continuity of seams. They provide only qualitative information (pass/fail) about fluid-
tightness of the seams, despite the main reason to make geomembrane seams is to make the 
lining system fluid-tight.  

Destructive seam tests 

Destructive seam tests are carried out on field seamed samples, typically taken on a random 
basis. Tests are usually performed both in the field and in laboratory. Sampling frequency 
generally ranges from one sample per 150 m to one sample per 500 m of seam length, 
depending on local specifications and QCA plans. 

There are two destructive test methods that are widely used in testing bond strength of seamed 
geomembranes: the shear test and the peel test (Figure 2.5). HDPE geomembranes can be 
tested according to ASTM D 4437. Shear strength testing is performed by applying a force 
across the seam in a direction parallel to the plane of the bond, thus subjecting the bond 
interface to a shearing force. Peel testing is performed by applying a load such that the bonded 
interface is subjected to a peeling force that attempts to separate the two sheets that have been 
seamed together. The first test is used to assess the shear resistance of the seam, while the 
second is used to evaluate the adhesion strength between two welded geomembranes or 
between the extruded polymer and the sheets (Daniel & Koerner 1993). 
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Table 2.5 – Non-destructive geomembrane seam testing methods (based on Rollin et al. 
2002a, Comité Français des Géosynthétiques 2003).  

Test 
method Description Applicability Comments 

A
ir 

la
nc

e 

A jet of compressed air is directed through a 
nozzle beneath the upper edge of the overlapped 
seams. If a portion of seam leaks, either air flows 
under the geomembrane and inflates it, or makes 
the geomembrane vibrate. An audible sound 
changes when unbounded areas are encountered. 

Mostly for flexible 
geomembranes; best 
for thin 
geomembranes 
(thinner than 1mm). 

Results not very 
reproducible; very 
high operator 
dependency. 

Pr
es

su
ris

ed
 d

ua
l 

se
am

 The gap existent in the double seams is pressurised 
by air injection during a certain period. If no drop 
on the pressure gauge occurs during that time 
interval, the seam is acceptable. 

All type of 
geomembranes 
seamed with double 
hot wedge or double 
hot air. 

Fast method. 
Sensitive to the 
seam parameters. 

V
ac

uu
m

 b
ox

 

A soap solution is sprayed on the top of the seam. 
A transparent box is placed on the seam and 
vacuum is made in the box. If no bubbles or froth 
appear, the seam is acceptable. 

Mostly for stiff 
geomembranes; 
mainly, for HDPE of 
which the thickness 
exceeds 1 mm. 

Slow method; often 
difficult to make a 
vacuum-tight joint; 
mainly for patches. 

El
ec

tri
c 

w
ire

 A copper or stainless wire is placed between the 
overlapped sheets and embedded into the 
completed seam. A charged probe of high-voltage 
(~20000 V) is connected to one end of the wire 
and slowly moved over the whole seam. An 
audible alarm rings when a defect is encountered. 

All types of 
geomembranes 
seamed. 

High operator 
dependency. 

El
ec

tri
ca

l 
sp

ar
ki

ng
 A conduction wire is inserted into the seam during 

seaming process. By applying a suitable voltage 
above the seams, leakage to ground transmits a 
spark, accompanied by an audible alarm signal. 

All geomembranes, 
for areas where 
vacuum cannot be 
used such as corners. 

Difficult to set up 
accurately over 
large areas; results 
not always reliable. 

U
ltr

as
on

ic
 p

ul
se

 
ec

ho
 

Compares the measured thickness of the seam to 
the thickness that it should have. A high-frequency 
pulse (5-15 MHz) is sent into the upper 
geomembrane, which will not be reflected at the 
bottom of the lower one if an unbounded area is 
present. 

Only for 
nonreinforced 
geomembranes; not 
applicable to 
extrusion fillet seams. 

Qualitative result. 

U
ltr

as
on

ic
 

im
pe

da
nc

e 
pl

an
e A continuous wave (160-185 kHz) is transmitted 

through the seam by means of a transducer in 
contact with the geomembrane and a characteristic 
dot pattern is displayed on a monitor. The location 
of the dot pattern indicates if the seam is bonded or 
not. Calibration of the dot pattern is required to 
indicate a good seam. 

Has potential for all 
types of 
geomembranes. 

Qualitative result. 

U
ltr

as
on

ic
 

sh
ad

ow
 

It uses two roller transducers, one sends a multi-
frequency pulse into the upper geomembrane and 
the other receives the signal from the lower 
geomembrane on the other side of the seam. The 
analyses of the displayed results (amplitude versus 
time) indicate the quality of the seam. 

Not applicable to 
reinforced 
geomembranes; can 
be used for all types 
of seams. 

Best suited to 
semicrystalline 
geomembranes. 

M
ec

ha
ni

ca
l 

pr
ob

e 
te

st
 

Uses a stiff probe under the top edge of a seam to 
detect unbounded areas, which are easier to split 
than the properly welded areas. 

All geomembranes 
and all seams with 
well-defined edge. 

Depends largely on 
sensitivity of the 
operator. 
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Figure 2.5 - Scheme of the specimens used in shear and peel tests 

 

For HDPE geomembranes, the seam strength is the maximum force attained divided by either 
the original specimen width, resulting in units of force per unit width, or the original cross 
sectional area, resulting in units of stress. Usually, forces per unit width are used as this 
absolute strength value can readily be compared to other test results (Daniel & Koerner 1993). 

Within the scope of the QC/QA activities, acceptance criteria are traditionally defined based 
on shear and peel efficiencies and on the location of the failure in the peel test. Shear 
elongation and peel separation were recently added to the acceptance criteria of the seams, 
although they are not often monitored during the tests.  

Shear and peel efficiencies can be evaluated as follows (Daniel & Koerner 1993):  

 

100
sheetunseamed

shearinseam
shear T

T
E =   (2.1) 

100
sheetunseamed

peelinseam
peel T

T
E =  (2.2) 

 

where Eshear and Epeel are the seam efficiency, respectively, in shear and in peel (%), Tseam is 
the seam shear strength (force or stress units), Tpeel is the seam peel strength (force or stress 
units), and Tunseamed sheet is sheet tensile strength (force or stress units).  

Minimum allowable seam shear and seam peel strengths efficiencies are usually required as 
seam acceptance criteria. For example, USEPA (Daniel & Koerner 1993) suggests a 
minimum seam of 95 % of the specified yield strength of the geomembrane (GSYS) in shear, 
and of 62 % of the GSYS in peel. Other suggested values of shear and peel seam efficiencies 
can be found in the literature. Table 2.6 summarises some of these quantitative acceptance 
criteria for HDPE thermal fusion seams. 

As for the location of the failure in a peel test, it is usually required that the specimen breaks 
outside the seam (failure in the adjacent sheet geomembrane on either side of the seam) in 
what is often termed Film Tearing Bond (FTB). 
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Table 2.6 - Quantitative acceptance criteria for HDPE geomembrane seams (thermal fusion 
seams)  

Peggs (1994a, b) 
 Haxo & 

Kamp (1990) 

USEPA (Daniel 
& Koerner 

1993) 
Very good 

seam 
Good 
seam 

Koerner 
(1998) 

Benneton 
& Gerard 

(2002) 
Shear efficiency 
regarding GSYS > 90-110 % > 95 % > 95 % > 90 % > 90-100 % > 90 % 

Shear 
elongation (at 

break) 
> 50 % - > 500 % > 100 % - - 

Peel efficiency 
regarding GSYS > 60-70 % > 62 % > 80 % > 70 % > 50-80 % > 65 % 

Peel separation - - 0 % < 10 % - - 
Note: GSYS = yield strength of the geomembrane 

 

According to Peggs (1996b, 1997), shear and peel strengths are meaningless, only peel 
separation and elongation provide useful information. Elongation determines if seaming 
process has adversely affected the adjacent geomembrane. For HDPE geomembranes, seams 
that break at high stress level but at low strain may seem suitable at first glance, but brittle 
behaviour is an indicator of long-term problems for the seam. In addition, if during a peel test, 
a specimen separates partially along the bonded interface before failing through the bottom 
geomembrane, but with adequate strength, it may conventionally be considered to be 
acceptable. However, if that specimen is examined under a microscope it will be seen that the 
separated surfaces have a large number of crazes, which can reduce the stress cracking 
resistance of the geomembrane. Thus, in his most recent publications, Peggs suggests zero 
peel separation for acceptable seams.  

Recently, Benneton & Gerard (2002) performed a research for the French Chapter of 
IGS (CFG) to study if the common used acceptance criterion for geomembrane seams are 
suitable taking into account the evolution of the resins. They tested five types of 
geomembranes (HDPE and bituminous) according to French standards NF P 84-502.1, for 
shear test, and NF P 84-502.2, for peel test (dumbbell shapes). Their main conclusions can be 
summarised as follows: (1) both types of test must be performed (shear and peel); (2) shear 
strength should present a minimum seam efficiency of 90 % of GSYS; peel strength for 
extrusion seams should present a minimum seam efficiency of 60 % of GSYS; (3) peel 
strength for fusion seams should present a minimum seam efficiency of 65 %; (4) adhesive 
failures should not be allowed.  

Other methods for assessing seams quality 

Other methods for assessing seams quality include microscopic analysis, impact strength test, 
incremental peel strength along the length of the seam, and thickness of the finished seam 
track. Microscope analyses are used to complement the information given by mechanical 
tests. They are used to observe molecular abnormalities, to identify micro stress cracks within 
the bonded sheets, to detect unbounded areas and to observe slow crack growth phenomena 
(Rollin et al. 1994). In the impact test a drop-weight apparatus is used to produce proper 
immediate failure. The mean failure energy can be reported as the seam failing or passing 
upon application of an adequate drop-weight mean energy. This test provides additional 
information about the behaviour of the seams under dynamic conditions as the ones usually 
encountered during the installation process (Rollin et al. 1994). The incremental peel test has 
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some qualitative value, but the need to manually assist the propagation of the peeling may 
lead to diverting the separation plane away from its natural vector. Therefore, optimistic 
results may be achieved (Peggs 1994b). 

In Germany, the thickness of the finished seam track has also been used for assessing seam 
quality, for hot wedge weld seams. Luders (2000) presented a process model developed from 
experimental results on hot wedge weld seams. The aim of the model was to establish a 
quality criterion that would allow the inherent quality of acceptable seams to be expressed 
differentially and to identify it in terms of valid limits. Another goal of the model was to find 
a functional relationship between the adjustable parameters of the machine and those process 
parameters that indicate suitable seam quality under field conditions. The criterion of quality 
used by this author to validate his model was the failure time in long-term peel tests, which 
was correlated to the reduction in seams thickness (st). According to Luders (2000), good 
seams can be achieved for seam thickness reduction ratio (st/L0) between 0.5 and 0.9, where 
L0 is the melt depth. 

 

2.3.1.2.4 Summary of Section 2.3.1.2 

In landfills, HDPE geomembranes are typically used. This type of geomembranes is generally 
seamed by thermal fusion methods, namely by the dual hot wedge method. Seaming machine 
parameters such as seaming speed, wedge temperature, and contact pressure of the hot wedge 
are determinant on the quality of the seams. 

Due to the application of heat and pressure during the seaming process, seams are vulnerable 
areas that require a strict quality control. It is necessary to ensure that seams are both fluid-
tightness and present a mechanical strength of the same order of magnitude as the non- 
seamed geomembrane. 

The mechanical strength of HDPE seams is quantitatively evaluated through shear and peel 
tests, whereas their fluid-tightness is usually assessed via pressurised dual seam tests. 
Pressurised dual seam tests measure the continuity of the seams (pass/failure criteria), but 
only provide qualitative information about fluid-tightness, which is the main reason for 
making the seams. 

Therefore, a tool for controlling the fluid-tightness of the seams from a quantitative point of 
view appears to be necessary. In this context, a test method for studying the quality of the 
seams and the influence of the seaming parameters was developed in the present work. It will 
be described in Chapter 5. 

The second critical issue for geomembranes as liners refers to defects (e.g. holes, tears, cuts, 
lack of seam bond, and burns). These defects, through which the liquid flow, are also termed 
as leaks. Data collected from liner leak detection and location systems have shown that 
defects always occur, even in liners constructed according to a strict construction quality 
program.  

The methods used to locate and detect defects in geomembrane liners, as well as the origins, 
density and size of the defects will be discussed in Section 2.3.1.3. 
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2.3.1.3 Geomembrane defects 

2.3.1.3.1 Methods to detect and locate defects in geomembrane liners  

The methods to detect and locate defects in geomembrane liners (liner leak location and 
detection systems) have become more and more widespread, although the control of the 
geomembrane liners is not mandatory in current state-of-practice, conversely to the control of 
the seams (see Section 2.3.1.2.3). 

There are two categories of methods. The first one is able to detect and locate potential leak 
paths, such as unintended openings, perforations, breaches, tears, punctures, seam defects, etc. 
It basically includes electrical leak location (ELL) methods. The second category comprises 
the methods that only detect the presence of defect and do not locate them. It comprises: flood 
testing, infrared thermography, dye and chemical tracer testing, and gas tracers methods 
(Comité Français des Géosynthétiques 2003). 

Electrical leak location methods were developed in the early eighties and have been used 
successfully in electrically-insulating geomembranes such as PE, PP, CSPE and bituminous 
geomembranes installed in several types of facilities (Rollin et al. 2004). These methods 
locate defects in the geomembrane liner by applying an electrical potential across the 
geomembrane and then locate areas where the electrical current flows through discontinuities 
in the liner (Swyka et al. 1999; Peggs 2001; Rollin et al. 2004) as Figure 2.6 schematically 
presents. Common electrical leak location methods include water puddle and water lance 
methods, wading, electrically conductive geomembrane, soil-covered geomembrane system 
and grid system. 

_ +
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Current

 
Figure 2.6 – Scheme of the electrical leak location methods (adapted from Rollin et al. 1999) 

 

Water puddle and water lance  

In the water puddle and water lance methods, a positively charged stream of water is directed 
on the surface of the exposed geomembrane (Figure 2.7). When the water contacts the 
negatively charged subgrade through a defect in the liner, the current flows and is recorded. 
These methods are appropriate to survey a dry uncovered geomembrane during its installation 
when placed over an electrically conductive subgrade. The advantage of these methods is the 
possibility to detect defects in geomembrane sheets and seams as work progresses. Other 
advantage is that the larger leak paths do not mask smaller ones. The disadvantage is that they 
can only be used with uncovered geomembranes. In addition, the presence of wrinkles and 
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steep slopes may inhibit the survey speed if there is no contact between the liner and the 
conductive soil layer (Rollin et al. 2004). 

Figure 2.7 –Scheme of the (a) water puddle and (b) water lance systems (adapted 
from ASTM D 6747) 

 

Wading (water-covered geomembrane) 

In this method, a handheld probe is traversed through the water that covers the geomembrane 
to measure its iso-potential contours while a constant potential gradient is applied between the 
water above the geomembrane and the leaked water, or subgrade, below the geomembrane 
(Figure 2.8). The main advantages of this technique are that it detects leak paths in covered 
geomembranes and can be used in in-service facilities. The shortcoming is that it needs to 
flood the geomembrane with water, which makes impossible its use as work progresses 
during the construction phase. On the other hand, larger leak paths can mask smaller ones 
(ASTM D 6747). 

 
Figure 2.8 – Scheme of the water-covered geomembrane system (modified from 

ASTM D 6747) 
 

Electrically conductive geomembrane 

In this method, a conductive geomembrane, manufactured by co-extruding a layer of 
electrically conductive polyethylene material on the underside, is installed in the field in such 
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a way that the conductive side is against the subgrade and the non-conductive side on top 
(Figure 2.9). The geomembrane can be spark-tested for defects using an electrical device to 
induce electrical discharges from a positive electrode, which is swept across the top of the 
geomembrane, to the negatively charged conductive layer at the bottom of the geomembrane. 
When there is a defect, a closed circuit is created and a spark is produced. The main 
advantages of this method are that it can be performed during construction, no water pumping 
is required, primary and secondary liners can be tested, and all slopes can be tested. The main 
drawbacks include: the presence of wrinkles and steep slopes inhibits the survey speed; seams 
may also interrupt the continuity of the conductive layer; it can only be used with dry exposed 
geomembranes (Comité Français des Géosynthétiques 2003, ASTM D 6747). 

_ +
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Figure 2.9 – Scheme of the conductive HDPE geomembrane leak location system (adapted 

from Comité Français des Géosynthétiques 2003)

 

Soil-covered geomembrane system 

This technique tests the geomembrane after the protective soil layer placement (Figure 2.10). 
It is similar to the water-covered geomembrane method except that the geomembrane is 
covered with soil during the survey, and point by point measurements are carried out on the 
surface of the soil (ASTM D 6747). This method needs an electrically conductive layer below 
the geomembrane. The main advantage of this technique is that it locates defects that occur 
during the placement of the protective cover soil, whereas the main disadvantage is that the 
soil must have some moisture to make proper contact (Rollin et al. 2004). 
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Figure 2.10 – Scheme of the soil-covered geomembrane system (adapted from 

Comité Français des Géosynthétiques 2003)
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Grid system (permanent in situ system) 

This permanent system requires an electrically conductive grid of electrodes below the 
geomembrane and liquid or humidity above the liner. Defects are detected by performing 
potential measurement by means of a widely spaced grid of electrodes under the lined area 
(Figure 2.11). This method can give updated information during operation and post-closure 
phases. In addition, it can be used under cover soil and with liquid stored in application. The 
main disadvantage is that it cannot be used during construction. 
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Figure 2.11 – Scheme of the permanent monitoring system 

 

With respect to systems that only detect the defects, different methods can be used. In flood 
testing a liquid, water or leachate, is introduced into the landfill cell and the secondary 
drainage layer, referred to as secondary leachate collection system (SLCS), is monitored to 
assess if the primary liner is leak-proof. This is a simple method but it requires a significant 
amount of time to complete and a large liquid resource (Swyka et al. 1999).  

Infrared thermography basically works by measuring geomembrane surface temperatures, 
using, for example, an infrared camera. The relatively low value of thermal conductivity 
possessed by HDPE geomembranes provides a thermal barrier. Usually, the geomembranes 
are at higher temperature than the subgrade during the day and vice versa at night. Thus, hot 
or cold air flowing through a defect in the geomembrane would generate temperature 
variations (Comité Français des Géosynthétiques 2003). According to Peggs (1996a), this 
method can not be used for soil and waste covered liners.  

Fluorescent dyes and chemical tracers have also been used to detect defects. They can be 
introduced into a suspect location within the landfill and the secondary system monitored for 
breakthrough time. A short breakthrough time would indicate that the dye or tracer required 
some travel time prior to reaching the breach. This technique can only be used when there is a 
SLCS. In addition, results obtained are somewhat subjective due to the unknown variables in 
the collection systems. Furthermore, it is believed to be impractical for pinpointing the 
location of a defect (Swyka et al. 1999). 

In gas tracing methodology, a tracer injection system pumps air (tagged with volatile tracer) 
below the geomembrane. The tracer is then allowed to diffuse for a nominal amount of time. 
Then, its presence is observed in the air in the layer above the geomembrane with the use of a 
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portable air sampling apparatus. Samples collected on a uniform geometric grid above the 
geomembrane area are analysed with a field mobilised gas chromatograph (Touze-Foltz 
2001). This method can be used for uncovered geomembranes and for geomembranes covered 
by around 0.5 m of drainage soils (Swyka et al. 1999). 

 

2.3.1.3.2 Cause of defects 

Defects in the geomembrane result generally from construction activities e.g. improper 
seaming, punctures by stones in the support or cover material, dropped objects, tears, 
excessive stresses caused by equipment traffic, failures from subsidence or shear failures of 
the supporting soil after installation, imperfect connections between geomembranes and 
appurtenances, etc.  

Several syntheses of studies on geomembrane defects have been published. For example, 
Rollin et al. (2002b), reviewing the information from Colucci & Lavagnolo (1995), 
Darilek et al. (1989), Laine & Darilek (1993), and Rollin et al. (1999), collected data from 
more than 150 electrical surveys, corresponding to more than 1.5 million square meters. The 
data analysed pointed out that 65 % of defects were related to seaming and 35 % were located 
in the sheet of the geomembrane itself. Many surveys analysed by these authors were 
conducted after a conventional construction quality assurance plan had been implemented. 
The liners surveyed included steel tanks, concrete tanks, basins and ponds, uncovered primary 
and secondary landfill liners and soil covered landfill liners. It must be noted that this study 
does not distinguish between covered and uncovered geomembranes, although the main cause 
of defects in a facility appears to be related with the status of the geomembranes 
(covered/uncovered). 

For covered geomembranes, it seems that most defects appear during the placement of the 
primary leachate collection system (PLCS). For example, results presented by Nosko & 
Touze-Foltz (2000) from electrical damage detection systems installed at more than 300 sites, 
from 16 countries, covering over 3 250 000 m2, showed that the majority of the damages 
(71%) were caused by stones during PLCS installation, 16 % by heavy equipment, 6 % by 
inadequate seams, 6% by the workers, and 1% by cuts (Figure 2.12). Similar conclusions 
were drawn by Colucci & Lavagnolo (1995) from the analysis of 30 leak location surveys 
conducted in Italy, covering more than 300 000 m2. According to these authors, the number 
and the quality of the defects were related to the quality of the subgrade material, the quality 
of the cover material, the accuracy in their installation and the quality of the liner installation. 

As for the effects of the subgrade materials, it must be pointed out that modern landfills often 
incorporate a GCL. Although there is no data available on this topic, when the geomembrane 
is placed over a GCL, it can be expected that a negligible number of defects be caused by the 
underneath materials. 
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Figure 2.12 – Cause of defects in geomembrane liners after installation of the cover layer 

(data from Nosko & Touze-Foltz 2000) 
 

Concerning uncovered liners, different causes of defects have been indicated. The results 
reported by Rollin et al. (1999) from an electrical leak location system used in exposed 
geomembrane liners installed in basins, ponds and landfills, showed that 55 % of the damages 
occurred in seams (fillet extrusion seams for HDPE), followed by the holes due to the poor 
quality of the subgrade (25 %), as illustrated in Figure 2.13. These results are related to 
surveys conducted on 9 sites located in France and Canada, between 1994 and 1998, covering 
more than 225 000 m2. Different results were presented by Peggs (2001) from a water lance 
survey performed on 645 000 m2 of exposed LLDPE geomembrane on a mining tailing 
management facility. In this facility, punctures caused by the subgrade materials beneath the 
geomembranes were the main cause of defects (38.2 %). Only 16.8 % of the defects were 
found on geomembrane seams (Figure 2.13). However, results by Peggs (2001) concern just 
one facility, thus comparison with mean results obtained from several sites might be 
questionable.  

 

Holes (punctures)
25%

Seams
55%

Cuts
20%

Rollin et al. (1999) 

Seams
17%

Scrapes
13%

Burns
6%

Punctures
38%

Tears
4%Gouges

12%

Cuts
10%

Peggs (2001) 

 
Figure 2.13 - Cause of defects in geomembrane liners in uncovered liners 
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2.3.1.3.3 Defects density  

Another issue related with this topic is the defects density per liner area, i.e. number of defects 
per hectare (Colucci & Lavagnolo 1995). The variation of defect density as a function of the 
area of the facility surveyed is plotted in Figure 2.14. It can be observed that the density of 
defects tends to decrease as the surveyed area increases. However, it must be noted that there 
are many uncertainties regarding the varying conditions found in different sites (different 
types of geomembranes, different facilities, covered and uncovered geomembranes, etc). 
According to Colucci & Lavagnolo (1995), the reasons for the higher defects densities found 
in small installations can be summarised as follows: (1) smaller facilities have proportionally 
more complex features (corners, sumps, penetration); (2) small facilities tend to have higher 
percentage of hand seaming (extrusions); (3) large facilities have a stricter construction 
quality program; (4) large installations generally receive less traffic. Similar observations 
have been drawn by other authors, such as, for example, Rollin et al. (1999, 2004). 
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Figure 2.14 – Variation of defect density as a function of the area surveyed 

(Touze-Foltz 2001) 

 

Table 2.7 shows defect densities presented by different authors for covered and uncovered 
geomembranes. It can be seen that they range from 0.7 to 15.3 defects/ha for covered 
geomembrane liners and from 2 to 5.5 defects/ha for uncovered ones. Analysis of the data 
presented in Table 2.7 is quite difficult because the number of sites as well as the area 
surveyed vary significantly from one study to the other, which influences the results. For 
example, the density reported by Peggs (2001) is related to a single large facility, and as 
previously mentioned, large facilities tend to present lower defect density. Thus, the defect 
density reported by this author might not be representative for small landfills. In addition, for 
uncovered geomembrane liners, the defect density reported by Rollin et al. (1999) is relatively 
lower than the one from the others, but it is mainly related to surveys carried out on sites 
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where a geotextile was installed between the subgrade material and the geomembrane. Also, it 
refers to sites where a very strict CQA programme was implemented.  

It should be noted that relatively higher defect densities can be found on small containment 
facilities with complex features to deal with, and where the geomembrane is placed directly 
on the subgrade-soil. For example, Laine et al. (1989) reported a mean density of 
26 defects/ha from surveys conducted on small containment facility (less than 2 ha). Also, 
results of surveys conducted in two small lagoons (less than 1 ha) showed a mean density of 
45 defects/ha (Barroso 2001). In this case, the high defect density observed was mainly due to 
inadequate installation of the geomembrane. 

Table 2.7 includes the mean values obtained by Touze-Foltz (2001) from a synthesis of 
studies involving electrical leak location systems. For uncovered geomembrane liners, the 
author analysed the surveys conducted by Laine (1991), Board & Laine (1995), and Rollin et 
al. (1999). For covered geomembranes, surveys assessed included: Laine & Mosley (1993), 
Board & Laine (1995), Colucci & Lavagnolo (1995), White & Barker (1997), Darilek & 
Miller (1998), Snow et al. (1999). This author reports a mean defect density of 2.8 per hectare 
after installation of the geomembrane and 11.9 per hectare after placement of the granular 
drainage layer. This result confirms that the majority of the defects occur during placement of 
the granular layer above the geomembrane. 

 
Table 2.7 – Reported defect density (modified from Touze-Foltz 2001) 

Reference 
Area 

surveyed 
(ha) 

Status of 
geomembrane 

Defects on 
geomembrane 

sheet         
(%) 

Defects on 
geomembrane 

seams       
(%) 

Mean defect 
density 

(defect/ha) 

Laine & Mosley (1993) 1 Covered 20 80 8.3 
Board & Laine (1995) 2 Covered 31 69 5.5 

Colucci & Lavagnolo (1995) 25 Covered 85 45 15.3 
White & Barker (1997) 1 Covered 100 0 0.7 
Darilek & Miller (1998) 1 Covered 100 0 0.9 

Snow et al. (1999) 2 Covered 100 0 10.9 
Nosko & Touze-Foltz (2000) 325 Covered 93.7 6.3 12.9 

Touze-Foltz (2001) 108.8 Covered 81.5 18.5 11.9 
Laine (1991) 2 Uncovered - - 5.5 

Board & Laine (1995) 1 Uncovered 17 83 3.8 
Rollin et al. (1999) 22 Uncovered 45 55 2.5 
Touze-Foltz (2001) 31.3 Uncovered 42 58 2.8 

Peggs (2001) 64.5 Uncovered 83.2 16.8 2.0 

 

As previously mentioned, Rollin et al. (2002b) also performed a synthesis of studies involving 
electrical leak location systems. Their results were not included in Table 2.7 because they do 
not distinguish between the surveys conducted with covered and uncovered geomembrane 
liners. The defect density estimated by these authors was 17.4 defects/ha. 

Another interesting aspect recently pointed out refers to defects occurred in the long term. 
Needham et al. (2004) reported data from electrical leak detection surveys using permanent 
systems. Data were obtained from 88 cells and 18 leachate lagoon at 55 landfill sites in 
Eastern Europe, Belgium and the United Kingdom, covering approximately 1 022 000 m2. 
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Results were reviewed from a survey company over a 7-year period, from 1996 to 2003. 
According to these authors, the number of defects was 1 460 (14.3 defects/ha), with 74 % 
located during the initial leak survey at the end of liner construction and 26 % of the defects 
being detected in subsequent surveys. As regards the defects detected on later surveys 
reported by Needham et al. (2004), most of them (78 %) were caused by stone puncturing in 
consequence of traffic movement over empty cells. Needham et al. (2004) do not include 
detailed information about the cause of the defects, however reported data draw attention to 
the possibility of damages occurring during operation of the landfill. 

Results of a permanent in situ system (grid system) at a landfill in UK since installation 
in 1995 are also reported by Needham et al. (2004). A liner area of 5.5 ha is covered by this 
system. The monitoring at that landfill site has so far given a defect density of 16 holes/ha. Of 
these holes, 27 % were detected after completion of the liner, before waste disposal started in 
the cell or after landfilling began. In addition, there is no evidence of gradual development of 
holes from 1995 to 2003. Based on these results, the authors concluded that once a liner is 
covered by several meters of waste, the agents for future development of holes in liner 
(e.g. stress cracking) are limited and they are unlikely to develop for at least the first decade 
of the service of the geomembrane liner.  

 

2.3.1.3.4 Type and size of defects 

Table 2.8 presents data reported by different authors about type and size of defects. It can be 
seen that Colucci & Lavagnolo (1995) found that approximately 50 % of all detected defects 
were smaller than 1 cm2 with larger defects being the holes and tears. Rollin et al. (1999) 
found that the smallest defects (< 0.02 cm2) represented 43% of the detected defects and were 
mainly associated with seam failures, whereas the largest defects (> 0.1 cm2), representing 
22.4 % of the total, were more related to holes and cuts. Nosko & Touze-Foltz (2000) 
observed that 50 % of the defects fall into a range of 0.5 to 2.0 cm2, 24.9 % of the defects 
varied from 2.0 to 10 cm2, 14.3 % exceeded 10 cm2, and 10.8 % were less than 0.5 cm2. An 
interesting aspect of their study is that the defects related with heavy equipment were 
typically larger than 10 cm2, whereas the majority of the defects related to seams (83 %) were 
less than 2 cm2. In addition, Peggs (2001) found that the most common defect was a puncture 
between 0.2 and 1 cm in diameter.  

It can be observed that the sizes of the defects reported by Rollin et al. (1999) are smaller than 
those from other authors included in Table 2.8. This is due to the fact that their results are 
related to uncovered geomembrane liners and defects in geomembranes can be much larger 
after placement of the overlying drainage materials, as pointed out by Colucci & Lavagnolo 
(1995), Nosko & Touze-Foltz (2000), and Peggs (2001). 

From Table 2.8, the following general comments can be made: (1) the majority of the holes 
are smaller than 10 cm2, which would correspond to a circular hole of 3.6 cm in diameter; (2) 
seams are not bonded over lengths ranging from 1 mm to more than 1 m; (3) cuts can reach 
more than 1 m; and (4) most tears are smaller than 1 m long. 
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Table 2.8– Defect size as a function of defect type 

Reference Size Holes Tears/burns/
equipment 

Cuts/ 
scraps/ 
gouges 

Seams Sites 
Area 

surveyed 
(ha) 

0-0.2 cm2 44 31 12 11 
0.2-1 cm2 37 49 21 4 
1-5 cm2 60 49 2 8 
5-10 cm2 22 11 0 4 

10-100 cm2 10 22 0 1 
100-1000 cm2 15 4 0 0 

Colucci & 
Lavagnolo 

(1995) 

1000-8400 cm2 0 5 0 0 

25 27.6 

<0.02 cm2 3 - 0 18 
0.02-0.1 cm2 6 - 4 7 Rollin et al. 

(1999) 
> 0.1 cm2 3 - 6 2 

11 24.1 

< 0.5 cm2 332  5 115 
0.5-2 cm2 1720 236 36 105 
2-10 cm2 843 153 18 30 

Nosko & 
Touze-Foltz 

(2000) 
> 10 cm2 90 496 - 15 

300 325 

< 0.1 cm 10 0 4 2 
0.2-1 cm 28 9 7 5 
1-5 cm 7 2 21 3 
5-10 cm 0 1 5 3 

10-50 cm 1 0 2 1 
50-100 cm 0 0 0 3 
> 100 cm 0 0 2 2 

Peggs (2001) 

unknown 4 1 5 3 

1 63.4 

 

2.3.1.3.5 Summary of Section 2.3.1.3 

In landfills, the main cause of defects in geomembrane liners is the placement of the primary 
leachate collection system (PLCS). Inadequate seams and the quality of the subgrade 
materials can also be very important causes of defects.  

Regarding the number and density of defects, reported data suggest that they depend on the 
size of the facility. Small defect densities were found in larger facilities. This can be attributed 
mainly to the proportionally less complex features (corners, sumps, pipes penetration, etc.) of 
the larger facilities, as well as to the small percentage of hand seaming. The implementation 
of strict CQA programmes also seems to have a great impact on the number of defects. Large 
defect densities are usually reported for sites constructed without CQA programmes (Rollin et 
al. 2002b, Needham et al. 2004). A frequency ranging from 0.7 to 15.3 defects/ha can be 
expected in landfills. In addition, a recent study involving permanent in situ system of leaks 
detection also showed that additional defects might be expected during landfill operation. 

A wide range of sizes of defects has been reported in literature. Defect dimensions appear to 
change from less than one millimetre to more than one meter. Nevertheless, the majority of 
the defects seem to be smaller than 10 cm2.  

The issue of the size of the defects is very important in the scope of present work as, in order 
to carry out experimental work to measure the flow rate through composite liners due to a 
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hole in a geomembrane (Chapter 6), a hole size as representative as possible of the field 
conditions should be used. Based on discussion addressed and taking into account the 
dimensions of our laboratory model (boundary effects needed to be avoided), a circular hole 3 
mm in diameter was used in the tests carried out in this study.  

As mentioned before, another material used in composite liners to limit the advective flow, 
which occurs mainly through geomembrane defects, is the GCL. The main characteristics of 
this component, as well as the main factors affecting its performance a barrier will be 
addressed in Section 2.3.2. 

 

2.3.2 Geosynthetic Clay Liners 

2.3.2.1 Definition and raw materials 

There are many ways to classify geosynthetic clay liners, such as geocomposite clay liner 
(IGS 2000), clay geosynthetic barriers (term adopted in International Symposium Nuremberg 
held in 2002), bentonite mats, bentonite blankets, prefabricated bentonite blankets, etc. The 
term geosynthetic clay liner (GCL) was adopted in the present work because it is the most 
commonly used.  

The use of GCLs is relatively recent. It appears that it was first used in 1986 in the USA. Its 
development and use have gained widespread popularity, which have been followed by 
intensive research. Some topics that have been under research in the GCLs field are: hydraulic 
conductivity, diffusion characteristics and chemical compatibility (e.g. Petrov et al. 1997a, b; 
Petrov & Rowe 1997; Rowe 1998; Lake & Rowe 2000; Jo et al. 2001; Vasko et al. 2001, 
Katsumi et al. 2004); mechanical behaviour (e.g. Triplett & Fox 2001; Fox et al. 2002; 
Zanzinger & Alexiew 2002; Bonaparte et al. 2002; Oliveira & Lopes 2002); gas migration 
(e.g. Didier et al. 2000; Vangpaisal et al. 2002; Bouazza et al. 2002b; Vangpaisal & Bouazza 
2004); and durability (e.g. Alexiew 2000; Egloffstein 2001, 2002; Southen & Rowe 2002, 
2004; Southen et al. 2004).  

GCLs are factory-manufactured hydraulic barriers typically consisting of a layer of a thin 
bentonite (powdered or granular) sandwiched between two geotextiles or bonded to a 
geomembrane. Bentonite is the critical component of the GCLs and gives rise to very low 
hydraulic conductivity of the product. Geotextiles and geomembranes components have two 
major functions. First, they keep the bentonite layer in place in its non-hydrated state during 
transportation, handling and installation, and second, keep the bentonite in place after 
hydration during service life of the products. 

Bentonite is a natural clay that appears largely as product of weathering, through a chemical 
transformation from volcanic ash that was deposited, either during the cretaceous period in 
marine environments (sodium bentonites), or during the tertiary period in fresh water 
environments (calcium bentonites). The most widespread member of this group is the 
montmorillonite, a three-layer clay mineral from the dioctahedrical smectite group. According 
to Egloffstein (2001, 2002), high quality bentonites contain 75 to 90 % of montmorillonite by 
weight. Similar values are suggested by Bouazza et al. (2002a), who refers to 60 to 90 % of 
montmorillonite. Additionally to montmorillonite, bentonites also contain other minerals such 
as quartz, feldspars, mica, cristobalite, carbonates, and other clay and nonclay minerals.  

For industrial applications, bentonite can be classified as sodium or calcium, depending on the 
dominant exchangeable cation. To improve the hydraulic performance of calcium bentonites, 
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they can be activated, i.e primary calcium ions are replaced by sodium ions, and then are used 
in GCLs manufacturing as well.  

Structurally, montmorillonites are three-layer minerals consisting of an alumina sheet 
sandwiched between two silica sheets (tetrahedron-octahedron-tetrahedron sheets), as Figure 
2.15 shows. In the tetrahedron sheet, one silicon atom is surrounded by four oxygen atoms 
linked to a six-ring net. In the octahedron sheet, one aluminium atom is surrounded by six 
oxygen atoms (OH-groups). Bonding between the shared interior oxide anions and the cations 
in the tetrahedron and octahedron sheets links the layers together and yields the unique sheet 
structure of clay minerals. This structure differs somewhat, due to isomorphous substitutions 
in tetrahedron and octahedron sheets (Si4+ by Al3+in tetrahedron sheet, and Al3+ by Mg2+, Fe2+ 
or Li+ in octahedron sheet), resulting in a slight overall negative charge in the surfaces of 
silicate sheets (Egloffstein, 1997). In addition, montmorillonite has a large-specific surface 
area accessible to water (750-800 m2 g-1) and a large cation exchange capacity, between 100 
to 150 meq/100g (Gomes 1986).  

 

 
Figure 2.15 – Structure and form of the three-layer clay mineral (various sources) 

 

During the hydration, these combined characteristics of montmorillonite result in adsorption 
of a large number of hydrated cations (exchangeable cations, such as Ca2+, Mg2+, Na+) as well 
as water molecules to balance the excess negative charge (Gomes 1986). The adsorption of 
water molecules and cations results in significant swelling of montmorillonite. These 
molecules are considered immobile relative to those in bulk pore water (i.e. non-adsorbed 
water), and act similarly to the solid phase in terms of impact on the flow. When the volume 
of bound water molecules increases, the fraction of the pore space of freely flowing bulk 
water decreases and flowing paths become smaller and irregular (Jo et al. 2001). 
Consequently, hydrated bentonite provides a barrier to fluid flow, typical exhibiting a low 
hydraulic conductivity to water. According to Bouazza (2002), sodium bentonites and sodium 
activated-bentonites, can swell ten to fifteen times their volume, whereas calcium bentonites 
swell two to four times their volume. 
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Regarding geosynthetic components of the GCLs (geotextiles or geomembranes), several 
options have been adopted by the different manufacturers. In geotextile-supported GCLs, 
different combinations of woven and nonwoven can be used. They vary in their 
manufacturing and in their mass per unit area. The needle punched geotextiles typically range 
from 100 g m-2 to 800 g m-2 mass per unit area, and woven ones vary from light products to 
200 g m-2 slit film. The raw materials are usually either polypropylene, or high density 
polyethylene. The way they are used also depends on manufacture. Some products include 
one woven on top and one non-woven geotextile at the bottom, while in other products the 
non-woven geotextile is on the top and the woven geotextile at the bottom. The products with 
a geomembrane backing can also vary in type, raw material, thickness, and surface texture. 

 

2.3.2.2 Geotextile-supported GCLs 

Geotextile-supported GCLs can be grouped into three main categories (Figure 2.16): 
needlepunched, stitch-bonded, or adhesive-bonded. In needlepunched products, the bentonite 
is held in place between the carrier and cover geotextiles by a process of needlepunching. The 
geotextile on at least one side must be a needlepunched geotextile without a woven 
component. The needlepunching process punches fibres from this geotextile through the 
bentonite and embeds these fibres into the bottom geotextile. In stitch-bond products, the 
bentonite is held in place between the carrier and cover geotextiles by process of stitching. 
Finally, in adhesive products, the bentonite is covered with adhesive that glues it to 
geotextiles (Koerner 1997).  

 
Figure 2.16 – Scheme of the geotextile based GCLs (modified from Koerner 1998) 
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Needlepunched and stitch-bonded products are often considered as reinforced products in 
opposition to adhesive-bonded products. The reinforcement is achieved differently in the 
different types of GCLs. The needlepunching process causes some fibres from the upper 
geotextile to extend through the bentonite and lower geotextile, bonding the entire product 
together (von Maubeuge & Heerten 1994). The fibres that are punched through the lower 
geotextile either rely on natural entanglement and friction to keep the product together, or are 
heated, causing its fusion to the lower geotextile. In this case, a robust bond between the two 
geotextiles and bentonite potentially occurs, and they are sometimes termed as thermal locked 
GCLs. The reinforcement can be also attained by sewing the geotextiles and bentonite all 
together with parallel rows of stitch bonded yarns (Bouazza 2002).  

 

2.3.2.3 Geomembrane-supported GCLs 

In geomembrane-supported GCLs (Figure 2.17), the bentonite is bonded to a geomembrane 
using a non-polluting adhesive and a thin open weave spun-bonded geotextile is adhered to 
the bentonite during installation, for protection purposes (Bouazza 2002). This type of GCL is 
not as much used as geotextile-supported products. 

 

 
 

Figure 2.17 – Scheme of the geomembrane based GCLs (modified from Rollin et al. 2002a) 
 

It must be pointed out that new products or modified products have been arising in the 
market. New products include (Rollin et al. 2002a): prehydrated, thermally treated, double 
layered GCLs, GCLs with geotextile composite, GCL with the upper geotextile impregnated 
with bentonite, products that combine different bonding methods (e.g. adhesive plus stitch 
bonding), etc.  

The effectiveness of geotextile-supported GCLs (hereafter designed just as GCLs) as 
supplementary barriers in landfills is closely related to the hydraulic conductivity of the 
bentonite, and with the amount of lateral flow at the interface between them and the 
geomembrane (Bonaparte et al. 2002). The main factors affecting the hydraulic performance 
of GCLs, such as hydration conditions, permeant liquid and the confining stress are briefly 
discussed in Section 2.3.2.4. The flow at the interface between the GCL and the 
geomembrane will be addressed in Chapter 4. 
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2.3.2.4 Hydraulic performance 

2.3.2.4.1 Hydration conditions 

The influence of the hydration conditions on the hydraulic conductivity of GCLs has been 
addressed by several researchers, such as Daniel et al. (1993), Didier & Comeaga (1997), 
Petrov et al. (1997a), Petrov & Rowe (1997), Ruhl & Daniel (1997), Shackelford et 
al. (2000), Vasko et al. (2001), Shan & Lai (2002), Katsumi et al. (2004). Results obtained 
have shown that, in general, prehydrating the GCLs under the same normal stress than the 
permeation test results in lower hydraulic conductivity than the one obtained in 
nonprehydrated conditions. The term prehydrated means that the GCL is initially hydrated in 
deionised, distilled or tap water, prior to permeation with a chemical solution, whereas the 
term nonprehydrated means that the GCL is wetted and permeated using the same chemical 
solution (Ruhl & Daniel 1997, Katsumi et al. 2004).  

The prehydration water content that would prevent alterations in hydraulic conductivity of 
GCLs due to a permeant has been also investigated. For example, Daniel et al. (1993) carried 
out tests in which the bentonite component of a geomembrane-suported GCL was prehydrated 
to water contents of 50 %, 100 % or 125 %, before being permeated with benzene, gasoline, 
methanol, methyl ter-butil ether (MTBE) or trichloroethylene (TCE). Air dry specimens (17 
%) and saturated specimens (145 %) were also tested. The results obtained are summarised in 
Figure 2.18. Hydraulic conductivities for the specimens prehydrated to water contents of 125 
% and 145 % were not included in this figure because no flow was observed. It was found that 
the hydraulic conductivity of the GCLs was not affected by the hydrocarbons solutions when 
the prehydration water content exceeded 100 %. 
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Figure 2.18 - Effect of initial water content on the hydraulic conductivity of a 

GCL permeated with different permeants (data from Daniel et al. 1993) 
 

Similar investigations were conducted by Vasko et al. (2001). They evaluated how 
prehydration water content affected the hydraulic conductivity of GCLs permeated with salt 
solutions (CaCl2), with different concentrations, expressed in terms of molarities (M). Results 
obtained are shown in Figure 2.19. It can be observed that for the low concentration 
(0.025 M), the prehydration water content was found to have no influence on hydraulic 
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conductivity. For concentrations higher than 0.1 M, lower hydraulic conductivities were 
obtained with higher prehydration water content. The hydraulic conductivity dropped two 
orders of magnitude as the prehydration water content increased from 9 % to 200 %, and 
remained constant as the prehydration water content increased.  

 

 
Figure 2.19 – Hydraulic conductivity versus prehydration water content for GCLs 
permeated with CaCl2 solutions with different concentrations (Vasko et al. 2001) 

 

According to Vasko et al. (2001), the advantages accrued by prehydration followed by 
permeation with a non-wetting organic liquid, as the hydrocarbons solutions used by Daniel et 
al. (1993), are not obtained when the permeant liquid is a wetting aqueous solution. The 
difference might be attributed to the different hydration mechanisms involved when the GCL 
is in contact with wetting or non-wetting permeants.  

Shan & Lai (2002) performed hydraulic conductivity tests and swelling tests on two GCLs 
with various hydrating liquids (tap water, acid water, seawater, MSW leachate, and gasoline). 
The tests were conducted using hydrated and nonprehydrated specimens. The results obtained 
showed that the hydraulic conductivity of GCLs depends both on hydrating and permeating 
liquid. As long as GCLs are hydrated or permeated with aqueous solutions, their hydraulic 
conductivity will remain low. They concluded that GCLs can serve as effective hydraulic 
barriers for application in landfills and secondary containment systems where acid water, 
seawater, or leachate, instead of fresh water, is the hydration liquid. 

To summarise, it seems that the hydraulic conductivity of the GCLs is controlled by the 
hydrating and the permeating liquids. Moreover, the hydration of GCLs with water 
(prehydration) prior to permeation with liquids other than water appears to result in a lower 
hydraulic conductivity than the one obtained in nonprehydrating conditions. With this respect, 
the Comité Français des Géosynthétiques (1998) recommends that these products should be 
prehydrated before achieving service conditions. A minimum prehydration of 100 % is 
suggested. The water necessary to reach this water content can be sprayed on the GCL or 
absorbed from the underlying soil (Comité Français des Géosynthétiques 1998). 
Nevertheless, it is not recommended that the prehydration be made before confining the 
GCLs.  
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2.3.2.4.2 Permeant liquid 

The permeant liquid can significantly affect the hydraulic conductivity of GCLs. A synthesis 
of studies addressing this topic was presented by Rowe (1998). This author reviewed data 
reported by Petrov et al. (1997b), Petrov & Rowe (1997), Ruhl & Daniel (1997), and Rad et 
al. (1994). Information collected refers to eight GCL (six geotextile based and two 
geomembrane based products) and seven permeants: distilled water, tap water, two different 
synthetic leachates, two real MSW leachates, and a simulated hazardous waste leachate. The 
main findings reported by Rowe (1998) can be summarised as follows: (1) specimens 
permeated with tap water and distilled water showed similar results; (2) the hydraulic 
conductivity increases with the concentration of salts in the permeating solution; and (3) 
specimens permeated with a real or synthetic landfill leachate might have a hydraulic 
conductivity of an order of magnitude higher than that with water.  

It must be pointed out that all studies analysed by Rowe (1998) have concentrated on the GCL 
short term behaviour. Further analysis conducted by Shackelford et al. (2000), on some of 
these studies, indicated that the termination of hydraulic conductivity tests involving 
prehydrated GCLs before chemical equilibrium is established may result in measured 
hydraulic conductivities unconservatively low.  

Shackelford et al. (2000) also discussed the factors and testing considerations affecting the 
hydraulic conductivity of the GCLs permeated with liquids other than water, in what they 
termed as non-standard liquids. They concluded that the non-standard liquids containing both 
high concentration of monovalent cations and low concentration of divalent cations can cause 
important increases in the hydraulic conductivity of the GCLs (more than one order of 
magnitude) provided that the test is performed sufficiently long to allow for exchange of 
adsorbed cations. Furthermore, the GCLs characteristics that influence their hydraulic 
conductivity to liquids other than water are the aggregate size distribution, content of 
montmorillonite, thickness of the adsorbed layer, prehydration and void ratio of the mineral 
content. 

Later studies regarding the effect of the permeant liquid on hydraulic conductivity of the 
GCLs were conducted by other authors. For example, Jo et al. (2001) examined the influence 
of salt solutions of various concentrations, cation valence, and pH on swelling and hydraulic 
conductivity of non-prehydrated GCLs. Their results indicate that lower swell and high 
hydraulic conductivity were associated to an increase in concentration and an increase in 
cation valence. They also observed that pH only influenced hydraulic conductivity and 
swelling when it was either very low (< 2), or very high (>13). Another finding reported by 
these authors refers that the results of free swell tests can be used as a practical screening 
method for compatibility testing with inorganic solutions. This conclusion is consistent with 
the conclusion drawn by Shan & Lai (2002), according to which the results of free swell tests 
can be used to foresee the effect of the hydration liquid or the permeant on the hydraulic 
conductivity of the GCLs.  

Katsumi et al. (2004) investigated also how multi-salt solutions (CaCl2 + NaCl) affected the 
hydraulic conductivity of non-prehydrated powdered and granular bentonites. Reported 
results show that the permeability of both GCLs (powdered and granular) was affected by the 
chemical solutions. Nevertheless, the results suggest that the powdered bentonite was less 
affected than the granular bentonite, particularly at high concentrations. For powdered 
bentonite, the hydraulic conductivity presented an increase in permeability from 1 to 2 orders 
of magnitude, whereas for granular GCL the hydraulic conductivity increased from 1 to 4 
orders of magnitude. According to these authors, it is likely that the pores between the 



Chapter 2      Landfills and composite liners 

 37

granules may not be blocked due to a lower level of swelling of the bentonite, especially for 
high concentrations, resulting in an increase in hydraulic conductivity.  

To summarise, literature review carried out has shown that hydraulic conductivity of GCLs 
increases as the concentration and cation valence of the permeant liquid increases. This seems 
to be related to the swelling capacity of these products. In addition, studies focused on the 
effect of multi-salt solutions on hydraulic conductivity of non-prehydrated powdered and 
granular bentonites, showed that the hydraulic conductivity of the granular bentonite was 
more affected by the multi-salt solutions than the powdered bentonite. This was attributed to 
the fact that in granular bentonite the pores between the granules may not be blocked due to a 
lower level of swelling of the bentonite causing an increase in hydraulic conductivity. 

 

2.3.2.4.3 Confining stress 

The influence of the confining stress on the hydraulic conductivity of GCLs has been 
examined by several investigators. Estornell & Daniel (1992) conducted hydraulic 
conductivity tests with water on three geosynthetic clay liners (stitch-bond, adhesive bounded 
geotextiles based product, and adhesive bounded geomembrane supported GCL). Tests were 
carried out on a flexible–wall permeameter. Confining stresses used ranged from 14 to 
91 kPa. The results obtained showed that the hydraulic conductivity decreases with increasing 
confining stress. Similar trend is indicated by Daniel (1996), who anticipates that increasing 
the confining stress consolidates the GCL to a lower porosity, reducing the permeability. 

Petrov et al. (1997b) evaluated how low (3-4 kPa), intermediate (34-37 kPa) and high static 
confining stresses (109-117 kPa) affected the hydraulic conductivity of a needlepunched 
GCL. The GCL consisted of a powdered sodium bentonite sandwiched between a 
needlepunched carrier geotextile reinforced by a woven geotextile, and a needlepunched 
cover geotextile. Specimens were confined prior to hydration and were hydrated and 
permeated with either distilled water, or tap water. Except two tests, which were carried out 
on a double-ring permeameter, in general tests were conducted in a computer controlled 
constant flow rate fixed-ring permeameter. Results showed that the hydraulic conductivity 
decreases as the confining stresses increases. These authors attributed the reduction in GCL 
hydraulic conductivity to lower bulk void ratios resulting from higher confining stresses. 
They also showed that a linear relationship exists between the logarithm of the hydraulic 
conductivity and the bulk void ratio.  

