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Abstract: Azulejos are part of Portugal’s most important cultural heritage. However, a large part
of this heritage is at risk due to lack of or improper conservation treatments. There are, however,
not many studies dedicated to the procedures and materials used in their conservation to guide the
choices of conservators/restorers. Through this work, the performances of the adhesives commonly
used in azulejo conservation are studied considering the extreme conditions they may experience
when in an outdoor environment. Three types of adhesives were studied: acrylics, epoxies, and
cellulose nitrates. The adhesives were evaluated for their workability and characterized by FTIR,
DMA, and bending tests to obtain information on their adhesion effectiveness and compatibility
with the azulejo ceramic substrate before and after artificial and natural ageing. When subjected to
mechanical loads, the high strength and stiffness of the epoxy resins could lead to the development
of new fractures in the previously undamaged ceramic matrix, making them less suitable for the
adhesion of historic tile fragments. Cellulose nitrates revealed a high chemical alteration and the
highest degradation rate in the mechanical properties with ageing, showing it to be the least stable in
the studied conditions. The acrylic resins proved to be the most chemically stable, with less yellowing
and with physical properties that revealed to be the most compatible for the adhesion of the studied
azulejo fragments in outdoor environments.

Keywords: azulejo; adhesive; conservation; ageing; degradation

1. Introduction and State of the Art

Architectural ceramic tiles (azulejos) are part of Portugal’s most important cultural
heritage. This importance is recognized worldwide due to their uniqueness in terms
of artistic craftsmanship, the way they have been applied in architectural settings, the
extensive presence of azulejos throughout the country, and the fact that they are part of a
long-lasting tradition that started in the 16th century [1–3].

Azulejos are a composite material constituting a glaze layer and porous ceramic body
and are usually fixed to the building’s walls by aerial lime-based mortars. Besides their
aesthetic function, they perform their role as a protective building layer by preventing water
from leaking into the wall [4,5]. Humidity in the tiles is considered their main cause of degra-
dation, mainly because it can lead to the transport and dissolution/crystallization of soluble
salts that can cause efflorescence and staining; it may induce the bio-colonization [6,7]
and hydric expansion of the porous ceramic biscuit [8,9]. When this expansion cannot be
accommodated by the glaze, it may cause cracking, which can even lead to the fissuring
of the entire tile (as is often observed in highly dampened areas), therefore creating dis-
continuities at the glaze and azulejo body levels [4,5,10,11]. The fracture of the tiles can
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also be provoked by other mechanical actions, such as external impacts and stresses due to
deformations of the wall.

Despite the importance of this heritage, and the fact that many tile panels are at risk of
being lost due to lack of or improper conservation issues, the studies dedicated to the proce-
dures and materials [12–14] for their conservation such as consolidation treatments [15–20],
desalination [21,22], glaze lacunae infill [23–26], and retouching [27] remain relatively
scarce. Regarding adhesives, many types have been or are being used in the restoration
treatments of outdoor-located tiles. Acrylic-, epoxy-, and cellulose nitrate-based resins are
some of the most commonly used ones to repair ceramic objects, and especially, to bond
historic azulejos in Portugal (Figure 1) [12,13]. The harsh conditions of the outdoor environ-
ment with the direct sunlight, humidity, and temperature variations make the choice of an
outdoor adhesive highly difficult. For an adequate adhesive performance [28–30], besides
the efficiency, chemical/physical compatibility, workability, stability, and satisfactory age-
ing behaviour [31,32] even under harsh conditions, a suitable tile adhesive would ideally
also have a certain capacity to accommodate the deformations of the supporting wall. Other
criteria such as the reversibility of the adhesion and applied products (removal of adhesive
remaining in the joints and inside the porous ceramic) and the retreatability (possibility
of subsequent readhesion actions), whilst considered relevant, are not the subject of this
study [33–35]. Therefore, in this article, the study of the tile fragments adhesives involves
the evaluation of their compatibility with azulejo materials, their bond/adhesive strength,
flexibility, and ageing properties. Understanding these characteristics helps to ensure
that the chosen adhesive is adequate for the specific requirements of azulejo conservation,
balancing the need for long-term stability with the preservation of the original tiles. This
work reports on the study of commonly used adhesives for the bonding of azulejo fragments
in Portugal, with the aim of providing information to support the conservation of azulejo
architectural heritage.
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Coconut Grove, Australia; Fynebond® from Fyne Conservation Services, Argyll, Scotland; 
and Araldite® 2020 from Huntsman, TX, USA); and cellulose nitrates (HMG® cellulose 
nitrate from HMG Paints Ltd, Manchester, UK, UHU® Hart from UHU® GmbH & Co, 
Baden, Germany, and Archaocoll® 2000 from Kremer Pigmente Gmbh & Co, Aichstetten, 

