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Abstract. Vibration-based methods for damage detection have been widely 

used, particularly those relying on ambient excitations. These methods are 

based on the principle that changes in a structure's physical properties, such 

as mass, stiffness, and damping, will lead to changes in its vibration charac-

teristics. 

A promising area of research focuses on utilizing operational loads, such as 

vehicular traffic, instead of ambient excitations. Dynamic responses gener-

ated by operational loads, such as trains, induce higher levels of vibration 

compared to those caused by temperature variations or ambient vibrations. 

The consistent and repeatable nature of this load can also reduce the time 

required for training predictive models. Furthermore, as vehicles cross the 

bridge from end to end, structural damage, even if localized, will generate 

anomalies in the dynamic responses, which may be detectable by sensors in-

stalled in the structure. With a higher signal-to-noise ratio, this approach en-

ables more efficient and cost-effective monitoring systems. 

This paper presents a data-driven approach for identifying damage in railway 

bridges based on train-induced dynamic responses. In this methodology, non-

linear autoregressive models with exogenous inputs (NARX) are developed 

for different sensor clusters, using the structure's free response after train ex-

citations. The damage index is defined based on the prediction errors of each 

NARX. 

The effectiveness of the proposed methodology is validated using real accel-

eration data from a long-span steel-concrete composite bowstring arch rail-

way bridge. Changes in the longitudinal stiffness of the bearing devices were 

identified through acceleration data recorded during the passage of Alfa Pen-

dular trains. 
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1 Introduction 

Over the last two centuries, huge investments have been made in infrastructures 

such as bridges, buildings, railways, dams, and airports to support the development 

of society and the economy. During their lifetime, factors such as material aging 

and harsh environmental conditions can lead to damage or even failure. The deteri-

oration of critical infrastructure can have various economic and social impacts. In 

this context, Structural Health Monitoring (SHM) plays a crucial role in assessing 

structural conditions and ensuring reliability and safety [1, 2]. 

SHM involves the continuous observation of the structure by collecting periodi-

cally measurements, to obtain accurate and real-time information concerning struc-

tural condition and performance. Damage identification is a fundamental part of 

SHM and has been extensively studied to address three key objectives: determining 

the existence of damage, locating the damage and assessing the severity of the dam-

age [3]. 

The SHM of bridges presents unique challenges due to the diversity of structures, 

materials, loads, and environmental conditions. Among the available methods, vi-

bration-based damage detection techniques are the most widely employed in real-

world applications, particularly those relying on ambient vibration [4, 5]. Vibration-

based damage detection methods can be broadly categorised into three groups: 

model-based (e.g., natural frequencies and mode shapes), frequency-based (e.g., 

frequency response functions), and time-series-based approaches. 

Significant research efforts have been dedicated to the development and applica-

tion of time-series-based methods. In these approaches, dynamic responses such as 

acceleration, velocity, and displacement of the structure are fitted into time-series 

models. Damage detection is then performed by extracting damage-sensitive fea-

tures from model coefficients [6] or residual errors [7, 8].  

Recently, there has been increased interest in developing vibration-based damage 

detection techniques that rely on operational response such as vehicular traffic, ra-

ther than ambient vibrations [8, 9]. The measurement pattern recorded by a sensor 

during the passage of a vehicle over a bridge serves as signature of the structural 

response, offering values insights into the system behaviour. Compared to tradi-

tional vibration-based methods relying on ambient loads, moving load-based ap-

proaches present several advantages: higher structural vibrations, high signal-to-

noise ratio, and require fewer sensors. Additionally, vehicles traverse all sections of 

a bridge, including damaged areas, which result in anomalies in the structural re-

sponse.  

Despite the significant potential of structural time-series methods that rely on 

operational responses to achieve the localization in the damage identification pro-

cess, critical gaps remain. Specifically, there is a lack of effective implementations 

for bridges that enable online and continuous damage identification. Most existing 

methods are applied to simple structures, numerical models [2, 10] or experimental 

models [11]. Furthermore, the nonlinear behaviour of train-induced dynamic 
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responses is often misjudged, and the environmental and operational influence on 

structural responses is frequently underestimated or inadequately addressed. 

Considering this limitation, this study explores the combination of sensor clus-

tering with a nonlinear time series model to identify the presence of a damage based 

on train-induced dynamic responses. The proposed methodology employs nonlinear 

autoregressive models with exogenous inputs (NARX) for different sensor clusters, 

using the structure's free response after train excitations.  