Petrov & Rowe (1997) showed that void ratios are dependent on both the magnitude of the 
confining stress and the level of bentonite hydration at the time of application of the confining 
stresses. Within the scope of their research on chemical compatibility of GCLs with salt 
solutions and leachates, Petrov & Rowe (1997) observed that applying static confining 
stresses prior to bentonite hydration produced significantly lower void ratios at a given 
confining stress than applying increasing confining stresses after allowing the GCL to fully 
hydrate under a low confining stress. According to the authors, these results emphasise the 
hydraulic advantages of maximising the overburden stress prior to GCL hydration. 

Shackelford et al. (2000) re-plotted published data by Petrov & Rowe (1997) on hydraulic 
conductivity of GCLs permeated with various NaCl solutions in a bi-logarithm scale. 
Re-plotted data showed that there is also a strong correlation between the logarithm of 
hydraulic conductivity and the logarithm of bulk void ratio. More importantly, it highlights 
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that both bulk void ratio and cation concentration influence the hydraulic conductivity of the 
GCLs, for a given permeant.  

To sum up, hydraulic conductivity decreases as confining stress increases as can be seen in 
Figure 2.20, which compiled data from various sources. This figure also includes some results 
of hydraulic conductivity tests carried out in the present work to assist the interpretation of the 
experimental work on flow rates through composite liners involving a GCL, what will be 
presented in Chapter 6.  
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Figure 2.20 - Variation of hydraulic conductivity in function of confining stress 

 

Another type of barrier that can be employed in composite liners to limit the advective flow 
in lining systems is a CCL (compacted clay liner). Similar to the others types of lining 
materials, the critical aspects of its successful performance will be briefly discussed in 
following Section 2.3.3. 

 

2.3.3 Compacted Clay Liners 

Compacted clay liners consist of natural mineral soils, bentonite-soil blends, and other 
materials placed and compacted in lifts. They are designed to work effectively as hydraulic 
barriers. The critical issue of this liner is its hydraulic conductivity. A value less than 
10-9 m s-1 is typically required for this property (Daniel 1993). 

Construction of a CCL with a hydraulic conductivity less than 10-9 m s-1 requires the use of 
suitable soils. It has been considered that the soil ability to achieve a specific hydraulic 
conductivity depends on its plasticity characteristics, water content, and particle size. 

Plasticity characteristics are quantified by liquid limit (LL), plastic limit (PL) and plasticity 
index (PI). The liquid limit is defined as the minimum moisture content, in percentage of 
oven-dried weight, at which a soil mixture can flow. The plastic limit is the minimum 
moisture content at which a soil can be moulded. The plastic index (PI=LL-PL) defines the 
range of moisture contents over which a soil exhibits plastic behaviour. The PI of the soil is 
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perhaps the single most frequently used indicator of the suitability of a natural soil for use in 
a CCL. A minimum value around 10 % for PI is often recommended (Oweis & Khera 1998).  

Water content refers to the amount of free water contained in a given amount of soil. Its 
measurement is useful for assessing whether a clay soil needs pre-processing (moisture 
adjustment or soil amendments) to yield a specific density or hydraulic conductivity 
(USEPA 1998).  

In regard to particle size, a minimum percentage of fines (typically ≥ 50 % passing no. 200 
sieve, which has an opening size equal to 75 µm) is usually specified. A minimum of clay 
(fraction finer than 2 µm) is also sometimes required, such as ≥ 20 to 25 % (Bonaparte et 
al. 2002). In addition, care must be taken as regards the percent gravel (particles unable to 
pass through the openings of a no. 4 sieve, opening size equal to 4.75 mm), in cases where a 
CCL functions as a bottom layer to a geosynthetic, as gravel can cause puncturing in 
geosynthetics. Controlling the maximum particle size and angularity of the gravel should help 
avoiding puncturing. It also prevents gravel from creating preferential flow paths. It is 
recommended to use soil liners with particles and rock fragments smaller than 19 mm 
(USEPA 1998). Bouazza (2002) recommended a maximum 12 mm stone size in subgrade 
when the latter is overlaid by GCLs. 

The approach outlined regarding the soil ability to achieve a specific hydraulic conductivity 
is not supported by the findings included in the database assembled to analyse the field 
performance of CCLs, particularly to address the question of whether GCLs are meeting the 
purpose of having a hydraulic conductivity less than 10-9 m s-1. Practically, no correlation was 
found between the hydraulic conductivity and the typically measured soil index properties, 
such as liquid limit, plasticity index, percentage of clay, percentage of fine. This indicates 
that CCLs having a field hydraulic conductivity less than 10-9 m s-1 can be constructed with a 
relatively wide range of clayey soils. This database consisted of 89 CCLs (81 test pads 
plus 8 actual bottom liners), all of them with specifications to achieve a hydraulic 
conductivity less than 10-9 m s-1 (Daniel 1998, Benson et al. 1999, Bonaparte et al. 2002).  

Other important conclusions drawn based on information gathered with this database can be 
summarised as follows (Daniel 1998, Benson et al. 1999, Bonaparte et al. 2002): (i) the 
primary emphasis should be given to ensure compaction wet of the line of optimum 
(i.e. curve connecting the peaks of compaction curves developed using a range of compactive 
energy – Figure 2.21); (ii) the most important control parameter in hydraulic performance of 
the CCLs was not found to be water content or density, but rather a parameter termed P0 
(Figure 2.22), which represents the percentage of field-measured water content-density points 
that lie on or above the line of optimums; a P0 of at least 70 to 80 % is suggested to achieve a 
hydraulic conductivity less than 10-9 m s-1 (shaded zone in Figure 2.23); (iii) liners that are 
thick or have a higher number of lifts have a significantly better chance of achieving a lower 
field hydraulic conductivity; and (iv) 25 % of 89 CCLs failed to achieve a large-scale 
hydraulic conductivity less than 10-9 m s-1, confirming the difficulty that is often found in 
achieving the required low hydraulic conductivity in field. 
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Figure 2.21 – Line of optimums (Daniel 1998, Bonaparte et al. 2002) 

 

 

 
Figure 2.22 – Definition of percent of points wet of optimums: P0 (cited by 

Benson et al. 1999, Daniel 1998, Bonaparte et al. 2002) 
 

 

Water Content 

Water Content 
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Figure 2.23 – Water content-density specifications showing: (A) traditional (but not 
recommended) type of specification, and (B) the recommended type of specification 

emphasizing compaction to water content-density values on or above the line of 
optimums (Bonaparte et al. 2002) 

 

The discussion addressed in Section 2.3.3 was focused on hydraulic conductivity. However, it 
must be taken into account that as P0 increases, the shear strength, including interface shear 
strength with geosynthetics, often decreases. Thus, design specifications must ensure that the 
soil also has proper strength. Other factors such as bearing capacity are also important issues. 
The engineer must ensure that all criteria, and not only hydraulic conductivity, are satisfied, 
as emphasised in Bonaparte et al. (2002). 

 

2.4 SUMMARY AND CONCLUSIONS 

An extended literature review on landfills and composite liners has been presented in this 
chapter. Critical issues for a successful performance of the lining materials (geomembranes, 
geosynthetic clay liners, and compacted clay liners) in landfills have been discussed. 

As for geomembranes, their performance is closely related with the seams and the 
unavoidable defects occurring mainly because of inadequate construction activities. Seams 
need to be both fluid-tight and have a mechanical strength of the same order of magnitude as 
geomembrane panels. Thus, they require a strict quality control. However, from a fluid-
tightness point of view, their construction quality control is usually based on qualitative 
criteria (pass/failure), despite the importance of ensuring satisfactory fluid-tightness at the 
seams. 

A literature review on origins, density, and typical sizes of the defects has been presented. It 
was found that in landfills the majority of defects occur during placement of the cover 
materials, although inadequate seams as well as the quality of the subgrade materials have 
been pointed out as very important causes of defects. Mean densities ranging from 0.7 to 15.3 
defects/ha can be expected in landfills. In addition, a recent study with permanent in situ 
systems highlighted that additional defects can appear during landfill operation. Defects 

(A) Typical type of specification currently used   (B) Recommended compaction specification 
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dimensions from less than one millimetre to more than one meter can be encountered, 
although most defects are smaller than 10 cm2.  

Successful performance of geosynthetic clay liners in landfills is closely related with their 
hydraulic conductivity, which is highly dependent on the nature of the hydrating and 
permeating liquid, as well as on the confining stress. Data collected from the literature have 
shown that prehydration, i.e. hydration with water prior to permeation, usually results in a 
lower hydraulic conductivity than the one obtained using non-prehydrated GCLs. To 
guarantee the hydraulic performance of this type of liner, a minimum prehydration of 100 % 
is suggested by Comité Français des Géosynthétiques (1998). Changes in hydraulic 
conductivity are related with the type and concentration of the permeant liquid. Typically, the 
hydraulic conductivity of GCLs increases with the increase in the concentration and cation 
valence of the permeant liquid. It could also be observed that the hydraulic conductivity of 
the GCLs decreases as the confining stress increases. 

With respect to compacted clay liners, the critical issue is their hydraulic conductivity. To 
perform properly, a hydraulic conductivity less than 10-9 m s-1 is usually required. The ability 
of CCL to achieve that value depends mainly on the soil characteristics and on the field 
compaction procedures. Current technical specifications for construction of CCLs 
recommend that the primary emphasis should be given to ensure compaction to water 
content-density values on or above the line of optimums. 

The discussions addressed in this chapter highlighted the need for a tool to assess the fluid-
tightness of seams from a quantitative point of view. In the present work (Chapter 5) an 
attempt is made to provide a test method for assessing the quality of the seams by a 
quantitative measurement. In addition, it could be seen that geomembrane defects appear to 
be unavoidable. In this framework, experimental work for quantifying the flow rates through 
composite liners involving GCLs due to defects in the geomembrane is carried out and will 
be presented in Chapter 6. 



Chapter 3      Fluid migration through geomembranes 

 43

3 FLUID MIGRATION THROUGH GEOMEMBRANES 

3.1 INTRODUCTION 

Geomembranes are used in a wide range of engineering applications as active barriers to 
control fluid migration. Despite their low permeability, gases, vapours, liquids and dissolved 
species can migrate through the geomembranes. Therefore, tests are necessary to evaluate the 
permeation coefficients of the geomembranes to the fluids with which they are in contact in 
service conditions.  

This chapter presents some basic equations for determining the permeation coefficients of the 
geomembranes. Next, it discusses the factors that affect the migration through intact 
geomembranes and the laboratory methods used for assessing the permeation coefficients. 
Finally, it presents a summary of previous experimental studies on geomembrane permeation 
to gases and water vapour.  

 

3.2 DEFINITIONS AND BASIC EQUATIONS 

The concept of permeability in the conventional sense (i.e. according to Darcy law) is not 
applicable to geomembranes, since they are nonporous materials. However, gases and liquids 
can migrate through the intact geomembranes by an activated diffusion process, different 
from the liquid convection process occurring through the pores of porous soils. The transport 
of a given permeant is usually considered to occur by steps or jumps over a series of potential 
barriers, following the least resistant path. For gases, this transport process involves three 
steps (Haxo et al. 1984, Rogers 1985, Haxo 1990): (1) partition or absorption of the permeant 
in the upstream surface of the geomembrane; (2) diffusion of the permeant through the 
geomembrane under a concentration gradient; and (3) partition or desorption of the permeant 
from the downstream surface of the geomembrane into the ambient medium. It should be 
noted that the extent of each step depends on various parameters among which the most 
important ones are the permeant-geomembrane interaction and the temperature (Sangam & 
Rowe 2001b). 

The driving force for this migration process is the activity or chemical potential of the 
permeant, which decreases continuously towards the permeation. In the case of gas migration 
through geomembranes, concentration is usually the major chemical potential to be 
considered (Haxo 1990). 

In step 1, adsorption consists of removal of the permeant molecule from the fluid and its 
dispersion on or into the polymer. The permeating molecule is distributed by two or more 
phases. The process may involve absorption and incorporation in microvoids, cluster 
formation, solvation-shell formation, etc. (Rogers 1985). 

When a geomembrane is in contact with a fluid enough time to reach equilibrium, a 
relationship at the interface fluid/geomembrane is established (Rowe 1998, Sangam & Rowe 
2001b) between the final concentration in the geomembrane, cg (kg m-3) and the equilibrium 
concentration in the fluid, cf (kg m-3). For low penetrant concentrations (Rogers 1985), or 
where the penetrant does not interact with the polymers, as is usually the case of HDPE 
geomembranes, cg is directly proportional to cf (Rowe 1998): 
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fgfg cSc =  (3.1) 

 

in which Sgf is the partitioning coefficient. It might be described as the extent to which a 
permeating species is distributed between the geomembrane and an adjacent medium. 

In step 2, the sorbed permeant at the geomembrane surface will diffuse within the material. 
Roughly, diffusion can be defined as the process that tends to remove differences in 
concentration by means of random molecular motions (Park 1986). 

The diffusion of the permeating molecules in a geomembrane can be modelled by Fick’s first 
law, which can be expressed as follows: 
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in which f is the permeant mass flux passing through a unit area of geomembrane surface 
(kg m-2 s-1), D is the diffusion coefficient (m2 s-1), z is the spatial dimension parallel to the 
direction of diffusion (m), and ∂cg/∂z is the concentration gradient (kg m-4). Diffusion 
coefficient describes the degree of mobility of the dissolved permeant within the 
geomembrane. 

Step 3 is similar to the first step with an inverted process. It consists in permeant desorption 
from the geomembrane to the outer solution.  

From an experimental point of view, it is much more difficult to measure the concentration 
change in the geomembrane than to measure the concentration in the fluid on both sides of the 
geomembrane. Therefore, it is more practical to express the diffusion equations in terms of 
concentration in adjacent fluids (Sangam & Rowe 2001b).  

Substituting Equation (3.1) into Equation (3.2) and considering the equilibrium concentration 
difference ∆cf (kg m-3) of the penetrant molecules in the adjacent fluids of a thin 
geomembrane, the mass flux, f, across geomembrane is given by: 
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in which tg is the geomembrane thickness (m); and P is generally designated as coefficient of 
permeability (m2 s-1). P characterizes mass transfer from one fluid to another through the 
tested geomembrane. It depends on D and on the partitioning coefficient Sgf : 

 

DSP gf=  (3.4) 
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It should be noted that P refers to the three steps of the migration process, whereas D refers 
only to the second step that is diffusion in the geomembrane. Thus, in this case, the 
permeability coefficient P depends on experimental test conditions, such as the 
concentrations, temperature, etc. 

For a gas G, if the quantity of gas is expressed in number of moles instead of mass, 
Equation (3.3) can also be written as follows: 
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in which fG is the mass diffusive flux of gas G, expressed in mol m-2 s-1, and 'GP  is the 
coefficient of permeability to gas G, expressed in mol m2 s-1 kg-1.  

In a gas, a change of the partial pressure in fluid is accompanied by a change in the molar 
concentration in fluid (Haxo & Pierson 1991). Thus, Equation (3.5) can then be written as 
follows:  
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in which Gp∆  is the partial pressure difference of gas G in adjacent fluids (Pa), and ''GP  is 
the coefficient of permeability of the geomembrane to gas G expressed in mol s-1 m-1 Pa-1. 

It is possible to experimentally infer the value of ''GP  by performing steady state experiments 

in which the partial pressures are known in the fluid on both sides of the geomembrane ( Gp∆ ) 
and fG can be determined, as Chapter 5 will show. The permeability is then calculated as 
follows: 
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Characterising the permeability of a geomembrane by a coefficient of permeability presents 
several drawbacks. First, previous studies on this topic have shown that it may depend on the 
thickness (Haxo et al. 1984; Matrecon 1988; Pierson & Duquennoi 2000). Furthermore, it 
may be difficult to measure the thickness of geomembrane specimens accurately. Lastly, this 
coefficient may be confused with the permeability coefficient used for porous media (Darcy 
law). Therefore, it is advisable to use the permeance, PG, in mol m-2 s-1 Pa-1 for characterising 
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the permeation of the geomembranes to gas G, since it can be calculated only from fG and 
Gp∆  as follows:  
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3.3 FACTORS AFFECTING FLUID MIGRATION THROUGH GEOMEMBRANE 

The fluid migration through geomembrane involves a variety of factors including the 
solubility of the permeant, temperature, concentration, size and shape of permeant molecules, 
polymer properties, etc. These factors will be briefly addressed in the following paragraphs.  

The relationship between the solubility characteristics of the permeant and the geomembrane 
play an important role in migration. In general, the more soluble is the permeant in the 
geomembrane, the higher the probability of permeation (Matrecon 1988). The permeability is 
also dependent on the similarity of the penetrant and polymer. It seems that polar polymers 
dissolve polar molecules, whereas non-polar polymers dissolve non-polar molecules (Rowe 
1998). Strongly polar permeant molecules like water have low transport rates through 
polyethylene geomembranes, since the molecules of this polymer are non-polar (Sangam & 
Rowe 2001a, b). Low diffusion resistance for non-polar and weakly polar hydrocarbons were 
also reported by Mueller et al. (1998). The work by Durin (1999) on diffusion of organic 
solvents in geomembranes also showed that the diffusion coefficient depends on solvent 
polarity. 

An increase in temperature provides energy for general increase in polymer chain segmental 
motion (Rogers 1985). Thus, higher temperatures result in higher rates of diffusion. Park 
(1986) mentioned that for a wide variety of temperatures the change in gas permeability is 
mainly due to changes in diffusion coefficient. The relationship between temperature and 
diffusion, solubility and permeability coefficients has been described by Arrehenius’ law. 
However, research conducted by Durin et al. (1998), to study the influence of temperature on 
water diffusion of various geomembranes, suggest that the application of Arrehenius’ law 
may be inappropriate to estimate the evolution of diffusion coefficient with temperature.  

In regard to concentration dependence, a similar behaviour as the one observed with 
temperature might be expected, if the solution process is ideal (Rogers 1985). Studies 
conducted by Park et al. (1995) and Mueller et al. (1998) to estimate the solubility and 
diffusion coefficients of organic pollutants in HDPE geomembranes, showed that the 
diffusion process exhibits a significant dependence on the concentration. Their results 
suggested that the diffusion coefficient was lower for contaminants at low concentrations in 
aqueous solutions than for pure chemicals. Research by Chul Joo et al. (2001) suggests that 
the diffusion coefficients increased exponentially as the initial aqueous concentration of 
organic chemicals increased. In addition, these authors reported that the correspondent 
partioning coefficients were not significantly affected.  

The diffusion coefficient decreases with increasing permeant size, weight, and cross sectional 
area. The energy of activation for a large molecule is higher than for a small molecule. The 
shape of the permeant molecules has also been reported to have an effect on permeability. 
Permeants with linear, flexible and symmetrical molecules have higher mobility than rigid 
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molecules (Rogers 1985). The migration of permeant through geomembranes is closely 
related to the polymer properties, namely the degree of crystallinity, density, filler content, 
etc. Polyethylene exhibits high degree of crystallinity, which is associated with close packing 
of the molecular chains. The permeability to many liquids, gases and vapours decreases as 
and when the crystallinity increases. The degree of crystallinity is linked with density. Thus, 
the geomembrane permeability is expected to decrease with density (Ingold 1994, 
Durin 1999). Research conducted by Park & Nibras (1993) on mass transport of organic 
chemicals through various geomembranes showed that low density polyethylene 
geomembranes had higher partition and diffusion coefficients than high density polyethylene 
membranes. 

Thickness of the geomembrane is another factor that influences the migration process. Results 
presented by Haxo et al. (1984) and Haxo (1990) show that the methane flow through HDPE 
geomembranes decreases with increasing thickness. However, the decrease was not inversely 
proportional to the thickness as expressed by Fick’s law. Similar behaviour was reported by 
August & Tatzky (1984) in a study about the permeability of several geomembranes to 
organics. Recent research performed by Chul Joo et al. (2001) on organic chemical 
permeation showed that as the HDPE geomembranes thickness increased from 1.5 mm to 2.5 
mm the diffusion coefficients decreased, but the partition coefficients were not affected. This 
can be explained by the fact that permeability coefficients characterise the whole process of 
transport from one side to the other side of the geomembrane, and not only the diffusion 
process through the geomembrane itself. 

In conclusion, permeance and permeability coefficients cannot be considered as intrinsic 
characteristics of the permeation of a given gas through a given geomembrane. Thus, all 
results must specify experimental conditions such as temperature, concentration, etc. 

 

3.4 EXPERIMENTAL METHODS FOR ASSESSING THE PERMEATION PARAMETERS 

A variety of test methods is available for assessing the permeation parameters of 
geomembranes (e.g. diffusion, solubility, portioning, permeability coefficients), such as 
permeation/diffusion methods, immersion/sorption tests, pouch tests, etc. Some applications 
of these methods are briefly presented in the following paragraphs.  

Permeation/diffusion methods consist basically in monitoring the migration of a permeant 
from a fluid on one side (source) of the geomembrane to the fluid on the other side (receptor). 
One example of the application of this method is the two-compartment diffusion test, in 
which the source is filled with permeant fluid while the receptor is filled with a fluid of 
known composition (reference fluid). Only one face of the geomembrane specimen is in 
contact with a solution containing the permeant and the permeant concentration in the 
reference fluid must be kept negligible during the test. Migration through the geomembrane is 
to be monitored as the permeant goes from the source to the receptor over time. This method 
is suitable for aqueous solutions or leachates (Sangam & Rowe 2001b).  

Other examples of permeation/diffusion tests are the manometric and volumetric tests used 
for determining gas permeability of geomembranes. Both test procedures are covered in 
ASTM D 1434. Briefly, the specimen is mounted in a cell so as to form a sealed semibarrier 
between two chambers. One chamber contains the test gas at a specific high pressure, and the 
other chamber, at a low pressure, receives the permeating gas. In manometric procedure, the 
migration of gas is indicated by the measurement of the increase in pressure with a 
manometer on the downstream chamber. In volumetric procedure the lower pressure chamber 
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is maintained at near atmospheric pressure, whereas higher-pressure chamber has a pressure 
higher than the atmospheric one. A capillary pipe is used to measure the volume of gas that 
migrates through the specimen under specific test pressure or concentration gradient. The 
disadvantage of these tests is that small leaks around the connections and joints might occur.  

According to Pelte (1993) permeation/diffusion tests can also be performed for measuring the 
water flow through the geomembrane only due to a hydraulic pressure difference (without any 
concentration difference). For such tests, radioactive tracer molecules can be used. Succinctly, 
a known quantity of radioactive molecules is introduced into the upstream chamber of the test 
apparatus and the flux is evaluated by measuring the quantity of radioactive molecules 
reaching the downstream chamber (Eloy-Giorni et al. 1996). The measured flow is very 
accurate but the disadvantage of this method is that, contrary to other methods, it takes into 
account the “auto-diffusive” flux which always occurs without any chemical potential 
difference (molecules moving freely in both directions). In case of small chemical potential 
difference, this flux may hide the flux that is to be measured. 

In accordance with ASTM E 96, another different type of permeation/diffusion test can be 
carried out to assess the water vapour transmission rate (WTR)1, water vapour permeance 
(PW)2, and water vapour permeability ( )''GP 3. In this test, a circular specimen is sealed into 
the mouth of a test dish with either distilled water or a desiccant in it and a controlled relative 
humidity difference across the geomembrane boundary is maintained. With water in the cup 
(i.e. 100 % relative humidity) and lower relative humidity at the outside, a weight loss can be 
monitored, by weighting the dish assembly periodically. With a desiccant in the cup (0% of 
relative humidity) and a higher relative humidity at the outside, a weight gain is monitored. 
Permeation coefficients can be estimated by knowing water vapour pressure gradient 
(estimated from relative humidity difference). This test method is extremely difficult to 
conduct for thick geomembranes, especially for HDPE since this material presents low WTR. 
In addition, the least amount of leakage around the test specimen-to-cup seal may influence 
the test results (Koerner 1998). A procedure similar to that described above can also be used 
to evaluate the permeability of geomembranes to solvent vapours. In this case, a solvent of 
interest is placed within the test dish.  

Immersion/sorption methods consist in immersing the geomembrane specimen in a container 
filled with the fluid of interest. Both faces of the specimen are in contact with the permeant, 
which permeates from both sides and then migrates within the geomembrane. The increase in 
mass of specimen is monitored until equilibrium, i.e. until mass of geomembrane becomes 
constant. Based on weight gain, permeation coefficients can be evaluated (Petle 1993). The 
inconvenient of this method is its duration. 

Pouch test method consists in filling a geomembrane pouch with a test permeant and 
immersing it in a fluid of known composition. This method was used by Haxo (1990) to 
assess the permeability of geomembranes to water, ions, and to various constituents of a 
leachate. The author immersed the pouch specimens in deionised water to create a 
concentration gradient across the geomembrane. This results in the movement by diffusion of 

                                                 

1 WTR is the time rate of water vapour flow normal to its surfaces under steady state conditions through a unit 
area under the conditions of test. 
2 Pw is the time rate of water vapour transmission through unit area of a flat material induced by unit vapour 
pressure difference between two specific surfaces, under specified temperature and humidity conditions.  
3 ''PG  is permeance multiplied by the thickness of the geomembrane. 
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water, ions and other dissolved components through the pouch walls (Figure 3.1). The initial 
pouch contents were analysed (composition, pH and electrical conductivity). Weight, pH, and 
conductivity measurements were periodically done in order to evaluate, respectively, the 
extent of migration of water into the geomembrane and the extent to which constituents in the 
adjacent fluid migrate through the geomembrane. At the end of the exposure, the pouch was 
dismantled, and pouch walls were analysed again. The interpretation of results assumes that 
diffusion through the geomembrane specimen is slow relatively to that in fluid. Leaks in 
pouch must be avoided (Haxo & Pierson 1991). 

The permeability of the geomembranes to gases can also be assessed by a pouch test. The test 
procedure is similar to the above mentioned, except that the pouch is filled with gas, at a 
specific pressure. The permeability coefficient is determined from the pressure drop inside the 
specimen, monitored during the test (Hurtado-Gimeno 1999). 

 

 
Figure 3.1 - Schematic representation of a pouch assembly showing the movement of 

constituents during a pouch test (based on Haxo & Pierson 1991)

 

 

A new application of the pouch test method for evaluating the permeation coefficients to gas 
through geomembrane seams is one of the aims of the present work, which will be presented 
in Chapter 5. It makes also possible to estimate the permeation to water vapour. In this 
context, existing data regarding the permeability of geomembranes to gases and to water 
vapour will be presented in the following section. 

 

3.5 PREVIOUS STUDIES ON GEOMEMBRANES PERMEATION TO GAS AND WATER VAPOUR 

3.5.1 Haxo et al. (1984) and Haxo (1990) 

The permeability of various geomembranes to three gases of interest in landfills (methane, 
carbon dioxide, and nitrogen) and to water vapour was reported by Haxo et al. (1984) and by 
Haxo (1990) for a broad range of geomembranes. Permeabilities were determined by the 
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volumetric method in accordance with ASTM D 1434. Table 3.1 shows the results obtained 
by these authors on gas permeability to carbon dioxide (CO2), methane (CH4), and 
nitrogen (N2).  

The main findings reported by Haxo et al. (1984) and by Haxo (1990) can be summarised as 
follows: (1) the permeability of a given geomembrane can vary significantly with the gas; for 
instance, all geomembranes had a much higher permeability to CO2 than to CH4 or to N2 and 
a higher permeability to CH4 than to N2; (2) permeability of a given generic polymer can 
differ as a result of compounding variations; (3) higher polymer crystallinity yields lower 
permeability; (4) permeability of geomembranes to gases increases with temperature. 

The permeability of HDPE geomembranes to carbon dioxide shown in Table 3.1 is consistent 
with the permeability included in ASTM 1434 standard for a polyethylene film: 
2.6×10-15 mol s-1 Pa-1 m-1. Permeabilities presented in that standard resulted from an 
interlaboratory research conducted in ten laboratories for studying test precision.  

 

Table 3.1 - Permeability of geomembranes to different gases at 23ºC 
(based on Haxo et al. 1984, Haxo 1990) 

Gas permeability ( )''GP  

(mol s-1 Pa-1 m-1) Polymer Thickness 
(mm) 

CO2 CH4 N2 

0.82 0.509×10-15 0.904×10-16 1.11×10-16 
CSPE 

0.86 1.83×10-15 5.43×10-16 1.21×10-16 

CPE 0.72 0.388×10-15 0.231×10-16 0.0536×10-16 

LDPE 0.25 7.87×10-15 17.1×10-16 ---- 

LLDPE 0.46 3.21×10-15 7.54×10-16 ---- 

0.61 2.27×10-15 4.29×10-16 ---- 
HDPE 

0.86 2.05×10-15 4.55×10-16 ---- 

0.25 9.85×10-15 14.7×10-16 ---- 

0.49 7.50×10-15 11.1×10-16 2.71×10-16 PVC 

0.81 11.7×10-15 11.8×10-16 ---- 

 

The water vapour transmission rate (WTR) and water vapour permeability ( )''WP  were also 
measured by Haxo et al. (1984) in accordance with ASTM E 96. Table 3.2 presents the 
results. As for HDPE polymer, the measured water vapour flux was 0.109×10-7 mol m-2 s-1 for 
a 0.8 mm thick geomembrane, and 0.0386×10-7 mol m-2 s-1 for a 2.44 mm thick geomembrane. 
These fluxes correspond to permeabilities of 0.0627×10-13 mol m-1 s-1 Pa-1 and 0.675×10-13 

mol m-1 s-1 Pa-1, respectively. Other findings reported by these authors can be summarised as 
follows: (1) permeability to water vapour varies considerably among the polymer type; 
(2) increased thickness and increased crystallinity of geomembranes reduce permeability 
rates; (3) within a given geomembrane, significant variation was obtained, which was 
attributed to differences in polymer composition. 
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Table 3.2 - Flux, permeance, and permeability to water vapour for various geomembranes 
(based on Haxo et al. 1984, Matrecon 1988)  

Geomembrane 
polymer 

Thickness 
(mm) 

Flux (WTR) 
(mol m-2 s-1) 

Permeance (PW) 
(mol s-1 Pa-1 m-2) 

Permeability ( )''WP  

(mol s-1 Pa-1 m-1) 
0.80 0.109×10-7 0.0786×10-10 0.0627×10-13 

HDPE 
2.44 0.0386×10-7 0.0284×10-10 0.0675×10-13 

LDPE 0.76 0.367×10-7 0.262×10-10 0.198×10-13 

0.28 28.4×10-7 20.2×10-10 5.64×10-13 

0.52 18.9×10-7 13.4×10-10 6.99×10-13 PVC 

0.79 11.9×10-7 8.48×10-10 6.71×10-13 

0.53 4.13×10-7 2.94×10-10 1.56×10-13 

0.79 2.06×10-7 1.47×10-10 1.16×10-13 CPE 

0.97 4.13×10-7 2.94×10-10 2.86×10-13 

0.74 2.14×10-7 1.52×10-10 1.13×10-13 
CSPE 

1.07 1.62×10-7 1.15×10-10 1.23×10-13 

0.51 1.74×10-7 1.23×10-10 0.632×10-13 
EPDM 

1.70 1.11×10-7 0.786×10-10 1.34×10-13 

 

3.5.2 Lambert (1994) 

Lambert (1994) evaluated the permeability of HDPE geomembranes to air and helium, using 
a manometric cell (Figure 3.2). Geomembrane specimens were assembled inside the cell 
between two chambers (upstream and downstream chambers). The upstream chamber was 
filled with the specific gas at constant high pressure, whereas the downstream chamber 
received the gas. Evolution of gas pressure in the downstream chamber was monitored with a 
monometer. Gas flux and the correspondent permeability were assessed from the relationship 
obtained between pressure and time. Air permeability obtained using a 1.7 mm thick HDPE 
geomembrane was 2×10-16 mol s-1 Pa-1 m-1. 

 

3.5.3 Hurtado-Gimeno (1999) 

Hurtado-Gimeno (1999) conducted a series of permeability tests to nitrogen with a 1.5 mm 
thick HDPE geomembrane using the cell shown in Figure 3.2. Tests were carried out with the 
upstream chamber filled with the nitrogen gas at constant high pressure, and the downstream 
chamber filled with water. Evolution of gas pressure in the upstream chamber was monitored 
with a monometer. Gas flux and the correspondent permeability were assessed from the 
relationship obtained between pressure and time. Permeability to nitrogen of 
10-15 mol s-1 Pa-1 m-1 was reported by this author. 

Hurtado-Gimeno (1999) also performed gas permeability tests using circular pouch specimens 
of HDPE and bituminous geomembranes. Each specimen was tested in two different ways to 
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assess the permeability to nitrogen and to water vapour. For that, specimens were filled with 
nitrogen and placed either in air (in controlled temperature and humidity box, under a 
temperature of 27ºC and a relative humidity of 50 %), or they were immersed in water (also at 
27ºC). Atmospheric pressure and temperature (air or water) were recorded. Results reported 
by this author are reviewed in Chapter 5, Section 5.11. 

 

Manometer

Upstream
 pressure

Upstream
 chamber

Downstream
   chamber

Joint

Geomembrane
    specimen

 
Figure 3.2 – Scheme of the manometric cell designed at University of Grenoble 

(adapted from Lambert 1994)

 

3.6 SUMMARY AND CONCLUSIONS 

The fundamental equations for evaluating the permeation coefficients of geomembranes have 
been presented at the beginning of this chapter. Then, the main factors affecting the fluid 
migration through the geomembranes have been discussed. These factors include, amoung 
others, solubility of the permeant, temperature, concentration, size and shape of permeant 
molecules, and polymer properties. Discussion addressed indicated that: (i) the more soluble 
the permeant, the higher is the permeation rate; (ii) polar molecules have lower permeation 
rates than non-polar through non-polar polymers such as HDPE; (iii) higher temperatures 
result in higher permeation rates; (iv) the diffusion coefficient decreases with increasing size, 
weigh, and cross sectional area of the permeant; and (v) flow decreases with increasing 
thickness of the geomembranes. Dependence of permeation on the mentioned factors 
emphasised that the permeation coefficients cannot be considered as intrinsic characteristics 
of the permeation of a given fluid through a given geomembrane, as well as that the 
experimental results must specify test conditions. 

It could be seen that there are several test methods for assessing the permeation coefficients of 
geomembranes. Nevertheless, none of them has been used for predicting the permeation 
coefficients of the geomembrane seams, in spite of their susceptibility, as Chapter 2 shows. 
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Therefore, a new application of the pouch test method for evaluating the permeation 
coefficients to gas through geomembrane seams is made in this work, and it will be presented 
in Chapter 5. That test method makes it possible to estimate the permeation coefficient not 
only to gas, but also to water vapour. At the end of the present chapter, a summary of the 
previous studies about gas and water vapour permeation through geomembranes has been 
presented.
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4 ADVECTIVE FLOW THROUGH COMPOSITE LINERS DUE TO 
GEOMEMBRANE DEFECTS 

4.1 INTRODUCTION 

Composite liners are commonly used as standard liner systems. The basic premise for using a 
composite liner in landfills is that the advective contaminant flow (herein simply referred to 
as flow) through the unavoidable defects in the geomembrane is limited by the presence of a 
GCL or a CCL.  

When there is a defect in geomembrane, the liquid first flows through the defect, then flows 
laterally to some distance in the interface between the geomembrane and the underlying 
layer(s), and, finally, flows through the latter(s). This process depends on many factors, such 
as the hydraulic conductivity of the underlying layer, the transmissivity of the interface 
between the geomembrane and the underlying layer, the thickness of the liner system, the size 
of the hole in the geomembrane, and the liquid head on the top of the liner (Giroud 1997).  

To evaluate the performance of the composite liners involving GCLs, the hydraulic 
conductivity value of the GCLs is needed. However, in landfills, GCLs are typically installed 
at their natural water content, which means that they are not fully saturated. In this 
circumstance, the saturated hydraulic conductivity may not be representative of the field 
conditions, being necessary to know the unsaturated hydraulic conductivity.  

Direct measurement of the unsaturated hydraulic conductivity is quite complex. Predictive 
methods are typically used. They are based on the water retention curve (relationship between 
the volumetric water content and the matric suction) and the saturated hydraulic conductivity, 
where the water retention curve is commonly represented by the van Genuchten parameters.  

This chapter focuses on theoretical aspects related with both the water retention curves and 
the flow rate through composite liners due to geomembrane defects, aiming to assist the 
interpretation of the experimental work carried out on these topics, which is presented in 
Chapter 6.  

The chapter begins with background information on water flow through porous media. Then, 
it discusses the predictive methods for assessing the unsaturated hydraulic conductivity, the 
methodology to obtain the van Genuchten parameters and the techniques for measuring 
suction. This topic finishes with a literature review on water retention curves of GCLs. 

Regarding the flow rate through composite liners due to geomembrane defects, this chapter 
discusses the existing analytical solutions and empirical equations to predict the flow. Also, it 
makes a literature review on experimental studies carried out, both in laboratory and in situ, 
for measuring flow through composite liners, in which the geomembrane exhibits a defect.  

 

4.2 WATER FLOW THROUGH POROUS MEDIA 

4.2.1 Energy states of water in soil 

Water processes two types of energy: potential and kinetic. The first is associated with its 
position and state, with reference to some datum conditions, whereas the second is associated 
with its motion. In most cases, the velocity of water flow in soils is not significant enough to 
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make necessary kinetic energy considerations. It is the variation in the total potential energy 
from one location to another that is responsible for water flow in soils. Thus, it is important to 
distinguish each potential energy sources (Reddi & Inyang 2000).  

The total potential of soil water, ψ , can be expressed as follows (Reddi & Inyang 2000): 

 

opg ψψψψ ++=  (4.1) 

 

where ψg is the gravitational potential; ψp is the pressure potential, and ψo is the osmotic 
potential.  

The gravitational potential, ψg, is the work required to transfer water from the reference 
elevation to the soil elevation. It is expressed as the product of unit weight of water, γw, and 
the elevation of the water body above a specified datum, hw: 

  

wwg hγψ −=  (4.2) 

 

This potential is independent from pressure conditions of the soil as well as of its saturation. 

The pressure potential, ψp, can be either positive or negative, depending on whether the point 
in the soil under consideration is at a hydrostatic pressure higher or lower than the 
atmospheric pressure. In the first case, the point is below a free water surface and is typically 
termed as piezometric. If it is negative, the energy required to transport a unit volume of water 
from atmospheric conditions is governed by the capillary principle (Reddi & Inyang 2000), 
and the potential is generally referred to as capillary or matric potential, ψm. 

The osmotic potential, ψo, is the work required to transfer water from a reference pool of pure 
water to a pool of soil solution at the same elevation, temperature, etc. (Yong et al. 1992). 
This potential is relatively low when compared to the others previously mentioned. 

The potential is a measure of the energy state of the soil-water. Many terms have been used to 
describe the energy with which water is held in soils. The term soil-water potential is 
commonly used in thermodynamics, whereas the term soil-water suction or tension is 
typically used in geotechnical engineering. Following a geotechnical approach, the term 
potential will be designated henceforth by suction.  

The unit for soil-water suction is called pF unit (pF=log10 height of water column in cm), 
although it can also be expressed in units of “head” (e.g. meters) or pressure (Fang 1997).  

 

4.2.2 Governing equations for flow 

Flow of water takes place in soils due to spatial differences in the energy states. Nevertheless, 
as pointed out by Reddi & Inyang (2000) the driving mechanism for water movement is the 
pressure suction (termed matric suction when referring to the unsaturated conditions, as 
previously mentioned).  
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The flow of water in porous media may be divided into two particular systems for general 
consideration: a saturated system where all pore space is filled with water and is participating 
to flow, and an unsaturated system where both air and water are present and only a limited 
pore space (saturated pores) will participate to flow of water.  

The flow of water through saturated porous media follows Darcy’s law, which states that: 

 

x
hkv w

∂
∂

−=  (4.3) 

 

where v is the flow velocity also known as Darcian velocity, k is the hydraulic conductivity, 
and xhw ∂∂  is the hydraulic head gradient in the x direction, commonly designed as i. The 
hydraulic conductivity is constant for a specific saturated media. The negative sign in 
Equation (4.3) indicates that water flows towards of a decreasing hydraulic head. 

For steady state conditions, the mathematical representation of saturated water flow is derived 
by combining a three-dimensional form of Darcy’s law with the continuity equation: 
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where kx, ky, and kz are the hydraulic conductivity values in x, y, and z directions.  

Under unsaturated conditions, the value of k is no longer constant being highly dependent on 
water content and the flow is always transient. Mathematically it can also be expressed by 
coupling Darcy’s law and the continuity equation. This equation, known as Richard’s 
equation, is presented below: 
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where K(ψ) is the unsaturated hydraulic conductivity that varies with respect to the matric 
suction (ψ), hw is the total hydraulic head, and Θ is the volumetric water content at a given 
suction. As Equation (4.5) shows, the flow in an unsaturated zone is a function of the 
volumetric water content and the matric suction. Due to its high nonlinearity, numerical 
methods are generally used to solve Richard’s equation.  
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4.3 UNSATURATED HYDRAULIC CONDUCTIVITY 

4.3.1 Predictive methods 

Direct measurement of unsaturated hydraulic conductivity is quite complex. Thus, predictive 
methods are typically used. Several empirical expressions exist to describe the variation in 
unsaturated hydraulic conductivity, K, with either ψ or Θ. Some of the expressions commonly 
used are listed in Table 4.1. From the equations included in this table, van Genuchten closed 
form equation, based on the hydraulic conductivity model of Mualem (1976), is commonly 
employed, mainly because a good agreement between measured and predicted hydraulic 
conductivities has been obtained. However, van Genuchten closed form equation can only be 
used when the parameters α, m and n are known. As Section 4.3.3 will describe, these 
parameters can be estimated from the relationship between the volumetric water content and 
the matric suction. 

 

Table 4.1 – Examples of expressions for assessing unsaturated hydraulic conductivity 
(Reddi & Inyang 2000) 

Function Source 
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 van Genuchten (1980) 

k= saturated hydraulic conductivity; Θs= volumetric water content at saturation (equals to 
porosity); ψc= suction for which K=k/2; Θr= residual water content; and α, b, m and n are 
fitting parameters. 
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4.3.2 Water retention curves 

The relationship between the volumetric water content and the matric suction is known as 
water retention curve, soil water characteristic curve, or moisture characteristic curve. Figure 
4.1 presents a schematic drawing of these curves for different soils. 

 

 
Figure 4.1 - Water retention curves for different soils (Reddi & Inyang 2000) 

 

The variation in these curves highlights the effect that the soil properties have on the water 
retention curves. Typically, coarse-grained soils contain most of their water in large pores, 
which can be drained at relatively low suctions. Conversely, fine-grained soils have their 
water distributed in a range of relatively smaller pores, requiring high suctions to be drained 
(Castro 1974). For all cases, there is a water content below which water cannot be practically 
drained (residual water content), and the water retention curve goes asymptotic to the suction 
axis (Reddi & Inyang 2000). When the soil is fully saturated, the volumetric water content is 
equivalent to the soil porosity (ratio between the volume of voids and the total volume). 

The water retention curves are hysteretic for almost all soils, i.e. the shape of the curve 
depends on whether the soil is wetting or drying, as Figure 4.2 schematically shows. This 
means that the volumetric water content at a particular value of suction is lower during 
wetting than during drying (Castro 1974, Stormont et al. 1997, Reddi & Inyang 2000). This is 
primarily because the relationship between water content and suction depends on the 
properties of the air-water interface (Castro 1974, Reddi & Inyang 2000). The retention curve 
is called a drying or drainage curve when the soil is progressively dried from a saturated state 
and a wetting or imbibition curve when the soil is wetted from an initially dry state. 

Matric 
Potencial 

Volumetric Water Content 
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Figure 4.2 – Example of water retention curve during wetting and drying 

(Reddi & Inyang 2000) 

 

4.3.3 Van Genuchten parameters 

In modelling the hydraulic behaviour of unsaturated porous media, water retention curves are 
often represented by the van Genuchten parameters, which can be estimated by matching a 
theoretical water retention curve (model) to experimental data on matric suction. The 
theoretical water retention curve can be obtained from the closed form equation proposed by 
van Genuchten (1980) to estimate the volumetric water content as a function of the matric 
suction, mathematically expressed as follows: 

 

( )
( )[ ] m

n

rs
r

αψ+

Θ−Θ
+Θ=Θ

1
 (4.6) 

 

where Θ = volumetric water content; ψ = matric suction (understood as positive); 
Θr = residual volumetric water content; Θs= saturated volumetric water content; and α , m, 
and n = curve fitting parameters, with nm /11 −= . 

Equation (4.6) contains four independent parameters (Θr, Θs, α and n) that can be obtained 
from a measured water retention curve (experimental data). Of these four parameters, 
saturated volumetric water content, Θs, and residual volumetric water content, Θr, can be 
inferred to from the water retention curve, by extrapolating available water retention curve 
either towards lower water contents to obtain Θr (van Genuchten 1980), or towards the higher 
water contents to obtain Θs. Saturated water content can also be evaluated from the soil 

Matric 
Potencial 

Volumetric Water Content  
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porosity. For clayey soils, Θr is often assumed to be equal to zero (Babu et al. 2002). In that 
case, Equation (4.6) can be simplified as follows: 
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 (4.7) 

 

The remaining parameters α and n, can be obtained using, for example, a least-square 
curve-fitting technique, or the RETC code (van Genuchten et al. 1991).  

Figure 4.3 and Figure 4.4 present the influence of α and n on variation of matric suction. The 
first figure shows that α has a significant influence on the mobilisation of matric suction. Low 
matric suction values are obtained for higher values of α over a wide range of saturation. 
Figure 4.4 demonstrates that n has an influence mainly on the shape of the curve. It is then 
related with the type of soil.  

Since the parameters α and n are obtained by fitting a theoretical water retention curve 
(model) to experimental data, it follows that experimental measurement of the relationship 
between the volumetric water content and matric suction is required. 
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Figure 4.3 – Influence of α on variation of matric suction 
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Figure 4.4 – Influence of n on variation of matric suction 

 

There are numerous devices capable of measuring soil suction, including thermocouple 
psychrometers, filter paper, pressure plates, etc. The section below presents a brief description 
of the main techniques used for assessing the suction. 

 

4.3.4 Techniques for measuring the suction  

4.3.4.1 Thermocouple psychrometers 

Thermocouple psychrometers can be used to measure the total suction of a soil. They measure 
the relative humidity either in the air phase of the soil pores or in the region close to the soil 
(Daniel 1982). There are two basic types of thermocouple psychrometers: wet-loop and 
Peltier. The second type is generally used in geotechnical engineering. Both operate on basis 
of temperature difference measurements between a nonevaporating surface and an 
evaporating surface, differing in the manner by which the evaporating junction is wetted to 
induce evaporation. Measurements of suction are carried out by suspending the psychrometer 
in a closed system containing a soil specimen. A controlled temperature environment of 
±0.001oC is required to measure total suction. Calibration curves relate the psychrometer 
reading to a corresponding total suction. The range for measurable suction using this method 
varies from 100 to 8 000 kPa (Daniel 1982; Fredlund & Rahardjo 1993). 

 

4.3.4.2 Tensiometers 

Tensiometers are used for the direct measurement of negative pore-water pressure in a soil. 
However, negative pore-water pressure is numerically equal to the matric suction when the air 
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contained in the pores is at atmospheric pressure. Tensiometers consist of a high air entry, 
porous ceramic cup connected to a pressure measuring device through a small bore tube. The 
tube and the cup are filled with deaired water. The later is inserted into a precored hole until 
there is a good contact with the soil. When the equilibrium is reached, the water in the 
tensiometer has the same negative pressure as the pore-water in the soil. The maximum pore-
water pressure measurable with tensiometers is 90 kPa due the possibility of cavitation of 
water in the equipment (Fredlund & Rahardjo 1993).  

 

4.3.4.3 Pressure plate  

Pressure plates are also employed for direct measurement of negative pore-water pressure. 
They are based on the axis-translation approach, which generates matric suction within the 
soil by applying air pressure to the samples while maintaining water pressure at the 
atmospheric level. Basically a soil specimen is mounted on top of a saturated high entry 
porous ceramic disk in an air pressure chamber. The air entry value of the disk must be higher 
than the matric suction under measure. The water pressure in the compartment below the high 
entry disk is maintained as close as possible to zero by increasing the air pressure in the 
chamber. A pressure transducer connected to the water compartment is used as indicator. The 
difference between the air pressure in the chamber and the measured negative water pressure 
at equilibrium is taken to be the matric suction of the soil (matric suction is equal to the 
negative pore-water pressure when the air pressure is atmospheric). The range of 
measurements is a function of the air entry value of the ceramic disk. The pore-water pressure 
that can be measured with this technique is limited to 1500 kPa (Fredlund & Rahardjo 1993).  

 

4.3.4.4 Thermal conductivity sensors 

Thermal conductivity sensors have been used as indirect methods for assessing the matric 
suction. They consist of a porous ceramic block containing a temperature sensitive element 
and a miniature heater. The principle behind this technique is that the thermal conductivity of 
a soil increases with an increasing water content. The matric suction is inferred from the water 
content of the porous block. Sensor calibration is required. Typically, the sensors cover a 
range between 0 kPa and approximately 400 kPa (Fredlund & Rahardjo 1993). 

 

4.3.4.5 Filter paper method 

This method is based on the assumption that a filter paper will reach equilibrium with a soil 
having a specific suction. The filter paper is used as a sensor. Equilibrium can be obtained by 
either liquid or vapour moisture exchange between the soil and the filter paper. When a dry 
filter paper is placed in direct contact with the soil, it is assumed that water flows from the 
soil to the filter paper. In this case, the equilibrium water content of the filter paper 
corresponds to the matric suction. When a dry filter paper is suspended above a soil specimen, 
vapour flow of water will occur from the soil to the filter paper until equilibrium is reached. 
Here, the equilibrium water content of the filter paper corresponds to the total suction of the 
soil (ASTM D 5298, Fredlund & Rahardjo 1993).  
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The water content of the filter paper is converted into suction values through a calibration 
curve. Several authors presented calibration curves for common types of filter paper 
(e.g. Fawcett & Collis-George 1967, McQueen & Miller 1968, Hamblin 1981, Chandler & 
Gutierrez 1986). In general, a good agreement is obtained for suction with the different 
calibration curves reported in literature. Figure 4.5 depicts the calibration curves for total 
suction. 

 

 
Figure 4.5 – Calibration curves for two types of filter paper (from ASTM D 5298)

 

Filter paper method was standardised by ASTM for measuring soil suction, giving rise to 
ASTM D 5298: Standard test method for measurement of soil potential (suction) using filter 
paper.  

The advantage of filter paper method is that it is simple and inexpensive. According to 
ASTM D 5298 standard, it can also reliably be used with suctions from 10 to 100 000 kPa.  

As mentioned, for evaluating the performance of composite liners involving GCLs the 
hydraulic conductivity of this liner is a necessary parameter. As this material may not be fully 
saturated in the field, knowledge of the unsaturated hydraulic conductivity is also necessary. 
It can be estimated from van Genuchten predictive method, based on the water retention curve 
and on the saturated hydraulic conductivity of the GCLs. The knowledge of the water 
retention curves requires the measurement of the matric suction and the corresponding 
volumetric water content. In this work, the filter paper method was adopted to measure the 
matric suction of the GCLs, as Chapter 6 will present. This method was chosen due to its 
simplicity, low cost, and its capacity to cover a large range of suctions.  