Figure 1. Tile fragment adhesion. (a) Fragmented tile and (b) tile after fragment adhesion treatment.
Images by L. Esteves.

2. Materials and Methods
2.1. Materials

Three types of adhesives commonly used for restoring ceramics or historic tiles were
studied (Table 1): acrylic resins (Paraloid® B44, Paraloid® B67, and Paraloid® B72 from
Rohm and Haas, Philadelphia, PA, USA); epoxies (Hxtal Nyl® 1 from HXTAL Adhesive,
Coconut Grove, Australia; Fynebond® from Fyne Conservation Services, Argyll, Scotland;
and Araldite® 2020 from Huntsman, TX, USA); and cellulose nitrates (HMG® cellulose
nitrate from HMG Paints Ltd., Manchester, UK, UHU® Hart from UHU® GmbH & Co.,
Baden, Germany, and Archaocoll® 2000 from Kremer Pigmente Gmbh & Co, Aichstetten,
Germany). The test ceramic bodies (NTer) used are from New Terracota Lda (Mortágua,
Portugal). Their elemental chemical compositions (SEM-EDS) and main physical properties
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are indicated in Tables 2 and 3 and compared with reference values from historic tiles up
to the 18th century. While lower in Ca and Fe contents (Table 1), the NTer ceramic bodies
have physical properties similar to the historic azulejos (Table 2). Some samples of historic
azulejos (18th century) were used for the result validation.

Table 1. Studied adhesives.

Acrylics Epoxies Cellulose Nitrates

Adhesives
Paraloid® B44 Hxtal Nyl® 1 HMG® cellulose nitrate
Paraloid® B67 Fynebond® UHU® Hart
Paraloid® B72 Araldite® 2020 Archaocoll® 2000

Table 2. SEM-EDS elemental composition (data in % weight of oxides).

SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O TiO2

NTer [23] 57–64 15–18 <1.3 5.5–6.3 1.8–2.4 0.5–1 1–2 <0.5
Historic Azulejos 1 40–62 12–17 5–7 10–28 2–8 1–2 0.5–3 <1

1 Composition range values for majolica Lisbon azulejo biscuits from the 16th up to the 18th century. Unpublished
results obtained by analysing a set of 28 Portuguese tiles selected from the 16th to the 18th century using a field
emission SEM-EDS, with a chamber pressure of 10 Pa, accelerating voltage of 20 kV, and X-ray spectra acquisition
working distance of 15 ± 1 mm.

Table 3. NTer ceramics and historic azulejo physical properties.

Nter 1 Historic Azulejo [36]

Open porosity (%) 37 37–44
Pores mode (µm) 0.4 0.4–0.7

Thermal expansibility (◦C−1) 5 × 10−6 5–7 × 10−6

Water expansibility ε (mm/m) 0.1 0.1–0.3
Max water uptake (%) 22 22–28

Cap. coef. (kg/m2/h1/2) 8.8 0.4–>6
Imbibition capacity (% wt) 18 7–17

1 Unpublished data by the authors using the same experimental methodology as described in [36].

2.2. Samples Preparation

Solutions of 40% (w:w) were prepared for Paraloid® B72 on acetone and Paraloid®

B44 and Paraloid® B67 on toluene. The two components (resin and hardener) of the epoxy
resins were mixed according to the manufacturer’s recommendations. The cellulose nitrates
were acquired as ready-to-use products. To estimate the resin’s solid content, about 2 g of
each prepared solution was left to dry in an atmosphere-controlled room (temp = 20 ± 1 ◦C;
RH = 50 ± 5%), and their weight loss was controlled over time until no significant change
had been observed (100 h).