The effectiveness of the proposed approach is validated using real train-induced 

acceleration data collected from a long-span steel-concrete composite bowstring 

arch railway bridge. Changes in the longitudinal stiffness of the bridge's bearing 

devices were successfully detected using this approach. 

2 Methodology 

The use of real data from train-induced responses represents a significant innovation 

in the field of SHM. Experimental data enhance the accuracy of the damage identi-

fication process and improve the applicability of the methodology to real-world sce-

narios, providing valuable insights and practical advancements. By incorporating 

real data, the approach overcomes uncertainties often associated with theoretical 

models, such as track irregularity profiles and wheel defects (e.g., wheel flats and 

polygonization), which are critical for realistic assessments. 

The proposed damage detection framework is an output-only, data-driven ap-

proach relying exclusively on measured acceleration responses. This method does 

not require prior information about physical structural properties, wheel defects, or 

track irregularities, making it versatile and practical for diverse applications. 

The methodology involves four key steps: sensor clustering, time-series model-

ling, damage-sensitive feature extraction, and outlier analysis. 

2.1 Sensor clustering  

The concept of sensor clustering, introduced by Gul and Catbas [12], enhances the 

ability and reduces the complexity of time-series approaches for damage identifica-

tion. In this approach, the sensor’s network is considered as multiple system rather 

than a single system. Each system, or cluster, consists of a group of sensors, with 

one sensor designated as the reference sensor, and the others classified as neighbour 

sensors (Fig. 1). This clustering strategy simplifies the processing of time-series 

data by focusing on localized areas of the structure, improving the efficiency and 

precision of damage detection and localization processes. 
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Fig. 1. Sensor clustering concept [7]. 

2.2 Time-series modelling 

After clustering the sensor network, free-response acceleration data from the base-

line condition were utilized to develop separate time-series models for each sensor 

cluster. The response of each reference sensor is predicted using inputs from the 

neighbouring sensors. In this study a NARX is employed to predict each reference 

sensor based on the response of the neighbouring sensor. Given the discrete-time 

nature of the data, a NARX model can be defined for a multi-input, single-output 

system as: 

𝑦 = 𝑓[𝑥(𝑡)] (1) 

with 𝑥(𝑡) a vector defined by: 

𝑥(𝑡) = [𝑦(𝑡 − 𝑛𝑦), … , 𝑦(𝑡 − 1), 𝑢1(𝑡 − 𝑛𝑢), … ,  𝑢1(𝑡 − 1),  𝑢1(𝑡), … , 𝑢𝑀(𝑡

− 𝑛𝑢), … ,  𝑢𝑀(𝑡 − 1),  𝑢𝑀(𝑡) ] 
(2) 

where 𝑦(𝑡) represents the output (reference sensor response) at time step 𝑡, 𝑓 is the 

nonlinear function representing the multi-input, single-output system, 

 𝑢1(𝑡), … ,  𝑢𝑀(𝑡) are the inputs (responses measured at the neighbouring sensors), 

the 𝑛𝑢 and 𝑛𝑦 the input and output orders, repectivily, and 𝑀 is the number of 

neighbouring sensors employed. 

For systems with more complex nonlinear behaviour, neural networks are often 

preferred due to their flexibility in capturing complex patterns and relationships. 

Herein, the nonlinear function 𝑓 is approximated by a single hidden layer neural 

network. 

A critical parameter in these machine learning algorithms are the model orders 

(𝑛𝑢 and 𝑛𝑦), which refers to the number of past outputs and inputs used in the model. 

According to the embedding theorem, model orders need to be sufficiently large to 

provide an adequate representation of the input data. When there is no prior 

knowledge about the underlying process, traditional statistical tests can be used to 

determine the appropriate model order, such as the Akaike Information Criterion 

(AIC) [13].  



5 

2.3 Damage sensitive feature extraction 

After constructing the NARX neural networks for all sensor clusters under baseline 

condition, the trained networks are used to predict the response of the same sensor 

cluster using signals from the current unknown state. The difference between the 

measured responses and the prediction is then used to extract damage sensitive fea-

tures. 

Considering that prediction errors follow a normal distribution, in case of novelty 

behaviour the probability density function will be more spread, and the peak value 

of probability density function (PDF) is much smaller [7]. For this reason, a damage 

index can be formulated by: 

𝐷𝐼 =
𝜎(𝑒)

𝑓𝑚𝑎𝑥(𝑒)
 (3) 

where 𝜎(𝑒) is standard deviation of the prediction error, and 𝑓𝑚𝑎𝑥(𝑒) is the maxi-

mum value of the PDF calculated of errors. Then the DI of a sensor is affected not 

only by a nearby damage but also by the damages at distant locations. 