In this context, existing data regarding the water retention curves of the GCLs will be 
presented in the following section. 
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4.4 PREVIOUS STUDIES ON WATER RETENTION CURVES OF GCLS 

4.4.1 Daniel et al. (1993) 

Daniel et al. (1993) measured the relationship between water content and suction in the 
bentonite component of a geomembrane supported GCL using two methods: thermocouple 
psychrometer (TM) and vapour equilibrium (VE). With the first method, a piece of GCL, 
about 175×25 mm2, was slowly wetted by spraying a known mass of water onto the surface of 
the bentonite. The moistened GCL was installed in a large tube with the bentonite facing 
inward. A thermocouple psychrometer was placed in the centre of the test tube. The test tube 
was then sealed and stored in a heavily insulated container during two weeks, until 
equilibrium was reached. After that period of time, the GCL specimen was removed and dried 
to evaluate its water content. The second technique of measurement consisted in placing 
25 mm square pieces of GCL samples in sealed vessels that contained salt solutions with 
known vapour pressures. Test specimens were periodically removed from those samples and 
oven dried to assess water content. Tested specimens were exposed to controlled vapour 
pressures for 66 days. Results obtained by Daniel et al. (1993) are summarised in Table 4.2. It 
can be observed that the measured suction ranged from 0 kPa to 5 200 kPa, whereas the water 
contents ranged from 17 % (natural water content) to 145 %. 

 

Table 4.2 – Water content and corresponding suctions (modified from Daniel et al. 1993) 
Water content (%) Suction (bars) Suction (kPa) Method of measurement 

17 (1) 43 4300 TM 
18 44 4400 TM 
24 49 4900 TM 
28 43 4300 TM 
29 52 5200 VE 
31 25 2500 TM 
46 14 1400 TM 
54 16 1600 VE 
56 8 800 TM 
66 7 700 TM 
79 6 600 TM 
89 5 500 VE 
96 4 400 TM 
101 1 100 VE 
145 0 0 Direct soaking with 14 kPa compressive stress 

(1) Natural water content 

 

These authors concluded that, from a practical point of view, if the bentonite side of the GCL 
was placed against soil with a suction of 1 500 kPa (15 bars that corresponds to the wilting 
point of typical plants) and the GCL was buried beneath cover soil, the bentonite would 
absorb water from the soil and would equilibrate at a water content approximately equal to 
50 %.  
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4.4.2 Southen & Rowe (2004) 

Southen & Rowe (2004) evaluated the water retention curves of a needlepunched GCL, with 
the cover geotextile impregnated with bentonite powder (800 g m-1), and a silty sand. For 
GCL, the methodology adopted consisted in cutting sections of approximately 30×30 cm2, 
which were then placed in a water bath and allowed to hydrate for a number of days. Once the 
sections were suitably hydrated, they were removed from the water bath. Four circular 
specimens approximately 53 mm in diameter were then cut using a cutting shoe and hydraulic 
press. The cut specimens were weighed and finally placed in stainless rings for transfer to the 
pressure plate apparatus for suction measurement (Southen, personal communication). 
Suction was measured based on the pressure plate technique (see Section 4.3.4.3). 
Measurements were based on drying. Two sets of tests were performed on GCL samples with 
different initial water contents and variable sampling tests. Figure 4.6 shows the results 
obtained by these authors.  

 

 
Figure 4.6 – Water retention curve of a needlepunched GCL (from Southen & Rowe 2004) 

 

It can be observed that a good agreement was obtained between the two sets of tests. It 
appears that the initial water content used and the sampling process had a minor effect on the 
water retention curves obtained. For test 1, the volumetric water content ranged between 0.56 
and 0.67, whereas the corresponding suction ranged from 600 kPa to 1 kPa. For test 2, the 
volumetric water content varied between 0.62 and 0.76, and the suction between 800 kPa and 
1 kPa. It should be noted that the water retention curves depicted in Figure 4.6 are limited to 
suctions less than 1 000 kPa. This is most likely due to the range of suctions covered by the 
pressure plate technique (limited to 1 500 kPa, according to Fredlund & Rahardjo 1993). 
Furthermore, the saturated volumetric water contents (0.67, for test 1 and 0.72, for test 2) 
were estimated based on measured porosity of the specimens.  

Water retention curves are needed to numerically model the unsaturated behaviour of the 
GCLs, and thus understand the flow through composite liners involving unsaturated GCLs, 
when there is a defect in a geomembrane. In this respect, there have been several attempts to 
predict the flow rates by calculations based on fundamental parameters that govern the 
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problem. Two different approaches have been adopted for determining the flow rate: 
analytical solutions and empirical equations. Both approaches present advantages and 
disadvantages. Analytical solutions are rigorous but complex, whereas empirical equations are 
simple but approximate. The existing solutions for evaluating the flow through composite 
liners are presented and discussed in the following sections. 

 

4.5 EXISTING SOLUTIONS FOR EVALUATING THE FLOW THROUGH COMPOSITE LINERS 

4.5.1 Background 

Before discussing the existing solutions for evaluating the flow through composite liners it is 
important to understand how the liquid flows through a composite liner when there is a defect 
in the geomembrane. According to Brown et al. (1987), the flow through a composite liner 
when there is a defect in the geomembrane is as follows: first, the liquid migrates through the 
geomembrane defect; then it spreads laterally through the interfacial zone between the 
geomembrane and the underlying layer. This interface flow covers an area called wetted area. 
Finally, the liquid migrates into and through the soil (Figure 4.7). 

 

 

 
Figure 4.7 – Liquid flow through a composite liner due to a defect in the geomembrane  

 

The liquid flow in the interface is possible only if there is a gap between the geomembrane 
and the underlying layer. If the geomembrane and the underlying layer are in perfect contact, 
there is no interfacial gap (Giroud & Bonaparte 1989). The interfacial gap may result from 
soil particles, rutting and undulations occurring during the construction of the soil liner, or 
from wrinkles in geomembranes (Rowe 1998). 

Observations done during experimental studies involving composite liners made of CCLs and 
various kinds of geomembranes confirm that the liquid passing through the defect spreads 
laterally between the geomembrane and the underlying layer (e.g. Fukuoka 1986, 
Jayawickrama et al. 1988, Touze-Foltz 2001). Thus, herein it is considered that there is a gap, 
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generally termed as interface, and that the liquid is able to flow laterally between the 
geomembrane and the underlying soil. Amongst other factors, the amount of fluid flow 
between the geomembrane and the underlying layer depends on features of the interface. 

Experimental data on features of interfaces are scarce. As Sections 4.5.2 and 4.5.3 show, the 
features of the interface can be defined in two different ways, depending on the approach used 
for predicting the flow rate through defects in geomembranes: analytical solutions define 
them in terms of hydraulic transmissivity, whereas empirical equations define them in terms 
of contact conditions.  

 

4.5.2 Analytical solutions 

A number of analytical solutions have been developed to quantify the flow rate through 
defects in flat or wrinkled geomembranes based on Darcy’s law (e.g. Brown et al. 1987, 
Jayawickrama et al. 1988, Rowe 1998, Touze-Foltz et al. 1999), where the interface between 
the geomembrane and the underlying layer is of uniform thickness and, consequently, where 
the hydraulic transmissivity is uniform.  

The most commonly used equations were proposed by Rowe (1998) and Touze-Foltz 
et al. (1999). The first author developed analytical solutions to quantify liquid flow for the 
case of a circular hole in a flat geomembrane and in a wrinkled geomembrane. Touze-Foltz 
et al. (1999) extended the solution for a damaged wrinkle for various boundary conditions and 
to the problem of liquid flow for two, or more, parallel interacting damaged wrinkles. 
Solutions by Touze-Foltz et al. (1999) were again extended by Touze-Foltz et al. (2001) to 
take into account the non uniform hydraulic transmissivity at the interface geomembrane/CCL 
or geomembrane/GCL. 

Of particular interest within the scope of the present work are the analytical solutions to 
quantify liquid flow for the cases of a circular defect in a flat geomembrane, henceforth 
designated as “axi-symmetric case”, and a damaged geomembrane wrinkle or long cuts, tears 
or defective seams, henceforth designated as “two-dimensional case”, developed for a number 
of specific boundary conditions.  

The basic problem configuration follows from Rowe (1998) and Touze-Foltz et al. (1999) and 
it is depicted in Figure 4.8. It includes a geomembrane resting on a low–permeability layer of 
thickness HL and hydraulic conductivity kL. This layer can be either a CCL or a GCL. From 
now on, it will be simply designated as “soil liner”. The z-axis origin corresponds to the top 
of the soil liner with upward being positive. The soil liner rests on a more permeable 
foundation or attenuation layer of thickness Hf and hydraulic conductivity kf, which, in turn, 
rests on a highly permeable layer that can be either an aquifer or a secondary collection layer. 
Accordingly, it can be assumed that the flow through the composite liner is not influenced by 
the hydraulic conductivity of subgrade layers. It is assumed that the interface can be 
characterised by a uniform hydraulic transmissivity, θ. The hydraulic transmissivity of this 
layer can be established either based on experimental data, or on empirical equations as will 
be discussed in Section 4.5.4. Chapter 6 presents the experimental work carried out to 
measure the hydraulic transmissivity of the interface between a geomembrane and a GCL. 
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Figure 4.8 – Schematic drawing showing a composite liner with a geomembrane exhibiting 
different types of defects: circular hole of radius r0, a damaged wrinkle of width b, and a 

defect of infinite length and width b (modified from Touze-Foltz et al. 1999) 

 

Furthermore, it is assumed that: (i) liquid flow is under steady-state conditions; (ii) the soil 
liner and the foundation layer are saturated; (iii) liquid flow through the liner and the 
foundation layer is vertical (Rowe 1998, Touze-Foltz et al. 1999). According to the continuity 
of liquid flow, the equivalent hydraulic conductivity, ks, corresponding to the liner and the 
foundation layer is given by (Rowe 1998, Touze-Foltz et al. 1999): 
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When a hydraulic head, hw, is applied on the top of the composite liner, the mean hydraulic 
gradient, is, through the liner and foundation is given by (Rowe 1998, Touze-Foltz et 
al. 1999): 
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where ha is the hydraulic head in the highly permeable layer that is not fully saturated, and 
often assumed to be equal to zero. 
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4.5.2.1 Solution for the axi-symmetric case 

As indicated by Brown et al. (1987), according to the mass conservation equation, the rate of 
liquid flow entering the hole in the geomembrane, Q, is equal to the sum of the rate of liquid 
flow infiltrating in the soil, Qs(r), and the rate of liquid flow spreading laterally in the 
transmissive layer Qr(r) at a distance r from the hole. The mass balance is accordingly given 
by the following equation: 

 

)()( rQrQQ rs +=  (4.10) 

 

As Q is not dependant of r, one obtains by derivation on Equation (4.10): 

 

0=+
dr

)r(dQ
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)r(dQ rs  (4.11) 

 

The rate of liquid flow spreading laterally in the interface, Qr(r), can be expressed using 
Darcy’s law (Touze-Foltz et al. 1999): 
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And following equation for the annular region comprised between r and r+dr (Touze-Foltz 
et al. 1999): 
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For the same annular region comprised between radii r and r+dr, the flow rate in the 
foundation layer (soil or GCL) can be expressed as follows (Touze-Foltz et al. 1999): 
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The principle of conservation of mass applied to the differential element, Equation (4.11) then 
becomes: 
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Equation (4.15) simplifies into equation below, previously given by Giroud and 
Bonaparte (1989): 
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Equation (4.16) can also be re-written as follows (Rowe 1998, Touze-Foltz et al. 1999): 
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where the hydraulic head, h, in the transmissive layer is unknown, and β and C can be 
obtained as follows (Rowe 1998): 
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 - afL hHHC +=  (4.19) 

 

The solution of the Equation (4.17) allows us to calculate the hydraulic head profile beneath 
the geomembrane, which is necessary to calculate the rate of liquid flow through the 
composite liner. 

The general solution of Equation (4.17) was given by Brown et al. (1987). It can be written as 
follows (Touze-Foltz et al. 1999): 

 

  C-r)(BKr)(IA h(r) 00 ββ +=  for  r0 ≤ r (4.20) 

 

where I0 and K0 are modified Bessel functions of zero order, and A and B are constants that 
depend on boundary conditions.  
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Two boundary conditions are necessary to solve Equation (4.20) and to evaluate A and B. The 
hydraulic head of liquid entering the circular defect is equal to hw and provides one boundary 
condition: 

 

  h  )h(r w0 =  (4.21) 

 

The other boundary condition corresponds either to zero flow at r = Rc: 

 

( )  0RQ c =  and, in general, h(Rc) ≥ 0 (4.22) 

 

or to a specific head, hs, at r = Rc: 

 

( )  hRh sc =  and, in general, Qr(Rc) ≥ 0 (4.23) 

 

where Rc is the wetted radius, which can be either the physical radius of a cell in the case of 
laboratory tests such as the one used to perform the small-scale tests in this work (Chapter 6), 
or a virtual radius in field conditions, and r is a radial boundary. 

Touze-Foltz et al. (1999) have solved Equation (4.20) for these boundary conditions. Also 
Rowe (1998) has solved Equation (4.20) for the particular case where there is no radial flow 
at r = Rc and the hydraulic head at r = Rc is zero (i.e. Qr(Rc) = 0 at r = Rc and h(Rc) = 0), that 
is, field contact conditions.  

Analytical solutions given for the existence of a flow rate at r = Rc with a hydraulic head 
equal to zero are of particular interest in the context of the present research. Indeed, they will 
be used for interpreting the hydraulic transmissivity interface measurements presented in 
Chapter 6. The analytical solutions given for zero flow at r = Rc with a hydraulic head equal 
to zero, which corresponds to field contact conditions are also needed for interpreting 
intermediate and large scale test results.  

Regarding the first case, the existence of a flow rate at r = Rc with a hydraulic head equal to 
zero, i.e. Qr(Rc) > 0 at r = Rc and h(Rc) = 0, the following solution was given by Touze-Foltz 
et al. (1999): 

 

    C-r)(KBr)(I A h(r)  0p0p ββ +=       for r0 ≤ r ≤ Rc and Qr(Rc) > 0 (4.24) 

 

where 

 



Chapter 4      Advective flow through composite liners due to geomembrane defects 

 73

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )000000

000

rIRKRIrK
rKChRKChA

cc

scw
p ββββ

ββ
−

+−+
−=  (4.25) 

 

and  

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )000000

000

rIRKRIrK
rIChRIChB

cc

scw
p ββββ

ββ
−

+−+
=  (4.26) 

 

where K0 and I0 are modified Bessel functions of zero order. 

The corresponding solutions giving the total flow rate, Q, and the radial flow rate in the 
interface, Qr(Rc), are presented below (Touze-Foltz et al. 1999): 
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( ) ( ) ( )[ ]cpcpccr RKBRIARRQ βββθπ 112 −−=  (4.28) 

 

With respect to the second case of interest within the scope of present work, zero flow at 
r = Rc with a hydraulic head equal to zero, i.e. Qr(Rc) = 0 at r = Rc and h(Rc) = 0, the 
following analytical solution was given by Rowe (1998):  

 

    1)-C(-C)h( h(r) 1w ΩΩ+= 0  (4.29) 

 

where  
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where K0 and I0 are modified Bessel functions of zero order. According to Rowe (1998), the 
solution given by Equation (4.29) assumes that the wetted radius, Rc, is known. The value of 
Rc can be estimated by finding the value of Rc such that: 

 

( ) 0=cR
dr
dh  (4.32) 

 

In other words, Rc can be estimated by solving the following equation: 
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where 
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and 
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where K1 and I1 are modified Bessel functions of first order. 

The total flow rate, Q, through a composite liner within a zone defined by the wetted radius 
can be estimated by the following equation (Rowe 1998):  

 

( ) ( )[ ]01010
2

0 2 rKBrIArikrQ QQss βββθππ −−=  (4.36) 

 

Equations (4.24) to (4.36) can be used with any set of coherent units. The basic SI units are: 
Q (m3 s−1), Qr (m3 s−1), θ (m2 s−1), ks  (m s−1), r0 (m), hw (m), β (m−1), A (m), B (m), Rc (m), 
Hs (m), and C (m). 

 

 



Chapter 4      Advective flow through composite liners due to geomembrane defects 

 75

4.5.2.2 Solution for the two-dimensional case 

The two-dimensional case includes both defects of infinite length Ltd and width b, such as 
long cuts, tears or defective seams, and damaged wrinkles of length Ltd and width b. It should 
be noted that there is no fundamental difference between the two types of two-dimensional 
defects because it is assumed that the holes in a wrinkle do not control the flow and no 
assumption is made regarding the height or the shape of the wrinkle. Thus, the two types of 
two-dimensional defects are defined by a single parameter: their width b (Figure 4.9).  

Rather it is assumed that the rate of liquid flow in composite liners is not limited by the 
defects (defect-limiting case was discussed by Rowe (1998)) and that liquid flow in the 
transmissive layer is in the x-direction, normal to the longitudinal axis of the wrinkle or the 
infinite long defect. Flow at both ends of the two-dimensional defects is neglected. Under the 
assumption of a uniform hydraulic transmissivity, the problem of liquid flow becomes two-
dimensional (Touze-Foltz et al. 1999). 
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Figure 4.9 – Composite liner including a geomembrane exhibiting: (a) a defect of infinite 

length and width b; (b) a damaged wrinkle of width b (Touze-Foltz & Giroud 2003) 

 

The head distribution, h, beneath the geomembrane and acting on soil liner is given by the 
equation presented below (Touze-Foltz et al. 1999): 

 

Ch
dx

hd 22
2

2

ββ =−  (4.37) 

 

where β and C are given by Equations (4.18) and (4.19), respectively. 
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The general solution of Equation (4.37) was given by Touze-Foltz et al. (1999): 

 

CxFxExh −+−= )exp()exp()( ββ           for b/2 ≤ x (4.38) 

 

where E and F are coefficients with values that depend on boundary conditions.  

Two boundary conditions are required to solve Equation (4.38) and to assess coefficients E 
and F. As for the axi-symmetric case, the hydraulic head of the liquid entering the defect in 
the geomembrane, hw, provides one boundary condition: 

 

whbh =







2
 (4.39) 

 

The other boundary condition is either a zero flow at x = Xc: 

 

0)( =cx XQ      and     0)( ≥cXh  (4.40) 

 

or a specific head at x = Xc: 

 

sc hXh ≥)(      and     0)( ≥cx XQ  (4.41) 

 

where Xc is either the width of a cell in the case of laboratory tests, or the width of the wetted 
area in the case of field conditions; Qx is the rate of the liquid flow in the interface in the 
direction normal to the longitudinal axis of the wrinkle or infinitely long defect; and x is the 
abscissa.  

Solutions for these boundary conditions were given by Touze-Foltz et al. (1999). Particularly 
important, within the scope of the present work, is the solution for zero flow at x = Xc, in 
which the hydraulic head is equal to zero at boundary Xc (i.e. Qx(Xc) = 0 and h(Xc) = 0), which 
corresponds to field contact conditions and will be used in Chapter 6 for predicting the flow 
rate through geomembrane defects in the two-dimensional case. This particular case where 
X = Xw gives the limit of strict validity of both solutions obtained for zero flow and specified 
head boundary conditions, with (Touze-Foltz et al. 1999): 
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The hydraulic head in the interface for this case is given by: 
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and the total flow rate, Q, through the composite liners is obtained from: 
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The total flow rate can also be expressed by unit length, QL. Equation (4.45) is then written as 
follows (Touze-Foltz & Giroud 2003): 

 

12 tanh coshw s s w s
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Equations (4.38) to (4.46) can be used with any set of coherent units. The basic SI units are: 
Q (m3 s−1), QL (m2/s), L (m), ks  (m s−1), hw (m), hs (m), C (m), β (m−1), Xc (m), Xw (m), b (m), 
and Hs (m). 

Equation (4.46) was later on simplified by Giroud & Touze-Foltz (2005), based only in 
mathematical transformations, and was re-written as follows: 

 

1 2 2w w
L s s w

s s

h hQ b k k h
H H

   
= + + +   

   
θ  (4.47) 

 

As highlighted by Giroud & Touze-Foltz (2005), the first term of the right side of 
Equation (4.47) quantifies the rate of flow into the soil liner (CCL or GCL) located directly 
under the defect. The second term quantifies the rate of interface flow.  
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4.5.2.3 Summary of Section 4.5.2 

Section 4.5.2 presented some analytical solutions that can be used to predict the flow rate 
through composite liners due to defects in the geomembrane. These solutions assumed that 
the soil liner (CCL or GCL) and the foundation layer above the geomembrane are fully 
saturated, the liquid flow through the soil liner and foundation is vertical, and the interface 
can be characterised by a uniform transmissivity. Analytical solutions presented included two 
general cases: axi-symmetric and two-dimensional. The first takes into account a circular hole 
in a flat geomembrane, whereas the later considers either a defect of infinite length, or a 
damaged wrinkle.  

For the case of a circular hole in a flat geomembrane, emphasis must be put on 
Equations (4.27) and (4.36), as they will allow the interpretation of the flow rate 
measurements presented in Chapter 6 in terms of interface transmissivity. A parameter 
necessary to compute the interface transmissivity is the radius of the wetted area. Therefore, 
on the one hand, Equation (4.27) will be used for interpreting the results of the tests carried 
out in small-scale tests, as the wetted radius corresponds to the physical radius of the test cell. 
On the other hand, Equation (4.36) will be used for interpreting the results of intermediate and 
large scale tests, given that the radius of the wetted is unknown. In this case, field contact 
conditions prevail and the radius of the wetted area can be estimated by solving 
Equation (4.33).  

The interpretation of test results, in terms of interface transmissivity, is important because a 
goal of this study is to develop empirical equations for predicting the flow rate through 
composite liners involving GCLs. For that, a GCL contact condition has to be defined, which 
can be done by relating the interface transmissivity to the hydraulic conductivity of the GCLs, 
as Chapter 6 will show. 

For the two-dimensional case, emphasis is put on Equation (4.47) which will be used in 
Chapter 6 to predict the flow rates through composite liners for both defects of infinite length 
and damaged wrinkles in field contact conditions. Flow rates computed thanks to analytical 
the equations will assist in the development of empirical equations for these types of defects.  

As could be seen, the analytical solutions are rigorous but complex. Therefore, simple tools 
are often used, namely empirical equations. Recent advances on empirical equations for 
predicting the flow rates through composite liners due to defects in geomembrane liners are 
addressed in the following section.  

 

4.5.3 Empirical equations 

4.5.3.1 Contact conditions: qualitative definitions 

Before addressing the empirical equations, some comments on contact conditions must be 
made. Contact conditions express the characteristics of the interface between the 
geomembrane and the underlying liner. Definition of contact conditions is often done in 
qualitative terms, such as perfect contact (Giroud & Bonaparte 1989), excellent contact 
conditions (Giroud & Bonaparte 1989, Touze-Foltz & Giroud 2003), good and poor contact 
(Giroud 1997), and perfect and imperfect contact (Foose et al. 2001).  

Qualitative definitions of the contact conditions relevant for the empirical equations shown in 
the following section are presented below:  
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• Poor contact conditions correspond to a geomembrane that has been installed with a 
certain number of wrinkles, and/or has been placed on a low-permeability soil that has not 
been adequately compacted and does not appear smooth (Giroud 1997); 

• Good contact conditions correspond to a geomembrane that has been installed with as few 
wrinkles as possible, on top of a low permeability soil layer that has been properly 
compacted and has a smooth surface. Furthermore, it is assumed that there is sufficient 
compressive stress to maintain the geomembrane in contact with the low-hydraulic 
conductivity soil layer (Giroud 1997); and 

• Excellent contact conditions correspond to a geomembrane that has been installed with no 
wrinkles on top of a soil component of a composite liner that consists of a GCL installed 
on top of, and in close contact with, a low-hydraulic conductivity soil layer that has been 
adequately compacted and has a very smooth surface. Furthermore, it is assumed that 
there is sufficient compressive stress to maintain the geomembrane in contact with the 
GCL (Touze-Foltz & Giroud 2003). 

 

Qualitative definitions of contact conditions are subjective, which may lead to different 
interpretations of a given field case. To overcome this limitation, Rowe (1998) proposed 
quantitative definitions for poor and good contact conditions. These quantitative definitions 
were extended by Touze-Foltz & Giroud (2003), as findings by Touze-Foltz et al. (2002a) 
showed that for composite liners involving GCLs the flow rate can be significantly less than 
that calculated considering good contact conditions. Quantitative definitions of contact 
conditions will be discussed in Section 4.5.4.  

 

4.5.3.2 Existing equations for CCLs 

Numerous empirical equations for predicting the flow rate through defects in geomembranes 
underlain by CCLs have been developed and successively updated. Giroud & 
Bonaparte (1989) and Giroud et al. (1989) developed the first sets of equations. These 
equations provide an approximate solution assuming that the hydraulic gradient is close to 
unity. This assumption may be reasonable for low leachate mounds (design mounds ranging 
from 0.03 to 0.3 m) and clay liners with thickness of 0.6 to 0.9 m, but are not strictly valid for 
the levels of leachate mounding that may occur during post-operation, in cases of excessive 
clogging of a leachate collection system, or a modest leachate mound over a GCL (Rowe 
1998). Aware of these limitations, Giroud et al. (1992) extended the approximate solution to 
consider higher hydraulic heads. They also proposed equations for defects of infinite length. 
A limitation in these equations was that they required charts to obtain the value of one of the 
terms of the equation.  

Giroud (1997) updated previous empirical equations, providing an entirely analytical means 
of calculating the flow rate through defects in geomembranes. In addition, he summarised the 
developed equations in regard of the shapes of the defects, the liquid head above the 
geomembrane liner, and the contact conditions. Later on, Giroud et al. (1998) developed a 
new set of equations for calculating: (a) the rate of flow through composite liners due to 
geomembrane defects; (b) the rate of flow through defects in a geomembrane placed on a 
semi-permeable medium; and (c) the rate of flow through defects in a geomembrane overlain 
by a permeable medium and underlain by a highly permeable medium.  
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Foose et al. (2001) and Touze-Foltz (2001) compared the flow rate through composite liners 
comprising a geomembrane and a CCL calculated using either empirical equations or 
analytical solutions. For circular defects, the results obtained using empirical equations 
developed by Giroud (1997) showed good agreement with the results obtained using 
analytical solutions developed by Rowe (1998) and Touze-Foltz et al. (1999). Conversely, for 
defects of infinite length, the results obtained using empirical equations by Giroud et 
al. (1992) were inconsistent with the results obtained using the analytical solutions. Analysis 
conducted by Foose et al. (2001) attributed this inconsistency to the fact that the empirical 
equations for circular defects and defects of infinite length correspond to different values of 
interface transmissivity even though the same contact conditions are considered. In other 
words, the interface transmissivity was a function of the type of defect, which should not 
happen. Based on these findings, these authors proposed new empirical equations for defects 
of infinite length (Foose et al. 2001) and damaged wrinkles (Touze-Foltz et al. 2002b).  

Equations by Touze-Foltz et al. (2002b) were recently updated by Touze-Foltz & 
Giroud (2003). The latter authors also updated the empirical equations for defects of infinite 
length developed by Giroud et al. (1992) and proposed a new equation, for circular defects, 
for excellent contact conditions. An important advance was reached with the new empirical 
equations developed by Touze-Foltz & Giroud (2003), based on the assumption that the 
transmissivity is independent from the type of defect. This significant improvement was in 
part due to the fact that they could define the contact conditions in quantitative terms. 
Definition of contact conditions in quantitative terms is based on empirical equations as 
Section 4.5.4 will show.  

Table 4.3 summarises the latest empirical equations for assessing the flow rate through 
composite liners comprising a geomembrane and a low hydraulic conductivity soil (CCL) 
caused by geomembrane defects. The equations are grouped by type of defect (circular, defect 
of infinite length and damaged wrinkle) and by contact conditions (excellent, good and poor). 
These supersede previous equations presented by the same authors.  

It should be noted that, except for the equation by Foose et al. (2001), with a validity clearly 
defined in the second footnote of Table 4.3, empirical equations included in this table can 
only be used for the following values of the parameters (Touze-Foltz & Giroud 2003): 

• Circular defects having radii between 1×10−3 and 5.64×10−3 m (i.e. a circular defect area 
of 1 cm2); 

• Defects of infinite length having widths between 2×10−3 and 2×10−2 m; 

• Wrinkle widths ranging from 0.1 to 0.6 m;  

• Hydraulic heads ranging from 0.03 to 3 m;  

• Hydraulic conductivities of the soil component of the composite liner ranging from 
1×10-10 to 1×10−8 m s−1; and 

• Thicknesses of the soil layer component of the composite liner ranging from 0.3 to 5 m.  
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Table 4.3 – Existing empirical equations for assessing the flow rate through composite liners 
comprising a geomembrane and a low permeability soil due to geomembrane defects 

Defect Contact 
conditions Empirical equations Reference 

Excellent ( )0.950.9 0.1 0.740.096 1 0.1 = + w s w sQ h a k h H
 

Touze-Foltz & Giroud 
(2003) 

Good ( )0.950.9 0.1 0.740.21 1 0.1w s w sQ h a k h H = +   

C
irc
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Poor ( )0.950.9 0.1 0.741.15 1 0.1w s w sQ h a k h H = +   

Giroud (1997) 

Excellent ( )0.590.45 0.004 0.870.42 1 0.52 = + L w s w sQ h b k h H
 

Good ( )0.590.45 0.004 0.870.65 1 0.52 = + L w s w sQ h b k h H
 

Poor ( )0.590.45 0.004 0.871.64 1 0.52 = + L w s w sQ h b k h H
 

Touze-Foltz & Giroud 
(2003) 
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Foose et al. (2001) 

Excellent ( )0.820.45 0.1 0.870.63 1 0.28 = + L w s w sQ h b k h H

Good ( )0.820.45 0.1 0.870.89 1 0.28 = + L w s w sQ h b k h H

D
am

ag
ed
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Poor ( )0.820.45 0.1 0.871.98 1 0.28 = + L w s w sQ h b k h H
 

Touze-Foltz & Giroud 
(2003) 

Notes:  

(i) The symbols as follows are used in this table: Q = flow rate; QL = flow rate per unit length; 
hw = hydraulic head on top of geomembrane; a = circular defect area; b = width of defect of 
infinite length or damaged wrinkle; ks = soil layer hydraulic conductivity; Hs = soil layer 
thickness; and θ = transmissivity of the interface. These equations must be used with the 
following units: Q (m3 s−1), QL (m2 s−1), hw (m), a (m2), b (m), ks (m s−1), Hs (m), and θ (m2 s);  

(ii) (*) Equation applicable if the ratio between the hydraulic conductivity of the interface and the 
hydraulic conductivity soil component of the composite liner is higher than 3×104.  

 

Based on the ranges of hydraulic conductivity and thickness mentioned above, the equations 
presented in Table 4.3 are not applicable to the case where the soil component of the 
composite liner is only a GCL. Nevertheless, they can be used for composite liners that 
include a CCL overlain by a GCL (Touze-Foltz & Giroud 2003). In this case, the soil 
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hydraulic conductivity to be used in flow rate calculations is the equivalent hydraulic 
conductivity determined using the equation below (Touze-Foltz & Giroud 2003): 

 

ffGCLGCL

fGCL
s kHkH

HH
k

+

+
=   (4.48) 

 

where ks is the equivalent hydraulic conductivity; kf is the hydraulic conductivity of the 
foundation layer (CCL); kGCL is the hydraulic conductivity of the GCL; Hf  is the thickness of 
the foundation layer (CCL); and HGCL is the thickness of the GCL. 

Accordingly, the equivalent thickness, Hs, is to be used in flow rate calculations 
(Touze-Foltz & Giroud 2003): 

 

fGCLs HHH +=  (4.49) 

 

It should be noted that, except for the equation proposed for Foose et al. (2001) that has a 
different form, the exponents in the equations are the same for each type of defect. This 
means that the differences in these equations, which are related with the contact conditions, 
are expressed by the value of the coefficient at the beginning of the second term of the 
equations, often designated as quality factor. 

 

4.5.3.3 Existing equations for GCLs 

Empirical equations for predicting the flow through composite liners comprising a 
geomembrane and a GCL are scarce. Foose et al. (2001) analysed the flow through this type 
of composite liners using numerical models. Flow rates predicted with numerical models were 
compared to flow rates predicted using the analytical solutions proposed by Rowe (1998). 
According to Foose et al. (2001), the appropriate tool for calculating flow rates should be 
selected based on the ratio between the hydraulic conductivity of the interface and the 
hydraulic conductivity of the GCL liner. Based on these findings, they proposed either new 
equations, or adjustments on existing analytical solutions (Table 4.4). 

Empirical equations for evaluating the flow rate through composite liners involving a 
geomembrane and a particular type of GCL (geomembrane-supported GCL) can also be 
found in Gundseal (2001). They are based on equation proposed by Giroud (1997) for circular 
defects (equation presented in the 3rd row of Table 4.3), and would not be applicable to other 
types of GCLs, namely the geotextile-supported GCLs (Gundseal 2001). In spite of this 
important limitation, these equations are presented below, since the present research is 
focused on the measurement of the flow rate through composite liners comprising a 
geomembrane and a GCL: 
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This equation is considered valid for hw < 3 m, and defect diameters between 0.5 and 25 mm 
(25 mm corresponds to a surface equal to 5×10−2 m2). For higher heads of liquid on top of the 
geomembrane, up to approximately 30 m, the following equation is proposed (Gundseal 
2001) for the flow rate through composite liners having a geomembrane-supported GCL: 
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where HGCL is the GCL thickness; a is the area of the defect; and kGCL is the hydraulic 
conductivity of the GCL. These equations must be used with the following units: Q (m3 s−1), 
hw (m), a (m2), kL (m s−1), and Hs (m). 

 

Table 4.4 – Recommended equations for calculating flow rates through composite liners 
comprising a geomembrane and a GCL (adapted from Foose et al. 2001) 

Defect 

Interface condition 


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GCL

i

k
klog  Recommended equations 

> 4 
Rowe’s (1998) analytical solution (Equation 4.36) or 
Giroud’s (1997) empirical equations (third and fourth 

lines in Table 4.3)  
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The following symbols are used in this table: ki = hydraulic conductivity of the interface; kGCL = hydraulic 
conductivity of the GCL; Qa = adjusted flow rate in a GCL composite liner; QR = flow rate predicted using 
Rowe’s (1998) analytical solution (Equation 4.36); QL = flow rate per unit length; HGCL = GCL thickness; 
b = width of defect of infinite length; and θ = transmissivity of the interface. 
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4.5.3.4 Summary of Section 4.5.3 

Section 4.5.3 shows that there are many empirical equations for composite liners comprising a 
geomembrane and a CCL, which cover different types of defects and characteristics of the 
interface. In contrast, there are few empirical equations for composite liners involving GCLs. 
To our knowledge, only Foose et al. (2001) proposed some empirical equations for this type 
of composite liner, but, even those, are applicable only to defects of infinite length. In 
addition, for a particular type of composite liner involving geomembrane supported GCLs, an 
adaptation of the empirical equations proposed by Giroud (1997) for circular holes, is 
suggested by Gundseal (2001).  

Therefore, for composite liners involving GCLs available tools were developed either for a 
particular type of defect or for a particular type of product. These equations cover only a 
narrow range of cases. New equations for different types of defects and composite liners 
including geotextile-supported GCLs are needed. Taking into account this lack of empirical 
equations, in the present work, an attempt is made to develop this tool, based on the 
experimental data as Chapter 6 will present. 

On the other hand, discussions addressed in Sections 4.5.2 and 4.5.3 highlight that the 
features of the interface between the geomembrane and the underlying liner are a key issue to 
predict the flow rate through composite liners due to geomembrane defects. Analytical 
solutions take them into account through the interface transmissivity, whereas empirical 
equations consider different types of contact conditions. Interface transmissivity and 
quantitative definition of the contact conditions are discussed in the following section. 

 

4.5.4 Interface transmissivity for CCL/geomembrane composite liners and 
quantitative definition of the contact conditions 

The transmissivity, θ, of the interface between the geomembrane and an underlying soil liner 
can be estimated based on Newton’s viscosity theory for flow, assuming that the interface can 
be approximated by two smooth parallel plates (Brown et al. 1987; Giroud & Bonaparte 1989, 
Rowe 1998, Foose et al. 2001, Touze Foltz & Giroud 2003): 

 

η
ρθ
12

3sgsk w
i ==  (4.52) 

 

where ki is the hydraulic conductivity of the interface; s is the interface thickness; ρw  is the 
density of water; g is the acceleration due to gravity; and η is the dynamic viscosity of water. 
Equation (4.52) can be used with any set of coherent units. The basic SI units are: θ (m2 s−1), 
ki (m s−1), ρw (kg m−3), g (m s−2), s (m), and η (kg m−1 s−1). 

 

Equation (4.52) shows that in order to compute the transmissivity, it is necessary to know the 
interface thickness. This issue was addressed by Brown et al. (1987), who carried out 
laboratory tests using various types of geomembranes with defects placed on soil layers 
having hydraulic conductivities ranging from 1×10−9 to 1×10−6 m s−1. A theoretical analysis of 
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their results led Brown et al. (1987) to propose interface thickness values that correspond to 
soil hydraulic conductivity values ranging from 1×10−9 to 1×10−6 m s−1.  

Corresponding transmissivities can then be calculated using Equation (4.52) and are shown in 
Table 4.5. It should be noted that the contact conditions in Brown et al.’s (1987) tests could be 
characterised as excellent (Giroud & Bonaparte 1989), and thus the interface thickness and 
the interface transmissivity included in Table 4.5 correspond to excellent contact conditions 
(Rowe 1998, Touze Foltz & Giroud 2003). 

 

Table 4.5 - Interface thickness and transmissivity as a function of soil layer hydraulic 
conductivity according to experimental data from Brown et al. (1987) 

Soil layer hydraulic conductivity 
(m s-1) 

Interface thickness       
(mm) 

Interface transmissivity   
(m2 s-1) 

1 × 10−6 0.15 2.8 × 10−6 

1 × 10−7 0.08 4.2 × 10−7 

1 × 10−8 0.04 5.2 × 10−8 

1 × 10−9 0.02 6.5 × 10−9 

 

Another important finding reported by Brown et al. (1987) was that the hydraulic conductivity 
of the soil layer and the interface transmissivity are linked: the smaller the soil particle size, 
the lower its hydraulic conductivity and roughness of its surface, hence, the thinner the 
interface. 

Following the rationale given by Brown et al. (1987), Rowe (1998) used his analytical 
solution, Equation (4.36), to back-calculate the transmissivity of the interface between the 
geomembrane and the soil layer necessary to yield flow rates through the defects 
corresponding to those obtained from Giroud’s (1997) equations for circular defects 
(equations presented in the 3rd and 4th rows of Table 4.3). Input parameters included: defect 
radii ranging from 1×10−3 to 5.64×10−3 m, soil layer thickness values ranging from 0.6 to 
1.2 m, soil hydraulic conductivity values ranging from 1×10−10 to 1×10−8 m s−1, and hydraulic 
head equal to 0.3 m. Accordingly, Rowe (1998) proposed two empirical relationships between 
soil hydraulic conductivity and interface transmissivity, for good and poor contact conditions 
as previously defined in Section 4.5.3.1 of this chapter. Relationships proposed by 
Rowe (1998) are presented below:  

 

For good contact conditions: 

( )2log 0.07 1.036 log 0.018 logs sk kθ = + +  (4.53) 

 

For poor contact conditions:  

( )2log 1.15 1.092 log 0.0207 logs sk kθ = + +  (4.54) 
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Equations (4.53) and (4.54) are represented by the solid curves identified as “good” and 
“poor” in Figure 4.10. This figure shows that the curves for good and poor contact conditions 
are approximately straight lines, even though they are not linear in a logarithmic scale. It can 
be also seen that the curves for good and poor contact conditions are approximately parallel. 

Based on the analytical solutions developed by Touze-Foltz et al. (1999), Touze-Foltz & 
Giroud (2003) extended the work by Rowe (1998) and proposed an equation for excellent 
contact conditions. As an attempt to obtain consistent empirical equations for the three contact 
conditions, and given that the contact conditions in the Brown et al.’s (1987) tests were 
characterised as excellent, they assumed that the interface transmissivity for the case of 
excellent contact conditions is represented by a quasi-straight line parallel to the quasi-straight 
line representing good contact conditions in Figure 4.10 and passing through the point with 
transmissivity given in Table 4.5, for a soil hydraulic conductivity of 1×10−9 m s−1. Therefore, 
the following relationship for excellent contact conditions was obtained: 

 

( )2log 0.321 1.036 log 0.018 logs sk kθ = − + +  (4.55) 

 

where θ is the interface transmissivity, and ks is the hydraulic conductivity of the soil 
component of the composite liner. This equation is also represented by a solid curve in Figure 
4.10.  

Equations (4.53) to (4.55) can only be used with the following units: θ (m2 s−1) and ks (m s−1). 
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Figure 4.10 – Relationships between interface transmissivity and soil layer hydraulic 

conductivity for poor, good, and excellent contact conditions (adapted from 
Touze-Foltz & Giroud 2003)  
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According to Touze-Foltz & Giroud (2003), a good approximation of Equations (4.53), 
(4.54), and (4.55) is achieved by the following linear equations that correspond to three 
parallel straight lines that could hardly be distinguished from the solid curves presented in 
Figure 4.10: 

 

For excellent contact conditions: 

log 1.7476 0.7155 log skθ = − +  (4.56) 

 

For good contact conditions:  

log 1.3564 0.7155 log skθ = − +  (4.57) 

 

For poor contact conditions: 

log 0.5618 0.7155 log skθ = − +  (4.58) 

 

These equations have to be used with SI units. 

Quantitative characterisation of contact conditions is very important to avoid inconsistency 
such as the interface transmissivity being a function of the type of defect (Touze-Foltz & 
Giroud 2003). In addition, it is very important to evaluate the flow rate through composite 
liners due to geomembrane defects using analytical solutions, in which the transmissivity of 
the interface is integrated. 

The addressed issues showed that the hydraulic transmissivity of the interface is a key 
parameter to calculate the flow rate through composite liners due to defects in geomembranes. 
Some experimental studies can be found in the literature on this topic. Some of them focused 
on composite liners involving CCLs (e.g. Fukuoka 1986, Brown et al. 1987, Jayawickrama et 
al. 1988, Liu 1998, Touze-Foltz 2001, 2002b). Other focused on composite liners involving 
GCLs, such as Harpur et al. (1993), Estornell & Daniel (1992) and Koerner & 
Koerner (2002). Within the scope of this study, studies dealing with composite liners 
involving GCLs will be reviewed in Section 4.6. Furthermore, flow rates from field studies on 
this type of composite liners are presented and discussed in Section 4.7.  

 

4.6 PREVIOUS LABORATORY STUDIES ON FLOW RATES THROUGH COMPOSITE LINERS 
INVOLVING GCLS 

4.6.1 Estornell & Daniel (1992) 

Estornell & Daniel (1992) studied the hydraulic performance of composite liners involving 
different GCLs and a punctured 1.5 mm thick geomembrane (HDPE). Three GCLs were used: 
geomembrane-supported, needlepunched, and adhesive bounded. Tests were carried out in 
steel tanks (2.4 m long, 1.2 m wide, and 0.3 m high). Punctures in geomembrane specimens 
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comprised two 75 mm diameter holes, three 25 mm diameter holes, and three 0.6 m long slits 
about 1mm wide. The confining stress varied from 8 to 10 kPa, and a pressure head of 0.3 m 
was maintained on the products tested. Effluent water passing through the composite liners 
was collected and weighed to estimate the flow of water (Figure 4.11). 

 

 
Figure 4.11 – Cross-sectional view of configuration of materials in tank (modified 

from Estornell & Daniel 1992)

 

The main results reported by these authors include: (i) no outflow was observed with the 
geomembrane-supported GCL; water penetrated the bentonite at the holes, but migrated no 
more than 75 mm from the holes (wetted area) over the five-month testing period; the authors 
attributed this behaviour to a composite action: the bentonite sealed off the holes in the 
geomembrane, and the GCL prevented the outflow of water from the punctured 
geomembrane/GCL composite liner; (ii) outflow could be collected with tests involving 
geotextile-supported GCLs; when the tests were disassembled (after about three months of 
permeation), they observed that the bentonite was fully hydrated over the entire area of the 
specimens, suggesting that water flowed through the holes in the geomembranes, spread 
laterally through the upper geotextile, and soaked the GCLs. As regards the amount of water 
collected, no data was reported by these authors. 

Estornell & Daniel (1992) concluded that the effectiveness of composite action between a 
punctured geomembrane and the bentonite in the GCLs depends on whether a geotextile 
separated the punctured geomembrane from the bentonite. Good performance was observed 
when the bentonite was in direct contact with the damaged geomembrane, whereas a worse 
performance was observed when a geotextile separated the bentonite from the geomembrane. 

 

4.6.2 Harpur et al. (1993) 

Harpur et al. (1993) carried out tests to measure the liquid flow beneath a geomembrane with 
a hole placed over a GCL, from which they quantified the transmissivity of the interface. 
Liquid flow measurements were conducted in two different ways. Constant head tests were 
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carried out when the radial flow rate, Qr(Rc), was high. As the radial liquid flow rate 
decreased, the use of the falling head test became necessary due to its high accuracy at low 
flow rates. In this case, the total flow rate, Q, was measured. 

Tests were conducted on a 0.108 m diameter permeameter (Figure 4.12). Each test was 
performed under a normal stress of 7 and 70 kPa. Constant head tests were run at 0.3 m head 
and falling head tests at around 0.325 m. Five different types of GCL were tested under a 
1.5 mm thick HDPE geomembrane with a circular hole at its centre, with a 7.6 mm diameter. 
The various GCLs tested were the following: 

• Granular bentonite glued to a lower geomembrane; 

• Powdered bentonite sandwiched between a woven slit film and a non-woven 
needlepunched geotextile; 

• Granular bentonite glued between a woven spun laced and a woven geotextile; 

• Granular bentonite sandwiched between a woven slit film and a non-woven 
needlepunched geotextile; and 

• Powdered bentonite sandwiched between two non-woven needlepunched geotextiles.  
 

The GCL specimens were tested with no prehydration. The tests were run during a two-week 
period. 
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Figure 4.12 – Schematic drawing of the transmissivity apparatus used by Harpur et al. (1993) 
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Transmissivities determined by Harpur et al. (1993) neglected the flow within the bentonite. 
Therefore, the term “apparent transmissivity” was adopted by these authors. According to 
them, the computed transmissivity represents an upper limit to the real transmissivity. The 
radius of the wetted area that corresponds to the GCL specimen radius may be also 
overestimated by the assumption that the wetted area corresponds to the whole specimen 
surface, as underlined by Touze Foltz et al. (2002a). The equations below were used by 
Harpur et al. (1993) to evaluate the apparent transmissivity: 

 

- For constant head tests: 
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- For falling head tests: 
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where ac is the cross-sectional area of falling head capillary tube; 
0wh  is the hydraulic head on 

top of the geomembrane hole at the beginning of a falling head test; 
1wh  is the hydraulic head 

on top of the geomembrane hole at the end of a falling head test; and t is the falling head test 
duration. 

Interface transmissivities reported by Harpur el al. (1993) are in the range 6×10-12 to 
2×10-10 m2 s-1, for the four geotextile-supported GCLs, and 3×10-12 m2 s-1for geomembrane-
supported GCL. Other important findings reported by Harpur et al. (1993) can be summarised 
as follows: (i) at the initial stages of testing the apparent transmissivity was high in most 
GCLs, since it is governed by the relatively high transmissivity of the geotextile and the 
relatively large size air channels in the bentonite during its initial dry state; (ii) at the initial 
stages of testing, apparent transmissivity was lower under a normal stress of 70 kPa than at a 
normal stress of 7 kPa. However, with time, this difference was significantly reduced, which 
was explained, on one hand, by intrusion of the bentonite into the geotextile and extrusion of 
the bentonite through the geotextile, what obstructs the flow of water, and, on the other hand, 
by the fact that any air channels within the initially dry bentonite can close because of 
swelling; (iii) of the two GCLs made of the same upper geotextile (woven slit film geotextile), 
one comprising granular bentonite and the other powdered bentonite, the latter presented an 
apparent transmissivity of one order of magnitude lower, indicating a better performance of 
the powdered bentonite; (iv) the GCL with the upper needlepunched geotextile presented a 
transmissivity of the same order of magnitude than the other GCLs with a woven geotextile. 
This was attributed to the fact that the needlepunched geotextile contained a considerable 
quantity of powdered bentonite in its dry state as a consequence of the needling process. Also, 
the possible effect of vibrations occurring during transportation and handling of the material 
influenced the results; and (v) the highest effect of normal stress was observed in the GCL 
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with a woven spun laced geotextile.  

In addition, Harpur et al. (1993) reported that GCLs tested showed significantly lower 
transmissivities than the one predicted using Newton’s viscosity law (Equation (4.52) 
assuming an interface thickness of 0.02 mm between the geomembrane and an underlying 
liner. Transmissivity corresponding to this interface thickness is 6.5×10-9 m2 s-1 (Table 4.5). 
Nevertheless, it should be noted that this calculation is based on Giroud & Bonaparte (1989), 
which, supported on data from Brown et al. (1987), suggested that the transmissivity of a 
CCL having a hydraulic conductivity of 10-9 m s−1 can be determined, under excellent contact 
conditions, by assuming an interface thickness of 0.02 mm. Thus, the hydraulic conductivity 
and the interface thickness used by Harpur et al. (1993) may not be representative for GCLs. 

 

4.6.3 Koerner & Koerner (2002) 

Laboratory tests were carried out by Koerner & Koerner (2002) to evaluate what amount of 
flow might result from a needle punctured geomembrane over a needlepunched GCL. Flow 
through a 1.5 mm thick HDPE geomembrane was estimated for four different circular hole 
scenarios: 3.6 mm in diameter, 1.0 mm in diameter, approximately 0.1 mm diameter (needle 
diameter), and a 0.1 mm diameter with the needle left in the hole. For comparison purposes, 
tests were also conducted with a drainage geonet beneath the geomembrane (free drainage). 

The tests were performed in a compartmentalised permeameter, partitioned in four sections so 
that each hole scenario could be tested at the same time. Specimens were tested under a 
confining stress of 35 kPa, and constant hydraulic heads of 2.5, 7.5, 15, 30 and 60 cm were 
successively applied. The GCL was allowed to hydrate for 7 days under stress prior to testing 
(prehydrated specimens). Tests were ended when the three criteria as follows were met: (i) the 
ratio of rate inflow was between 2.8 and 4.7 litre hour-1 for the last three consecutive flow 
measurements, (ii) no significant upward or downward trend in flow was noted for the last 
three consecutive flow measurements, and (iii) none of the last three flow values were less 
than 0.75 times the average flow rate nor higher than 1.25 times the average value. Flow rates 
were calculated and plotted against hydraulic head. No information is given about the 
prehydration value. 

The results show that the four hole scenarios with the geomembrane over the GCL produced 
flow rates 4 to 5 orders of magnitude lower than with the geomembrane over the drainage 
geonet. However, whereas individual differences in the results from the different hole 
scenarios were logical for the geomembrane/geonet tests, they were not logical for the 
geomembrane/GCL tests. For the latter, the highest flow rate was obtained for the test carried 
out with the needle left in the hole in geomembrane. According to Koerner & Koerner (2002), 
this incongruence indicated that the accuracy limit of the test device was exceeded in this 
case. Disregarding that particular result, at 30 cm of hydraulic head, flow rates through the 
remaining holes in geomembrane over the GCL were similar: approximately 3×10-11 m3 s−1. 
Another observation reported was that, in general, the flow rate gradually increased as the 
hydraulic head increased.  

These authors also compared the measured flow rates to the ones theoretically calculated 
using the empirical equation proposed by Giroud & Bonaparte (1989). Input parameters for 
the empirical equation included: a hydraulic conductivity of the GCL equal to 7.0×10−12 m s-1, 
a GCL thickness of 1 cm, and a hydraulic head equal to 30 cm. The theoretically calculated 
values of flow rate were found to be much less than the measured values. According to the 
authors this may be due to the fact that the empirical equation does not apply for such small 



Chapter 4      Advective flow through composite liners due to geomembrane defects 

 92

holes and/or the experimental setup was not sensitive enough to measure such low values. In 
this regard, it should be noted that Giroud & Bonaparte’s (1989) equation was not developed 
for geomembrane in contact with GCL and for such low hydraulic conductivity of the 
underlying liner. Therefore, the comparison made might be meaningless. 