The specimens for the dynamical mechanical analysis (DMA) (measuring
60 × 10 × 3 mm3) were prepared by applying the resins to the mould cavities and cured for
two weeks in a controlled laboratory environment (T = 20 ± 1 ◦C; RH = 50 ± 5%). Since the
solvent-based acrylic resins and cellulose nitrates showed a high degree of bubbling during
the solvent evaporation stage, the samples were cured inside a plastic bag to reduce the
evaporation rate, and hence, the bubbling effect. After solidifying, all samples were allowed
to complete the curing process in a controlled environment (T = 20 ± 1 ◦C; RH = 50 ± 5%)
for at least two weeks.

The tiles of the test ceramic bodies (NTer) were cut in test specimens of
70 × 30 × 10 mm3. These were separated into two fragments of similar dimensions
using a 3-point bending machine (Gabrielly CRAB424), which created a rough surface on
which the adhesives were applied with a brush. Each adhesive was applied to at least four
samples of the NTer ceramic and to one historic tile sample for validation. The adhered
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fragments were allowed to cure for at least 2 weeks at 21 ± 1 ◦C and 50 ± 5% RH in a
sandbox (Figure 2).
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Figure 2. Sample fragments in different adhesion stages: (a) fragmented, (b) curing in a sandbox, and
(c) bonded.

2.3. Ageing Procedures

The adhesive materials were subjected to accelerated weathering in a climatic chamber
aiming to age them in conditions simulating the exterior climate in Portugal. The radiation
source was a xenon arc lamp with daylight filters, and the main climatic chamber parame-
ters were as follows: irradiance between 290 and 400 nm (ultraviolet UVA radiation) with
550 ± 50 W/m2; test chamber air temperature of 38 ± 3 ◦C; black panel temperature of
65 ± 2 ◦C; and a cycle of 102 min of radiation at a relative humidity of 50 ± 10%, alternating
with 18 min of wetting with demineralized water. The test duration was 500 h.

For the bonded ceramic fragments, the effects of temperature and relative humidity
variation were obtained by artificially ageing the samples in a climatic chamber according
to EN ISO 9142:2003-cycle D7 [37]. After 64 h of initial immersion in demineralized
water at 23 ◦C, cycles of 8 h at 55 ◦C and 20% RH followed by 16 h of immersion at
23 ◦C were completed, with a total duration of 144 h. Natural ageing was simulated
by exposing the samples to an outdoor environment according to ISO 2810:2020 [38]
positioning recommendations for one year.

2.4. Methods

The Fourier transform infrared spectroscopy (FTIR) analysis was performed on a
MATTSON GALAXY GC/FTIR SERIES 200 spectrophotometer. The surface of the poly-
merized adhesives was scratched and analysed in KBr pellets. The parameters for analysis
in transmission mode were as follows: 32 interferometer scans; 0.633 cm/s scan speed;
detector DTGS; and spectral resolution of 4 cm−1. The results were analysed using Omnic
6.0 software.

For the dynamic mechanical analysis (DMA), a dynamic mechanical analyser, model
Q 800 (TA Instruments, New Castle, DE, USA), was used, following the recommendations
of parts 1 and 5 of ISO 6721:2019 [39]. The samples were tested in a dual cantilever mode, in
which the test specimen was anchored at both ends using a fixed clamp and the drive shaft
applied a flexural load at the midpoint. The test specimens of epoxies were heated from 25
to 150 ◦C at a rate of 2 ◦C/min, while being sinusoidally loaded in a dual cantilever clamp
system at a constant frequency of 1 Hz. For the DMA analysis of acrylics and cellulose
nitrate resins, the experimental procedure was the same, but the temperature range started
at −50 ◦C, using liquid nitrogen as the cooling medium.

The 3-point bending tests were performed in a testing machine (Gabbrielli CRAB424)
with a 3-point setup, a span of 48 mm between supports, and a load increase rate of 1 MPa/s
until rupture.
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3. Results and Discussion
3.1. FTIR Analysis

The three types of studied resins were analysed using FTIR before and after the
accelerated ageing in the Xenon climatic chamber to determine the main observable changes
in their chemical constitutions (Figures 3 and 4, Appendix A).