2.4 Outlier analysis 

The main idea of outlier analysis is to determine the discordancy measures of the 

data and compare it with a threshold. The discordancy of a candidate outlier is some 

measure that can be compared against the corresponding objective criterion and al-

lows the outlier to be judged as statistically likely or unlikely to have come from 

the assumed generating model [14].  

For SHM applications, the discordancy should be evaluated with respect to a 

model constructed from a normal condition of the system of interest [14]. One of 

the most common to multivariate data is the Mahalanobis Squared Distance (MSD) 

measure [15]. MSD is a 𝑛-dimension generalisation of the Euclidean distance, nor-

malised through the covariance matrix and is given by: 

𝐷𝜁
2 = ({𝑥}𝜁 − {�̅�})𝑇 ∙ [Σ]−1 ∙ ({𝑥}𝜁 − {�̅�})  (4) 

where {𝑥}𝜁  is the potential outlier, {�̅�} is the mean of the normal condition features 

and [Σ] is the normal condition feature covariance matrix. In the literature, it is gen-

erally assumed that multivariate data are normally distributed, so that the MSD can 

be approximated by a chi-square distribution in 𝑛-dimensional space [16]. Under 

this hypothesis, the Mahalanobis distance (MD) can be approximated by a normal 

(or Gaussian) distribution and threshold for outlier detection can be estimated as the 

percentile of the features collected by the system under normal conditions [15, 16]. 

Zhou et al. [17] define that typical confidence level is stated typically between 0.001 

(99.9%) and 0.050 (95%). 
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3 The case of Study 

3.1 Structural system description 

The main railway bridge over the Sado River with three continuous spans of 160 m 

is part of a longer structure with 2,7 km that includes two approach viaducts. It is a 

multiple bowstring arch bridge (Fig. 2a), with a steel-concrete trapezoidal compo-

site deck, continuous over the support sections at the intermediate piers, axially sus-

pended from a single plane of hangers [18]. 

The steel box girder of the deck is 2.60 m height and has a width ranging from 

5.65 m to 7.75 m between the webs, with three steel flanges supporting the concrete 

slab (Fig. 2b). The concrete slab has a maximum thickness of 0.43 m and a total 

width of 15.82 m. The steel arches have a variable hexagonal cross-section, with 

the width increasing from 1.49 m to 3.20 m and the high decreasing from 2.40 m to 

1.80 m towards the top.  

The bridge deck is supported on four tubular reinforced concrete piers with a 

hexagonal cross-section. At the top of each pier there are two spherical and multi-

directional steel sliding bearing devices, except on pier P1 fixed in both directions 

by means of a steel bar. 

  

Fig. 2. Main railway bridge over the Sado River: (a) general overview; (b) deck cross section. 

 

 

Fig. 3. Bearing devices of railway bridge over the Sado River. 

(a) 
(b) 
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3.2 Structural health monitoring system description 

The monitoring system encompasses the measurement of accelerations, strains, ro-

tations, vertical and horizontal displacements, temperature, and relative humidity at 

different sections of the deck, arches, and piers, as shown in Fig. 4. 

 

Fig. 4. General overview of monitoring system of railway bridge over the Sado River. 

The accelerations are measured through uniaxial and triaxial servo-type accelerom-

eters and the presence of the trains over the bridge is identified by two photoelectric 

sensors at each end of the bridge. 

The acquisition of acceleration data is handled continuously at a rate of 500 Hz. 

The data acquired is filtered with low pass of 50 Hz and then decimated to 100 Hz. 

3.3 Procedure and results 

The methodology proposed in this study was applied to the case study bridge to 

detect a modification in the longitudinal stiffness of the bearing devices at pier P2, 

which caused a change in the natural frequency of the first three vertical modes, as 

exemplified in Fig. 5. To reduce complexity, only acceleration data from train AP 

number 186, which crossed the bridge heading north at speeds between 210 km/h 

and 220 km/h, were considered in this work. For the analysis, 80 train passages were 

used as the baseline, 89 were used for the damage case, and 32 were used for vali-

dation. The data were acquired between 2022 and 2024.  

 

Fig. 5. Time series of the frequencies of the 1st vertical mode. 