Issues addressed in Section 4.6 highlight that, even though some experimental studies were 
conducted on flow rate through composite liners due to geomembrane defects, there are many 
aspects regarding their performance that remain unstudied. For example, very little is known 
about the performance of a composite liner when there is a prehydrated GCL under the 
geomembrane, although it is usually recommended that GCLs be hydrated under a vertical 
stress after their installation. Also, very little is known about the degree of dependency of the 
transmissivity on the applied head, or on the applied load above the geomembrane. To deal 
with these issues, a parametric study on flow rate through composite liners due to a circular 
hole in the geomembrane was carried out in laboratory. This study will be presented in 
Chapter 6. 

 

4.7 PREVIOUS FIELD STUDIES ON FLOW RATES THROUGH COMPOSITE LINERS INVOLVING 
GCLS 

Some landfills have been constructed with double composite liner systems, that means with a 
secondary leachate collection system (SLCS) between the primary and secondary liners 
(recall Figure 2.3). The SLCS consists either of granular material or a geonet. Monitoring data 
from SLCS provides a rapid detection system of leaks through the primary liner, as well as it 
gives operator time for response before contaminants escape from the landfill and migrate 
into the subsurface. It also may provide insight regarding the effectiveness of the primary 
liners as emphasised by Rowe (1998). 

A certain number of studies on flow rates has been made on landfills with SLCS by 
measuring the flow in these systems. Nonetheless, the interpretation of the data requires 
careful consideration of sources of fluid other than flow from the landfill (Gross et al. 1990). 
According to these authors, fluid may enter the SLCS as: (i) infiltration during construction of 
the system; (ii) water arising from the compression and consolidation of the clay component 
of the primary liner under the weight of the waste; (iii) groundwater infiltration from outside 
the landfill; and (iv) flow through the primary liner due to defects in the geomembrane. 

A review of significant published studies on this topic has been done by Rowe (1998). Of 
particular interest, in the context of the present work, is the study conducted by Bonaparte et 
al. (1996). These authors compiled flow rate data from 26 double lined cells at six landfills 
containing geomembrane/GCL composite primary liners. The authors used the data to 
calculate average and peak SLCS flow rates for three distinct landfill development stages: 
(i) initial period of operation; (ii) active period of operation; and (iii) post-closure period. 
Table 4.6 shows the mean values and standard deviation of flow estimated by Bonaparte et 
al. (1996). 

As can be seen, the mean SLCS flow rates are very low during both the active and post-
closure period, respectively 0.7 and 0.2 litres per hectare/day (lphd). Peak flow rates are about 
one order of magnitude higher than the average, even though they are relatively small. 
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Table 4.6 – Mean flow rates in SLCS for 26 landfill cells with GM/GCL composite primary 
liners given in litres per hectare/day (lphd) (based on Bonaparte et al. 1996) 

Average flow rate (lphd) Peak flow rate (lphd) 

SLCS flow rates Cells 
Mean Standard 

deviation Mean Standard 
deviation 

Initial period 26 36.6 68.5 141.8 259.9 

Active operation 19 0.7 1.1 7.7 13.7 

Post-closure 4 0.2 - 2.3 - 

 

Recently, Majdi et al. (2002), under USEPA auspices, developed a database that includes 
information for 187 cells at 54 double lined landfills. Information compiled concerns 
geomembrane primary liners, and composite liners consisting of geomembrane/CCL, 
geomembrane/GCL or of geomembrane/GCL/CCL with either sand or geonet secondary 
leachate collection system. The main findings reported by Majdi et al. (2002) can be 
summarised as follows: 

• For geomembrane primary liners, data gathered from 31 cells gives an average SLCS flow 
rates ranging from 5 to 2100 lphd during the initial period of operation, from 1 to 
1600 lphd during the active period of operation, and from 2 to 330 lphd after closure; 

• For geomembrane/GCL composite primary liners, data compiled from 28 cells gives an 
average monthly SLCS flow rates ranging from about 0 to 290 lphd during the initial 
period of operation, from 0 to 11 lphd during the active period, and from 0 to 2 lphd after 
closure; peak monthly SLCS flow rates were typically two to five times the average 
monthly values; between the initial and active periods of operation, SLCS flow rates 
decreased one to three orders of magnitude; and 

• For geomembrane/CCL and geomembrane/GCL/CCL composite primary liners, the 
interpretation of results is complex due to the relatively significant contribution of 
consolidation water in SLCS flow, as well as the breakthrough time (i.e. times of travel) 
for advective transport through the CCL or GCL/CCL component of the composite liner; 
the average monthly SLCS flow rates (13 landfill cells) ranged from about 10 to 
1400 lphd during the initial period of operation, from 0 to 370 lphd during the active 
period, and from 5 to 210 lphd after closure. 

 

Additional observations regarding SLCS flow rate data for geomembrane/CCL and 
geomembrane/GCL/CCL indicate that the consolidation water flow rates are dependent on the 
thickness and hydraulic conductivity of the CCL, as well as the rate of overlying waste 
placement. Average monthly rates during the active period may initially be as high as 200 to 
400 lphd, with flows attributed primarily to consolidation water (Majdi et al. 2002). 

It is important to note that higher flow rates appear to be achieved in landfills with no CQA. 
For example, Bonaparte & Gross (1990, 1993) reported that 19 % of landfills with CQA had 
SLCS flow rates of 50 lphd or less and 57 % of landfills had SLCS flow rates of 200 lphd or 
less, whereas for landfills with no CQA, only 20 % had SLCS flow rates of 200 lphd or less. 
Higher average flow rates for landfills with no CQA were also indicated by Tedder (1997). 
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Discussions carried out in Section 4.6 show that the mean flow rates are small during the 
active and post-closure periods. Nonetheless, reported SLCS flow rates for composite liners 
comprising a GM and a GCL varied considerably according to the author. Bonaparte et al. 
(1996) report a mean SLCS flow rate of 0.7 lphd, during the active period and 0.2 lphd, in the 
post-closure period, whereas Majdi et al. (2002) reports that the flow rate ranged from 0 to 
11 lphd, during the active period, and from 0 to 2 lphd in the post-closure period. These 
results emphasise that there are still many uncertainties about the amount of fluid that can be 
expected in the SLCS for composite liners involving GCLs, being necessary further research 
on this topic. 

In this study, an attempt is made to add some information about the amount of fluid that can 
be expected due to geomembrane defects. For that, laboratory tests were carried out in three 
different scales, and are presented in Chapter 6. 

 

4.8 SUMMARY AND CONCLUSIONS 

This chapter discussed the theoretical issues related with the water retention curves and the 
advective flow through composite liners due to geomembrane defects. It started with a general 
discussion about water flow through porous media. From that discussion, it could be seen that 
the hydraulic conductivity is a key factor. Thus, for evaluating the performance of composite 
liners involving a GCL, it is necessary to know the hydraulic conductivity of the GCLs. As 
these materials are typically installed with their natural water content, it follows that saturated 
hydraulic conductivity may not be representative of the field conditions. Experimental 
evaluation of unsaturated hydraulic conductivity is difficult. Consequently, predictive 
methods based on water retention curves, typically represented by the van Genuchten 
parameters, are often used. The van Genuchten parameters can be estimated by matching a 
theoretic water retention curve to experimental data on matric suction. In this framework, 
experimental methods for assessing the suction and for estimating the van Genuchten 
parameters were also described. Issues addressed will support the interpretation of the 
experimental work presented in Chapter 6 on water retention curves of the GCLs. 

Section 4.5 presented a discussion about the analytical and empirical tools for calculating the 
flow rate through composite liners due to geomembrane defects. In fact, the characteristics of 
the interface between the geomembrane and the underlying liner are a key parameter for this 
calculation. Analytical solutions define these characteristics in terms of interface 
transmissivity, whereas empirical equations define them in terms of contact conditions. For 
composite liners consisting of a geomembrane and a GCL, it could be seen that the existing 
empirical equations to predict the flow rate are applicable to infinitely long defects and thus, 
for other types of defects, the analytical solutions have to be used. 

Important limitations of the analytical solutions are that they are complex and that direct 
measurements of interface transmissivity are scarce. In the present work, an attempt is made 
to overcome these limitations, through experiments carried out on flow rate through 
composite liners involving GCLs that are presented in Chapter 6. Results obtained are both 
intended to improve our knowledge about the interface characteristics and to develop simple 
tools for predicting the flow rate through different types of defects in geomembranes, namely 
empirical equations. 

This chapter finished with a literature review on flow rate through composite liners 
comprising a geomembrane and a GCL. 
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5 EXPERIMENTAL WORK ON GAS PERMEATION THROUGH 
GEOMEMBRANE SEAMS 

5.1 INTRODUCTION 

As pointed out in Chapter 2, the successful performance of the geomembrane as a barrier is 
linked with seams quality: the seam needs to be fluid-tight and have a mechanical strength of 
the same order of magnitude as the geomembrane panels. In landfills, where HDPE 
geomembranes are typically used, seams are made by the thermal-hot dual wedge method. 
From a fluid-tightness point of view, in field, the quality of this type of seams is usually 
assessed based on the results of the pressurised dual seam test. This method provides only 
qualitative information about the continuity of the seams, does not provide any information 
about fluid-tightness, despite the recognised vulnerability of those areas and their importance 
to ensure the performance of the geomembrane as barriers. Thus, a tool for assessing the 
quality of the seams by a quantitative measurement would be very useful. In this framework, 
the present work makes an attempt to provide a test method, the “gas permeation pouch test”, 
for studying the gas-tightness of HDPE geomembrane seams. 

Gas permeation pouch tests are carried out at two scales, using pouch specimens consisting of 
true HDPE geomembrane seams made by the thermal-hot dual wedge method. After the 
conclusion of the gas permeation pouch tests, the mechanical strength of the seams is also 
evaluated by performing peel and shear tests. Small-scale tests are performed in laboratory, 
using pouches prepared with different adjustable parameters of the seaming device (seaming 
parameters), to investigate a possible correlation between gas permeation test results and 
mechanical strength of the seams. Another goal of the small-scale tests is to study the 
suitability of the pressurised dual seam method to assess the quality of the seams. Also, two 
different gases are used to study the influence of the type of gas. Large-scale tests are 
performed, both in laboratory and in field conditions, to compare test results and to study the 
suitability of the gas permeation pouch test to assess the quality of the seams on site. 

This chapter presents, first, the gas permeation pouch test principle, second, the basic 
equations used for estimating the permeation parameters of geomembranes to gas (pouch 
specimens immersed in air), and to water vapour (pouch specimens immersed in water) in 
steady conditions (permeance) and in unsteady state conditions (time constant). Third, it 
describes the experimental work carried out. Finally, it reports and discusses the test results. 

 

5.2 TEST PRINCIPLE 

In the gas permeation pouch test, the specimen is pressurised with a gas characterised by an 
initial pressure, pGin(0), and is immersed in a fluid, gas or liquid (Figure 5.1). Taking into 
account that geomembranes are non-porous materials and that the main mechanism of 
migration through the intact geomembranes is the diffusion, the flux of gas across the 
geomembrane can be estimated based on the decrease of the pressure inside the pouch, by 
using the mathematical tools presented in the Chapter 3. Beyond the pressure inside the pouch 
specimen, other variables necessary to calculate the permeation parameters include the 
atmospheric pressure, temperature, volume of the pouch specimen, and relative humidity. 
Except for the volume, these quantities can be directly measured each time (step: δt), using 
different apparatus, as Section 5.6.2 will show. 
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Figure 5.1 - Schematic drawing of the gas permeation pouch tests with the specimen 

immersed into different medium: air and water 

 

The volume of the specimen at time t can be assessed based on Archimedes’ principle. For 
that, the specimen is immersed in a liquid (e.g. water) and the variations in volume are 
estimated by monitoring the variation in water level in a capillary pipe during the test. 
However, in this circumstance, two simultaneous fluxes must be considered: the gas flux from 
inside to outside the specimen, and the water vapour flux (or other element if the liquid is not 
water) from outside to inside the specimen. 

For evaluating the gas flux from inside to outside the specimen, a complementary test, where 
the same specimen is immersed in a gas (at a lower pressure than the gas inside the 
specimen), must be carried out. The gas migrates from inside to outside in response to the 
partial pressure difference, established due to the difference in gas pressure from inside to 
outside of the specimen. The flux of gas is estimated based on the pressure drop inside the 
specimen during the test. By knowing the partial pressure of the gas on both sides of the 
specimen, the permeability and the permeance coefficients for a specific gas can be estimated 
using Equations (3.7) and (3.8), respectively. 

After determining the flux of gas from inside to outside the specimen, it is possible to 
estimate the water vapour flux (or other element) and the permeation coefficients to water (or 
other elements), when the same specimen is immersed in water, assuming that both the 
volume variations of the specimen and the gas flux from inside to outside (considering the 
same gas concentration difference) are the same, whenever the specimen is immersed in gas 
(e.g. air) or in water. 

In brief, from an operational point of view, gas permeation pouch test comprises two 
complementary steps, one with the specimen immersed in air (subsequently designated as test 
in air) and other with the specimen immersed in water (subsequently designated as test in 
water). 

To estimate the permeation coefficients of geomembrane seam specimens, according to 
Equations (3.7) and (3.8), it is necessary to know the area of the pouch. However, it can be 
observed that this area is difficult to estimate accurately. This difficulty derives from 
non-regular seams, and, mainly, from an irregular specimen shape when it is filled with the 
gas. In this case, there is no reason here to express the gas mass flux, fG, as a function of the 
geomembrane area, and it is suggested that fG should be considered as the mole flow rate 
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through the pouch specimen (∆n/∆t) expressed in mol s-1 instead of mol m-2 s-1, leading to a 
permeance, PG, in mol s-1 Pa-1 instead of mol m-2 s-1 Pa-1. A consequence of such new 
definitions of fG and PG is that if different seamed specimens are to be compared with this 
method (different materials, different seam parameters), then the pouch must be made using 
the same procedure. For instance, pouches made using the thermal hot dual wedge method are 
then well adapted to the study of seam parameters if the seam length is the same. 

In order to compare results of different specimens, the fluxes and permeance can also be 
defined by unit of seam length. 

The test principle above mentioned is used to study the influence of the seaming parameters 
and the gas type on seams quality.  
 

5.3 ASSESSING THE PERMEATION COEFFICIENTS IN STEADY STATE  

5.3.1 Specimens immersed in air  
In the gas permeation pouch tests carried out with specimens immersed in air, the flux of gas 
from inside to outside the specimen, fG, can be estimated from Equation (5.1). This quantity is 
named as gas transmission rate, according to the terminology used by ASTM D 1434. 

 

t
tnttnf GG

G ∆
−∆+

=
)()(  (5.1) 

 

where fG is expressed in mol s-1, ∆t is the interval of time considered in steady state and where 
nG(t) must be calculated, step by step, from the ideal gas law: 

 

)(
)()()(

tTR
tVtptn Gin

G =
 

(5.2) 

 

where pGin(t) is here the absolute pressure (relative pressure + atmospheric pressure) measured 
inside the pouch at time t (Pa); V(t) is the volume of the specimen at time t (m3); R is the 
Universal Gas Constant (8.3143 m3 Pa mol-1 K-1); and T(t) is the absolute temperature at 
time t (K). 

In the case of HDPE geomembranes, the volume variations V(t) with time are slight (see 
Section 5.6.2.1 for the measurement method): the experimental results obtained in the present 
research for fG, either considering the volume constant, or considering the volume variable 
(1.4x10-10 and 1.7x10-10 mol s-1, respectively for constant and variable volume), indicate that 
the volume variations were negligible, considering the measurement errors. Therefore, V(t) is 
considered here as being constant: V(t) = V(0). 

In the case of more flexible geomembranes, V(t) can be estimated after the experiment is 
conducted with the pouch specimen immersed in water, if the temperature and the difference 
in pressure are the same (see Section 5.3.2). 
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Therefore, for the HDPE geomembranes studied here, by combining Equations (5.1) 
and (5.2), it is possible to calculate the gas flux fG: 
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The permeance, PG, can then be calculated from Equation (3.8), where the partial pressure 
difference between inside and outside the specimen ( )Gp∆  cannot be considered as a constant, 
since the gas pressure in the specimen, Ginp , decreases during the entire test. If the variations 
in partial pressure difference, ( )Gpd ∆ , are minor during a reasonable number of hours, 
“pseudo steady state” conditions can be assumed and permeance PG is evaluated for the mean 
value Gp∆ . On the contrary, if those variations are significant, unsteady state conditions 
prevail and a different approach needs to be followed as Section 5.4 will describe. From all 
the tests conducted, the criterion retained to define the “pseudo steady state” is: 

 

( ) ( )GG pupd ∆<∆  during ∆t ≥ 100 hours  (5.4) 

 

where ( )Gpu ∆  represents the uncertainty concerning Gp∆ . 

In a steady state analysis, the mean gas partial pressure difference Gp∆  can then be deduced 
from Equation (5.5): 

 

GoutGinG ppp −=∆  (5.5) 

 

where Ginp  is the mean pressure inside the specimen during the interval of time ∆t 

(considered for the calculation of fG ), which can be evaluated through the equation below: 

∫∆∆
=

t GinGin dt)t(p
t

p 1
 (5.6) 

 

While the gas G diffuses from inside to outside the pouch, air molecules also diffuse through 
the pouch from outside to inside. This flow is smaller than the precedent one because of a 
smaller partial pressure difference, and experiments showed that it might be considered 
negligible if gas G in the pouch is nitrogen, which is the main constituent of air. But, for other 
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gases (for example: CO2), pGin is a partial pressure which is not measured in the pouch and 
must be calculated with the same method described in Section 5.3.2 where the pouch is 
immersed in water. 

Finally, in Equation(5.5), pGout is the gas pressure outside the specimen. This pressure may be 
the partial pressure of gas G in the medium if this medium does not consist of pure gas G. It is 
the case of the gas permeation pouch test described in the present work, where gas G is 
nitrogen or carbon dioxide and the medium is air. In the case of nitrogen, the atmospheric 
pressure and the humidity must then be recorded during ∆t for the calculation of pGout. This 
calculation is presented in Appendix A. For the carbon dioxide, pGout can be considered as 
zero. 

The permeance calculated from Gp∆ is then a mean permeance GP : 

G

G
G p

fP
∆

=  (5.7) 

 

or by unit of seam length (L), as follows: 
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5.3.2 Specimens immersed in water  

Regarding the tests carried out with the specimen immersed in water, two simultaneous fluxes 
must be considered. They correspond, respectively, to the migration of gas from inside to 
outside the specimen ( )'Gf  and to the migration of water (water vapour) from outside to inside 
the specimen ( )Wf  as a result of the existing relative humidity difference. 

 

5.3.2.1 Determining 'Gf  

The gas flux from the inside to the outside of the specimen ( )'Gf  can be calculated from 
Equation (3.8), by considering the same specimen but taking into account a new pressure 
difference 'Gp∆ , between the two sides of the specimen, different from the Gp∆  considered in 
the previous section. Thus, from the results of the test carried out in air (giving Gf , 
corresponding to Gp∆ ): 
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If the concentration of gas G in the medium outside the specimen (which is initially pure 
liquid W) can be considered as negligible (generally the case when the fluid volume is much 
higher than the specimen volume), 'Gp∆  can be assimilated to the partial pressure pGin of gas 
G in the specimen. Appendix B presents its calculation at each time t. 

 

5.3.2.2 Determining Wf  

After calculating 'Gf , it is possible to calculate nG(t), step by step, from the definition of Gf , 
(Equation (5.1)): 

 

tfttntn GGG δδ ')()( −−=  (5.10) 

 

As the specimen contains nG+W (t) moles of elements G and W at time t > 0, the application of 
the ideal gas law gives: 
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where pG+W(t), V(t) and T(t) are, respectively, the absolute total pressure in the specimen 
(relative + atmospheric), the specimen inner volume and the absolute temperature, measured 
at time t. 

By combining Equations (5.10) and (5.11), it is then possible to calculate, also step by step, 
the mole quantity nW(t) of element W in the specimen: 
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where V(t) can be considered as a constant, as mentioned in Section 5.3.1, in the case of 
inflexible geomembranes. 

If the function nW(t) is linear during an acceptable time interval ∆t (corresponding to the 
achievement of pseudo steady state), it will be possible to deduce the flux Wf  in the same way 
as Gf , was deduced from Equation (5.1) in Section 5.3.1. 
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5.3.2.3 Determining water permeance WP  

The mean water permeance, WP , can then be obtained from Wf  as follows: 
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where ∆pW is the water partial pressure difference, pWout is the pressure of liquid outside the 
specimen (which depends on the mean height of liquid above the specimen and on the 
atmospheric pressure) and Wp  is the mean partial pressure of the element W in the specimen 
during ∆t. This pressure can be obtained from the mean absolute pressure in the specimen 
( )WGp +  and from the mean partial pressure ( )inGp : 

 

GinWGW ppp −= +  (5.14) 

 

Mean pressures are defined as Ginp  in Equation (5.6) from pG+W(t), which is measured at each 
time t, and from pGin(t), which is calculated at each time from Equation B.1 (Appendix B). 

As for permeance to gas, permeance to water vapour can also be defined by unit of seam 
length (L), as follows: 
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5.4 STUDY IN UNSTEADY STATE 

As mentioned in Section 5.3.1, sometimes, the pseudo steady state conditions cannot be 
assumed since the partial pressure difference between the inside and outside of the specimen 
do not fulfil the criteria defined by Equation (5.4). This may occur in the case of large-scale 
tests, as will be explained later in Section 5.9.2.1, or in the case of poor seams, where the 
pressure inside the specimen decreases very quickly.  

Under unsteady state conditions, considering an infinitesimal interval of time dt , 
Equation (5.1) can be written as follows, if volume V and temperature T are supposed to be 
constant: 
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Gf  can also be expressed as a function of permeance GP  from Equation (3.8), where the 
partial pressure of gas G outside the pouch Goutp is supposed to be constant: 

 

( )[ ]GoutGinGG ptpPf −=  (5.17) 

 

Combining Equations (5.16) and (5.17), the following differential equation is obtained:  
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The solution of Equation (5.18) can be written under the form below:  
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Where )0(Ginp  is the absolute initial pressure of the gas inside the specimen, )(∞Ginp  is the 
final value of ( )tpGin , which tends towards absolute pressure outside the specimen: Goutp . 
Quantity τ is a constant with the dimension of time and expressed in hours if time t is also 
expressed in hours, herein termed as time constant and defined as follows: 

 

GPTR
V
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ε
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From the observation of the evolution of ( )tpGin  during the testing time (see Section 5.9), it is 
possible to show that, after a delay time t0, Equation (5.19) expresses the decrease in pressure 
in pouch the specimen with reasonable accuracy. 

The time constant τ characterises the seam quality, from a permeation point of view, as well 
as the permeance GP . In the case of a good seam, a long time is necessary to achieve the final 
steady state (corresponding to atmospheric pressure inside the pouch), leading to a high time 
constant value. On the other hand, this final steady state would rapidly be achieved in the case 
of a poor seam, corresponding to a small time constant value.  
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Quantity τ can be graphically determined after a few days of test: it corresponds to the inverse 
of the slope of the linear function ln Z(t), defined in Equation (5.22), derived from 
Equation (5.19) for t ≥ t0: 

 

τ
t)t(Zln −

=  (5.21) 
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Permeance GP  can de deduced from Equation (5.20) if the inner volume V  of the pouch is 
known. 

The challenge is to turn this test into a useful tool to assess the seam quality on a regular 
basis, in situ, as part of the construction/quality assurance programme. In such a case, the 
volume V  cannot be measured and the results have then to be expressed in terms of τ and not 
in terms of GP . 

The experimental work carried out is described and discussed in the following sections. As 
mentioned in the introduction, it comprised two scale gas permeation pouch tests and 
mechanical tests. Small-scale tests were carried out in laboratory to investigate a possible 
correlation between gas permeation test results and mechanical tests results, as well as to 
study the suitability of the pressurised dual seam method, usually used on site to assess the 
quality of the seams, within the framework of the quality construction/quality assurance 
activities. Also, two different gases were used to study the influence of the type of gas. 
Large-scale tests were performed, both in laboratory and in field conditions (outdoors), in 
order to compare the test results and to study the suitability of this test to assess the quality of 
the seams in situ.  

 

5.5 SPECIMENS 

The experimental work was carried out using a 2.0 mm thick HDPE geomembrane. 
Specimens consisted of a true seam made using the double wedge thermal seaming method 
(Figure 5.2). The pouch inner volume corresponds to the air channel that results between the 
double seams. On one extremity of the pouch, the two parallel seams are sealed by fusion. 
The other extremity is connected to the HDPE gas pipe. The connection between the pipe and 
the pouch and between the two parallel seams is achieved here by specific glue for polyolefin 
material: fusion must be avoided due to the risks of pipe connection damage and of 
polyethylene flow into the pouch.  
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Figure 5.2 - Example of a pouch specimen for small-scale tests 

 

The small-scale specimens were made with different adjustable parameters of the seaming 
device, namely velocities, temperatures and forces, aiming to study the influence of those 
parameters on seams quality. Table 5.1 presents the characteristics of the specimens tested in 
this study. 

 

Table 5.1 - Seaming parameters of the specimens 

SPECIMENS 

Small-scale Large-scale SEAMING 
PARAMETERS 

S-9 S-10 S-11 S-12 S-13 S-14 S-15 
S-LS-lab 

S-LS-exp 

Velocity (m min-1) 2.5 2.5 2.5 1.8 1.8 1.5 2.5 2.5 

Temperature (º C) 280 355 355 355 280 280 355 355 

Force (N) 200 200 300 300 300 400 400 400 

 

For small-scale tests, the length of the specimens (S-9 to S-15) was about 1.2 m. For 
large-scale tests, two different lengths were used: 10 m for the test carried out in laboratory 
(S-LS-lab), and 5 m for the test conducted with the specimen outdoors, exposed to weather 
conditions (S-LS-exp). 
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5.6 SMALL-SCALE TESTS 

5.6.1 Apparatus 

Small-scale tests were carried in laboratory using the experimental assembly presented in 
Figure 5.3. Tests were conducted at Lirigm, in France, except the test carried out using S-15, 
which was tested at LNEC, in Portugal, as Section 5.7 will describe. Test apparatus consisted 
of a permeation cell, a gas bottle, and measuring devices connected to a data acquisition 
system. 
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Figure 5.3 - General view of the apparatus 

 

 

The permeation cell was designed to allow the immersion of each specimen either in air or in 
water. It consists of two circular stainless steel plates (top and base) and a glass pipe (1.5 m 
long, inside diameter of 0.186 m) including an agitator for homogenising the water 
temperature when filled with water. To the top plate are connected the measuring devices 
used for monitoring the test conditions. These measuring devices include: (i) a pressure 
transducer for measuring the gas pressure inside the specimen; (ii) sensors for characterising 
the ambient air temperature (maintained at 27.0 ± 0.1°C thanks to a regulation device), the 
atmospheric pressure, and the relative humidity. For the tests carried out with the specimen 
immersed in water, the additional devices as follows were used: (iii) a water temperature 
sensor; and (iv) a capillary pipe (0.026 m long glass pipe with a 0.00564 m inside diameter) 
connected to a pressure transducer, for measuring the volume variations of the pouch 
(transducer readings were converted into height of water in the capillary pipe and were then 
multiplied by the area of the pipe to obtain the volume change at each time).  
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5.6.2 Procedure 

5.6.2.1 Test in water 

After the pouch is inserted into the glass cell, which is filled with de-aired water (by means of 
a vacuum pump), the water level in the capillary pipe is adjusted and connected to the 
pressure transducer. All measuring devices are then connected, the ambient air temperature 
regulation device is activated and finally the pouch is pressurised with gas, at a specific 
pressure. Data are recorded by running a computer application especially developed for these 
tests.  

 

5.6.2.2 Test in air  

The water temperature sensor and the pressure transducer connected to the capillary pipe are 
replaced by air humidity and air temperature sensors. The test is then initialised with the same 
procedure as for the test carried out in water.  

 

5.6.2.3 Initial volume, type of gas, and pressure of gas in the specimens  

Before conducting any test, the initial inner volume V(0) of the pressurised pouch must be 
determined. It was estimated indirectly by adding the volume of the pouch without pressure 
(Vprel=0) and the volume variation due to the pressurisation of the specimen (dVp=150 kPa). The 
volume of the pouch without pressure was determined from the weight difference between the 
specimen full of water and dry. The volume variation due to the pressurisation of the 
specimen was calculated by measuring the increase in water height in a capillary pipe 
connected to the cell before and after pressurisation. The time interval to do these 
measurements was short (a couple of minutes) to avoid variations in water height due to 
potential variations of temperature. 

Small-scale tests were carried out using nitrogen gas. Specimen S-14 was also tested using 
carbon dioxide in order to study the influence of the type of gas on seam permeation 
coefficients. Nitrogen was chosen because it is the main constituent of the air, which is used 
to perform field pressure tests on seams. Carbon dioxide was chosen because it is present in 
landfills. 

Relative pressures of 150 kPa (corresponding to an absolute pressure of approximately 
250 kPa) have been used to pressurise all pouch specimens. This value was selected for 
having a pressure of the same order of magnitude as the one usually used in field tests.  

 

5.7 LARGE-SCALE TESTS 

The large-scale permeation testing assembly (Figure 5.4) consists of a gas bottle, an absolute 
pressure transducer for measuring the gas pressure inside the specimen and a data acquisition 
system. Air temperature, relative humidity and atmospheric pressure were also measured 
using a sensor (Rotronic BM 90), which is also shown in the figure.  
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Figure 5.4 - Large-scale test assembly 

 

Tests were carried out with specimens in air, using nitrogen gas. Like in small-scale tests, the 
specimen was pressurised with nitrogen at 150 kPa (relative pressure) by introducing gas into 
the gap between the two parallel welds. Gas drop inside the specimen was monitored during 
the test.  

The initial inner volume of the pressurised pouches was estimated from the mean value by 
unit of length obtained in small-scale tests. 

Two large-scale tests were performed at LNEC, under different test conditions. The specimen 
S-LS-lab was tested in a conditioned laboratory, at a temperature of 20 ± 2ºC and a relative 
humidity of 65 ± 5%. This means, at different conditioning conditions than the ones used in 
small-scale tests conducted in gas permeation cell at Lirigm (27 ± 0.1ºC, 50 ± 5% relative 
humidity). Thus, in order to compare the results, a sub-specimen (S-15) was cut from the 
large-scale specimen and it was tested in the same test conditions as the ones of the 
large-scale test.  

A second large-scale test was carried out with the same apparatus but with the specimen 
S-LS-exp placed outdoors, on top of the laboratory building roof, without controlled 
temperature and humidity. The aims of this test were to simulate the field conditions and to 
identify the shortcomings of performing gas permeation pouch tests on site. 

 

5.8 MECHANICAL TESTS 

Mechanical properties of the specimens were assessed after completion of the gas permeation 
pouch tests, by conducting shear and peel test. The aim of these tests was to study a possible 
correlation between the gas permeation coefficients and the mechanical strength of the seams.  

The tests were conducted in laboratory using a field tensiometer available at LNEC 
(Figure 5.5). It contains a memory card where it is possible to record the results of 
elongation (%), force (N), and testing velocity (mm min-1) during the tests. It can also display 
the values of force and elongation at yield and break. Grip separation can range from 0 mm to 
300 mm. Testing velocities are also adjustable, ranging from 10 to 300 mm min-1. 
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Figure 5.5 - Tensiometer used for performing the mechanical seam tests

 

Shear and peel strength tests (Figure 5.6) were performed based on ASTM D 4437. From 
each gas permeation test specimen (S-9 to S-14, and S-LS/S-15), ten test strip-specimens 
were cut using a 25 mm wide die. The initial grip separation was 24.4 mm in peel mode and 
101.2 mm in shear mode. Testing velocity was 51 mm min-1. Peel test was performed on both 
seams of each specimen. Shear strength, peel strength, and type of failure, in the peel test, 
were recorded.  

 

(a) Peel test (b) Shear test 

Figure 5.6 - Mechanical tests in progress 

 

Shear and peel test results were then evaluated based on the criterion presented in USEPA 
report (Daniel & Koerner 1993). Recalling Section 2.3.1.2.3, the seam shear strength must be 
higher than 95% of the yield strength of the unseamed geomembrane, and the seam peel 
strength must be higher than 62% of the yield strength of the unseamed geomembrane. To 
assist in the interpretation of the results, the yield strength of the unseamed geomembrane was 
determined based on ASTM D 638. A mean 18.6 MPa tensile stress at yield was obtained. 
Since the nominal thickness of the unseamed geomembrane sheet is usually used for the 
comparison value, i.e. the tensile stress at yield of the unseamed geomembrane is multiplied 
by the thickness and the results are presented accordingly in kN m-1, the thickness was also 
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estimated. This property was evaluated based on ASTM D 5199. A mean value of 2.0 mm 
was obtained. 

Considering the tensile stress at yield obtained for the unseamed geomembrane (18 MPa) and 
the nominal thickness of the geomembrane, acceptable seams, from a mechanical point of 
view, would have a peel strength ≥ 23 kN m-1 and a shear strength ≥ 35 kN m-1.  

In addition, the location of the failure and separation in peel were also analysed, considering 
the cases presented in Figure 5.7. In types (a) and (b), the failure occurs outside the seam, 
which is typically called film tearing bond (FTB), and there is no peel separation. In the 
types (c) to (g), peel separation occurs in variable percentage regarding the seam area. 

 

 

Location of failure Failure description 

(a) 

(b) 

Failure in sheeting. Failure can be on 
either top or bottom sheet. There is no 

peel separation. 

(c) 

(d) 

Failure at outer edge of seam. Failure can 
be on either top or bottom sheet. Some 

peel separation is observed. 

(e) 

(f) 

Failure in inner weld after some adhesion 
failure. Failure can be on either top or 

bottom sheet. Considerable peel 
separation is observed. 

(g) Adhesion failure. 

Figure 5.7 - Location of the failure in peel test (based on NSF 54 1993) 

 

Results obtained in these tests are presented in sections below. Sections 5.9.1 and 5.9.2 are 
respectively dedicated to small and large tests. Section 5.9.3 compares the different results, 
after uncertainty calculations. Finally, Section 5.9.4 is devoted to the mechanical tests. The 
results are then discussed in Section 5.10. 
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5.9 RESULTS 

5.9.1 Small-scale tests 

5.9.1.1 Evolution of gas pressure inside the specimens 

Figure 5.8 shows the drop in the absolute pressure of nitrogen over time, for specimen S-14. 
Only specimen S-14 is presented in interest of brevity. Similar results were obtained with the 
other specimens and they are presented in Appendix C.  
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Figure 5.8 - Decrease in the absolute pressure of nitrogen for S-14 during 

the test in air and in water 

 

As can be observed in Figure 5.8, the results obtained with tests carried out in air and water 
present a similar trend. The absolute pressure of nitrogen decreased with time in both tests. It 
dropped 87 kPa (58 %) for the test in air, and 77 kPa (51 %) for the test in water. 

 

5.9.1.2 Fluxes and permeances 

The number of moles of nitrogen, nN2(t), permeating through the specimen S-14 (air test) 
during a pressure interval where a pseudo steady state could be assumed was estimated from 
Equation (5.2). It is plotted versus time in Figure 5.9 (results obtained with the other 
specimens are presented in Appendix C). The nitrogen flux (fN2) was then calculated from the 
slope of this line. For comparison purposes, fN2 was evaluated considering the same pressure 
interval, approximately 220-208 kPa, whenever the pseudo steady state was achieved (results 
in Table 5.2). 
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Figure 5.9 - Nitrogen quantity permeating through the S-14 in test carried 

out with the specimen in air  

 

As regards the test conducted with the specimens immersed in water, to calculate the different 
quantities defined in Section 5.3.2, it is necessary to be sure that the nitrogen moles passing 
through the geomembrane do not concentrate in the water layer adjacent to the pouch, which 
would affect the value of the partial pressure outside the specimen. Agitating the water (for 
temperature homogenisation purposes) minimises this risk. Furthermore, nitrogen diffuses 
easily in water. Its diffusion coefficient is 2.6×10-9 m2 s-1 (Reid et al. 1987), with a solubility 
coefficient of Bunsen equal to 0.01557 (Air Liquide 2002). The latter coefficient gives the 
volume of nitrogen that can be dissolved in the unit volume of water. In the experiments 
conducted for this study, the number of nitrogen molecules that reach the water by crossing 
the geomembrane and the number of nitrogen molecules that can be dissolved in water are of 
the same order of magnitude. Therefore, no nitrogen bubbles were observed, or could have 
been observed, in the water. 

The number of moles of nitrogen that migrated from inside to outside and the number of 
moles of water vapour that migrated from outside to inside of the specimen due to the 
humidity difference, was estimated using Equations (5.10) and (5.12), respectively. Results 
showed that the water vapour flux towards the inside of the specimen was small compared 
with the nitrogen flux: the water vapour flux was even non-measurable at the beginning of the 
test (approximately 600 hours). After that time until the end of the test, the flux of water 
vapour was two orders of magnitude less than the flux of nitrogen. These results might be 
attributed to the relatively low water vapour pressure difference (mean partial pressure 
difference around 80 kPa), requiring long testing times before the permeation starts. The 
hydrophobic features of the HDPE geomembranes may also raise difficulties in the water 
vapour migration process. 

Based on these results, for testing times used in the present work, the water vapour flux across 
the specimens was considered negligible, and it was not taken into account in subsequent 
tests. For that reason, the results presented below will not include the fW and PW. Besides, by 
taking into account that the main goal of the test in water was to measure the volume of the 
specimen at each time, which was considered constant for practical purposes, since negligible 
variations of volume were observed after the pseudo steady state achievement, the test in 
water became worthless for flux measurements carried out with nitrogen gas. Nevertheless, 
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test in water was important for carbon dioxide. Although it is possible to calculate the 
permeance of carbon dioxide from test in air, by considering simultaneously the flux of 
carbon dioxide from inside to outside and the flux of nitrogen (main constituent of air) from 
outside to inside the specimen, i.e. by adopting a procedure identical to the one used to 
calculate the flux and permeance to water vapour, more accurate flux and permeance to 
carbon dioxide are obtained from the test in water. In fact, for the testing times used in this 
study, it could be seen that the flux of water from the outside to the inside of the specimen is 
insignificant and therefore can be disregarded. 

Table 5.2 presents the nitrogen and the carbon dioxide fluxes, as well as the correspondent 
permeances by unit of length. Gas fluxes were estimated from the slope of ∆n/∆t, with ∆n 
estimated from Equation (5.2) during an absolute pressure interval ranging from 
approximately 220 to 208 kPa. This pressure interval was chosen because it could be observed 
that the pseudo steady state conditions could be assumed for all tested specimens. Permeances 
were calculated from Equation (5.8). The mean partial pressures (estimated from 
Equation (5.5)) are also included in Table 5.2. 

As refers to nitrogen gas, it can be seen from Table 5.2 that small differences were obtained in 
different pouch specimens, either to fluxes, or to permeances. Values of fN2L ranged from 
1.1×10-10 to 1.7×10-10 mol m-1 s-1, and PN2L ranged from 9.7×10-16 to 1.0×10-15 mol m-1 s-1 Pa-1. 
Specimens S-10 and S-13 failed, the first one a couple of hours after being pressurised and, 
the second one, after 140 hours. 

Concerning the carbon dioxide, a flux of fCO2L=1.2×10-9 mol m-1 s-1, and a correspondent 
permeance of PCO2L = 5.9×10-15 mol m-1 s-1 Pa-1 were obtained. 

 

Table 5.2 – Gas fluxes and permeances for tested specimens 

Specimens S-9 S-10 S-11 S-12 S-13 S-14 S-15 

Velocity (m min-1) 2.5 2.5 2.5 1.8 1.8 1.5 2.5 

Temperature (ºC) 280 355 355 355 280 280 355 

Se
am

 p
ar

am
et

er
s 

Roller pressure (kN m-2) 200 200 300 300 300 400 400 

Length (L) 
(m) 1.17 1.2 1.18 1.19 1.30 1.14 1.29 

Sp
ec

im
en

 
fe

at
ur

es
 

Initial volume (V0) 
(m3) 2.7×10-5 - 2.3×10-5 1.7×10-5 2.1×10-5 2.0×10-5 2.4×10-5

N2 122 Failed 136 139 Failed 140 136 ∆pG 

(kPa) CO2 - - - - - 208 - 

N2 1.2×10-10 Failed 1.4×10-10 1.4×10-10 Failed 1.7×10-10 1.1×10-10Gas flux per unit 
length 

(mol m-1 s-1) CO2 - - - - - 1.2×10-9 - 

N2 9.7×10-16 Failed 1.0×10-15 1.0×10-15 Failed 1.2×10-15 0.8×10-15Te
st

 re
su

lts
 

(a
ir 

te
st

) 

Gas permeance 
per unit length 

(mol m-1 s-1 Pa-1) CO2 - - - - - 5.9×10-15 - 
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5.9.1.3 Time constant  

The approach outlined in Section 5.4 can be used to evaluate the time constant from )(tpGin  in 
unsteady state conditions. For nitrogen, the time constant was evaluated from the air test, 
whereas for carbon dioxide it was assessed from water test, for the same reason as for 
permeance (see Section 5.9.1.2). Figure 5.10 shows an example of the relationship between 
ln Z and time for specimen S-12. 
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Figure 5.10 – Relationship between ln Z and time for S-12 

 

 

Table 5.3 shows the results obtained for the different specimens. It also includes the delay 
time t0 after which Equation (5.19) properly modelled the experimental data, )(tpGin , and for 
calculating τ. As can be seen, τ ranged from approximately 1700 to 2500 hours for specimens 
that were able to keep the pressure without failure, whereas a much lower value was obtained 
(τ around 160 hours) for the specimen that failed (S-13). This result suggests that this 
coefficient might be useful to identify poor seams. 

Furthermore, it could be observed that the time after which Equation (5.19) was suitable to 
express the behaviour of the specimens changed with the gas. In general, for nitrogen, that 
equation properly models the behaviour of the specimens after approximately 48 hours, 
whereas for carbon dioxide longer testing times are necessary (140 hours). 
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Table 5.3 - Results of time constant for the tested specimens 

Specimens S-9 S-10 S-11 S-12 S-13 S-14 S-15 
Velocity 
(m min-1) 2.5 2.5 2.5 1.8 1.8 1.5 2.5 

Temperature 
(ºC) 280 355 355 355 280 280 355 

Se
am

 p
ar

am
et

er
s 

Roller pressure 
(kN m-2) 200 200 300 300 300 400 400 

N2 ~ 48 Failed ~ 48 48 48 48 ~ 48 Delay 
time, t0 
(hours) CO2 - - - - - 140 - 

N2 2500 Failed 2500 1667 159 1667 2500 Te
st

 re
su

lts
 

(a
ir 

te
st

) 

Time 
constant, τ 

(hours) CO2 - - - - - 1000 - 

Note: ~ = approximately 

 

5.9.2 Large-scale tests 

5.9.2.1 Evolution of gas pressure inside the specimen 

Figure 5.11 shows the evolution of the absolute pressure during the large-scale test carried out 
with specimen in laboratory (S-LS-lab). This test lasted for approximately 193 days 
(4637 hours). The mean atmospheric pressure recorded during that period was 101 kPa. As 
can be observed, in six months, the relative nitrogen pressure inside the specimen decreased 
136 kPa (95 % of the initial value), corresponding to a drop of 44 % in absolute pressure. 
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Figure 5.11 - Decrease in the absolute pressure of nitrogen during the large-scale 

test conducted in laboratory 
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This test is long enough to observe that the pressure inside the pouch tends toward 
atmospheric pressure and not toward the nitrogen partial pressure in ambient air. This is due 
to oxygen and hydrogen which diffuse from outside to inside the pouch, while nitrogen is 
diffusing from inside to outside the pouch, leading to a pressure balance on both sides of the 
geomembrane at an infinite time. It shows that an error is made when calculating τ from 
Equations (5.21) and (5.22) assuming that )(∞Ginp  is equal to outNp 2  and not atmp . 
Section 5.9.2.2 will show that this error is compatible with the uncertainty range and that the 
comparison of the permeance PN2, calculated from τ (Equation (5.20)) and from ”pseudo 
steady state” analysis shows a good agreement.  

Regarding the large-scale test conducted with the specimen exposed outdoors (Figure 5.12), a 
leak was observed at 309 hours (approximately 13 days), and thus the test was disassembled. 
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Figure 5.12 - Decrease in the absolute pressure of nitrogen during the large-scale 

test conducted with the specimen exposed 

 

It can be observed that in large-scale tests the pseudo steady state could not truly be assumed 
as in small-scale tests. Actually, the nitrogen pressure difference between the inside and the 
outside of the specimen could not be considered as constant for an acceptable time interval 
(criteria defined by Equation (5.4) not fulfilled). Thus, results of these tests are going to be 
analysed based on time constant determination in the subsequent section. 

 

5.9.2.2 Time constant  

The first step for assessing the time constant parameter, τ, consisted in evaluating ln Z, using 
Equation (5.21). Results obtained with two large-scale tests undertaken were plotted versus 
time in Figure 5.13, for the same testing times. Regarding specimen exposed at environmental 
conditions (S-LS-exp), for minimising the effects of temperature on pressure (in agreement 
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with ideal gas law), only the values of pressure registered at the same temperature each day 
were used to estimate τ. The time constant was then calculated from the inverse of the slope 
of the lines depicted in Figure 5.13. The values obtained were: 

 

S-LS-exp: τN2 = 1700 hours; 

S-LS-lab: τN2 = 2000 hours. 

 

It should be noted that the time constant could be calculated from the exposed specimen even 
if important variations in pressure occur each day due to temperature variations between day 
and night. However, if such test has to be conducted in situ under any weather conditions, it is 
suggested to measure ambient temperature every hour and to register pressure inside the 
pouch, whenever ambient temperature is within an acceptable range. 
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Figure 5.13 - Relationship between ln Z and time for large-scale tests carried out in laboratory 

(S-LS-lab) and exposed (S-LS-exp) 

 

Even though the pseudo steady state conditions could not be achieved, for comparison 
purposes, both the nitrogen flux and the corresponding permeance were estimated for 
S-LS-lab, considering the same pressure interval as for small-scale tests (approximately 
220-208 kPa) and assuming that the volume was constant during the test. This was not done 
for specimen S-LS-exp because, in this case, the volume varies with temperature, and the 
volume variations of the specimen during the test were not monitored as the test was carried 
out in air. 

The number of moles of nitrogen permeated through the specimen S-LS-lab was calculated 
from pN2(t) using Equation (5.2). The result is plotted versus time in Figure 5.14. The fN2 was 
then calculated from the slope of this line. This coefficient, per unit of length, was 
fN2L = 1.7×10-9 mol m-1 s-1. The corresponding nitrogen permeance, per unit of length, was 
PN2L=1.2×10-15 mol m-1 s-1 Pa-1, estimated for a mean partial pressure of 137 kPa. 
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Figure 5.14 - Number of moles of nitrogen permeated through the specimen S-LS-lab  

 

 

Although with a higher uncertainty, for S-LS-lab, the permeance PN2 was also calculated 
based on Equation (5.20). The results obtained using these two approaches were identical, 
suggesting that: 

• this parameter can be estimated with a reasonable accuracy both under pseudo steady state 
and under unsteady state conditions; 

• the error called up in Section 5.9.2.1 about )(∞Ginp  has an insignificant influence on τ 
calculation. 

 

However, taking into account that in situ “pseudo steady state” conditions are generally not 
achieved and that the pouch volume V (necessary to deduce permeance PG from τ) cannot be 
estimated in field, it is suggested hereafter, to consider the time constant as the measured 
parameter obtained from unsteady state conditions and the permeance as the measured 
parameter obtained from “pseudo steady state” conditions. 

Before comparing the test results, the uncertainties associated to experimental measurements 
need to be estimated, which is presented in the following section. 

 

5.9.3 Uncertainties and comparisons between test results 

The uncertainties associated with the permeance were evaluated according to Appendix D, for 
small and large scale test (specimen S-LS-lab). The results obtained are shown in Figure 5.15. 
It can be seen that, for the different specimens, the uncertainties associated to nitrogen are 
similar and they are higher than the permeance variations. Based on these results, the 
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permeance to nitrogen can be considered similar for all tested specimens, including 
large-scale test, where pseudo steady state criterion was not fulfilled.  

The uncertainty associated to carbon dioxide was higher than for nitrogen, because the flux of 
carbon dioxide, from which permeance is estimated, was assessed considering a smaller time 
interval (few hours) than the fluxes of nitrogen (few days). Smaller uncertainty would be 
obtained for carbon dioxide if a larger time interval were considered. This was not the case 
because it would make it impossible to estimate the gas flux using the same pressure interval 
considered for the other tests (approximately 220-208 kPa). By taking into account the 
uncertainty obtained in this case, the differences obtained between permeance corresponding 
to nitrogen and carbon dioxide are meaningful.  
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Figure 5.15 – Uncertainties associated to the evaluation of permeance  

 

 

The uncertainty associated with the time constant (Appendix D) was also estimated for small 
and large scale tests, and the results obtained are depicted in Figure 5.16. The uncertainty was 
generally less than 500 hours, except for S-9 where a higher value was obtained. The high 
uncertainty associated with specimen S-9 is due to the fact that this test was finished too 
early. It should be noted that, in this test, the drop in pressure was very small compared to the 
other tests. 
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Figure 5.16 – Uncertainties associated to the evaluation of time constant parameter 

 

Comparison between Figure 5.15 and Figure 5.16 clearly shows that it is easier to 
differentiate a test result by permeance measurement than by time constant measurement: 
differences between carbon dioxide flux (specimen S-14) and nitrogen flux (other specimens) 
are clearer on Figure 5.15 than on Figure 5.16. In addition, by taking into account 
uncertainties, all results are in agreement, which suggests that it is possible to characterise on 
site the gas permeability of seams by means of the time constant.  

 

5.9.4 Mechanical tests 
Table 5.4 summarises the results obtained from the mechanical tests. The first aspect 
examined was to check if the seams of the pouch specimens met the acceptance criterion 
suggested by USEPA (Daniel & Koerner 1993), i.e. a peel strength > 23 kN m-1 and a shear 
strength > 35 kN m-1 (see Section 5.8). It could be observed that, in the peel test, only 
specimens S-12 and the S-LS/S-15 met the acceptance criterion, whereas in the shear test all 
specimens met it. The results of shear strength showed no significant variation for the 
different specimens: 2.6 kN m-1. Unlikely, the peel strength showed a large variation for the 
different specimens: 23.7 kN m-1, for inner weld and 21.7 kN m-1, for outer weld. These 
results can be explained by the fact that whereas the peel strength concerns seam adhesion, 
the shear strength concerns the geomembrane sheets (failure always occurs in the sheet 
adjacent to the weld).  

Then, the location of the failure and the separation, in the peel test, were analysed according 
to Figure 5.7. It could be observed that peel separation always occurred. Nevertheless, in 
specimens S-12 and S-LS/S-15 the percentage of separation through the seam varied, ranging 
from 10 %, in failures type (c) and (d), to 100 %, in failures type (g). The analysis done seems 
to confirm that, except for specimens S-9 and S-LS/S-15, the adhesion of the seams in pouch 
tests was poor. 
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Table 5.4 - Results of the peel and shear tests 

Specimens S-9 S-10 (1) S-11 S-12 S-13 (2) S-14 S-LS/S-15 

inner 
weld 12.1 9.5 12.7 25.9 3.6 4.5 27.3 

Mean peel strength 
(kN m-1) outer 

weld 8.3 6.1 11.4 24.3 3.2 9.8 22.9 

inner 
weld g g g, g, g, e, g c, g, g, c, f g g c 

Pe
el

 

Location of failure 
in each of the five 

peel specimens 
(according to 
Figure 5.7) 

outer 
weld g g g d, d, f, d, f g g e, g, c, c, e

Sh
ea

r 

Mean shear strength (kN m-1) 36.9 37.1 37.6 38.1 37.6 38.5 39.5 

Acceptance criteria from USEPA 
(Daniel & Koerner 1993)  Fail Fail Fail Pass Fail Fail Pass 

(1) Gas permeation pouch test failed a couple of hours after being pressurised. 

(2) Gas permeation pouch test failed before reach the pseudo steady state. 