Buildings 2024, 14, x FOR PEER REVIEW 5 of 17 
 

The 3-point bending tests were performed in a testing machine (Gabbrielli CRAB424) 
with a 3-point setup, a span of 48 mm between supports, and a load increase rate of 1 
MPa/s until rupture. 

3. Results and Discussion 
3.1. FTIR Analysis 

The three types of studied resins were analysed using FTIR before and after the 
accelerated ageing in the Xenon climatic chamber to determine the main observable 
changes in their chemical constitutions (Figures 3 and 4, Appendix A). 

The epoxy resins studied were composed of a first component based on the aromatic 
bisphenol A diglycidyl ether (DGEBA) for Fynebond® and Araldite®, and the aliphatic 
diglycidyl ether of hydrogenated bisphenol-A (HDGEBA) for Hxtal Nyl® 1; and a second 
component based on different hardeners for each adhesive. The FTIR analysis shows the 
characteristic bands of the epoxy resins, where the 915 cm−1 band is attributed to the 
unreacted C–O deformation of the epoxide ring [40,41]. In the FTIR spectra, the presence 
of the bands at 1380 cm−1 and 1360 cm−1 may be noted, which corresponds to the C–H3 
bending of the gem-dimethyl group characteristic of bisphenol A. The higher aromatic 
natures of the Fynebond® and Araldite® 2020 resins are evidenced by the presence of the 
bands at 1610 cm−1 and 1510 cm−1, attributed to the C=C stretching of the aromatic nucleus 
[42,43]. In these resins, we also observed the presence of the band at 830 cm−1, characteristic 
of the C–H out-of-plane bending vibration on the para-disubstituted aromatic ring [42,44]. 
After ageing, all epoxy resins showed evidence of post-cure, with the disappearance of 
the oxirane ring characteristic band (at 915 cm−1) [42]. In Fynebond® and Hxtal Nyl® 1, the 
appearances of the bands at 1725 cm−1 and 1660 cm−1, due to the formation of the carbonyl 
bonds, are indicative of the photo-oxidative degradation of the polymers due to the ageing 
process [41,43,44]. 

 

(a) 

 

(b) 

Buildings 2024, 14, x FOR PEER REVIEW 6 of 17 
 

 

(c) 

Figure 3. FTIR spectra of the epoxy resins before (purple) and after (red) ageing in the climatic 
chamber: (a) Araldite® 2020; (b) Fynebond®; and (c) Hxtal Nyl® 1. 

 

(a) 

 

(b) 

Figure 4. FTIR spectra of example cellulose nitrate and acrylic resins before (purple) and after (red) 
ageing in the climatic chamber: (a) UHU® Hart and (b) Paraloid® B72. For all the resin FTIR spectra, 
see Appendix A. 

All FTIR spectra of the cellulose nitrates (Figure 4, Appendix A) exhibited the typical 
absorption bands at 1650 cm−1 due to the asymmetric stretching of the NO2 groups, and 
around 1280 cm−1 and 840 cm−1, which were attributed to NO2 and the beta-anomeric 
linkage in cellulose, respectively [42,45,46]. The degradation of cellulose nitrate polymers 
has been reported in previous studies [43,45,47,48]. When comparing the spectra 
registered before and after ageing, it is possible to notice some variations in the intensities 
and shapes of the characteristic bands, namely, the decrease in the NO2 asymmetric 

Figure 3. FTIR spectra of the epoxy resins before (purple) and after (red) ageing in the climatic
chamber: (a) Araldite® 2020; (b) Fynebond®; and (c) Hxtal Nyl® 1.



Buildings 2024, 14, 375 6 of 17

Buildings 2024, 14, x FOR PEER REVIEW 6 of 17 
 

 

(c) 

Figure 3. FTIR spectra of the epoxy resins before (purple) and after (red) ageing in the climatic 
chamber: (a) Araldite® 2020; (b) Fynebond®; and (c) Hxtal Nyl® 1. 

 

(a) 

 

(b) 

Figure 4. FTIR spectra of example cellulose nitrate and acrylic resins before (purple) and after (red) 
ageing in the climatic chamber: (a) UHU® Hart and (b) Paraloid® B72. For all the resin FTIR spectra, 
see Appendix A. 