Damaged Baseline VL 
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Following the sensor clustering concept, the time-series responses from 14 vertical 

accelerometers were considered, hence forming 14 clusters as exemplified in Fig. 

6. In this analysis, only vertical acceleration was considered.  

 

Fig. 6. Sensor clustering concept applied to the railway bridge over Sado river. 

Fourteen NARX models using feedforward neural networks (FFNNs) with a single 

hidden layer and sigmoidal activation functions were constructed, with one network 

assigned to each sensor cluster. Prior to network training, the free acceleration re-

sponse of each sensor was normalized. The model order of the NARX networks was 

determined under the baseline condition using the AIC, and the results indicated 

that the optimal model order is 8. 

The NARX FFNNs were trained using the Levenberg–Marquardt algorithm as 

the learning function. In this experimental study, the number of neurons was set 

equal to 32 (𝑀 ∙ (𝑛𝑢 + 1) + 𝑛𝑦) to ensure an adequate representation capability 

while maintaining a controlled network size to avoid overfitting. To reduce compu-

tation time, a weight decay parameter of 5x10-4 was applied. The acquired acceler-

ation data were filtered using an 8th-order low-pass digital filter with a cut-off fre-

quency of 10 Hz. 

For each sensor cluster, the associated NARX neural network is used to approx-

imate the response measured by the reference sensor. Fig. 7 shows a comparison of 

NARX neural network prediction and measured response at accelerometer avj.t2m, 

for both cases. From this figure, it is evident that the predicted response closely 

matches the measured data, demonstrating that the trained NARX neural network 

effectively predicts and represents the undamaged structural response with high pre-

cision. 

  

Fig. 7. Comparison of the predicted response at avj.t2m: (a) undamaged and (b) damaged. 
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Fig. 8. Comparison of the residual errors at accelerometer avj.t2m. 

The data from the damage case was fed into the trained NARX FFNN for response 

prediction. Subsequently, the DI, as described in Section 2.3, was computed from 

the residual errors. A Global Damage Index (GDI) was computed by fusing the 

damage-sensitive features (DI) from all sensor clusters using the MSD approach 

(Fig. 9). To establish a reliable threshold was set at a 99% confidence boundary. 

 

Fig. 9. Global Damage index. 

Although the NARX FFNN trained for damaged data response prediction appears 

to show a good fit (Fig. 7), the GDI was able to highlight the difference between 

damaged and undamaged data, as shows Fig. 9. This approach ensures that any sig-

nificant deviations in the GDI beyond the threshold are indicative of potential struc-

tural damage, minimizing false positives while maintaining high sensitivity to ac-

tual changes. 

In both conditions, points above the threshold, classified as damaged, and points 

below the threshold, classified as normal, can be observed. However, in the damage 

condition, the number of points exceeding the threshold is higher, and their devia-

tion from the threshold is more pronounced. Despite the presence of damage, some 

points continue to be classified as normal. This behaviour is also evident in the time 

series of frequencies (Fig. 5), where certain data points remain within the normal 

range despite the structural modifications. 



10 

4 Conclusions 

This study proposed a novel methodology for damage identification in railway 

bridges using nonlinear time series analysis and sensor clustering, validated with 

real experimental data. The results demonstrated that the NARX neural networks 

effectively captured the dynamic response of the bridge and achieved high accuracy 

in modelling its behaviour under baseline conditions. The methodology successfully 

identified changes in the longitudinal stiffness of the bearing devices at pier P2, 

reliably distinguishing between different conditions through the DI derived from 

prediction errors. 

The sensor clustering strategy proved to be an efficient approach for damage de-

tection, reducing computational complexity while maintaining high precision by 

grouping sensors and using reference sensors within each cluster. Additionally, the 

fusion of damage-sensitive features from multiple sensor clusters into a GDI pro-

vided a robust and comprehensive assessment of the structural condition. 

The practical applicability of the proposed methodology was demonstrated using 

real acceleration data collected from a long-span steel-concrete composite bow-

string arch railway bridge over the Sado River. The use of train-induced dynamic 

responses validated the approach as a reliable and cost-effective solution for struc-

tural health monitoring in complex bridge systems. 

Regarding future research, once damage is detected, a subsequent step involves 

studying the correlation between different accelerometers to pinpoint the location 

of the damage. Additionally, tests will be conducted using different velocity ranges 

to further evaluate the robustness and sensitivity to varying operational conditions. 
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