 

 

5.10 DISCUSSION 

5.10.1 Correlation between gas permeation pouch test results and mechanical test 
results 

Within the framework of the quality construction/quality assurance (QC/QA) activities, 
during the installation of geomembrane lining systems, HDPE seams are usually destructively 
tested through shear and peel tests according to the project specifications (generally every 150 
to 500 linear meters) and non-destructively tested by pressurised dual seam method (100 % of 
the seams length). Destructive tests require repairs, more seams to do (patches), and need to 
be re-tested. These operations are time consuming and expensive. In this context, searching 
for a correlation between mechanical and permeation coefficients could be very helpful and 
could reduce significantly the number of destructive tests. 

The relationship between the gas permeation and the mechanical strength of the pouch 
specimens, consisting of a true seam made using the double-wedge thermal seaming method, 
was analysed based on the results of gas permeation pouch tests and seam peel tests 
(small-scale tests). The results of the seam shear tests were not included in this analysis 
because, in tested specimens, the shear failure always occurred in the sheet adjacent to the 
weld. Thus, strength values obtained in this tests concern mainly unseamed geomembrane 
sheets. This explains why the shear strength was similar in the different specimens, 
conversely to peel strength that refers to seam adhesion. This approach is in agreement with 
the recommendations repeatedly made by Peggs (e.g. 1994a, 1996b). According to this 
author, shear strength does not provide useful information about seam bond. 

When comparing the results of gas permeation pouch tests to mechanical tests, it can be seen 
that the poorest seam (specimen S-13), from a mechanical point of view, is also the poorest 
one, from a gas permeation point of view. Specimen S-13 presented the lowest peel strength 
and it failed during the gas permeation pouch test. This trend is also confirmed by the time 
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constant parameter, where a very low value was attained for S-13 (159 hours) compared with 
the other specimens (mean value about 2000 hours). These results suggest that the gas 
permeation pouch test is able to identify the poorest seams.  

On the other hand, it is more difficult to find a correlation between mechanical tests and 
permeation tests for the good specimens: specimens S-12 and S-15 seem clearly to be the best 
from a mechanical point of view. It is confirmed by the permeance test for specimen S-15, 
which shows a permeance 20% less than the average permeance obtained for nitrogen flux 
and a time constant 20% higher than the average one obtained for nitrogen flux. Nevertheless, 
specimen S-12 shows a permeance similar to the average one and a time constant 15% less 
than the average one. Therefore, it is only possible to conclude that mechanical tests are more 
selective than permeation tests.  

Results also show that peel tests can easily express the seam differences (seaming parameters) 
unlike gas permeation pouch tests. Destructive tests are the best approach to evaluate seams 
quality. Furthermore, peel test is also important because it can provide useful information on 
the probable durability of the geomembrane adjacent to the seams. According to Peggs 
(1994a, b; 1996b) the durability can be compromised if the peel specimen fails in a brittle 
manner (loss of ductility). Brittle failures might be due mainly to overheating or by excessive 
grinding during the seaming process. Overheating increases the susceptibility of the 
geomembrane to stress cracking by consuming protective oxidants, increasing oxidation, and 
crystallinity. Besides, it can cause stress concentrating notch geometries on the bottom of the 
geomembrane. In addition, when a HDPE geomembrane seam is not adequately bonded and 
separates in a peel test, crazes (precursors of stress cracks) may be induced on the separated 
surfaces (Peggs 1996b). Therefore, peel separation and adjacent geomembrane ductility are 
important issues to study bond efficiency and stress cracking. Thus, peel test is an 
indispensable tool to analyse the long-term performance of geomembranes. 

To sum up, it can be concluded that a seam validated by a peel test is also a good seam from a 
permeation point of view, with a proven safety margin. This is an important conclusion, 
which highlights peel test significance. 

 

5.10.2 Studying seaming parameters 

Gas permeation pouch tests do not allow any optimisation of seaming parameters since 
resulting differences between specimens cannot be correlated to seam parameters. But this 
conclusion can also be applied to mechanical tests: specimen S-10, which failed during the 
permeation test, produced similar results compared to specimen S-14, which gave good 
results during the permeation test. Fortunately, peel test results obtained on specimens S-10 
and S-14 would have led to their rejection in field.  

Furthermore, there is no obvious correlation between the seaming parameter values of 
specimen S-10 and S-13 and the fact that they both failed during the permeation test. 
Actually, on the one hand, the range of seaming parameters values is probably not large 
enough to observe tangible variations in test results and, on the other hand, choosing the 
seaming parameters out of this range leads to the risk of failure during the permeation test.  

Therefore, it can be concluded that unlikely gas permeation pouch tests, mechanical tests 
make it possible to define an acceptable range of seaming parameters, but without giving the 
possibility of optimising them. 
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In addition, it must be pointed out that if we consider nitrogen flux, and by taking into 
account uncertainties, permeance results are similar whatever the specimen considered, 
whereas differences up to 30 % are observed on the same specimens when comparing time 
constant results. Such differences cannot be directly attributed to the different seaming 
parameters that characterise the specimen: as mentioned before, except for poor seams, it is 
difficult to establish a correlation between mechanical tests results and permeation tests 
results. Thus, one must be very careful in interpreting time constant variations from one 
specimen to another. Actually, they may be due to the seam quality but also to the non-perfect 
reproducibility of the unsteady state. It must be reminded that the permeance was calculated 
for each test from a similar pseudo steady state corresponding to similar experimental 
conditions, which may help in obtaining more homogeneous values of permeance when 
compared to time constant values. 

 

5.10.3 Influence of the type of gas 

The influence of the type of gas was studied by carrying out two tests under the same test 
conditions, using either nitrogen or carbon dioxide. Specimen S-14 was randomly selected to 
perform this study. It could be observed that the flux of nitrogen was about one order of 
magnitude less than the flux of carbon dioxide, leading to a permeance to nitrogen five times 
less than the permeance to carbon dioxide (see Figure 5.15) and a time constant with nitrogen 
that is 40 % higher than the time constant with carbon dioxide (see Figure 5.16). Such results 
are significant when uncertainties are taken into account, and are consistent with the findings 
reported by Haxo et al. (1984) to different gases. 

 

5.10.4 Suitability of the pressurised dual seam method for assessing seams quality on 
site 

As mentioned in Chapter 2, in field, HDPE seams are typically non-destructively tested by the 
pressurised dual seam method to evaluate their quality. In that method, the existing gap 
between both seams is pressurized by air injection. The seam is considered acceptable if no 
air pressure drop occurs during a specified time interval (3 to 5 minutes for an initial air 
pressure ranging from 200 to 300 kPa). This qualitative test does not provide any information 
about the long-term fluid-tightness of the seam. The suitability of the pressurised dual seam 
method has never been verified in laboratory. To address this issue, results obtained from gas 
permeation pouch test with specimen S-13 are analysed.  

Specimen S-13 was able to keep itself pressurised with nitrogen during about 140 hours, 
which means that, on site, this seam would never be rejected with the traditional control even 
though it should not be allowed to remain in service. It can be argued that this seam would be 
rejected because it presents low mechanical strength, but the fact is that destructive tests do 
not cover 100 % of the seams. The results obtained with specimen S-13 suggest that the 
pressurised dual seam method might not be suitable for evaluating the long-term quality of the 
seams, and it highlights the need to improve the tools currently used for that purpose.  

In this respect, it is interesting to observe that the time constant obtained for this specimen 
was very low: 159 hours, whilst for the specimen that did not fail the mean value of τ was 
2000 ± 500 hours. This observation is very important for QC/QA purposes since it seems that 
by identifying seams with low time constant, seams with poor peel strength are also detected. 
Therefore, it appears that the time constant can be a useful tool to identify the poorest seams. 
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Based on the above mentioned observations, a question arises: is it possible to conduct gas 
permeation tests in situ and estimate time constant in a testing time compatible with the 
QC/QA activities? This issue will be addressed in section below. 

 

5.10.5 Designing a gas permeation pouch test on site  

To design a test adaptable in situ, it is necessary: 

• to know if results obtained on small-scale specimens are in agreement with results 
obtained on large-scale specimens: it is necessary to compare the in situ results with 
reference values of τ, which are obtained from laboratory tests conducted on smaller 
specimens; 

• to define the minimum time required to determine the time constant.  

Concerning the first point, looking at Figure 5.16 and Table 5.3, it can be seen that, for the 
large-scale specimen (S-LS-lab) and the small-scale (specimen S-15, tested in the same 
conditions of temperature and relative humidity as specimen S-LS-lab), the difference 
obtained on time constant was lower than the uncertainties associated to these test results, and 
within the same range as the differences observed for all small-scale specimens tested with 
nitrogen, that is about 20 %, as already analysed in Section 5.10.1. It also can be observed that 
the two large-scale specimens present a similar time constant taking into account the 
uncertainties (difference about 15 %).  

Regarding the minimum time required for this test, time constant was calculated in the case of 
the large-scale specimen tested exposed to weather conditions, when considering different 
time intervals after the two days delay time (t0). Figure 5.17 shows that a minimum time 
interval of 4 days is necessary to obtain a time constant compatible with the one calculated at 
the end of the test (that is within the uncertainty range). It means that the minimum duration 
of the test in situ, to take into account the 2 day delay time, is about 6 days. 
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These results tend to confirm that the gas permeation pouch test can be used in situ to assess 
the quality of double hot wedge seams if a week-long test is acceptable. Concerning this 
testing time, which may look too long, it must be mentioned that the pressure measurement 
can be automatically and simultaneously recorded in several seams. Furthermore, it should be 
reminded that the gas permeation pouch test is a non-destructive test, therefore additional 
repairs and re-tests are only necessary in case of rejected seams. 

 

5.10.6 The limits of the gas permeation pouch test  

5.10.6.1 Gas pressure inside the pouch 

If the gas pressure inside the pouch is too high, the resulting tensile stress in the 
geomembrane near the seam and at weak places (e.g. connections, seam joins) may be too 
high and the gas permeation pouch test becomes a mechanical test. The tests conducted on 
pouches showed that with a relative gas pressure in the pouch of 150 kPa, the pouches made 
by thermal hot dual wedge method did not present any damage. It should be noted that 
150 kPa is less than the usual relative air pressure used in field to control the seams made by 
the thermal hot dual wedge method. Experience from field tests shows that those pressures do 
not affect the mechanical properties of the seams. Furthermore, any damage due to a too high 
pressure in the pouch can be easily detected by a quite different pressure decrease with time 
from the one corresponding to a non damaged pouch. 

 

5.10.6.2 Connections and geomembrane thickness  

The connection of the gas pipe to the pouch is a potential weak point and must be carefully 
done using specific connections and specific types of glue (Figure 5.2). Any resulting damage 
can be easily detected by a quick pressure drop inside the specimen. 

Nevertheless, such connections require a minimum value of the geomembrane thickness to be 
effective. For a membrane thickness that is less than 0.5 mm (which is strictly not 
recommended in landfill applications), the connections used in the experiments described in 
this paper may be ineffective. For testing thin geomembranes (films), this connection problem 
should be solved and the pouch should probably be tested under lower gas pressure. 
Furthermore, as mentioned in Chapter 3, the geomembrane thickness is difficult to be 
measured with the required accuracy resulting in the use of permeance instead of 
permeability. For example, the thickness variation of geomembranes from blown film line 
is ± 0.2 mm. 

 

5.10.6.3 Geomembrane flexibility 

Only HDPE geomembranes, which are relatively inflexible, were used in the gas permeation 
pouch tests reported here. Therefore, all specimens showed a negligible volume variation 
during the test. Thus, it was possible to assess the gas permeation coefficients based only on 
test in air. For more flexible geomembranes, both tests (in air and in water) are required, since 
the volume variation of the pouch is determined from the level of water (Section 5.3.2). 
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5.10.6.4 Variation in temperature 

For flexible geomembranes, for which it is necessary to carry out tests with specimens 
immersed in water to know the volume of the specimen at each time, the relation between the 
variations in temperature and in volume must be taken into account for calculating the flux 
and, consequently, the permeance. Even when the tests are conducted in conditioned 
laboratories or in isolating boxes, the temperature may change during the testing time. 
Therefore, the volume, measured from the variation of level in a capillary pipe (Section 5.6.1) 
must be corrected by removing the effect of the dilatation of water. For instance, in the 
apparatus used in the present work, a variation of 0.5ºC during the test would cause an 
increase in height of water in the capillary pipe of approximately 18 cm. This clearly shows 
the need to perform the correction. 

On site, the variation in the temperature can also affect the time constant, since variations in 
temperature are linked with variations in volume and in pressure and are in agreement with 
the ideal gas law. In this case, for calculation purposes, it is suggested to consider the values 
of pressure registered at similar temperatures. In this way, the volume can be considered 
constant, and the measured variations in pressure during time are caused by a drop in pressure 
as a result of gas flux from inside the specimen to outside. Consequently, monitoring the 
ambient temperature during testing time must be done in the field. 

 

5.10.6.5 Measuring devices 

The uncertainty calculations carried out in this study underlined the necessity of using 
calibrated devices. The calibration is important to identify the components of the uncertainty. 
The absence of calibration makes it difficult to correct measurements, as well as to identify 
the quantities that have a significant impact on test results. 

Generally, in the present work, when there was no calibration, the assumptions done were 
based on experience. 

 

5.10.6.6 Comparisons with literature 

A shortcoming of the above mentioned gas permeation pouch tests is that no comparisons 
with other experimental results can be done because, for that, normalised data must be used 
(i.e. by unit of area). However, as previously mentioned, an accurate measurement of the area 
of the pouches used in the present work was impossible. Besides, it should be pointed out that 
the tests were designed to study the geomembrane seams. A way to confirm the obtained 
results would be to test other pouch specimens where the percentage of the seamed area 
would be negligible compared to a non seamed area, in order to assess the permeation 
coefficients of the geomembrane materials. Actually, for them, there are some experimental 
results available as the following section illustrates. 

 

 

 

 



Chapter 5      Experimental work on gas permeation through geomembrane seams 

 126

5.11 REVISING THE WORK OF HURTADO-GIMENO (1999) 

By taking into account the shortcoming mentioned above, data reported by 
Hurtado-Gimeno (1999) - see Section 3.5.3 - were recalculated according to the procedure 
presented in Section 5.3. The work of Hurtado-Gimeno (1999) is focused on the permeability 
of HDPE geomembranes to gas by using circular pouches, where the seamed area (seals) was 
negligible compared with the non-seamed geomembrane. 

The pouch specimens used consisted of two overlapped circular sheets joined by the 
thermal-hot dual wedge seaming method (diameter of 0.6 m, area of 0.635 m2, and initial 
inner volume of 0.04296 m3). Tests were performed either immersing the specimens in air, or 
in water, under a temperature of 27ºC. 

Figure 5.18 shows the results obtained for the test carried out with the specimen in air during 
40 days. The relative nitrogen pressure inside the specimen decreased 6 kPa (17 % less than 
the initial value), corresponding to a decrease of 5 % in absolute pressure. 
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Figure 5.18 - Decrease in the absolute pressure of nitrogen inside the specimen during 

the test in air (data from Hurtado-Gimeno 1999) 

 

 

For the test carried out with the pouch in air, the number of nitrogen moles nG(t) that migrated 
through the specimen was calculated from pG(t), using Equation (5.2). The result is plotted 
versus time in Figure 5.19. This figure also shows that the function nN2(t) is rapidly linear, 
which corresponds to a rapid steady state achievement.  
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Figure 5.19 - Quantity of nitrogen permeating through the circular pouch specimen 

(data from Hurtado-Gimeno 1999) 

 

The nitrogen flux was calculated from the slope of that line. This flux, by unit of area, was: 

fN2 = 4.2×10-8 mol s-1 m-2. 

 

The nitrogen permeance (by unit of area) was then determined based on Equation (5.7), for a 
mean partial pressure difference of 55 kPa: 

2NP  = 7.6×10-13 mol s-1 Pa-1 m-2. 

 

It is interesting to compare these results with results obtained by other authors. Nevertheless, 
due to the different specimen shapes tested, the comparison must be done in terms of the 
coefficient of permeability, despite all the disadvantages reported in Section 3.2 as regards the 
characterisation of geomembrane permeability by this coefficient. The permeability to 
nitrogen obtained for the 1.5 mm thick HDPE geomembrane was: 

 
''

NP 2  = 1.1×10-15 mol s-1 Pa-1 m-1. 

 

It must be pointed out that even though ''
NP 2  is here expressed in the same unit as the 

permeance per unit of seam length (Equation (5.8)), these two quantities are quite different 
and cannot be compared. 

This result is compared in Table 5.5 with earlier findings reported by Park (1986) and by the 
Encyclopedia of Polymer Science and Technology (1964), for films of HDPE polymer. It is 
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also compared with test results obtained with unseamed circular specimens of HDPE 
geomembranes tested with air (Lambert 1994) and with nitrogen (Hurtado-Gimeno 1999), as 
described in Sections 3.5.2 and 3.53, respectively. Considering that the coefficient of 
permeability depends on the thickness, the test conditions, the gas specimen, the temperature, 
and the polyethylene quality, the order of magnitude of the coefficient of permeability to 
nitrogen can be considered consistent with the values presented in literature. 

 

Table 5.5 - Comparison of the order of magnitude of HDPE geomembrane 
permeability coefficients to gas 

Gas permeability, ''
GP  

(mol m-1 s-1 Pa-1) Reference 

Nitrogen Air 

Park (1986) 0.8×10-15 - 

Encyclopedia of Polymer Science and Technology (1964) 0.4×10-15 - 

Lambert (1994) - 0.2×10-15 

Hurtado-Gimeno (1999), manometric cell (see Section 3.5.3) 10-15  

Present work (data from Hurtado-Gimeno 1999, circular pouch 
specimens) 1.1×10-15 - 

 

As regards to the data obtained from the tests carried out with the pouch specimen immersed 
in water, it could be observed that the absolute pressure inside the specimen decreased by 
roughly 3 % during the first 30 days of the test, increasing later on to reach a value of the 
same order of magnitude as the initial pressure (Figure 5.20). These results differ from the 
results obtained in the present work, in which the pressures only dropped during the tests. 
Nevertheless, the results obtained by Hurtado-Gimeno (1999) are not surprising. In fact, they 
are in agreement with the hypothesis considered in Section 5.3. According to that hypothesis, 
two flows occur simultaneously through the specimen: the nitrogen flow from the inside to 
the outside, leading to a decrease in absolute pressure, and the water flow from the outside to 
the inside, leading to an increase in absolute pressure. This result shows that water flow, in 
the case of large circular specimens, is much higher than in the case of double seamed 
specimens, where, as mentioned in Section 5.9.1.2, it was negligible compared to nitrogen 
flux. 

The differences in pressure results between the pouch specimens used for studying the seams 
and the large circular specimens used by Hurtado-Gimeno (1999) for studying geomembrane 
permeability might be attributed to differences in pouch specimens and test conditions. 
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Figure 5.20 – Decrease in the absolute pressure of nitrogen inside the specimen during 

the test in water (data from Hurtado-Gimeno 1999)  

 

The number of moles of nitrogen (nN2) and of water (nW) permeating through the specimen 
was then estimated by Equations (5.2) and (5.12), respectively. Figure 5.21 shows the results 
of these calculations. In the same figure, the number of moles of nitrogen and water is plotted 
against time.  
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Figure 5.21 - Number of moles of nN2 and nW permeated through the specimen during the tests 

carried out with the specimen immersed in water (data from Hurtado-Gimeno 1999) 
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It is interesting to observe that nW presents a linear variation with time. It confirms that the 
steady state was achieved in the same way as in the test carried out in air, but over a longer 
period of time. The water vapour flux, fW, was calculated from the slope of that line. This flux, 
by unit of area, was: 

 

fW = 8.0×10-8 mol s-1 m-2. 

 

The water permeance (by unit of area) was then determined based on Equation (5.13), for a 
mean partial pressure difference of 84 kPa: 

 

WP  = 9.5×10-13 mol s-1 Pa-1 m-2. 

 

Similarly to the results for nitrogen permeability, the results obtained for HDPE 
geomembrane permeability to water vapour are compared in Table 5.6 (using the coefficient 

''
WP ) with other results reported in literature (Haxo et al. 1984, Haxo 1990, Rogers 1985) and 

show an acceptable agreement with nitrogen permeability results. 

 

Table 5.6 - Comparison of the order of magnitude of HDPE geomembrane 
permeability coefficients to water vapour 

Reference 
Water vapour permeability, ''

WP  

(mol m-1 s-1 Pa-1) 

Haxo et al. (1984), Haxo (1990) 7×10-15 

Rogers (1985) 8×10-15 

Present work (data from Hurtado-Gimeno 1999) 1.4×10-15 

 

The revision of Hurtado-Gimeno (1999) work showed permeability results consistent with 
values reported in the literature for nitrogen and for water vapour. Based on the comparisons 
done, it was concluded that the methodology outlined in the present work for the exploration 
of results might be considered suitable. Compared with other permeability tests with special 
seals, often presenting leaking problems, sometimes corresponding to a flow of the same 
order of magnitude as the flow that is to be estimated, as pointed out by Park (1986) and by 
Koerner & Allen (1997), the advantages of this test can be summarised as follows: first, it can 
be easily performed in any laboratory, and second, it has no specific seals (pouches are made 
by means of welding techniques used in situ).  
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5.12 SUMMARY AND CONCLUSIONS 

This chapter presented the experimental work carried out to determine the gas permeation 
coefficients and the time constant of pouch specimens consisting of true HDPE seams made 
by the thermal-hot dual wedge method, as well as the mechanical strength of the 
correspondent seams. Gas permeation coefficient is evaluated if a pseudo steady state can be 
achieved, whereas time constant is evaluated under unsteady state conditions.  

Gas permeation pouch tests were conducted in two scales, according to the same test 
principle. Small-scale tests were carried out in laboratory to investigate a possible correlation 
between gas permeation test results and mechanical strength of the seams (assessed by 
performing peel and shear tests), as well as to study the suitability of the pressurised dual 
seam method typically used in situ to assess seams quality. In addition, two different gases 
(nitrogen and carbon dioxide) were used to study the influence of the type of gas. Large-scale 
tests were performed, in laboratory and in field conditions (outdoors), in order to compare test 
results and to study the suitability of this test to assess the quality of the seams in situ.  

The comparison between the results of permeation tests and mechanical tests showed that the 
poorest seam, from a mechanical point of view, is also the poorest, from a gas permeation 
point of view, which validates mechanical test results. This trend is also confirmed by the 
time constant, as a very low value was obtained for the poorest seam. Thus, it appears that gas 
permeation pouch test is able to identify poor seams. The results also suggest that mechanical 
tests, particularly the peel test, are more severe and more adequate to test seam durability.  

It could be observed that one specimen with a poor seam was able to keep itself pressurised 
for approximately 150 hours. This seam would be accepted in field by the acceptance criteria 
typically based on the pressurised dual seam method (field tests only last a few minutes). This 
result suggests that pressurised dual seam method might not be suitable for evaluating the 
quality of the seams in the long term and highlights the need to improve the tools currently 
used in the field.  

The results of small-scale tests also showed that the gas flux and the corresponding 
permeances varied with the penetrant molecules. Gas flux was approximately one order of 
magnitude higher for carbon dioxide than for nitrogen and as for the permeance, half an order 
of magnitude of difference was found. Regarding the time constant parameters, a lower value 
was obtained for carbon dioxide than for nitrogen, suggesting that this parameter also varies 
with the gas used. 

The results of the large-scale test carried out with the specimen outdoors showed that it is 
possible to assess the quality of double hot-wedge seams, from a non-destructive test 
conducted in situ by determining the time constant. It seems that the time constant 
measurement might be an alternative tool to detect very poor seams. The values of this 
parameter measured in situ during a week, or less in case of very poor seams, may be 
compared with the ones of the reference seam (gas permeation pouch tests may be determined 
in laboratory on smaller specimens).  

Compared to peel tests, the disadvantage of the gas permeation pouch test is its duration, but 
the advantages are as follows: (i) the test is non-destructive; (ii) the information about the 
seam quality obtained by this procedure is as relevant as the results from peel tests, contrary 
to many other non destructive tests, and (iii) it concerns the whole seam. Such a test cannot 
replace destructive tests, namely the peel tests, which have proven here to be the most 
adequate to calibrate seam parameters. However, it can be used for a better and easy 
non-destructive control of thermal-hot dual wedge seams. 
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The work reported here attempted to show the principle, feasibility and interest of the gas 
permeation pouch test. Other in situ tests, on different materials, under different conditions 
are now necessary to validate it. 
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6 EXPERIMENTAL WORK ON ADVECTIVE FLOW RATES THROUGH 
COMPOSITE LINERS DUE TO GEOMEMBRANE DEFECTS 

6.1 INTRODUCTION 

Modern landfills are generally designed to protect the environment against contaminants by 
using a composite liner. Unfortunately, despite all precautions regarding manufacturing, 
transportation, handling, storage and installation, defects in the geomembrane are 
unavoidable. As shown in Chapter 2, defects varying in density from 0.7 to 15.3 per hectare 
and in size from pinholes having a diameter less than one millimetre to defective seams or 
tears that are more than one meter long may be encountered in landfills. 

As discussed in Chapter 4, to evaluate the performance of composite liners involving GCLs 
when there is a defect in the geomembrane, it is necessary to know the hydraulic conductivity 
of the GCLs. In landfill bottom liners GCLs are commonly installed at their natural water 
content. Therefore, they may not be fully saturated, at least on the short term. It follows that 
the knowledge of the unsaturated hydraulic conductivity is required. It can be estimated 
through predictive methods based on water retention curves. The literature review carried out 
in Section 4.4 showed that the water retention curves for GCLs are scarce. In this context, one 
purpose of the present study was, first, to examine the suitability of the filter paper method for 
evaluating the suction of the GCLs and, second, to determine the water retention curves of the 
GCLs.  

On the other hand, discussions on flow rates through composite liners due to geomembrane 
defects, addressed in Section 4.6, showed that very little is known about the performance of 
composite liners when there is a prehydrated GCL under the geomembrane, despite the 
typical recommendation that they should be hydrated under a vertical stress, after installation, 
in order to reach a better performance. A minimum prehydration of 100 % is, for example, 
suggested by the Comité Français des Géosynthétiques (1998). Furthermore, the influence of 
the load of waste and of the height of leachate above the geomembrane remains unstudied 
from an experimental point of view. Thus, another goal of this research is to study the 
influence of prehydration of the GCLs, of confining stress (load of waste), and of hydraulic 
head (leachate above the geomembrane) on flow rates through composite liners due to defects 
in the geomembrane.  

This chapter describes the experimental works carried out. Section 6.2 presents the materials 
used, namely soils, GCLs and geomembrane. Section 6.3 is devoted to the water retention 
curves of the GCLs. First, it describes the preparation of specimens, equipment, test 
procedures and, then, presents and discusses the results obtained. Section 6.4 is dedicated to 
the flow rate through composite liners. It begins with the preparation of the materials. Next, it 
describes the equipment and the test procedures. Composite liners comprising a 
geomembrane, with a circular hole, over a GCL over a CCL, were simulated in tests at three 
scales, and the flow rate at the interface between the geomembrane and the GCL was 
measured. Materials in composite liners were the same as the ones used at a landfill bottom 
liner in Portugal. In small-scale tests, two additional GCLs were used over the soil. 
Small-scale tests were carried out to examine the influence of the parameters above 
mentioned. Intermediate and large-scale tests were intended to complement the small-scale 
tests and to check the feasibility of an extrapolation of the results obtained on small-scale tests 
to field conditions. Section 6.4 presents and discusses the results obtained. Section 6.5 
proposes some new empirical equations for predicting the flow rate through composite liners 
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consisting of a geomembrane over a GCL over a CCL, and fulfilling the last objective of the 
present work. Finally, Section 6.6 summarises the main conclusions obtained in this study. 

 

6.2 MATERIALS TESTED 

6.2.1 Geomembrane 

A smooth HDPE geomembrane 2 mm thick was used in the experimental work carried out on 
flow rate through composite liners due to geomembrane defects. 

 

6.2.2 Geosynthetic Clay Liners 

Four GCLs were used in the experimental work conducted, here termed as GCL-1, GCL-2, 
GCL-3 and GCL-4. The first GCL was supplied from a landfill located west of Portugal. 
Since there was not enough product to carry out the intermediate and large-scale tests, 
additional product was requested directly to the manufacturer. The same product could not be 
obtained. A powdered product, identical to the first one, was sent. It was designated as 
GCL-2.  

GCL-3 came from a different manufacturer. It was selected because it is often used in 
Portuguese landfills.  

GCL-4 is a geomembrane supported GCL and was only used on tests conducted to study the 
suitability of the filter paper method to measure the suction of GCLs. The main characteristics 
of tested products are summarised in Table 6.1, together with the generic symbols used to 
identify the products. This table also includes the values of the hydraulic conductivity 
measured based on ASTM D 5887, under two normal stresses, 50 kPa and 200 kPa, to assist 
in interpretation of the test results on the Section 6.4.5.9.  

 

6.2.3 Soil 

The soil used in the experimental work came from a landfill located west of Portugal. The 
landfill, nearly quadrangular in shape, divided in 5 cells, involves about 140 000 m2 of land. It 
was designed for disposal of approximately 3×106 m3 of MSW in a period of 14 years 
(Pardo de Santayana & Barroso 2002). The local geological conditions consist of continental 
deposits of sedimentary Jurassic and Cretaceous formations, comprising different levels of 
clay, marls, silt-clayey sands and sandstones. Clayey levels (clay and marls) are predominant 
in Jurassic formations. The Cretaceous formations outcrop at the southern portion of the 
landfill, consisting of intercalations of clayey soils, sandy silts and sandstones. The cells were 
excavated with their bottoms at different elevations to achieve the clayey Jurassic formations 
(Pardo de Santayana & Lopes 2003). 

Although all the soil used in the small, intermediate, and large-scale tests came from the same 
site, the soil for the small-scale tests was sampled in a first phase (approximately 100 kg) and 
the soil for intermediate and large-scale tests (approximately 4500 kg) was sampled in a 
second phase. With the progress of the landfill construction, the place where the first 
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sampling took place was already under the bottom liner when the second sampling occurred 
and the soil came from a different location. Due to the heterogeneity in the geological 
formations both soils were different from a geotechnical point of view, being here termed S-1 
and S-2, respectively. Soil S-1 was used in the small scale tests carried out with GCL-1, and 
soil S-2 was used in all other tests. Table 6.2 summarises the relevant characteristics of these 
soils for the preparation of the composite liner and for interpretation of tests results. 

 

 
Table 6.1 - Characteristics of GCLs used according to the manufacturers 

Specimens GCL-1 GCL-2 GCL-3 GCL-4 

Type of bentonite Natural, Na+, 
granular 

Natural, Na+, 
powdered Na+, granular Natural, Na+ 

B
en

to
ni

te
  

la
ye

r 

Mass per unit area (g m-2) 4 670 4 670 5 000 4 900 

Mass per unit area (g m-2) 220 220 200 - 

C
ov

er
 m

at
er

ia
l 

(G
TX

 o
r G

M
) 

Type 
GTX, PP, 

NW, needle 
punched 

GTX, PP, NW, 
needle punched 

GTX, PP, NW, 
needle punched - 

Mass per unit area (g m-2) 110 110 125 - 

C
ar

rie
r m

at
er

ia
l 

(G
TX

 o
r G

M
)  

Type GTX, PP, W GTX, PP, W GTX, PP, W HDPE GM  
(0.5 mm) 

Mass per unit area (g m-2) 5 000 5 000 5 300 - 

Type Needle 
punched Needle punched

Adhesive bond 
plus 

semi-needle 
punched 

Adhesive 
bond 

Dry thickness (mm) 6 6 7 -- 

-- ≤  5 × 10-11 ≤  5 × 10-11 ≤  5 × 10-11 -- 

50 kPa 
(ASTM D 5887) 3.7 × 10-11 3.7× 10-11 3.6 × 10-11 -- 

G
C

L 

Hydraulic 
conductivity 

(m s-1) 200 kPa 
(ASTM D 5887) 1.1 × 10-11 -- 1.2× 10-11 -- 

Notes: GTX=geotextile, GM=geomembrane, PP=polypropylene, NW=non-woven; W=woven, Na+=sodium. 
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Table 6.2 – Characteristics of soils used 
Atterberg limits Proctor modified 

Specimen Percent fines 
(%) 

Percent 
clay         
(%) 

LL 
(%) 

PL 
(%) 

PI 
(%) 

ωopt 
(%) 

(γd)max 

(kN m-3) 

k 
(m s-1) 

S-1 73.6 40.5 54.2 23.7 30.5 13.6 19.1 8×10-11 

S-2 37.7 17.0 33.1 19.7 13.4 8.1 21.3 3×10-10 

Notes: Percent fines=percent passing the USA No 200 sieve (openings of 75 µm); Percent clay=percent finer than 
0.002 mm; LL=Liquid Limit; PL=Plastic limit; PI=Plasticity Index; ωopt=optimum water content; (γd)max=maximum dry 
unit weight; k=hydraulic conductivity of the soil. 

 

6.3 WATER RETENTION CURVES 

6.3.1 Preparation of specimens, equipment and test procedures 

Water retention curves, typically represented by the van Genuchten parameters, are necessary 
in modelling the hydraulic behaviour of unsaturated materials, which is the case of a GCL 
during a certain period of time after its installation in situ, at its natural water content.  

To determine the water retention curve of GCLs, matric suction and volumetric water content 
were measured experimentally. Matric suction of GCLs was evaluated based on 
ASTM D 5298: Standard test method for measurement of soil potential (suction) using filter 
paper. This test method is a standard for soils, and thus, the suitability of this method to 
measure the suction of GCLs was first addressed (see Section 6.3.2). 

A full description of the methodology adopted in the present work is outlined in Appendix E. 
Briefly, prior to suction measurements, GCL specimens were prehydrated covering a range of 
moisture contents. Two techniques were used to prehydrate the specimens. The first one 
consisted in spraying a known mass of water onto the surface of the specimens. It was used to 
prehydrate the GCLs with water contents under 45 %. For GCLs specimens with higher water 
contents, the specimens were immersed in water during the time necessary to achieve the 
specified water content. The immersion time depends on the mass of each specimen. 
Therefore, it was necessary to weigh the specimens at regular intervals until the correspondent 
wet mass was reached.  

Two prehydrated GCL specimens, to the same water content, were wrapped together with a 
laboratory plastic film (e.g. PARAFILM M), and placed in isolated boxes during seven days, 
for water content homogenisation purposes. Homogenisation took place without confining 
stress. At the end of the homogenisation period, it was assumed that the two GCL specimens 
had identical suction.  

Three stacked pieces of dried filter paper (WhatmanNo. 42) were then placed between the 
two GCL specimens. The outer filter papers were slightly larger in diameter than the centre 
filter paper, in order to prevent the centre filter paper contamination by bentonite. The filter 
paper was initially oven dried (105ºC) either for about 16 hours, or overnight, then stored in a 
desiccant container for cooling. Prepared GCL specimens were again wrapped together with a 
laboratory plastic film and sealed in an airtight container, for seven days, in order to 
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equilibrate suctions with the filter paper. Once again, the homogenisation took place without 
confining stress. After that equilibration period, the filter papers were removed from the GCL 
specimens (Figure 6.1), and the water content of the centre filter paper was measured. 

 

 
Figure 6.1 – Removing the filter paper 

 

Water content of the filter paper (ωf) was estimated by the expression below: 

 

100×=
f

w
f M

Mω  (6.1) 

 

where Mw is the mass of water in the filter paper (g), and Mf  is the mass of dry filter paper (g). 

The matric suction of the GCL specimen was estimated from the calibration curve of filter 
paper presented in ASTM D 5298 standard (see Figure 4.5), by using the measured 
equilibrium water content of the filter paper.  

It should be pointed out that the calibration curves included in ASTM D 5298 standard are 
applicable to the total suction. However, as can easily be demonstrated, based on the 
discussion addressed in Section 4.2, the GCLs present a low thickness and therefore the total 
and matric suction can be considered as equal. Thus, those calibration curves can be used for 
assessing the matric suction, from now on just called suction. 

For the filter paper used in the present work (WhatmanNo. 42), the expressions below were 
then used to calculate the suction, ψ (ASTM D 5298): 

 

f.. ωψ 07790327510 −=            for ωf < 45.3 %  

or 

f.. ωψ 01350412210 −=            for ωf > 45.3 % 

(6.2) 
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The volumetric water content, Θ, was evaluated using the expression below: 

 

w

d

ρ
γω=Θ  (6.3) 

 

where ω is the gravimetric water content of the GCL; ρw is the density of water; and γd is the 
dry density of the GCL, i.e. the ratio of the mass of the GCL specimen to the total volume of 
the GCL specimen. The total volume is equal to the area multiplied by the thickness of the 
specimen.  

The area was considered as constant, despite the methodology used for cutting the specimen. 
Indeed, they were cut with scissors after wetting of their perimeter. Wetting minimises the 
loss of bentonite at the specimen boundary during the cutting operation. Circular specimens 
having a 10 cm diameter were used. 

The thickness of GCLs was measured based on EN 964 standard (see Figure 6.2). 

 

LVTD

GCL specimen

LVTD

GCL specimen

 
Figure 6.2 – Devices used to measure the thickness of the GCL specimens 

 

6.3.2 Studies on the suitability of the filter paper method to measure the suction of the 
GCLs 

6.3.2.1 Comparison with the results obtained by Daniel et al. (1993) 

The suitability of the filter paper method to measure the suction of the GCLs was analysed by 
comparison with the results obtained by Daniel et al. (1993) and presented in Section 4.4.1. In 
that framework, a geomembrane supported GCL similar to the one used by Daniel et 
al. (1993), was used in this study, i.e. GCL-4 (recall Table 6.1). The first step consisted of 
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prehydrating the GCL specimens, covering the range of moisture contents reported by 
Daniel et al. (1993). Water contents selected for prehydrating the specimens included: 17%, 
28%, 46%, 56%, 66 %, 79%, 89%, 96%, 101% and 145%. Then, the suctions were measured 
based on the filter paper method.  

The suctions obtained in this study are plotted together with the suctions reported by Daniel et 
al. (1993) against gravimetric water content of the GCL in Figure 6.3. As can be seen, 
although some scatter can be observed for the suction corresponding to lower water contents, 
the results obtained in the present study are consistent with the results obtained by 
Daniel et al. (1993). This suggests that the filter paper method can successfully be used to 
measure the suction of GCLs. 
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Figure 6.3 – Comparison with the results obtained by Daniel et al. (1993) 

 

6.3.2.2 Influence of the position of GCL 

As the GCLs used in this study are mainly geotextile-supported products (see Table 6.1), with 
different geotextiles in the upper and lower layer, an important issue is to know if the position 
of the GCL affects the final results of the suction. In other words, will the filter paper be 
suitable to measure the suction of the whole GCL, or will it mainly measure the suction of the 
geotextile with which it is in contact? 

To answer this question, a second study was carried out. It consisted of measuring the suction 
with the filter paper facing the GCLs in three different positions: nonwoven/nonwoven 
(NW/NW), woven/nonwoven (W/NW), and woven/woven (W/W). Three values of water 
contents were selected to prehydrate the GCLs specimens. This study was carried out both 
with GCL-1 and GCL-3.  
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Figure 6.4 depicts the results obtained for GCL-1. Similar results, not included in the graph, 
for the sake of brevity, were obtained for GCL-3. It can be seen that, despite some scatter on 
suction corresponding to the lowest and highest water content, results show a close agreement 
regardless of the type of geotextile that faced the filter paper. The scatter obtained for the 
lowest and highest suction measurements may be related with some experimental difficulties 
found with this method for the water contents of the GCLs in this range, as discussed in 
Section 6.3.4.2.  
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Figure 6.4 – Suctions obtained with filter paper facing the GCL in three different options 

 

Thus, it seems that the position of the GCL does not influence suction measurement for a 
water content that is intermediate. This point should be validated for other water contents that 
do not correspond to the limits of validity of the test method.  

Another approach to answer the question addressed at the beginning of this section consists of 
comparing the water retention curves of the GCLs with the water retention curves of 
geotextiles. In this framework, Figure 6.5 shows the results obtained by Cartaud et al. (2005) 
for three polypropylene geotextiles (GA, GB, and GC). GA is a needlepunched geotextile 
with a mass per unit area equal to 300 g m-1, GB is also a needlepunched product with a mass 
per unit area equal to 330 g m-1; and GC is a thin nonwoven thermal-bonded geotextile with a 
mass per unit area equal to 130 g m-1. Suction measurements correspond to a wetting phase, 
i.e. imbibition of the geotextiles. 

The water curves obtained by Cartaud et al. (2005) significantly differ from the ones obtained 
in the present work for GCLs presented in the next section. Suction for GCLs ranged from 
about 1 to 2800 m, whereas for geotextiles they ranged from 0 to 0.25 m. Suctions in the same 
range were also reported by Iryo & Rowe (2004) for geotextiles. These comparisons indicate 
that the suctions measured in the present work regard, with no doubt, the whole GCL and not 
only the geotextile in contact with the filter paper.  
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Figure 6.5 – Water retention curve for three geotextiles (Cartaud et al. 2005)  

 

Based on the results obtained in studies carried out, it was assumed that the filter paper 
method can successfully be used to measure the suction of the GCLs. Accordingly, this 
method was used to estimate the suctions of GCL-1, GCL-2 and GCL-3. To ensure a good 
contact between the GCL specimens and the filter paper, the later was placed between the two 
nonwoven geotextiles, as observations made during the tests disassembly suggest that the best 
contact is achieved in this case.  

 

6.3.3 Water retention curves obtained for GCL-1, GCL-2 and GCL-3  

Water retention curves of GCLs were obtained based on measured suctions and on 
corresponding volumetric water contents. Water retention curves for GCL-1, GCL-2 and 
GCL-3 (see Table 6.1) are shown in the figures below, which include the van Genuchten 
parameters α and n obtained by fitting a theoretic water retention curve to the experimental 
data, assuming that the residual water content was negligible (Θr = 0), according to the 
discussion addressed in Section 4.3.3. 

Figure 6.6 presents the water retention curve of GCL-1. It can be seen that the volumetric 
water content varied from 0.07 to 0.7, whereas the correspondent suction ranged from 2379 m 
to 18.9 m (23790 kPa to 189 kPa). The best fitting curves to the experimental data resulted in 
the following van Genuchten parameters: α = 0.018 m-1 and n = 1.50. 
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Figure 6.6 – Water retention curve for GCL-1 

 

Figure 6.7 presents the water retention curve obtained for GCL-2. It can be observed that the 
volumetric water content increased from 0.12 to 0.76 when the suction decreased from 
1 443 m to 1.2 m (14 430 kPa to 12 kPa). The best fitting curve to the experimental data 
resulted in the van Genuchten parameters as follows: α = 0.032m-1 and n = 1.47.  
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Figure 6.7 – Water retention curve for GCL-2  
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Figure 6.8 depicts the results of the suction versus volumetric water content for GCL-3. The 
volumetric water content increased from 0.09 to 0.69, when the suction decreased from 
2 821 m to 6.9 m (28 210 kPa to 69 kPa). The values of α = 0.015 m-1 and n = 1.67 matched 
the experimental results.  
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Figure 6.8 – Water retention curve for GCL-3 

 

6.3.4 Discussion  

6.3.4.1 Comparisons of van Genuchten parameters and water retention curves 

Table 6.3 summarises the van Genuchten parameters and the saturated volumetric water 
contents that were obtained in this study. It also includes some values of α and n that have 
been used in numerical simulations carried out in the topic of GCLs desiccation by several 
authors (e.g. Babu et al. 2002, Southen & Rowe 2002, Southen et al. 2004). Results obtained 
by Southen & Rowe (2004) were not included in this table because the range of suctions 
reported by these authors is relatively small to estimate the van Genuchten parameters. 

It can be observed that the values of α are quite similar for GCL-1, GCL-2 and GCL-3. It 
varies between 0.015 and 0.032 m-1. As regards n, it varied between 1.47 and 1.67. 
Reasonable agreement can be observed between the van Genuchten parameters obtained from 
the experimental work carried out and data reported in the literature. Consistent results can 
also be observed between the Θs measured and data reported in literature, except for Θs found 
by Southen et al. (2004), which is higher. However, this higher value of Θs was based on the 
initial value of porosity measured with a high uncertainty. In fact, if it were estimated based 
on water retention curve, this value should have been 0.76 rather than 0.85 (Southen, personal 
communication).  
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Table 6.3 – Van Genuchten parameters obtained in the present work and reported in literature 

 α (m-1) n Θs 
GCL-1 0.018 1.50 0.70 
GCL-2 0.032 1.47 0.76 
GCL-3 0.015 1.67 0.69 

Babu et al. (2002) 0.010 1.85 0.74 
Southen & Rowe (2002)  0.015 1.30 0.76 

Southen et al. (2004)  0.030 1.50 0.85 

 

Figure 6.9 compares the water retention curves of GCLs obtained in this study and shows 
water retention curves estimated using van Genuchten parameters reported in the literature 
(values included in Table 6.3). As can be seen, similar volumetric water content versus 
suction relationship was obtained for GCL-1, GCL-2 and GCL-3. This suggests that the type 
of bentonite has no significant influence on the water retention curve of the GCLs, as the only 
difference between the GCL-1 and the GCL-2 is the nature of the bentonite (granular vs 
powdered). 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 10 100 1000 10000
Suction (m)

Vo
lu

m
et

ric
 w

at
er

 c
on

te
nt

GCL-1 (alpha=0.018 m-1, n=1.50)

GCL-2 (alpha=0.032 m-1, n=1.47)

GCL-3 (alpha=0.015m-1, n=1.67)

Babu et al. 2002 (alpha=0.010 m-1, n=1.85)

Southen & Rowe 2002 (alpha=0.015 m-1, n=1.3)

Southen et al. 2004 (alpha= 0.030m-1, n=1.5)

 
Figure 6.9 – Comparisons between the van Genuchten parameters obtained in the present 

work and reported in the literature 

 

As regards the GCL modelled by Southen & Rowe (2002), it can be observed that for values 
of suction less than 40 m the curve is identical to the ones obtained for the other GCLs, 
deviating for high values of suction. The deviation observed can be attributed to an 
overestimation of n. A good agreement can be obtained using n equal to 1.5 instead of 1.3. 
The overestimation of n was due to the fact that, for those tests, these authors were using the 
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pressure plate method to measure the suction, which only permitted suction measurements for 
high volumetric water contents (Southen, personal communication). Therefore, to estimate the 
van Genucthen parameters by fitting a model curve to experimental data, they did not possess 
the experimental data to cover the whole range of suctions. In contrast, a good agreement can 
be observed between the data from the present study and the parameters reported by 
Southen et al. (2004), obtained through a series of laboratory tests using pressure plates and 
membrane extractors. 

 

6.3.4.2 Difficulties found in water retention curves estimation 

As regards suction measurements, some scatter could be observed for low gravimetric water 
contents (8-15%) of the GCLs. This scatter might be related to the fact that, for these 
gravimetric water contents, the measured water content of the filter paper was close to the 
lower values for which the calibration curve can reliably be used (often less than 5%). In 
some cases, the suctions obtained were less than the limit of validity of the filter paper 
method (100 000 kPa or 10 000 m) and were not taken into account in the analysis done. In 
addition, in some filter papers, fungal growth was observed (Figure 6.10). This occurred 
mainly in protective filter papers and for gravimetric water contents of the GCLs higher than 
125 %. When the fungi were observed on the central filter paper used to evaluate the suction 
of the GCL, the suction was, generally, less than the low limit of validity of the filter paper 
method (10 kPa or 1 m). These results suggest that the fungi may affect the suction 
measurements. Suctions estimated from centre filter papers with fungi were not considered in 
final results. 

 

Protective filter papers Center filter paperProtective filter papersProtective filter papers Center filter paperCenter filter paper

 
 

Figure 6.10 – Example of a filter paper with fungi 

 

Difficulties were also encountered to determine the volumetric water content of GCLs. These 
difficulties came from the measurement of specimen area. The GCL specimens were cut with 
scissors and thus their final shape was irregular. As a result, estimated values of the area were 
note very accurate, which caused scatter on experimental measurements of suction. To avoid 
this problem, it is recommended to cut the specimens using a cutting shoe and a mechanical 
press.  
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6.3.5 Summary of Section 6.3 

Section 6.3 focused on the experimental work carried out on water retention curves of the 
GCLs. Water retention curves characterise the relationship between the volumetric water 
content and suction. Its knowledge, typically represented by the van Genuchten parameters 
(Θr, Θs, α and n), is necessary in modelling the hydraulic behaviour of unsaturated materials.  

Within the scope of the present work, the first aspect analysed was the suitability of the filter 
paper method to assess the suction of GCLs. This issue was addressed under two axes: 
comparison with previous works and influence of the position of the GCL. Results from filter 
paper agree fairly closely with the results reported in literature. On the other hand, it could be 
observed that the position of the GCLs does not affect the suction, suggesting that the 
measured suction regards the whole GCL and not the geotextiles in contact with the filter 
paper. These results indicate that the filter paper is suitable to measure the suction of GCLs. 
The first goal of this experimental work was successfully achieved. 

The filter paper method was then used to measure the suction of three GCLs, two 
needlepunched containing either granular or powdered bentonite and one adhesive bonded 
plus semi-needle punched. Volumetric water content was also assessed experimentally from 
the gravimetric water content and the total volume of the GCL specimens. Water retention 
curves for GCLs could thus be determined. Finally, the van Genuchten parameters were 
estimated by fitting a water retention model to experimental data. For tested GCLs, a good 
agreement was found between the water retention curves.  

Suctions obtained in this study are consistent with the ones obtained by Southen & 
Rowe (2004), for the range of suctions that could be compared.  

As the retention curves were estimated with GCLs without stress, which is not representative 
of field conditions, this study has to be seen as a starting point. Suction measurements under 
stress are needed to obtain the van Genuchten parameters representative of field conditions 
and properly model the flow rate under unsaturated conditions. In fact, as it was possible to 
prove that the filter paper method can be used for GCL, suction measurements with this 
technique are in progress, and numerical modelling, involving unsaturated GCLs, is expected 
for a near future.  

Next section is devoted to the experimental work carried out on measurement of flow rate 
through composite liners due to geomembrane defects. The results obtained will be used to 
study the influence of prehydration of the GCLs, confining stress, and hydraulic head on 
advective flow rate through composite liners, as well as to compare different scale test results 
and check the feasibility of an extrapolation of results obtained on small-scale tests to field 
conditions.  
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6.4 FLOW RATE THROUGH COMPOSITE LINERS 

6.4.1 Preparation of materials 

6.4.1.1 Geosynthetic Clay Liners  

6.4.1.1.1 Small-scale tests 

In small-scale tests, two different types of specimens, both circular with 20 cm diameter, were 
used: non-prehydrated (water content as supplied) and prehydrated to an initial water content 
close to 100%. 

Concerning non-prehydrated specimens, they were cut with scissors after wetting their 
perimeter. This procedure minimises the loss of bentonite at the specimen boundary during 
cutting operation and the placement of the GCL inside the test cell.  

As regards prehydrated specimens, first oversized specimens were immersed in tap water 
during the time necessary for them to reach a water content of 100 %. Once the process of 
immersion was completed, the specimens were placed in a watertight plastic bag, under the 
same normal stress than that used in flow rare measurements, during one week, for moisture 
content homogenisation purposes. The GCLs were kept under a normal stress because it was 
found that the uniformity of moisture distribution is better when the specimen is under load 
(Touze-Foltz et al. 2002a, Bouazza et al. 2002b). After the moisture content homogenisation 
period, the GCLs were carefully cut with scissors and installed in the test cell. 

 

6.4.1.1.2 Intermediate and large scale tests 

In intermediate and large scale tests only non-prehydrated specimens were used. They were 
cut with scissors after their perimeter was wet. The specimen for intermediate-scale test had a 
1 m diameter, whereas for the large-scale test it was a square 2.2 m wide. 

 

6.4.1.2 Soil  

6.4.1.2.1 Small-scale tests 

In small-scale tests the soil was moistened to a water content about 2 to 4 % above the 
optimum water content determined based on a Proctor test. This value of moisture content 
was adopted based on the USEPA recommendations (see Section 2.3.3). The soil was then 
placed in the cell for compaction purposes. 

 

6.4.1.2.2 Intermediate and large-scale tests 

In intermediate and large-scale tests the soil was compacted at its natural water content, as it 
came from the site already at a water content 5 to 6 % above the Proctor optimum. This value 
exceeds the value used in small scale tests, but the moisture content could not be lowered due 
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to the large amount of soil involved in these tests (about 430 kg, in the intermediate scale test 
and about 2700 kg, in the large-scale test).  