All FTIR spectra of the cellulose nitrates (Figure 4, Appendix A) exhibited the typical 
absorption bands at 1650 cm−1 due to the asymmetric stretching of the NO2 groups, and 
around 1280 cm−1 and 840 cm−1, which were attributed to NO2 and the beta-anomeric 
linkage in cellulose, respectively [42,45,46]. The degradation of cellulose nitrate polymers 
has been reported in previous studies [43,45,47,48]. When comparing the spectra 
registered before and after ageing, it is possible to notice some variations in the intensities 
and shapes of the characteristic bands, namely, the decrease in the NO2 asymmetric 

Figure 4. FTIR spectra of example cellulose nitrate and acrylic resins before (purple) and after (red)
ageing in the climatic chamber: (a) UHU® Hart and (b) Paraloid® B72. For all the resin FTIR spectra,
see Appendix A.

The epoxy resins studied were composed of a first component based on the aromatic
bisphenol A diglycidyl ether (DGEBA) for Fynebond® and Araldite®, and the aliphatic
diglycidyl ether of hydrogenated bisphenol-A (HDGEBA) for Hxtal Nyl® 1; and a second
component based on different hardeners for each adhesive. The FTIR analysis shows the
characteristic bands of the epoxy resins, where the 915 cm−1 band is attributed to the unre-
acted C–O deformation of the epoxide ring [40,41]. In the FTIR spectra, the presence of the
bands at 1380 cm−1 and 1360 cm−1 may be noted, which corresponds to the C–H3 bending
of the gem-dimethyl group characteristic of bisphenol A. The higher aromatic natures of
the Fynebond® and Araldite® 2020 resins are evidenced by the presence of the bands at
1610 cm−1 and 1510 cm−1, attributed to the C=C stretching of the aromatic nucleus [42,43].
In these resins, we also observed the presence of the band at 830 cm−1, characteristic of
the C–H out-of-plane bending vibration on the para-disubstituted aromatic ring [42,44].
After ageing, all epoxy resins showed evidence of post-cure, with the disappearance of
the oxirane ring characteristic band (at 915 cm−1) [42]. In Fynebond® and Hxtal Nyl® 1,
the appearances of the bands at 1725 cm−1 and 1660 cm−1, due to the formation of the
carbonyl bonds, are indicative of the photo-oxidative degradation of the polymers due to
the ageing process [41,43,44].

All FTIR spectra of the cellulose nitrates (Figure 4, Appendix A) exhibited the typical
absorption bands at 1650 cm−1 due to the asymmetric stretching of the NO2 groups, and
around 1280 cm−1 and 840 cm−1, which were attributed to NO2 and the beta-anomeric
linkage in cellulose, respectively [42,45,46]. The degradation of cellulose nitrate polymers
has been reported in previous studies [43,45,47,48]. When comparing the spectra registered
before and after ageing, it is possible to notice some variations in the intensities and shapes
of the characteristic bands, namely, the decrease in the NO2 asymmetric stretching band at
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1650 cm−1 and decrease in the 840 cm−1 beta-anomeric linkage band, both of which are
related to cellulose nitrate degradation processes [45]. Nitrous oxides are one of the first
products of thermal deterioration, since the N–O bonds joining the ring are the weakest
bonds in the molecule [45].

The acrylic resins studied are methacrylate homopolymers or copolymers: Paraloid®

B72 (PEMA/PMA) is a poly-(ethyl methacrylate) poly-(methyl acrylate) copolymer; Paraloid®

B44 (PMMA/PEA) is a poly-(methyl methacrylate) and ethyl acrylate; and Paraloid® B67
(PiBMA) is a poly-(isobutyl methacrylate) [49]. In all the acrylic resins, their characteristic
bands can be observed, namely, the bands corresponding to the carbonyl absorption around
1730 cm−1 and the bands between 1270 and 1150 cm−1 characteristic of C–O–C stretching
of an ester group [42,46]. The FTIR spectra of the three acrylic adhesives are similar before
and after ageing, suggesting that the acrylic resins do not undergo chemical changes during
the ageing process.