 

6.4.1.3 Geomembrane 

Geomembrane specimens were prepared with a 3 mm diameter hole at their centre, regardless 
of the scale of tests performed. This size took into account that, on the one hand, the majority 
of the holes in landfills appears to be smaller than 10 cm2 (as shown in Chapter 2), and, on the 
other hand, that the dimensions of our laboratory model were small and that we wanted to 
avoid boundary effects as far as possible. 

 

6.4.2 Equipment and test procedures 

6.4.2.1 Small-scale tests 

The small-scale tests were carried out in a circular Plexiglas cell specially designed to 
measure the flow rate through composite liners. The cell consists of four parts: (i) a bottom 
plate supporting the compacted soil layer; (ii) a base cylinder with an inside diameter of 0.2 m 
and 0.08 m high, for accommodating the compacted soil and GCL specimen; (iii) a granular 
cover plate to simulate the presence of a granular drainage layer; and (iv) an upper part being 
6 cm high that accommodates the granular cover plate.  

First, about 4.5 kg of soil was placed inside the base cylinder, in two lifts approximately 
21 mm thick. Lifts were compacted using a hand packer. The excess soil material was 
carefully cut to yield a smooth surface. The GCL specimen is placed on top of the soil, 
usually with the non-woven geotextile on top, and, above it, the geomembrane with a circular 
hole at its centre is placed. Then, the granular cover plate is placed above the geomembrane. 
Afterwards, the base and upper parts of the cell are held together with retaining threaded rods. 
The cell is then installed in a mechanical press that applies the confining stress. Finally, the 
top cell is connected to a water supply reservoir, mounted on a vertical sliding rail. This 
reservoir feeds the test during the first hours when the water flow through the composite liner 
is significant. As the water flow decreases throughout the test, the water reservoir is replaced 
by a Mariotte bottle, more accurate at low flows. Both the water reservoir and the Mariotte 
bottle can be set for a specified hydraulic head that is kept constant during the entire test 
(constant head tests). Figure 6.11 summarises the test procedure and Figure 6.12 shows the 
correspondent scheme of a small-scale test. 

The small scale tests were carried out to study the relative importance of some parameters that 
govern the flow rate through composite liners due to defects in the geomembrane, namely the 
pre-hydration of GCLs, the confining stress over the geomembrane liner and the hydraulic 
head applied on top of the geomembrane. These issues were analysed based on the results 
obtained in tests carried out with GCL-1 and GCL-3. Other goals of the small-scale tests were 
to study the repeatability of the test procedure, to examine the influence of the type of 
geotextile in contact with the geomembrane (nonwoven or woven) and to study the influence 
of the nature of bentonite (powdered or granular) on flow rate through composite liners. 
These issues were studied based on the results obtained in tests conducted with GCL-2. Tests 
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carried out with this latter product are also used to assist in interpretation of the intermediate 
and large-scale tests. 

 
 

 
Figure 6.11 – Summary of small-scale test procedure 
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Figure 6.12 - Scheme of the small-scale tests 

 

The tests were conducted using either non-prehydrated GCL or prehydrated to a water content 
equal to 100 %. These conditions were chosen to represent two possible approaches used 
during GCL installation. The non-prehydration represents the field conditions, for example, in 
landfills, where GCL is installed at its natural water content on a foundation layer, whereas 
prehydration to a water content of 100% represents the recommendation of the Comité 
Français des Geosynthétiques (1998). 

Three different normal stresses were applied: 25, 50 and 200kPa. The first stress was chosen 
to allow a comparison with the results obtained in the large-scale test, which for experimental 
reasons could not be higher as will be seen in Section 6.4.2.3. The second and third confining 
stresses represent approximately two stress levels that may be exerted on a bottom liner in a 
landfill. They would correspond approximately to 5 m and 20 m of cover waste. 

Two hydraulic heads were applied on top of the composite liner: 0.3 m and 1.2 m. The first 
choice represents the maximum allowable leachate head above the geomembrane in most 
landfill regulations, whereas the second one can represent the case when the leachate head in 
a landfill is higher due to, for example, inappropriate operation of the leachate collection 
system. 

Each test was run for a minimum period of 400 hours (17 days). 



Chapter 6      Experimental work on advective flow rates through composite liners due to geomembrane defects 

151 

The flow rate was calculated in two different ways. When the radial flow rate at the 
downstream side of the interface (effluent) was high enough to be measured by weighing, the 
flow rate, Qr(Rc), was obtained by dividing the volume of effluent collected by the collecting 
time. When very low or no flow rates could be measured in this way, the total flow rate, Q, 
was estimated by dividing the variation of volume in the Mariotte bottle by the corresponding 
time interval. In order to reduce the scatter on flow measurements, the total flow rate was 
generally re-calculated on a 24 hours basis. 

 

6.4.2.2 Intermediate-scale tests 

An intermediate-scale test was carried out to compare test results and to check the feasibility 
of an extrapolation of results obtained on small-scale tests to field conditions. It was 
performed in complement to the large-scale test at a higher confining stress, since that by 
experimental reasons, the large-scale tests had to be carried out at a low confining stress as 
will be seen in the next section. Therefore, the intermediate-scale test is more representative 
of the field conditions, as the load applied by waste over the lining system may reach more 
than 200 kPa. This test was carried out at Cemagref, in France, and lasted 6.5 months.  

The test was conducted in a large circular stainless steel cell. The inner diameter of the cell is 
1 m and corresponds to the GCL specimen diameter. It consists of three parts (Figure 6.13): 
(i) a bottom part with a round base plate fixed onto the beam of a hydraulic press that applies 
the confining stress; (ii) an intermediate cylinder, 1 m diameter and 0.3 m high, fixed onto the 
base plate, for accommodating the simulated composite liner; and (iii) an upper cylinder, 
25 cm high, for accommodating the granular layer that simulates the drainage layer in a 
bottom liner of a landfill.  

 

 
 

Figure 6.13 – Photograph of the cell for intermediate-scale test 

 

Test assembly comprised several steps, which are briefly described in subsequently. First, a 
Pollyanna film and geotextile were placed at the bottom part of the cell to protect the base 
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plate of the cell and ensure drainage of potential effluents. Second, the soil was carefully 
compacted in 4 lifts. The total thickness of the compacted soil layer was 27 cm. The mean 
moisture content of the soil was 13.2 %. Third, a non-prehydrated GCL specimen at a water 
content equal to 9.5 % was placed above the soil, with the non-woven geotextile on top. 
Fourth, an HDPE geomembrane 2 mm thick, having a 3 mm diameter circular hole at its 
centre, was installed above the GCL. A special “Y” connection was glued over the hole of the 
geomembrane. Two pipes were then inserted in this connection, one connected to the water 
supply (Mariottle bottle) and the other used as purge. Fifth, a geotextile 828 g m-2 was placed 
above to protect the geomembrane against puncturing. Sixth, 25 cm of gravel 25/35 mm was 
added on top of the geotextile. This layer was added to simulate the drainage layer in a 
landfill. Then, a stainless steel plate was placed above the gravel layer. Once this operation 
was concluded, a normal stress of 50 kPa was applied through a mechanical press. Finally, the 
water supply was activated and the test started. The test was carried out with a hydraulic head 
of 0.3 m. Flow rates were measured thanks to a Mariotte bottle. Figures 6.14 summarises the 
test procedure and Figure 6.15 is a scheme of the test.  

 

Figure 6.14 – Summary of intermediate-scale test procedure 
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Figure 6.15 – Scheme of the intermediate-scale test 

 

6.4.2.3 Large-scale test 

A large-scale test was also carried out to compare test results and to check the feasibility of an 
extrapolation of results obtained on small-scale tests to field conditions. This test was run at 
LNEC, in Portugal, where a facility was available (Figure 6.16). It consists of a square box 
located below ground level, 0.9 m deep, with an area of 4.84 m2 (2.2 m x 2.2 m). Despite the 
fact that by operational reasons, a confining stress equal to 25 kPa was used in this test, it 
represents better the field conditions, due to its dimensions, than the small and 
intermediate-scale tests. The test lasted 6 months. The same soil and geosynthetics as those 
used in the intermediate-scale test were used. 

The test assembly was similar to that of the intermediate-scale test, as can be seen in 
photographs included in Figure 6.17. There are two differences. First, the large-scale test 
included one supplementary gravel layer at the bottom of the test facility. The purpose of this 
10 cm thick gravel layer was to hold any potentially water that could migrate towards the 
bottom of the composite liner due to consolidation of the soil, as due to the features of the test 
facility it was impossible to collect the water through a container at the base of the facility. 
Measurements carried out on a weekly basis through a piezometric probe indicated that no 
water reached that gravel layer. Observations made after the test disassembly confirm the 
absence of water in the bottom granular layer.  
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Figure 6.16 – Test facility that accommodated the large-scale test 

 

Second, the normal stress was applied in a different way than in the intermediate scale test. 
Indeed, as there was no mechanical press to apply the normal stress, this was achieved by 
dead-weights, namely with concrete cubes (8 kg each), manually placed above the composite 
liner. As can be anticipated, for such a large area (4.84 m2), it was necessary to use a huge 
amount of cubes to obtain a 50 kPa normal stress. Furthermore, the room was not high enough 
to reach a level of concrete blocks corresponding to this normal stress, and it would have been 
too much time consuming. Thus, the applied normal stress was limited to 25 kPa. It should be 
noted that even for such a small confining stress, about 12 tones were necessary, which means 
about 1500 concrete cubes.  

From the bottom to the top, the test comprises the layers as follows (Figure 6.18): 

• A geotextile 256 g m-2 to protect the base of the facility; 
• 10 cm of gravel 25/35 mm to hold the potential water that could migrate from the soil due 

to its consolidation under the confining stress applied; 
• A geotextile 642 g m-2 to separate the materials and to simplify the compaction of the 

cover soil; 
• 27 cm of compacted soil at a moisture content equal to 13.9 %; the soil was compacted in 

3 lifts 9 cm thick each; 
• GCL-2, non-hydrated at a water content of 11.4 %, installed with the nonwoven geotextile 

on top; 
• An HDPE geomembrane 2.0 mm thick, having a 3 mm diameter circular hole at its centre; 
• A geotextile 828 g m-2 to protect the geomembrane against puncturing; 
• A 22 cm thick layer of gravel 25/35 mm to simulate the drainage layer in a landfill; and 
• Layers of concrete cubes (12084 kg) to apply a final confining stress over the 

geomembrane of 25 kPa. 

Once again, this test was carried out with a hydraulic head equal to 0.3 m and the flow rates 
were measured thanks to a Mariotte bottle. 
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Figure 6.17 – Summary of large-scale test procedure 
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Figure 6.18 – Scheme of the large-scale test 
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6.4.3 Summary of the tests performed 

Table 6.4 lists the tests carried out on flow rate through composite liners due to geomembrane 
defects as well as the test conditions used.  

 
Table 6.4 – Summary of the tests carried out on flow rate through composite liners 

 

Test No Soil GCL specimen GCL status Initial water 
content (%) 

Final water 
content 

(%) 

Normal 
stress 
(kPa) 

Hydraulic 
head 

(m) 

1 S-1 GCL-1 n-ph 10.1 131.8 50 0.3 

2 S-1 GCL-1 n-ph 13.4 104.9 50 1.2 

3 S-1 GCL-1 n-ph 11.1 99.0 200 0.3 

4 S-1 GCL-1 n-ph 10.7 88.1 200 1.2 

5 S-1 GCL-1 ph 86.6 150.1 50 0.3 

6 S-1 GCL-1 ph 113.8 163.8 50 1.2 

7 S-1 GCL-1 ph 89.6 96.3 200 0.3 

8 S-1 GCL-1 ph 100.1 98.8 200 1.2 

9 S-2 GCL-2 n-ph 11.3 110.4 50 0.3 

10 S-2 GCL-2 
(inverted) n-ph 11.3 108.2 50 0.3 

11 S-2 GCL-2 n-ph 10.3 122.7 25 0.3 

11bis S-2 GCL-2 n-ph 10.0 117.9 25 0.3 

12 S-2 GCL-3 n-ph 11.3 152.2 50 0.3 

13 S-2 GCL-3 n-ph 10.7 136.0 50 1.2 

14 S-2 GCL-3 n-ph 10.2 107.8 200 0.3 

15 S-2 GCL-3 n-ph 10.5 98.7 200 1.2 

16 S-2 GCL-3 ph 100.8 155.9 50 0.3 

17 S-2 GCL-3 ph 101.3 166.3 50 1.2 

18 S-2 GCL-3 ph 84.0 98.2 200 0.3 

19 S-2 GCL-3 ph 98.8 103.5 200 1.2 

IST S-2 GCL-2 n-ph 9.5 76.7 50 0.3 

LST S-2 GCL-2 n-ph 11.4 83.5 25 0.3 

Notes: n-ph=non-prehydrated (water content as supplied); ph=prehydrated (moistened to about 100%); 
IST=Intermediate-scale test; LST=Large-scale test. 

 

Tests 1 to 8 were performed with GCL-1, either using non-prehydrated specimens (test 1 to 
test 4), or using prehydrated specimens (test 5 to test 8). Test 9 was carried out in the same 
test conditions as the intermediate-scale test, with GCL-2, under non-prehydrated conditions. 
Test 10 was conducted in the same test conditions as test 9, but with GCL-2 inverted, i.e. with 
woven geotextile in contact with the geomembrane. They were conducted using 
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non-prehydrated specimens. Test 11 and test 11bis were performed under the same test 
conditions to study the repeatability of the test procedure. They were conducted using non-
prehydrated specimens of GCL-2, in the same test conditions as the large-scale test. Tests 12 
to 19 were performed with GCL-3, either using non-prehydrated specimens (test 12 to test 
15), or using prehydrated specimens (test 16 to test 19). Non-prehydrated specimens were 
tested at their natural water content. Prehydrated specimens were moistened to approximately 
100 %. Intermediate (IST) and large-scale tests (LST) were conducted using only non-
prehydrated GCLs. 

Next section is dedicated to the results. They are presented in terms of the evolution of the 
flow rate with time, final flow rates, radius of the wetted area, interface transmissivities and 
soil water contents. The results obtained are then discussed and compared in Section 6.4.5. 

 

6.4.4 Results  

6.4.4.1 Small-scale tests 

6.4.4.1.1 Flow rates 

Figures 6.19 to 6.21 present the evolution of flow rate for GCL-2, GCL-1 and GCL-3, 
respectively. Values of flow rates contain the error bars corresponding to the uncertainty 
calculated according to Appendix D. It should be noted that for some small values, the 
uncertainty value was higher than the flow rate value. In these cases, it was impossible to plot 
the corresponding error bars. To emphasise the big uncertainty associated to those 
measurements, a dashed line was drawn between the value of flow rate and the x-axis.  

As can be observed, flow rate decreases with time until a steady state is reached. For 
comparison purposes, for GCL-1 and GCL-3, the time-scale of the graphs is truncated at 
400 hours. For GCL-2, this procedure was not adopted, since for tests carried out both with 
woven geotextile facing the geomembrane and with a confining stress of 25 kPa, a longer 
time was necessary to reach the steady state. In addition, it can be seen that the uncertainty 
associated to flow rate measurements, in general, decreases as the confining stress used in 
tests decreases. Furthermore, it is higher for GCL-3 than for GCL-1. This is related with the 
Mariotte bottles used for performing the flow rate measurements. A lower uncertainty would 
be obtained if a Mariotte bottle with a higher resolution could be used. 

The evolution of the flow rates in test 11 and 11bis is similar by taking into account the 
uncertainties associated to these measurements. This indicates a good repeatability of the test 
procedure.  

By comparing the evolution of tests 9 and 10, conducted either with the non-woven geotextile 
in contact with the geomembrane (test 9) or with the woven geotextile (test 10), it can be seen 
that they presented a distinct behaviour during the initial and intermediate phase of testing, 
but similar final flow rates. 
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Figure 6.19 – Comparison of test results for GCL-2 in terms of flow rate 
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Figure 6.20 – Comparison of test results for GCL-1 in terms of flow rate 
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Figure 6.21 – Comparison of test results for GCL-3 in terms of flow rate 

 

For GCL-1 and GCL-3 comparisons done in accordance with the research objectives tend to 
show that it is difficult to establish general trends expressing the influence of the 
prehydration, the confining stress, and the hydraulic head, particularly for GCL-3 due to the 
high uncertainties obtained in this case. Nevertheless, it seems that, as for the effect on the 
flow rate, it is important to take into account both the initial water content of specimens 
(non-prehydrated vs prehydrated) and the confining stress. Clearly, the increase in the 
confining stress affects differently non-prehydrated and prehydrated specimens. For the latter, 
the final flow rates were about one order of magnitude higher in tests conducted under a 
confining stress of 50 kPa than in tests carried out at 200 kPa. In contrast, for non-prehydrated 
GCLs, similar flow rates were obtained for both confining stresses. Also, results seem to 
indicate that the flow rate increases as the hydraulic head increases. 

The observations made in terms of evolution of flow rates are in agreement with the 
observations made in terms of final flow rates, obtained in steady state conditions as the mean 
value of at least the last three consecutive flow measurements over a minimum time period of 
36 hours.  

Final flow rates are summarised in Tables 6.5. In overall terms, values obtained ranged from 
2.9×10-12 to 3.6×10-10 m3 s-1. Looking these results in terms of ratios, it can be seen that the 
ratio between the final flow rates obtained in tests carried out with non-prehydrated 
specimens to that of the tests carried out with prehydrated specimens ranged from 0.1 to 0.7, 
for tests conducted at 50 kPa, and from 1.3 to 13.2, for tests carried out at 200 kPa. This 
suggests that prehydration has a small effect on final flow rates when low confining stresses 
are applied, whereas it may have a significant effect when high confining stresses are used. 
This finding seems to be confirmed by the ratios between the final flow rates obtained in tests 
carried out under a confining stress of 50 kPa to that of the tests carried out under a confining 
stress of 200 kPa. They ranged from 1.1 to 1.9, for tests conducted using non-prehydrated 
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specimens and from 1.8 to 31.8, for tests carried out using prehydrated specimens. These 
results tend to confirm that, as for the effect on the flow rate, it is important to take into 
account the relationship between the initial water content of GCLs and the confining stress. 
Finally, the ratio between the final flow rates obtained in tests performed with a hydraulic 
head of 1.2 m to that of the tests carried out with a hydraulic head of 0.3 m ranged from 3.4 to 
12.7, for tests conducted using non-prehydrated specimens and from 1.8 to 29.5, for tests 
carried out using prehydrated specimens. This indicates that the final flow rate is higher for 
tests conducted with a high hydraulic head than for tests conducted with a low hydraulic head. 

 
Table 6.5 – Summary of the tests carried out on flow rate through composite liners 

 

Test No Soil GCL specimen GCL status Normal stress 
(kPa) 

Hydraulic 
head      
(m) 

Final flow rate       
(m3 s-1) 

1 S-1 GCL-1 n-ph 50 0.3 1.0×10-11 
2 S-1 GCL-1 n-ph 50 1.2 1.3×10-10 
3 S-1 GCL-1 n-ph 200 0.3 1.0×10-11 
4 S-1 GCL-1 n-ph 200 1.2 7.0×10-11 
5 S-1 GCL-1 ph 50 0.3 5.0×10-11 
6 S-1 GCL-1 ph 50 1.2 1.7×10-10 
7 S-1 GCL-1 ph 200 0.3 2.9×10-12 
8 S-1 GCL-1 ph 200 1.2 5.3×10-12 
9 S-2 GCL-2 n-ph 50 0.3 1.1×10-11 

10 S-2 GCL-2 (inverted) n-ph 50 0.3 5.6×10-12 
11 S-2 GCL-2 n-ph 25 0.3 1.5×10-11 

11bis S-2 GCL-2 n-ph 25 0.3 2.4×10-11 
12 S-2 GCL-3 n-ph 50 0.3 8.7×10-12 
13 S-2 GCL-3 n-ph 50 1.2 3.5×10-11 
14 S-2 GCL-3 n-ph 200 0.3 8.5×10-12 
15 S-2 GCL-3 n-ph 200 1.2 2.9×10-11 
16 S-2 GCL-3 ph 50 0.3 1.2×10-11 
17 S-2 GCL-3 ph 50 1.2 3.6×10-10 
18 S-2 GCL-3 ph 200 0.3 6.6×10-12 
19 S-2 GCL-3 ph 200 1.2 1.4×10-11 

Notes: n-ph=non-prehydrated; ph=prehydrated (moistened to about 100%) 

 

Final flow rates together with the radius of the wetted areas (presented in the next section) are 
used to determine the interface transmissivity, which will be used to interpret the results in 
Section 6.4.5. 

 

6.4.4.1.2 Wetted area 

In all small-scale tests, the radius of the wetted area was considered to be equal to the physical 
radius of the tests cell as a flow could always be observed at the downstream side of the cell, 
although in some tests this flow consisted just of some drops of water and could not be 
measured.  
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It could be observed that the effluent flow was not regularly coming out of the interface, but 
that there were some preferential flow paths all along the GCL specimen. To visualise the 
flow patterns in the interface, a blue dye (Comassie Blue) was injected in the influent flow in 
tests 9 and 10 (Figure 6.22). Results obtained tend to show the non-uniformity of the flow in 
the interface, regardless of the type of geotextile in contact with the geomembrane. Although 
at first glance the blue dye seems to involve a small area in the test 10 carried out with the 
woven geotextile in contact with the geomembrane (right side of the Figure 6.22), a closer 
look at the upper surface of the specimen shows some water pathways involving the entire 
area GCL area.  

Test 9Test 9

Flow pathways

Test 10Test 10Test 9Test 9Test 9Test 9

Flow pathways

Test 10Test 10

 
Figure 6.22 – View of the wetted area observed at the end of tests 9 and 10 carried out either 

with nonwoven geotextile facing the geomembrane or with woven geotextile facing the 
geomembrane 

 

On the other hand, when the tests were disassembled, it could be observed that the 
geomembrane surface in contact with the GCL was not uniformly wet, as can be seen in the 
example depicted in Figure 6.23, confirming the non-uniformity of the flow in the interface. 

 
Figure 6.23 – Example of the geomembrane lower surface in contact with 

the GCL at the end of test 9 
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These results tend to show the limitations of the modelling approaches presented in Chapter 4, 
which are based on the assumption that the flow in the interface is axi-symmetric and that the 
wetted area is circular. In addition, they indicate that the conceptualisation of a transmissive 
layer between the geomembrane and the GCL liner of uniform thickness may not be realistic, 
which highlights the need to improve the tools available for predicting the flow rate through 
composite liners.  

Despite the limitations addressed, a radius of the wetted area equal to the physical radius of 
the test cell (i.e. 0.1 m) was assumed in order to interpret the results in terms of interface 
transmissivity. 

 

6.4.4.1.3 Transmissivity 

As discussed in Chapter 4, for laboratory tests, the transmissivity of the interface can be 
evaluated in two different ways: either based on Equations by Harpur et al. (1993), neglecting 
the flow within the bentonite and assuming that the flow at the interface is axi-symmetric, or 
based on Equations by Touze-Foltz et al. (1999) or by Rowe (1998), assuming that the GCL, 
the underlying soil and the interface are fully saturated, as well as that the flow at the interface 
is axi-symmetric. Following the terminology adopted by Harpur et al. (1993), the first one is 
termed as apparent transmissivity, whereas the latter is herein termed as effective 
transmissivity. Equation (4.60) by Harpur et al. (1993) and Equation (4.27) by Touze–Foltz 
et al. (1999) are respectively used to evaluate the apparent and effective transmissivity in 
small-scale tests.  

This approach can not be followed for the intermediate and large-scale tests presented in 
Sections 6.4.4.2 and 6.4.4.3, since Equation (4.60) by Harpur et al. (1993) was developed for 
the case of laboratory tests where the value of Rc is known. Thus, for the intermediate and 
large-scale tests, an analytical solution has to be used, namely the solution that corresponds to 
zero flow at Rc with a hydraulic head equal to zero, i.e. field conditions. 

Table 6.6 summarises the results obtained sorted by GCL status (non-prehydrated and 
prehydrated). First, it can be seen that identical values for interface transmissivity were found 
in small-scale tests, regardless of the approach followed for evaluating this parameter 
(apparent or effective transmissivity). This suggests that the infiltration of water in the GCL is 
negligible. It also suggests that both tools may be appropriate to evaluate the transmissivity, in 
the case of laboratory tests. Despite this finding, considering that for the intermediate and 
large-scale tests the apparent transmissivity cannot be calculated because the radius of the 
wetted area, Rc, is unknown, for the sake of the coherence, the analysis undertaken henceforth 
is made in terms of effective transmissivity, hereafter termed simply as transmissivity.   

In the view of the research goals, Tables 6.7 and 6.8 presents the tests results sorted by 
confining stress and the hydraulic head, respectively.  
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Table 6.6 – Summary of the test results in terms of effective and apparent transmissivity 
sorted by GCL status 

Test conditions Effective transmissivity         
(m2 s-1) 

Apparent transmissivity        
(m2 s-1) 

GCLs 
Normal 
stress 
(kPa) 

Hydraulic 
head (m) Non-prehydrated Prehydrated Non-prehydrated Prehydrated

0.3 2.2×10-11 1.1×10-10 2.3×10-11 1.1×10-10 
50 

1.2 7.3×10-11 9.3×10-11 7.3×10-11 9.4×10-11 

0.3 2.1×10-11 5.7×10-12 2.2×10-11 6.5×10-12 
GCL-1 

200 
1.2 3.8×10-11 2.5×10-12 3.9×10-11 2.9×10-12 

0.3 1.7×10-11 2.5×10-11 1.9×10-11 2.7×10-11 
50 

1.2 1.8×10-11 2.0×10-10 2.0×10-11 2.0×10-10 

0.3 1.8×10-11 1.3×10-11 1.9×10-11 1.5×10-11 
GCL-3 

200 
1.2 1.5×10-11 7.0×10-12 1.6×10-11 7.8×10-12 

GCL-2  
(test 9) 

50 0.3 2.2×10-11 ---- 2.5×10-11 ---- 

GCL-2 (test 10, 
specimen 
inverted) 

50 0.3 1.0×10-11 ---- 1.3×10-11 ---- 

GCL-2  
(test 11) 

25 0.3 3.2×10-11 ---- 3.4×10-11 ---- 

GCL-2  
(test 11 bis) 

25 0.3 5.0×10-11 ---- 5.3×10-11 ---- 

 

 
Table 6.7 – Test results sorted by confining stress 

Test conditions 
Effective transmissivity 

(m2 s-1) GCLs 

Specimens status Hydraulic head (m) Stress = 50 kPa Stress = 200 kPa 

0.3 2.2×10-11 2.1×10-11 
Non-prehydrated 

1.2 7.3×10-11 3.8×10-11 

0.3 1.1×10-10 5.7×10-12 
GCL-1 

Prehydrated 
1.2 9.3×10-11 2.5×10-12 

0.3 1.7×10-11 1.8×10-11 
Non-prehydrated 

1.2 1.8×10-11 1.5×10-11 

0.3 2.5×10-11 1.3×10-11 
GCL-3 

Prehydrated 
1.2 2.0×10-10 7.0×10-12 
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Table 6.8 – Test results sorted by hydraulic head 

Test conditions 
Effective transmissivity 

(m2 s-1) 
GCLs 

Specimens status Confining stress 
(kPa) Hydraulic head = 0.3 m Hydraulic head = 1.2 m 

50 2.2×10-11 7.3×10-11 
Non-prehydrated 

200 2.1×10-11 3.8×10-11 

50 1.1×10-10 9.3×10-11 
GCL-1 

Prehydrated 
200 5.7×10-12 2.5×10-12 

50 1.7×10-11 1.8×10-11 
Non-prehydrated 

200 1.8×10-11 1.5×10-11 

50 2.5×10-11 2.0×10-10 
GCL-3 

Prehydrated 
200 1.3×10-11 7.0×10-12 

 

 

6.4.4.1.4 Soil water content 

The soil below the GCL was also analysed in terms of water content. Table 6.9 shows the 
initial water content, the final water content and the differences obtained between the initial 
and the final water contents of the soil specimens. As can be observed, for soil S-1, this 
parameter increased in all tests, suggesting that the soil absorbed water during the tests.  

For S-2, the variations between the initial and final water content were smaller than for S-1. 
For two tests, the water content of the soil even decreased, suggesting that the soil lost water 
during those tests.  

Results obtained need to be analysed with caution, because, to determine the soil water 
content, the wet mass of the soil was determined by weighting the soil inside the test cell. If 
for the initial water content, the measurement is accurate, as the cell is totally dry, for the final 
water content, this measurement may not be very accurate, since it is impossible to guaranty 
that the cell is totally dry. Consequently, the final water contents of the soil may be 
overestimated in some tests. Based on the discussion above and on results summarised in 
Table 6.9, it can be concluded that the variations between initial and final water contents of 
the soil were negligible in small-scale tests. 

 



Chapter 6      Experimental work on advective flow rates through composite liners due to geomembrane defects 

165 

Table 6.9 – Summary of the soil water contents  

Test No. Soil Initial water content (%) Final water content (%) Difference (%) 
(final minus initial)  

1 S-1 15.2 16.6 1.4 
2 S-1 15.3 15.7 0.4 
3 S-1 15.4 16.0 0.6 
4 S-1 15.2 15.9 0.7 
5 S-1 14.9 16.6 1.7 
6 S-1 15.2 17.2 2.0 
7 S-1 14.8 16.5 1.7 
8 S-1 15.1 15.5 0.3 
9 S-2 9.9 11.6 1.7 

10 S-2 9.5 9.8 0.3 
11 S-2 10.2 10.6 0.4 

11bis S-2 12.3 12.0 -0.3 
12 S-2 9.5 10.5 1.0 
13 S-2 9.5 10.2 0.7 
14 S-2 9.7 10.1 0.4 
15 S-2 9.6 9.8 0.2 
16 S-2 9.7 9.8 0.1 
17 S-2 9.6 10.6 1.0 
18 S-2 10.0 10.1 0.1 
19 S-2 10.2 9.7 -0.5 

 

6.4.4.2 Intermediate-scale test 

6.4.4.2.1 Flow rate 

The evolution of the influent flow rate for the intermediate-scale test is depicted in Figure 
6.24. Again, values of flow rates contain the error bars corresponding to the uncertainty 
calculated according to Appendix D. 

The flow decreased with time until a steady state was reached. As in this test the flow was 
very small, to reduce the scatter on flow measurements, the values of total flow rates plotted 
in this figure were re-calculated on a weekly basis.  

As regards the flow rate at the downstream side of the cell, no water was ever collected during 
the testing time in the container located at the bottom of the cell. 

The final flow rate, obtained as the mean value of at least the last ten consecutive flow 
measurements, over a minimum time period of 10 days, was equal to 2.7×10-12 m3 s-1.
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Figure 6.24 – Evolution of the flow rate for the intermediate-scale test

 

6.4.4.2.2 Wetted area 

As no flow was observed at the cell boundary where free flow is allowed, the size of the 
wetted area is unknown. Following the same procedure as in the small-scale tests, the blue 
dye was injected in influent flow after the steady state achievement (see Figure 6.24). Results 
obtained are illustrated in Figure 6.25. The blue dye involved an area with a radius of about 
1 cm. It should be noted that around the blue circle there is a grey coloration on a larger radius 
that could correspond to the wetted area obtained in the earlier phase of the test, when the 
flow rate was higher. This clearly shows that the wetted area evolves in time. The issue is to 
know if the equilibrium had already been attained, i.e. if the testing time was long enough to 
let the final wetted area be achieved. 

 

 

Figure 6.25 – View of the wetted area observed in intermediate-scale test

RC = 1 cmRC = 1 cmRC = 1 cm
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In addition, results of the final water content of the GCL specimen measured thanks to 
circular sub-specimens cut from the GCL suggest a higher wetted area in the neighbourhood 
of the hole as can be observed in Figure 6.26, even if it is not the only location in the 
specimen where the water content is high. Circular sub-specimen cut for measuring the final 
water content of the GCL are represented by the red circles overlapped in this figure. The 
peculiar distribution of the final water content in the GCL may be related with some scatter 
observed both in the mass per unit area and in the thickness of the sub-specimens. 
Measurements of mass per unit area carried out in the same sub-specimens than those that 
were used to estimate the final water content are illustrated in Figure 6.27. Similar findings, 
not included here for the sake of brevity, were observed for the thickness. Results obtained 
tend to confirm that the scatter observed in the water content may be related with the scatter 
observed simultaneously in the mass per unit area and in the thickness of the GCL. 

 
Figure 6.26 – Final water content of the GCL in intermediate-scale test 

 
Figure 6.27 – Mass per unit of area of the GCL in intermediate-scale test 
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The value of the wetted radius can also be estimated by solving Equation (4.33). Based on this 
approach, the value of Rc obtained was 5.6 cm. This value is about five times higher than the 
one that could be observed thanks to the blue dye, which brings back the issue previously 
addressed, regarding the equilibrium of the wetted area.  

Based on discussion above, to calculate the interface transmissivity, we adopted the value 
estimated using Equation (4.33), since it is more conservative than the one observed thanks to 
the blue dye.  

 

6.4.4.2.3 Transmissivity 

Based on the mean final flow rate and on the estimated radius of the wetted area 
(Sections 6.4.4.2.1 and 6.4.4.2.2), the transmissivity of the interface between the GCL and the 
geomembrane was evaluated by solving Equation (4.36). A transmissivity equal to 
4.5×10-12 m2 s-1 was obtained for the intermediate-scale test. 

 

6.4.4.2.4 Soil water content  

As for small-scale tests, the soil below the GCL was analysed in terms of water content. 
Figure 6.28 shows the initial and final values obtained from soil specimen collected at the soil 
surface. 
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Figure 6.28 – Initial and final water contents of the soil in intermediate-scale test 

 

Results obtained show that the water content of the soil decreased during the test, indicating 
that the soil lost water. This decrease seems to be linked with the increase in water content 
achieved by the GCL. The initial water content of the GCL was 9.5 % and after 6.5 months of 
testing it was 76.7 % (mean values). This behaviour of the GCL is consistent with the findings 
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obtained in Section 6.3.3, according to which GCLs present high values of suctions at their 
natural water content. Hence, GCLs are able to absorb water from the soil in order to reach 
pore pressure equilibrium. Results obtained are also consistent with the results obtained by 
Daniel et al. (1993) who observed that the GCLs absorb water from the soil.  Daniel et 
al. (1993) placed specimens of GCLs on sand soils with water contents ranging from 1 to 
17 % and measured the uptake of water in the GCL. They observed that after about four 
weeks, soils as dry as 1 % can result in GCL hydration to 50 %, whereas soils with a water 
content equal to 17 % can result in GCL hydration up to 175 %. 

 

6.4.4.3 Large scale-test 

6.4.4.3.1 Flow rate 

Figure 6.29 illustrates the evolution of the flow rate for the large-scale test. As for small-scale 
tests, to reduce the scatter on flow measurements, the total flow rate was re-calculated on a 
24 hour basis. During testing time, the air dissolved in tap water accumulated into the upper 
point of the pipe connecting the Mariotte bottle to the hole of the geomembrane. As a result, 
occasionally, it was necessary to remove the air from the pipe in order to guarantee that there 
was no interruption in water supply. For that, the hydraulic head was substantially increased 
(for about 2 meters) during a couple of minutes to force the air bubbles to escape through the 
purge also connected to the geomembrane hole. As can be observed in Figure 6.29, after this 
operation, the flow rate through the composite liner increased. It then stabilised again after a 
certain time. 

The final flow rate obtained in large-scale test was 2.5×10-11 m3 s-1. This value corresponds to 
a mean value of at least the last ten consecutive flow measurements over a minimum period of 
10 days.  
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Figure 6.29 – Evolution of the flow rate for the large-scale test  
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6.4.4.3.2 Wetted area 

As for the intermediate-scale tests, the radius of the wetted area is unknown a priori, as no 
edge effects could be noticed. To overcome this, once again some blue dye was injected in 
influent flow after the steady state achievement (see Figure 6.29). As can be observed in right 
side of the Figure 6.30, the wetted area is included in a circle with an approximately 0.11 m 
radius, which is not far from the wetted radius in small-scale tests.  

 

 
Figure 6.30 – View of the wetted area observed in large-scale test 

 

 

The dimensions and shape of the wetted area in large-scale test seem to be confirmed by the 
results of the final water content of the GCL, measured over 91 squares of approximately 
23.4 × 23.4 cm2 each, cut from the GCL specimen according to the grid shown in left side of 
the Figure 6.30. Results of final water content measurements are depicted in Figure 6.31. As 
can be seen, the highest water contents were found near the hole.  

It should be noted that observed dimensions for the wetted area are less than the ones 
estimated using Equation (4.33), although in the same order of magnitude. According to the 
calculation done using this equation, the radius of the wetted area would be 17.4 cm. 
Differences between observed and estimated values can be explained by the assumptions done 
in calculations, such as, for example, the uniformity of the flow in the interface, the saturation 
of GCL, etc. Furthermore, again, there is no guaranty that the wetted area observed thanks to 
blue dye is the final one. A longer testing time could increase the value of the radius of the 
wetted area.  

Based on these findings and for maintaining the coherence with the approach adopted in 
intermediate-scale test, the radius of the wetted area estimated by solving Equation (4.33) was 
adopted also in this test to calculate the interface transmissivity. 

 

 

RRcc = 11 cm= 11 cmRRcc = 11 cm= 11 cmRRcc = 11 cm= 11 cm
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Figure 6.31 – Final water content of the GCL in large-scale test 

 

6.4.4.3.3 Transmissivity 

Once again, the interface transmissivity was estimated by solving Equation (4.36), being 
based on the mean final flow rate and on the estimated radius of the wetted area indicated in 
Sections 6.4.4.3.1 and 6.4.4.3.2, respectively. A transmissivity equal to 5.7×10-11 m2 s-1 was 
obtained for the large-scale test. 

 

6.4.4.3.4  Soil water content  

Figure 6.32 shows the initial and the final water contents obtained from soil specimens 
collected in soil surface.  

The final water contents of the soil specimen are less than the initial ones, indicating that the 
soil lost water in this test. Again, this decrease was related with the increase in water content 
of the GCL, which due to its value of suction is able to absorb water from the soil. The initial 
water content of the GCL was 11.4 % and the final water content, after 6 months of testing, 
was 83.5 % (mean values). This increase in water content of the GCL is relatively higher than 
the one obtained in intermediate-scale test. This may be due to the fact that in the 
intermediate-scale test the GCL was submitted to a confining stress of 50 kPa, while in the 
large-scale test the GCL was submitted to a confining stress of 25 kPa.  

These findings are consistent with the data presented by Giroud & Daniel (2004). According 
to these authors, the volumetric content of hydration water, i.e. the amount of water used to 
hydrate the GCL, decreases with increasing values of the confining stress. 
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Figure 6.32 – Initial and final water contents of the soil in large-scale test 

 

6.4.5 Discussion 

6.4.5.1 Repeatability 

By observing Tables 6.5 and 6.6, it can be seen that both the final flow rate and the 
transmissivity were similar in tests 11 and 11bis, by taking into account the uncertainties 
associated to these measurements. The final flow rates obtained in these tests were, 
respectively, equal to 1.5×10-11 and to 2.4×10-11 m3 s-1. Corresponding transmissivities were 
equal to 3.2×10-11 and to 5.0×10-11 m2 s-1. 

These results tend to confirm the good repeatability of the test method, observed in the 
evolution of the flow rate during the testing time. Nonetheless, as in this study the 
repeatability was checked just for one test condition, this point should be further investigated. 

 

6.4.5.2 Influence of the soil on the transmissivity value 

By knowing that in the present study, on the one hand, two soils were used, which were 
characterised by two different hydraulic conductivities and, on the other hand, the thickness 
of the soil layer was not equal in small, intermediate and large-scale tests, the influence of 
these two parameters on interface transmissivity needs to be addressed. For that purpose, two 
numerical parametric studies were carried out.  

The first one consisted in estimating the transmissivity using Equation (4.27), for different 
hydraulic conductivities, by maintaining constant the other input parameters necessary to 
solve that equation. Besides the hydraulic conductivity of the soils used in this study (8×10-11 
and 3×10-10 m s-1), the hydraulic conductivities that will be considered for developing the 
empirical equations in Section 6.5 were also used (i.e. 1×10-8, 1×10-9, 1×10-10 m s-1). The 
other input parameters that were kept constant in calculations included: soil thickness equal to 
4.5×10-2 m; GCL hydraulic conductivity equal to 5×10-11 m s-1; GCL thickness equal to 
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6×10-3 m; hole radius equal to 1.5×10-3 m; radius of the wetted area equal to 0.1 m; hydraulic 
head equal to 0.3 m; and flow rate equal to 1×10-11 m3 s-1.  

Table 6.10 shows the results obtained in this parametric study. They indicate that the 
hydraulic conductivity of the soil under the GCL has a minor effect on interface 
transmissivity. 

 
Table 6.10 – Influence of the soil hydraulic conductivity on interface transmissivity 

Soil hydraulic conductivity 
(m s-1)  

Transmissivity  
(m2 s-1) 

8×10-11 2.1×10-11 

3×10-10 1.9×10-11 

1×10-8 1.7×10-11 

1×10-9 1.8×10-11 

1×10-10 2.1×10-11 

 

The second parametric study consisted also in estimating the transmissivity using 
Equation (4.27), for different soil thickness, by maintaining constant the other input 
parameters necessary to solve that equation. Besides the soil thickness used in tests at three 
scales (i.e. 0.045 m, for small-scale tests and 0.27 m, for intermediate and large-scale tests), 
other values were used, from the range that will be used for developing the empirical 
equations in Section 6.5, namely: 0.5 m, 1 m and 5 m. The other input parameters that were 
kept constant in calculations included: soil hydraulic conductivity equal to 1.0 ×10-9 m s-1; 
GCL hydraulic conductivity equal to 5×10-11 m s-1; GCL thickness equal to 6×10-3 m; hole 
radius equal to 1.5×10-3 m; radius of the wetted area equal to 0.1 m, hydraulic head equal to 
0.3 m; and flow rate equal to 1×10-11 m3 s-1.  

Table 6.11 shows the results obtained in this parametric study. They show that the variation in 
soil thickness has a negligible influence on the interface transmissivity. 

 
Table 6.11 – Influence of the soil thickness on interface transmissivity 

Soil thickness 
(m)  

Transmissivity 
(m2 s-1) 

0.045 1.8×10-11 

0.27 1.6×10-11 

0.5 1.5×10-11 

1 1.5×10-11 

5 1.4×10-11 

 

Based on results obtained in the parametric studies conducted, it can be assumed that the 
variations both in the hydraulic conductivity and in the soil thickness have a minor impact on 
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interface transmissivity. Thus, variations in interface transmissivity, which can be obtained in 
tests at different scales, cannot be linked with the differences in these parameters.  

 

6.4.5.3 Influence of the type of geotextile (nonwoven/woven) facing the geomembrane  

A comparison between results obtained in tests 9 and 10 (see Figure 6.19) suggests that there 
is an influence exerted by the way the GCL is installed. Contrary to what could be expected, 
during the 350 first hours of test, the specimen with the woven in contact with the 
geomembrane presented a higher flow rate than the specimen with the nonwoven side up. 
This unexpected behaviour may be due to bentonite piping. Effluent flow collected at the 
downstream side of the cell during the first phase of test 10 contained some bentonite that 
migrated from the GCL as can be seen in Figure 6.33. This GCL has powdered bentonite that 
apparently is looser than the granular one. Bentonite loss might also occur due to transport, 
handling and placement of the specimen in cell. As a result, flow paths could be created into 
the GCL through which the water could flow and a high radial flow rate was obtained during 
the beginning of test 10. It should be noted that, after the first 80 hours, the flow stabilised for 
about 200 hours, between 100 and 300 hours, and then dropped to an identical value as the 
one obtained in tests run with the nonwoven geotextile facing the geomembrane. To check the 
possibility of occurrence of subsequent drops in flow, test 10 was run for about 1000 hours, 
but the flow rate remained stabilised during the rest of the testing time.  

The behaviour exhibited by the flow rate in test 10, between 100 and 300 hours, may be the 
result of self-healing of the GCL, which may occur as the bentonite becomes hydrated. 
Self-healing of GCLs was reported by Orsini & Rowe (2001) and by Rowe et al. (2002), 
within the scope of a testing program conducted for the study of internal erosion of this type 
of liner.  

 

 
 

Figure 6.33 – Effluent flow collected during the first phase of test 10 
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The ratio between the final flow rates of the test carried out with the nonwoven geotextile 
facing the geomembrane (test 9) to that of the test conducted with the woven geotextile 
(test 10) is 2.0. A similar ratio was obtained in terms of transmissivity. Taking into account 
the uncertainties associated to these measurements, the differences obtained can be considered 
as insignificant.  

This finding is consistent with the results obtained by Harpur et al. (1993). It is also in 
agreement with the results obtained in preliminary tests performed within the scope of the 
present research, as reported by Touze-Folz et al. (2002a). For the geotextile mass per unit of 
area investigated, these results tend to show that the type of geotextile has a minor effect on 
the interface transmissivity, on the long term.  

 

6.4.5.4 Influence of the type of bentonite (granular versus powdered) 

Comparing the results obtained in tests 1 and 9 (Figure 6.34), it can be found that the flow 
rate and the transmissivity were identical in both tests. Similar final flow rates and 
transmissivities were also obtained in these tests. These results suggest that the nature of 
bentonite (granular or powdered) has no influence on these parameters. This point should be 
investigated for other products before establishing a generalisation of that result. 

These results differ from the results obtained by Harpur et al. (1993), which obtained a 
transmissivity about one order of magnitude lower for GCL with the powdered bentonite than 
for GCL with the granular bentonite. Differences between the results obtained in this study 
and the results obtained by Harpur et al. (1993) might be related with the differences in GCLs 
studied. Also, the test procedure was different. For small flows, Harpur et al. (1993) 
performed falling head tests, estimating the flow rate based on water fall in a 7 mm diameter 
capillary pipe during a certain time interval, whereas in this study, only constant head tests 
were performed. Therefore, the flow rate measurements were here always taken in steady 
state conditions. It seems that further research on this topic is needed before some general 
trends can be established. 
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Figure 6.34 – Comparison of the results in tests carried out with granular and 

powdered bentonite in GCLs 
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6.4.5.5 Influence of prehydration and of confining stress 

The transmissivity results (see Tables 6.6 to 6.8) tend to confirm that they are influenced by 
both the initial water content of GCL and the confining stress. Similar transmissivities were 
found in tests carried out with non-prehydrated and prehydrated GCLs, under a low confining 
stress. In contrast, higher transmissivities were found in tests conducted with non-prehydrated 
rather than with prehydrated specimens under a high confining stress. The ratio between the 
tests carried out with non-prehydrated specimens to that of the tests carried out with 
prehydrated specimens ranged from 0.1 to 0.8, for tests conducted at 50 kPa, and from 1.3 to 
15.4, for tests conducted at 200 kPa. Therefore, it seems that prehydration has a small impact 
on transmissivity for tests carried out under a low confining stress, but seems to have an 
important impact for tests carried out under a high confining stress. 

On the other hand, the increase in confining stress has a negligible effect on transmissivity 
when non-prehydrated GCLs are used, whereas it has a high impact on transmissivity when 
prehydrated specimens are used. For the latter, transmissivity was in general higher under a 
normal stress of 50 kPa than under a normal stress of 200 kPa, except for GCL-3 tested with a 
hydraulic head of 0.3 m. In this particular case, differences obtained were small. However, 
due to the significant uncertainties associated to flow rate measurements and, therefore, to 
transmissivity, no conclusions can be drawn. Disregarding these results, for prehydrated 
GCLs, the ratio between transmissivity of tests carried out under a confining stress of 50 kPa 
to that of tests conducted under a confining stress of 200 kPa ranged from 19.1 to 37.4.  

Differences obtained may be related with the prehydration process. Prehydrated specimens 
were kept under stress during one week, for water content homogenisation purposes, before 
being installed in the test cell. As a result, according to findings by Lake & Rowe (2000), for 
the confining stress applied, prehydrated specimens may not swell significantly after being 
installed in test cell, as their thickness is nearly stabilised after the water content 
homogenisation period. It follows that no significant variations in the quality of contact 
between GCL and geomembrane are expected due to GCL swelling. In this circumstance, in 
tests carried out under 50 kPa, the interface may be thicker than in tests carried out under 
200 kPa, which, according to Equation (4.52), leads to a high transmissivity.  

In opposition, non-prehydrated specimens hydrate and swell in the test cell during the entire 
test and thus the quality of the contact with geomembrane improves both under low and high 
confining stress. It follows that similar transmissivities can be found regardless of the 
confining stress applied. These results are consistent with the findings reported by Harpur et 
al. (1993), while they tested non-prehydrated GCLs. 

Based on the above findings, it seems difficult to conclude if it is advantageous to prehydrate 
the GCLs after their installation as recommended by the Comité Français des 
Géosynthétiques (1998). The coupled effect of water content and confining stress on the 
transmissivity needs further research. There should be more experimental work, using a wide 
range of water contents, confining stress and GCLs, to clarify if there is a couple water 
content/stress after which it is undoubtedly beneficial to hydrate the GCLs.  

 

6.4.5.6 Influence of the hydraulic head 

The increase in hydraulic head from 0.3 m to 1.2 m seems to have a smaller impact on 
non-prehydrated specimens than on prehydrated GCLs. The ratio between the transmissivity 
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of tests carried out with a hydraulic head of 0.3 m to that of tests conducted under a hydraulic 
head of 1.2 m ranged from 0.3 to 1.1, for non-prehydrated specimens and from 0.3 to 2.3, for 
prehydrated ones. However, as the higher ratios correspond in general to tests carried out 
under high confining stresses, where bigger uncertainties on flow rate measurements were 
found, differences obtained in transmissivity between these two hydraulic heads can be 
considered unimportant. More experimental data would be necessary to better know the 
influence of hydraulic head on transmissivity. 

 

6.4.5.7 Comparison between different scale tests 

6.4.5.7.1 Intermediate-scale versus small-scale 

Comparing the results obtained in intermediate-scale test and test 9, it is found that both the 
final flow rate and the interface transmissivity are about half an order of magnitude higher in 
small-scale tests than in intermediate scale test (transmissivity equal to 2.2×10-11 m2 s-1, for 
test 9 and equal to 0.5×10-11 m2 s-1, for intermediate-scale test). Considering the uncertainties 
obtained in these measurements, as well as the assumptions made for calculating the 
transmissivity (e.g. saturated hydraulic conductivity of the GCL, constant GCL thickness, 
etc.), the difference found between these two scale tests can be considered as slight, although 
the results obtained in small-scale tests are overestimated as compared with the results 
obtained intermediate-scale test. 

This overestimation is confirmed when looking at the wetted areas. Indeed, in 
intermediate-scale test the radius of the wetted area was about 10 times less than in 
small-scale tests. However, it should be noted that these tests were carried out in different 
time frames. Smaller wetted areas and, consequently, flow rates might be obtained also in 
small-scale tests if longer testing times would be considered. In addition, the fact that in 
intermediate-scale test be possible to observe a grey coloration on a larger radius around the 
wetted area identified thanks to blue dye (see Figure 6.25) suggests that, in the beginning, 
when the flow was higher, there was a larger wetted area. Hence, a smaller wetted area could 
be obtained in intermediate-scale test if longer tests could be performed. On the other hand, 
one does not know if the time was long enough in intermediate-scale test for the dye to reach 
the edge of the wetted area. Nevertheless, results obtain tend to show that transmissivities 
obtained in small-scale tests represent an upper bond. Numerical modelling of flow in 
unsteady state conditions could bring some light on the evolution of the wetted area, as well 
as on the evolution of the flow rate over time.  