3.2. Dynamic Mechanical Analysis (DMA)

In its glass state, a polymeric material exhibits a relatively stable mechanical be-
haviour, with stiffness and mechanical properties that do not vary much with temperature
changes [32]. As the temperature rises, the polymer chains undergo increased vibration
and movement, leading to a less stable mechanical behaviour as evidenced by a decline in
the storage modulus (E’) [32,50].

The glass transition temperature (Tg) interval refers to the temperature range over
which the material undergoes this transition from a glassy, rigid state, to a more flexible and
rubbery state [50,51]. The Tg interval can be defined by the two following temperatures:
(i) lower Tg: the temperature at which the material begins the transition (below this
temperature, the material is in a glassy state, exhibiting high stiffness) and (ii) upper Tg:
the temperature at which the material completes its transition to a more rubbery or viscous
state [51].

DMA is particularly well suited for characterizing the glass transition of polymers,
because it can directly measure the changes in the mechanical properties of the material as
the temperature is varied [50,52,53].

After curing at room temperature, all three epoxies presented a vitreous state and
high rigidity (Figure 5a). The epoxies presented a well-defined Tg range, measured from
the onset to the final point of the storage modulus curves (E’), namely, 43.8–49.3 ◦C for
Hxtal Nyl® 1, 45.9–50.3 ◦C for Fynebond®, and 47.5–54.8 ◦C for Araldite® 2020. The
results for Hxtal Nyl® 1 and Araldite® 2020 are consistent with those that have been
reported from DSC measurements (47.4 ◦C and 49.8 ◦C for Hala Nyl® 1 and Araldite®

2020, respectively) [54]. However, Araldite® 2020 showed a lower Tg range compared to
the manufacturer’s reported value of approximately 39.5 ◦C [55]. The difference between
the measured and literature values can be explained by the fact that Tg is not a first order
transition, and its measurement is highly dependent on the experiment method, time scale,
presence of solvents, sample age, and history [56].

After artificial ageing, the three epoxy resins exhibit a shift in the Tg range to higher
values (47.9–57.5 ◦C for Hxtal Nyl® 1, 59.7–67.7 ◦C for Fynebond®, and 63.0–73.6 ◦C for
Araldite® 2020) which is particularly evident in the E’ curves of Fynebond® and Araldite®

2020. This phenomenon is common when room-temperature-cured epoxy resins are later
exposed to higher temperatures (as happened here, with the exposure in a climatic chamber)
because they continue to polymerize and cure. As a result of this change, the resins retain
their stiffness at higher temperatures, and the glass transition temperature range is shifted
to higher values. For Araldite® 2020 and Hxtal Nyl® 1, the tan δ curve (a dimensionless
parameter that represents the ratio of the loss modulus to the storage modulus, which
measures the energy dissipation or the damping characteristics of the material) also shows
an enlarged peak base and an inflection on the descending branch. This effect has previously
been described as being due to the presence of different components, regions with different
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reticulation densities, or the formation of a drier skin at the surface of the sample and a less
dry interior [32].
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Cellulose nitrates before ageing (Figure 5c) do not depict a well-defined onset or
final points in the storage modulus curves (E’), and therefore, also the glass transition
temperature range. All three cellulose nitrate adhesives are characterized by high stiffness
at very low temperatures (−50 ◦C) but are softer than the epoxies at ambient temperatures.
They exhibit a viscous–elastic behaviour up to temperatures around 70–100 ◦C, when the
storage modulus decays. After artificial ageing in the climatic chamber, the cellulose nitrate
resins presented alterations (they became extremely fragile and broke during the mounting
on the instrument) that precluded a DMA analysis.