 

6.4.5.7.2 Large-scale versus small-scale 

Comparing the results obtained in large-scale test and test 11 or test 11bis, it can be observed 
that the final flow rate is identical, both in the large and in the small-scale tests, considering 
the uncertainty associated to these measurements. As regards transmissivity, similar values 
were also obtained (3.2×10-11 m2 s-1and 5.0×10-11 m2 s-1, respectively for tests 11 and 11bis 
and 5.7×10-11 m2 s-1, for large-scale test). Nonetheless, a closer look at Figure 6.29 suggests 
that the fact that the large-scale test was re-started several times increased the flow. In fact, it 
can be observed that the flow was still decreasing after six months of testing. This tends to 
indicate that a lower flow rate could have been obtained if the test had been longer.  
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Comparisons can also be done in terms of wetted area. In these tests, a similar radius of the 
wetted areas was identified. However, as previously hypothesised, the large wetted area found 
in large-scale test could decrease in time if a longer test would have been carried out. 
Furthermore, it is unclear if the wetted area obtained corresponds to the large flow rate 
measured when restarting the test or to the flow rate at a quasi steady state. Also, there is no 
guarantee that the final wetted area had already been attained in the small-scale tests. As large 
wetted areas mean large transmissivities and large flow rates, values obtained both in 
large-scale and in small-scale tests may be overestimated. More experimental data would be 
necessary to better know the behaviour of flow rates on the long term. Knowledge on this 
topic can also be achieved through numerical modelling. 

 

6.4.5.7.3 Summary of Section 6.4.5.7 

Discussions addressed in Sections 6.4.5.7.1 and 6.4.5.7.2 tend to show that, for confining 
stresses considered in this study (25 and 50 kPa), transmissivity obtained in small-scale tests 
can be seen as an upper bond of the transmissivity obtained in intermediate and large-scale 
tests. This suggests that predictions on flow rates though composite liners due to 
geomembrane defects, which are based on transmissivity values obtained in small-scale tests, 
are conservative. 

 

6.4.5.8 Comparisons with results reported in literature 

6.4.5.8.1 Laboratory studies 

Results obtained in this study are consistent with the results reported by Harpur et al. (1993): 
the flow rates decreased throughout the tests until they reached a steady state. Nevertheless, it 
should be noted that tests carried out by Harpur et al. (1993) lasted two weeks both for tests 
conducted with the nonwoven and woven geotextile facing the geomembrane. This testing 
period was adopted by these authors based on the fact that calculated apparent transmissivity 
was found to vary somewhat above and below a certain average value, near the end of this 
period. Testing times longer than two weeks were not investigated. However, results obtained 
in test 10, carried out with the woven geotextile facing the geomembrane, and at low 
confining stress (tests 11 and 11bis) showed that two weeks may not be enough to reach a 
steady state in these cases. It follows that some tests performed by Harpur et al. (1993) may 
have probably terminated before the steady state had been truly reached. Therefore, lower 
final flow rates and corresponding interface transmissivities, could have been obtained in tests 
carried out at a low confining stress and with woven geotextiles facing the geomembrane.  

In overall terms, the transmissivity values given by Harpur et al. (1993) have a wide range 
than the ones obtained in this study. Values given by these authors were in the range 6×10-12 
to 2×10-10 m2 s-1, whereas the values obtained here with non-prehydrated GCLs vary between 
1.5×10-11 and 7.3×10-11 m2 s-1. These differences can be due to the fact that the normal stress 
was uniformly applied in the tests performed by Harpur et al. (1993), whereas, in the present 
work, that stress was applied in a limited number of contact points, as there is a granular layer 
on top of the geomembrane. This difference could also be related to the fact that Harpur et 
al. (1993) measured the flow in a falling head test, through a capillary pipe that is less 
accurate than a Mariotte bottle, which could induce some scatter on test results. 
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Regarding the results reported by Koerner & Koerner (2002), by comparing the flow rate 
obtained by these authors with the final flow rate obtained in tests 5 and 16, it is found that 
both results are in the same order of magnitude. The ratio between the flow rate of tests 
conducted by Koerner & Koerner (2002) to that of test 5 (GCL-1) and test 16 (GCL-3) is 
equal to 0.6 and 2.5, respectively.  

 

6.4.5.8.2 Field studies 

Flow rates measured in laboratory through a 3 mm diameter circular hole in the geomembrane 
can also be compared with the mean flow rates measured in secondary leachate collection 
system of landfills constructed with double composite liner systems (recall Section 4.7). For 
comparison purposes, flows will be expressed in litres per hectare/day (lphd). In this 
framework, two hole densities are considered: 2.5 holes per hectare, following the suggestion 
given by Giroud & Bonaparte (1989), and 15.3 holes per hectare, considering the literature 
review done in Section 2.3.1.3.3. Minimum and maximum values of flow rates obtained in 
laboratory tests conducted in small-scale tests are considered to calculate flow rates, for these 
two hole densities. Table 6.12 summarises results obtained. 

 
Table 6.12 – Calculated flow rates for two hole densities of 2.5 and 15.3 holes/ha, based on 

flow rates measured in the laboratory through a 3 mm diameter circular hole 

GCL status 
Flow rate measured in the 

present study 

(m3 s-1) 

Calculated flow rate 
for 2.5 holes/ha 

(lphd) 

Calculated flow rate 
for 15.3 holes/ha 

(lphd) 

Minimum 5.6 × 10−12 0.001 0.007 
Non-prehydrated  

Maximum 1.3 × 10−10 0.029 0.174 

Minimum 2.9 × 10−12 0.001 0.004 
Prehydrated  

Maximum 3.6 × 10−10 0.077 0.472 

 

It can be seen that calculated flow rates are in the range of 0.001 to 0.077 lphd assuming a 
hole density of 2.5 holes per hectare, and in the range of 0.004 to 0.472 lphd assuming a hole 
density of 15.3 holes per hectare. These flow rates are not in contradiction with the lower 
limit of a recent study sponsored by USEPA and reported by Majdi et al. (2002). According to 
this study, the flow rate ranged from 0 to 11 lphd, during the active period and from 0 to 
2 lphd, during the post-closure period. The difference between the values estimated based on 
laboratory tests and the ones reported from field studies may be related with the fact that the 
laboratory tests covered only a small range of possibilities with respect to shape, location and 
size of the holes, which may not be representative of what happens in the field, as discussed 
in Chapter 2. For instance, a hole in a wrinkled geomembrane or a defective seam would 
increase substantially the flow rate, as discussed by Rowe (1998) and by Touze-Foltz et 
al. (1999). These findings tend to confirm the need for further studies on flow rates through 
composite liners when the geomembrane exhibits wrinkles or defects of infinite length. 
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6.4.5.9 Comparison with field contact conditions 

There are two approaches for calculating the interface transmissivity. It can be estimated 
either based on experimental measurements of flow rate such as the ones described in this 
study, or through mathematical expressions by knowing the hydraulic conductivity of the soil 
liner above the geomembrane. As mentioned in Section 4.4.5, the mathematical expressions 
currently available were defined for soil liners and cover three contact conditions: poor, good 
and excellent.  

The values of interface transmissivity obtained in this study are plotted against the hydraulic 
conductivity of GCLs (see Table 6.1) together with the synthetic results obtained using 
Equations (4.56) to (4.58), respectively for poor, good and excellent contact conditions in 
Figure 6.35. This figure also includes the results reported by Touze-Foltz et al. (2002a), 
obtained in preliminary tests conducted within the scope of this research with composite 
involving either a needlepunched GCL (GCL-A) or a stitched bonded GCL (GCL-B). The 
results from Harpur et al. (1993) and from Koerner & Koerner (2002) are not plotted in the 
figure because, in the first case, there is no information available concerning the hydraulic 
conductivity of tested GCLs, and in the second, also there is no data regarding the wetted 
area, which makes it difficult to estimate the corresponding transmissivity. 
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Figure 6.35 – Comparison of experimental results to poor, good, and excellent field contact 

conditions

 

The values of transmissivity reported by Touze-Foltz et al. (2002a) were calculated based on 
flow rate measurements carried out through falling head tests. Those measurements were not 
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accurate enough. Thus, results reported by Touze-Foltz et al. (2002a) will be disregarded in 
the subsequent discussion. 

The error bars included in Figure 6.35 correspond to uncertainties estimated for 
transmissivities obtained in this study according to the methodology described in 
Appendix D. As can be seen in the figure, uncertainties are lower for GCL-1, as compared 
with uncertainties for GCL-2 and GCL-3. This is related with the uncertainties obtained for 
flow rates. 

Focusing on the results obtained in the present study, it can be seen that the empirical 
equations for estimating the interface transmissivity, which are based on the hydraulic 
conductivity of the GCL, overestimate the value of this parameter, even assuming an 
excellent contact condition for composite liners involving GCLs. As the interface 
transmissivity is an input parameter in analytical solutions to predict the flow rate though 
composite liners (see Section 4.5.2), it follows that the flow rate can also be overestimated. 

Based on these results, a new definition of contact conditions, herein called as “GCL contact 
condition”, seems to be necessary to determine an interface transmissivity representative of 
the contact between a geomembrane and a GCL.  

Following the rationale given by Rowe (1998) and by Touze-Foltz & Giroud (2003), who 
proposed quantitative definitions of contact conditions based on the relationship between the 
interface transmissivity and the hydraulic conductivity of the soil liner, the GCL contact 
conditions can be defined through a mathematical expression. The latter is based on 
experimental data obtained in this study, both for the interface transmissivity and for the 
hydraulic conductivity of the GCLs.  

In an attempt to obtain an expression consistent with the existing expressions that relate the 
interface transmissivity and soil layer hydraulic conductivity, it is assumed that the GCL 
contact condition is represented by a quasi-straight line parallel to the quasi-straight line 
representing the poor, good and excellent contact conditions in Figure 6.35 and passing 
through the highest value of transmissivity obtained in the present work (black dashed line in 
the figure). From a mathematical point of view, the GCL contact conditions can be 
represented by the expression below: 

 

GCLklog7155.02322.2log +−=θ  
(6.4) 

 

where θ is the interface transmissivity, and kGCL is the hydraulic conductivity of the GCL 
component of the composite liner. This equation can only be used in the following units: 
θ (m2 s−1), kGCL (m s−1). 

This definition of GCL contact condition in quantitative terms is very important as it can be 
used for estimating the interface transmissivity for composite liners involving GCL, and thus 
to predict accurately the flow rate through analytical solutions.  
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6.4.6 Summary of Section 6.4 

Section 6.4 presented and discussed the experimental work performed on flow rates through 
composite liners due to defects in the geomembrane. Composite liners consisting of a 
geomembrane over a GCL over a compacted soil liner were operated at three different scales: 
small (0.2 m diameter circular specimens), intermediate (1 m diameter circular specimen), and 
large (2.2 m width square specimen). The flow rate through these composite liners due to a 
circular hole in the geomembrane was measured. The purpose of these tests was to examine 
the influence of prehydration of the GCLs, of confining stress, and of hydraulic head on flow 
rates through composite liners due to defects in the geomembrane, as well as to compare 
different scale test results and, thus, to check the feasibility of an extrapolation of results 
obtained on small-scale tests to field conditions.  

Test results were observed in terms of flow rate, wetted areas, transmissivity and soil water 
content. Results were then interpreted, mainly, in terms of transmissivity, since this is a key 
parameter in the development of empirical equations for predicting the flow rate through 
composite liners involving GCLs (see Section 6.5). To assist the interpretation of results, 
preliminary tests were carried out to study: the repeatability of the test method (small-scale 
tests), the influence of the hydraulic conductivity of the soil and of soil thickness, the 
influence of the type of the geotextile (woven or nonwoven) in contact with the 
geomembrane, as well as the influence of the nature of the bentonite (granular or powdered) 
on the transmissivity.  

The most significant points to be drawn from the discussion addressed in Section 6.4.5 are as 
follows:  

• The test method used to perform the small-scale tests seems to be repeatable; 
• The hydraulic conductivity and the thickness of the soil seem to have a slight influence on 

the transmissivity;  
• The type of geotextile (woven or nonwoven) in contact with the geomembrane seems to 

have a minor effect on the interface transmissivity, on the long term, suggesting that rather 
than the characteristics of the upper geotextile, the characteristics of the interface are the 
ones that actually affect the flow rate through composite liners due to defects in the 
geomembranes, on the long term; 

• For the GCLs under study in the present work, the nature of the bentonite (granular or 
powdered) seems to have no significant effect on the flow rate and on corresponding 
interface transmissivity; 

• It seems that, as for the effect on the transmissivity, it is important to take into account 
both the initial water content (prehydration versus non-prehydration) and the confining 
stress. The prehydration seems to have a minor impact on transmissivity for GCLs under a 
low confining stress, but it seems to have a great impact for GCLs under a high confining 
stress, regardless of the hydraulic head applied. On the other hand, the increase in 
confining stress from 50kPa to 200 kPa does not seem to affect significantly the value of 
transmissivity for non-prehydrated GCLs. Similar transmissivity was found for both 
confining stresses, regardless of the hydraulic head. Conversely, it seems to have a great 
impact on transmissivity for prehydrated GCLs. The transmissivity was one order of 
magnitude higher in the tests conducted under a confining stress of 50 kPa than in the tests 
carried out at 200 kPa. Differences obtained were related to the prehydration process, 
which seems to have serious implications on the quality of contact between the GCL and 
the geomembrane, and, consequently, on transmissivity. Clearly, more research on the 
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influence of the set water content/confining stress on the flow rate through composite 
liners is needed;  

• The increase in the hydraulic head from 0.3 m to 1.2 m seems to have a smaller impact on 
the transmissivity of non-prehydrated specimens than on the one of prehydrated GCLs. 
Nonetheless, by taking into account the uncertainties associated to transmissivity in these 
tests, differences can be considered insignificant. More experimental data would be useful 
to fully understand the influence of hydraulic head on transmissivity; 

• Comparisons between both intermediate-scale and small-scale tests, and large-scale and 
small-scale tests suggest that for the confining stresses considered in this study (25 and 
50 kPa), the transmissivity obtained in small-scale tests can be seen as an upper limit of 
the transmissivity obtained in intermediate-scale and large-scale tests. This finding tends 
to show that predictions on flow rates through composite liners due to defects in the 
geomembrane, which are based on transmissivity values obtained in small-scale tests, are 
conservative; 

• Transmissivity values obtained by Harpur et al. (1993) cover a broader range (6×10-12 to 
2×10-10 m2 s-1) than the ones obtained in the present work with non-prehydrated 
GCLs (1.5×10-11 and 7.3×10-11 m2 s-1). This may be due to the fact that the normal stress 
was uniformly applied by Harpur et al. (1993), contrary to the present work in which the 
normal stress was applied through a granular cover plate, in a limited number of points. 
The difference can also be related to the fact that we have not tested as many different 
GCLs as those authors have; 

• Calculated flow rates for field conditions, based on laboratory measurements carried out 
in this study and assuming a hole density of 15.3 holes/ha (in agreement with the literature 
review carried out in Chapter 2), are less than the ones measured in field studies. This may 
be related with the fact that the present work considered only the case of a 3 mm diameter 
circular hole in the geomembrane. A hole in a wrinkled geomembrane or a defective seam 
would augment the flow rate, as emphasised by Rowe (1998) and by Touze-Foltz et 
al. (1999). Clearly, more studies involving different types of defects in geomembranes are 
needed; and 

• A comparison between the transmissivity obtained in tests at different scales and the field 
contact conditions, as defined in Section 4.5.3.1, shows that all experimental values 
obtained in this study are below the line of excellent contact conditions, regardless of the 
initial water content, the confining stress, and the hydraulic head used in the tests 
conducted. These results suggest that the existing mathematical expressions to estimate 
the transmissivity, based on hydraulic conductivity of the GCL liner, overestimate the 
interface transmissivity. Therefore, predictions of flow rate through composite liners 
involving GCLs, based on analytical solutions, may be inaccurate. Accordingly, a new 
contact condition, termed as “GCL contact condition”, defined in quantitative terms and 
based on the experimental data obtained, is proposed in this study to evaluate the interface 
transmissivity for composite liners involving GCLs. This can be seen as a step forward for 
accurate predictions of flow rate as the interface transmissivity is an input parameter in 
analytical solutions used to perform these predictions. 

Despite the clear improvement resulting from the definition of the GCL contact condition, a 
limitation of the analytical solutions is their complexity. Simple tools such as empirical 
equations are often used by the design engineers to predict the flow rate. In this context, new 
empirical equations for predicting the flow rate through composite liners, consisting of a 
geomembrane over a GCL over a CCL, are developed in the next section, for three different 
types of geomembrane defects: circular defects, defects of infinite length and damaged 
wrinkles.  
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6.5 EMPIRICAL EQUATIONS FOR EVALUATING THE FLOW RATE THROUGH COMPOSITE 
LINERS CONSISTING OF A GEOMEMBRANE OVER A GCL OVER A CCL 

Two sets of equations are developed to calculate the flow rate through composite liners 
consisting of a geomembrane over a GCL over a CCL. The first set corresponds to entirely 
new equations, developed based on the methodology used by Touze-Foltz & Giroud (2003) 
for composite liners consisting of a geomembrane and a CCL. This set of equations is herein 
termed as new equations. The second set of equations corresponds to a modification of the 
empirical equations proposed by Touze-Foltz & Giroud (2003) to consider the GCL contact 
conditions (GCL CC). This set of equations differs from the original equations only in the 
value of the contact factor, which from a physical point of view expresses the features of the 
interface. They are herein termed as Touze-Foltz & Giroud (2003) modified GCL CC. 

Definitions, parameters and assumptions relevant to the equations presented in this study are 
shown in Section 6.5.1. The methodology used for the development of the new empirical 
equations is briefly described in Section 6.5.2. The modification of Touze-Foltz & 
Giroud (2003) equations is presented in Section 6.5.3. A summary of the empirical equations 
obtained in this work is presented in Section 6.5.4. A discussion of these equations is 
presented in Section 6.5.5. Finally, conclusions are drawn in Section 6.5.6.  

 

6.5.1 Definitions, parameters, and assumptions 

6.5.1.1 Types and size of geomembrane defects 

The defects in geomembrane are viewed from two standpoints: type and size. Regarding the 
type, the ones as follows will be considered in this study: (i) circular defects located in a flat 
area of the geomembrane (e.g. punctures); (ii) defects of infinite length located in a flat area 
of the geomembrane (e.g. defective seams and long cuts or tears); and (iii) defects of any 
shape located on wrinkles in the geomembrane resulting in what is herein termed as damaged 
wrinkles. Defects of infinite length and damaged wrinkles are grouped under the generic term 
“two-dimensional defect”. 

The sizes of the defects considered will be identical to the ones adopted by Touze-Foltz & 
Giroud (2003) to develop empirical equations for composite liners comprising a 
geomembrane and a CCL for the sake of consistency, which is: 

• circular defects having radii between 1×10−3 and 5.64×10−3 m; 
• defects of infinite length having widths between 2×10−3 and 2×10−2 m; and 
• wrinkle widths ranging from 0.1 to 0.6 m.  

 

6.5.1.2 Hydraulic head above the geomembrane 

As mentioned in Chapter 2, leachate head above the geomembrane must not exceed 0.3 m 
according to most landfill regulations. However, large heads can be found in landfills as a 
result, for example, of inadequate performance of the leachate collection system, as reported 
by Rowe (1998). 



Chapter 6      Experimental work on advective flow rates through composite liners due to geomembrane defects 

185 

To cover a hydraulic head range representing most situations for landfill design and for the 
sake of consistency with Touze-Foltz & Giroud (2003), values ranging from 0.03 to 3 m will 
be considered in this study. 

 

6.5.1.3 Hydraulic conductivity and thickness of the GCL and CCL 

For composite liners consisting of a geomembrane over a GCL over a CCL the hydraulic 
conductivity and the thickness to be used in flow rate calculations are the equivalent hydraulic 
conductivity and the equivalent thickness, determined using Equation (4.48) and 
Equation (4.49), respectively. 

Discussions presented in Chapter 2 (see Figure 2.20) tend to show that the hydraulic 
conductivity of GCLs can vary between 1×10−12 and 1×10−10 m s−1. Thus, this is the range of 
hydraulic conductivity used in this study. As regards the soil layer above the GCL, the same 
range of values adopted by Touze-Foltz & Giroud (2003), to develop empirical equation for 
composite liners comprising a geomembrane and a CCL, is considered herein, as the one 
between 1×10−10 and 1×10−8 m s−1. 

Regarding thickness of these layers, values ranging from 0.3 to 5 m are considered for soil 
layer. This range was chosen because it covers most landfill regulations, as well as the 
applications of composite liners in other facilities such as reservoirs. For GCLs, values 
ranging from 6×10−3 to 14 ×10−3 m are considered in this study. This range covers the GCL 
thicknesses that may be expected in landfills as result of the coupling effect between 
confining stress and swelling, according to the results obtained by Lake & Rowe (2000) in 
constant stress swell tests.  

To sum up, the following range of parameters is considered in developing the empirical 
equations:  

• circular defects having radii between 1×10−3 and 5.64×10−3 m; 
• defects of infinite length having widths between 2×10−3 and 2×10−2 m; 
• wrinkle widths ranging from 0.1 to 0.6 m;  
• hydraulic heads ranging from 0.03 to 3 m;  
• hydraulic conductivities of the GCL component of the composite liner ranging 

from 1×10-12 to 1×10−10 m s−1;  
• hydraulic conductivities of the soil component of the composite liner ranging from 1×10-10 

to 1×10−8 m s−1;  
• thickness values of the GCL component of the composite liner ranging from 6×10−3 to 

14×10−3 m; and 
• thickness values of the soil layer component of the composite liner ranging from 0.3 to 

5 m.  
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6.5.2 New equations 

6.5.2.1 Methodology 

6.5.2.1.1 Approach 

The notion behind the methodology consists in developing empirical equations that are simple 
and give flow rate values as close as possible to the values rigorously calculated using 
available analytical solutions. The same approach is used for circular defects, defects of 
infinite length, and damaged wrinkles in order to avoid inconsistency such as the one found 
by Touze-Foltz (2001) and Foose et al. (2001), i.e. even considering the same contact 
conditions, the empirical equations for circular defects and the empirical equations for defects 
of infinite length lead to different values of interface transmissivity.  

As mentioned, the methodology used for developing this set of new equations derives mainly 
from the methodology adopted by Touze-Foltz & Giroud (2003). Essentially, it consists of 
selecting a mathematical expression for the empirical equations and selecting values for the 
unknowns of the empirical equations such that flow rates calculated using the empirical 
equations are as close as possible to flow rates rigorously calculated using existing analytical 
solutions. In this context, the first step consists in selecting the same form of mathematical 
expression for the empirical equations developed herein for all types of defects: circular, 
infinite length, and damaged wrinkles, considering the GCL contact conditions defined in 
Section 6.4.5.9. In order to be consistent with Touze-Foltz & Giroud (2003), the form of 
mathematical expression adopted for the empirical equations is presented below:  
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where Q is the rate of flow through a composite liner due to a circular defect in the 
geomembrane component of the composite liner; QL is the rate of flow per unit length through 
a composite liner due to a two-dimensional defect in the geomembrane component of the 
composite liner; Cc and Ctd are the contact condition factor, for circular defects and 
two-dimensional defects, respectively; hw is the hydraulic head on top of the geomembrane; a 
is the circular defect area; b is the width of the two-dimensional defect; ks is the equivalent 
hydraulic conductivity of the soil liner (GCL+CCL); λ is a factor; Hs is the equivalent 
thickness of the soil liner (GCL+CCL); and χ, ξ, κ and µ  are exponents. Equations (6.5) 
and (6.6) can only be used with the SI units as follows: Q (m3 s−1), QL (m2 s−1), hw (m), a (m2), 
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b (m), ks (m s−1), and Hs (m); dimension of Cc and Ctd are variable; χ, ξ, κ, λ and µ are 
dimensionless.  

In these equations, the term in brackets is the average hydraulic gradient, is, in the soil liner 
(GCL+CCL): 
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(6.7) 

 

6.5.2.1.2 Analytical solutions 

The analytical solutions used to evaluate the proposed empirical equations are 
Equation (4.27), for circular defects and Equation (4.47), for two-dimensional defects, 
according to Section 4.5.2. Regarding the latter, it is important to remember that there is no 
fundamental difference between the two types of two-dimensional defects since it is assumed 
that the holes in a wrinkle do not control the flow, and no assumption is made regarding the 
height or the shape of the wrinkle. Therefore, the two types of two-dimensional defects are 
defined by one characteristic: their width, b (see Figure 4.9). Nonetheless, there will be two 
empirical equations for two-dimensional defects, one for the defects of infinite length, and 
another for the damaged wrinkles, because these empirical equations can only be used in a 
narrow range of values of the parameters. The ranges of widths of defects of infinite length 
and damaged wrinkles do not overlap, as indicated in Section 6.5.1.1. 

An important aspect related with the analytical solutions is the value of the interface 
transmissivity. This parameter was calculated using the Equation (6.4), which is proposed in 
this study for GCL contact conditions (see Section 6.4.5.9). 

 

6.5.2.1.3 Determination of the unknowns of the empirical equations 

By adopting the same procedure as the one used by Touze-Foltz & Giroud (2003), the values 
of the unknown exponents and factors of Equations (6.5) or (6.6), i.e. χ, ξ, κ, Cc (or Ctd), λ 
and µ, are determined by comparison. That comparison is done between the values of Q, 
calculated using the empirical Equation (6.5) – or QL, calculated using the empirical 
Equation (6.6) – with the values of Q, calculated using the analytical solution expressed by 
Equation (4.27) – or the values of QL, calculated using the analytical solution expressed 
by Equation (4.47). 

This general methodology would give a range of values for each exponent and factor. For 
each exponent or factor, a value located within the given range is selected. In this study, the 
selected value was the mean value of the calculated cases.  

Determination of the unknowns of the empirical equations is done in three steps: 
(i) determination of the exponents χ, ξ and κ; (ii) determination of the contact factor (Cc or 
Ctd); and (iii) determination of the factor λ and exponent µ. This methodology is used for 
developing the empirical equations in the subsequent sections.  
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6.5.2.2 Determination of the empirical equations  

6.5.2.2.1 Determination of the exponents 

For a given hydraulic gradient, Equations (6.5) and (6.6) show that the only unknowns in the 
empirical equation are the exponents χ, ξ and κ. By selecting three values for the hydraulic 
gradient in such a way that covers the range of hydraulic heads and soil liner thickness 
(GCL+CCL) considered in this study (1.1, 2 and 4, according to preliminary calculations done 
in this work), systematic calculations were performed using the analytical solutions 
(Equations 4.27 or 4.47, depending on the type of defect). For each set of values of a (or b), 
and ks, the only variable is hw. Therefore, Equation (6.5), or Equation (6.6), becomes 
(Touze-Foltz & Giroud 2003): 

 

χ
whMQ =  

(6.8) 

 

where M is a parameter that has a constant value in this case. Equation (6.8) can be written as 
follows (Touze-Foltz & Giroud 2003): 

 

whMQ logloglog χ+=  
(6.9) 

 

Equation (6.9) means that, if the empirical equation were absolutely equivalent to the 
analytical solution, there would be a linear relationship, with a slope χ, between Q and hw in 
logarithmic scale. In fact, the empirical equation is not absolutely equivalent to the analytical 
solution and a linear regression analysis was used to obtain an approximate value of χ for 
each set of values of a (or b, depending on the type of defect) and ks. The mean value of χ was 
selected. The same methodology was then used to determine ξ and κ. Table 6.13 shows the 
mean values thus obtained.  

 

 
Table 6.13 - Exponents χ, ξ and κ obtained for different types of defects 

Type of defect χ ξ κ 

Circular defect 0.07 0.87 0.64 

Defect of infinite length 0.015 0.49 0.80 

Damaged wrinkle 0.31 0.30 0.88 
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6.5.2.2.2 Determination of the contact condition factor  

It is assumed that the contact condition factor, Cc or Ctd, depends only on interface 
transmissivity. Based on Equations (6.5) and (6.6), the contact condition factor can be 
determined for values of hydraulic gradient equal to 1, once the exponents χ, ξ and κ are 
known.  

The hydraulic gradient is equal to 1 when the ratio between the hydraulic head and the 
equivalent thickness of the soil liner (GCL+ CCL) is small (see Equation (6.7)). Accordingly, 
calculations were performed for the lowest hydraulic head, 0.03 m, and for the largest 
equivalent soil liner thickness considered in this study, about 5 m, using the analytical 
solutions expressed by Equation (4.27) and Equation (4.47), respectively for circular defects 
or for two dimensional defects, and for various sets of hw , a (or b) and ks.  

Values of the contact factor, Cc or Ctw, were then derived from the calculated values of Q and 
the values of χ, ξ and κ, determined as discussed in Section 6.5.2.2.1. Following the approach 
indicated by Touze-Foltz & Giroud (2003), the least square method was used to obtain the 
values of Cc (or Ctw), which leads to the minimum difference between analytical solutions and 
empirical equations for the calculations performed. The values below were obtained: 

 

• 0.0002, for circular defects; 
• 0.016, for defects of infinite length; and 
• 0.202, for damaged wrinkles. 

 

6.5.2.2.3 Determination of the unknowns in the average hydraulic gradient  

For determining the unknowns in the average hydraulic gradient, λ and µ, various values of Q 
were first calculated using Equation (4.27), for various sets of hw , a and ks indicated in 
Section 6.5.1. For the values of Q thus determined, the corresponding hydraulic gradients 
were calculated using the equation below: 

 

κξχ
swc

s kahC
Qi =  (6.10) 

 

In addition, for each set of values of hw, a and ks, values of the hydraulic gradient were also 
calculated using the empirical method, i.e. Equation (6.7), with arbitrarily selected initial 
values for λ and µ. Then, the least square method was used to obtain the values of λ and µ 
through an iterative process, solving successively for λ and µ. This leads to the minimum sum 
of differences between, on one hand, the hydraulic gradient calculated using Equation (6.7) 
and, on the other hand, the hydraulic gradients calculated using Equation (6.10). The same 
approach was used for two-dimensional defects. Table 6.14 shows the values thus obtained. 
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Table 6.14 - Factor λ and exponent µ obtained for different types of defects 

Type of defect λ µ 

Circular defect 0.31 0.79 

Defect of infinite length 0.35 0.94 

Damaged wrinkle 0.20 1.25 

 

 

6.5.3 Modification of Touze-Foltz & Giroud (2003) equations  

Considering that the features of the interface are the key issue on the flow rate through 
composite liners due to defects in the geomembrane, equations by Touze-Foltz & 
Giroud (2003) are modified to take into account the characteristics of the interface between a 
geomembrane and a GCL. The contact factor was thus recalculated for the GCL contact 
condition by using the methodology described in Section 6.5.2.2.2. The values below were 
obtained: 

 

•  0.0024, for circular defects; 
• 0.05, for defects of infinite length; and 
• 0.22, for damaged wrinkles. 

 

6.5.4 Summary of the empirical equations 

Table 6.15 summarises the empirical equations obtained in this study, both the new equations 
and the Touze-Foltz & Giroud modified GCL CC. 

It should be noted that these empirical equations can only be used for values of the parameters 
listed in Section 6.5.1. 

Furthermore, it must be pointed out that the equations for two-dimensional defects (defects of 
infinite length and damaged wrinkles) only account for flow perpendicular to the longitudinal 
direction of the defect. Therefore, these equations should only be used in cases where the ratio 
between the length and the width of the defect is large. If the ratio between the length and the 
width of the defect is small, the magnitude of the flow that takes place at the two ends of the 
defect will not be negligible, as highlighted by Touze-Foltz & Giroud (2003). 
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Table 6.15 - Empirical equations obtained for estimating the flow rate through composite 
liners consisting of a geomembrane over a GCL over a CCL 

Type of defect Empirical equation 
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The following symbols are used in this table: Q = flow rate; QL = flow rate per unit length; hw = hydraulic 
head on top of geomembrane; a = circular defect area; b = width of defect of infinite length or damaged 
wrinkle; ks = equivalent hydraulic conductivity of the soil liner (GCL + CCL); Hs = equivalent thickness of 
the soil liner (GCL+CCL), and GCL CC = GCL contact condition. These equations must be used with the 
following units: Q (m3 s−1), QL (m2 s−1), hw (m), a (m2), b (m), ks (m s−1), and Hs (m). 

 

6.5.5 Discussion of the empirical equations  

Considering that several approximations were done to develop the empirical equations, it is 
important to verify that the flow rate values obtained with the empirical equations are a good 
approximation of the flow rates rigorously calculated using analytical solutions. The accuracy 
of the empirical equations is observed from two perspectives. First, systematic comparisons 
are done between flow rates calculated using empirical equations and analytical solutions. 
Second, the flow rates calculated using empirical equations are compared with the flow rates 
obtained in intermediate-scale and large-scale tests.  

Regarding the first perspective, Figures 6.36 to 6.38 show the percentage of cases studied (i.e. 
percentage of flow rates calculated for different sets of parameters), as a function of the 
relative difference between the flow rate calculated using analytical solutions and empirical 
equations, for different types of defects. For comparison purposes, these figures also include 
flow rates calculated using the empirical equations reported in the literature and that are 
applicable to the range of parameters used in this study, namely the Equation by 
Gundseal (2001), for circular defects, and the Equation by Foose et al. (2001), for defects of 
infinite length. Recalling Section 4.5.3.2, the empirical equation by Gundseal (2001) is 
applicable to circular defects with radii between 0.25 mm and 12.5 mm. The Equation by 
Foose et al. (2001) is applicable when the ratio between the hydraulic conductivity of the 
interface and that of the soil component of the composite liner is higher than 3×104 (see 



Chapter 6      Experimental work on advective flow rates through composite liners due to geomembrane defects 

192 

second footnote of Table 4.3), which is always the case for the range of parameter values 
considered in this study. Lastly, Figures 6.36 to 6.38 also include the flow rates predicted 
using the empirical equations by Touze-Foltz & Giroud (2003), by assuming excellent contact 
conditions (ECC), which appear to be the closest ones to the GCL contact condition. 
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Figure 6.36 - Relative difference between analytical solution and empirical equations for 

circular defects 
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Figure 6.37 - Relative difference between analytical solution and empirical equations for 

defects of infinite length
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Figure 6.38 - Relative difference between analytical solution and empirical equations for 

damaged wrinkles 
 

For circular defects, Figure 6.36 shows that, for the cases studied, empirical equations 
obtained in this study (new equation and Touze-Foltz & Giroud (2003) modified GCL CC) 
led to similar flow rates. The relative difference between flow rates rigorously calculated 
using the analytical solution and approximate flow rates calculated using the empirical 
equations obtained in this study is identical. The curves almost overlap. It can also be seen 
that the empirical equations presented in this study are more accurate than the empirical 
equations by Gundseal (2001) and by Touze-Foltz & Giroud (2003) ECC. For the latter, the 
relative differences are always higher than 1000 %. 

These results suggest that both empirical equations obtained in this study can be used to 
predict the flow rate due to circular defects in the geomembrane. It also indicates that the 
predictions based on the empirical equation by Touze-Foltz & Giroud (2003) ECC 
significantly overestimate the flow rate though composite liners consisting of a geomembrane 
over a GCL over a CCL. 

For defects of infinite length, Figure 6.37 shows that, for the cases studied, empirical 
equations obtained in this study (new equation and Touze-Foltz & Giroud (2003) modified 
GCL CC) led to identical flow rates. The relative difference between flow rates rigorously 
calculated using the analytical solution and approximate flow rates calculated using the 
empirical equations obtained in this study is similar. Significant relative differences can be 
observed between flow rates calculated using the analytical solution and the flow rates 
calculated using either the equation proposed by Foose et al. (2001) or the empirical equation 
proposed by Touze-Foltz & Giroud (2003) ECC. For the latter, this difference is always 
higher than 100 %.  
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These findings tend to show that, for defects of infinite length, the empirical equations 
presented in this study are more accurate than the empirical equations by Foose et al. (2001) 
and by Touze-Foltz & Giroud (2003) ECC.  

For damaged wrinkles, Figure 6.38 shows that, in about 85 % of the cases, the relative 
difference between flow rates rigorously calculated using the analytical solution and 
approximate flow rates calculated using the new equation empirical equation developed in 
this study is less than 50 %. It also shows that, for damaged wrinkles, the new equation is the 
most accurate. 

The accuracy of the empirical equations developed in this study was at last studied by 
comparing the flow rates predicted for circular defects with the flow rates obtained in 
intermediate-scale and large-scale tests. Comparisons carried out are in Table 6.16 and Table 
6.17. 

 
Table 6.16 – Comparison between the flow rates calculated using the empirical equations for 

circular defects and the ones obtained in intermediate-scale tests 

Empirical equation 
Flow rate 
calculated 

(m3 s-1) 

Flow rate 
measured 

(m3 s-1) 

Relative 
difference 

(%) 

New equation 2.9×10-11 957 
This study 

Touze-Foltz & Giroud (2003) modified GCL CC 2.1×10-11 682 

Touze-Foltz & Giroud (2003) ECC 8.6×10-10 

2.7×10-12 

31 168 

 
Table 6.17 – Comparison between the flow rates calculated using the empirical equations for 

circular defects and the ones obtained in large-scale test  

Empirical equation 
Flow rate 
calculated 

(m3 s-1) 

Flow rate 
measured 

(m3 s-1) 

Relative 
difference 

(%) 

New equation 2.9×10-11 15 
This study 

Touze-Foltz & Giroud (2003) modified GCL CC 2.2×10-11 15 

Touze-Foltz & Giroud (2003) ECC 8.6×10-10 

2.5×10-11 

3 313 

 

From the observation of Table 6.16, there can be seen that the relative difference between the 
flow rate measured in the intermediate-scale test and the flow rate calculated using the 
empirical equations obtained in this study is much less (about 960 %) than the relative 
difference obtained between the flow rate measured and the flow rate calculated using the 
empirical equation proposed by Touze-Foltz & Giroud (2003) ECC, for excellent contact 
condition (about 31 168 %), which is considered to be the closest one to the GCL contact 
conditions.  

The same finding can be drawn from the large-scale test (Table 6.17). In this case, the relative 
difference between the flow rate measured and the flow rate calculated using the empirical 
equations obtained in this study is about 15 %. On the contrary, the relative difference 
between the flow rate measured and the flow rate calculated using the empirical equation 
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proposed by Touze-Foltz & Giroud (2003) ECC is about 3 300 %. These results show that 
there is a good agreement between flow rates calculated using the empirical equations 
presented here and the flow rates obtained in the large-scale test. 

Clearly, for composite liners involving GCLs, the empirical equations presented in this study 
are more accurate than the previously published empirical equations, even when assuming 
excellent contact conditions. In fact, these represent an improvement in available tools for 
calculating the flow rate through composite liners consisting of a geomembrane over a GCL 
over a CCL.  

On the other hand, the good agreement found, in the case of circular defects and defects of 
infinite length, between the flow rates calculated using the empirical equations developed in 
this work, and the flow rates calculated using Touze-Foltz & Giroud (2003) modified 
GCL CC, suggests that changing the contact factor is enough to improve the existing 
empirical equations. For the range of parameters used in this work, changes in exponents and 
in the hydraulic gradient factor did not improve significantly the accuracy of the empirical 
equations for predicting the flow rate through composite liners due to circular defects and 
defects of infinite length.  

Based on the above discussion and taking into account that both the exponents and the 
hydraulic gradient factor of the empirical equations by Touze-Foltz & Giroud (2003) are 
familiar to design engineers, for circular defects and for defects of infinite length, it is 
suggested to adopt the empirical equations obtained in this study by modifying the contact 
factor, i.e. equations termed as Touze-Foltz & Giroud (2003) modified GCL CC. For 
damaged wrinkles the new empirical equation, developed according to Section 6.5.2.2, is 
recommend as it proved to be in better agreement with the analytical solution. 

Table 6.18 summarises the final empirical equations recommended in this study for predicting 
the flow rate through composite liners consisting of a geomembrane over a GCL over a CCL. 

 
Table 6.18- Recommended empirical equations for estimating the flow rate through 

composite liners consisting of a geomembrane over a GCL over a CCL 

Type of defect Empirical equation 
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The symbols as follows are used in this table: Q = flow rate; QL = flow rate per unit length; hw = hydraulic 
head on top of geomembrane; a = circular defect area; b = width of defect of infinite length or damaged 
wrinkle; ks = equivalent hydraulic conductivity of the soil liner (GCL + CCL); and Hs = equivalent 
thickness of the soil liner (GCL+CCL). These equations must be used with the units as follows: Q (m3 s−1), 
QL (m2 s−1), hw (m), a (m2), b (m), ks (m s−1), and Hs (m). 
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6.5.6 Summary of Section 6.5 

Section 6.5 focused on the development of the empirical equations for predicting the flow rate 
through composite liners consisting of a geomembrane over a GCL over a CCL. Two sets of 
equations were developed. One corresponding to entirely new equations, developed based on 
the methodology used by Touze-Foltz & Giroud (2003). The other set was obtained 
modifying the empirical equations proposed by Touze-Foltz & Giroud (2003) by recalculating 
the contact factor to take into account the GCL contact condition. Circular defects, defects of 
infinite length and damaged wrinkles were considered. 

In order to study the accuracy of these empirical equations, flow rates calculated using the 
two sets of equations were compared with the flow rates obtained using both analytical 
solutions and previously published empirical equations, as well as with the flow rates 
measured in the intermediate-scale and large-scale tests.   

For the range of parameters used in the present work, it was observed that the empirical 
equations presented in this study are in better agreement than the empirical equations reported 
in literature, both with the analytical solutions and with the flow rates measured 
experimentally. Relative differences between the flow rate measured in large-scale test and 
the flow rate calculated using the empirical equations obtained in this study were about 15 %. 
This tends to validate the empirical equations proposed in this study from an experimental 
point of view. 

For circular defects and defects of infinite length it was found that empirical equations 
presented in this study (new equation and Touze-Foltz & Giroud (2003) modified GCL CC) 
led to similar flow rates. This suggests that, for these types of defects, both equations can be 
used for predicting the flow rates. For damaged wrinkle, the new equation proved to be the 
most accurate.  

Based on the above findings, for circular defects and for defects of infinite length, modified 
equations were recommended for predicting the flow rate composite liners consisting of a 
geomembrane over a GCL over a CCL. For damaged wrinkles, the new equation is suggested.  

Equations proposed here provide engineers with simple empirical equations that can give a 
good approximation of flow rates through composite liners consisting of a geomembrane over 
a GCL over a CCL, as compared with the previous equations reported in literature. This 
represents an improvement in available tools for predicting flow rates with the advantage that 
were validated experimentally.  

 

6.6 SUMMARY AND CONCLUSIONS 

This chapter first presented the experimental work carried out to assess the water retention 
curves (relationship between the volumetric water content and suction) of GCLs. The 
suitability of the filter paper method to assess the suction of GCLs was addressed. Results 
obtained suggest that the filter paper is appropriate to measure the suction of GCLs. Based on 
this finding, suctions and correspondent volumetric water contents were measured, without 
stress, for three different products. Water retention curves of GCLs could thus be determined 
based on experimental data. Its knowledge, often represented by the van Genuchten 
parameters, is necessary in modelling the flow rate through composite liners under 
unsaturated conditions. This is the case of the GCLs on the short term, as they are typically 
installed in landfill bottom lining systems at their natural water content.  
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Then, Section 6.4 presented and discussed the experimental work performed on flow rates 
through composite liners due to defects in the geomembrane. Composite liners consisting of a 
geomembrane over a GCL over a CCL were simulated in tests at three scales: small (circular 
specimens 0.2 m in diameter), intermediate (circular specimen 1 m in diameter), and large 
(square specimen 2.2 m in width). The tests conducted aimed at studying the influence of the 
prehydration of the GCLs, the influence of the confining stress, and the influence of the 
hydraulic head on flow rates through composite liners due to defects in the geomembrane, as 
well as at comparing different scale test results and thus check the feasibility of an 
extrapolation of results obtained on small-scale tests to field conditions.  

Final flow rates, obtained in steady state conditions, together with the radius of the wetted 
areas, were used to calculate the transmissivity of the interface between the geomembrane and 
the GCL through analytical solutions. Transmissivity was then used for interpreting the test 
results. The main conclusions that can be drawn from the experimental work performed are as 
follows: (i) it seems that, as for the effect on the transmissivity, it is important to consider the 
relationship between the initial water content of the GCLs (prehydration versus 
non-prehydration) and the confining stress. The prehydration seems to have a minor impact 
on transmissivity for GCLs under a low confining stress, but it seems to have a significant 
impact for GCLs under a high confining stress. In addition, the increase in the confining stress 
from 50kPa to 200 kPa does not seem to affect significantly the value of transmissivity for 
non-prehydrated, whereas it seems to affect seriously the transmissivity of prehydrated GCLs; 
(ii) the increase in hydraulic head from 0.3 m to 1.2 m seems to have smaller impact on the 
transmissivity of the non-prehydrated specimens than on the prehydrated GCLs. However, 
due to the high uncertainties associated to the transmissivity, the differences may be 
considered unimportant; (iii) the comparisons between, on the one hand, intermediate-scale 
and small-scale tests and, on the other hand, large-scale and small-scale tests suggest that for 
the confining stresses considered in this study, i.e. 25 and 50 kPa, the transmissivity obtained 
in small-scale tests can be seen as an upper limit of the transmissivity obtained in 
intermediate-scale and large-scale tests. Thus, predictions on flow rates through composite 
liners due to defects in the geomembrane, based on transmissivity values obtained in 
small-scale tests, are conservative; and (iv) a comparison between the transmissivity obtained 
in tests at different scales and the field contact conditions shows that all experimental values 
obtained in the present study are below the line of excellent contact conditions. This has 
serious implications on values of flow rate calculated using analytical solutions, because the 
transmissivity is an input parameter in those solutions.  

Based on this latter finding, a new contact condition, termed as “GCL contact condition”, was 
defined based on the experimental data obtained in this study. It is expressed by an equation 
that related the hydraulic conductivity of the GCLs with the transmissivity. The extension of 
the contact conditions for GCLs is a step forward for accurate predictions of the flow rate 
through composite liners involving GCLs.  

Despite the improvement achieved by the definition of the GCL contact conditions, analytical 
solutions for calculating the flow rate are complex. Alternative tools, simple but giving a good 
approximation of the flow rate as compared with analytical solutions, are often used by the 
design engineers. As for composite liners consisting of a geomembrane over a GCL over a 
CCL there was a lack on this type of tool, empirical equations for predicting the flow rate 
were developed in Section 6.5, for three types of defects (circular defects, defects of infinite 
length and damaged wrinkles).  

Flow rates calculated using the empirical equations developed in this study are in better 
agreement with the flow rates measured experimentally than the empirical equations reported 
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in literature. These equations correspond thus to an improvement in available tools for 
predicting the flow rate through composite liners involving GCLs.  
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7 CONCLUSIONS AND PERSPECTIVES 

7.1 CONCLUSIONS 

This dissertation concerns investigations into fluid migration through geomembrane seams 
and through composite liners involving geomembranes and GCLs. The research was 
undertaken to address the problems of geomembrane seams in terms of fluid-tightness and of 
flow rate through composite liners due to defects in the geomembrane. Original laboratory 
tests, modelling both the gas migration through high density polyethylene geomembranes 
seams and the flow rate through composite liners comprising a geomembrane over a GCL 
over a compacted clay liner due to circular defects in geomembranes, were performed. 
Advances were achieved in experimental modelling of the fluid migration through 
geomembranes liners. This led to a better understanding of the fundamental processes 
involved in leachate migration in landfill liners. In addition, empirical equations were 
developed for predicting the flow rate through the above mentioned type of composite liners, 
which provides engineers with simple design tools and can thus contribute to construct safer 
landfill bottom liners.  

Gas migration through geomembrane seams was addressed through gas permeation pouch 
tests carried out using pouch specimens consisting of true seams made by the thermal-hot dual 
wedge method. In situ, the quality of this type of seams is typically evaluated by the results of 
the pressurised dual test method. This method provides only qualitative information about the 
fluid-tightness of the seams despite their importance to ensure the performance of the 
geomembrane as barriers. Therefore, small-scale gas permeation pouch laboratory tests were 
conducted using a 1.2 m permeation cell, for assessing quantitatively the quality of the 
geomembrane seams. Another goal of these tests was to study the appropriateness of the 
pressurised dual method. Two different gases (nitrogen and carbon dioxide) were used. In 
addition, large-scale gas permeation pouch tests were performed both in laboratory, using a 
10 m long specimen, and in field conditions, using a 5 m long specimen exposed to weather 
conditions. The aim of the large-scale tests was to complement the small-scale tests and to 
study the suitability of the gas permeation pouch test to control the quality of the thermal-hot 
dual wedge seams in situ, as an alternative to the pressurised dual method. Also, the 
mechanical strength of the seams was studied through peel and shear tests, in order to 
investigate a possible correlation between gas permeation pouch test results and mechanical 
strength of the seams.  

The results obtained in gas permeation pouch tests were interpreted in terms of permeation 
coefficients, evaluated in pseudo steady state conditions, and in terms of time constant, 
estimated in unsteady state conditions. The most significant findings to be drawn from the 
results obtained are as follows: (i) the gas permeation pouch test was able to identify poor 
seams which would have been accepted in the field after a control based on the pressurised 
dual seam method, suggesting that the tools presently used on site need to be improved; (ii) 
the comparison between the results of gas permeation pouch tests and mechanical tests 
showed that the poorest seam from a mechanical point of view is also the poorest from a gas 
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permeation point of view; this comparison also suggests that mechanical tests are better 
adapted than gas permeation pouch test to optimise seam parameters and to compare aged 
specimens in landfills to new specimens; (iii) gas permeance was approximately half an order 
of magnitude higher to carbon dioxide than to nitrogen; and (iv) it appears that it is possible to 
assess the quality of double thermal-hot dual wedge seams, from a non-destructive test 
conducted on site, by determining the time constant. 

Based on the above findings, it can be concluded that the gas permeation pouch test may be a 
useful tool to assess the quality of seams by quantitative measurement of the time constant, 
providing an essential and complementary test to the mechanical tests.  

Regarding the flow rates through composite liners involving GCLs, the literature review 
carried out suggests that the amount of liquid flow at the interface between the geomembrane 
and the GCL depends on many parameters, such as the hydraulic conductivity of the GCL, the 
liquid head on top of the liner, the confining stress over the liner system, the contact 
conditions between the geomembrane and the GCL, the thickness of the liner system, the type 
and location of the defect in the geomembrane, etc. 

The effect of the hydraulic conductivity of GCLs is difficult to address as it is not constant. 
These materials are typically installed in landfills at their natural water content. Therefore, the 
saturated hydraulic conductivity is not representative of the field conditions, at least in the 
short period before GCLs reaching saturation. The unsaturated hydraulic conductivity can be 
estimated by predictive methods based on knowledge of the relationship between the suction 
and the volumetric water content, known as water retention curve and often represented by the 
van Genuchten parameters. 

Data on GCLs’ suction is scarce and thus experiments studying the suitability of the filter 
paper method for evaluating the suction of the GCLs were performed. The results obtained 
showed that the filter paper method can be used for measuring the suction of these products. 
Based on this finding, suction measurements were carried out, under no stress, for three 
products. Correspondent volumetric water contents were also estimated experimentally. 
Water retention curves were determined and then the van Genuchten parameters were 
evaluated by fitting a theoretical water retention curve to the experimental data.  

The relative importance of GCLs prehydration, liquid head above the liner, and confining 
stress over the liner system, for the flow rate through composite liners due to defects in the 
geomembrane, was studied through laboratory tests. Composite liners comprising a 
geomembrane, with a circular hole, over a GCL over a compacted clay liner, were simulated 
in tests at three scales, and the flow rate at the interface between the geomembrane and the 
GCL was measured. Small-scale tests were performed using a 0.2 m diameter cell. An 
intermediate-scale test was conducted using a 1 m diameter cell, and a large-scale test was 
performed in a square 2.2 m wide test facility. The intermediate and large-scale tests were 
intended to complement the small-scale tests and to check the feasibility of an extrapolation 
of the results obtained on small-scale tests to field conditions. 

Final flow rates, obtained in steady state conditions, together with the observation of the 
wetted areas, made possible to estimate the transmissivity values of the interface between the 
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GCL and the geomembrane. These values were then used for interpreting the test results.  

The influence of the prehydration of the GCL was studied by carrying out tests either with 
non-prehydrated (natural water content) or with prehydrated specimens (moistened to water 
content of 100%). The effect of the confining stress was addressed by performing tests under 
50 kPa and 200 kPa. Finally, the influence of the hydraulic head was examined conducting 
tests with two hydraulic heads: 0.3 and 1.2 m.  

The main findings to be drawn from the results can be summarised as follows: (i) it seems 
that, as for the effect on the transmissivity, it is important to take into account the relationship 
between the initial water content and the confining stress. The transmissivity does not seem to 
be affected by prehydration when low confining stresses are used, whereas it seems to be 
affected when high confining stresses are used. In addition, the transmissivity does not seem 
to be influenced by the increase in the confining stress when non-prehydrated GCLs are used, 
but it seems to be significantly affected when prehydrated GCLs are used. The differences 
obtained might be related with the prehydration process, which seems to have a significant 
influence on the quality of the contact between the geomembrane and the GCL and, therefore, 
on the transmissivity; (ii) the transmissivity does not seem to be significantly influenced by 
the increase in hydraulic head; (iii) the comparisons between, on the one hand, intermediate 
and small-scale tests and, on the other hand, large and small-scale tests, suggest that, for the 
confining stresses considered in this study (25 and 50 kPa), the transmissivity obtained in 
small-scale tests can be seen as an upper limit of the transmissivity obtained in intermediate 
and large scale tests, which indicates that predictions on flow rates through composite liners, 
due to defects in the geomembrane, based on transmissivity values obtained in small-scale 
tests are conservative; and (iv) the flow rates calculated for field conditions, based on the 
experimental data obtained in this work, and assuming a hole density of 15.3 holes per hectare 
(in accordance with the literature review carried out on this topic), are less than the ones 
measured in field studies. This discrepancy can be attributed to the fact that, in the present 
study, only circular holes in the geomembrane were considered. Higher flow rates would have 
been obtained if long defects or a damaged wrinkle had been considered.  

Based on transmissivity values obtained experimentally, empirical equations for predicting 
the flow rate through composite liners comprising a geomembrane over a GCL over a 
compacted clay liner were developed. Equations were presented respectively for circular 
defects, for defects of infinite length, and for damaged wrinkles, as it was observed that 
accurate predictions of flow rate could be obtained if more than one type of defects are 
considered. For the range of parameters used to develop these equations, it was found that the 
empirical equations presented in this study are in better agreement than the empirical 
equations reported in literature, both with the analytical solutions and with the flow rates 
measured experimentally. Relative differences between the flow rate measured in large-scale 
test and the flow rate calculated using the empirical equations obtained in this study was 
about 15 %, which tends to validate these empirical equations from an experimental point of 
view. The equations proposed here provide engineers with simple tools that give a good 
approximation of flow rates through composite liners consisting of a geomembrane over a 
GCL over a CCL as compared with the previous equations reported in literature. This 
represents an improvement in the existing methods for predicting the flow rates through this 
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type of composite liners.  

 

7.2 PERSPECTIVES 

The investigation of fluid migration through geomembrane seams warrants further work. It 
would be appropriate to use geomembranes manufactured with different raw materials rather 
than to use high density polyethylene, as well as to consider other types of seams, such as for 
example, the extrusion seams.  

The gas permeation pouch test can also be used as a tool for studying the long-term behaviour 
of thermal-hot dual wedge seams exposed to sunlight. Over the last years, geomembranes 
have been used in landfill facility elements, which are often permanently exposed to sunlight 
without any external protection (e.g. leachate lagoons). There have been some studies on the 
long term mechanical behaviour of geomembrane seams exposed to sunlight, but the 
evolution of the fluid-tightness remains unstudied. Seams are vulnerable areas due to the 
mechanical and thermal solicitations during the seaming process. A study in this topic can be 
carried out in complement to a research programme in progress at Laboratório Nacional de 
Engenharia Civil to address the evolution of the mechanical properties of 2mm-thick high 
density polyethylene geomembrane seams exposed to sunlight for several years, in several 
Portuguese landfills. 

The investigation about flow rate through composite liners due to defects in geomembranes 
needs to be extended to include other GCLs, as well as other geomembranes, such as for 
example textured geomembranes. In addition, as the transmissivity depends on the hydraulic 
conductivity of the GCL, which seems to increase with the increase in the concentration and 
cation valence of the permeant liquid, the effect of the permeant liquid on the interface 
transmissivity should be examined. 

The numerical modelling of the flow rate through composite liners comprising unsaturated 
GCLs needs also to be addressed. This can serve to understand which is the long-term 
influence on flow rates and wetted areas of the variation in transmissivity observed on 
short-term, particularly the variations related with the coupled effect between the confining 
stress and water content of the GCLs. As in field conditions GCLs are usually under stress, a 
critical point for the numerical modelling is to know the retention curves of the GCLs under 
stress. Actually, as a consequence of this study, suction measurements for GCLs under stress, 
based on the filter paper method, are already under way and the numerical modelling on this 
issue will be carried out in a near future. 

The empirical equations for calculating the flow rate through composite liners due to 
geomembrane defects can be extended to composite liners consisting of just a geomembrane 
over a GCL.  
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APPENDIX A: CALCULATION OF THE PARTIAL PRESSURE OF NITROGEN 
OUTSIDE THE SPECIMEN WHEN PLACED IN ATMOSPHERE 

 

The atmosphere consists of nitrogen (N2, number of moles: nN2), water vapour (W, number of 
moles: nW) and other gases (OG, number of moles: nOG). The partial pressure of nitrogen 
outside the specimen, Goutp , when placed in atmosphere is then: 
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where atmp  is the atmospheric pressure. The Equation (A.1) can also be written as follows: 
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In Equation (A.2), the ratio 



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 can be expressed as a function of the specific 

humidity r . This is the ratio of the mass of water vapour on the mass of dry air 
(nitrogen + other gases), which can be easily obtained from the psychometric chart, when 
temperature and relative humidity of atmosphere are recorded:  
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where Mwater, MN2 and MOG are the molar masses of water, nitrogen and other gases, 
respectively. 

The concept of dry air molar mass Mair is generally used: 
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leading to the following by combining Equations (A.3) and (A.4): 
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considering Mair = 29g and Mwater = 18g . 

In Equation (A.2), the ratio 
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2 is equal to 0.7808. By combining Equations (A.2) 

and (A.5), it is possible to express Goutp  as a function of atmp  and r : 
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APPENDIX B: CALCULATION OF THE PARTIAL GAS PRESSURE  

IN THE SPECIMEN WHEN IMMERSED IN WATER 
 

 

The partial gas pressure, )(tpGin , depends on the mole quantity, )(tnG , in the specimen. This 
quantity is determined from the same quantity calculated in the preceding step: )( ttnG δ− , 
from equation tfttntn GGG δδ ')()( −−= , which implies that 'Gf  is known. Since the quantity 

)(tpGin  is required for the calculation of 'Gf , it is necessary to determine )(tpGin  directly 
from )( ttnG δ− , as follows: 
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In equation (B.1), )(tp WG+  is the absolute total pressure measured inside the pouch specimen, 

Gn  is the mole quantity of gas G , and WGn +  is the total mole quantity in the specimen 

(elements G  and W ). At time t , the pressure ratio 








+ )t(p
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WG

Gin  is assumed to be 

approximately the same as the mole quantity ratio at time tt δ− : 
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δ
δ , which is 

acceptable if the registering time step tδ  is small enough. The different steps of calculation 
are then: 
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Gf  and Gp∆  were determined after the experiment where the pouch specimen is immersed in 
gas G. 
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(b) At time tt δ=  
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Etc., for other steps. 
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APPENDIX C: EVOLUTION OF ABSOLUTE GAS PRESSURE INSIDE THE 
SPECIMENS DURING THE TESTS IN AIR AND IN WATER AND GAS QUANTITY 

PERMEATING THROUGH THE SPECIMENS DURING THE TESTS IN AIR 
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Figure C.1 – Decrease in the absolute pressure of nitrogen for S-9 during the test in air 
 and in water 
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Figure C.2 – Nitrogen quantity permeating through the S-9 in test carried out with the 
specimen in air 
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Figure C.3 – Decrease in the absolute pressure of nitrogen for S-11 during the test in air 
 and in water 
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Figure C.4 – Nitrogen quantity permeating through the S-11 in test carried out with the 
specimen in air 
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Figure C.5 – Decrease in the absolute pressure of nitrogen for S-12 during the test in air 
 and in water 
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Figure C.6 – Nitrogen quantity permeating through the S-12 in test carried out with the 
specimen in air 
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Figure C.7 – Decrease in the absolute pressure of nitrogen for S-13 during the test in air 
 and in water 
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Figure C.8 – Decrease in the absolute pressure of carbon dioxide for S-14 during the test 
in air and in water 
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Figure C.9 – Carbon dioxide quantity permeating through the S-14 in test carried out 
with the specimen in air 

 



 



Appendix D 

D-1 

APPENDIX D: DETERMINATION OF THE UNCERTAINTIES 

 

1 THEORETICAL BACKGROUND 

1.1 Definitions 

The uncertainty of measurement is a parameter associated with the result of a measurement 
that characterizes the dispersion of the values that could reasonably be attributed to the 
measurand (Guide EA-4/02 1999).  

The measurand (output quantity), Y, is a particular quantity that is subject to measurement. It 
depends on a number of input quantities (X1, … XN) according to the functional relationship  
Y = f(X1, …, XN), which represents the procedure of measurement and the method of 
evaluation (Guide EA-4/02 1999). 

According to the Guide EA-4/02 (1999), for a random variable, the variance of its 
distribution or positive square root of the variance (standard deviation) is used as a measure 
of the dispersion of values. The standard uncertainty of measurement associated with the 
output estimate or measurement result (y), indicated by u(y), is the standard deviation of the 
measurand Y. It is to be calculated from the estimates xi of the input quantities Xi and their 
associated standard uncertainties u(xi). 

 

1.2 Methods for evaluating the uncertainty of a measurement related with input 
quantities 

The uncertainty of measurement associated with the input estimates is evaluated according to 
either a “Type A” or a “Type B” method of determination. The first is the method of 
evaluating the uncertainty by the statistical analysis of a series of observations. The standard 
uncertainty is the experimental standard deviation of the mean that follows from an averaging 
methodology or an appropriate regression analysis. The “Type B” evaluation of standard 
uncertainty is the method of evaluating the uncertainty by a means other than the statistical 
analysis of a series of observations. It is based on other scientific knowledge (Guide EA-4/02 
1999). 

For a proper use of the available information for a Type B evaluation of standard uncertainty 
of a measurement, the following cases must be distinguished (Guide EA-4/02 1999): 

(1) when only a single value is known for a quantity Xi such as, for example, a single 
measured value, a resultant value of a previous measurement, a reference value from the 
literature, or a correlation value, this value will be used for xi. The standard uncertainty 
u(xi) associated with xi is to be adopted where it is given. Otherwise, it has to be 
calculated from unequivocal uncertainty data. If data of this kind are not available, the 
uncertainty has to be assessed on the basis of experience; 

(2) when a probability distribution function (PDF) can be assumed for a quantity Xi, based 
either on theory or on experience, then, appropriate expectation or expected value and 
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square root of the variance of this distribution has to be taken as the estimate xi and 
associated standard uncertainty u(xi), respectively. 

(3) if only upper and lower limits, a+ and a-, can be estimated for the value of the quantity Xi, 
(for example: manufacturer’s specifications of a measuring instrument, a temperature 
range, a rounding or truncation error resulting from automated data reduction), a 
probability distribution with a constant probability density between these limits 
(rectangular probability distribution, has to be assumed for the possible variability of the 
input quantity Xi. According to the case (2) above, this leads to: 

 

)(
2
1

−+ += aaxi  (D.1) 

 

for the estimated value and to: 

 

2)(
12
1)( −+ += aaxu i  (D.2) 

 

for the square of the standard uncertainty. If the difference between the limiting values is 
termed by 2a, equation (D.2) yields: 

 

3
)( axu i =  (D.3) 

 

The rectangular distribution is a reasonable description from a probability point of view of 
the inadequate knowledge about the input quantity Xi in the absence of any other information 
than its limits of variability. 

 

1.3 Sources of uncertainty of measurement 

The uncertainty of the result of a measurement reflects the lack of complete knowledge of the 
value of the output quantity, for which an infinite amount of information would be required. 
The phenomena that contribute to the uncertainty and thus to the fact that the result of a 
measurement cannot be characterized by a unique value, are called sources of uncertainty. In 
practice, there are many sources of uncertainty in a measurement, including: incomplete 
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definition of the measurand; imperfect realization of the definition of the measurand; non-
representative sampling; inadequately known effects of environmental conditions or their 
imperfect measurements; personal bias; finite instrument resolution; approximations and 
assumptions incorporated in the measurement method and procedure, etc. 

The main possible sources of uncertainty in the measurements carried out in the experimental 
work described in the present study that contribute to uncertainty budget include: resolution 
of each equipment used, results of calibrations, approximations and assumptions incorporated 
in the measurement methods and procedures, and operator influence. The corrected input 
quantity (xc) is then equal to the sum corrections due to resolution (δxres), calibrations (δxcal), 
approximations and assumptions incorporated in the measurement methods and procedures 
(δxmeth), and operator (δxope): 

 

opemethcalresreadc xxxxxx δδδδ ++++=  (D.4) 

 

1.4 Evaluation of standard uncertainty of the input quantities 

In the present study, the evaluation of standard uncertainty of the input quantities is evaluated 
based on experience, i.e., using methods Type B. This is done with the identification of all 
sources of uncertainty. 

Assuming non co-related input quantities, the standard uncertainty of the input quantities is 
given by: 
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Equation (D.5) can be re-written as follows: 
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1.5 Evaluation of standard uncertainty of the output estimate  

The evaluation of standard uncertainty of the output estimate is calculated using the equation 
y = f(x1, …, xN) and applying the law of propagation of uncertainties. For non co-related input 
quantities, the square of the standard uncertainty associated with output estimate y is given 
by: 
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and ci is the sensitivity coefficient associated with the input estimated xi, which corresponds 
to the partial derivative of the model function f with respect to Xi estimated at input estimates 
xi. 

 

1.6 Evaluation of expanded uncertainty of measurement  

From a practical point of view, the values of the standard uncertainty of the output estimate, 
u(y), are comparable to one standard deviation, what corresponds to a coverage probability of 
approximately 68%. If a high level of coverage probability is required, the uncertainty might 
be expanded to a required level, which can be done by multiplying the standard uncertainty, 
u(y), of the output estimate, y, by a coverage factor k: 

 

)(yukU =  (D.9) 

 

A coverage factor of equal to 2 corresponds to a coverage probability of approximately 95%, 
and of equal to 3 corresponds to a coverage probability of approximately 99%. 
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1.7 Summary 

To estimate the uncertainty of measurement the following steps must be considered: 

• definition of the functional relationship between the output quantity and the input quantities; 
• identify and apply all significant corrections; 
• list all sources of uncertainty; 
• for input quantities for which the probability distribution function (PDF) is known or can be 

assumed, calculate the expectation and the standard uncertainty u(xi) according to Section 1.2, 
item (2). If only upper and lower limits are given or can be estimated, calculate the standard 
uncertainty u(xi) in accordance with Section 1.2, item (3); 

• calculate the uncertainty of input quantities; 
• estimate the standard uncertainty of output estimated; and 
• if a level of coverage probability higher than 68% is required, calculate the expanded 

uncertainty U by multiplying the standard uncertainty u(y) associated with the output estimate 
by a coverage factor k.  

 

The methodology outlined is used to estimate the uncertainties associated to the gas 
permeation through geomembrane seams as well as to the flow rate through composite liners 
due to geomembrane defects and corresponding interface transmissivity. The uncertainties of 
the output estimate are calculated for a coverage probability of 68% (coverage factor k = 1), 
that means the uncertainties are comparable to one standard deviation. 

 

2 UNCERTAINTIES OVER THE PERMEANCE AND GAS FLUX THROUGH 
GEOMEMBRANE SEAMS 

2.1 Definitions of the functional relationships  

To measure the gas flux, fG, and the permeance, PG, through geomembrane seams, gas 
permeation pouch tests were carried out in two scales: small-scale and large-scale. In tests 
carried out in small-scale these coefficients were assessed assuming that pseudo steady state 
conditions were attained. For the large-scale test, it was impossible to find a reasonable 
period of time in which the pseudo steady state conditions could be assumed. Under unsteady 
state conditions, time constant, τ, was used to characterise the response of the specimen to the 
migration of gas throughout the seam. 

 
The gas flux, fG, was estimated as from ideal gas law, through the equation below: 
 

t
p

TR
Vf Gin

G ∆
∆

=  (D.10) 

where pGin is the gas absolute pressure (relative pressure + atmospheric pressure) inside the 
specimen (Pa); V is the specimen inner volume (m3); R is the universal gas constant 



Appendix D 

D-6 

(8.3143 m3 Pa mol-1 K-1); T is the specimen absolute temperature (K), and t is the time (s). 

The temperature, as well as the relative and atmospheric pressures were directly read using 
pressure transducers (see Table D.1). The volume was estimated indirectly by adding the 
volume of specimen without pressure (Vprel=0) to the variation in the volume of the specimen 
due to the pressurization (dVprel=150 kPa), as shown below: 

 

kPapp relrel
dVVV 1500 == +=  (D.11) 

 

where Vprel=0 was estimated by weighing the specimen full of water and dry: 

 

w
p

mV
rel ρ

==0  (D.12) 

 

where m is the mass of the specimen and ρw is the mass density of the water. 

The volume of the specimen due to the pressurization was estimated thanks to a capillary 
pipe connected to a pressure transducer. Transducer readings were converted into height of 
water in the capillary pipe and then multiplied by the area of the pipe to obtain the volume 
change due to gas specimen pressurization (150 kPa): 

 

pipecappipecapkPap AhdV
rel ..150 ∆==  (D.13) 

 

The mean gas permeance per unit of length was then determined using the equation below: 

 

Lp
fP

G

G
G ∆

=  (D.14) 

where L equals to the length of the specimen and Gp∆  is the gas mean partial pressure 
difference inside and outside the specimen, which can be determined through the Equation 
(D.15): 
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GoutGinG ppp −=∆  (D.15) 

where Ginp  is the gas mean absolute pressure inside the specimen and pGout is the gas 
absolute pressure outside the specimen, both values were calculated for pseudo steady state 
conditions. For carbon dioxide, pGout is zero, whereas for nitrogen gas, the gas absolute 
pressure outside the specimen was estimated using the equation below (details on Appendix 
A): 

 

r
pp atm

Gout 61.11
7808.0

+
=  (D.16) 

 

where atmp is the mean atmospheric pressure and r can be estimated through the psychometric 
chart, knowing the relative humidity (RH) and the air temperature. The RH and the air 
temperature were also automatically measured using the devices indicated on Table D.1. 

Regarding the time constant parameter, τ, assessed in unsteady state conditions, it can be 
estimated as follows: 

 

τ
ttZ −

=)(ln  (D.17) 

with 

GoutGin

GoutGin

pp
ptptZ

−
−

=
)0(
)()(  (D.18) 

 

where pGin(t) is the gas absolute pressure inside the specimen at time t (Pa); pGin(0) is the gas 
absolute pressure inside the specimen at time t equal to zero (Pa); and pGout is the gas absolute 
pressure outside the pouch specimen (Pa). 

The quantities measured, represented by equations (D.10), (D.14) and (D.17) can be 
modelled by the equations below: 

 
),,,,(1 tRTVpff GinG ∆∆=  (D.19) 

 
),,(2 LpffP GGG ∆=  (D.20) 

 
),,(3 tppf GoutGin=τ  (D.21) 
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2.2 Corrections, sources of uncertainty and uncertainty of input quantities 

The quantities required for evaluating fG, PG and τ are automatically read and recorded thanks 
to data acquisition systems. Table D.1 presents the devices used for measuring the different 
quantities in small-scale tests. Different devices were used in large-scale tests (Table D.2), for 
some quantities, such as: the absolute pressure inside the specimen, the atmospheric pressure, 
the air temperature and the relative humidity. 

 

Table D.1 - Equipment used in small-scale tests 

Parameters under measurement Objectives Equipment used 

Relative pressure (prel) 
(kPa) Determination of fG, at any given time 

Pressure transducer 
Model TJE, Sensotec 

Range: 0-25PSI (172kPa) 
Accuracy: ± 0.1% F. S. (full scale) 

prel= 23.034U+0.8508 (Pa/Volt) 

Time (t) 
(s) Determination of fG Timer counter (computer) 

Variation of water in capillarity 
pipe (∆hcap.pipe) 

(cm) 

Determination of the variation of 
volume of the specimen due to 

pressurization 
(dVprel= 150kPa = ∆hcap.pipe Acap.pipe) 

(Acap.pipe= 0.2496 cm2) 

Pressure transducer 
Model P3091, Schaevitz 
Range: 0-25 cm of H2O 

Accuracy: ± 0.5% 
hcap.pipe= 2.8451U-Cte (cm/Volt) 

Atmospheric pressure (patm) 
(kPa) Determination of fG, at any given time 

Pressure transducer 
Model Tb 303 Bourdon Sedeme 

Range: 0-115kPa 
Accuracy: ± 0.2% 

patm= 10.714U + 62.634 (Pa/Volt) 

Air temperature (tair) 
(ºC) Determination of fG, at any given time 

Temperature transducer 
Model Cuproswem 

Range: -50 to 150 ºC 
Accuracy: ± 0.01ºC 

tair= 1.002 tdisplayed – 0.864 

Relative humidity (RH) 
(%) 

Assessment of the gas partial pressure 
(∆pG), required for calculating the PG 

Humidity Sensor 
Model HIH-3605-A 

Range: 0-100% 
Accuracy: ± 2% R.H. 

RH= 30.6638U-24.482 (%/Volt) 

Mass (M) 
(g) 

Determination of the initial volume of 
the specimen before pressurization 

Vprel=0 (weight specimen full of water 
− weight of dry pouch) 

Balance BP 3100P 
Range: 0-3100g 

Scale interval (range): d=0.01 
(<600g) 

Length (L) 
(m) 

Determination of the length of the 
specimens, required for calculating the 

PG 

Meter rule (Sartorius) 
Range: 0.001 m −1 m 
Resolution: 0.001 m 
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Table D.2 - Equipment used in large-scale tests 

Parameters under measurement Objectives Equipment used 

Absolute pressure (pabs) 
(kPa) Determination of fG, at any given time 

Pressure transducer 
Model PMP 4070 druck 

Range: 0-3.5 bar (350 kPa) 
Accuracy: ± 0.04% F. S. (full scale) 

pabs= 35000 U(Pa/Volt) 

Atmospheric pressure (patm) 
(kPa) Determination of fG, at any given time 

Sensor 
Model Rotronic BM 90 

Range: 0-200kPa 
Accuracy: ± 0.01kPa 

Air temperature (tair) 
(ºC) Determination of fG, at any given time 

Sensor 
Model Rotronic BM 90 
Range: -50 to 150 ºC 

Accuracy: ± 0.1ºC 

Relative humidity (RH) 
(%) 

Assessment of the gas partial pressure 
(∆pG), required for calculating the PG 

Sensor 
Model Rotronic BM 90 

Range: 0-100% 
Accuracy: ± 0.1% R.H. 

 
The evaluation of the standard uncertainty associated to fG requires the determination of the 
corrected value xc of each input quantity, namely: V (M, and ∆hcap. pipe), pabs, and t, according 
to the Equation (D.6). Table D.3 to Table D.9 present the values of standard uncertainty for 
different input quantities. 

It should be noted that, for the instruments that have calibration certificates, the reported 
uncertainty is typically the expanded uncertainty of measurement multiplied by a coverage 
factor k=2, which for a normal distribution corresponds to a coverage probability of 
approximately 95%. Whenever the uncertainties are evaluated to a coverage factor 
probability of 65%, the contribution of the calibration for output standard uncertainty must be 
divided by 2, i.e. 2)( Uyui = , if k=2. 

 

Table D.3 - Standard uncertainty for M 

Quantity 
Xi=M 

Limits (m) or 
uncertainties 

Probability 
distribution 

function 

Standard input 
uncertainty 

u(xi) 

Sensitivity 
coefficient 

ci 

Contribution to the 
output standard 

uncertainty 
ui(y) 

δMres ± 0.005 g rectangular 3
m

±
 1.0 0.003 g 

δMcal 
U(Mcal) = ± 0.01 g 

(k=2) - - - 0.005 g 

δMmeth ± 0.05 g rectangular 3
m

±
 1.0 0.029 g 

δMope - Normal (95%) 
2
m

±
 

1.0 - 

M - -  - 0.029 g 
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Table D.4 - Standard uncertainty for hcap.pipe 

Quantity 
Xi=hcap.pipe 

Limits (h) or 
uncertainties 

Probability 
distribution 

function  

Standard 
input 

uncertainty 
u(xi) 

Sensitivity 
coefficient 

ci 

Contribution to the 
output standard 

uncertainty 
ui(y) 

δhcap.pipe-res ± 0.05 cm rectangular 3
h

±
 1.0 0.03 cm 

δhcap.pipe-cal 
U(h) = ± 0.1 cm 

(k=2) - - - 0.05 cm 

δhcap.pipe-meth ± 0.2 cm rectangular 
3

h
±

 
1.0 0.17 cm 

δhcap.pipe-ope ± 0.1 cm normal (95%)
2
h

±
 

1.0 0.05 cm 

hcap.pipe - - - - 0.19 cm 

 

Table D.5 - Standard uncertainty for prel 

Quantity 
Xi=prel 

Limits (prelative) or 
uncertainties 

Probability 
distribution 

function 

Standard 
input 

uncertainty 
u(xi) 

Sensitivity 
coefficient 

ci 

Contribution to the 
output standard 

uncertainty 
ui(y) 

δprel-res ± 0.5 kPa rectangular 3
relativep

±
 

1.0 0.29 kPa 

δprel-cal 
U(prelative) = ± 1 kPa 

(k=2) - - - 0.50 kPa 

δprel-meth ± 1 kPa rectangular 
3

relativep
±

 
1.0 0.58 kPa 

δprel-ope - normal (95%) 2
relativep

± 1.0 - 

δprel-temp 0.66 kPa normal (95%)
2

relativep
± 1.0 0.33 kPa 

prel - - - - 0.88 kPa 

 

Table D.6 - Standard uncertainty for patm 

Quantity 
Xi=patm 

Limits (patmosph) or 
uncertainties 

Probability 
distribution 

function 

Standard input 
uncertainty 

u(xi) 

Sensitivity 
coefficient 

ci 

Contribution to the 
output standard 

uncertainty 
ui(y) 

δpatm-res ± 0.5 kPa rectangular 
3

atmosphp
±

 
1.0 0.29 kPa 

δpatm-cal 
U(patmosph) = ± 1 kPa 

(k=2) - - - 0.50 kPa 

δpatm-meth ± 1 kPa rectangular 
3

atmosphp
±

 
1.0 0.58 kPa 

δpatm-ope - normal (95%)
2

atmosphp
±

 
1.0 - 

patm - - - - 0.82 kPa 
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Table D.7 - Standard uncertainty for tair 

Quantity 
Xi=tair 

Limits (ta) or 
uncertainties 

Probability 
distribution 

function 

Standard 
input 

uncertainty 
u(xi) 

Sensitivity 
coefficient 

ci 

Contribution to the 
output standard 

uncertainty 
ui(y) 

δtair-res ± 0.25 ºC rectangular 3
at

±
 1.0 0.14 ºC 

δtair-cal 
U(ta) = ± 0.5 ºC 

(k=2) - - - 0.25 ºC 

δtair-meth ± 1 ºC rectangular 
3
at

±
 

1.0 0.58 ºC 

δtair-ope - normal (95%) 
2

at
±

 
1.0 - 

tair - - - - 0.65 ºC 

 

Table D.8 - Standard uncertainty for t 

Quantity 
Xi=t 

Limits (time) 
or 

uncertainties 

Probability 
distribution 

function 

Standard input 
uncertainty 

u(xi) 

Sensitivity 
coefficient 

ci 

Contribution to the 
output standard 

uncertainty 
ui(y) 

δtres ± 0.5 s rectangular 3
time

±
 1.0 0.29 s 

δtcal - - 
2

time
±

 
- - 

δtmeth ± 1 s rectangular 
3

time
±

 
1.0 0.58 s 

δtope - normal (95%) 
2

time
±

 
1.0 - 

t - - - - 0.65 s 

 

Table D.9 - Standard uncertainty for pabs (large-scale tests) 

Quantity 
Xi=pabs 

Limits (pabsolute) or 
uncertainties 

Probability 
distribution 

function 

Standard input 
uncertainty 

u(xi) 

Sensitivity 
coefficient 

ci 

Contribution to the 
output standard 

uncertainty 
ui(y) 

δpabs-res ± 0.5 kPa rectangular 3
absolutep

±
 

1.0 0.29 kPa 

δpabs-cal 
U(pabsolute) = ± 1 kPa 

(k=2) - - - 0.50 kPa 

δpabs-meth ± 1 kPa rectangular 
3

absolutep
±

 
1.0 0.58 kPa 

δpabs-ope - normal (95%) 
2

absolutep
±

 
1.0 - 

δpabs-instrumentation ± 0.14 kPa normal (95%) 
2

absolutep
±

 
1.0 0.08 kPa 

pabs - - - - 0.94 kPa 
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Concerning permeance, PG, the evaluation of standard uncertainties requires as well the 
determination of corrected values xc, according to Equation (D.6). In this case, input 
quantities include fG, L and ∆pG. Table D.10 presents the values of standard uncertainty for L. 
As regards ∆pG, it is necessary to correct pGin (Table D.5 and Table D.6) and pGout (recall 
Equation (D.16)), which is linked with the atmospheric pressure (patm), air temperature (tair) 
and relative humidity (RH). Values of patm and tair can be corrected based on Table D.6 and 
Table D.7, respectively. Regarding RH, it can be corrected based on Table D.11. 

 

Table D.10 - Standard uncertainty for L 

Quantity 
Xi=L 

Limits (l) or 
uncertainties 

Probability 
distribution 

function 

Standard input 
uncertainty 

u(xi) 

Sensitivity 
coefficient 

ci 

Contribution to the 
output standard 

uncertainty 
ui(y) 

δLres ± 0.5 mm rectangular 3
l

±
 1.0 0.29 mm 

δLcal 
U(l) = ± 1 mm 

(k=2) - - - 0.50 mm 

δLmeth ± 1 mm rectangular 
3

l
±

 
1.0 0.58 mm 

δLope ± 1 mm normal (95%) 
2
l

±
 

1.0 0.50 mm 

L - - - - 0.96 mm 

 

Table D.11 - Standard uncertainty for RH 

Quantity 
Xi=RH 

Limits (rh) or 
uncertainties 

Probability 
distribution 

function 

Standard input 
uncertainty 

u(xi) 

Sensitivity 
coefficient 

ci 

Contribution to the 
output standard 

uncertainty 
ui(y) 

δRHres ± 1% rectangular 3
rh

±
 1.0 0.58 % 

δRHcal 
U(rh) = ± 2 % 

(k=2) - - - 1.0 % 

δRHmeth - rectangular 
3

rh
±

 
1.0 - 

δRHope - normal (95%) 
2

rh
±

 
1.0 - 

RH - - - - 1.15 % 
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2.3 Estimation of the standard uncertainty of the output estimate 

Once the corrections of all input quantities are known, the standard uncertainty of output 

estimate can be evaluated. Recalling the equation 
t

p
TR
Vf Gin

G ∆
∆

= , making ϑ=
∆

∆
t

pGin , with 

relGin pp ∆=∆ , the standard uncertainty for the gas flux, fG, can be estimated as follows: 
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 (D.22) 

or 
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The quantity )(ϑu  can be estimated based on a graphical method, by plotting )( relrel pup ±  
versus )(tut ± , where )( relpu  can be estimated from  

Table D.5 and )(tu  is estimated from Table D.7. The quantity )(Tu  can be assessed from 
Table D.7, and, finally, the quantity )(Vu  can be estimated through the equation below 
(recall Equations (D.11) to (D.13)): 

 
)()()( 150

2
0

22
kPapp relrel

dVuVuVu == +=  (D.23) 
 

where )(1)( 2
20

2 muVu
w

prel ρ
==  and )()( .

22
150

2
pipecapkPap huAdVu

rel
∆== . The area of the capillary 

pipe, A, is constant, therefore the uncertainty associated to its measurement can be neglected 
(u(A)=0). In addition, [ ])()( 1.2.. ththh pipecappipecappipecap −=∆  and [ ] [ ])()( 1.2. thuthu pipecappipecap = . 

The uncertainty of the capillarity pipe is then )(2)( .
2

.
2

pipecappipecap huhu =∆ . The Equation 
(D.23) can then be written as follows: 
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)(2)(1)( .
222

2
2

pipecap
w

huAmuVu +=
ρ

 (D.24) 

 

For the mean permeance GP , recalling the equation 
Lp

fP
G

G
G ∆

= , the standard uncertainty of 

the output estimate can be calculated using the equation below: 
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The quantity )( Gfu  is evaluated through Equation (D.22), the quantity )(Lu  can be 

determined from Table D.10, and the quantity )( Gpu ∆  can be estimated through the 
expression below (recall Equation (D.15)): 

 
)()()( 222

GoutGinG pupupu +=∆  (D.26) 
 

where )()()( 222
atmrelGin pupupu +=  and )(2

Goutpu  can be estimated based on the following 
expression: 

 

)()()( 2
2

2
2

2 ru
r

ppu
p
p

pu Gout
atm

atm

outG
Gout 








∂
∂

+







∂
∂

=  (D.27) 

or 



Appendix D 

D-15 

)(
)61.11(

)61.1(7808.0)(
61.11

7808.0)( 2
2

2
2

2
2 ru

r
ppu

r
pu atm

atmGout 







+

−+







+
=  (D.28) 

 

with )( atmpu  being estimated based on Table D.6. Regarding )(ru , first, its variability was 
graphically determined, by plotting )(RHuRH ±  against )( airair tut ± , with )(RHu  and 

)( airtu  being determined from Table D.11 and Table D.7, respectively. The correspondent 
)(ru  was then estimated based on a psychometric chart. A value of 0.0018 (gwater/gdry air) was 

obtained. The Equation (D.26) can then be re-written as follows: 
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Finally, the standard uncertainty for time constant, τ, was evaluated graphically, by plotting 
)(tut ±  versus )(lnln ZuZ ± . The quantity )(tu  is determined from Table D.8, whereas 
)(ln Zu  can be obtained as follows: 
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where the )()()( 222
atmrelGin pupupu +=  and ( )Goutpu 2  are either zero for carbon dioxide or 

for nitrogen and can be estimated from Equation (D.28). 

To sum up, the standard uncertainty for the gas flux, fG, is estimated thanks to Equation 
(D.20), for the permeance, PG, thanks to Equation (D.23), and for the time constant, τ, it will 
be based on graphical method. Values obtained are included in experimental results through 
the error bars displayed in Figures 5.13, 5.15, 5.16 and 5.17 (Chapter 5).  
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3 UNCERTAINTIES OVER THE FLOW RATE AND THE INTERFACE 
TRANSMISSIVITY 

3.1 Definitions of the functional relationships  

To measure the flow rate, constant head tests were run at three different scales in LNEC 
(Portugal) and in Cemagref (France). Water flow measurement was conducted in two 
different ways. First, during the first few hours of testing, when there was a relatively large 
volume of effluent water, the water was collected at the downstream side of the cell and 
weighted. As the water flow decreased, the measurements were done using a Mariotte bottle 
attached to the top of the cell due to its higher accuracy at low flow rates. 

For the first case, the flow collected at the interface, Qr(Rc), is radial and the flow rate can be 
calculated using the following equation: 

( )
t

MRQ
w

cr ρ
=

 
(D.31) 

where M is the mass of water collected during a time interval t and ρw is the mass density of 
the water. 

When a Mariotte bottle is used for measuring the flow, a total flow, Q, is measured and the 
flow rate can be obtained using the expression below: 

t
VQ ∆

=
 

(D.32) 

where ∆V is the variation of volume in the Mariotte bottle during a considered time interval t. 

The quantities measured, represented by Equations (D.31) and (D.32), can be modeled 
through the equations below: 

 
( ) ( )tMfRQ wcr ,,1 ρ=  (D.33) 

 

( )tVfQ ,2 ∆=  (D.34) 

 

3.2 Corrections, sources of uncertainty and uncertainty of input quantities 

For the radial flow, Qr(Rc), different balances were used to weigh the water collected at the 
interface. In France, the balance Metter PB 3002 S was used (masses less than 3000g). In 
Portugal, the balance OHAUS was used (masses less than 4000g). 
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For total flow, Q, the measurements were done using a Mariotte bottle. Different Mariotte 
bottles could be used depending on the influent volume, namely 50ml, 100ml and 200ml or 
400ml. 

For time measurements, a chronometer was used in the two cases. 

The evaluation of standard uncertainty associated to radial flow, Qr(Rc), requires the 
determination of the corrected value (xc) of each input quantity, namely mass (M) and time 
(t), according to the Equation (D.6). Tables D.12 to D.14 present the standard uncertainty for 
different input quantities. 

 

Table D.12 - Standard uncertainty for M: balance Mettler PB 3002 S (France, intermediate 
scale tests) 

Quantity 
Xi=M 

Limits (m) or 
uncertainties 

Probability 
distribution 

function 

Standard 
input 

uncertainty 
u(xi) 

Sensitivity 
coefficient 

ci 

Contribution to the 
output standard 

uncertainty 
ui(y) 

δMres ± 0.005 g rectangular 3
m

±
 1.0 0.003 g 

δMcal u(m)= ± 0.030 g  - - - 0.030 g 

δMmeth 0 g rectangular 
3

m
±

 
1.0 0 g 

δMope - normal (95%) 2
m

±
 

1.0 - 

M - - - - 0.030 g 

 

Table D.13 - Standard uncertainty for M: balance OHAUS (Portugal) 

Quantity 
Xi=M 

Limits (m) or 
uncertainties 

Probability 
distribution 

function 

Standard 
input 

uncertainty 
u(xi) 

Sensitivity 
coefficient 

ci 

Contribution to the 
output standard 

uncertainty 
ui(y) 

δMres ± 0.005 g rectangular 3
m

±
 1.0 0.005 g 

δMcal u(m)= ± 0.035 g  - - - 0.035 g 

δMmeth 0 g rectangular 
3

m
±

 
1.0 0 g 

δMope - normal (95%) 
2
m

±
 

1.0 - 

M - - - - 0.035 g 
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Table D.14 - Standard uncertainty for t 

Quantity 
Xi=t 

Limits (time) 
or 

uncertainties 

Probability 
distribution 

function 

Standard 
input 

uncertainty 
u(xi) 

Sensitivity 
coefficient 

ci 

Contribution to the 
output standard 

uncertainty 
ui(y) 

δtres ± 0.005 s rectangular 
3

time
±

 
1.0 0.003 s 

δtcal - - - - - 

δtmeth ± 0.01 s rectangular 
3

time
±

 
1.0 0.006 s 

δtope ± 1 s normal (95%) 
2

time
±

 
1.0 0.500 s 

t - - - - 0.50 s 

 

The evaluation of standard uncertainty associated to total flow, Q, requires the determination 
of the corrected value (xc) of each input quantity, namely volume (V) and time (t), according 
to the Equation (D.6). Tables D.15 to D.18 present the values of the standard uncertainty for 
different input quantities. 

 

 

Table D.15 - Standard uncertainty for V: Mariotte bottle of 50 ml 

Quantity 
Xi=V 

Limits (v) or 
uncertainties 

Probability 
distribution 

function 

Standard input 
uncertainty 

u(xi) 

Sensitivity 
coefficient 

ci 

Contribution to the 
output standard 

uncertainty 
ui(y) 

δVres ± 0.05 ml rectangular 3
v

±
 1.0 0.03 ml 

δVcal 
u(v)= ± 0.030 g 

or ml - - - 0.03 ml 

δVmeth ± 0.11 ml rectangular 
3

v
±

 
1.0 0.06 ml 

δVope ± 0.1 ml normal (95%) 
2
v

±
 

1.0 0.05 ml 

V - - - - 0.09 ml 
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Table D.16 - Standard uncertainty for V: Mariotte bottle of 100ml 

Quantity 
Xi=V 

Limits (v) or 
uncertainties 

Probability 
distribution 

function 

Standard input 
uncertainty 

u(xi) 

Sensitivity 
coefficient 

ci 

Contribution to the 
output standard 

uncertainty 
ui(y) 

δVres ± 0.1 ml rectangular 3
v

±
 1.0 0.06 ml 

δVcal 
u(v)= ± 0.035 g 

or ml - - - 0.035 ml 

δVmeth ± 0.85 ml rectangular 
3

v
±

 
1.0 0.49 ml 

δVope ± 0.1 ml normal (95%) 
2
v

±
 

1.0 0.050 ml 

V - - - - 0.50 ml 

 

Table D.17 - Standard uncertainty for V: Mariotte bottle of 200ml 

Quantity 
Xi=V 

Limits (v) or 
uncertainties 

Probability 
distribution 

function 

Standard input 
uncertainty 

u(xi) 

Sensitivity 
coefficient 

ci 

Contribution to the 
output standard 

uncertainty 
ui(y) 

δVres ± 0.2 ml rectangular 3
v

±
 1.0 0.11 ml 

δVcal u(v)= ± 0.035 g - - - 0.04 ml 

δVmeth ± 0.61 ml rectangular 
3

v
±

 
1.0 0.35 ml 

δVope ± 0.2 ml normal (95%) 
2
v

±
 

1.0 0.10 

V - - - - 0.39 ml 

 

Table D.18 - Standard uncertainty for V: Mariotte bottle of 400ml 

Quantity 
Xi=V 

Limits (v) or 
uncertainties 

Probability 
distribution 

function 

Standard input 
uncertainty 

u(xi) 

Sensitivity 
coefficient 

ci 

Contribution to the 
output standard 

uncertainty 
ui(y) 

δVres ± 0.5 ml rectangular 3
v

±
 1.0 0.29 ml 

δVcal 
u(v)= ± 0.035 g 

or ml - - - 0.04 ml 

δVmeth ± 0.96 ml Rectangular 
3

v
±

 
1.0 0.55 ml 

δVope ± 0.5 ml normal (95%) 
2
v

±
 

1.0 0.25 ml 

V - - - - 0.67 ml 
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3.3 Estimating the standard uncertainty of the output estimate 

For the flow collected at the interface, Qr(Rc), the standard uncertainty can be estimated 
through the equation below: 
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(D.35) 

 

or 
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Considering that the time interval correspondent to the time elapsed between two flow 
measurements is long, when compared to the uncertainty associated to the measurement, it 
can be considered negligible. The Equation (D.35) can then be simplified as indicated below: 
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=

 
(D.36) 

 

with )(Mu  being determined either based on Table D.12 or on Table D.13. 

For the total flow, Q, measured using a Mariotte bottle, the standard uncertainty can be 
assessed by the equation below: 
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(D.37) 

or 
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The time interval correspondent to the time elapsed between two flow measurements is long, 
when compared to the uncertainty associated to the measurement, therefore, it can be 
considered negligible. In this circumstance, the Equation (D.37) can then be simplified as 
indicated below: 
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(D.38) 

 

In addition, assuming that the uncertainty of V2 is equal to the uncertainty of V1, the 
Equation (D.38) becomes: 

 

2)()(2)( 2

2

t
Vu

t
VuQu ==

 
(D.39) 

 

with )(Vu  being determined from one of the Tables (D.15 to D.18), depending on the 
Mariotte bottle used during the test. 

 

3.4 Standard uncertainty for the interface transmissivity 

The interface transmissivity,θ, is estimated based on the value of the measured final flow rate 
Q, according to the Equation (D.40): 

 
( ) ( )[ ]01010
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( )          
 HH

k

L

s

θ
β
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         HHC L f+=  (D.44) 

where I0 and K0 are modified Bessel functions of zero order; ks is the equivalent hydraulic 
conductivity for the GCL and the soil layer; HL is the GCL thickness; and Hf  is the soil layer 
thickness. 

The standard uncertainty of interface transmissivity is estimated indirectly from its potential 
variability. First, the upper and lower limits of θ were estimated. They correspond to the 
difference between the maximum θmax and minimum θmin values obtained by taking into 
account both the uncertainty associated to Q, previously determined in accordance with 
Section 3.3, and the variability of the hydraulic conductivity of the GCL for each confining 
stress used in this study and expressed through Figure 2.20 (Chapter 2). For that, 
Equation (D.40) is solved for the cases as follows: 

• Q + u(Q) for kGCL maximum at a specified confining stress according to the Figure 2.20; 

• Q + u(Q) for kGCL minimum at a specified confining stress according to the Figure 2.20; 

• Q – u(Q) for kGCL maximum at a specified confining stress according to the Figure 2.20; 

• Q – u(Q) for kGCL minimum at a specified confining stress according to the Figure 2.20. 

Then, according to Section 1.2, the potential variability of the transmissivity was modeled by 
a rectangular distribution function and uncertainty of interface transmissivity, u(θ), was 
estimated as presented in the Table D.19. 

 

Table D.19 - Standard uncertainty for transmissivity, θ 

Quantity 
Xi=θ 

Value limits 
θmax - θmin 

Probability 
distribution 

function 

Standard input 
uncertainty 

u(xi) 

Sensitivity 
coefficient 

ci 

Contribution to the 
output standard 

uncertainty 
ui(y) 

δθ θmax - θmin rectangular 
3

minmax θθ −  1.0 
3

)( minmax θθθ −
=u  

 

To sum up, the standard uncertainty for the radial flow rate, ( )[ ]cr RQu , is estimated thanks to 
Equation (D.36), whereas the standard uncertainty for the total flow rate, ( )Qu , is estimated 
thanks to Equation (D.39). As regards the transmissivity, standard uncertainty is estimated 
based on its potential variability. Values obtained are included in experimental results 
through the error bars displayed in Figures 6.19 to 6.21, 6.24, 6.29, 6.34 and 6.35 (Chapter 6). 
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APPENDIX E: PROTOCOL FOR MEASURING GCL SUCTION USING THE 
FILTER PAPER METHOD1 UNDER NO CONFINING PRESSURE  

 

1. PRELIMINARY TESTS FOR DETERMINING THE INITIAL WATER CONTENT OF THE GCL (TO 
ESTIMATE THE MASS OF WATER NECESSARY TO PRE-HYDRATE THE SPECIMENS BY 
IMMERSION) 

• Cut three specimens of GCL (for example, three squares of 5 cm in width); 

• Weigh each specimen; 

• Place the specimens in the oven (105º C) during at least 16 hours for drying;  

• Remove the specimens from the oven, weigh them and calculate the initial moisture 
content (Wi) of the GCL (Wi = mass of water in the GCL/mass of dry GCL). 

 

2. PRE-HYDRATION OF THE SPECIMENS  

• Define the water contents to which the GCL specimens will be pre-hydrated (for example: 
natural, 15%, 30%, 45%, 60%, 75%, 90%, 105%, 120% and 135%); 

• For each defined pre-hydration value, cut two GCL circular specimens with 10 cm in 
diameter (for each pre-hydration value, a couple of specimens is necessary); 

• Weigh all specimens;  

• Identify each couple of specimens with the same pre-hydration value writing on each one 
the information as follows: pre-hydration value, date, and specimen number (1 or 2); 

• Based on the pre-estimated initial water content of the GCL and on the mass of the GCL 
specimens, estimate the mass of water that has to be added to each specimen to reach the 
defined pre-hydration value; 

Note: if possible, group the GCL specimens by selecting the two specimens of each 
pre-hydration value with a similar mass to be sure that both have similar immersion 
times. For the highest pre-hydration values, select the lightest specimens to reduce the 
immersion time.  

• Pre-hydrate the GCL specimens by immersing them into distilled water (for the lowest 
pre-hydration values, a spray can be used); the immersion time depends on the mass of 
each specimen.  Therefore, it is necessary to successively weigh it until the correspondent 
wet mass is reached; the pre-hydration values of the GCL specimens must be confirmed 
by determining its water content at the end of the suction measurements; 

                                                      
1 Based on the ASTM D 5298 – 94. 
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• Wrap the two GCL specimens with the same pre-hydration value in a plastic film; then, 
insert the wrapped specimens in a watertight plastic bag; finally, place it in a air-tight 
container in a location with temperature variations less than 3º C; the container shall be 
labelled with the information as follows: date, pre-hydration value, and test number; 

• Keep the GCL specimens in the containers for a minimum of 7 days to homogenise the 
water content. 

 

3. FILTER PAPER PREPARATION (WHATMAN® NO. 42) 

• Three stacked filter papers are necessary for each pre-hydration value; the outer filter 
papers are 7.0 cm in diameter and should be slightly larger in diameter than the center 
filter paper; this can be accomplished by cutting the center paper with a diameter of 5.5 
cm; this operation shall be performed using gloves in order to prevent the filter paper 
contamination; the outer filter papers prevent the GCL contamination of the center filter 
paper used for analysis of the matric suction; 

• Dry all filter papers for testing, at least for 16 hours or overnight, in the drying oven 
(105º C);  

• After drying, place the filter paper in a desiccant jar over silica gel, as fast as possible 
(couple of seconds); connect desiccant jar to a vacuum pump, and keep them in vacuum 
until they are hot (10 to 15 minutes).  

 

4. PROCEDURE FOR DETERMINING THE MATRIC SUCTION  

• Remove the three stacked filter papers from the desiccant jar, and immediately (a couple 
of seconds) insert them between the two GCL specimens with the same pre-hydration 
value; to avoid the hydration of the filter paper, it is suggested to remove a group of three 
stacked filter papers each time; press slightly the GCLs specimens to ensure a good 
contact between the filter papers and the GCL;  

• Wrap the “sandwich” formed by the GCL specimens and the filter papers with a plastic 
film; then, insert the wrapped specimens in a watertight plastic bag; finally, place it in a 
air-tight container (e.g. Tupperware) in a location with temperature variations less than 
3ºC; the container shall be labelled with the information as follows: date, pre-hydration 
value, and test number; 

• The suction of the filter paper and the GCL specimens in the container should be allowed 
to come to equilibration for a minimum of 7 days;  

• At the end of the equilibration period, weigh glass filter paper containers, which will hold 
the filter papers; determine their mass to the nearest 0.0001 g; 

• Estimate the final thickness of each couple of GCL specimens and weigh it for further 
determination of the water content of the GCL specimens, as section 5 indicates; 
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• Using tweezers, remove the centre filter paper of the three-layer stack and place it in the 
glass filter paper container of predetermined mass, put the lid on the glass filter paper 
container, then weigh it; determine this mass to the nearest 0.0001 g; this entire process 
must be completed in less than 5 seconds; 

•  Place the glass filter paper containers in an oven (105ºC), with the lids slightly ajar  (or 
unsealed) to permit moisture to escape, for 16 hours or overnight;  

• Remove the glass filter paper containers from the oven, seal them and place the sealed 
containers in a desiccant jar over silica gel to cool (10 to 15 minutes); after cooling, weigh 
them (less than 5 seconds); determine the mass to the nearest 0.0001 g. 

 

5. THICKNESS AND WATER CONTENT DETERMINATIONS 

• Estimate the final thickness of each couple of GCL specimens (the 2 GCL specimens with 
the same pre-hydration values); the thickness shall be measured at 1 min; it is suggested to 
measure the thickness just before removing the filter paper. 

Note: this determination is necessary to determine the volume of the specimens, and the 
volumetric water content of the GCL, which are necessary to make the “Van Genuchten 
adjustments”. 

• To confirm the pre-hydration values and accurately determine the water contents of the 
GCL specimens; place each couple of GCL specimens in a GCL container of 
predetermined mass, weigh it, and then place it in the in the drying oven (105º C), at least 
for 16 hours or overnight. 

• Remove each couple of GCL specimens from the oven, weigh it and calculate its water 
content. 

 

6. SUCTION CALCULATIONS 

 

• Water content of the filter paper by mass,ωf, can be estimated through the following 
expression: 

 

100×=
f

w
f M

Mω  (E.1) 

 

where Mw is the mass of water in the filter paper (g), and Mf  is mass of dry filter paper (g). 
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• Convert the filter paper water content (ωf)  into a suction value (ψ) by reference to the 

calibration curve for filter paper Whatman® No. 42, as the one included in ASTM D 5298 

and presented below: 

 

f.. ωψ 07790327510 −=           for ωf < 45.3 %,  

or 

f.. ωψ 01350412210 −=            for ωf > 45.3 %: 

(E.2) 
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