Thermoplastic acrylic resins also have a less pronounced glass transition temperature
range than the epoxy resins. Compared to the cellulose nitrate resins, Paraloid® B72 and
Paraloid® B44 show much higher stiffness values at −50 ◦C but also the fastest decrease in
the storage modulus with temperature increase. Paraloid® B67 shows a distinct behaviour,
with very low stiffness values and little influence of the temperature on the storage modulus
up to about 25 ◦C. From temperatures around −40, −15, and 15 ◦C for Paraloid® B72,
Paraloid® B44, and Paraloid® B67, respectively, the resins showed a viscoelastic behaviour
up to around 25–35 ◦C, after which the viscous behaviour of all the resins prevailed. The
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determination of the glass transition temperature from the tan δ peak (which usually
provides higher values for Tg than the one measured by the onset of the storage modulus)
indicates maximum values of around 40 ◦C for Paraloid® B72, while Paraloid® B44 presents
a peak at 30 ◦C, and Paraloid® B67 at 56 ◦C. As said before, the experimental method, time
scale, presence of solvents, sample age, and history [56] may further explain the differences
from the Tg values reported in the literature for Paraloid® B67 and B44 (40 ◦C for Paraloid®

B72, 60 ◦C for Paraloid® B44, and 50 ◦C for Paraloid® B67). During ageing, the acrylics
altered their shape (Figure 5), which did not allow them to be analysed using DMA.

3.3. Resins Solid Content

The epoxy resins showed no significant shrinkage or weight loss after curing, while
the acrylic resins lost around 60% of their initial weight corresponding to the solvent weight
used in their preparation. The solid content of the commercial cellulose nitrate resins was
26% for Archaocoll® 200, 31% for HMG®, and 38% for UHU® Hart.

3.4. Colour Alterations Due to Ageing

Polymer degradation due to ageing is a complex phenomenon that occurs at the
molecular level and can also be detectable at the macroscopic level as visual changes.

Figure 6 shows the samples before and after artificial ageing in the Xenon radiation
chamber, depicting the yellowing of the test specimens resulting from the exposure to the
ageing test. It was observed that the three cellulose nitrates already presented a yellowish
colour since their preparation, while only a slight increase in colour occurred after the
ageing. All the epoxies were transparent after curing and yellowed after ageing, where the
aliphatic Hxtal Nyl® 1 appeared to be the least affected by this factor. Acrylics (Paraloid®

B72, B44, and B67) were not particularly affected by the yellowing, but there was a change
in their shape which occurred due to softening caused by the temperature (55 ◦C) reached
in the climatic chamber (Figure 7).
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Figure 7. Example of Paraloid® B72 softening after 500 h in the Xenon climatic chamber.

3.5. Adhesion of the Ceramic Fragments
3.5.1. Workability

All adhesives were easily applied by brushing to bond the ceramic fragments. At
dissolutions of 40% (w:w) Paraloid® B44 and Paraloid® B67 presented an observable lower
viscosity than 40% Paraloid® B72, which led to a higher absorption by the porous ceramic,
making the joining process more difficult. The cellulose nitrate had a higher viscosity for
tile fragment adhesion. The viscosity of the reactive epoxy resins increased with time,
and only several hours after its preparation, a suitable viscosity was achieved. For the
application of these resins, a two-step application was adopted, where the first had the
purpose of surface consolidation, and the second, of adhesion. An alternative would be to
monitor the viscosity over time and apply the resin when the correct viscosity is achieved,
resulting in a short workability time. The epoxies showed a short pot life, but the high
solvent content of the acrylic polymers and cellulose nitrates induced shrinkage and bubble
formation during curing due to the solvent’s evaporation.

3.5.2. Flexural Strength

Figure 8 presents the results obtained from the flexural strength test samples. These
were tested in a three-point bending setup. When the rupture of the sample occurs in the
bonded joint or in its close vicinity, the flexural strength measurement gives an indication
of the resin adhesive strength.
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The results obtained after curing showed that the epoxies did not fail in the bonded
joint but failed in the ceramic matrix (Figure 9c), showing that the adhesive’s strength was
higher than the ceramic matrix flexural strength. This means that mechanical stress applied
to the tile panel would probably create new fracture surfaces in previously undamaged
areas. The results obtained therefore indicate that under mechanical stresses, such as move-
ments in the building structure, epoxy bonding could cause further damage to the historic
tiles. Methods for reducing the epoxy bond strength and/or improving its reversibility
by, for instance, firstly applying a different adhesive coat layer, could potentially mitigate
these issues [33].
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Figure 9. Depiction of the failure mode types of the bonded ceramic fragments through bending tests.
(a) failure in the adhesive, (b) mixed adhesive–ceramic failure, and (c) ceramic failure.

Paraloid® B72 and UHU® Hart showed intermediate bond strengths, resulting in
a mixed adhesive/ceramic failure near the bonded joint. Paraloid® B67, Paraloid® B44,
HMG®, and Archaocoll® showed a lower flexural strength to bending, with failure occur-
ring in the adhesive layer. Paraloid® B67, on the other hand, was too brittle and showed a
bond strength close to nil at the studied concentration and application procedure. The test
with historic tiles has validated the results obtained with the NTer ceramic tiles (Figure 8).

The type of failure observed is proportional to the flexural bond strength obtained
(Figure 9), where the adhesives with a low strength (Paraloid® B67, Paraloid® B44, HMG®,
and Archaocoll®) result in adhesive failures, those with a medium strength (Paraloid® B72
and UHU® hart) show adhesive–ceramic failure, and those with high strength, such as the
epoxies, produce fractures in the ceramic body and not in the bond layer.

After artificial ageing (Figure 10) in the climatic chamber with variations in the temper-
ature and relative humidity, all the Paraloid® B67 samples presented with adhesive failure
and did not allow the bending test to be performed. The bond strength observed after
ageing revealed a small decrease for Paraloid® B44 and maintenance or even improvement
for Paraloid® B72. A higher loss in effectiveness is observed for the cellulose nitrates. After
ageing, Paraloid® B72 continues to impart some degree of strength to the joint, where the
mixed adhesive–ceramic failure after the test remains. These breakages do not create new
fracture surfaces but correspond to fragments of ceramic in the vicinity of the joint that
remain attached to the opposite side (Figure 9b). After ageing, the cellulose nitrates mainly
showed adhesive failures.

After natural ageing, the results of artificial ageing generally confirmed a high loss
in the efficacy of the cellulose nitrates, a decreased performance of Paraloid® B44, and an
apparent improvement in the performance of Paraloid® B72 (Figure 10).
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4. Conclusions

Several analytical techniques were used to characterize a set of selected adhesives
commonly used in the restoration of historic azulejos in Portugal. All the epoxies revealed
a tendency to yellow, had high stiffness (DMA) at an ambient temperature, as well as a
chemical alterability revealed using FTIR when exposed in the climatic chamber. Bending
tests also showed that their strengths were very high, which may lead, when subjected
to mechanical stresses, to breakage in other areas of the ceramic material rather than in
the bond joint. High-strength adhesives can be important to assure the structural role of
objects, but for compatibility reasons, adhesives with a breaking strength clearly superior
to those of the materials to be joined should be avoided in conservation treatments. These
results showed that in the case of azulejos in a common architectural context, epoxies are
less appropriate for the bonding of fragments, since a structural function is not essential,
because the tiles are held to the wall by a mortar.

The cellulose nitrate adhesives appeared already yellow after curing when a suffi-
ciently thick (approximately 3 mm) adhesive sample was prepared. A chemical alteration
was also detected using FTIR after temperature–UV–RH cycles with ageing, and they also
presented the highest degradation rates in the mechanical properties with ageing, possibly
showing them as the least stable for use in outdoor conditions.

The acrylic resins studied showed a high variability between them in terms of their
properties and adhesion performance. Paraloid® B72 (followed by Paraloid® B44) showed
the most suitable characteristics for bonding tile fragments in terms of its workability,
adhesion strength, low chemical alteration, and yellowing fastness. Since the tile fragments
are held to the wall by the mortar, the softening and viscous–elastic or viscous behaviour of
the acrylic resins at ambient temperatures do not necessarily impose structural risks, and
even allow for some adjustment of the resin to minor wall movements. Although Paraloid®

B72 did not induce new fracture lines, it presented, however, a mixed adhesive–ceramic
failure mode that could lead to the partial damage of the original material in the vicinity of
the bonded joint.

The results obtained allowed for a better understanding of the characteristics and
ageing behaviours of some of the most used adhesives for the bonding of tile fragments,
which will hopefully aid in the practice of azulejo conservation.
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Figure A1. FTIR spectra of the epoxy resins before (purple) and after (red) ageing in the climatic 
chamber: (a) Araldite 2020; (b) Fynebond; and (c) Hxtal Nyl® 1. 
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